
Min Zhang · Vincent Ng · Dongyan Zhao
Sujian Li · Hongying Zan (Eds.)

 123

LN
AI

 1
11

08

7th CCF International Conference, NLPCC 2018
Hohhot, China, August 26–30, 2018
Proceedings, Part I

Natural Language
Processing and
Chinese Computing

Lecture Notes in Artificial Intelligence 11108

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Min Zhang • Vincent Ng
Dongyan Zhao • Sujian Li
Hongying Zan (Eds.)

Natural Language
Processing and
Chinese Computing
7th CCF International Conference, NLPCC 2018
Hohhot, China, August 26–30, 2018
Proceedings, Part I

123

Editors
Min Zhang
Soochow University
Suzhou
China

Vincent Ng
The University of Texas at Dallas
Richardson, TX
USA

Dongyan Zhao
Peking University
Beijing
China

Sujian Li
Peking University
Beijing
China

Hongying Zan
Zhengzhou University
Zhengzhou
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-99494-9 ISBN 978-3-319-99495-6 (eBook)
https://doi.org/10.1007/978-3-319-99495-6

Library of Congress Control Number: 2018951640

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Welcome to the proceedings of NLPCC 2018, the 7th CCF International Conference on
Natural Language Processing and Chinese Computing. Following the highly successful
conferences in Beijing (2012), Chongqing (2013), Shenzhen (2014), Nanchang (2015),
Kunming (2016), and Dalian (2017), this year’s NLPCC was held in Hohhot, the
capital and the economic and cultural center of Inner Mongolia. As a leading inter-
national conference on natural language processing and Chinese computing organized
by CCF-TCCI (Technical Committee of Chinese Information, China Computer Fed-
eration), NLPCC 2018 served as a main forum for researchers and practitioners from
academia, industry, and government to share their ideas, research results, and experi-
ences, and to promote their research and technical innovations in the fields.

There is nothing more exciting than seeing the continual growth of NLPCC over the
years. This year, we received a total of 308 submissions, which represents a 22%
increase in the number of submissions compared with NLPCC 2017. Among the 308
submissions, 241 were written in English and 67 were written in Chinese. Following
NLPCC’s tradition, we welcomed submissions in eight key areas, including NLP
Fundamentals (Syntax, Semantics, Discourse), NLP Applications, Text Mining,
Machine Translation, Machine Learning for NLP, Information Extraction/Knowledge
Graph, Conversational Bot/Question Answering/Information Retrieval, and NLP for
Social Network. Unlike previous years, this year we intended to broaden the scope
of the program by inviting authors to submit their work to one of five categories:
applications/tools, empirical/data-driven approaches, resources and evaluation, theo-
retical, and survey papers. Different review forms were designed to help reviewers
determine the contributions made by papers in different categories. While it is perhaps
not surprising to see that more than 88% of the submissions concern
empirical/data-driven approaches, it is encouraging to see three resources and evalu-
ation papers and one theoretical paper accepted to the conference. Acceptance deci-
sions were made in an online PC meeting attended by the general chairs, the Program
Committee (PC) chairs, and the area chairs. In the end, 70 submissions were accepted
as full papers (with 55 papers in English and 15 papers in Chinese) and 31 as posters.
Six papers were nominated by the area chairs for the best paper award. An independent
best paper award committee was formed to select the best papers from the shortlist. The
proceedings include only the English papers accepted; the Chinese papers appear in
ACTA Scientiarum Naturalium Universitatis Pekinensis.

We were honored to have four internationally renowned keynote speakers —
Charles Ling, Joyce Chai, Cristian Danescu-Niculescu-Mizil, and Luo Si — share their
views on exciting developments in various areas of NLP, including language com-
munication with robots, conversational dynamics, NLP research at Alibaba, and
megatrends in AI.

We could not have organized NLPCC 2018 without the help of many people:

• We are grateful for the guidance and advice provided by TCCI Chair Ming Zhou,
General Chairs Dan Roth and Chengqing Zong, and Organizing Committee
Co-chairs Dongyan Zhao, Ruifeng Xu, and Guanglai Gao.

• We would like to thank Chinese Track and Student Workshop Co-chairs
Minlie Huang and Jinsong Su, as well as Evaluation Co-chairs Nan Duan and
Xiaojun Wan, who undertook the difficult task of selecting the slate of accepted
papers from the large pool of high-quality papers.

• We are indebted to the 16 area chairs and the 232 reviewers. This year, we operated
under severe time constraints, with only a month between the submission deadline
and the notification date. We could not have met the various deadlines during the
review process without the hard work of the area chairs and the reviewers.

• We thank ADL/Tutorial Co-chairs Wenliang Chen and Rui Yan for assembling a
tutorial program consisting of six tutorials covering a wide range of cutting-edge
topics in NLP.

• We thank Sponsorship Co-chairs Kam-Fai Wong and Ming Zhou for securing
sponsorship for the conference.

• Publication Co-chairs Sujian Li and Hongying Zan spent a tremendous amount of
time ensuring every little detail in the publication process was taken care of and
truly deserve a big applause.

• We thank Dan Roth, Xuanjing Huang, Jing Jiang, Yang Liu, and Yue Zhang for
agreeing to serve in the best paper award committee.

• Above all, we thank everybody who chose to submit their work to NLPCC 2018.
Without their support, we could not have put together a strong conference program.

Enjoy the conference as well as Hohhot’ vast green pastures and natural sceneries!

July 2018 Vincent Ng
Min Zhang

VI Preface

Organization

NLPCC 2018 is organized by Technical Committee of Chinese Information of CCF,
Inner Mongolia University and the State Key Lab of Digital Publishing Technology.

Organizing Committee

General Chairs

Dan Roth University of Pennsylvania, USA
Chengqing Zong Institute of Automation, Chinese Academy of Sciences,

China

Program Co-chairs

Min Zhang Soochow University, China
Vincent Ng University of Texas at Dallas, USA

Area Chairs

NLP Fundamentals
Nianwen Xue Brandeis University, USA
Meishan Zhang Heilongjiang University, China

NLP Applications
Bishan Yang Carnegie Mellon University, USA
Ruifeng Xu Harbin Institute of Technology, China

Text Mining
William Yang Wang University of California, Santa Barbara, USA
Ping Luo Institute of Computing Technology, Chinese Academy

of Sciences, China

Machine Translation
Fei Huang Facebook, USA
Derek Wong University of Macau, Macau, SAR China

Machine Learning for NLP
Kai-Wei Chang University of California, Los Angeles, USA
Xu Sun Peking University, China

Knowledge Graph/IE
Yun-Nung (Vivian) Chen National Taiwan University, Taiwan
Wenliang Chen Soochow University, China

Conversational Bot/QA
Jianfeng Gao Microsoft AI and Research, USA
Haofen Wang Gowild.cn, China

NLP for Social Network
Wei Gao Victoria University of Wellington, New Zealand
Bo Wang Tianjin University, China

Organization Co-chairs

Guanglai Gao Inner Mongolia University, China
Ruifeng Xu Harbin University of Technology, China
Dongyan Zhao Peking University, China

ADL/Tutorial Chairs

Wenliang Chen Soochow University, China
Rui Yan Peking University, China

Student Workshop Chairs

Minlie Huang Tsinghua University, China
Jinsong Su Xiamen University, China

Sponsorship Co-chairs

Kam-Fai Wong The Chinese University of Hong Kong, SAR China
Ming Zhou Microsoft Research Asia, China

Publication Chairs

Sujian Li Peking University, China
Hongying Zan Zhengzhou University, China

Publicity Chairs

Wanxiang Che Harbin Institute of Technology, China
Qi Zhang Fudan University, China
Yangsen Zhang Beijing University of Information Science and

Technology, China

Evaluation Chairs

Nan Duan Microsoft Research Asia
Xiaojun Wan Peking University, China

Program Committee

Wasi Ahmad University of California, Los Angeles, USA
Xiang Ao Institute of Computing Technology, Chinese Academy

of Sciences, China
Deng Cai Shanghai Jiao Tong University, China

VIII Organization

Hailong Cao Harbin Institute of Technology, China
Kai Cao New York University, USA
Rongyu Cao Institute of Computing Technology, CAS, China
Shaosheng Cao Ant Financial Services Group, China
Yixuan Cao Institute of Computing Technology, CAS, China
Ziqiang Cao Hong Kong Polytechnic University, SAR China
Baobao Chang Peking University, China
Kai-Wei Chang UCLA, USA
Yung-Chun Chang Graduate Institute of Data Science, Taipei Medical

University, Taiwan, China
Berlin Chen National Taiwan Normal University, Taiwan, China
Boxing Chen Alibaba, China
Chen Chen Arizona State University, USA
Chengyao Chen Hong Kong Polytechnic University, SAR China
Dian Chen blog.csdn.net/okcd00, China
Gong Cheng Nanjing University, China
Li Cheng Xinjiang Technical Institute of Physics and Chemistry,

Chinese Academy of Sciences, China
Hongshen Chen JD.com, China
Hsin-Hsi Chen National Taiwan University, Taiwan, China
Muhao Chen University of California Los Angeles, USA
Qingcai Chen Harbin Institute of Technology Shenzhen Graduate

School, China
Ruey-Cheng Chen SEEK Ltd., Australia
Wenliang Chen Soochow University, China
Xu Chen Tsinghua University, China
Yidong Chen Xiamen University, China
Yubo Chen Institute of Automation, Chinese Academy of Sciences,

China
Yun-Nung Chen National Taiwan University, Taiwan, China
Zhumin Chen Shandong University, China
Wanxiang Che Harbin Institute of Technology, China
Thilini Cooray Singapore University of Technology and Design,

Singapore
Xinyu Dai Nanjing University, China
Bhuwan Dhingra Carnegie Mellon University, USA
Xiao Ding Harbin Institute of Technology, China
Fei Dong Singapore University of Technology and Design,

Singapore
Li Dong University of Edinburgh, UK
Zhicheng Dou Renmin University of China, China
Junwen Duan Harbin Institute of Technology, China
Xiangyu Duan Soochow University, China
Jiachen Du Harbin Institute of Technology Shenzhen Graduate

School, China

Organization IX

Jinhua Du Dublin City University, Ireland
Matthias Eck Facebook, USA
Derek F. Wong University of Macau, Macau, SAR China
Chuang Fan Harbin Institute of Technology Shenzhen Graduate

School, China
Chunli Fan Guilin University of Electronic Technology, China
Yang Feng Institute of Computing Technology, Chinese Academy

of Sciences, China
Yansong Feng Peking University, China
Guohong Fu Heilongjiang University, China
Michel Galley Microsoft Research, USA
Jianfeng Gao Microsoft Research, Redmond, USA
Qin Gao Google LLC, USA
Wei Gao Victoria University of Wellington, New Zealand
Niyu Ge IBM Research, USA
Lin Gui Aston University, UK
Jiafeng Guo Institute of Computing Technology, CAS, China
Jiang Guo Massachusetts Institute of Technology, USA
Weiwei Guo LinkedIn, USA
Yupeng Gu Northeastern University, USA
Xianpei Han Institute of Software, Chinese Academy of Sciences,

China
Tianyong Hao Guangdong University of Foreign Studies, China
Ji He University of Washington, USA
Yanqing He Institute of Scientific and Technical Information of

China, China
Yifan He Alibaba Inc., USA
Yulan He Aston University, UK
Zhongjun He Baidu Inc., China
Yu Hong Soochow University, China
Dongyan Huang Institute for Infocomm Research, Singapore
Fei Huang Alibaba DAMO Research Lab, USA
Guoping Huang Tencent AI Lab, China
Jiangping Huang Chongqing University of Posts and

Telecommunications, China
Ruihong Huang Texas AM University, USA
Shujian Huang Nanjing University, China
Ting-Hao Huang Carnegie Mellon University, USA
Xiaojiang Huang Microsoft, China
Xuanjing Huang Fudan University, China
Zhiting Hu Carnegie Mellon University, USA
Junyi Jessy Li University of Texas at Austin, USA
Jingtian Jiang Microsoft AI Research, USA
Shengyi Jiang Guangdong University of Foreign Studies, China
Wenbin Jiang Baidu Inc., China
Yuxiang Jia Zhengzhou University, China

X Organization

Peng Jin Leshan Normal University, China
Chunyu Kit City University of Hong Kong, SAR China
Fang Kong Soochow University, China
Lingpeng Kong Carnegie Mellon University, USA
Lun-Wei Ku Academia Sinica, Taiwan, China
Man Lan East China Normal University, China
Yanyan Lan Institute of Computing Technology, CAS, China
Ni Lao SayMosaic, USA
Wang-Chien Lee The Penn State University, USA
Shuailong Liang Singapore University of Technology and Design,

Singapore
Xiangwen Liao Fuzhou University, China
Bin Li Nanjing Normal University, China
Binyang Li University of International Relations, China
Changliang Li Institute of automation, Chinese Academy of Sciences,

China
Chen Li Microsoft, USA
Chenliang Li Wuhan University, China
Fei Li Wuhan University, China
Hao Li Rensselaer Polytechnic Institute, USA
Hongwei Li ICT, China
Junhui Li Soochow University, China
Liangyue Li Arizona State University, USA
Maoxi Li Jiangxi Normal University, China
Peifeng Li Soochow University, China
Peng Li Institute of Information Engineering, CAS, China
Piji Li The Chinese University of Hong Kong, SAR China
Ru Li Shanxi University, China
Sheng Li Adobe Research, USA
Shoushan Li Soochow University, China
Bingquan Liu Harbin Institute of Technology, China
Jiangming Liu University of Edinburgh, UK
Jing Liu Baidu Inc., China
Lemao Liu Tencent AI Lab, China
Qun Liu Dublin City University, Ireland
Shenghua Liu Institute of Computing Technology, CAS, China
Shujie Liu Microsoft Research Asia, Beijing, China
Tao Liu Renmin University of China, China
Yang Liu Tsinghua University, China
Yijia Liu Harbin Institute of Technology, China
Zhengzhong Liu Carnegie Mellon University, USA
Wenjie Li Hong Kong Polytechnic University, SAR China
Xiang Li New York University, USA
Xiaoqing Li Institute of Automation, Chinese Academy of Sciences,

China
Yaliang Li Tencent Medial AI Lab, USA

Organization XI

Yuan-Fang Li Monash University, Australia
Zhenghua Li Soochow University, China
Ping Luo Institute of Computing Technology, CAS, China
Weihua Luo Alibaba Group, China
Wencan Luo Google, USA
Zhunchen Luo PLA Academy of Military Science, China
Qi Lu Soochow University, China
Wei Lu Singapore University of Technology and Design,

Singapore
Chen Lyu Guangdong University of Foreign Studies, China
Yajuan Lyu Baidu Company, China
Cunli Mao Kunming University of Science and Technology, China
Xian-Ling Mao Beijing Institute of Technology, China
Shuming Ma Peking University, China
Yanjun Ma Baidu, China
Yue Ma Université Paris Sud, France
Fandong Meng Tencent, China
Haitao Mi Alipay US, USA
Lili Mou AdeptMind Research, Canada
Baolin Peng The Chinese University of Hong Kong, SAR China
Haoruo Peng UIUC, USA
Nanyun Peng University of Southern California, USA
Longhua Qian Soochow University, China
Tao Qian Wuhan University, China
Guilin Qi Southeast University, China
Yanxia Qin Harbin Institute of Technology, China
Likun Qiu Ludong University, China
Xipeng Qiu Fudan University, China
Weiguang Qu Nanjing Normal University, China
Feiliang Ren Northerstern University, China
Yafeng Ren Guangdong University of Foreign Studies, China
Huawei Shen Institute of Computing Technology, Chinese Academy

of Sciences, China
Wei Shen Nankai University, China
Xiaodong Shi Xiamen University, China
Wei Song Capital Normal University, China
Aixin Sun Nanyang Technological University, Singapore
Chengjie Sun Harbin Institute of Technology, China
Weiwei Sun Peking University, China
Yu Su University of California Santa Barbara, USA
Duyu Tang Microsoft Research Asia, China
Zhi Tang Peking University, China
Zhiyang Teng Singapore University of Technology and Design,

Singapore
Jin Ting Hainan University, China
Ming-Feng Tsai National Chengchi University, Taiwan, China

XII Organization

Yuen-Hsien Tseng National Taiwan Normal University, Taiwan, China
Zhaopeng Tu Tencent AI Lab, China
Bin Wang Institute of Information Engineering, Chinese Academy

of Sciences, China
Chuan Wang Google Inc., USA
Di Wang Carnegie Mellon University, USA
Haofen Wang Shenzhen Gowild Robotics Co. Ltd., China
Kun Wang Alibaba, China
Longyue Wang Dublin City University, Ireland
Quan Wang Institute of Information Engineering, Chinese Academy

of Sciences, China
Xiaojie Wang Beijing University of Posts and Telecommunications,

China
Zhiguo Wang IBM Watson Research Center, USA
Zhongqing Wang Soochow University, China
Zhongyu Wei Fudan University, China
Hua Wu Baidu, China
Yunfang Wu Peking University, China
Tong Xiao Northestern University, China
Yanghua Xiao Fudan University, China
Rui Xia Nanjing University of Science and Technology, China
Wayne Xin Zhao RUC, China
Chenyan Xiong Carnegie Mellon University, USA
Deyi Xiong Soochow University, China
Shufeng Xiong Wuhan University, China
Jun Xu Institute of Computing Technology, CAS, China
Kun Xu IBM T.J. Watson Research Center, USA
Endong Xun Bejing Language and Cultural University, China
Jie Yang Singapore University of Technology and Design,

Singapore
Liang Yang Dalian University of Technology, China
Liner Yang Tsinghua University, China
Liu Yang University of Massachusetts Amherst, USA
Yating Yang The Xinjing Technical Institute of Physics and

Chemistry, CAS, China
Zi Yang Google, USA
Oi Yee Kwong The Chinese University of Hong Kong, SAR China
Peifeng Yin IBM Almaden Research Center, USA
Wenpeng Yin University of Pennsylvania, USA
Bei Yu Syracuse University, USA
Dong Yu Beijing Language and Culture University, China
Junjie Yu Soochow University, China
Mo Yu IBM Research, USA
Zhengtao Yu Kunming University of Science and Technology, China
Xiangrong Zeng Institute of Automation, Chinese Academy of Sciences,

China

Organization XIII

Ying Zeng Peking University, China
Feifei Zhai Sogou Inc., China
Chengzhi Zhang Nanjing University of Science and Technology, China
Dongdong Zhang Microsoft Research Asia, China
Fan Zhang University of Pittsburgh, USA
Fuzheng Zhang MSRA, China
Min Zhang Tsinghua University, China
Peng Zhang Tianjin University, China
Qi Zhang Fudan University, China
Weinan Zhang Shanghai Jiao Tong University, China
Xiaodong Zhang Peking University, China
Xiaowang Zhang Tianjin University, China
Yongfeng Zhang Rutgers University, USA
Yue Zhang Singapore University of Technology and Design,

Singapore
Hai Zhao Shanghai Jiao Tong University, China
Jieyu Zhao University of California, Los Angeles, USA
Sendong Zhao Harbin Institute of Technology, China
Tiejun Zhao Harbin Institute of Technology, China
Guoqing Zheng Carnegie Mellon University, USA
Deyu Zhou Southeast University, China
Guangyou Zhou Central China Normal University, China
Hao Zhou Bytedance AI Lab, China
Junsheng Zhou Nanjing Normal University, China
Ming Zhou Microsoft Research Asia, China
Muhua Zhu Alibaba Inc., China

XIV Organization

Organizers

Organized by

China Computer Federation, China

Supported by

Asian Federation of Natural Language Processing

Hosted by

Inner Mongolia University

State Key Lab of Digital Publishing Technology

In Cooperation with:

Lecture Notes in Computer Science

Organization XV

Springer

ACTA Scientiarum Naturalium Universitatis Pekinensis

XVI Organization

Sponsoring Institutions

Primary Sponsors

Diamond Sponsors

JINGDONGAI Strong

Tencent LINGO Lab ZHINENGYIDIAN

Sogou AISPEECH

China MobileLIULISHUO

Alibaba Group GTCOM

Organization XVII

Platinum Sponsors

Microsoft Baidu

Leyan Tech Laiye

Huawei GRID SUM

LENOVO AITC

Unisound XIAOMI

XVIII Organization

CVTE ByteDance

WISERS

Golden Sponsors

NiuParser SoftBank

Genelife

Organization XIX

Contents – Part I

Conversational Bot/QA/IR

Question Answering for Technical Customer Support 3
Yang Li, Qingliang Miao, Ji Geng, Christoph Alt,
Robert Schwarzenberg, Leonhard Hennig, Changjian Hu, and Feiyu Xu

Perception and Production of Mandarin Monosyllabic Tones by Amdo
Tibetan College Students . 16

Zhenye Gan, Jiafang Han, and Hongwu Yang

Effective Character-Augmented Word Embedding for Machine
Reading Comprehension . 27

Zhuosheng Zhang, Yafang Huang, Pengfei Zhu, and Hai Zhao

Mongolian Grapheme to Phoneme Conversion
by Using Hybrid Approach . 40

Zhinan Liu, Feilong Bao, Guanglai Gao, and Suburi

From Plots to Endings: A Reinforced Pointer Generator
for Story Ending Generation. 51

Yan Zhao, Lu Liu, Chunhua Liu, Ruoyao Yang, and Dong Yu

A3Net:Adversarial-and-Attention Network for Machine
Reading Comprehension . 64

Jiuniu Wang, Xingyu Fu, Guangluan Xu, Yirong Wu, Ziyan Chen,
Yang Wei, and Li Jin

When Less Is More: Using Less Context Information to Generate Better
Utterances in Group Conversations . 76

Haisong Zhang, Zhangming Chan, Yan Song, Dongyan Zhao,
and Rui Yan

I Know There Is No Answer: Modeling Answer Validation
for Machine Reading Comprehension . 85

Chuanqi Tan, Furu Wei, Qingyu Zhou, Nan Yang, Weifeng Lv,
and Ming Zhou

Learning to Converse Emotionally Like Humans: A Conditional
Variational Approach. 98

Rui Zhang and Zhenyu Wang

Response Selection of Multi-turn Conversation
with Deep Neural Networks . 110

Yunli Wang, Zhao Yan, Zhoujun Li, and Wenhan Chao

Learning Dialogue History for Spoken Language Understanding 120
Xiaodong Zhang, Dehong Ma, and Houfeng Wang

A Neural Question Generation System Based on Knowledge Base 133
Hao Wang, Xiaodong Zhang, and Houfeng Wang

Knowledge Graph/IE

ProjR: Embedding Structure Diversity for Knowledge Graph Completion. . . . 145
Wen Zhang, Juan Li, and Huajun Chen

BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model
for Relation Classification . 158

Feiliang Ren, Yongcheng Li, Rongsheng Zhao, Di Zhou, and Zhihui Liu

Using Entity Relation to Improve Event
Detection via Attention Mechanism . 171

Jingli Zhang, Wenxuan Zhou, Yu Hong, Jianmin Yao, and Min Zhang

Five-Stroke Based CNN-BiRNN-CRF Network for Chinese
Named Entity Recognition . 184

Fan Yang, Jianhu Zhang, Gongshen Liu, Jie Zhou, Cheng Zhou,
and Huanrong Sun

Learning BLSTM-CRF with Multi-channel Attribute
Embedding for Medical Information Extraction. 196

Jie Liu, Shaowei Chen, Zhicheng He, and Huipeng Chen

Distant Supervision for Relation Extraction with Neural Instance Selector . . . 209
Yubo Chen, Hongtao Liu, Chuhan Wu, Zhigang Yuan, Minyu Jiang,
and Yongfeng Huang

Complex Named Entity Recognition via Deep Multi-task
Learning from Scratch . 221

Guangyu Chen, Tao Liu, Deyuan Zhang, Bo Yu, and Baoxun Wang

Machine Learning for NLP

Hierarchical Attention Based Semi-supervised Network
Representation Learning. 237

Jie Liu, Junyi Deng, Guanghui Xu, and Zhicheng He

XXII Contents – Part I

Joint Binary Neural Network for Multi-label Learning with Applications
to Emotion Classification . 250

Huihui He and Rui Xia

Accelerating Graph-Based Dependency Parsing
with Lock-Free Parallel Perceptron . 260

Shuming Ma, Xu Sun, Yi Zhang, and Bingzhen Wei

Memory-Based Matching Models for Multi-turn Response Selection
in Retrieval-Based Chatbots . 269

Xingwu Lu, Man Lan, and Yuanbin Wu

NEUTag’s Classification System for Zhihu Questions Tagging Task 279
Yuejia Xiang, HuiZheng Wang, Duo Ji, Zheyang Zhang, and Jingbo Zhu

Machine Translation

Otem&Utem: Over- and Under-Translation Evaluation Metric for NMT. 291
Jing Yang, Biao Zhang, Yue Qin, Xiangwen Zhang, Qian Lin,
and Jinsong Su

Improved Neural Machine Translation with Chinese Phonologic Features. . . . 303
Jian Yang, Shuangzhi Wu, Dongdong Zhang, Zhoujun Li,
and Ming Zhou

Coarse-To-Fine Learning for Neural Machine Translation. 316
Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, and Enhong Chen

Source Segment Encoding for Neural Machine Translation. 329
Qiang Wang, Tong Xiao, and Jingbo Zhu

Youdao’s Winning Solution to the NLPCC-2018 Task 2 Challenge:
A Neural Machine Translation Approach to Chinese Grammatical
Error Correction . 341

Kai Fu, Jin Huang, and Yitao Duan

NLP Applications

Target Extraction via Feature-Enriched Neural Networks Model 353
Dehong Ma, Sujian Li, and Houfeng Wang

A Novel Attention Based CNN Model for Emotion Intensity Prediction. 365
Hongliang Xie, Shi Feng, Daling Wang, and Yifei Zhang

Recurrent Neural CRF for Aspect Term Extraction
with Dependency Transmission. 378

Lindong Guo, Shengyi Jiang, Wenjing Du, and Suifu Gan

Contents – Part I XXIII

Dependency Parsing and Attention Network for Aspect-Level
Sentiment Classification . 391

Zhifan Ouyang and Jindian Su

Abstractive Summarization Improved by WordNet-Based
Extractive Sentences . 404

Niantao Xie, Sujian Li, Huiling Ren, and Qibin Zhai

Improving Aspect Identification with Reviews Segmentation 416
Tianhao Ning, Zhen Wu, Xin-Yu Dai, Jiajun Huang, Shujian Huang,
and Jiajun Chen

Cross-Lingual Emotion Classification with Auxiliary and Attention
Neural Networks . 429

Lu Zhang, Liangqing Wu, Shoushan Li, Zhongqing Wang,
and Guodong Zhou

Are Ratings Always Reliable? Discover Users’ True Feelings
with Textual Reviews . 442

Bin Hao, Min Zhang, Yunzhi Tan, Yiqun Liu, and Shaoping Ma

The Sogou Spoken Language Understanding System
for the NLPCC 2018 Evaluation . 454

Neng Gong, Tongtong Shen, Tianshu Wang, Diandian Qi, Meng Li,
Jia Wang, and Chi-Ho Li

Improving Pointer-Generator Network with Keywords Information
for Chinese Abstractive Summarization . 464

Xiaoping Jiang, Po Hu, Liwei Hou, and Xia Wang

Author Index . 475

XXIV Contents – Part I

Contents – Part II

NLP for Social Network

A Fusion Model of Multi-data Sources for User Profiling in Social Media . . . 3
Liming Zhang, Sihui Fu, Shengyi Jiang, Rui Bao, and Yunfeng Zeng

First Place Solution for NLPCC 2018 Shared Task User Profiling
and Recommendation . 16

Qiaojing Xie, Yuqian Wang, Zhenjing Xu, Kaidong Yu, Chen Wei,
and ZhiChen Yu

Summary++: Summarizing Chinese News Articles with Attention 27
Juan Zhao, Tong Lee Chung, Bin Xu, and Minghu Jiang

NLP Fundamentals

Paraphrase Identification Based on Weighted URAE, Unit Similarity
and Context Correlation Feature . 41

Jie Zhou, Gongshen Liu, and Huanrong Sun

Which Embedding Level is Better for Semantic Representation?
An Empirical Research on Chinese Phrases . 54

Kunyuan Pang, Jintao Tang, and Ting Wang

Improving Word Embeddings for Antonym Detection Using Thesauri
and SentiWordNet. 67

Zehao Dou, Wei Wei, and Xiaojun Wan

Neural Chinese Word Segmentation with Dictionary Knowledge. 80
Junxin Liu, Fangzhao Wu, Chuhan Wu, Yongfeng Huang, and Xing Xie

Recognizing Macro Chinese Discourse Structure on Label
Degeneracy Combination Model . 92

Feng Jiang, Peifeng Li, Xiaomin Chu, Qiaoming Zhu,
and Guodong Zhou

LM Enhanced BiRNN-CRF for Joint Chinese Word Segmentation
and POS Tagging . 105

Jianhu Zhang, Gongshen Liu, Jie Zhou, Cheng Zhou, and Huanrong Sun

Chinese Grammatical Error Correction Using Statistical and Neural Models . . . 117
Junpei Zhou, Chen Li, Hengyou Liu, Zuyi Bao, Guangwei Xu,
and Linlin Li

Text Mining

Multi-turn Inference Matching Network for Natural Language Inference 131
Chunhua Liu, Shan Jiang, Hainan Yu, and Dong Yu

From Humour to Hatred: A Computational Analysis
of Off-Colour Humour. 144

Vikram Ahuja, Radhika Mamidi, and Navjyoti Singh

Classification of the Structure of Square Hmong Characters and Analysis
of Its Statistical Properties . 154

Li-Ping Mo, Kai-Qing Zhou, Liang-Bin Cao, and Wei Jiang

Stock Market Trend Prediction Using Recurrent Convolutional
Neural Networks . 166

Bo Xu, Dongyu Zhang, Shaowu Zhang, Hengchao Li, and Hongfei Lin

Ensemble of Binary Classification for the Emotion Detection
in Code-Switching Text . 178

Xinghua Zhang, Chunyue Zhang, and Huaxing Shi

A Multi-emotion Classification Method Based on BLSTM-MC
in Code-Switching Text . 190

Tingwei Wang, Xiaohua Yang, Chunping Ouyang, Aodong Guo,
Yongbin Liu, and Zhixing Li

Short Papers

Improved Character-Based Chinese Dependency Parsing
by Using Stack-Tree LSTM . 203

Hang Liu, Mingtong Liu, Yujie Zhang, Jinan Xu, and Yufeng Chen

Neural Question Generation with Semantics of Question Type 213
Xiaozheng Dong, Yu Hong, Xin Chen, Weikang Li, Min Zhang,
and Qiaoming Zhu

A Feature-Enriched Method for User Intent Classification by Leveraging
Semantic Tag Expansion . 224

Wenxiu Xie, Dongfa Gao, Ruoyao Ding, and Tianyong Hao

Event Detection via Recurrent Neural Network and Argument Prediction 235
Wentao Wu, Xiaoxu Zhu, Jiaming Tao, and Peifeng Li

Employing Multiple Decomposable Attention Networks
to Resolve Event Coreference . 246

Jie Fang, Peifeng Li, and Guodong Zhou

XXVI Contents – Part II

Cross-Scenario Inference Based Event-Event Relation Detection 257
Yu Hong, Jingli Zhang, Rui Song, and Jianmin Yao

SeRI: A Dataset for Sub-event Relation Inference from an Encyclopedia 268
Tao Ge, Lei Cui, Baobao Chang, Zhifang Sui, Furu Wei, and Ming Zhou

Densely Connected Bidirectional LSTM with Applications
to Sentence Classification. 278

Zixiang Ding, Rui Xia, Jianfei Yu, Xiang Li, and Jian Yang

An End-to-End Scalable Iterative Sequence Tagging
with Multi-Task Learning. 288

Lin Gui, Jiachen Du, Zhishan Zhao, Yulan He, Ruifeng Xu,
and Chuang Fan

A Comparable Study on Model Averaging, Ensembling
and Reranking in NMT . 299

Yuchen Liu, Long Zhou, Yining Wang, Yang Zhao, Jiajun Zhang,
and Chengqing Zong

Building Corpus with Emoticons for Sentiment Analysis 309
Changliang Li, Yongguan Wang, Changsong Li, Ji Qi,
and Pengyuan Liu

Construction of a Multi-dimensional Vectorized Affective Lexicon 319
Yang Wang, Chong Feng, and Qian Liu

Convolution Neural Network with Active Learning for Information
Extraction of Enterprise Announcements . 330

Lei Fu, Zhaoxia Yin, Yi Liu, and Jun Zhang

Research on Construction Method of Chinese NT Clause
Based on Attention-LSTM . 340

Teng Mao, Yuyao Zhang, Yuru Jiang, and Yangsen Zhang

The Research and Construction of Complaint Orders Classification Corpus
in Mobile Customer Service . 351

Junli Xu, Jiangjiang Zhao, Ning Zhao, Chao Xue, Linbo Fan,
Zechuan Qi, and Qiang Wei

The Algorithm of Automatic Text Summarization Based on Network
Representation Learning. 362

Xinghao Song, Chunming Yang, Hui Zhang, and Xujian Zhao

Semi-supervised Sentiment Classification Based
on Auxiliary Task Learning . 372

Huan Liu, Jingjing Wang, Shoushan Li, Junhui Li, and Guodong Zhou

Contents – Part II XXVII

A Normalized Encoder-Decoder Model for Abstractive Summarization
Using Focal Loss . 383

Yunsheng Shi, Jun Meng, Jian Wang, Hongfei Lin, and Yumeng Li

A Relateness-Based Ranking Method for Knowledge-Based
Question Answering . 393

Han Ni, Liansheng Lin, and Ge Xu

A Sequence to Sequence Learning for Chinese Grammatical
Error Correction . 401

Hongkai Ren, Liner Yang, and Endong Xun

Ensemble of Neural Networks with Sentiment Words Translation
for Code-Switching Emotion Detection . 411

Tianchi Yue, Chen Chen, Shaowu Zhang, Hongfei Lin, and Liang Yang

NLPCC 2018 Shared Task User Profiling and Recommendation Method
Summary by DUTIR_9148. 420

Xiaoyu Chen, Jian Wang, Yuqi Ren, Tong Liu, and Hongfei Lin

Overview of NLPCC 2018 Shared Task 1: Emotion Detection
in Code-Switching Text . 429

Zhongqing Wang, Shoushan Li, Fan Wu, Qingying Sun,
and Guodong Zhou

Overview of the NLPCC 2018 Shared Task: Automatic Tagging
of Zhihu Questions . 434

Bo Huang and Zhenyu Zhao

Overview of the NLPCC 2018 Shared Task: Grammatical
Error Correction . 439

Yuanyuan Zhao, Nan Jiang, Weiwei Sun, and Xiaojun Wan

Overview of the NLPCC 2018 Shared Task: Multi-turn
Human-Computer Conversations . 446

Juntao Li and Rui Yan

Overview of the NLPCC 2018 Shared Task: Open Domain QA 452
Nan Duan

Overview of the NLPCC 2018 Shared Task:
Single Document Summarization. 457

Lei Li and Xiaojun Wan

Overview of the NLPCC 2018 Shared Task: Social Media User Modeling . . . 464
Fuzheng Zhang and Xing Xie

XXVIII Contents – Part II

Overview of the NLPCC 2018 Shared Task: Spoken Language
Understanding in Task-Oriented Dialog Systems . 468

Xuemin Zhao and Yunbo Cao

WiseTag: An Ensemble Method for Multi-label Topic Classification 479
Guanqing Liang, Hsiaohsien Kao, Cane Wing-Ki Leung, and Chao He

Author Index . 491

Contents – Part II XXIX

Conversational Bot/QA/IR

Question Answering for Technical
Customer Support

Yang Li1(B), Qingliang Miao1, Ji Geng1, Christoph Alt2,
Robert Schwarzenberg2, Leonhard Hennig2, Changjian Hu1, and Feiyu Xu1

1 Lenovo, Building H, No. 6, West Shangdi Road, Haidian District Beijing, China
{liyang54,miaoql1,hucj1,fxu}@lenovo.com, jgeng@uestc.edu.cn

2 DFKI, Alt-Moabit 91c, 10559 Berlin, Germany
{christoph.alt,robert.schwarzenberg,leonhard.hennig}@dfki.de

Abstract. Human agents in technical customer support provide users
with instructional answers to solve a task. Developing a technical support
question answering (QA) system is challenging due to the broad variety
of user intents. Moreover, user questions are noisy (for example, spelling
mistakes), redundant and have various natural language expresses, which
are challenges for QA system to match user queries to corresponding
standard QA pair. In this work, we combine question intent categories
classification and semantic matching model to filter and select correct
answers from a back-end knowledge base. Using a real world user chat-
log dataset with 60 intent categories, we observe that while supervised
models, perform well on the individual classification tasks. For seman-
tic matching, we add muti-info (answer and product information) into
standard question and emphasize context information of user query (cap-
tured by GRU) into our model. Experiment results indicate that neural
multi-perspective sentence similarity networks outperform baseline mod-
els. The precision of semantic matching model is 85%.

Keywords: Question and Answer · Answer selection
Semantic matching

1 Introduction

“My Wi-Fi is not working anymore!!!” – most mobile device users probably
have faced this or similar issues in the past. Solving such questions is the task
of technical customer support agents (CSAs). For frequent questions and user
intents, for which solutions often exist in the form of user guides and question-
answering knowledge base (QA-KB), this is a repetitive and time consuming
process. For example, our QA-KB contains 242 unique standard QA pairs, and
these QA pairs are assigned to 60 intents. QA system would significantly reduce
the time CSAs have to invest in solving common intents, which they could then
focus on more complex or previously unseen customer problems.

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-99495-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_1&domain=pdf

4 Y. Li et al.

With the work described in this paper, we aim to automatize this task of
matching instructional answers from a QA-KB to user queries. Our work com-
bines two models, the first is question intent categories classification which for
getting candidate QA pairs from QA-KB, the second is semantic matching which
focuses on selecting the correct result from candidate QA pairs. Intent categories
classification faces a big challenge due to the broad variety of intents in QA-KB.

Fig. 1. An example of actual business data and its corresponding QA entry.

Figure 1 shows an example of real world user query and its corresponding QA
entry in QA-KB. The first field is user query, the second field is standard ques-
tion and the last one is answer. Table 1 lists statistic information of the data set.
Through careful analysis, we obtain following characteristics. First, user queries
are usually noisy (for example, spelling mistakes) and contain background or
redundant information besides true intent. Second, standard questions are typi-
cally short, concise and often realized as title-like phrases, e.g. “Add or remove
accounts” because this format is easy for user and CSAs to read. In addition, we
can see that user query is 5 times longer than standard question so it’s difficult
to match these two contents. Third, answer is quite long (the average length
is 78.2) and contains some information that related to user query. Due to the
characteristics of the data, we add answer information into standard question.
Specially, we use Gated Recurrent Unit (GRU) [1] to get context information of
user query and learn long-term dependencies before multi-perspective CNN [2].

Table 1. The statistics of data.

Num Average length(word level)

User query 6808 31.9

Standard question 242 5.2

Answer 242 78.2

Question Answering for Technical Customer Support 5

2 Related Work

Existing work on QA systems in the customer service domain has focused on
answering Ubuntu OS-related questions [3], insurance domain [4] and customer
relationship management [5]. Both studies show that it is in principle possible to
handle longer dialogs in an unsupervised fashion and answer complex questions
with the help of a noisy training set and an unstructured knowledge source.
Lowe et al. [3] use a large corpus of support dialogs in the operating system
domain to train an end-to-end dialog system for answering customer questions.
Their results indicate that end-to-end trained systems can achieve good perfor-
mance but perform poorly on dialogs that require specific domain knowledge
which the model possibly never observed. In contrast, in our work we adopt a
classical classification approach followed by semantically matching a user ques-
tion to a set of results from a QA-KB, in order to cope with the limited amount
of training data.

Most previous work on semantic matching has focused on handcrafted fea-
tures. Due to the variety of word choices and inherent ambiguities in natural
languages, bag-of-word approaches with simple surface-form word matching tend
to poor prediction precision [6]. As a result, researchers put more emphasis on
exploiting syntactic and semantic structure which are more complex and time
consuming. Representative examples include methods based on deeper seman-
tic analysis [7] and quasi-synchronous grammars [8] that match the dependency
parse trees of the two sentences. Instead of focusing on the high-level semantic
representation, Yih et al. turn their attention to improve the shallow semantic
component, lexical semantics [9].

As development of neural network, recent work has moved away from hand-
crafted features and towards modeling with distributed representations and neu-
ral network architectures. Hu et al. propose two general CNN architectures
ARC-I and ARC-II for matching two general sentences, and ARC-II consider the
interaction between input two sentences [10]. Liu et al. propose a dual attentive
neural network framework(DANN) to embed question topics and user network
structures for answer selection. DANN first learns the representation of questions
and answers by CNN. Then DANN learns interactions of questions and answers
which is guided via user network structures and semantic matching of question
topics with double attention [11]. He et al. propose a model for comparing sen-
tences that uses a multiplicity of perspectives. They first use a CNN model to
extract features at multiple levels of granularity and then use multiple similar-
ity metrics to measure sentence similarity [2]. Feng et al. create and release an
insurance domain QA corpus. The paper demonstrate 13 proposed neural net-
work model architectures for selecting the matched answer [4]. Gaurav et al.
use character n-gram embedding instead of word embedding and noisy pretrain-
ing for the task of question paraphrase identification [12]. Wu et al. propose a
multi-turn sequential matching network SMN which matches two sentences in
the context on multiple granularity, and distills important matching information
from each pair with convolution and pooling operations. And then, a recurrent
neural network (RNN) model is used to model sentence relationships [13]. These

6 Y. Li et al.

models either calculate the similarity of users surface form question (Qu) and
standard query (Qi) in Q-A KB or calculate the similarity of Qu and answer
(Ai). Our work comprehensive use Qu, Qi and Ai. Besides we use GRU to get
context information of Qu and learns long-term dependencies before CNN.

3 The Proposed Approach

3.1 Problem Formalization

The goal of our approach is to identify the QiAi from n candidate QA pairs
{(Q1, A1), . . . , (Qn, An)} of Q-A KB that best matches Qu. Qi is a concise and
representative question such as “Connect to a Wifi network” which prototypi-
cally stands for other questions that can be answered by Ai. Figure 1 shows the
example of an user query and the corresponding QA pair of QA-KB.

We hypothesize the QA pair that shares the most semantic similarity with
the Qu. Following a common information retrieval approach, we use a pairwise
scoring function S(QiAi, Qu) to sort all candidate of the question expressed by
user. Our method has two main steps, the first is intent category classification
to select relevant candidate QA pairs from QA-KB. The second is semantic
matching to select the best matching one from candidate QA pairs.

3.2 Intent Category Classification

Determining the correct intent category significantly reduces the number of
candidate QA pairs. The dataset contains 60 intents such as “Wifi”, “Screen
Unlock”, “Google Account”, etc.

The question intent category classifier estimates the probability p(I|Qu)
where I denotes the intent. Our baseline approaches are Gradient Boosted Deci-
sion Trees and a linear SVM. For feature extraction, the Qu is tokenized, followed
by stop-word removal and transformation into a bag-of-words representation.
The classifiers use tfidf weighted unigram and bigram features. We also imple-
ment a bidirectional LSTM model [15]. In this model, each wi ∈ Qu is represented
by an embedding ei ∈ Rd that we obtain from a set of pretrained distributed
word representations E = [e1, . . . , eW]. The BiLSTM output is passed to a fully-
connected layer followed by a ReLU non-linearity and softmax normalization,
s.t. p(I|Qu) is computed as follows

SM(ReLU(FC(BiLSTM(E)))(Qu) (1)

3.3 Semantic Matching

In this section, we present innovative solutions that incorporate multi-info and
context information of user question into multi-perspective CNN to fulfill ques-
tion paraphrase identification. The architecture of our neural network is shown
in Fig. 2. The work has two same subnetworks that processing Qu and QiAi

Question Answering for Technical Customer Support 7

Fig. 2. Multi-perspective sentence similarity network with GRU.

in parallel after getting context by GRU. The following layer extracts features
at multiple levels of granularity and uses multiple types of pooling. After that,
sentence representations are compared with several granularities using multi-
ple similarity metrics such as cosine similarity and L2 euclidean distance that
are distilled into a matching vector followed by a linear projection and softmax
normalization.

Multi-info. To the data, Qu is quite long, Qi is short and contains less infor-
mation. Besides, the Ai is quite long and contains some information that related
to Qu. In this work, we concat Qi and Ai of QA-KB then to compute S(QiAi,
Qu). User queries are always concerned with a specific product but some related
standard questions for different products may be the same in the QA-KB. As
you can see the example “moto z plus” in Fig. 1 which is a mobile name. Due
to we do not consider the influence of different mobile, we directly replace these
mobiles by the same word “Mobile”. We use Product-KB and CRF algorithm
to recognize the mobile in Qu. The ontology of Product-KB are constructed
by senior businessmen and front-line customer service staff. Pink part of Fig. 2
indicates the structure of the Product-KB. In Product-KB, every mobile has its
surface names which are mined from huge chat log. Most surface mobile name
of Qu can be recognized by Product-KB.

Knowledge base hardly contains all mobiles and their corresponding surface
names so we use CRF to recognize the mobile as a supplement. Features of
mobile recognition are char level ngrams and word level ngrams. Maximum char
level ngrams is 6 and word level ngrams is 3.

Context Multi-perspective CNN. After getting the multi-info, the input of
our network are Qu and QiAi. Both of them need to transfer all letters to lower-
case. Given an user query Qu and a response candidate QiAi, the model looks up
an embedding table and represents Qu and QiAi as Qu=[eu,1,eu,2,...,eu,L] and
QiAi=[es,1,es,2,...,es,L] respectively, where eu,j and es,j ∈ Rd are the embed-
dings of the j-th word of Qu and QiAi respectively. L is the max length of

8 Y. Li et al.

the two sequences. Before feed into Multi-Perspective CNN, we first employ
a GRU to transform Qu to hidden vectors conMQu. Suppose that conMQu =
[hu,1, hu,1, . . . , hu,L] are the hidden vectors of Qu, then hu,i is defined by

zi = σ(Wzeu,i + Uzhu,i−1) (2)

ri = σ(Wreu,i + Urhu,i−1) (3)

hu,i = tanh(Wheu,i + Uh(ri � hu,i−1)) (4)

hu,i = zi � hu,i + (1 − zi) � hu,i−1 (5)

where hu,0 = 0, zi and ri are an update gate and a reset gate respectively,
σ(.) is a sigmoid function, and Wz, Wr, Wh, Uz, Ur, Uh are parameters. The
model only gets context information of Qu and learns long-term dependencies
by GRU because QiAi is not a sequential sentence. conMQu and QiAi are then
processed by the same CNN subnetworks. This work applies to multi-perspective
convolutional filters: word level filters and embedding level filters. Word level
filters operate over sliding windows while considering the full dimensionality of
the word embeddings, like typical temporal convolutional filters. The embedding
level filters focus on information at a finer granularity and operate over sliding
windows of each dimension of the word embeddings. Embedding level filters can
find and extract information from individual dimensions, while word level filters
can discover broader patterns of contextual information. We use both kinds of
filters allow more information to be extracted for richer sentence modeling.

For each output vector of a convolutional filter, the model converts it to
a scalar via a pooling layer. Pooling helps a convolutional model retain the
most prominent and prevalent features, which is helpful for robustness across
examples. One widely adopted pooling layer is max pooling, which applies a
max operation over the input vector and returns the maximum value. In addition
to max pooling, the model uses two other types of pooling, min and mean, to
extract different aspects of the filter matches.

Multi-similarity. After the sentence models produce representations for Qu
and QiAi then to calculate the similarity of their representations. One straight
forward way to compare them is to flatten their representations into two vectors,
then use standard metrics like cosine similarity. However, this may not be opti-
mal because different regions of the flattened sentence representations are from
different underlying sources. Flattening might discard useful compositional infor-
mation for computing similarity. We therefore perform structured comparisons
over particular regions of the sentence representations.

The model uses rules to identify local regions whose underlying components
are related. These rules consider whether the local regions are: (1) from the same
filter type; (2) from the convolutional filter with the same window size; (3) from
the same pooling type; (4) from the same specific filter of the underlying con-
volution filter type. Then we use same algorithms as MPCNN [2] to calculate
similarity matching vector. MPCNN use two algorithms by three similarity met-
rics(Cosine distance, L2 Euclidean distance, Manhattan distance) to compare

Question Answering for Technical Customer Support 9

local regions. The first algorithm works on the output of holistic filters only,
while the other uses the outputs of both the holistic and per-dimension filters.

4 Experiments and Discussion

We evaluate our approaches for question intent category classification, as well as
semantic matching using real world user chatlog data. Next, we will introduce
the dataset, QA-KB and experiment results separately.

4.1 Data Set

The dataset mainly consists of user and agent conversation records, in which user
question and technical answer are stated. Each conversation record includes the
full text of each utterance, chat starting and ending time, user and agent ids,
and optionally a product id and an intent category assigned by the customer
service agent. From 80216 user and agent conversation records, we extract 6808
user questions and annotated with a gold standard QA pair, an intent category
and a product id. The distribution over the top 30 intent categories (out of 60)
is shown in Fig. 4.

Fig. 3. Distribution of intent categories (top 30) for user question.

4.2 QA-KB and Product-KB

The KB module stores the answers of question and its relevant product. A dia-
gram capturing the simplified structure of the KB is depicted in Fig. 4. The

10 Y. Li et al.

Fig. 4. Structure of the product-KB and QA-KB.

left part is the hardware and software parameters of mobile product, such as
operating system, memory type, supported features, components and surface
names. The right part shows QA pairs that include standard question name,
corresponding answers, products, relevant slot, and an intent category. In the
current version, KB includes 20 mobile products, 242 standard questions. KB
totally includes more than 150000 triples.

4.3 Intent Category Classification

For question intent category classification experiments we split the dataset into
80/20 train and test sets, respectively. Hyper-parameter selection is done on
the training set via 5-fold cross validation and results averaged over multiple
runs are reported on the test set. For BiLSTM we use 300 dimensional GloVe
word embeddings [14]. Table 2 shows the evaluation results on the dataset. The
baselines perform, even outperforming the BiLSTM model.

Table 2. Intent Category Classification Results for User Question.

Model Precision Recall F1

GBDT 0.67 0.68 0.67

BiLSTM 0.68 0.70 0.69

SVM 0.74 0.76 0.75

From the detailed per category results (SVM) in Table 3 we find that some
categories (e.g. “Google Account and Transfer from previous Device”) achieve a

Question Answering for Technical Customer Support 11

Table 3. Intent category classification results for user question, Top 10 categories.

Model Precision Recall F1

Subsidy unlock 0.83 0.93 0.88

Screen lock 0.84 0.92 0.88

Storage 0.79 0.85 0.82

Transfer file w. PC 0.77 0.91 0.83

Lost phone 0.87 0.91 0.89

Calls 0.79 0.87 0.83

Google account 0.64 0.72 0.68

Update 0.77 0.92 0.84

Bootloader unlock 0.93 0.67 0.78

Transfer p. device 0.67 0.74 0.70

disproportional lower performance. For example, “Google Account” is often con-
fused with “Reset as a Google account” is generally a main topic when trying to
reset a device (e.g., “Android smartphone”). It is also noteworthy that “Subsidy
Unlock”, “Bootloader Unlock” and “Screen Lock” are frequently confused. This
is best illustrated by the example “Hi i need pin for unlock red to my moto
g”, which has the true category “Subsidy Unlock” but is categorized as “Screen
Lock”. Without knowledge about the mobile phones & contracts domain it is
very difficult to understand that the customer is referring to a “pin” (subsidy
unlock code) for “red” (mobile service provider) and not the actual PIN code for
unlocking the phone. This example also symbolizes a common problem in cus-
tomer support, where users unfamiliar with the domain are not able to describe
their information need in the domain-specific terminology.

4.4 Semantic Matching

For semantic matching we evaluate TFIDF and WMD as unsupervised baselines
for obtaining the most semantically similar QA pair to a given Qu. Supervised
approaches include the sequential matching network (SMN), a multi-perspective
CNN (MPCNN) with and without a GRU layer for user question encoding.

TFIDF and WDM. Our first baseline(TFIDF) use a tfidf weighted bag-of-
words representation of QiAi and Qu to estimate the semantic relatedness by
cosine similarity cos(QiAi, Qu).

The second baseline(WDM) leverages the semantic information of distributed
word representations [16]. To this end, we replace the tokens in QiAi and Qu
with their respective embeddings and then compute the word mover distance
[17] between the embeddings.

12 Y. Li et al.

SMN and MPCNN. In addition to the unsupervised method we also use SMN
[13] and MPCNN [2], which treats semantic matching as a classification task.
The SMN first represents QiAi and Qu by their respective sequence of word
embeddings Ei and Ek before encoding both separately with a recurrent net-
work, GRU [1] in this case. A word-word similarity matrix Mw and a sequence
similarity matrixMs is constructed from Ei and Ek, and important matching
information is distilled into a matching vector vm via a convolutional layer fol-
lowed by max-pooling. vm is further projected using a fully connected layer
followed by a softmax.

The MPCNN [2] first represents QiAi and Qu, the following layer extracts
features at multiple levels of granularity and uses multiple types of pooling.
Afterwards, sentence representations are compared with several granularities
using multiple similarity metrics such as cosine similarity and L2 euclidean dis-
tance. The results are distilled into a matching vector followed by a linear pro-
jection and softmax normalization.

Model Result. The description of MPCNN GRU model is showed in Chap. 3.4.
For all models except TF-IDF, we use 300 dimensional GloVe word embeddings
[14]. To obtain negative samples, for each Qu, we randomly select 5 standard
queries with the same intent and 5 standard queries with different intents. To
alleviate the impact of unbalanced training data, we oversample positive sam-
ples. As the standard questions Qi of most QA pairs (Qi, Ai) are usually less
then 10 tokens, we also evaluate the impact on model performance when adding
the answer Ai as additional context (up to 500 characters) to Qi. For the experi-
mentation we randomly split the dataset 80/20 into train and test set and repeat
the experiment 5 times. Hyperparameter selection is done on 10% of the training
set and results are reported on the test set.

Table 4 shows the precision of each model on the semantic matching task. We
see that the MPCNN and MPCNN GRU outperform the unsupervised baseline
approaches, with a 43% error reduction achieved with the MPCNN GRU model.
Intuitively it makes sense to provide the models with additional context that can
be used to learn a better representation of semantic similarity. Adding a GRU to
the MPCNN to encode contextual information and long-range dependencies in
the user query does not really improve performance. The SMN’s precision and

Table 4. Semantic matching results for user question.

Model Without answer With answer Average response time

TF-IDF 0.62 0.60 null

WMD 0.60 0.58 null

SMN 0.62 0.68 200ms

MPCNN 0.72 0.84 50ms

MPCNN GRU 0.72 0.85 55ms

Question Answering for Technical Customer Support 13

recall scores are much lower than those of the MPCNN models, and only slightly
higher than those of the unsupervised approaches.

Beside the precision of each semantic matching model, we also conduct exper-
iments to evaluate the efficiency of each models. The machine configuration infor-
mation in our experiment is 2 i7 CPUs with 14 cores, a memory of 125G and a
disk of 930.4G. The last column of Table 4 shows the results. From Table 4, we
can see MPCNN is faster than other two models. When adding GRU, the average
response time increases 5ms. SMN model is slowest, because the neural network
structure of SMN is more complicated than MPCNN GRU and MPCNN. The
experiment results indicate MPCNN GRU and MPCNN is capable for real time
system.

4.5 The Importance of Intent Classification for Semantic Matching

Question intent categories classification is an important step to narrow down
answer candidates. In this section, we compare models with a baseline to high-
light the effectiveness of intent categories classification. The baseline uses the
same model as MPCNN and MPCNN GRU, without intent categories classifica-
tion so the model directly matching with all QA pairs (262) in QA-KB. Table 5
indicates that the precision of semantic matching with intent outperforms base-
line models.

Table 5. Semantic matching results on baseline for User Question.

Without intent With intent

MPCNN 0.63 0.84

MPCNN GRU 0.65 0.85

5 Conclusion

In this paper we presented a approach for question answering in the complex
and little-explored domain of technical customer support. Our approach incor-
porates intent classification and semantic matching to select an answer from
knowledge base. Question intent classification for a dataset with 60 intent cate-
gories and model performs reasonably well on the individual classification tasks.
In semantic matching, we incorporate multi-info and context information into
multi-perspective CNN to fulfill question paraphrase identification. The preci-
sion of semantic matching is 85%. Our approach outperforms baseline models.
For future research, we plan to train an end-to-end model jointly add more QA
pairs into QA-KB to solve more problems of customers.

14 Y. Li et al.

References

1. Chung, J., Gulcehre, C., Cho, K.H.: Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

2. He, H., Gimpel, K., Lin, J.: Multi-perspective sentence similarity modeling with
convolutional neural networks. In: 20th International Proceedings on Empirical
Methods in Natural Language Processing, pp. 1576–1586. ACL, Stroudsburg (2015)

3. Lowe, R.T., Pow, N., Serban, I.V.: Training end-to-end dialogue systems with the
Ubuntu dialogue corpus. Dialogue Discourse 8(1), 31–65 (2017)

4. Feng, M., Xiang, B., Glass, M.R.: Applying deep learning to answer selection: a
study and an open task. In: 3rd International Proceedings on Automatic Speech
Recognition and Understanding (ASRU), pp. 813–820. IEEE, Piscataway (2015)

5. Li, X., Li, L., Gao, J.: Recurrent reinforcement learning: a hybrid approach. Com-
puter Science (2015)

6. Bilotti, M.W., Ogilvie, P., Callan, J.: Structured retrieval for question answering.
In: 30th International Proceedings on SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 351–358. ACM, New York (2007)

7. Shen, D., Lapata, M.: Using semantic roles to improve question answering. In: 12th
International Proceedings on Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pp. 12–21.
ACL, Stroudsburg (2007)

8. Wang, M., Smith, N.A., Mitamura, T.: What is the Jeopardy model? A quasi-
synchronous grammar for QA. In: 12th International Proceedings on Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 22–32. ACL, Stroudsburg (2007)

9. Yih, W., Chang, M.W., Meek, C.: Question answering using enhanced lexical
semantic models. In: 51st International Proceedings on Association for Compu-
tational Linguistics, pp. 1744–1753. ACL, Stroudsburg (2013)

10. Hu, B., Lu, Z., Li, H.: Convolutional neural network architectures for matching nat-
ural language sentences. In: 23rd International Proceedings on Neural Information
Processing Systems, pp. 2042–2050. Springer, Berlin (2014)

11. Liu, Z., Li, M., Bai, T., Yan, R., Zhang, Y.: A dual attentive neural network
framework with community metadata for answer selection. In: Huang, X., Jiang,
J., Zhao, D., Feng, Y., Hong, Y. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619,
pp. 88–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73618-1 8

12. Tomar, G.S., Duque, T.: Neural paraphrase identification of questions with noisy
pretraining. In: 22th International Proceedings on Empirical Methods in Natural
Language Processing, pp. 142–147. ACL, Stroudsburg (2017)

13. Wu, Y., Wu, W., Xing, C.: Sequential matching network: a new architecture for
multi-turn response selection in retrieval-based Chatbots. In: 55th Annual Meeting
of the Association for Computational Linguistics, pp. 496–505. ACL, Stroudsburg
(2017)

14. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word repre-
sentation. In: 19th International Proceedings on Empirical Methods in Natural
Language Processing, pp. 1532–1543. ACL, Stroudsburg (2014)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

http://arxiv.org/abs/1412.3555
https://doi.org/10.1007/978-3-319-73618-1_8

Question Answering for Technical Customer Support 15

16. Mikolov, T., Sutskever, I., Chen, K.: Distributed representations of words and
phrases and their compositionality. In: 9th International Proceedings on Advances
in Neural Information Processing System, pp. 3111–3119. MIT Press, Massachusetts
(2013)

17. Kusner, M., Sun, Y., Kolkin, N.: From word embeddings to document distances. In:
32nd International Proceedings on International Conference on Machine Learning,
pp. 957–966. ACM, New York (2015)

Perception and Production of Mandarin
Monosyllabic Tones by Amdo Tibetan

College Students

Zhenye Gan1,2(&), Jiafang Han1,2, and Hongwu Yang1,2

1 College of Physics and Electronic Engineering,
Northwest Normal University, Lanzhou 73000, China

ganzy@nwnu.edu.cn
2 Engineering Research Center of Gansu Province for Intelligent Information

Technology and Application, Lanzhou 73000, China

Abstract. The purpose of the work is to research the error patterns of pro-
duction and perception of Mandarin monosyllabic tone by college students from
Amdo Tibetan agricultural and pastoral areas, and make the analysis of the
causes of acoustics in both errors. We do the work through the two experiments
of perception and production of tone. We use the methods of combining the
speech engineering and experimental phonetics. Results show that the error rate
of tone perception is highly correlated [r = 0.92] with that of tone production.
The level of Mandarin in Amdo Tibetan agricultural area is higher than that in
pastoral area both in terms of tone perception and production. The hierarchy of
difficulty for the four grades in agricultural area is as follows: sopho-
more > freshman > junior > senior, pastoral area is as follows: fresh-
man > sophomore > junior > senior. The hierarchy of difficulty for the four
tones both in agricultural and pastoral areas is as follows: Tone 2 > Tone
3 > Tone 1 > Tone 4. Tone 2 and 3 are most likely to be confused. There is no
obvious tone shape bias of the four tones, but the tone domain is narrow and the
location of the tone domain is lower than standard Mandarin both in agriculture
and pastoral areas.

Keywords: Amdo tibetan college students � Agriculture and pastoral areas
Tonal production and perception

1 Introduction

Amdo Tibetan is different from Mandarin. The most significant difference is that
Mandarin is a tonal language while Amdo Tibetan is not. Previous studies have found
that the background of native language influenced the learning of the tone of the second
language [1, 2]. Therefore, students in the Amdo Tibetan area have difficulty in the
learning of Mandarin tone. Liu [3] had pointed out that tone was an important factor,

Foundation item: National Natural Science Foundation of China (Grant No. 61262055,
11664036).

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 16–26, 2018.
https://doi.org/10.1007/978-3-319-99495-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_2&domain=pdf

which directly affected the level of Mandarin. Tone should be the focus of research in
the process of learning Mandarin.

In recent years, studies of Mandarin tone have focused on the learning situation of
international students [4–8]. There were relatively few studies on the learning of
Mandarin tone by Tibetans, especially the Amdo Tibetan. Literatures [9–11] conducted
related research on the analysis of Mandarin tone of Amdo Tibetans to summarize the
characteristics of Mandarin monosyllables tone errors by Amdo Tibetans. Most of the
studies focused on the research of tone pronunciation by the experimental phonetics
and linguistic methods. And the selection of experimental personnel was limited to a
certain area. However, learning a language was as important as hearing and pronun-
ciation. Only byhearing correctly can you have a correct pronunciation [12]. For most
of the college students from the Amdo Tibetan area, they used Tibetan as their primary
language both in primary and middle school, supplemented by Mandarin. When they
came to the University of Han nationality and entered into the whole Mandarin
environment suddenly, which makes it difficult for them to communicate and learn in
life. Therefore, it is necessary to start research from the university to get a more
comprehensive law.☐

This paper was based on the needs of the Mandarin learning by college students
from Amdo Tibetan area. According to the different level of Mandarin in the internal of
Amdo Tibetan area and the sudden change of the Mandarin environment of college
students from the Amdo Tibetan area, the college students from Amdo Tibetan agri-
culture and pastoral areas were taken as research subjects, the research subjects were in
the four grades of freshman to senior. Agricultural area refers to areas where crops are
the main source of life while pastoral area refers to areas where livestock and cattle are
the main sources of life. In this paper, we selected suitable experimental subjects
through field investigations to research the tone perception and production of Mandarin
by college students from Amdo Tibetan area. We used the methods of combining the
speech engineering and experimental phonetics. The main works of the paper were as
follows. Firstly, we make analysis of the perception bias of the Mandarin tone by
college students from Amdo pastoral and agriculture areas. Secondly, we make analysis
of the error patterns of production of Mandarin tone by college students from Amdo
pastoral and agriculture areas. Thirdly, we make the analysis of the causes of acoustics
in both two errors.

2 Perception of Mandarin Tone

2.1 Experimental Corpus

Literature [13] once pointed out that the tone acquisition of Central Asian students had
more difficulties in continuous speech than that in a single word. Therefore, the corpus
used in this experiment consists of 50 long sentences in Mandarin. Each long sentence
consists of 4 short sentences. Each short sentence has 5 monosyllables. The tone of last
syllables of each short sentence is Tone 1, Tone 2, Tone 3, and Tone 4. The experi-
mental corpus is 200 monosyllables and distributed evenly among four tones. The
corpus is covering all monosyllable structures basically.

Perception and Production of Mandarin Monosyllabic Tones 17

2.2 Experimental Subjects

The experimental corpus of standard Mandarin was produced by a postgraduate, a
woman of Han nationality. The subjects were college students from Amdo Tibetan area
and none of them had difficulty in hearing and speaking.

2.3 Experimental Process

Step1, Standard Mandarin was recorded by the above-mentioned female, which was
recorded with 16 kHz and 16 bit in a sound proof studio. We denoise and seg-
mented the speech signals into perception speech signals.
Step2, we designed a questionnaire according to the perception speech signals.
Step3, the subjects were asked to listen to the speech signals and write out the most
probable tone marks of the monosyllabic they had heard. The tone of the mono-
syllables would be marked as follows: T1, T2, T3 and T4, which represent the four
tones.

A total of 185 questionnaires were distributed and we finally obtained134 valid
data. We removed some results such as an outgoing result that is not in line with the
general rule. The valid data included 60 in pastoral area and 74 in agriculture area. The
error rate of each tone was separately counted. All data were tested for normal dis-
tribution and then analyzed.

2.4 Experimental Results

As shown in Figs. 1 and 2, it can be seen that the perceptual error rate of college
students in pastoral area is higher than that in agriculture area. Tones 2 and 3 have
higher error rates in the four tones. Tone 4 is best judged, which is related to the reason
that the tone of Amdo Tibetan had only one habit tone.

Fig. 1. The result of tone perception in pastoral area

18 Z. Gan et al.

It can be concluded that the hierarchy of difficulty for the four tones both in
agriculture and pastoral areas is as follows: Tone 2 > Tone 3 > Tone 1 > Tone 4. The
hierarchy of difficulty for the four grades in pastoral area is as follows: fresh-
man > sophomore > junior > senior, agriculture area is as follows: sopho-
more > freshman > junior > senior. We find that the perception proficiency of
freshman is better than sophomore in agriculture area which has stayed in school for
one year. This is more relevant to that freshman has more chances to contact Chinese
than sophomore in agriculture area. The progress of society is affecting their Mandarin
proficiency. It will be further analyzed by using the follow experiment of tone
production.

3 Production of Mandarin Tone

The experiment of tone production includes two parts: the tone annotation and the
production of tone pronunciation experiment. We will first make tonal annotation
experiment to select appropriate speech corpora. And then make further analysis of the
error pattern of production in tone pronunciation.

Tone annotation is that several listeners judge the correct tone and the type of tone
by subjects, and then decide the label of the tone. The tone of the monosyllables would
be labeled as follows: T1, T2, T3 and T4, which represent the four tones.

3.1 Experimental Corpus

To make the result of the comparison between the tone perception and production
correctly, the corpus used in this experiment is chosen from the perceptual corpus. It
consists of 40 long sentences in Mandarin. There are a total of 160 monosyllables and
distributed evenly among the four tones.

Fig. 2. The result of tone perception in agriculture area

Perception and Production of Mandarin Monosyllabic Tones 19

3.2 Experimental Subjects

Experimental subjects included 16 speakers of Amdo Tibetan. None had difficulty in
hearing and speaking. The detailed information of the 16 speakers of Amdo Tibetan is
as showed in the following Table 1. Through a large number of questionnaires, 16
speakers whose native language was Amdo Tibetan were selected. They had the same
background in learning Mandarin.

3.3 Experimental Process

In this experiment, 6 listeners of Han nationality were invited and didn’t know the
original correct tone. Each subject had 160 speech data. 6 listeners listened to the data
of 16 speakers and judged the tone of the last word of each short sentence, and then
made a mandatory tone judgment and labeled it as T1, T2, T3 andT4.

3.4 Experimental Results

The following Table 2 shows the result of comparing the results of the annotation in
pastoral area with standard Mandarin. Table 3 shows the result of comparing agri-
culture areas with the standard mandarin. T1, T2, T3 and T4 represent the four tones.

Comparing the results of the two groups, the accuracy of the Tone 4 is the highest
both in the agriculture and pastoral areas and the lowest accuracy is Tone 2. We can
also see the obvious differences from the comparison between the agriculture area and
the pastoral area. The pronunciation accuracy of the four tones of the agriculture area is
higher than that of the pastoral area. The overall accuracy rate is higher than 50%. From

Table 1. Experimental subjects information table

Area Grade
Freshman Sophomore Junior Senior Total

Agriculture 2 2 2 2 8
Pastoral 2 2 2 2 8
Total 4 4 4 4 16

Table 2. Results of annotation of Pastoral area

Correct tone Tone annotation

Compare annotation result with
correct tone
T 1 T 2 T 3 T 4

T 1 75.0% 7.5% 5.0% 5.0%
T 2 10.0% 55.0% 22.5% 5.0%
T 3 7.5% 27.5% 65.0% 5.0%
T 4 7.5% 10.0% 7.5% 85.0%

20 Z. Gan et al.

Tables 2 and 3, we can also find that Tone 2 and 3 are most easily confused. It is
probably because of the similar phonetic properties in Tone 2 and Tone 3, which both
have a rising portion.

Later we will make further error analysis of the correct pronunciation signals in the
production of Mandarin tone experiment.

3.5 Correlation Between Perception and Production

A comparison of perception and production is shown in Table 4. The error rate of tone
perception is highly correlated [r = 0.92] with that of tone production. The formula of r
is as follows (1):

r x; yð Þ ¼ Cov xyð Þ
ffi

D Xð ÞD yð Þp ð1Þ

The formula of r is the cross-correlation function of the two sequences. Where x
and y are the correct rates of the four tones in pastoral and agricultural areas (x: 75%,
55%, 65%, 85%; y: 80%, 67.5%, 70%, 90%).

The tonal production error rate ranges of 12% to 33%, the perception error rates
ranges of 2% to 29%. The level of tone perception is greater than that of production.

Table 3. Results of annotation of agriculture area

Correct tone Tone annotation

Compare annotation result with
correct tone
T 1 T 2 T 3 T 4

T 1 80.0% 7.5% 2.5% 5.0%
T 2 10.0% 67.5% 17.5% 2.5%
T 3 7.5% 20.0% 70.0% 2.5%
T 4 2.5% 5.0% 10.0% 90.0%

Table 4. Overall error rate of perception and production

Experimental type Tone

Error rate
T 1 T 2 T 3 T 4

Production 22.5% 28.75% 32.5% 12.5%
Perception 13% 29% 24% 2%

Perception and Production of Mandarin Monosyllabic Tones 21

4 Production of Mandarin Tone Pronunciation

We will do an analysis of the error pattern production of tonal pronunciation with the
speech signal of the correct annotation result from the preceding annotation experi-
ment. As shown in Fig. 3, the experiment of production of Mandarin tone pronunci-
ation is roughly divided into the following sections.

4.1 Experimental Corpus

A total of 2350 monosyllables were correctly pronounced according to the results of
Tables 2 and 3. We classified the 2350 monosyllabic counterparts into 2 groups
according the area of the subjects. According to the grade, speech data of 2 groups were
divided into four groups separately. There were a total of 8 groups of speech data
recorded by Amdo Tibetan, and with another group of standard Mandarin speech data
recorded by native Mandarin speakers. There are a total of 9 groups of speech data.

4.2 Experimental Process

Step 1, the data of each group was divided into Tone 1, Tone 2, Tone 3, and Tone 4,
which was used as the experimental speech signal of tone production.
Step2, we labeled the experimental speech signals by Visual Speech software, and
then normalized the duration of syllables by straight algorithm to extract and
modify the pitch [14].
Step 3, a program was written to realize the extraction of the maximum, minimum,
and T value of the pitch data of each syllable obtained. The detailed approach was
to divide the pitch data of each syllable into 10 equal parts by the duration. Each of
which takes their average value to obtain the pitch data of the 10 average points that
we need.

Fig. 3. The process of production of Mandarin Tone pronunciation

22 Z. Gan et al.

We used the formula proposed by [15] to normalize to convert the pitch data to
T values, and then made pitch contours with T value. The formula of normalized
processing was as follows (2):

T ¼ 5 � logx � logL
logH � logL

ð2Þ

Where H and L are the highest and lowest f0 of a group of all people’s regulatory
domains, and X is any given point of a pitch contour. The output of T is a value
between 0 to 5.

The data obtained in the preceding step were statistically analyzed to obtain tone
curves of 8 groups Mandarin monosyllables by Amdo Tibetan students. We made
comparison between the tone curves of the speech data of 8 groups and compared the
speech data of 8 groups with the standard Mandarin.

4.3 Experimental Results

As showed in Figs. 4 and 5, this is comparison graph of the monosyllable tone curves
between standard Mandarin monosyllables and Mandarin by students from Amdo
pastoral and agriculture areas. We make compares from the following aspects. Firstly,
we make analyze between the four grades that freshman to senior. It is clear that
compared with the standard Mandarin from the two figures, the monosyllable tone
shape of the four grades both in Amdo pastoral and agriculture areas has obvious
differences both in tone shape and tone domain. Secondly, we make analyze between
the four tones that from Tone 1 to Tone 4. Tone 1, Tone 2, and Tone 3 of Mandarin
monosyllable by students both in Amdo pastoral and agriculture areas have obvious
differences in the tone shape and tone domain. It is still different from Mandarin in tone
domain while the tone shape of Tone 4 is similar to standard Mandarin.

The result of tone production by college students from Amdo pastoral area.
We compare the difference of the tone shape curves in Fig. 4 between Mandarin
monosyllabic by college students from Amdo pastoral area and standard Mandarin.

Tone 1: The tone shape of freshman students from Amdo pastoral area shows a
downward trend. The tone value is (23). The tone shape of junior shows a trend of
decreasing first and then increasing, and the tone value is (34). The tone shape of
sophomore and senior are similar to standard Mandarin. The location of the tone
domain of the four grades is lower than standard Mandarin. In general, the Mandarin
proficiency of senior and junior are better than sophomore and freshman.

Tone 2: In terms of tone shape, the shape tail of the tone by freshman, sophomore
and senior are not rising enough and the middle of the tone shape is decreasing too
much. The tone shape of junior is closest to standard Mandarin among the four grades.
In terms of tone value, the tone value of sophomore and senior are closer to standard
Mandarin than junior and freshman.

Tone 3: In terms of tone shape, the tone shape of the freshman, junior and senior are
similar to standard Mandarin. The shape tail of the tone by freshman and senior are not
rising enough. The height of the tone shape of junior at the beginning is not sufficient.
The tone shape of sophomore is very different from standard Mandarin. The shape of

Perception and Production of Mandarin Monosyllabic Tones 23

Tone 3 emphasizes the rising and falling lifting too much and ignores the need to
reduce tone in the middle of the Tone 3, which is leading to a very strange shape.

Tone 4: The tone shape of the four grades from pastoral area is similar to standard
Mandarin. But the tone domain is narrower than standard Mandarin. In general, the
Mandarin proficiency of senior and sophomore are better than junior and freshman.

Note: The ordinate is the normalized T value

0

1

2

3

4

5
freshman

sophomore

junior

senior

 standarin
Mandarain

Tone 1 Tone 2 Tone 3 Tone 4

Fig. 4. Mandarin monosyllabic tone shape curves of students from Amdo pastoral area (Note:
The ordinate is the normalized T value)

Note: The ordinate is the normalized T value

0

1

2

3

4

5 freshman

sophomore

junior

senior

standard
Mandarain

Fig. 5. Mandarin monosyllabic tone shape curves of students from Amdo agriculture area
(Note: The ordinate is the normalized T value)

24 Z. Gan et al.

As above analyzed, the hierarchy of difficulty for the four grades from pastoral area
is as follows: freshman > sophomore > junior > senior.

The result of tone production by college students from Amdo agriculture area.
We compare the difference of the tone shape curves in Fig. 5 between Mandarin
monosyllabic by college students from Amdo agriculture area and standard Mandarin.

Tone 1: The tone shape of freshmen shows a trend of decreasing first and then
increasing, the tone value is (12), which is much lower than the standard Mandarin.
The tone shape of sophomore shows a trend of decrease, the tone value is (34).The tone
shape of junior and senior are similar to standard Mandarin. In general, the Mandarin
proficiency of senior and Junior are better than sophomore and freshman.

Tone 2: The tone shape and tone domain of junior and senior are both similar to
standard Mandarin. Senior and junior students have a higher level of Mandarin than
freshman and sophomore. In general, the tone shape of Tone 2 is similar to the shape of
Tone 3. It is probably because of the similar phonetic properties in Tone 2 and Tone 3,
which both have a rising portion.

Tone 3: In terms of tone shape, the middle of the tone shape of junior is not
decreasing enough. The tail of the tonal shape by freshman, sophomore is not rising
enough. The tone shape of senior students is very close to standard Mandarin. In terms
of tone value, the difference between sophomore and standard Mandarin is relatively
big.

Tone 4: The tone shape of the four grades is both similar to standard Mandarin. The
tone domain is a little narrower than the standard Mandarin. In general, the level of
Tone 4 in the agriculture area is higher than the pastoral area.

In summary, it is evident that the hierarchy of difficulty for the four grades in
pastoral area is as follows: freshman > sophomore > junior > senior, agriculture area
is as follows: sophomore > freshman > junior > senior. We find that the Mandarin
proficiency of students in pastoral area was increasing as the increasing of grade level,
the poorest pronunciation of Mandarin tones by sophomore in agriculture area is due to
the fact that the society is continuously improving. The freshman in agriculture area
compared to pastoral area has more chances to contact Mandarin.

We compared Fig. 4 with Fig. 5, the pronunciation of college students in agri-
culture area is better than that in the pastoral area. It can be concluded that the hierarchy
of difficulty for the four tones both in agriculture and pastoral areas is as follows: Tone
2 > Tone 3 > Tone 1 > Tone 4. In terms of tone domain, the agriculture area is
obviously better than the pastoral area. The tone domain of the pastoral and agriculture
area is narrow, and the location of the tone domain is much lower than standard
Mandarin.

5 Conclusion

In this paper, the college students from the Amdo rural and pastoral areas were selected
for experiment subjects. Two experiments were conducted on the error patterns of
Mandarin tone perception and production by college students from Amdo Tibetan area.

From the above researches, it can be found that tone is a major difficulty for Amdo
Tibetan students. And the confusion of Tone 2 and Tone 3 is a common error for

Perception and Production of Mandarin Monosyllabic Tones 25

students from Amdo Tibetan area. It is probably because of the similar phonetic
properties in Tone 2 and Tone 3, which both have a rising portion. The error rate of
tone perception is highly correlated [r = 0.92] with that of tone production. Most of
them can imitate the tone shape of the four tones, but the tone domain is difficult to
imitate. It is related to that Amdo Tibetan is a non-tonal language. The Amdo Tibetan
has only one habit tone, which makes it difficult for them to grasp the tone domain of
the four tones correctly. In addition, there is a big difference between college students
from the Amdo agriculture and pastoral areas on the Mandarin proficiency. The reason
of the difference is that the economic in agriculture area is higher than that in pastoral
area, and there are fewer people speak Mandarin in pastoral area than that in agriculture
area. In addition to the negative transfer of their native language, the different economic
development in the internal of the Amdo Tibetan area has a great influence on Man-
darin learning.

References

1. Ding, H.: Perception and production of Mandarin disyllabic tones by German learners.
Speech Prosody 184, 378–381 (2012)

2. Weltens, B.: Language attrition in progress. Language 66(3), 37–49 (1986)
3. Yali, L.: Perception and production of Mandarin tones of pupils from Xinjiang ethnic areas.

J. Tsinghua Univ. 53(6), 823–827 (2013)
4. Gao, M.: Perception and production of mandarin tones by swedish students. Iran. J. Radiol.

29(4), 533–538 (2010)
5. Hoffmann, C.: Disyllabic Mandarin lexical tone perception by native Dutch speakers: a case

of adult perceptual asymmetry. J. Acoust. Soc. Am. 134(5), 4230 (2013)
6. Zhang, J.: Influences of vowels on the perception of nasal codas in Mandarin for Japanese

and Chinese natives. J. Tsinghua Univ. 57(2), 164–169 (2017)
7. Lijuan, G.: Tone production in Mandarin Chinese by American students. In:Chan, K.M.,

Kang, H. (eds.) Conference 2008, NACCL, Ohio, vol. 9999, pp. 123–138 (2008)
8. Ding, H.: An investigation of tone perception and production in German learners of

Mandarin. Arch. Acoust. 36(3), 509–518 (2011)
9. Haifeng, D.: A Study of single Chinese characters of Tibetan learners of Amdo Tibetan.

J. Lang. Lit. Stud. 14, 17–18 (2011)
10. Yan, L.: Acoustic research on the monosyllabic pitch pattern of Amdo-Mandarin Inter

language and Tibetan Amdo Dialect. Hanzangyu Xuebao 1, 51–63 (2015)
11. Wu Yong, F.: A study of International Error on Putonghua Inter language of Tibetan

language Anduo Dialect Region. J. Qinghai Nationalities Univ. (Soc. Sci.) 38(02), 135–140
(2012)

12. Yali, L.: The train methods of perception of Mandarin tones of pupils in Xinjiang ethnic
areas. Tech. Acoust. 33(s2), 328–330 (2014)

13. Wenbo, C.: Analysis of Chinese phonetic teaching for students in Central Asia. Lang. Transl.
3, 73–76 (2009)

14. Irino, T.: Speech segregation using an auditory vocoder with event- synchronous
enhancements. IEEE Trans. Speech Audio Process. 14(6), 2212–2221 (2006)

15. Feng, S.: Exploration of Experimental Phonology. Beijing Peking University Press, Beijing
(2009)

26 Z. Gan et al.

Effective Character-Augmented Word
Embedding for Machine Reading

Comprehension

Zhuosheng Zhang1,2, Yafang Huang1,2, Pengfei Zhu1,2,3, and Hai Zhao1,2(B)

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

{zhangzs,huangyafang}@sjtu.edu.cn
2 Key Laboratory of Shanghai Education Commission for Intelligent Interaction and

Cognitive Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
10152510190@stu.ecnu.edu.cn, zhaohai@cs.sjtu.edu.cn
3 School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China

Abstract. Machine reading comprehension is a task to model relation-
ship between passage and query. In terms of deep learning framework,
most of state-of-the-art models simply concatenate word and charac-
ter level representations, which has been shown suboptimal for the con-
cerned task. In this paper, we empirically explore different integration
strategies of word and character embeddings and propose a character-
augmented reader which attends character-level representation to aug-
ment word embedding with a short list to improve word representations,
especially for rare words. Experimental results show that the proposed
approach helps the baseline model significantly outperform state-of-the-
art baselines on various public benchmarks.

Keywords: Question answering · Reading comprehension
Character-augmented embedding

1 Introduction

Machine reading comprehension (MRC) is a challenging task which requires com-
puters to read and understand documents to answer corresponding questions,
it is indispensable for advanced context-sensitive dialogue and interactive sys-
tems [12,34,36]. There are two main kinds of MRC, user-query types [13,24] and
cloze-style [7,10,11]. The major difference lies in that the answers for the former
are usually a span of texts while the answers for the latter are words or phrases.

This paper was partially supported by National Key Research and Development
Program of China (No. 2017YFB0304100), National Natural Science Foundation of
China (No. 61672343 and No. 61733011), Key Project of National Society Science
Foundation of China (No. 15-ZDA041), The Art and Science Interdisciplinary Funds
of Shanghai Jiao Tong University (No. 14JCRZ04).

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 27–39, 2018.
https://doi.org/10.1007/978-3-319-99495-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_3&domain=pdf

28 Z. Zhang et al.

Most of recent proposed deep learning models focus on sentence or paragraph
level attention mechanism [5,8,14,25,30] instead of word representations. As
the fundamental part in natural language processing tasks, word representation
could seriously influence downstream MRC models (readers). Words could be
represented as vectors using word-level or character-level embedding. For word
embeddings, each word is mapped into low dimensional dense vectors directly
from a lookup table. Character embeddings are usually obtained by applying
neural networks on the character sequence of each word and the hidden states
are used to form the representation. Intuitively, word-level representation is good
at capturing wider context and dependencies between words but it could be hard
to represent rare words or unknown words. In contrast, character embedding is
more expressive to model sub-word morphologies, which facilitates dealing with
rare words.

Table 1. A cloze-style reading comprehension example.

Effective Character-Augmented Word Embedding 29

As shown in Table 1, the passages in MRC are quite long and diverse which
makes it hard to record all the words in the model vocabulary. As a result, read-
ing comprehension systems suffer from out-of-vocabulary (OOV) word issues,
especially when the ground-truth answers tend to include rare words or named
entities (NE) in cloze-style MRC tasks.

To form a fine-grained embedding, there have been a few hybrid methods that
jointly learn the word and character representations [15,19,32]. However, the
passages in machine reading dataset are content-rich and contain massive words
and characters, using fine-grained features, such as named entity recognition
and part-of-speech (POS) tags will need too high computational cost in return,
meanwhile the efficiency of readers is crucial in practice.

In this paper, we verify the effectiveness of various simple yet effec-
tive character-augmented word embedding (CAW) strategies and propose a
CAW Reader. We survey different CAW strategies to integrate word-level and
character-level embedding for a fine-grained word representation. To ensure ade-
quate training of OOV and low-frequency words, we employ a short list mecha-
nism. Our evaluation will be performed on three public Chinese reading compre-
hension datasets and one English benchmark dataset for showing our method is
effective in multi-lingual case.

2 Related Work

Machine reading comprehension has been witnessed rapid progress in recent
years [8,22,26–29,31,33,35]. Thanks to various released MRC datasets, we can
evaluate MRC models in different languages. This work focuses on cloze-style
ones since the answers are single words or phrases instead of text spans, which
could be error-prone when they turn out to be rare or OOV words that are not
recorded in the model vocabulary.

Recent advances for MRC could be mainly attributed to attention mecha-
nisms, including query-to-passage attention [7,14], attention-over-attention [5]
and self attention [30]. Different varieties and combinations have been proposed
for further improvements [8,25]. However, the fundamental part, word repre-
sentation, which proves to be quite important in this paper, has not aroused
much interest. To integrate the advantages of both word-level and character-
level embeddings, some researchers studied joint models for richer representation
learning where the common combination method is the concatenation. Seo et al.
[25] concatenated the character and word embedding and then fed the joint repre-
sentation to a two-layer Highway Network. FG reader in [32] used a fine-grained
gating mechanism to dynamically combine word-level and character-level rep-
resentations based on word property. However, this method is computationally
complex and requires extra labels such as NE and POS tags.

Not only for machine reading comprehension tasks, character embedding has
also benefited other natural language process tasks, such as word segmenta-
tion [2,3], machine translation [18,19], tagging [1,9,17] and language modeling
[21,23]. Notablely, Cai et al. [3] presented a greedy neural word segmenter where

30 Z. Zhang et al.

high-frequency word embeddings are attached to character embedding via aver-
age pooling while low-frequency words are represented as character embedding.
Experiments show this mechanism helps achieve state-of-the-art word segmen-
tation performance, which partially inspires our reader design.

3 Model

In this section, we will introduce our model architecture, which is consisted of a
fundamental word representation module and a gated attention learning module.

Fig. 1. Overview of the word representation module.

3.1 Word Representation Module

Figure 1 illustrates our word representation module. The input token sequence
is first encoded into embeddings. In the context of machine reading comprehen-
sion tasks, word only representation generalizes poorly due to the severe word
sparsity, especially for rare words. We adopt two methods to augment word
representations, namely, a short list filtering and character enhancement.

Actually, if all the words in the dataset are used to build the vocabulary,
the OOV words from the test set will not be well dealt with for inadequate
training. To handle this issue, we keep a short list L for specific words. If word
w is in L, the immediate word embedding ew is indexed from word lookup table
Mw ∈ R

d×s where s denotes the size (recorded words) of lookup table and
d denotes the embedding dimension. Otherwise, it will be represented as the
randomly initialized default word (denoted by a specific mark UNK). Note that
only the word embedding of the OOV words will be replaced by the vectors of
UNK (denoted by eu) while their character embedding ec will still be processed
using the original word. In this way, the OOV words could be tuned sufficiently
with expressive meaning after training.

In our experiments, the short list is determined according to the word fre-
quency. Concretely, we sort the vocabulary according to the word frequency

Effective Character-Augmented Word Embedding 31

from high to low. A frequency filter ratio γ is set to filter out the low-frequency
words (rare words) from the lookup table. For example, γ = 0.9 means the least
frequent 10% words are replaced with the default UNK notation.

Character-level embeddings have been widely used in lots of natural lan-
guage processing tasks and verified for the OOV and rare word representations.
Thus, we consider employing neural networks to compose word representations
from smaller units, i.e., character embedding [15,21], which results in a hybrid
mechanism for word representation with a better fine-grained consideration. For
a given word w, a joint embedding (JE) is to straightforwardly integrate word
embedding ew and character embedding ec.

JE(w) = ew ◦ ec

where ◦ denotes the joint operation. Specifically, we investigate concatenation
(concat), element-wise summation (sum) and element-wise multiplication (mul).
Thus, each passage P and query Q is represented as Rd×k matrix where d denotes
the dimension of word embedding and k is the number of words in the input.

Finally by combining the short list mechanism and character enhancement,
JE(w) can be rewritten as

JE(w) =
{
ew ◦ ec if w ∈ L
eu ◦ ec otherwise

The character embedding ec can be learned by two kinds of networks, recur-
rent neural network (RNN) or convolutional neural network (CNN)1.

RNN Based Embedding. The character embedding ec is generated by tak-
ing the final outputs of a bidirectional gated recurrent unit (GRU) [4] applied
to the vectors from a lookup table of characters in both forward and back-
ward directions. Characters w = {x1, x2, . . . , xl} of each word are vectorized
and successively fed to forward GRU and backward GRU to obtain the internal
features. The output for each input is the concatenation of the two vectors from
both directions:

←→
ht =

−→
ht ‖ ←−

ht where ht denotes the hidden states.
Then, the output of BiGRUs is passed to a fully connected layer to obtain

the a fixed-size vector for each word and we have ec = W
←→
ht + b.

CNN Based Embedding character sequence w = {x1, x2, . . . , xl} is embedded
into vectors M using a lookup table, which is taken as the inputs to the CNN, and
whose size is the input channel size of the CNN. Let Wj denote the Filter matrices
of width l, the substring vectors will be transformed to sequences cj(j ∈ [1, l]):

cj = [. . . ; tanh(Wj · M[i:i+l−1] + bj); . . .]

1 Empirical study shows the character embeddings obtained from these two networks
perform comparatively. To focus on the performance of character embedding, we
introduce the networks only for reproduction. Our reported results are based on
RNN based character embeddings.

32 Z. Zhang et al.

where [i : i+l−1] indexes the convolution window. A one-max-pooling operation
is adopted after convolution sj = max(cj). The character embedding is obtained
through concatenating all the mappings for those l filters.

ec = [s1 ⊕ · · · ⊕ sj ⊕ · · · ⊕ sl]

3.2 Attention Learning Module

To obtain the predicted answer, we first apply recurrent neural networks to
encode the passage and query. Concretely, we use BiGRUs to get contextual
representations of forward and backward directions for each word in the passage
and query and we have Gp and Gq, respectively.

Then we calculate the gated attention following [8] to obtain the probability
distribution of each word in the passage. For each word pi in Gp, we apply soft
attention to form a word-specific representation of the query qi ∈ Gq, and then
multiply the query representation with the passage word representation.

αi = softmax(G�
q pi)

βi = Gqαi

xi = pi � βi

where � denotes the element-wise product to model the interactions between pi
and qi. The passage contextual representation G̃p = {x1, x2, . . . , xk} is weighted
by query representation.

Inspired by [8], multi-layered attentive network tends to focus on different
aspects in the query and could help combine distinct pieces of information to
answer the query, we use K intermediate layers which stacks end to end to learn
the attentive representations. At each layer, the passage contextual represen-
tation G̃p is updated through above attention learning. Let qk denote the k-th
intermediate output of query contextual representation and GP represent the full
output of passage contextual representation G̃p. The probability of each word
w ∈ C in the passage as being the answer is predicted using a softmax layer over
the inner-product between qk and GP .

r = softmax((qk)�GP)

where vector p denotes the probability distribution over all the words in the
passage. Note that each word may occur several times in the passage. Thus,
the probabilities of each candidate word occurring in different positions of the
passage are added together for final prediction.

P (w|p, q) ∝
∑

i∈I(w,p)

ri

where I(w, p) denotes the set of positions that a particular word w occurs in the
passage p. The training objective is to maximize log P (A|p, q) where A is the
correct answer.

Effective Character-Augmented Word Embedding 33

Finally, the candidate word with the highest probability will be chosen as the
predicted answer. Unlike recent work employing complex attention mechanisms,
our attention mechanism is much more simple with comparable performance so
that we can focus on the effectiveness of our embedding strategies.

Table 2. Data statistics of PD, CFT and CMRC-2017.

PD CFT CMRC-2017

Train Valid Test Human Train Valid Test

Query 870,710 3,000 3,000 1,953 354,295 2,000 3,000

Avg # words in docs 379 425 410 153 324 321 307

Avg # words in query 38 38 41 20 27 19 23

Vocabulary 248,160 94,352

4 Evaluation

4.1 Dataset and Settings

Based on three Chinese MRC datasets, namely People’s Daily (PD), Children
Fairy Tales (CFT) [7] and CMRC-2017 [6], we verify the effectiveness of our
model through a series of experiments2. Every dataset contains three parts, Pas-
sage, Query and Answer. The Passage is a story formed by multiple sentences,
and the Query is one sentence selected by human or machine, of which one
word is replaced by a placeholder, and the Answer is exactly the original word
to be filled in. The data statistics is shown in Table 2. The difference between
the three Chinese datasets and the current cloze-style English MRC datasets
including Daily Mail, CBT and CNN [10] is that the former does not provide
candidate answers. For the sake of simplicity, words from the whole passage are
considered as candidates.

Besides, for the test of generalization ability in multi-lingual case, we use
the Children’s Book Test (CBT) dataset [11]. We only consider cases of which
the answer is either a NE or common noun (CN). These two subsets are more
challenging because the answers may be rare words.

For fare comparisons, we use the same model setting in this paper. We ran-
domly initialize the 100d character embeddings with the uniformed distribution
in the interval [−0:05, 0:05]. We use word2vec [20] toolkit to pre-train 200d word
embeddings on Wikipedia corpus3, and randomly initialize the OOV words. For
both the word and character representation, the GRU hidden units are 128. For
2 In the test set of CMRC-2017 and human evaluation test set (Test-human) of CFT,

questions are further processed by human and the pattern of them may not be in
accordance with the auto-generated questions, so it may be harder for machine to
answer.

3 https://dumps.wikimedia.org/.

https://dumps.wikimedia.org/

34 Z. Zhang et al.

optimization, we use stochastic gradient descent with ADAM updates [16]. The
initial learning rate is 0.001, and after the second epoch, it is halved every epoch.
The batch size is 64. To stabilize GRU training, we use gradient clipping with a
threshold of 10. Throughout all experiments, we use three attention layers.

Table 3. Accuracy on PD and CFT datasets. All the results except ours are from [7].

Model Strategy PD CFT

Valid Test Test-human

AS Reader - 64.1 67.2 33.1

GA Reader - 64.1 65.2 35.7

CAS Reader - 65.2 68.1 35.0

CAW Reader concat 64.2 65.3 37.2

sum 65.0 68.1 38.7

mul 69.4 70.5 39.7

4.2 Results

PD & CFT. Table 3 shows the results on PD and CFT datasets. With improve-
ments of 2.4% on PD and 4.7% on CFT datasets respectively, our CAW Reader
model significantly outperforms the CAS Reader in all types of testing. Since
the CFT dataset contains no training set, we use PD training set to train the
corresponding model. It is harder for machine to answer because the test set
of CFT dataset is further processed by human experts, and the pattern quite
differs from PD dataset. We can learn from the results that our model works
effectively for out-of-domain learning, although PD and CFT datasets belong to
quite different domains.

CMRC-2017. Table 4 shows the results4. Our CAW Reader (mul) not only
obtains 7.27% improvements compared with the baseline Attention Sum Reader
(AS Reader) on the test set, but also outperforms all other single models. The
best result on the valid set is from WHU, but their result on test set is lower than
ours by 1.97%, indicating our model has a satisfactory generalization ability.

We also compare different CAW strategies for word and character embed-
dings. We can see from the results that the CAW Reader (mul) significantly
outperforms all the other three cases, word embedding only, concatenation and
summation, and especially obtains 8.37% gains over the first one. This reveals

4 Note that the test set of CMRC-2017 and human evaluation test set (Test-human)
of CFT are harder for the machine to answer because the questions are further
processed manually and may not be in accordance with the pattern of auto-generated
questions.

Effective Character-Augmented Word Embedding 35

Table 4. Accuracy on CMRC-2017 dataset. Results marked with † are from the
latest official CMRC Leaderboard (http://www.hfl-tek.com/cmrc2017/leaderboard.
html). The best results are in bold face. WE is short for word embedding.

Model CMRC-2017

Valid Test

Random Guess † 1.65 1.67

Top Frequency † 14.85 14.07

AS Reader † 69.75 71.23

GA Reader 72.90 74.10

SJTU BCMI-NLP † 76.15 77.73

6ESTATES PTE LTD † 75.85 74.73

Xinktech † 77.15 77.53

Ludong University † 74.75 75.07

ECNU † 77.95 77.40

WHU † 78.20 76.53

CAW Reader (WE only) 69.70 70.13

CAW Reader (concat) 71.55 72.03

CAW Reader (sum) 72.90 74.07

CAW Reader (mul) 77.95 78.50

that compared with concatenation and sum operation, the element-wise multi-
plication might be more informative, because it introduces a similar mechanism
to endow character-aware attention over the word embedding. On the other
hand, too high dimension caused by concatenation operation may lead to seri-
ous over-fitting issues5, and sum operation is too simple to prevent from detailed
information losing.

CBT. The results on CBT are shown in Table 5. Our model outperforms most of
the previous public works. Compared with GA Reader with word and character
embedding concatenation, i.e., the original model of our CAW Reader, our model
with the character augmented word embedding has 2.4% gains on the CBT-NE
test set. FG Reader adopts neural gates to combine word-level and character-level
representations and adds extra features including NE, POS and word frequency,
but our model also achieves comparable performance with it. This results on both
languages show that our CAW Reader is not limited to dealing with Chinese but
also for other languages.

5 For the best concat and mul model, the training/validation accuracies are
97.66%/71.55, 96.88%/77.95%, respectively.

http://www.hfl-tek.com/cmrc2017/leaderboard.html
http://www.hfl-tek.com/cmrc2017/leaderboard.html

36 Z. Zhang et al.

Table 5. Accuracy on CBT dataset. Results marked with ‡ are of previously published
works [7,8,32].

Model CBT-NE CBT-CN

Valid Test Valid Test

Human ‡ - 81.6 - 81.6

LSTMs ‡ 51.2 41.8 62.6 56.0

MemNets ‡ 70.4 66.6 64.2 63.0

AS Reader ‡ 73.8 68.6 68.8 63.4

Iterative Attentive Reader ‡ 75.2 68.2 72.1 69.2

EpiReader ‡ 75.3 69.7 71.5 67.4

AoA Reader ‡ 77.8 72.0 72.2 69.4

NSE ‡ 78.2 73.2 74.3 71.9

GA Reader ‡ 74.9 69.0 69.0 63.9

GA word char concat ‡ 76.8 72.5 73.1 69.6

GA scalar gate ‡ 78.1 72.6 72.4 69.1

GA fine-grained gate ‡ 78.9 74.6 72.3 70.8

FG Reader ‡ 79.1 75.0 75.3 72.0

CAW Reader 78.4 74.9 74.8 71.5

5 Analysis

We conduct quantitative study to investigate how the short list influence the
model performance on the filter ratio from [0.1, 0.2, . . . , 1]. Figure 2 shows the
results on the CMRC-2017 dataset. Our CAW reader achieves the best accuracy
when γ = 0.9. It indicates that it is not optimal to build the vocabulary among
the whole training set, and we can reduce the frequency filter ratio properly to

Fig. 2. Quantitative study on the influence of the short list.

Effective Character-Augmented Word Embedding 37

promote the accuracy. In fact, training the model on the whole vocabulary may
lead to over-fitting problems. Besides, improper initialization of the rare words
may also bias the whole word representations. As a result, without a proper
OOV representation mechanism, it is hard for a model to deal with OOV words
from test sets precisely.

6 Conclusion

This paper surveys multiple embedding enhancement strategies and proposes
an effective embedding architecture by attending character representations to
word embedding with a short list to enhance the simple baseline for the read-
ing comprehension task. Our evaluations show that the intensified embeddings
can help our model achieve state-of-the-art performance on multiple large-scale
benchmark datasets. Different from most existing works that focus on either
complex attention architectures or manual features, our model is more simple
but effective. Though this paper is limited to the empirical verification on MRC
tasks, we believe that the improved word representation may also benefit other
tasks as well.

References

1. Bai, H., Zhao, H.: Deep enhanced representation for implicit discourse relation
recognition. In: Proceedings of the 27th International Conference on Computa-
tional Linguistics (COLING 2018) (2018)

2. Cai, D., Zhao, H.: Neural word segmentation learning for Chinese. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (ACL
2016), pp. 409–420 (2016)

3. Cai, D., Zhao, H., Zhang, Z., Xin, Y., Wu, Y., Huang, F.: Fast and accurate neural
word segmentation for Chinese. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL 2017), pp. 608–615 (2017)

4. Cho, K., Merrienboer, B.V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2014), pp. 1724–1734 (2014)

5. Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention
neural networks for reading comprehension. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (ACL 2017), pp. 1832–
1846 (2017)

6. Cui, Y., Liu, T., Chen, Z., Ma, W., Wang, S., Hu, G.: Dataset for the first evalua-
tion on chinese machine reading comprehension. In: Calzolari (Conference Chair),
N., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Hasida, K., Isahara, H., Mae-
gaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S., Tokunaga, T.
(eds.) Proceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018). European Language Resources Association (ELRA)
(2018)

38 Z. Zhang et al.

7. Cui, Y., Liu, T., Chen, Z., Wang, S., Hu, G.: Consensus attention-based neural
networks for Chinese reading comprehension. In: Proceedings of the 26th Interna-
tional Conference on Computational Linguistics (COLING 2016), pp. 1777–1786
(2016)

8. Dhingra, B., Liu, H., Yang, Z., Cohen, W.W., Salakhutdinov, R.: Gated-attention
readers for text comprehension. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL 2017), pp. 1832–1846 (2017)

9. He, S., Li, Z., Zhao, H., Bai, H., Liu, G.: Syntax for semantic role labeling, to be,
or not to be. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL 2018) (2018)

10. Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman,
M., Blunsom, P.: Teaching machines to read and comprehend. In: Advances in
Neural Information Processing Systems (NIPS 2015), pp. 1693–1701 (2015)

11. Hill, F., Bordes, A., Chopra, S., Weston, J.: The goldilocks principle: read-
ing children’s books with explicit memory representations. arXiv preprint
arXiv:1511.02301 (2015)

12. Huang, Y., Li, Z., Zhang, Z., Zhao, H.: Moon IME: neural-based Chinese Pinyin
aided input method with customizable association. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (ACL 2018),
System Demonstration (2018)

13. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: TriviaQA: a large scale distantly
supervised challenge dataset for reading comprehension. In: ACL, pp. 1601–1611
(2017)

14. Kadlec, R., Schmid, M., Bajgar, O., Kleindienst, J.: Text understanding with the
attention sum reader network. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL 2016), pp. 908–918 (2016)

15. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language
models. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
(AAAI 2016), pp. 2741–2749 (2016)

16. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

18. Ling, W., Trancoso, I., Dyer, C., Black, A.W.: Character-based neural machine
translation. arXiv preprint arXiv:1511.04586 (2015)

19. Luong, M.T., Manning, C.D.: Achieving open vocabulary neural machine transla-
tion with hybrid word-character models. arXiv preprint arXiv:1604.00788 (2016)

20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

21. Miyamoto, Y., Cho, K.: Gated word-character recurrent language model. In: Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2016), pp. 1992–1997 (2016)

22. Munkhdalai, T., Yu, H.: Reasoning with memory augmented neural networks for
language comprehension. In: Proceedings of the International Conference on Learn-
ing Representations (ICLR 2017) (2017)

23. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-
moyer, L.: Deep contextualized word representations. In: Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL 2018) (2018)

http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1603.01360
http://arxiv.org/abs/1511.04586
http://arxiv.org/abs/1604.00788
http://arxiv.org/abs/1301.3781

Effective Character-Augmented Word Embedding 39

24. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions
for machine comprehension of text. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2016), pp. 2383–
2392 (2016)

25. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow
for machine comprehension. In: Proceedings of the International Conference on
Learning Representations (ICLR 2017) (2017)

26. Sordoni, A., Bachman, P., Trischler, A., Bengio, Y.: Iterative alternating neural
attention for machine reading. arXiv preprint arXiv:1606.02245 (2016)

27. Trischler, A., Ye, Z., Yuan, X., Suleman, K.: Natural language comprehension with
the EpiReader. In: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2016), pp. 128–137 (2016)

28. Wang, B., Liu, K., Zhao, J.: Conditional generative adversarial networks for com-
monsense machine comprehension. In: Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 4123–4129
(2017)

29. Wang, S., Jiang, J.: Machine comprehension using Match-LSTM and answer
pointer. In: Proceedings of the International Conference on Learning Represen-
tations (ICLR 2016) (2016)

30. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks
for reading comprehension and question answering. In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (ACL 2017), pp.
189–198 (2017)

31. Wang, Y., Liu, K., Liu, J., He, W., Lyu, Y., Wu, H., Li, S., Wang, H.: Multi-
passage machine reading comprehension with cross-passage answer verification.
In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (ACL 2018) (2018)

32. Yang, Z., Dhingra, B., Yuan, Y., Hu, J., Cohen, W.W., Salakhutdinov, R.: Words
or characters? Fine-grained gating for reading comprehension. In: Proceedings of
the International Conference on Learning Representations (ICLR 2017) (2017)

33. Zhang, Z., Huang, Y., Zhao, H.: Subword-augmented embedding for cloze reading
comprehension. In: Proceedings of the 27th International Conference on Compu-
tational Linguistics (COLING 2018) (2018)

34. Zhang, Z., Li, J., Zhu, P., Zhao, H.: Modeling multi-turn conversation with deep
utterance aggregation. In: Proceedings of the 27th International Conference on
Computational Linguistics (COLING 2018) (2018)

35. Zhang, Z., Zhao, H.: One-shot learning for question-answering in Gaokao history
challenge. In: Proceedings of the 27th International Conference on Computational
Linguistics (COLING 2018) (2018)

36. Zhu, P., Zhang, Z., Li, J., Huang, Y., Zhao, H.: Lingke: A fine-grained multi-turn
chatbot for customer service. In: Proceedings of the 27th International Conference
on Computational Linguistics (COLING 2018), System Demonstrations (2018)

http://arxiv.org/abs/1606.02245

Mongolian Grapheme to Phoneme Conversion
by Using Hybrid Approach

Zhinan Liu1, Feilong Bao1(&), Guanglai Gao1, and Suburi2

1 College of Computer Science,
Inner Mongolia University, Huhhot 010021, China

lzn_bung@163.com, {csfeilong,csggl}@imu.edu.cn
2 Inner Mongolia Public Security Department, Huhhot 010021, China

sunbuer@163.com

Abstract. Grapheme to phoneme (G2P) conversion is the assignment of
converting word to its pronunciation. It has important applications in text-to-
speech (TTS), speech recognition and sounds-like queries in textual databases.
In this paper, we present the first application of sequence-to-sequence (Seq2Seq)
Long Short-Term Memory (LSTM) model with the attention mechanism for
Mongolian G2P conversion. Furthermore, we propose a novel hybrid approach
of combining rules with Seq2Seq LSTM model for Mongolian G2P conversion,
and implement the Mongolian G2P conversion system. The experimental results
show that: Adopting Seq2Seq LSTM model can obtain better performance than
traditional methods of Mongolian G2P conversion, and the hybrid approach
further improves G2P conversion performance. The word error rate (WER) rel-
atively reduces by 10.8% and the phoneme error rate (PER) approximately
reduces by 1.6% through comparing with the Mongolian G2P conversion
method being used based on the joint-sequence models, which completely meets
the practical requirements of Mongolian G2P conversion.

Keywords: Mongolian � Grapheme-to-phoneme � Sequence-to-sequence
LSTM

1 Introduction

Grapheme-to-phoneme conversion (G2P) refers to the task of converting a word from
the orthographic form (sequence of letters/characters/graphemes) to its pronunciation (a
sequence of phonemes). It has a wide range of applications in speech synthesis [1–3],
automatic speech recognition (ASR) [4–6] and speech retrieval [7, 8].

One of the challenges in G2P conversion is that the pronunciation of any grapheme
depends on a variety of factors including its context and the etymology of the word.
Another complication is that output phone sequence can be either shorter than or longer
than the input grapheme sequence. Typical approaches to G2P involve using rule-based
methods and joint-sequence models. While rule-based methods are effective to handle
new words, they have some limitations: designing the rules is hard and requires specific
linguistic skills, and it is extremely difficult to capture all rules for natural languages.
To overcome the above limitations, another called statistics-based method are proposed,

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 40–50, 2018.
https://doi.org/10.1007/978-3-319-99495-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_4&domain=pdf

in which joint-sequence models are well performing and popular. In joint-sequence
models, the alignment is provided via some external aligner [9–11]. However, since the
alignment is a latent variable—a means to an end rather than the end itself, it is worthy to
consider whether we can do away with such explicit alignment.

In recent years, some work on the G2P problem has used neural network-based
approaches. Specifically, long short-term memory (LSTM) networks have recently
been explored [12]. LSTMs (and, more generally, recurrent neural networks) can model
varying contexts (“memory”) and have been successful for a number of sequence
prediction tasks. When used in a sequence-to-sequence (Seq2Seq) model, as in [13],
which includes an encoder RNN and a decoder RNN, the encoder RNN encoder input
sequence token by token, they in principle require no explicit alignments between the
input (grapheme sequence) and output (phoneme sequence), as the model is trained in
an end-to-end fashion. Bahdanau et al. [14] proposed a related model with an attention
mechanism for translation that makes the model better, and Toshniwal et al. [15]
introduce an attention mechanism and improve performance of G2P conversion.

For Mongolian G2P conversion, Bao et al. [16] proposed a rule-based method and
the method based on joint-sequence model, where the latter method showed better
performance than the former method. However, performance of current Mongolian
G2P conversion is inferior to other languages. In this paper, we first introduce a
Seq2Seq LSTM model with attention mechanism, which proved is useful in other
sequence prediction tasks. We obtain better performance than traditional methods for
Mongolian G2P conversion. Seq2Seq LSTM model is generative language model,
conditioned on an input sequence, the model using an attention mechanism over the
encoder LSTM states will not overfit and generalize much better than the plain model
without attention mechanism. Taking account of the shortcomings of statistics-based
method that can’t exactly decode all words in the dictionary and Mongolian charac-
teristics is the majority of Out Of Vocabulary (OOV) words with suffixes connected to
the stem using Narrow Non-Break Space (NNBS), we proposed a novel hybrid
approach combining of rules with Seq2Seq LSTM model to covert Mongolian word,
and we obtain better performance for Mongolian G2P conversion.

In the next section, we will discuss traditional methods for Mongolian G2P con-
version. In the remainder we will focus on Seq2Seq LSTM model with an attention
mechanism for Mongolian G2P conversion. We will lay the theoretical foundations and
undertake a detailed exposition of this model in Sect. 3, and then we will introduce the
hybrid approach in Sect. 4. Section 5 presents experimental results demonstrating the
better performance of the proposed method, and analyze the consequences of the
method. Finally, in Sect. 6 we conclude this paper and look forward to the future of
Mongolian G2P conversion technology.

2 Related Work

The Mongolian G2P conversion that was firstly considered in the context of Mongolian
text-to-speech (TTS) applications. In this section, we will summarize two traditional
approaches to Mongolian G2P conversion.

Mongolian Grapheme to Phoneme Conversion by Using Hybrid Approach 41

The one approach is rule-based Mongolian G2P conversion. The written form and
spoken form of Mongolian are not one-to-one, and the vowels and consonants may
increase, fall off and change. Through in-depth study of Mongolian pronunciation
rules, three rules, vowels pronunciation variation rule, consonant binding rule and
vowel-harmony rule, are employed in Mongolian G2P conversion. Firstly, Mongolian
word is converted by using vowels pronunciation variation rule, and then conversion is
followed according to the consonant binding rule, finally, the vowel-harmony rule is
used. The rule-based method overcomes the limitations of simple dictionary look-up.
However, this method consists of two drawbacks: firstly, designing the rules is hard
and requires specific linguistic skills. Mongolian frequently show irregularities, which
need to be captured by exceptional rules or exceptional lists. Secondly, the interde-
pendence between rules can be quite complex, so rule designers have to cross-check if
the outcome of applying the rules is correct in all cases. This makes development and
maintenance of rule systems very tedious in practice. Moreover, a rule-based G2P
system is still likely to make mistakes when presented with an exceptional word, not
considered by the rule designer.

Another Mongolian G2P conversion approach is based on joint-sequence model.
The model needs to find a joint vocabulary of graphemes and phonemes (named
graphone) by aligning letters and phonemes, and uses graphone sequence to generate
the orthographic form and pronunciation of a Mongolian word. The probability of a
graphone sequence is

p C ¼ c1. . .cTð Þ ¼
YT

t¼1
pðctjc1. . .ct�1Þ ð1Þ

Where each c is a graphone unit. The conditional probability pðctjc1. . .ct�1Þ is
estimated using an n-gram language model.

To date, this model has produced the better performance on common benchmark
datasets. Sequitur G2P is a good established G2P conversion tool using joint-sequence
n-gram modelling so that it is very convenient to perform an experiment. In the next
section, we will introduce Seq2Seq LSTM model with attention mechanism.

3 Seq2Seq LSTM Model with an Attention Mechanism

Neural Seq2Seq model has recently shown promising results in several tasks, especially
translation [17, 18]. Because the G2P problem is in fact largely analogous to the
translation problem, with a many-to-many mapping between subsequences of input
labels and subsequences of output labels and with potentially long-range dependencies,
so this model is also frequently used in G2P conversion [13, 15, 19]. We first apply the
Seq2Seq LSTM model with attention mechanism to Mongolian G2P conversion, here,
we describe in detail the Seq2Seq LSTM model used in Mongolian G2P conversion.

The Seq2Seq LSTM model follow the LSTM Encoder-Decoder framework [20],
the encoder reads the input Mongolian letters sequence, a sequence of vectors
x ¼ x1; . . .; x2ð Þ, the LSTM computes the h1; . . .; hT (ht is control state at timestep t) and
m1; . . .;mT (mt is memory state at timestep t) as follows.

42 Z. Liu et al.

it ¼ sigm W1xt þW2ht�1ð Þ ð2Þ

i
0
t ¼ tanh W3xt þW4ht�1ð Þ ð3Þ

ft ¼ sigm W5xt þW6ht�1ð Þ ð4Þ

ot ¼ sigm W7xt þW8ht�1ð Þ ð5Þ

mt ¼ mt�1 � ft þ it � i
0
t ð6Þ

ht ¼ mt � ot ð7Þ

Where the operator � represents element-wise multiplication, the matrices
W1; . . .;W8 and the vector h0 are the parameters of the model, and all the nonlinearities
are computed element-wise. The above equations are merged as:

ht ¼ f xt; ht�1ð Þ ð8Þ

In above equation, f represents an LSTM.
The decoder is another LSTM to produce the output sequence (phonemes sequence

y ðy1; . . .; yTB)) and trained to predict the next phoneme yt given the attention vector ct
and all the previously predicted phonemes sequence y1; . . .; yt�1f g, each conditional
probability is modeled as

p ytjy1; . . .; yt�1; xð Þ ¼ g yt�1; st; ctð Þ ð9Þ

Where g is a nonlinear, potentially multi-layered, function that outputs the prob-
ability of yt, and st represents the hidden state of the LSTM at timestep t, the attention
vector ct [21] concatenating with st became the new hidden state to predict yt. To
computed the attention vector ct at each output time t over the input Mongolian letters
sequence x x1; . . .; xTAð Þ as following:

uti ¼ vT tanh W
0
1hi þW

0
2st

� �

ð10Þ

ati ¼ softmax uti
� � ð11Þ

ct ¼
XTA

i¼1
atihi ð12Þ

The vector v and matrices W
0
1;W

0
2 are learnable parameters of the model. The vector uti

has length TA and its i� th item contains a score of how much attention should be put
on the i� th hidden encoder state hi. These scores are normalized by softmax to create
the attention mask at over encoder hidden decoder.

Mongolian Grapheme to Phoneme Conversion by Using Hybrid Approach 43

4 Hybrid Approach to Mongolian G2P Conversion

Taking account of the shortcomings of statistics-based method that can’t exactly
decode all words in the dictionary and Mongolian characteristics is the majority of Out
Of Vocabulary (OOV) words with suffixes connected to the stem using Narrow Non-
Break Space (NNBS), we proposed a novel hybrid approach of combining rules with
Seq2Seq LSTM model to covert Mongolian word.

4.1 Rules

The rules include two parts. The first part overcomes the disadvantages of the method
based on Seq2Seq LSTM model that this method can’t ensure that all words in the
dictionary are exactly decoded. In rules, for those words in the dictionary, their accurate
phonemes sequences can be got by dictionary look-up. Because Mongolian is
Agglutinative Language, the majority of Mongolian word with suffixes connected to
the stem using Narrow Non-Break Space (NNBS), following work in [22], we also
called those NNBS suffixes. The NNBS suffixes refer to case suffixes, reflexive suffixes
and partly plural suffixes. They are used very flexible that each stem can add several
NNBS suffixes to change Mongolian word form. The another part is to handle Mon-
golian word with NNBS suffixes, the pronunciation of Mongolian word with NNBS
suffixes follow two rules, one rule called NNBS suffixes’ rules is that NNBS suffixes’
pronunciation depends on the form of stem’s phoneme sequence, which is different due
to varying form of stem’s phonemes sequence. Another rule named stem’s rules is that
stem’s phonemes sequence can be changed according to NNBS suffixes’ phonemes
sequence. We define four forms of stem’s phonemes sequence for NNBS suffixes’ rules
as following:

• Form 1: The word-stem is a positive word and stem’s phonemes sequence ends with
a vowel, there are two cases. The first case is that stem’s phoneme sequence ending
with a vowel in the set {al, vl, ael, vi, vae, va, av}, then check whether Il or I exists
in the stem’s phoneme sequence. The second case is similar to the first case except
that stem’s phoneme sequence ending with a vowel in the set {wl, oel, wi, w}.

• Form 2: The word-stem is a negative word and stem’s phonemes sequence ends
with a vowel, there are two cases. The first case is that stem’s phoneme sequence
ending with a vowel in the set {el, ul, El, ui, ue, Yl, e, u}, then check whether il or i
exists in the stem’s phoneme sequence. The second case is similar to the first case
except that stem’s phoneme sequence ending with a vowel in the set {ol, Ol, o}.

• Form 3: The word-stem is a positive word and stem’s phonemes sequence ends with
a consonant, whether the first vowel searched from back to front exists in the set {a,
v, Y, ae, as1, as2, vi, al, vl, ael, va, vae} or in the set {w, oe, wi, wl, oel, ws}, if Il or
I is encountered, the next vowel should be searched forward from Il or I.

• Form 4: The word-stem is a negative word and stem’s phonemes sequence ends
with a consonant, whether the first vowel searched from back to front exists in the
set {e, u, es, ui, El, el, ul, Yl, ue} or in the set {o, os, ol, Ol}, if il or i is encountered,
the next vowel should be searched forward from il or i.

44 Z. Liu et al.

We list parts NNBS suffixes and their different phoneme sequence corresponding to
varying form of the sequence of the stem in Table 1. The stem’s rules include two
parts, one part named as stem_rule1 is to determine whether NNBS suffixes’ phonemes
sequence starts with a long vowel, another part is to judge that whether stem’s pho-
nemes follows the stem_rule2. The stem’s rules are showed as following in Table 2.

4.2 Combining Rules with Seq2Seq LSTM Model

Combining rules with Seq2Seq LSTM model for Mongolian G2P conversion are
shown in Fig. 1. The procedures mainly comprise the following parts. Firstly, we
transliterate all Mongolian words and its phonemes sequence in the dictionary to the
Latin form, and transliterate input Mongolian word to the Latin form, if input Mon-
golian word exists in the dictionary, we can directly get word’s phonemes sequence
through the dictionary look-up. Secondly, Mongolian word does not exist in dictionary,
if Mongolian word is with NNBS suffixes, we make use of combining rules with
Seq2Seq LSTM model to handle this word. Instead of with NNBS suffixes, we decode
Mongolian word by using Seq2Seq LSTM model. Finally, Mongolian word’s pho-
nemes sequence can be generated.

Table 1. Parts NNBS suffixes and their different phoneme sequence corresponding to varying
form of the sequence of stem.

Mongolian Latin Form 1 Form 2 Form 3 Form 4

-yin g il l g il l il l Il l

-dv d d as1 d ws d

-bar g ar r g wr r ar r wr r

-iyer al r el r ol r wl r

-tei t El t Ol t ael t oel

-aqa al s wl s el s ol s

-aqa-ban g al s al n g wl s wl n al s al n wl s wl n

-yin-iyen g il n h el n g il n h ol n il n h el n il n h ol n

Table 2. The stem’s rules. C1, C2, V1, C3 and V, C1, V1, C2 are the last four phonemes of the
stem’s phonemes sequence, C1, C2 and C3 are the consonants, V and V1 are the vowels,
A represents the phonemes sequence of the NNBS suffixes of Mongolian word.

Stem’s
phonemes

Stem_rule1 Stem_rule2 Word’ s
Phonemes

—C1 C2 V1 C3 A stars with a
long vowel

V1 belongs to the set {as1, as2,
es, ws, os}, C1 and C2 form a
composite consonant.

—C1 C2 C3 + A

—V C1 V1 C2 A stars with a
long vowel

V1 don’t belong to the set {j, q,
x, y, I, i}.

—V C1 C2 + A

Others — — — + A

Mongolian Grapheme to Phoneme Conversion by Using Hybrid Approach 45

For Mongolian word with NNBS suffixes, we handle this word by using the hybrid
method (see in Fig. 2). We firstly segment Mongolian word to stem and NNBS suf-
fixes. If stem exists in the hash table, we can get stem’s phonemes sequence from hash
table, instead of this situation, we decode stem by using Seq2Seq LSTM model.
Depending on stem’s phonemes sequence and NNBS suffixes’ rules, we can get NNBS
suffixes’ phonemes sequence, and then modify stem’s phonemes sequence through
NNBS suffixes’ phonemes sequence and stem’s rules. Mongolian word’s phonemes

Latin
transliteration

Mongolian
word

Latin form

Rule1

With NNBS
 suffixes
Wi h NNBS

Word s Phonemes
sequence

Rules + Seq2Seq LSTM model

Seq2Seq LSTM
model

Latin
transliteration

Mongolian
word

Latin form

No

In dictionary

Rule1

With NNBS
 suffixes

Word s Phonemes
sequence

Yes

Yes

Rules + Seq2Seq LSTM model

Seq2Seq LSTM
model

No

Fig. 1. The structure of combination rules and Seq2Seq LSTM model. The blue boxes represent
that using rules to handle word, and Rule1 included in Rules is dictionary look-up. The green
boxes represent that using Seq2Seq LSTM model to decode word, and the yellow box represents
using hybrid approach. (Color figure online)

Mongolian
Word (NNBS)

Mongolian
Word (NNBS)

segment

StemStem

NNBS SuffixesNNBS Suffixes

Word s phonemes
sequence

Word s phonemes
sequence

No
Stem s phonemes

sequence
Stem s phonemes

sequenceIn dictionary

Seq2Seq LSTM
model

Seq2Seq LSTM
model

Rule1Rule1

No

Yes

Rule2Rule2 NNBS s phonemes
sequence

NNBS s phonemes
sequence

Rule3Rule3

Fig. 2. The procedure of using the proposed method to handle Mongolian word with NNBS
suffixes. The blue boxes represent rules included Rule1 (hash table look-up), Rule2 (NNBS
suffixes’ rules), and Rule3 (stem’s rules). The green boxes represent that using Seq2Seq LSTM
model to decode stem. (Color figure online)

46 Z. Liu et al.

sequence can be produced by jointing stem’s phonemes sequence modified with NNBS
suffixes’ phonemes sequence.

5 Experiments

5.1 Data Set

This paper uses the Mongolian Orthography dictionary as an experimental dataset,
Mongolian word with NNBS suffixes accounts for 15 percent of this dictionary. The
dataset consisted of a training set of 33483 pairs of word and its phonemes sequence, a
validation set of 1920 pairs of word and its phonemes and a test set of 3940 pairs of
word and its phonemes. The evaluation criteria of the model are the word error rate
(WER) and the phoneme error rate (PER).

WER ¼ 1� NWcorrect

NWwtotal
ð13Þ

PER ¼ 1� NPins þNPdel þNPsub

NPptotal
ð14Þ

Where NWcorrect represents number of correctly decoded Mongolian words,
NWwtotal is the number of Mongolian words, NPptotal is the total number of phonemes
corresponding to all the Mongolian words converted, NPins, NPdel and NPsub is the
quality of insertion errors, deletion errors and substitute errors of total phonemes,
respectively.

5.2 Setting and Result

The baseline systems used in this paper are a rule-based G2P conversion system and a
G2P conversion system based on the joint-sequence model. The performance of the
rule-based G2P conversion system is that WER is 32.3% and PER is 7.6%, apparently,
its result is not good. For Sequitur G2P, we tune the model order (n-gram) on the
development set used to adjust the discount parameters of joint-sequence model. We
found that the experimental result is better when the order is between 6 and 10,
however, WER and PER are difficult to lower when the order is more than 10. The
Table 3 shows the experimental result of Sequitur G2P.

We use the same dataset to train Seq2Seq LSTM model. We choose the width of
the network’ LSTM layers from the set {64,128,256,512,1024,2048}, number of layers
from {1,2,3,4}, and choose stochastic gradient descent (SGD) as optimization method
for network training, and learning rate is 0.5. In our experiment, we found that WER
and PER are increasing as the width of LSTM layers and the number of layers
increasing. We take better results (in Table 4) out of experimental results.

Comparing Table 3 with Table 4, we find that the performance of Mongolian G2P
conversion based on Seq2Seq LSTM model is better than based on the joint-sequence
model. We take the Seq2Seq LSTM model (1024x1) whose performance is best in

Mongolian Grapheme to Phoneme Conversion by Using Hybrid Approach 47

Table 4 to combine with rules for Mongolian G2P conversion. We firstly randomly
take the same amount of the test dataset of pairs of Mongolian words and their pho-
neme sequences, and write them in a dictionary for look-up. We get the experimental
result to compare with above methods (see in Table 5).

We can see from Table 5, the performance using Seq2Seq model (1024 � 1) is
better than using the best joint-sequence model, the WER and the PER reduce by 8.3%
and 1.0%, respectively. Although using the same Seq2Seq LSTM model (1024 � 1),
the method based on combing rules with Seq2Seq LSTM model performs better, it’s
WER and PER is 5.5% and 1.6%, respectively. There are two reasons for performance
improvement after combining rules. Firstly, if Mongolian word exists in dictionary, we
can get exact word’s phonemes sequence through rules (dictionary look-up), this
approach is apparently more accurate than Seq2Seq LSTM model. Secondly, Mon-
golian words with NNBS suffixes are ordinary, because of characteristics of stem’s

Table 3. Sequitur G2P’s experimental result, where we test the joint-sequence model by
decoding the test set and the train set. Best result for single model in bold.

Model The test set The train set
WER PER WER PER

Model order 6 16.4% 3.4% 4.1% 0.8%
Model order 7 16.4% 3.4% 3.4% 0.7%
Model order 8 16.3% 3.6% 3.3% 0.7%
Model order 9 16.3% 3.2% 2.9% 0.5%
Model order 10 16.3% 3.2% 2.9% 0.5%

Table 4. The results of different Seq2Seq LSTM models tested, best result in bold

Model The test set The train set
WER PER WER PER

LSTM model(512 � 1) 8.7% 2.4% 2.3% 0.6%
LSTM model(1024 � 1) 8.0% 2.2% 1.0% 0.3%
LSTM model(128 � 2) 9.7% 2.6% 3.5% 0.9%
LSTM model(256 � 2) 8.8% 2.4% 2.4% 0.6%

Table 5. The comparing result of testing the best joint-sequence model (order 9), the best
seq2seq LSTM model (1024 � 1) and the hybrid method.

Method The test set The train set
WER PER WER PER

Model order 9 16.3% 3.2% 2.9% 0.5%
LSTM model(1024 � 1) 8.0% 2.2% 1.0% 0.3%
LSTM model(1024 � 1) + rules 5.5% 1.6% 0.7% 0.2%

48 Z. Liu et al.

pronunciation and NNBS suffixes’ pronunciation, it is difficult to exactly cope with this
situation by only using Seq2Seq LSTM model, combing rules (stem’s rules and NNBS
suffixes’ rules) can get more accurate phonemes sequence.

6 Conclusion

In this paper, we present the first application of Seq2Seq LSTM model with attention
mechanism for Mongolian G2P conversion, the experimental results show that the
Mongolian G2P conversion based on Seq2Seq model can get better performance than
the previous methods. We continuously adjusted the parameters of the model. We
obtain a best Seq2Seq LSTM model (1024x1), and we use the best model to combine
with rules for Mongolian G2P conversion, and experimental results became better than
the method only using Seq2Seq model. This method proposed is of profound signifi-
cance to Mongolian G2P conversion, meantime, it is greatly beneficial to the study of
Mongolian speech synthesis, speech retrieval and speech recognition. When we go
further, and try model fusion for Mongolian G2P conversion, we assume that model
fusion may make significant advances.

Acknowledgement. This researchwas supported by theChina national natural science foundation
(No. 61563040, No. 61773224) and Inner Mongolian nature science foundation (No. 2016ZD06).

References

1. Hojo, N., Ijima, Y., Mizuno, H.: An investigation of DNN-based speech synthesis using
speaker codes. In: INTERSPEECH, pp. 2278–2282 (2016)

2. Merritt, T., Clark, R., Wu, Z.: Deep neural network-guided unit selection synthesis. In: IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 5145–5149. IEEE
(2016)

3. Liu, R., Bao, F., Gao, G., Wang, Y.: Mongolian text-to-speech system based on deep neural
network. In: Tao, J., Zheng, T.F., Bao, C., Wang, D., Li, Y. (eds.) NCMMSC 2017. CCIS,
vol. 807, pp. 99–108. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8111-
8_10

4. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural
networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 6645–6649. IEEE (2013)

5. Wang, Y., Bao, F., Zhang, H., Gao, G.: Research on Mongolian speech recognition based on
FSMN. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds.) NLPCC 2017. LNCS
(LNAI), vol. 10619, pp. 243–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-73618-1_21

6. Zhang, H., Bao, F., Gao, G.: Mongolian speech recognition based on deep neural networks.
In: Sun, M., Liu, Z., Zhang, M., Liu, Y. (eds.) CCL 2015. LNCS (LNAI), vol. 9427,
pp. 180–188. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25816-4_15

7. Bao, F., Gao, G., Bao, Y.: The research on Mongolian spoken term detection based on
confusion network. Commun. Comput. Inf. Sci. 321(1), 606–612 (2012)

Mongolian Grapheme to Phoneme Conversion by Using Hybrid Approach 49

http://dx.doi.org/10.1007/978-981-10-8111-8_10
http://dx.doi.org/10.1007/978-981-10-8111-8_10
http://dx.doi.org/10.1007/978-3-319-73618-1_21
http://dx.doi.org/10.1007/978-3-319-73618-1_21
http://dx.doi.org/10.1007/978-3-319-25816-4_15

8. Lu, M., Bao, F., Gao, G.: Language model for Mongolian polyphone proofreading. In: Sun,
M., Wang, X., Chang, B., Xiong, D. (eds.) CCL/NLP-NABD -2017. LNCS (LNAI), vol.
10565, pp. 461–471. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69005-6_38

9. Bisani, M., Ney, H.: Joint-sequence models for grapheme-to-phoneme conversion. Speech
Commun. 50(5), 434–451 (2008)

10. Chen, S.F.: Conditional and joint models for grapheme-to-phoneme conversion. In:
European Conference on Speech Communication and Technology, INTERSPEECH 2003,
Geneva, Switzerland, DBLP (2003)

11. Jiampojamarn, S., Kondrak, G., Sherif, T.: Applying many-to-many alignments and hidden
markov models to letter-to-phoneme conversion. In: Proceedings of Human Language
Technology Conference of the North American Chapter of the Association of Computational
Linguistics, Proceedings, USA, pp. 372–379 (2008)

12. Rao, K., Peng, F., Sak, H.: Grapheme-to-phoneme conversion using long short-term memory
recurrent neural networks. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 4225–4229. IEEE (2015)

13. Yao, K., Zweig, G.: Sequence-to-sequence neural net models for grapheme-to-phoneme
conversion. Computer Science (2015)

14. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. Computer Science (2014)

15. Toshniwal, S., Livescu, K.: Jointly learning to align and convert graphemes to phonemes
with neural attention models. In: Spoken Language Technology Workshop. IEEE (2017)

16. Bao, F., Gao, G.: Research on grapheme to phoneme conversion for Mongolian. Appl. Res.
Comput. 30(6), 1696–1700 (2013)

17. Luong, M.T., Sutskever, I., Le, Q.V.: Addressing the rare word problem in neural machine
translation. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Vet. Med. 27(2), 82–86 (2014)

18. Jean, S., Cho, K., Memisevic, R.: On using very large target vocabulary for neural machine
translation. Computer Science (2014)

19. Milde, B., Schmidt, C., Köhler, J.: Multitask sequence-to-sequence models for grapheme-to-
phoneme conversion. In: INTERSPEECH, pp. 2536–2540 (2017)

20. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
NIPS, pp. 3104–3112 (2014)

21. Vinyals, O., Kaiser, L., Koo, T.: Grammar as a foreign language. Eprint Arxiv, pp. 2773–
2781 (2014)

22. Wang, W., Bao, F., Gao, G.: Mongolian named entity recognition system with rich features.
In: The 26th International Conference on Computational Linguistics, pp. 505–512. Proceed-
ings of the Conference, Japan (2016)

50 Z. Liu et al.

http://dx.doi.org/10.1007/978-3-319-69005-6_38

From Plots to Endings: A Reinforced
Pointer Generator for Story

Ending Generation

Yan Zhao1, Lu Liu1, Chunhua Liu1, Ruoyao Yang1, and Dong Yu1,2(B)

1 Beijing Language and Culture University, Beijing, China
zhaoyan.nlp@gmail.com, luliu.nlp@gmail.com, chunhualiu596@gmail.com,

xmffaf@163.com, yudong blcu@126.com
2 Beijing Advanced Innovation for Language Resources of BLCU, Beijing, China

Abstract. We introduce a new task named Story Ending Genera-
tion (SEG), which aims at generating a coherent story ending from a
sequence of story plot. We propose a framework consisting of a Gen-
erator and a Reward Manager for this task. The Generator follows
the pointer-generator network with coverage mechanism to deal with
out-of-vocabulary (OOV) and repetitive words. Moreover, a mixed loss
method is introduced to enable the Generator to produce story endings
of high semantic relevance with story plots. In the Reward Manager, the
reward is computed to fine-tune the Generator with policy-gradient rein-
forcement learning (PGRL). We conduct experiments on the recently-
introduced ROCStories Corpus. We evaluate our model in both auto-
matic evaluation and human evaluation. Experimental results show that
our model exceeds the sequence-to-sequence baseline model by 15.75%
and 13.57% in terms of CIDEr and consistency score respectively.

Keywords: Story Ending Generation · Pointer-generator
Policy gradient

1 Introduction

Story generation is an extremely challenging task in the field of NLP. It has
a long-standing tradition and many different systems have been proposed in
order to solve the task. These systems are usually built on techniques such
as planning [12,21] and case-based reasoning [5,25], which rely on a fictional
world including characters, objects, places, and actions. The whole system is
very complicated and difficult to construct.

We define a subtask of story generation named Story Ending Generation
(SEG), which aims at generating a coherent story ending according to a sequence
of story plot. A coherent ending should have a high correlation with the plot
in terms of semantic relevance, consistency and readability. Humans can easily
provide a logical ending according to a series of events in the story plot. The core

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 51–63, 2018.
https://doi.org/10.1007/978-3-319-99495-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_5&domain=pdf

52 Y. Zhao et al.

objective of this task is to simulate the mode of people thinking to generate story
endings, which has the significant application value in many artificial intelligence
fields.

SEG can be considered as a Natural Language Generation (NLG) problem.
Most studies on NLG aim at generating a target sequence that is semantically
and lexically matched with the corresponding source sequence. Encoder-decoder
framework for sequence-to-sequence learning [26] has been widely used in NLG
tasks, such as machine translation [3] and text summarization [4,15,22]. Dif-
ferent from the above NLG tasks, SEG pays more attention to the consistency
between story plots and endings. From different stories, we have observed that
some OOV words in the plot, such as entities, may also appear in the end-
ing. However, traditional sequence-to-sequence models replace OOV words by
the special UNK token, which makes it unable to make correct predictions for
these words. Moreover, encoder-decoder framework is of inability to avoid gen-
erating repetitive words. Another two limitations of encoder-decoder framework
are exposure bias [19] and objective mismatch [18], resulting from Maximum
Likelihood Estimation (MLE) loss. To overcome these limitations, some meth-
ods [6,10,20,23,27] have been explored.

In this paper, we propose a new framework to solve the SEG problem. The
framework consists of a Generator and a Reward Manager. The Generator follows
a pointer-generator network to produce story endings. The Reward Manager
is used for calculating the reward to fine tune the Generator through PGRL.
With a stable and healthy environment that the Generator provides, PGRL can
take effect to enable the generated story endings much more sensible. The key
contributions of our model are as follows:

• We apply copy and coverage mechanism [23] to traditional sequence-to-
sequence model as the Generator to handle OOV and repetitive words,
improving the accuracy and fluency of generated story endings.

• We add a semantic relevance loss to the original MLE loss as a new objective
function to encourage the high semantic relevance between story plots and
generated endings.

• We define a Reward Manager to fine tune the Generator through PGRL.
In the Reward Manager, we attempt to use different evaluation metrics as
reward functions to simulate the process of people writing a story.

We conduct experiments on the recently-introduced ROCStories Corpus [14].
We utilize both automatic evaluation and human evaluation to evaluate our
model. There are word-overlap and embedding metrics in the automatic evalua-
tion [24]. In the human evaluation, we evaluate generated endings in terms of con-
sistency and readability, which reflect the logical coherence and fluency of those
endings. Experimental results demonstrate that our model outperforms previous
basic neural generation models in both automatic evaluation and human eval-
uation. Better performance in consistency indicates that our model has strong
capability to produce reasonable sentences.

From Plots to Endings: A Reinforced Pointer Generator for SEG 53

2 Related Work

2.1 Encoder-Decoder Framework

Encoder-decoder framework, which uses neural networks as encoder and decoder,
was first proposed in machine translation [3,26] and has been widely used in NLG
tasks. The encoder reads and encodes a source sentence into a fixed-length vec-
tor, then the decoder outputs a new sequence from the encoded vector. Attention
mechanism [2] extends the basic encoder-decoder framework by assigning differ-
ent weights to input words when generating each target word. [4,15,22] apply
attention-based encoder-decoder model to text summarization.

2.2 Copy and Coverage Mechanisms

The encoder-decoder framework is unable to deal with OOV words. In most NLP
systems, there usually exists a predefined vocabulary, which only contains top-K
most frequent words in the training corpus. All other words are called OOV and
replaced by the special UNK token. This makes neural networks difficult to learn
a good representation for OOV words and some important information would be
lost. To tackle this problem, [7,28] introduce pointer mechanism to predict the
output words directly from the input sequence. [6] incorporate copy mechanism
into sequence-to-sequence models and propose CopyNet to naturally combine
generating and copying. Other extensions of copy mechanism appear successively,
such as [13]. Another problem of the encoder-decoder framework is repetitive
words in the generated sequence. Accordingly coverage model in [27] maintains
a coverage vector for keeping track of the attention history to adjust future
attention. A hybrid pointer-generator network introduced by [23] combines copy
and coverage mechanism to solve the above problems.

2.3 Reinforcement Learning for NLG

The encoder-decoder framework is typically trained by maximizing the log-
likelihood of the next word given the previous ground-truth input words, result-
ing in exposure bias [19] and objective mismatch [18] problems. Exposure bias
refers to the input distribution discrepancy between training and testing time,
which makes generation brittle as error accumulate. Objective mismatch refers
to using MLE at training time while using discrete and non-differentiable NLP
metrics such as BLEU at test time. Recently, it has been shown that both the
two problems can be addressed by incorporating RL in captioning tasks. Specifi-
cally, [19] propose the MIXER algorithm to directly optimize the sequence-based
test metrics. [10] improve the MIXER algorithm and uses a policy gradient
method. [20] present a new optimization approach called self-critical sequence
training (SCST). Similar to the above methods, [16,18,29] explore different
reward functions for video captioning. Researchers also make attempts on other
NLG tasks such as dialogue generation [9], sentence simplification [31] and
abstract summarization [17], obtaining satisfying performances with RL.

54 Y. Zhao et al.

Although many approaches for NLG have been proposed, SEG is still a chal-
lenging yet interesting task and worth trying.

3 Models

Figure 1 gives the overview of our model. It contains a Generator and a Reward
Manager. The Generator follows the pointer-generator network with coverage
mechanism to address the issues of OOV words and repetition. A mixed loss
method is exploited in the Generator for improving semantic relevance between
story plots and generated endings. The Reward Manager is utilized to produce
the reward for PGRL. The reward can be calculated by evaluation metrics or
other models in the Reward Manager. Then it is passed back to the Generator
for updating parameters. Following sections give more detailed descriptions of
our models.

Fig. 1. Overview of our model

3.1 Attention-Based Encoder-Decoder Model

Our attention-based encoder-decoder baseline model is similar to the framework
in [2]. Given a sequence of plot words of length Te, we feed the word embeddings
into a single-layer bidirectional LSTM to compute a sequence of encoder hidden
states he

i = {he
1, h

e
2, ..., h

e
Te

}. At each decoding step t, a single LSTM decoder
takes the previous word embedding and context vector ct−1, which is calculated
by attention mechanism, as inputs to produce decoder hidden state hd

t .
We concatenate the context vector ct and decoder hidden state hd

t to predict
the probability distribution Pv over all the words in the vocabulary:

Pv = softmax(W1(W2[hd
t , ct] + b2) + b1) (1)

From Plots to Endings: A Reinforced Pointer Generator for SEG 55

where W1, W2, b1, b2 are all learnable parameters. [a, b] means the concatenation
of a and b.

MLE is usually used as the training objective for sequence-to-sequence tasks.
We denote y∗

t = {y∗
1 , y

∗
2 , ..., y

∗
Td

} as the ground truth output ending. The cross
entropy loss function is defined as:

Lmle = −
Td∑

t=1

log Pv(y∗
t) (2)

3.2 Pointer-Generator Network with Coverage Mechanism

From the dataset, we find that some words in the story plot will also appear
in the ending. It makes sense that the story ending usually describes the final
states of some entities, which are related to the events in the story plot. Thus
we follow the hybrid pointer-generator network in [23] to copy words from the
source plot text via pointing [28], in this way we can handle some OOV words.
In this model, we accomplish the attention-based encoder-decoder model in the
same way as Sect. 3.1. Additionally, we choose top-k words to build a vocabulary
and calculate a generation probability pg to weight the probability of generating
words from the vocabulary.

pg = sigmoid(Wctct + Wht
ht + Wyt

yt + bp) (3)

where ct, hd
t , yt represent the context vector, the decoder hidden state and the

decoder input at each decoding step t respectively. Wct , Wht
, Wyt

are all weight
parameters and bp is a bias.

Furthermore, the attention distributions of duplicate words are merged as
Patt(wt). We compute the weighted sum of vocabulary distribution Pv(wt) and
Patt(wt) as the final distribution:

Pfin(wt) = pgPv(wt) + (1 − pg)Patt(wt) (4)

The loss function is the same as that in attention-based encoder-decoder
model, with Pv(wt) in Eq. (2) changed to Pfin(wt).

To avoid repetition, we also apply coverage mechanism [27] to track and
control coverage of the source plot text. We utilize the sum of attention dis-
tributions over all previous decoder steps as the coverage vector st. Then the
coverage vector is added into the calculation of attention score et

i to avoid gen-
erating repetitive words:

et
i = vT tanh(W att

1 he
i + W att

2 hd
t + W att

3 st
i) (5)

where W att
1 , W att

2 , W att
3 , and vT are learnable parameters.

Moreover, a coverage loss is defined and added to the loss function to penalize
repeatedly attending to the same locations:

Lpoi = −
Td∑

t=1

[log Pfin(wt) + β

Te∑

i=1

min(αt
i, s

t
i)] (6)

where β is a hyperparameter and min(a, b) means the minimum of a and b.

56 Y. Zhao et al.

3.3 Mixed Loss Method

Pointer-generator network has the capacity of generating grammatically and
lexically accurate story endings. These story endings are usually of low semantic
relevance with plots, which fails to meet our requirements of satisfying story
endings. To overcome this weakness, we add a semantic similarity loss to the
original loss as the new objective function.

There are some different ways to obtain the semantic vectors, such as the
average pooling of all word embeddings or max pooling of the RNN hidden out-
puts. Intuitively, the bidirectional LSTM encoder can fully integrate the context
information from two directions. Therefore the last hidden output of the encoder
he

Te
is qualified to represent the semantic vector of the story plot. Similar to [11],

we select he
Te

as the plot semantic vector vplot, and the last hidden output of
decoder subtracting last hidden output of the encoder as the semantic vector of
the generated ending vgen:

vplot = he
Te

(7)

vgen = hd
Td

− he
Te

(8)

Semantic Relevance: Cosine similarity is typically used to measure the
matching affinity between two vectors. With the plot semantic vector vplot and
the generated semantic vector vgen, the semantic relevance is calculated as:

Ssem = cos(vplot, vgen) =
vplot · vgen

‖vplot‖‖vgen‖ (9)

Mixed Loss: Our objective is maximizing the semantic relevance between
story plots and generated endings. As a result, we combine the similarity score
Ssem with the original loss as a mixed loss:

Lmix = −Ssem + Lpoi (10)

The mixed loss method encourages our model to generate story endings of
high semantic relevance with plots. In addition, it makes the Generator more
stable for applying RL algorithm.

3.4 Policy-Gradient Reinforcement Learning

The Generator can generate syntactically and semantically correct sentences
with the above two methods. However, models trained with MLE still suffer
from exposure bias [19] and objective mismatch [18] problems. A well-known
policy-gradient reinforcement learning algorithm [30] can directly optimize the
non-differentiable evaluation metrics such as BLEU, ROUGE and CIDEr. It has
good performance on several sequence generation tasks [17,20].

In order to solve the problems, we cast the SEG task to the reinforcement
learning framework. An agent interacting with the external environment in rein-
forcement learning can be analogous to our generator taking words of the story

From Plots to Endings: A Reinforced Pointer Generator for SEG 57

Algorithm 1. The reinforcement learning algorithm for training the Gen-
erator Gθ′

Input: ROCstories {(x, y)};
Output: Generator Gθ′ ;

1 Initialize Gθ with random weights θ;
2 Pre-train Gθ using MLE on dataset {(x, y)};
3 Initialize Gθ′ = Gθ;
4 for each epoch do

5 Generate an ending yb = (yb
1, . . . , y

b
T) according to Gθ′ given x;

6 Sample an ending ys = (ys
1, . . . , y

s
T) from the probability distribution P (ys

t);

7 Compute reward r(yb) and r(ys) defined in the Reward Manager;
8 Compute Lrl using Eq.(11);
9 Compute Ltotal using Eq.(12);

10 Back-propagate to compute ∇θ′Ltotal(θ
′);

11 Update Generator Gθ′ using ADAM optimizer with learning rate lr

12 end
13 return Gθ′

plot as inputs and then producing outputs. The parameters of the agent define a
policy, which results in the agent picking an action. In our SEG task, an action
refers to generating a sequence as story ending. After taking an action, the agent
computes the reward of this action and updates its internal state.

Particularly, we use the SCST approach [20] to fine-tune the Generator. This
approach designs a loss function, which is formulated as:

Lrl = (r(yb) − r(ys))
T∑

t=1

log P (ys
t) (11)

where ys = (ys
1, ..., y

s
T) is a sequence sampled from the probability distribution

P (ys
t) at each decoding time step t. yb is the baseline sequence obtained by

greedy search from the current model. r(y) means the reward for the sequence
y, computed by the evaluation metrics. Intuitively, the loss function Lrl enlarges
the log-probability of the sampled sequence ys if it obtains a higher reward than
the baseline sequence yb. In the Reward Manager, we try several different metrics
as reward functions and find that BLEU-4 produces better results than others.

To ensure the readability and fluency of the generated story endings, we also
define a blended loss function, which is a weighted combination of the mixed loss
in Sect. 3.3 and the reinforcement learning loss:

Ltotal = μLrl + (1 − μ)Lmix (12)

where μ is a hyper-parameter controlling the ratio of Lrl and Lmix. This loss
function can make a trade-off between the RL loss and mixed loss in Sect. 3.3.

The whole reinforcement learning algorithm for training the Generator is
summarized as Algorithm 1.

58 Y. Zhao et al.

4 Experiments

4.1 Dataset

ROCStories Corpus is a publicly available collection of short stories released
by [14]. There are 98161 stories in training set and 1871 stories in both validation
set and test set. A complete story in the corpus consists of five sentences, in which
the first four and last one are viewed as the plot and ending respectively. The
corpus captures a variety of causal and temporal commonsense relations between
everyday events. We choose it for our SEG task because of its great performance
in quantity and quality.

4.2 Experimental Setting

In this paper, we choose attention-based sequence-to-sequence model (Seq2Seq)
as our baseline. Additionally, we utilize pointer-generator network with coverage
mechanism (PGN) to deal with OOV words and avoid repetition. Then we train
pointer-generator network with mixed loss method (PGN+Sem L) and PGRL
algorithm (PGN+RL) respectively. Finally, we integrate the entire model with
both mixed loss method and PGRL algorithm (PGN+Sem L+RL).

We implement all these models with Tensorflow [1]. In all the models, the
LSTM hidden units, embedding dimension, batch size, dropout rate and beam
size in beam search decoding are set to 256, 512, 64, 0.5 and 4 respectively. We
use ADAM [8] optimizer with an initial learning rate of 0.001 when pre-training
the generator and 5 × 10−5 when running RL training. The weight coefficient
of coverage loss β is set to 1. The ratio μ between RL loss and mixed loss is
0.95. Through counting all the words in the training set, we obtain the vocab
size 38920 (including extra special tokens UNK, PAD and BOS). The size of
vocabulary is 15000 when training the pointer-generator network. The coverage
mechanism is used after 10-epoch training of single pointer-generator network.
We evaluate the model every 100 global steps and adopt early stopping on the
validation set.

4.3 Evaluation Metrics

For SEG, a story may have different kinds of appropriate endings for the same
plot. It is unwise to evaluate the generated endings from a single aspect. There-
fore we apply automatic evaluation and human evaluation in our experiments.

Automatic Evaluation: We use the evaluation package nlg-eval1 [24], which
is a publicly available tool supporting various unsupervised automated metrics
for NLG. It considers not only word-overlap metrics such as BLEU, METEOR,
CIDEr and ROUGE, but also embedding-based metrics including SkipThoughts
Cosine Similarity (STCS), Embedding Average Cosine Similarity (EACS), Vec-
tor Extrema Cosine Similarity (VECS), and Greedy Matching Score (GMS).
1 https://github.com/Maluuba/nlg-eval.

https://github.com/Maluuba/nlg-eval

From Plots to Endings: A Reinforced Pointer Generator for SEG 59

Human Evaluation: We randomly select 100 stories from test set and define
two criteria to implement human evaluation. Consistency refers to the logical
coherence and accordance between story plots and endings. Readability measures
the quality of endings in grammar and fluency. Five human assessors are asked
to rate the endings on a scale of 0 to 5.

4.4 Automatic Evaluation

Results on Word-Overlap Metrics. Results on word-overlap metrics are
shown in Table 1. Obviously, PGN+sem L+RL achieves the best result among all
the models. This indicates that our methods are effective on producing accurate
story endings.

Table 1. Results on word-overlap metrics.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Seq2Seq 26.17 10.54 5.29 3.03 10.80 26.84 47.48

PGN 28.07 11.39 5.53 3.02 10.87 27.80 51.09

PGN+Sem L 28.21 11.56 5.81 3.33 11.08 28.15 53.21

PGN+RL 28.05 11.50 5.69 3.17 10.83 27.46 49.83

PGN+Sem L+RL 28.51 11.92 6.16 3.53 11.10 28.52 54.96

From the results, we have some other observations. PGN surpasses the
Seq2Seq baseline model, especially in BLEU-1 (+1.9) and CIDEr (+3.61). This
behaviour suggests that copy and coverage mechanisms can effectively handle
OOV and repetitive words so as to improve scores of word-overlap metrics.
Compared with PGN, the results of PGN+Sem L have an increase in all the
word-overlap metrics. This improvement benefits from our mixed loss method
based on semantic relevance. More interestingly, PGN+RL performs poorly while
PGN+Sem L+RL obtains an improvement. We attribute this to an insufficiency
of applying RL directly into PGN. Results on PGN+Sem L+RL prove that
mixed loss method shows its effectiveness and it motivates RL to take effect.

Results on Embedding Based Metrics. We compute cosine similarities
between generated endings and plots. For comparison, the cosine similarity
between target endings and plots is provided as the ground-truth reference. Eval-
uation results are illustrated in Table 2.

Embedding-based metrics tend to acquire more semantics than word-overlap
metrics. From Table 2, all the models are likely to generate endings with less
discrepancy in terms of the embedding based metric. It can also be observed that
scores of all models surpass that of the ground-truth reference. This indicates
that nearly every model can generate endings which have higher cosine similarity
scores with the plot. But it cannot just measure these endings by calculating
these scores.

60 Y. Zhao et al.

Table 2. Results on embedding based metrics.

Models STCS-p EACS-p VECS-p GMS-p

Ground truth 66.94 87.03 45.64 70.75

Seq2Seq 67.94 89.98 46.37 73.23

PGN 68.15 89.20 48.96 74.64

PGN+Sem L 67.90 90.02 48.60 74.61

PGN+RL 68.07 89.97 49.48 74.90

PGN+Sem L+RL 67.84 89.50 48.44 74.45

Table 3. Human evaluation results.

Models Consistency Readability

Ground truth 4.33 4.83

Seq2Seq 2.80 4.33

PGN 2.95 4.38

PGN+Sem L 3.00 4.43

PGN+RL 2.92 4.36

PGN+Sem L+RL 3.18 4.41

4.5 Human Evaluation

Table 3 presents human evaluation results. Apparently, PGN+Sem L+RL and
PGN+Sem L achieve the best results in terms of consistency and readability
respectively. The readability score of PGN+sem L+RL is good enough, with
the difference of 0.02 compared to the best result (PGN+Sem L). We can also
observe that readability scores of all the models are basically equivalent. It mani-
fests that all the models have the ability to generate grammatically and lexically
correct endings. Therefore, we only analyze the consistency scores as follows.

The consistency score of PGN increases by 5.37% compared with Seq2Seq.
This is attributed to the copy and coverage mechanism discouraging OOV and
repetitive words. The score of PGN+Sem L is 1.69% higher than PGN. With
mixed loss method, the semantic relevance between story plots and endings is
improved, leading to better performance in consistency. PGN+RL gets a lower
score than PGN. This indicates that PGN is not prepared for incorporating
RL, and RL alone can not directly promote PGN. In contrast, the score of
PGN+Sem L+RL is 6% higher than PGN+Sem L. We can conclude that PGN
with mixed loss method rather than simple PGN is more capable of stimulating
RL to take effect.

In order to demonstrate the generative capability of different models, we
present some endings generated by different models in Table 4. Compared with
other models, the endings generated by PGN+Sem L+RL are not only fluent

From Plots to Endings: A Reinforced Pointer Generator for SEG 61

Table 4. Examples of plots, target endings and generated endings of all models

Model Example-1 Example-2

Plot Juanita realizes that she
needs warmer clothing to get
through winter. She looks for
a jacket but at first
everything she finds is
expensive. Finally she finds a
jacket she can afford. She
buys the jacket and feels
much better

My dad took me to a
baseball game when I was
little. He spent that night
teaching me all about the
sport. He showed me every
position and what everything
meant. He introduced me to
one of my favorite games ever

Target She is happy Now, playing or seeing
baseball on TV reminds me
of my father

Seq2Seq Juanita is happy that she is
happy that she is happy

I was so happy that he was
so happy

PGN Juanita is happy that she
needs through winter
clothing

I was so excited to have a
good time

PGN+Sem L Juanita is happy to have
warmer clothing to winter

I was so happy to have a
good time

PGN+RL Juanita is happy that she has
done through winter

My dad told me I had a great
time

PGN+Sem L+RL Juanita is happy that she has
a new warmer clothing

I am going to play with my
dad

but also contain new information (words that are bold). Thus, we conclude that
our model reaches its full potential under the joint of mixed loss method and RL.

5 Conclusion

In this work we propose a framework consisting of a Generator and a Reward
Manager to solve the SEG problem. Following the pointer-generator network
with coverage mechanism, the Generator is capable of handling OOV and repet-
itive words. A mixed loss method is also introduced to encourage the Generator
to produce story endings of high semantic relevance with story plots. The Reward
Manager can fine tune the Generator through policy-gradient reinforcement
learning, promoting the effectiveness of the Generator. Experimental results on
ROCStories Corpus demonstrate that our model has good performance in both
automatic evaluation and human evaluation.

Acknowledgements. This work is funded by Beijing Advanced Innovation for Lan-
guage Resources of BLCU, the Fundamental Research Funds for the Central Universi-
ties in BLCU (No. 17PT05).

62 Y. Zhao et al.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. CoRR
abs/1605.08695 (2016). http://arxiv.org/abs/1605.08695

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

4. Chopra, S., Auli, M., Rush, A.M.: Abstractive sentence summarization with atten-
tive recurrent neural networks. In: Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 93–98 (2016)

5. Gervs, P., Daz-agudo, B., Peinado, F., Hervs, R.: Story plot generation based on
CBR. J. Knowl. Based Syst. 18, 2–3 (2005)

6. Gu, J., Lu, Z., Li, H., Li, V.O.: Incorporating copying mechanism in sequence-to-
sequence learning. arXiv preprint arXiv:1603.06393 (2016)

7. Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., Bengio, Y.: Pointing the unknown
words. arXiv preprint arXiv:1603.08148 (2016)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., Jurafsky, D.: Deep reinforcement
learning for dialogue generation. arXiv preprint arXiv:1606.01541 (2016)

10. Liu, S., Zhu, Z., Ye, N., Guadarrama, S., Murphy, K.: Improved image captioning
via policy gradient optimization of spider. arXiv preprint arXiv:1612.00370 (2016)

11. Ma, S., Sun, X.: A semantic relevance based neural network for text summarization
and text simplification. arXiv preprint arXiv:1710.02318 (2017)

12. Meehan, J.R.: The metanovel: writing stories by computer. Ph.D. thesis,
New Haven, CT, USA (1976). aAI7713224

13. Miao, Y., Blunsom, P.: Language as a latent variable: discrete generative models
for sentence compression. arXiv preprint arXiv:1609.07317 (2016)

14. Mostafazadeh, N., et al.: A corpus and evaluation framework for deeper under-
standing of commonsense stories. arXiv preprint arXiv:1604.01696 (2016)

15. Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al.: Abstractive text
summarization using sequence-to-sequence RNNs and beyond. arXiv preprint
arXiv:1602.06023 (2016)

16. Pasunuru, R., Bansal, M.: Reinforced video captioning with entailment rewards.
arXiv preprint arXiv:1708.02300 (2017)

17. Paulus, R., Xiong, C., Socher, R.: A deep reinforced model for abstractive summa-
rization. arXiv preprint arXiv:1705.04304 (2017)

18. Phan, S., Henter, G.E., Miyao, Y., Satoh, S.: Consensus-based sequence training
for video captioning. arXiv preprint arXiv:1712.09532 (2017)

19. Ranzato, M., Chopra, S., Auli, M., Zaremba, W.: Sequence level training with
recurrent neural networks. arXiv preprint arXiv:1511.06732 (2015)

20. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence
training for image captioning. arXiv preprint arXiv:1612.00563 (2016)

21. Riedl, M.O., Young, R.M.: Narrative planning: balancing plot and character. CoRR
abs/1401.3841 (2014). http://arxiv.org/abs/1401.3841

22. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685 (2015)

http://arxiv.org/abs/1605.08695
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1603.06393
http://arxiv.org/abs/1603.08148
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1606.01541
http://arxiv.org/abs/1612.00370
http://arxiv.org/abs/1710.02318
http://arxiv.org/abs/1609.07317
http://arxiv.org/abs/1604.01696
http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1708.02300
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1712.09532
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1612.00563
http://arxiv.org/abs/1401.3841
http://arxiv.org/abs/1509.00685

From Plots to Endings: A Reinforced Pointer Generator for SEG 63

23. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-
generator networks. arXiv preprint arXiv:1704.04368 (2017)

24. Sharma, S., Asri, L.E., Schulz, H., Zumer, J.: Relevance of unsupervised metrics in
task-oriented dialogue for evaluating natural language generation. arXiv preprint
arXiv:1706.09799 (2017)

25. Stede, M.: Scott R. Turner, the creative process. A computer model of storytelling
and creativity. Hillsdale, NJ: Lawrence Erlbaum, 1994. ISBN 0-8058-1576-7,

£49.95. 298 pp. Nat. Lang. Eng. 2(3), 277–285 (1996). http://dl.acm.org/
citation.cfm?id=974680.974687

26. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

27. Tu, Z., Lu, Z., Liu, Y., Liu, X., Li, H.: Modeling coverage for neural machine
translation. arXiv preprint arXiv:1601.04811 (2016)

28. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, pp. 2692–2700 (2015)

29. Wang, X., Chen, W., Wu, J., Wang, Y.F., Wang, W.Y.: Video captioning via
hierarchical reinforcement learning. arXiv preprint arXiv:1711.11135 (2017)

30. Williams, R.J.: Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. In: Sutton, R.S. (ed.) Reinforcement Learning. SECS,
vol. 173, pp. 5–32. Springer, Boston (1992). https://doi.org/10.1007/978-1-4615-
3618-5 2

31. Zhang, X., Lapata, M.: Sentence simplification with deep reinforcement learning.
arXiv preprint arXiv:1703.10931 (2017)

http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1706.09799
http://dl.acm.org/citation.cfm?id=974680.974687
http://dl.acm.org/citation.cfm?id=974680.974687
http://arxiv.org/abs/1601.04811
http://arxiv.org/abs/1711.11135
https://doi.org/10.1007/978-1-4615-3618-5_2
https://doi.org/10.1007/978-1-4615-3618-5_2
http://arxiv.org/abs/1703.10931

A3Net:Adversarial-and-Attention
Network for Machine Reading

Comprehension

Jiuniu Wang1,2, Xingyu Fu1, Guangluan Xu1(B), Yirong Wu1,2, Ziyan Chen1,
Yang Wei1, and Li Jin1

1 Key Laboratory of Technology in Geo-spatial Information
Processing and Application System, Institute of Electronics, CAS, Beijing, China

gluanxu@mail.ie.ac.cn
2 School of Electronic, Electrical and Communication Engineering,

University of Chinese Academy of Sciences, Beijing, China
wangjiuniu16@mails.ucas.ac.cn

Abstract. In this paper, we introduce Adversarial-and-attention
Network (A3Net) for Machine Reading Comprehension. This model
extends existing approaches from two perspectives. First, adversarial
training is applied to several target variables within the model, rather
than only to the inputs or embeddings. We control the norm of adver-
sarial perturbations according to the norm of original target variables,
so that we can jointly add perturbations to several target variables dur-
ing training. As an effective regularization method, adversarial train-
ing improves robustness and generalization of our model. Second, we
propose a multi-layer attention network utilizing three kinds of high-
efficiency attention mechanisms. Multi-layer attention conducts interac-
tion between question and passage within each layer, which contributes
to reasonable representation and understanding of the model. Combin-
ing these two contributions, we enhance the diversity of dataset and
the information extracting ability of the model at the same time. Mean-
while, we construct A3Net for the WebQA dataset. Results show that our
model outperforms the state-of-the-art models (improving Fuzzy Score
from 73.50% to 77.0%).

Keywords: Machine Reading Comprehension · Adversarial training
Multi-layer attention

1 Introduction

Machine reading comprehension (MRC) aims to teach machines to better read
and comprehend, and answer questions posed on the passages that they have seen
[5]. In this paper, we propose a novel model named Adversarial-and-attention
Network (A3Net) for MRC.

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 64–75, 2018.
https://doi.org/10.1007/978-3-319-99495-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_6&domain=pdf

Adversarial-and-Attention Network for Machine Reading Comprehension 65

The understanding of neural network is shallow, and it is easy to be disturbed
by adversarial examples [7]. So we adopt Adversarial training(AT) [3] as a regular-
ization method to improve our model’s generality and robustness. Previous works
apply adversarial perturbations mainly on input signals [3] or word embeddings
[11], acting as a method to enhance data. While we blend these perturbations into
different model layers, especially where question-passage interaction takes place.

The state-of-the-art models have been proved to be effective in English MRC
datasets such as CNN/DailyMail [5] and SQuAD [12], such as Match-LSTM [18],
BIADF [13], SAN [10], and ReasoNet [14]. They all use attention mechanism and
pointer network [17] to predict the span answer. However, these models tend to
apply attention function on the limited layer. Thus they would ignore some
deep-seated information. To solve this problem, we adopt multi-layer attention
to extract information at each level. In the low-level, attention weight is highly
affected by the similarity of word embedding and lexical structure(e.g. affix, part
of speech, etc.), which contains syntactic information. While in the high-level,
attention weight reflects the abstract concept correlation between passage and
question, which contains semantic information.

To sum up, our contributions can be summarized as follows:

– We blend adversarial training to each layer of our model. Not only can
adversarial training enhance the information representation ability, but also
improve extraction ability of the whole model.

– We apply multi-layer attention to each layer of our model. In this way, our
model can make efficient interactions between questions and passages, so as
to find which passage span is needed.

– We propose a novel neural network named A3Net for Machine Reading Com-
prehension, which gains the best result on the WebQA dataset.

2 Related Work

Adversarial Training. Szegedy et al. [15] found that deep neural network
might make mistakes when adding small worst-case perturbations to input. This
kind of inputs is called adversarial examples. Many models cannot defend the
attack of adversarial examples, including widely used state-of-the-art neural net-
works such as CNN and RNN. In recent years, there are several methods for reg-
ularizing the parameters and features of a deep neural network during training.
For example, by randomly dropping units, dropout is widely used as a simple
way to prevent neural networks from overfitting.

Adversarial training(AT) [3] is a kind of regularizing learning algorithms.
It was first proposed to fine tune the task of image classification. By adding
perturbations to input signals during training, neural network gains the ability
to tolerant the effect of adversarial example. Miyato et al. [11] first adopt AT
to text classification. They add perturbations to word embedding and obtain
similar benefits like that in image classification. Following this idea, Wu et al.
[20] utilizes AT to Relation Extraction and improves the precision. In order

66 J. Wang et al.

Table 1. An outline of attention mechanism used in state-of-the-art architectures.

Model Syntactic attention Semantic attention Self-match attention

DrQA [2]
√

FastQA [19]
√

Match-LSTM [18]
√

BIDAF [13]
√

R-Net [4]
√ √

SAN [10]
√

FusionNet [6]
√ √ √

to improve the model stability and generality, we adopt adversarial training to
several target variables within our model.
Attention Mechanism. Attention mechanism has demonstrated success in a
wide range of tasks. Bahdanau et al. [1] first propose attention mechanism and
apply it to neural machine translation. And then, it is widely used in MRC tasks.
Attention near embedding module aims to attend the embedding from the ques-
tion to the passage [2]. Attention after context encoding extracts the high-level
representation in the question to augment the context. Self-match attention [16]
takes place before answer module. It dynamically refines the passage represen-
tation by looking over the whole passage and aggregating evidence relevant to
the current passage word and question.

As shown in Table 1, three different types of attention mechanisms are widely
used in state-of-the-art architectures. DrQA [2] simply use a bilinear term to
compute the attention weights, so as to get word level question-aware pas-
sage representation. FastQA [19] combines feature into the computation of word
embedding attention weights. Match-LSTM [18] applies LSTM to gain more con-
text information, and concatenate attentions from two directions. A less mem-
ory attention mechanism is introduced in BIDAF [13] to generate bi-directional
attention flow. R-Net [4] extends self-match attention to refine information over
context. SAN [10] adopts self-match attention and uses stochastic prediction
dropout to predict answer during training. Huang et al. [6] summarizes previous
research and proposes the fully-aware attention to fuse different representations
over the whole model. Different from the above models, we utilize three kinds
of method to calculate attention weights, which helps our model to interchange
information frequently, so as to select the appropriate words in passages.

3 Proposed Model

In this paper, we use span extraction method to predict the answer to a specific
question Q = {q1, q2, .., qJ} based on the related passage P = {p1, p2, ..., pT }.

As depicted in Fig. 1, our model can be decomposed into four layers: Embed-
ding Layer, Representation Layer, Understanding Layer and Pointer Layer. And

Adversarial-and-Attention Network for Machine Reading Comprehension 67

Fig. 1. The overall structure of our model. The dotted box represents concatenate
operation.

three attention mechanisms are applied to different layers. Simple match atten-
tion is adopted in Embedding Layer, extracting syntactic information between
the question and passage. While in Representation Layer, bi-directional atten-
tion raises the representation ability by linking and fusing semantic information
from the question words and passage words. In Understanding Layer, we adopt
self-match attention to refine overall understanding.

3.1 Embedding Layer

Input Vectors. We use randomly initialized character embeddings to represent
text. Firstly, each word in P and Q is represented as several character indexes.
Afterwards, each character is mapped to a high-density vector space(wP and
wQ). In order to get a fixed-size vector for each word, 1D max pooling is used to
merge character vectors into word vector(uP and uQ). Simple match attention is
then applied to match word level information, which can be calculated as follows:

ûP = SimAtt(uP , uQ) (1)

where SimAtt(·) denotes the function of simple match attention.

Simple Match Attention. Given two sets of vector vA = {vA
1 , vA

2 , ..., vA
N} and

vB = {vB
1 , vB

2 , ..., vB
M}, we can synthesize information in vB for each vector in

vA. Firstly we get the attention weight αij between i-th word of A and j-th

68 J. Wang et al.

word of B by αij = softmax(exp(< vA
i , vB

j >)), where <> represents inner
product. Then calculate the sum for every vector in vB weighted by αij to get
the attention representation v̂A

i =
∑

j

αijv
B
j . This attention variable v̂A can be

denoted as v̂A = {v̂A
1 , v̂A

2 , ..., v̂A
N} = SimAtt(vA, vB).

3.2 Representation Layer

To better extract semantic information, we utilize RNN encoders to produce
high-level representation vQ

1 , ..., vQ
J and vP

1 , ..., vP
T for all words in the question

and passage respectively. The encoders are made up of bi-directional Simple
Recurrent Unit (SRU) [8], which can be denoted as follows:

vP
t = BiSRU(vP

t−1, [u
P
t ; ûP

t]), vQ
j = BiSRU(vQ

j−1, u
Q
j) (2)

Bi-directional attention. is applied in this layer to combine the semantic infor-
mation between questions and passages. Similar to the attention flow layer in
BIDAF, we compute question merged attention v̂P1 and passage merged atten-
tion v̂P2 with bi-directional attention. The similarity matrix is computed by
Sij = β(vP

i , vQ
j), we choose

β(vP
i , vQ

j) = W(S)
T [vP

i ; vQ
j ; vP

i · vQ
j] (3)

where W(S) is trainable parameters, · is element-wise multiplication, [;] is vector
concatenation across row.

Question merged attention signifies which question words are most relevant
to each passage words. Question merged attention weight (the i-th word in the
passage to a certain word in question) is computed by ai: = softmax(Si:) ∈ RJ .
Subsequently, each attended question merged vector is denoted as v̂P1

i =
∑

j aijv
Q
j . Passage merged attention signifies which context words have the clos-

est similarity to one of the question words and hence critical for answering
the question. The attended passage-merged vector is ṽP2 =

∑
i biv

P
i , where

b = softmax(maxcol(S)) and b ∈ RT , the maximum function maxcol() is per-
formed across the column. Then ṽP2 is tiled T times to v̂P2 ∈ R2d×T , where d
is the length of hidden vectors.

3.3 Understanding Layer

The above bi-directional attention representation v̂P1
i and v̂P2 is concatenated

with word representation vp to generate the attention representation v̂P .

v̂P = [v̂P1; v̂P2; vP] (4)

Then we use a bi-directional SRU as a Fusion to fuse information, which can
be represented as hP

t = BiSRU(hP−1
t−1 , v̂P

t).
In order to take more attention over the whole passage, we apply self-match

attention in Understanding Layer. Note that the computing function is the same
as simple match attention, but its two inputs are both hP

ĥP = SimAtt(hP , hP) (5)

Adversarial-and-Attention Network for Machine Reading Comprehension 69

3.4 Pointer Layer

Pointer network is a sequence-to-sequence model proposed by Vinyals et al. [17]
In Pointer Layer, we adopt pointer network to calculate the possibility of being
the start or end position for every word in the passage. Instead of using a bilinear
function, we take a linear function (which is proved to be simple and effective)
to get the probability of start position P s and end position P e

P s = softmax(WPs[ĥP
i ; v̂P1

i]) (6)

Training. During training, we minimize the cross entropy of the golden span

start and end L(θ) = 1
N

N∑

k

(log(P s
isk

) + log(P e
iek

)), where isk, iek are the predicted

answer span for the k-th instance.

Prediction. We predict the answer span to be isk, iek with the maximum P s
is +P e

ie

under the constraint 0 ≤ ie − is ≤ 10.

3.5 Adversarial Training

Adversarial training applies worst case perturbations on target variables. As is
shown in Fig. 2, we denote X as the target variable and θ as the parameters
of the model. Different from previous works, X can be set as each variable in
our model, adversarial training adds adversarial cost function Ladv(X; θ) to the
original cost function. The equation of Ladv(X; θ) is described as follows:

Ladv(X; θ) = L(X + radv; θ), radv = arg max
||r||≤ε

L(X + r; θ̂) (7)

Fig. 2. The computation graph of adversarial training. X denotes target variable, radv
denotes adversarial perturbation. The Input of the model is mapped into target variable
X by Former Structure. And then Later Structure generates the Output based on the
target variable X combined with adversarial perturbation radv.

70 J. Wang et al.

where r is a perturbation on the target variable and θ̂ is a fixed copy to the cur-
rent parameters. When optimizing parameters, the gradients should not prop-
agate through radv. One problem is that we cannot get the exact value of radv

simply following Eq. (7), since the computation is intractable. Goodfellow et al.
[11] approximate the value of radv by linearizing L(X; θ̂) near X

radv = ε||X|| g

||g|| , g = ∇XL(X|θ̂) (8)

where || · || denotes the norm of variable ·, and ε is an intensity constant to adjust
the relative norm between ||radv|| and ||X||. So the norm of radv is decided by
||X||, and it could be different during each training sample and training step.

4 Experiments

In this section, we evaluate our model on the WebQA dataset. Outperforming
the baseline model in the original paper (Fussy F1 73.50%), we obtain 77.01%
with multi-layer attention and adversarial training.

4.1 Dataset and Evaluation Metrics

WebQA [9] is a large scale real-world Chinese QA dataset. Table 2 gives an exam-
ple from WebQA dataset. Its questions are from user queries in search engines
and its passages are from web pages. Different from SQuAD, question-passage
pairs in WebQA are matched more weakly. We use annotated evidence(shown in
Table 3) to train and evaluate our model. There is an annotated golden answer
to each question. So we can measure model performance by comparing predicted
answers with golden answers. It can be evaluated by precision (P), recall (Q)
and F1-measure (F1):

P =
|C|
|A| , R =

|C|
|Q| , F1 =

2PR

P + R
(9)

Table 2. An example from WebQA. Table 3. Statistics of WebQA dataset.

Dataset Question Annotated evidence

word# # word#

Train 36,145 374,500 140,897 10,757,652

Validation 3,018 36,666 5,412 233,911

Test 3,024 36,815 5,445 234,258

Adversarial-and-Attention Network for Machine Reading Comprehension 71

where |C| is the number of correctly answered questions, |A| is the number of
produced answers, and |Q| is the number of all questions.

The same answer in WebQA may have different surface forms, such as “Bei-
jing” v.s. “Beijing city”. So we use two ways to count correctly answered ques-
tions, which are referred to as “strict” and “fuzzy”. Strict matching means the
predicted answer is identical to the standard answer; Fuzzy matching means the
predicted answer is a synonym of the standard answer.

4.2 Model Details

In our model, we use randomly initialized 64-dimensional character embedding
and hidden vector length d is set to 100 for all layers. We utilize 4-layer Passage
encoder and Question encoder. And Fusion SRU is set to 2-layer. We also apply
dropout between layers, with a dropout rate of 0.2. The model is optimized
using AdaDelta with a minibatch size of 64 and an initial learning rate of 0.1.
Hyper-parameter ε is selected on the WebQA validation dataset.

4.3 Main Results

The evaluation results are shown in Table 4. Different models are evaluated
on the WebQA test dataset, including baseline models(LSTM+softmax and
LSTM+CRF), BIDAF and A3Net. A3Net(without AT) denotes our base model
which does not apply adversarial training(AT); A3Net(random noise) denotes
control experiment which replaces adversarial perturbations with random Gaus-
sian noise with a scaled norm. Baseline models utilize sequence label method
to mark the answer, while others adopt pointer network to extract the answer.
Sequence label method can mark several answers for one question, leading high
recall(R) but low precision(P). So we adopt pointer network to generate one
answer for each question. In this condition, evaluation metrics(P, R, F1) are
equal. Thus we can use Score to evaluate our model. Besides, Fuzzy evaluation
is closer to real life, so we mainly focus on Fuzzy Score.

Based on single layer attention and pointer network, BIDAF obtains the
obvious promotion (Fuzzy F1 74.43%). Benefit from multi-layer attention, A3Net

Table 4. Evaluation results on the test dataset of WebQA.

Model Strict score Fuzzy Score

P(%) R(%) F1(%) P(%) R(%) F1(%)

LSTM+softmax 59.38 68.77 63.73 63.58 73.63 68.24

LSTM+CRF 63.72 76.09 69.36 67.53 80.63 73.50

BIDAF 70.04 70.04 70.04 74.43 74.43 74.43

A3Net(without AT) 71.03 71.03 71.03 75.46 75.46 75.46

A3Net(random noise) 71.28 71.28 71.28 75.89 75.89 75.89

A3Net 72.51 72.51 72.51 77.01 77.01 77.01

72 J. Wang et al.

(without AT) gains 0.97 point promotion in Fuzzy F1 compared to BIDAF, which
indicates that multi-layer attention is useful. Our model would get another 1.12
point promotion in Fuzzy F1 after jointly adopting adversarial training on target
variable wP and v̂P .

A common misconception is that perturbation in adversarial training is equiv-
alent to random noise. In actually, noise is a far weaker regularization than
adversarial perturbations. An average noise vector is approximately orthogonal
to the cost gradient in high dimensional input spaces. While adversarial pertur-
bations are explicitly chosen to consistently increase the cost. To demonstrate the
superiority of adversarial training over the addition of noise, we include control
experiments which replaced adversarial perturbations with random perturba-
tions from a Gaussian distribution. We use random noise to replace worst case
perturbations on each target variable, which only lead slightly improvement. It
indicates that AT can actually improve the robustness and generalization of our
model.

4.4 Ablation on Base Model Structure

Next, we investigate the ablation study on the structure of our base model.
From Table 5 (A3Net base model is same with A3Net (without AT) in Table 4),
we can tell that both Strict Score and Fuzzy Score would drop when we omit any
attention. It indicates that each attention layer in A3Net base model is essential.

4.5 Adversarial Training on Different Target Variables

We evaluate the predicted result when we apply adversarial training on different
target variables. As is shown in Table 6, applying adversarial training on each
target variable can improve Fuzzy Score as well as Strict Score in different degree.
It indicates that adversarial training can work as a regularizing method not just
for word embeddings, but also for many other variables in our model. Note that
the Score is improved significantly when applying AT on embedding variable
wP and attention variable v̂P . It reveals that adversarial training can improve
representing ability for both inputs and non-input variables. Finally, we obtain
the best result when applying AT on both wP and v̂P .

Table 5. Comparison of different configurations of base model. The symbols in this
table is corresponding with Fig. 1.

Model Strict score (%) Fuzzy Score (%)

A3Net base model (without ûP) 70.57 74.93

A3Net base model (without v̂P1) 70.77 75.18

A3Net base model (without v̂P1 and v̂P2) 70.63 74.56

A3Net base model (without ĥP) 70.70 75.23

A3Net base model 71.03 75.46

Adversarial-and-Attention Network for Machine Reading Comprehension 73

Table 6. Comparison of adversarial training results on different target variables. The
symbols in this table is corresponding with Fig. 1

Target variable Strict scoreFuzzy ScoreTarget variable Strict scoreFuzzy Score

None (base model) 71.03 75.46 v̂P1 71.85 76.28

wP 71.95 76.62 ĥP 71.56 76.42

uP 72.06 76.39 v̂P 72.28 76.81

ûP 71.32 75.92 wP and v̂P 72.51 77.01

We also evaluate adversarial training on two target variables (wP and v̂P)
under different intensity constant ε. As shown in Fig. 3, we repeat experiment
3 times for each target variable on each constant ε, and get the average Fuzzy
Score and its std. error. For AT on attention variable v̂P , we obtain the best
performance when ε is 0.5 × 10−4; While for AT on character embedding vari-
able wP , we obtain the best performance when ε is 2 × 10−4. It indicates we
needs larger adversarial perturbation for low-level variable. While comparable
smaller intensity benefits its training for high-level variable. We can explain this
phenomenon in two different views. Firstly, wP and v̂P are in different concept
levels. wP contains syntactic meaning, and represents as character embedding
vectors. Most of the vectors can still hold original meaning under small pertur-
bation, because most points in embedding space have no real meanings. But v̂P

contains semantic meaning. Any perturbation on it would change its meaning,
thus our model is sensitive to the perturbation on v̂P . Secondly, wP and v̂P are
in different layers of our model. v̂P is closer to Pointer Layer, which could have
more influence on the output of the model and computation of cost function.

4.6 Effective of Adversarial Training

Figure 4(a) shows the Fuzzy Score on the test dataset and Fig. 4(b) shows the loss
value on the training dataset of A3Net in different configurations. The meaning

Fig. 3. Effect of intensity constant when AT on target variable wP and v̂P .

74 J. Wang et al.

(a) Fuzzy Score (test) under different training step.

(b) Loss value (train) under different training step.

Fig. 4. Fuzzy Score (test) and Loss value (train) under different training step.

of without AT and random noise are the same with that in Table 4. The data
curves of the base model and the random noise model are close to each other in
both two figures. It indicates that random noise has limited effect on our model.
Within each training step, the Fuzzy Score of our final model is the highest, and
its loss value is the lowest. It demonstrates that adversarial training can lead to
better performance with less training step.

5 Conclusions

This paper proposes a novel model called Adversarial-and-attention Network
(A3Net), which includes adversarial training and multi-layer attention.

Adversarial training works as a regularization method. It can be applied
to almost every variable in the model. We blend adversarial training into each
layer of the model by controlling the relative intensity of norm between adversar-
ial perturbations and original variables. Results show that applying adversarial
perturbations on some high-level variables can lead even better performance
than that on input signals. Our model obtains the best performance by jointly
applying adversarial training to character embedding and high-level attention
representation.

We use simple match attention and bi-directional attention to enhance the
interaction between questions and passages. Simple match attention on Embed-
ding Layer refines syntactic information. In addition, bi-directional attention
on Representation Layer refines semantic information. Furthermore, self-much

Adversarial-and-Attention Network for Machine Reading Comprehension 75

attention is used on Understanding Layer to refine the overall information among
the whole passages. Experiments on the WebQA dataset show that our model
outperforms the state-of-the-art models.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of ICLR (2015)

2. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading Wikipedia to answer open-
domain questions. In: Proceedings of ACL, pp. 1870–1879 (2017)

3. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Proceedings of ICLR (2015)

4. Natural Language Computing Group: R-net: machine reading comprehension with
self-matching networks (2017)

5. Hermann, K.M., et al.: Teaching machines to read and comprehend. In: Proceedings
of NIPS, pp. 1693–1701 (2015)

6. Huang, H.Y., Zhu, C., Shen, Y., Chen, W.: FusionNet: fusing via fully-aware atten-
tion with application to machine comprehension. In: Proceedings of ICLR (2018)

7. Jia, R., Liang, P.: Adversarial examples for evaluating reading comprehension sys-
tems. In: Proceedings of EMNLP, pp. 2021–2031 (2017)

8. Lei, T., Zhang, Y.: Training RNNs as fast as CNNs. arXiv preprint
arXiv:1709.02755 (2017)

9. Li, P., et al.: Dataset and neural recurrent sequence labeling model for open-domain
factoid question answering. arXiv preprint arXiv:1607.06275 (2016)

10. Liu, X., Shen, Y., Duh, K., Gao, J.: Stochastic answer networks for machine reading
comprehension. In: Proceedings of NAACL (2018)

11. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-
supervised text classification. In: Proceedings of ICLR (2017)

12. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. In: Proceedings of EMNLP, pp. 2383–2392 (2016)

13. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for
machine comprehension. In: Proceedings of ICLR (2017)

14. Shen, Y., Huang, P.S., Gao, J., Chen, W.: ReasoNet: Learning to stop reading in
machine comprehension. In: Proceedings of SIGKDD, pp. 1047–1055. ACM (2017)

15. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of
ICLR (2014)

16. Tan, C., Wei, F., Yang, N., Du, B., Lv, W., Zhou, M.: S-net: from answer extraction
to answer generation for machine reading comprehension. In: Proceedings of AAAI
(2018)

17. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Proceedings of NIPS,
pp. 2692–2700 (2015)

18. Wang, S., Jiang, J.: Machine comprehension using Match-LSTM and answer
pointer. In: Proceedings of ICLR (2017)

19. Weissenborn, D., Wiese, G., Seiffe, L.: Making neural QA as simple as possible but
not simpler. In: Proceedings of CoNLL, pp. 271–280 (2017)

20. Wu, Y., Bamman, D., Russell, S.: Adversarial training for relation extraction. In:
Proceedings of EMNLP, pp. 1778–1783 (2017)

http://arxiv.org/abs/1709.02755
http://arxiv.org/abs/1607.06275

When Less Is More: Using Less Context
Information to Generate Better

Utterances in Group Conversations

Haisong Zhang1, Zhangming Chan2, Yan Song1, Dongyan Zhao2,
and Rui Yan2(B)

1 Tencent AI Lab, Beijing, China
{hansonzhang,clksong}@tencent.com

2 Institute of Computer Science and Technology, Peking University, Beijing, China
{chanzhangming,zhaody,ruiyan}@pku.edu.cn

Abstract. Previous research on dialogue systems generally focuses on
the conversation between two participants. Yet, group conversations
which involve more than two participants within one session bring up
a more complicated situation. The scenario is real such as meetings or
online chatting rooms. Learning to converse in groups is challenging due
to different interaction patterns among users when they exchange mes-
sages with each other. Group conversations are structure-aware while
the structure results from different interactions among different users.
In this paper, we have an interesting observation that fewer contexts
can lead to better performance by tackling the structure of group con-
versations. We conduct experiments on the public Ubuntu Multi-Party
Conversation Corpus and the experiment results demonstrate that our
model outperforms baselines.

Keywords: Group conversations · Context modeling
Dialogue system

1 Introduction

Dialogue systems such as chatbots and virtual assistants have been attracting
great attention nowadays [17,18,21,22,27,28]. To launch dialogue systems with
moderate intelligence, the first priority for computers is to learn how to converse
by imitating human-to-human conversations. Researchers have paid great efforts
on learning to converse between two participants, either single-turn [5,14,16,31]
or multi-turn [12,25,29,33]. The research is valuable but is still quite simple in
reality: two-party conversations do not cover all possible conversation scenarios.

A more general scenario is that conversations may have more than two inter-
locutors conversing with each other [9,32], known as “group conversations”. In
real-world scenarios, group conversations are rather common, such as dialogues

H. Zhang and Z. Chan—contribute equally.

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 76–84, 2018.
https://doi.org/10.1007/978-3-319-99495-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_7&domain=pdf

When Less Is More 77

in online chatting rooms, discussions in forums, and debates, etc. Learning for
group conversations is of great importance, and is more complicated than two-
party conversations which requires extra work such as understanding the rela-
tions among utterances and users throughout the conversation.

Table 1. An example of group conversations in the IRC dataset. The conversation
involves multiple participants and lasts for multiple turns.

User Utterance

User 1 “i’m on 15.10”

User 2 @User 1 “have you tried using... ”

User 1 @User 2 “nope. but this might... ”

User 3 “i read on the internets...”

User 2 “yeah. i’m thinking ...”

For example, in Ubuntu Internet Relay Chat channel (IRC), one initiates a
discussion about an Ubuntu technical issue as illustrated in Table 1: multiple
users interact with each other as a group conversation. Different pieces of infor-
mation are organized into a structure-aware conversation session due to different
responding relation among users. Some utterances are closely related because
they are along the same discussion thread, while others are not. We characterize
such an insight into the structure formulation for group conversations.

Group conversations are naturally multi-party and multi-turn dialogues.
Compared with two-party conversations in Fig. 1(a), a unique issue for group
conversations is to incorporate multiple threads of interactions (which indicate
“structures”) into the conversations formulation, as illustrated in Fig. 1(b).

Learning to generate utterances in group conversations is challenging: we
need a uniform framework to model the structure-aware conversation sessions,
which is non-trivial. To this end, we propose a tree-structured conversation model
to formulate group conversations. The branches of the tree characterize different
interaction threads among the users. We learn to encode the group conversation
along the tree branches by splitting the tree as sequences (Fig. 1(c)). Given
the learned representations, the model generates the next utterance in group
conversations. Due to the tree-structured frame of group conversations, we will
not use all utterances across turns to generate the target utterance: only the
utterances along the target tree branch will be used. With fewer contexts used,
we obtain even better generation results. It is interesting to see that “less” is
“more”.

To sum up, our contributions in this paper are:

• We are the first to investigate structure-aware formulation for group con-
versations. The model organizes the utterance flows in the conversation into
a tree-based frame, which is designed especially for the group conversation
scenario.

78 H. Zhang et al.

• To the best of our knowledge, we are also the first to investigate the task of
generation-based conversation in groups. With less context information used
by ruling out utterances from irrelevant branches, we generate better results.

Experiments are conducted on the Ubuntu Multi-party Conversation Corpus,
a public dataset for group conversation studies. The experimental result shows
that our model outperforms the state-of-the-art baselines on all metrics.

2 Background Knowledge

Dialog systems can be categorized as generation-based and retrieval-based
approaches. Generation-based methods produce responses with natural lan-
guage generators, which are learned from conversation data [5,14,17,23]; while
retrieval-based ones retrieve responses by ranking and selecting existing candi-
dates from a massive data repository [24,25,27,30]. Researchers also investigate
how to ensemble generation-based ones and retrieval-based ones together [11,15].
In this paper, we focus on the generation-based conversational model.

(a) Two parties. (b) Tree structure. (c) Tree splitting.

Fig. 1. We illustrate the difference of conversations between two participants in (a) and
the group conversation of Table 1 in (b). Group conversations are structure-aware and
formulated as trees (b) and we split the tree into sequences (c). “Irrelevant” utterances
on other sequences are not used for generation (shaded in the figure).

Early work in dialog systems focuses on single-turn conversations. It outputs
a response given only one utterance as the input [5,14,20]. However, a normal
conversation lasts for several turns. Conversation models without context infor-
mation is insufficient [22]. Context representation learning is proposed to solve
the problem. Interested readers may refer to a recent survey paper for more
details [26].

Multi-turn dialogue systems take in the current message and all previous
utterances as contexts and output a response which is appropriate given the
entire conversation session. Recently, methods are proposed to capture long-span
dependencies in contexts by concatenation [18,27], latent variable-based models

When Less Is More 79

[8,13] or hierarchical approaches [12,25]. In this paper, we target at multi-turn
conversations.

Most previous studies focus on two-party conversations, while the group con-
versation is a more general case of multi-turn conversations which involve more
than two participants. It is more difficult to understand group conversations.
Ouchi et al. [9] proposed to select the responses associated with addressees in
multi-party conversations, which is basically a retrieval-based model by match-
ing. Zhang et al. [32] extended the work by introducing an interactive neural
network modeling, which is also for retrieval-based matching.

None of the work focuses on generation-based group conversations. More
importantly, none of the work incorporates structure-aware formulation for group
conversation models.

3 Group Conversation Model

In this section, we introduce our model for group conversations. First, we need
to organize the conversation session according to the responding structures
among users. We propose to construct the conversation context into a tree struc-
ture. With the established tree structure, we encode information for generation.
Finally, we generate the target utterance in the decoding process.

Our problem formulation is straightforward. Given a group conversation with
T utterances, we denote X = {Xi}Ti=1. Each Xi is an utterance sentence. The
goal is to generate the next utterance Y = (y1, y2, . . . , ym) by estimating the
probability p(Y |X) =

∏
p(yt|y<t,X).

Structure information is vital for group conversations. With different
responding relationships, we construct different tree structures and accordingly,
encode different information for the group conversations. Since we model the con-
versations as trees, we add the utterances with direct responding relationships
onto the same branch of the tree. In this way, different responding relationships
lead to different tree-branch structures.

Tree-based Formulation. Given the responding relationship among users, it
is straightforward to establish the tree. If an utterance Xi is responding to the
utterance Xj where i > j, we add an edge between Xi and Xj . Xj is the parent
node of Xi while Xi is the child node of Xj . Generally, each utterance responds
to one utterance but multiple subsequent utterances can respond to the same
utterance. Suppose Xi and Xk both respond to Xj where i > j and k > j. In
this case, Xi and Xk are sibling nodes at the same level with a common parent
node Xj .

As illustrated in Table 1, sometimes an utterance is addressed to a particular
user explicitly. In this situation, we establish the tree without any ambiguity. In
other cases, an utterance is not explicitly addressed to any user. To make the
model practical, we introduce an assumption that if not explicitly designated, the
utterance is addressing to the most recent utterance in the context. It is a simple
assumption but holds in majority circumstances. For the group conversation in
Table 1, we establish the tree in Fig. 1(b).

80 H. Zhang et al.

Splitting. Given a tree-structured conversation session, there are multiple
sequences with shared nodes. We split the multiple sequences into separate
sequences by duplicating the shared nodes, which is shown in Fig. 1(c). In
this way, the conversation is represented by multiple sequences. Sequences have
unique advantages over trees in batch learning. We identify which sequence the
target utterance will be addressed to, and learn the embeddings of utterances
along this sequence. We decode the target utterance based on the learned rep-
resentation. Utterances from other sequences (i.e., other branches) will not be
used for context information encoding and decoding.

Hierarchical Encoding. Our model is based on the encoder-decoder framework
using the sequence-to-sequence model [19]. We implement with gated recur-
rent units (GRU) [3]. The encoder converts a sequence of embedding inputs
(x1,x2, . . . ,xn) to hidden representations (h1,h2, . . . ,hn) by:

ht = GRU(ht−1,xt) (1)

Our model is established based on the hierarchical representations [6,12]. A
hierarchical model draws on the intuition that just as the integration of words
creates the overall meaning of an utterance, and furthermore the integration of
multiple utterances creates the overall meaning of several utterances. To be more
specific, we first obtain representation vectors at the utterance level by putting
one layer of a recurrent neural network with GRU units on top of its containing
words. The vector output at the ending time-step is used to represent the entire
utterance sentence.

To build the representation for multiple utterances along a branch, another
layer of GRU is placed on top of all utterances, computing representations
sequentially for each time step. Representation computed at the final time step
is used to represent the long sequence (i.e., the tree branch). Thus one GRU
operates at the word-level, leading to the acquisition of utterance-level represen-
tations that are used as inputs into the second GRU that acquires the overall
representations.

Decoding. After we obtain the encoded information, the decoder takes as input
a context vector ct and the embedding of a previously decoded word yt−1 to
update its state st using another GRU:

st = GRU(st−1, [ct;yt−1]) (2)

[ct;yt−1] is the concatenation of the two vectors, serving as the input to GRU
units. The context vector ct is designed to dynamically attend on important
information of the encoding sequence during the decoding process [1]. Once the
state vector st is obtained, the decoder generates a token by sampling from the
output probability distribution ot computed from the decoder’s state st:

yt ∼ ot = p(yt|y1, y2, . . . , yt−1, ct)
= softmax(Wost)

(3)

When Less Is More 81

Table 2. Experimental results of different models based on automatic evaluations.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

NRM 9.85 3.04 1.38 0.67 3.98

C-Seq2Seq 10.45 4.13 2.08 1.02 3.43

HRED 11.23 4.40 2.45 1.42 4.38

Our method 11.73 6.06 4.28 3.29 4.86

4 Experiments

Data. We run experiments using the public Ubuntu Corpus1 [8] for training and
testing. The original data comes from the logs of Ubuntu IRC chat room where
users discuss technical problems related to Ubuntu. The corpus consists of huge
amount of records including over 7 million response utterances and 100 million
words. We organize the dataset as tree-structured samples of 380k conversation
sessions.

To be more specific, we take the last utterance in each session as the target
to be generated and other utterances as inputs. We randomly divide the corpus
into train-dev-test sets: 5,000 sessions for validation, 5,000 sessions for testing
and the rest for training. We report results on the test set.

Baselines. We evaluate our model against a series of baselines. We include the
context-insensitive baseline and context-aware methods (either non-hierarchical
or hierarchical).

• NRM. Shang et al. [14] proposed the single-turn conversational model without
contexts incorporated, namely neural responding machine (NRM). For NRM,
only the penultimate utterance is used to generate the last utterance. It is
performed using the Seq2Seq model with attention.

• Context-Seq2Seq. The context-sensitive seq2seq means that given a session, we
use the last utterance as the target and all other utterances as the inputs. We
concatenate all input utterances into a long utterance [18]. The concatenated
contexts do not distinguish word or sentence hierarchies.

• HRED. The Hierarchical Recurrent Encoder-Decoder (HRED) model is a
strong context-aware baseline which consists both word-level encoders and
sentence-level encoders [12]. In this way, context utterances are encoded in
two hierarchies as the training data.

None of these models takes the structure in group conversations into account.
Our model incorporates structures into the hierarchical context-aware conversa-
tional model, where indicates a new insight.

Evaluation Metrics. We use the evaluation package released by [2] to eval-
uate our model and baselines. The package includes BLEU-1 to 4 [10] and

1 http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/.

http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/

82 H. Zhang et al.

METEOR [4]. All these metrics evaluate the word overlap between the gen-
erated utterances and the ground truth targets. Still, note that these evaluation
metrics have plenty room for improvement as to dialogue evaluations [7].

Results and Analysis. Table 2 shows the evaluation results. We observe
that the performance is improved incrementally. From NRM to C-Seq2Seq, the
improvement may be ascribed that context information is important for conver-
sations with more than one turn. It concurs with many previous studies [25,27].
Hierarchical information depicted by fine-grained representation learning is also
demonstrated to be useful [12,22]. None of the baselines formulates structure
information, while our method utilizes a tree-based frame. Our method out-
performs baselines in all metrics: structure-aware information is shown to be
effective in group conversations.

Note that in our method, after splitting the tree into multiple sequences, we
actually discard part of the context utterances during the encoding process. It
is surprising that the model achieves even better results. We understand that
within a group conversation, only the relevant information is useful to generate
the target utterance. Irrelevant utterances on the other branches of the tree (i.e.,
other sequences) might be the noises for generation. It is interesting to see that
“less becomes more” in group conversations.

5 Conclusion

In this paper, we proposed a tree-based model frame for structure-aware group
conversations. According to different responding relations, we organize the group
conversation as a tree with different branches involving multiple conversation
threads. We split the established tree into multiple sequences, and we only use
the target sequence to generate the next utterance. This method is quite simple
but rather effective. We have performance improvement in terms of automatic
evaluations, which indicate less context information results in better generations
in group conversations. In other words, “less” is “more”.

Acknowledgments. We would like to thank the anonymous reviewers for their con-
structive comments. This work was supported by the National Key Research and Devel-
opment Program of China (No. 2017YFC0804001), the National Science Foundation of
China (NSFC No. 61672058). Rui Yan was sponsored by CCF-Tencent Open Research
Fund and Microsoft Research Asia (MSRA) Collaborative Research Program.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR (2015)

2. Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S., Dollár, P., Zitnick,
C.L.: Microsoft coco captions: data collection and evaluation server. CoRR
abs/1504.00325 (2015)

When Less Is More 83

3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In: ICLR (2015)

4. Denkowski, M.J., Lavie, A.: Meteor universal: language specific translation evalu-
ation for any target language. In: WMT@ACL (2014)

5. Li, J., Galley, M., Brockett, C., Spithourakis, G., Gao, J., Dolan, B.: A persona-
based neural conversation model. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1,
pp. 994–1003 (2016)

6. Li, J., Luong, T., Jurafsky, D.: A hierarchical neural autoencoder for paragraphs
and documents. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol. 1, pp. 1106–1115 (2015)

7. Liu, C.W., Lowe, R., et al.: How not to evaluate your dialogue system: an empiri-
cal study of unsupervised evaluation metrics for dialogue response generation. In:
EMNLP 2016, pp. 2122–2132 (2016)

8. Lowe, R.J., Pow, N., Serban, I., Pineau, J.: The ubuntu dialogue corpus: a large
dataset for research in unstructured multi-turn dialogue systems. In: SIGDIAL
Conference (2015)

9. Ouchi, H., Tsuboi, Y.: Addressee and response selection for multi-party conversa-
tion. In: EMNLP, pp. 2133–2143 (2016)

10. Papineni, K., Roucos, S.E., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: ACL (2002)

11. Qiu, M., Li, F.L., Wang, S., Gao, X., Chen, Y., Zhao, W., Chen, H., Huang, J.,
Chu, W.: AliMe chat: a sequence to sequence and rerank based chatbot engine. In:
ACL 2017, pp. 498–503 (2017)

12. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.C., Pineau, J.: Building end-
to-end dialogue systems using generative hierarchical neural network models. In:
AAAI, pp. 3776–3784 (2016)

13. Serban, I.V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A.C., Bengio,
Y.: A hierarchical latent variable encoder-decoder model for generating dialogues.
In: AAAI 2017, pp. 3295–3301 (2017)

14. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation.
In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), vol. 1, pp. 1577–1586 (2015)

15. Song, Y., Li, C.T., Nie, J.Y., Zhang, M., Zhao, D., Yan, R.: An ensemble of
retrieval-based and generation-based human-computer conversation systems. In:
IJCAI 2018 (2018)

16. Song, Y., Tian, Z., Zhao, D., Zhang, M., Yan, R.: Diversifying neural conversation
model with maximal marginal relevance. In: IJCNLP 2017, pp. 169–174 (2017)

17. Song, Y., Yan, R., Feng, Y., Zhang, Y., Zhao, D., Zhang, M.: Towards a neural
conversation model with diversity net using determinantal point processes. In:
AAAI 2018, pp. 5932–5939 (2018)

18. Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.Y., Gao,
J., Dolan, B.: A neural network approach to context-sensitive generation of conver-
sational responses. In: Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 196–205 (2015)

19. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NIPS (2014)

84 H. Zhang et al.

20. Tao, C., Gao, S., Shang, M., Wu, W., Zhao, D., Yan, R.: Get the point of my utter-
ance! learning towards effective responses with multi-head attention mechanism.
In: IJCAI 2018 (2018)

21. Tao, C., Mou, L., Zhao, D., Yan, R.: RUBER: an unsupervised method for auto-
matic evaluation of open-domain dialog systems. In: AAAI 2018, pp. 722–729
(2018)

22. Tian, Z., Yan, R., Mou, L., Song, Y., Feng, Y., Zhao, D.: How to make context
more useful? An empirical study on context-aware neural conversational models.
In: Annual Meeting of the Association for Computational Linguistics, pp. 231–236
(2017)

23. Vinyals, O., Le, Q.: A neural conversational model. arXiv preprint
arXiv:1506.05869 (2015)

24. Wang, H., Lu, Z., Li, H., Chen, E.: A dataset for research on short-text conversa-
tions. In: EMNLP, pp. 935–945 (2013)

25. Wu, Y., Wu, W., Xing, C., Zhou, M., Li, Z.: Sequential matching network: A
new architecture for multi-turn response selection in retrieval-based chatbots. In:
Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 496–505 (2017)

26. Yan, R.: “Chitty-Chitty-Chat Bot”: Deep learning for conversational AI. In: IJCAI
2018 (2018)

27. Yan, R., Song, Y., Wu, H.: Learning to respond with deep neural networks for
retrieval-based human-computer conversation system. In: Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 55–64. ACM (2016)

28. Yan, R., Song, Y., Zhou, X., Wu, H.: Shall i be your chat companion? Towards an
online human-computer conversation system. In: CIKM 2016, pp. 649–658 (2016)

29. Yan, R., Zhao, D.: Coupled context modeling for deep chit-chat: towards conver-
sations between human and computer. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2018)

30. Yan, R., Zhao, D., E., W.: Joint learning of response ranking and next utterance
suggestion in human-computer conversation system. In: Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR 2017, pp. 685–694 (2017)

31. Yao, L., Zhang, Y., Feng, Y., Zhao, D., Yan, R.: Towards implicit content-
introducing for generative short-text conversation systems. In: EMNLP 2017, pp.
2190–2199 (2017)

32. Zhang, R., Lee, H., Polymenakos, L., Radev, D.: Addressee and response selection
in multi-party conversations with speaker interaction RNNs. In: AAAI (2018)

33. Zhou, X., Dong, D., Wu, H., Zhao, S., Yu, D., Tian, H., Liu, X., Yan, R.: Multi-
view response selection for human-computer conversation. In: EMNLP 2016, pp.
372–381 (2016)

http://arxiv.org/abs/1506.05869

I Know There Is No Answer: Modeling
Answer Validation for Machine Reading

Comprehension

Chuanqi Tan1(B), Furu Wei2, Qingyu Zhou3, Nan Yang2, Weifeng Lv1,
and Ming Zhou2

1 Beihang University, Beijing, China
tanchuanqi@nlsde.buaa.edu.cn, lwf@buaa.edu.cn

2 Microsoft Research Asia, Beijing, China
{fuwei,nanya,mingzhou}@microsoft.com

3 Harbin Institute of Technology, Harbin, China
qyzhgm@gmail.com

Abstract. Existing works on machine reading comprehension mostly
focus on extracting text spans from passages with the assumption that
the passage must contain the answer to the question. This assumption
usually cannot be satisfied in real-life applications. In this paper, we
study the reading comprehension task in which whether the given pas-
sage contains the answer is not specified in advance. The system needs
to correctly refuse to give an answer when a passage does not contain
the answer. We develop several baselines including the answer extrac-
tion based method and the passage triggering based method to address
this task. Furthermore, we propose an answer validation model that first
extracts the answer and then validates whether it is correct. To evalu-
ate these methods, we build a dataset SQuAD-T based on the SQuAD
dataset, which consists of questions in the SQuAD dataset and includes
relevant passages that may not contain the answer. We report results
on this dataset and provides comparisons and analysis of the different
models.

Keywords: Machine reading comprehension · Answer validation

1 Introduction

Machine reading comprehension, which attempts to enable machines to answer
questions after reading a passage, has attracted much attention from both
research and industry communities in recent years. The release of large-scale
manually created datasets such as SQuAD [12] and TriviaQA [5] has brought
great improvement for model training and testing of machine learning algorithms
on the related research area. However, most existing reading comprehension
datasets assume that there exists at least one correct answer in the passage set.
Current models therefore only focus on extracting text spans from passages to
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 85–97, 2018.
https://doi.org/10.1007/978-3-319-99495-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_8&domain=pdf

86 C. Tan et al.

answer the question, but do not determine whether an answer even exists in the
passage for the question. Although the assumption simplifies the problem, it is
unrealistic for real-life applications. Modern systems usually rely on an indepen-
dent component to pre-select relevant passages, which cannot guarantee that the
candidate passage contains the answer.

In this paper, we study the reading comprehension task in which whether the
given passage contains the answer is not specified in advance1. For the question
whose passage contains the answer, the system needs to extract the correct text
span to answer the question. For the question whose passage does not contain
the answer, the system needs to correctly refuse to give the answer. We develop
several baseline methods following previous work on answer extraction [12] and
answer triggering [21]. We implement the answer extraction model [19] to predict
the answer. We then use the probability of the answer to judge whether it is
correct. In addition, we propose two methods to improve the answer extraction
model by considering that there may be no answer. The first is to add a no-
answer option with a padding position for the passage that does not contain the
answer and supervise the model to predict this padding position when there is
no answer. The second is to control the probability of the answer by modifying
the objective function for the passage that does not contain the answer. Second,
we develop the passage triggering based method, which first determines whether
the passage contains the answer then extracts the answer only in the triggered
passage. Finally, we propose the answer validation method, which first extracts
the answer in the passage then validates whether it is correct.

To test the above methods, we build a new dataset SQuAD-T based on the
SQuAD dataset. For each question in the SQuAD dataset, we use Lucene2, an off-
the-shelf tool, to retrieve the top relevant passage from the whole SQuAD passage
set. If the top passage is the original corresponding passage in the SQuAD dataset
that contains the answer, we treat the question and passage pair as a positive
example. Otherwise, we treat the question and the top-ranked passage that does
not contain the answer as a negative example. Table 1 shows two examples in
the SQuAD-T dataset. In the first example, the passage contains the correct
answer “Denver Broncos” (underlined). In the second example, the passage does
not contain the answer. We use precision, recall and F1 scores for the positive
examples and overall accuracy for all data to evaluate this task.

Experiments show that both the answer extraction model with the no-answer
option and the modified objective function improve the results of the answer
extraction model. Our answer validation model achieves the best F1 score and
overall accuracy on the SQuAD-T test set. Further analysis indicates that our
proposed answer validation model performs better in refusing to give the answers
when passages do not contain the answers without performance degradation
when passages contain the answers.

1 We notice Rajpurkar et al. also address this problem [11] when this paper is under
review.

2 http://lucene.apache.org.

http://lucene.apache.org

I Know There Is No Answer: Modeling Answer Validation 87

Table 1. Examples in the SQuAD-T dataset. The first example contains the answer
“Denver Broncos” (underlined). The second example does not contain the answer to
the question.

Question: Which NFL team represented the AFC at Super Bowl 50?
Passage: The American Football Conference (AFC) champion
Denver Broncos defeated the National Football Conference (NFC)
champion Carolina Panthers 24-10 to earn their third Super Bowl title

Question: Where did Super Bowl 50 take place?
Passage: In addition to the Vince Lombardi Trophy that all Super
Bowl champions receive, the winner of Super Bowl 50 will also receive
a large, 18-karat gold-plated “50”

2 Related Work

Previous methods achieve promising results on the SQuAD dataset for reading
comprehension. Since the passage must contain the answer to the question in
the SQuAD dataset, state-of-the-art methods usually answer the question by
predicting the start and end positions of the answer in the passage [4,13,18,20].
Unlike the SQuAD dataset that only has one passage for a question, the Triv-
iaQA dataset [5] and the MS-MARCO dataset [9] contain multiple paragraphs
or passages for a question. However, since the datasets still guarantee that it
must contain the answer, state-of-the-art methods do not discriminate which
passage contains the answer, but concatenate all passages to predict one answer
[3,15,18].

Yang et al. [21] propose an answer triggering task with the WikiQA dataset.
It aims to detect whether there is at least one correct answer in the set of candi-
date sentences for the question, and selects one of the correct answer sentences
from the candidate sentence set if yes. Several feature-based methods [21] and
deep learning methods [6,22] are proposed for this task. Chen et al. [1] tackle
the problem of open-domain question answering, which combines the document
retrieval (finding the relevant articles) with machine comprehension of text (iden-
tifying the answer spans from those articles). It only evaluates the coverage of
the retrieval result and the accuracy of the final answer, but does not address
the problem of the retrieved document not containing the answer.

3 Approach

Previous reading comprehension tasks usually aim to extract text spans from the
passage to answer the question. In this work, the task is advanced that whether
the given passage contains the answer is not specified. For the question whose
passage contains the answer, the system needs to correctly extract the answer.
Otherwise, the system needs to refuse to answer the question that there is no
answer in the passage.

88 C. Tan et al.

To solve this problem, we develop three categories of methods. First, we
implement an answer extraction model and propose two methods to improve
it for the passage that may not contain the answer. Second, we develop the
passage triggering based method, which first judges whether the passage con-
tains the answer then extracts the answer only in the triggered passage. Finally,
we propose an answer validation model, which first extracts the answer then
validates whether it is correct.

3.1 Answer Extraction Based Method

In this work, we implement the answer extraction model following match-
LSTM [17] and R-Net [19], which have shown the effectiveness in many reading
comprehension tasks.

Consider a question Q = {wQ
t }mt=1 and a passage P = {wP

t }nt=1, we first con-
vert the words to their respective word-level embeddings and character-level
embeddings. The character-level embeddings are generated by taking the final
hidden states of a bi-directional GRU [2] applied to embeddings of characters
in the token. We then use a bi-directional GRU to produce new representation
uQ
1 , . . . , uQ

m and uP
1 , . . . , uP

n of all words in the question and passage respectively:

uQ
t = BiGRUQ(uQ

t−1, [e
Q
t , charQt]), uP

t = BiGRUP (uP
t−1, [e

P
t , charPt]) (1a)

Given question and passage representations {uQ
t }mt=1 and {uP

t }nt=1, [17] intro-
duce match-LSTM, which combines the passage representation uP

j with the
passage-aware question representation cQt to aggregate the question information
to words in the passage, where cQt = att(uQ, [uP

t , vP
t−1]) is an attention-pooling

vector of the whole question uQ. [19] propose adding a gate to the input ([uP
t , cQt])

of GRU to determine the of passage parts.

stj = vTtanh(WQ
u uQ

j + WP
u uP

t + WP
v vP

t−1) (2a)

at
i = exp(sti)/Σm

j=1exp(stj) (2b)

cQt = Σm
i=1a

t
iu

Q
i (2c)

gt = sigmoid(Wg[uP
t , cQt]) (2d)

[uP
t , cQt]∗ = gt � [uP

t , cQt] (2e)

vP
t = GRU(vP

t−1, [u
P
t , cQt]∗) (2f)

We then obtain the question-aware passage representation vP
t for all positions

in the passage.
Following previous methods used on the SQuAD, we use pointer networks [16]

to predict the start and end positions of the answer. Given the passage repre-
sentation {vP

t }nt=1, the attention mechanism is utilized as a pointer to select
the start position (p1) and end position (p2) from the passage, which can be

I Know There Is No Answer: Modeling Answer Validation 89

formulated as follows:

stj = vTtanh(WP
h vP

j + W a
hha

t−1) (3a)

at
i = exp(sti)/Σn

j=1exp(stj) (3b)

pt = argmax(at
1, . . . , a

t
n) (3c)

Here ha
t−1 represents the last hidden state of the answer recurrent network

(pointer network). The input of the answer recurrent network is the attention-
pooling vector based on current predicted probability at:

ct = Σn
i=1a

t
iv

P
i , ha

t = GRU(ha
t−1, ct) (4a)

When predicting the start position, ha
t−1 represents the initial hidden state of

the answer recurrent network. We utilize the question vector rQ as the initial
state of the answer recurrent network. rQ = att(uQ, vQ

r) is an attention-pooling
vector of the question based on the parameter vQ

r :

sj = vTtanh(WQ
u uQ

j + WQ
v vQ

r) (5a)

ai = exp(si)/Σm
j=1exp(sj) (5b)

rQ = Σm
i=1aiu

Q
i (5c)

The objective function is to minimize the following cross entropy:

L = −Σ2
t=1Σ

n
i=1[y

t
i log at

i + (1 − yt
i) log(1 − at

i)] (6a)

where yt
i ∈ {0, 1} denotes a label. yt

i = 1 means i is a correct position, otherwise
yt
i = 0.

This model is trained on the positive examples in the SQuAD-T dataset.
When predicting the answer, the answer extraction model outputs two proba-
bilities at the start and end positions, respectively. We multiply them for the
probability of each text span to select the answer. If the probability of the answer
is higher than a threshold pre-selected on the development set, we output it as
the final answer, otherwise we refuse to answer this question.

Answer Extraction with No-Answer Option

The answer extraction model has two issues. First, we can only train it with
positive examples in which the passage contains the answer. Second, the score
is relative since the probability of the answer is normalized in each passage. To
handle these issues, we propose improving the answer extraction model with a
no-answer option. Levy et al. [8] propose adding a trainable bias to the confi-
dence score pt to allow the model to signal that there is no answer in the relation
extraction task. Similarly, we add a padding position for the passage and super-
vise the model to predict this position when the passage does not contain the
answer. In addition to the prediction strategy in the answer extraction model,
we refuse to give an answer when the model predicts the padding position.

90 C. Tan et al.

Answer Extraction with Modified Objective Function

We develop another strategy to improve the answer extraction model by modify-
ing the objective function. For the positive example, we use the original objective
function in the answer extraction, for which the probability is set to 1 for correct
start and end positions, otherwise it is 0. For the negative example, we modify
the objective function as follows:

L = −Σ2
t=1Σ

n
i=1[y

t
i log at

i + (1 − yt
i) log(1 − at

i)] (7a)

where yt
i = 1

n for all positions.

3.2 Passage Triggering Based Method

Unlike the answer extraction based methods that extract and judge the answer in
one model, the passage triggering based method divides this task into two steps.
We first apply a passage triggering model to determine whether the passage
contains the answer. We then apply the answer extraction model only on the
triggered passage for the answer.

For passage triggering, we follow the above-mentioned matching strategy
to obtain the question-aware passage representation {vP

j }nj=1 in Eq. 2 and the
question representation rQ in Eq. 5. We apply an attention pooling to aggregate
the matching information to a fix length vector.

sj = vTtanh(WP
v vP

j + WQ
v rQ) (8a)

ai = exp(si)/Σn
j=1exp(sj) (8b)

rP = Σn
i=1aiv

P
i (8c)

We then feed rP to a multi-layers perceptron for the decision. The objective
function is to minimize the following cross entropy:

L = −
N∑

i=1

[yi log pi + (1 − yi) log(1 − pi)] (9a)

where pi is the probability that the passage contains the answer. yi denotes a
label, yi = 1 means the passage contains the answer, otherwise it is 0.

When predicting the answer, we first judge whether the passage contains
the answer by comparing the probability with a pre-selected threshold on the
development set. For the triggered passage, we then apply the extraction model
for the answer.

3.3 Answer Validation Based Method

There is an issue posed by answer information not being considered in the pas-
sage triggering based method. To this end, we propose the answer validation
model, which first extracts an answer then validates whether it is correct.

I Know There Is No Answer: Modeling Answer Validation 91

We first apply the answer extraction model to obtain the answer span. Next,
we incorporate the answer information into the encoding part by adding addi-
tional features fs

t and fe
t , to indicate the start and end positions of the extracted

answer span. fs
t = 1 and fe

t = 1 mean the position t is the start and end of the
answer span, respectively.

uP
t = BiGRUP (uP

t−1, [e
P
t , charPt , fs

t , fe
t]) (10a)

Unlike the answer extraction that predicts the answer on the passage side,
answer validation needs to judge whether the question is well answered. There-
fore, we reverse the direction of all above-mentioned equations to aggregate the
passage information with the question. Specifically, we reverse Eq. 2 to obtain
the passage-aware question representations,

stj = vTtanh(WP
u uP

j + WQ
u uQ

t + WQ
v vQ

t−1) (11a)

at
i = exp(sti)/Σn

j=1exp(stj) (11b)

cPt = Σn
i=1a

t
iu

P
i (11c)

gt = sigmoid(Wg[u
Q
t , cPt]) (11d)

[uQ
t , cPt]∗ = gt � [uQ

t , cPt] (11e)

vQ
t = GRU(vQ

t−1, [u
Q
t , cPt]∗) (11f)

Based on the Eq. 11, we obtain the vQ
t for each position of questions. We then

make the decision by judging whether each question word is well answered by the
passage and answer with three steps. First, we measure the passage-independent
importance of question words. We hold that the importance of each word in
the question should not vary no matter what the passage and answer are. For
example, the interrogative and name entity are usually more important than the
conjunction and stopwords. Therefore, we apply the gate mechanism to select
the important information, which is produced by the original representation of
each question word.

gt = sigmoid(Wgu
Q
t), vQ

t ∗ = gt � vQ
t (12a)

Next, we obtain the matching score of each question word by a multi-layers
perceptron,

sQt ∝ exp(W2(tanh(W1v
Q
t ∗))) (13a)

Finally, we combine the matching score of question words adaptively. We apply
the attention mechanism on the matching vector vQ

t ∗ based on the learned
parameter vs to obtain the weight of each question, and then apply it to weighted-
sum the score sQt for the final score s.

stj = vTtanh(Wvvs + WQ
u vQ

t ∗) (14a)

at
i = exp(sti)/Σm

j=1exp(stj) (14b)

s = Σm
i=1a

t
is

Q
t (14c)

92 C. Tan et al.

As both the score and the weight of each question word are normalized, we treat
the final score s as the probability that the answer is correct.

L = −
N∑

i=1

[yi log s + (1 − yi) log(1 − s)] (15a)

where yi denotes a label, yi = 1 means the answer is correct, otherwise 0.
When predicting the answer, we compare s with a threshold pre-selected

on the development set to determine whether to answer the question with the
extracted answer.

3.4 Implementation Details

For all above-mentioned models, we use 300-dimensional uncased pre-trained
GloVe embeddings [10]3 without update during training. We use zero vectors to
represent all out-of-vocabulary words. Hidden vector length is set to 150 for all
layers. We apply dropout [14] between layers, with a dropout rate of 0.2. The
model is optimized using Adam [7] with default learning rate of 0.002.

4 Experiments

To evaluate methods in this task, we build a new dataset SQuAD-T based on the
SQuAD dataset and propose using F-measure on the positive examples and over-
all accuracy for all data for evaluation. We report results of all above-mentioned
models. Experimental results show that our answer validation model achieves the
best F1 score and accuracy on the SQuAD-T dataset. In addition, we provide
detailed comparisons and analysis of all methods.

4.1 Dataset Construction

In real-life application (i.e. search engine), given a question (or query), it usually
first retrieves the relevant passage then discriminates whether there is an answer.
In this work, we simulate this process to build the SQuAD-T dataset based
on the SQuAD dataset. Specifically, we use Lucene to index all passages in
the SQuAD dataset. Then for each question in the SQuAD dataset, we obtain
one relevant passage by searching the question with Lucene using its default
ranker based on the vector space model and TF-IDF4. We observe that only
65.67% of questions whose most related passages are still original corresponding
passages in the SQuAD dataset. We then treat these question and passage pairs
as the positive examples in which the passages contain the answer. For other
questions, we select the top-ranked passage that does not contain the answer as

3 http://nlp.stanford.edu/data/glove.6B.zip.
4 Details can be found in https://lucene.apache.org/core/2 9 4/api/core/org/apache/

lucene/search/Similarity.html.

http://nlp.stanford.edu/data/glove.6B.zip
https://lucene.apache.org/core/2_9_4/api/core/org/apache/lucene/search/Similarity.html
https://lucene.apache.org/core/2_9_4/api/core/org/apache/lucene/search/Similarity.html

I Know There Is No Answer: Modeling Answer Validation 93

the negative example. As the author of SQuAD only publishes the training set
and the development set, we split the 10,570 instances in the development set to
5,285 for development and 5,285 for test. The statistics of the SQuAD-T dataset
are shown in Table 2.5

Table 2. Statistics of the SQuAD-T dataset.

Train Dev Test

Question 86,830 5,285 5,285

Positive 57,024 3,468 3,468

Negative 29,806 1,817 1,817

4.2 Evaluation Metrics

Previous work adopts Exact Match and F1
6 to evaluate the performance of the

reading comprehension model [12]. These metrics are to evaluate the extracted
answer in the case that the passage must contain the answer, and hence are not
suitable for data in which there is no answer. In this work, we propose using
precision, recall and F1 scores at the question level to evaluate this task. A
question is treated as a positive case only if it contains the correct answer in the
corresponding passage. Given the question set Q, Q+ is the set where there is
an answer in the passage to answer the question, otherwise Q−. T+ is the set
where the model gives an answer, otherwise T−. A+ is the set where the given
answer is correct, otherwise A−. We define the F-measure as follows:

Precision =
|A+|
|T+| , Recall =

|A+|
|Q+| , F1 =

2 × Precision × Recall

Precision + Recall
(16a)

In addition, we define the overall accuracy as follows:

Acc =
|A+| + |T− ∩ Q−|

|Q| (17a)

4.3 Main Result

We show the result in terms of precision, recall, and F1 in Table 3, and illustrate
the Precision-Recall curves on the development and test set in Fig. 1, respec-
tively. The answer extraction model only achieves 68.59 and 67.50 in terms of
F1 on the development set and test set, respectively. Since the probability of
the answer is normalized on each passage, the score is relative and therefore
5 We release the dataset in https://github.com/chuanqi1992/SQuAD-T.
6 Here the F1 score is calculated at the token level between the true answer and the

predicted answer.

https://github.com/chuanqi1992/SQuAD-T

94 C. Tan et al.

Table 3. Results in terms of precision, recall, and F1 on the SQuAD-T development and
test set. *Significant improvement over the baseline method of the answer extraction
(underlined) (t-test, p < 0.05).

Method Development set Test set

Prec Rec F1 Prec Rec F1

Answer extraction 66.70 70.59 68.59 66.35 68.69 67.50

Answer extraction with no-answer
option

74.48 67.50 70.82 74.63 67.44 70.86

Answer extraction with modified
objective function

74.63 67.68 70.98 73.09 66.35 69.55

Passage triggering then extraction 59.65 74.65 66.32 58.27 73.33 64.94

Answer validation 69.73 73.41 71.53* 68.74 73.93 71.24*

performs worse for judging whether it is a real answer. In addition, this model
achieves 78.374 and 77.105 in terms of Exact Match on the positive examples in
the development and test set, respectively, which is used to provide the extrac-
tion result for the passage triggering based model and answer validation model.
It determines the max recall of these related models shown in Fig. 1.

Improving the answer extraction model by adding the no-answer option and
modifying the objective function greatly improves the result. The passage trig-
gering based method only achieves 66.32 and 64.94 on the development set and
test set, respectively. We observe that the answer validation model obviously out-
performs the passage triggering based method since it incorporates the answer
information. Our answer validation model outperforms all other baselines and
achieves best the F1 score with 71.53 and 71.24 in the development set and test
set, respectively.

We show the overall accuracy on the SQuAD-T development and test set
in Table 4. The answer extraction model with the no-answer option and modi-
fied objective function consistently improve the result of the answer extraction.
Our answer validation model achieves the best overall accuracy of 74.60 on the
SQuAD-T test set.

Table 4. Results in terms of overall accuracy on the SQuAD-T development and test
set.

Method Dev Test

Answer extraction 65.26 64.34

Answer extraction with no-answer option 74.65 74.48

Answer extraction with modified objective function 74.14 73.08

Passage triggering then extraction 63.28 62.44

Answer validation 73.98 74.60

I Know There Is No Answer: Modeling Answer Validation 95

4.4 Model Analysis

Figure 1 shows the precision-recall curves on the development set and test set,
respectively. We observe that the answer extraction based method achieves better
precision when the recall is relatively low. With the increase of the recall, the
precision of the answer extraction model obviously decreases, which indicates
that the score of the answer extraction is not suitable for judging whether it is
a real answer. Improving the answer extraction model by the no-answer option
or modified objective function can partly relieve this issue. However, we observe
that the max recall of these two improved methods is much lower than the answer
extraction model in Fig. 1, which indicates that training these two models with
negative examples leads to worse extraction precision on the positive examples.
Therefore, we argue that the answer extraction model should only be trained
on the positive example for better extraction precision. The answer validation
model achieves better performance than the passage triggering based method.
Our answer validation model almost maintains stable precision with the increase
of the recall, which leads to the best F1 score on the SQuAD-T dataset.

Table 5 shows the detailed result distribution of all methods. We observe that
the answer extraction model with no-answer option and modified objective func-
tion achieve the lower ratio in Q−T+ and higher ratio in Q−T−, which shows
the effectiveness of refusing to give an answer when there is no answer. How-
ever, these two methods sacrifice the precision as they have much lower ratios
in Q+T+A+. In addition, they also have higher ratios in Q+T−. Therefore, if
we calculate the F-measure of negative examples, the result of answer extraction
with no-answer option and modified function are 80.49 and 78.96, respectively,

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90

Pr
ec

is
io

n

Recall

Answer Extrac on
Answer Extrac on with No-Answer Op on
Answer Extrac on with Modified Objec ve Func on
Passage Triggering then Extrac on
Answer Valida on 0

10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90

Pr
ec

is
io

n

Recall

Answer Extrac on
Answer Extrac on with No-Answer Op on
Answer Extrac on with Modified Objec ve Func on
Passage Triggering then Extrac on
Answer Valida on

Fig. 1. Precision-Recall curves on the development and test set.

Table 5. The result distribution on the SQuAD-T test set. The values are percentages
in corresponding categories.

Method Q+T+A+ Q+T+A− Q+T− Q−T+ Q−T−

Answer extraction 45.07 7.72 12.83 15.14 19.24

+ No-answer option 44.26 10.88 10.49 4.16 30.22

+ Modified objective function 43.54 11.18 10.90 4.84 29.54

Passage triggering then extraction 48.12 14.40 3.10 20.06 14.32

Answer validation 48.51 13.77 3.33 8.29 26.09

96 C. Tan et al.

which is still lower than 81.79 for the answer validation model. The passage
triggering based method achieves a worse result with the highest ratio in Q−T+

because it does not consider the answer information when making the decision.
The answer validation model achieves the better results in Q+T+A+. Mean-
while, it also achieves relative lower ratio in Q−T+ and relative higher ratio
in Q−T− compared with other methods using the answer extraction model to
extract the answer, which indicates that it performs better in refusing to give
the answers when passages do not contain the answers without performance
degradation when passages contain the answers. Our answer validation model
therefore achieves the best result in terms of F1 and overall accuracy in the
SQuAD-T test set.

5 Conclusion and Future Work

In this paper, we study the machine reading comprehension task in which
whether the passage contains the answer is not specified. Therefore the sys-
tem needs to correctly refuse to give an answer when a passage does not contain
the answer. We develop several baseline methods including the answer extrac-
tion based method, the passage triggering based method, and propose the answer
validation method for this task. Experiments show that our proposed answer val-
idation model outperforms all other baseline methods on the SQuAD-T test set.
We notice that Rajpurkar et al. build a dataset SQuAD2.0 in which questions
are written by humans. We will test our methods on this benchmark dataset in
the future.

Acknowledgments. We greatly thank Hangbo Bao for helpful discussions. Chuanqi
Tan and Weifeng Lv are supported by the National Key R&D Program of China (No.
2017YFB1400200) and National Natural Science Foundation of China (No. 61421003
and 71501003).

References

1. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading Wikipedia to answer open-
domain questions. In: ACL (2017)

2. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP, pp. 1724–1734. Association for Com-
putational Linguistics (2014)

3. Clark, C., Gardner, M.: Simple and effective multi-paragraph reading comprehen-
sion. arXiv preprint arXiv:1710.10723 (2017)

4. Huang, H.Y., Zhu, C., Shen, Y., Chen, W.: FusioNnet: Fusing via fully-aware
attention with application to machine comprehension. In: ICLR (2018)

5. Joshi, M., Choi, E., Weld, D., Zettlemoyer, L.: Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In: ACL, pp. 1601–1611.
Association for Computational Linguistics (2017)

http://arxiv.org/abs/1710.10723

I Know There Is No Answer: Modeling Answer Validation 97

6. Jurczyk, T., Zhai, M., Choi, J.D.: SelQA: a new benchmark for selection-based
question answering. In: 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 820–827. IEEE (2016)

7. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Levy, O., Seo, M., Choi, E., Zettlemoyer, L.: Zero-shot relation extraction via
reading comprehension. In: CoNLL, pp. 333–342. Association for Computational
Linguistics (2017)

9. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng, L.:
MS MARCO: a human generated machine reading comprehension dataset. arXiv
preprint arXiv:1611.09268 (2016)

10. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP, pp. 1532–1543 (2014)

11. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable ques-
tions for squad. In: ACL (2018)

12. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. In: EMNLP (2016)

13. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for
machine comprehension. In: International Conference on Learning Representations
(2017)

14. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

15. Tan, C., Wei, F., Yang, N., Du, B., Lv, W., Zhou, M.: S-Net: from answer extraction
to answer generation for machine reading comprehension. AAAI (2018)

16. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 28. Curran Associates, Inc. (2015)

17. Wang, S., Jiang, J.: Learning natural language inference with LSTM. In: The 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL HLT 2016 (2016)

18. Wang, S., Jiang, J.: Machine comprehension using match-LSTM and answer
pointer. In: International Conference on Learning Representations (2017)

19. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks
for reading comprehension and question answering. In: Proceedings of the 55th
ACL, pp. 189–198. Association for Computational Linguistics (2017)

20. Xiong, C., Zhong, V., Socher, R.: Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 (2016)

21. Yang, Y., Yih, W.t., Meek, C.: WikiQA: a challenge dataset for open-domain
question answering. In: Proceedings of EMNLP, pp. 2013–2018. Citeseer (2015)

22. Zhao, J., Su, Y., Guan, Z., Sun, H.: An end-to-end deep framework for answer trig-
gering with a novel group-level objective. In: EMNLP, pp. 1276–1282. Association
for Computational Linguistics (2017)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.01604

Learning to Converse Emotionally Like
Humans: A Conditional Variational

Approach

Rui Zhang and Zhenyu Wang(B)

Department of Software Engineering, South China University of Technology,
Guangzhou, People’s Republic of China

z.rui16@mail.scut.edu.cn, wangzy@scut.edu.cn

Abstract. Emotional intelligence is one of the key parts of human intel-
ligence. Exploring how to endow conversation models with emotional
intelligence is a recent research hotspot. Although several emotional con-
versation approaches have been introduced, none of these methods were
able to decide an appropriate emotion category for the response. We pro-
pose a new neural conversation model which is able to produce reasonable
emotion interaction and generate emotional expressions. Experiments
show that our proposed approaches can generate appropriate emotion
and yield significant improvements over the baseline methods in emo-
tional conversation.

Keywords: Emotion selection · Emotional conversation

1 Introduction

The ability of a computer to converse in a natural and coherent manner with
humans has long been held as one of the primary objectives of artificial intel-
ligence, yet conventional dialog systems continue to face challenges in emotion
understanding and expression.

In the past, the research on emotional response generation focused on
the domain-specific, task-oriented dialogue systems. These methods are mainly
based on some hand-crafted emotion inference rules to choose a reasonable strat-
egy, and retrieve a suitable pre-designed template for response generation.

However, these approaches are not suitable for open-domain chatterbot, since
there are large amount of topics and more complex emotion states in chitchat
conversation. For instance, if the user says “my cat died yesterday”, it is reason-
able to generate response like “so sorry to hear that” to express sadness, also
it is appropriate to generate response like “bad things always happen, I hope
you will be happy soon” to comfort the user. Although some neural network
based methods for open-domain emotional conversation [3,17,18,20] have been
proposed recently, yet these approaches mainly focused in generating emotional

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 98–109, 2018.
https://doi.org/10.1007/978-3-319-99495-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_9&domain=pdf

Learning to Converse Emotionally Like Humans 99

expressions and none of them provide a mechanism to determine which emotion
category is appropriate for response generation.

This paper presents two kinds of emotion sensitive conditional variational
autoencoder (EsCVAE) structure for determining a reasonable emotion category
for response generation. Just the same as children learn to converse emotionally
through imitation, the principle idea is to model the emotion interaction patterns
from large-scale dialogue corpus as some kind of distribution, and sample from
this emotion interaction distribution to decide what kind of emotion should be
expressed when generating responses.

As far as we know, this is the first work to determine an appropriate emotion
category for current large-scale conversation generation model. To sum up, our
contributions are as follows:

– We propose the EsCVAE-I and EsCVAE-II model to learn to automatically
specify a reasonable emotion category for response generation. Experiments
show that our proposed approaches yield significant improvements over the
baseline methods.

– We show that there are some frequent emotion interaction patterns in humans
dialogue (e.g. happiness-like, angry-disgust), and our models are able to learn
such frequent patterns and apply it to emotional conversation generation.

2 Related Work

2.1 Conversation Generation

In recent years, there is a surge of research interest in dialogue system. Due to the
development of deep neural network, learning a response generation model within
a machine translation (MT) framework from large-scale social conversation cor-
pus becomes possible. Following the principle idea of sequence-to-sequence archi-
tecture, recurrent network based models [11,16] and VAE based models [2,10]
were successively proposed. The basic idea of VAE is to firstly encode the input
x into a probability distribution z, and then to apply a decoder network to
reconstruct the original input x using samples from z.

To better control the generative process, the conditional variational autoen-
coder (CVAE) [4,12] is recently introduced to generate diverse texts conditioned
on certain attributes c. The conditional distribution in the CVAE is defined as
p(x, z|c) = p(x|z, c)p(z|c). By approximating p(x|z, c) and p(z|c) using deep neu-
ral network (parameterized by θ), the generative process of x is: (1) sample a
latent variable z from the prior network pθ(z|c), and (2) generate x through the
response decoder pθ(x|z, c). As proposed in [15], CVAE can be trained by maxi-
mizing the variational lower bound of the conditional log likelihood. By assum-
ing the z follows Gaussian distribution and introducing a recognition network
qφ(z|x, c) to approximate the true posterior distribution p(z|x, c), the variational
lower bound can be written as:

L(θ, φ;x, c) = −KL(qφ(z|x, c)||pθ(z|c)) + Eqφ(z|x,c)[log pθ(x|z, c)] (1)
≤ log p(x|c)

100 R. Zhang and Z. Wang

Further, Zhao et al. [19] introduced Knowledge-Guided CVAE (kgCVAE) to
get benefits from linguistic cues. They assumed that in kgCVAE the generation
of x also depends on the linguistic cues y, and have proved that the kgCVAE
based dialogue model can more easily control the model’s output by cooperating
with the linguistic cues.

2.2 Emotional Intelligence

Emotional intelligence is one of the key parts of human intelligence. Exploring
the influence of emotional intelligence on human-computer interaction has a long
history. Experiments show that dialogue systems with emotional intelligence lead
to less breakdowns in dialogue [6], and enhance users’ satisfaction [9].

In the early studies, a few of emotion modeling approaches were introduced
to construct emotional dialogue systems. Polzin et al. [8] proposed a pioneer
work in emotional human-computer conversation, which is capable of employing
different discourse strategies based on users’ affection states. Andre et al. [1]
integrates social theory of politeness with cognitive theory of emotions to endow
dialogue systems with emotional intelligence. Skowron [13,14] quantize users’
emotion via affective profile and respond to users’ utterances at content- and
affect- related levels.

Recently, neural network based methods for emotional text generation have
been investigated. Zhou et al. [20] proposed Emotional Chatting Machine (ECM)
to generate emotional response by adopting emotion category embedding, inter-
nal emotional memory and external memory. Ghosh et al. [3] introduced Affect-
LM which is able to generate emotionally colored conversational text in five
specific affect categories with varying affect strengths.

Unfortunately, none of these neural network based approaches provides
a mechanism to determine which emotion category is appropriate for emo-
tional response generation. These works, mainly focused in generating emotional
expressions, are either driven by pre-defined rules, or in need of specifying target
emotion manually. Thus, in this paper we introduce two kinds of EsCVAE model
to address this problem.

3 Proposed Models

3.1 Problem Definition

Our models aim to learn the inner relationship of emotional interaction, and
to automatically specify a reasonable emotion category for response generation
given an input utterance. In practice, however, it is hard to evaluate the appro-
priateness if we only predict the emotional category. Therefore, we reformulate
the task as below:

Given a post utterance up = (wp1 , wp2 , · · · , wpm
) and its emotion category ep,

the goal is to predict a reasonable emotion category er for response generation,
and generate a response utterance ur = (wr1 , wr2 , · · · , wrn

) which is coherent

Learning to Converse Emotionally Like Humans 101

with er, where wpk
and wrk

are the k-th words in the post utterance and the
response utterance, respectively. The emotions are divided into six categories
{Anger, Disgust, Happiness, Like, Sadness, Other}.

3.2 EsCVAE-I: Conditioned on Emotions only

Since most rule-based strategies are triggered according to the emotion type of
the input text, we firstly consider a variational autoencoder architecture condi-
tioned on emotional information.

Figure 1(a) delineates an overview of our EsCVAE-I model. An emotional
category embedding network is adopted to represent the emotion category of
the utterance by a real-value, low dimensional vector, since an emotion category
provides a high-level abstraction of an expression of the emotion. We randomly
initialize the vector of each emotion categories, and then learn the vectors of
emotion category through training. Thus, the emotion categories of the post
utterance and the response utterance are represented by emotion embedding
vectors ep and er, respectively. A bidirectional GRU network is adopted as the
response encoder to encode the response utterance ur into a fixed-sized vector
ur, by concatenating the last hidden states of the forward and backward RNN.
The post encoder is another GRU network that encodes the post utterance up

into a vector up.
To capture the inner relationship of emotional interaction, a conditional vari-

ational autoencoder architecture is applied in the proposed model. In EsCVAE-I
model we consider the post emotion ep as the condition c and response emo-
tion er as the linguistic feature y. The target utterance x is simply the response

Fig. 1. Illustrations of our proposed models.

102 R. Zhang and Z. Wang

utterance ur. Assuming latent variable z follows isotropic Gaussian distribution,
with the recognition network qφ(z|x, c, y) ∼ N (μ, σ2I) and the prior network
pθ(z|c) ∼ N (μ′, σ′2I), we have:

[
μ

log(σ2)

]
= Wr

⎡
⎣x

c
y

⎤
⎦ + br = Wr

⎡
⎣ur

ep

er

⎤
⎦ + br (2)

[
μ′

log(σ′2)

]
= MLPp(c) = Wpep + bp (3)

In the training stage, we obtain samples of z from N (z;μ, σ2I) predicted by
the recognition network. The response decoder is a GRU network with initial
state s0 = Wi[z, c, er, up] + bi, which then predicts the words in x sequentially.
An MLP is adopted to predict the response emotion category e′

r = MLPy(z, c)
based on z and c. While testing, samples of z is obtained from N (z;μ′, σ′2I)
predicted by the prior network. And the initial state of the response decoder
is calculated as: s0 = Wi[z, c, e′

r, up] + bi, where e′
r is the predicted response

emotion.
The proposed model is trained by minimizing the reconstruction loss while

maximizing the variational lower bound. The reconstruction loss is calculated
based on the cross entropy error. Following [19] the variational lower bound can
be calculated as:

L(θ, φ;x, c, y) = −KL(qφ(z|x, c, y)||pθ(z|c))
+ Eqφ(z|x,c,y)[log p(x|z, c, y)] (4)
+ Eqφ(z|x,c,y)[log p(y|z, c)]

3.3 EsCVAE-II: Sensitive to both Content-Level and Emotion-Level
Information

A natural extension of the previous approach is a model that is also sensitive
to the content information, since emotion interactions in dialogue are not only
related to the emotional state of the talkers, but also closely related to the topic
of the conversation.

In order to get benefits from these features, we propose the EsCVAE-II model.
In this model we consider both the content-level and emotion-level information of
the post utterance as condition c, by concatenating the utterance and emotion
vectors: c = [up, ep]. Following the same assumption, the recognition network
qφ(z|x, c, y) and the prior network pθ(z|c) are calculated as:

[
μ

log(σ2)

]
= Wr

⎡
⎣x

c
y

⎤
⎦ + br = Wr

⎡
⎣ ur

[up, ep]
er

⎤
⎦ + br (5)

[
μ′

log(σ′2)

]
= MLPp(c) = Wp[up, ep] + bp (6)

Learning to Converse Emotionally Like Humans 103

Then we obtain samples of z either from N (z;μ, σ2I) predicted by the recog-
nition network (while training) or N (z;μ′, σ′2I) predicted by the prior network
(while testing). Since the content information of post utterance up has been
contained in c, the initial state of the response decoder is therefore changed to
s0 = Wi[z, c, er] + bi. Details of the EsCVAE-II model are shown in Fig. 1(b).

4 Experiment Setup

4.1 Datasets

The NLPCC Corpus We use the Emotional Conversation Dataset of NLPCC
2017, which consists of 1,119,207 post-response pairs, to evaluate our approaches.
The dataset is automatically annotated by a six-way Bi-LSTM classifier which
is reported to reach an accuracy of 64%1.

The STC-2 Corpus We also use the Short Text Conversation Corpus (STC-2)
dataset, which consists of 4,433,949 post-response pairs collected from Weibo.
We apply the same Bi-LSTM classifier to annotate this corpus.

4.2 Model Details

We implement the encoders as 2-layer GRU and the response generator as single-
layer GRU RNNs, with input and hidden dimension of 400 and maximum utter-
ance length of 25. The dimensions of word embedding and emotion embedding
are also set to 400. We use a KL term weight linearly annealing from 0 to 1 during
training, to avoid vanishingly small KL term in the VAE module as introduced
in [2]. Both the prior network and the recognition network consist of 200 hidden
neurons.

In order to generate a better response, we adopt the learning to start (LTS)
technique [21], which use an additional network layer to predict the first word
instead of using a “GO” symbol as the first word. In addition, beam-search is
also adopted with beam size of 5.

4.3 Evaluation Results

Since automatically evaluating an open-domain generative dialog model is still
an open research challenge [5], we provide the following metrics to measure our
models.

Quantitative Analysis The following metrics are proposed to automatically
evaluate our models. At the content level, perplexity and BLEU are adopted.
At the emotion level, we introduce emotion accuracy and EIP difference degree
as the evaluating metrics. We randomly sample 5000 posts for test. Details of
quantitative analysis results are reported in Table 1.
1 http://tcci.ccf.org.cn/conference/2017/dldoc/taskgline04.pdf.

http://tcci.ccf.org.cn/conference/2017/dldoc/taskgline04.pdf

104 R. Zhang and Z. Wang

Table 1. Performance of each model on automatic measures. Note that our BLEU
scores has been normalized to [0,1].

Corpora Model Perplexity BLEU Acc. Diff.

NLPCC corpus Seq2Seq 101.0 0.105 - 1.195

CVAE 47.2 0.090 - 0.171

EsCVAE-I 46.1 0.114 0.675 0.085

EsCVAE-II 44.3 0.139 0.690 0.072

STC-2 corpus Seq2Seq 88.4 0.156 - 0.289

CVAE 20.7 0.224 - 0.048

EsCVAE-I 20.9 0.211 0.621 0.042

EsCVAE-II 19.0 0.230 0.627 0.035

BLEU is a popular metric which measures the geometric mean of modified
n-gram precision with a length penalty [7]. We use BLEU-3 as lexical similarity
metrics and normalize the score to [0,1]. Following [16] we also employ perplexity
as an evaluation metric at the context level.

We quantitatively measure emotion accuracy to evaluate the EsCVAE-I and
EsCVAE-II, which is defined as the agreement between the expected emotion
category e′

r (generated by our models) and emotion category of the corresponding
generated response (predicted by the Bi-LSTM classifier mentioned in Sect. 4.1).

Fig. 2. Visualization of emotion interaction on NLPCC Corpus. The emotion categories
on X/Y-axis (from left/top to right/bottom) are: Other, Like, Sadness, Disgust, Anger,
Happiness.

Learning to Converse Emotionally Like Humans 105

To evaluate the imitative ability of the emotional dialogue model, we adopt
the EIP difference degree as the evaluating metric. Emotion interaction pattern
(EIP) is defined as the pair of emotion categories of a post and its response.
The value of an EIP is the conditional probability P (er|ep) = P (er, ep)/P (ep).
We define the EIP difference degree as the agreement between the EIP distri-
bution of the original corpus and the EIP distribution of the generated results,
calculated as:

Difference degree =
∑

r

∑
p

|Po(er|ep) − Pg(er|ep)|2 (7)

where Po(er|ep) stands for the emotion interaction distribution of the gener-
ated results, while Pg(er|ep) is the distribution of the original corpora. In other
words, a lower difference degree indicates that the model has a better ability to
imitate emotion interaction.

As shown in Table 1, we have the following observations: (1) CVAE-based
seq2seq model performs much better than vanilla seq2seq model, since vanilla
seq2seq model tends to generate “safe” and dull responses, which lead to higher
difference degree and higher perplexity, and (2) thanks to the external linguistic
feature (response emotion), both EsCVAE models perform better on difference
degree metric. Figures 2 and 3 visualize the EIP distribution by heat maps, where
the color darkness indicates the strength of an interaction. We found that both
EsCVAE models perform better on emotion interaction imitating.

Fig. 3. Visualization of emotion interaction on STC-2 Corpus.

106 R. Zhang and Z. Wang

Human Evaluation In order to better evaluate the proposed model at both
content- and emotion- level, we also analyze the generated results by human
evaluation. We recruit 3 annotators for human evaluation experiments. Annota-
tors are asked to score the generated responses in terms of emotional accuracy
and naturalness. Naturalness are annotated according to the following criteria:

IF (Coherence and Fluency)
IF (Emotion Appropriateness)

SCORE 2
ELSE

SCORE 1
ELSE

SCORE 0

We extract 300 posts from the test set, and for each model we generate 3
responses for each post. The results of human evaluation for the quality of
response are shown in Table 2. We calculate the Fleiss’ kappa as the statis-
tical measure of inter-rater consistency, the average score of Fleiss’ kappa for
naturalness is 0.471 and for emotion accuracy is 0.744. As can be seen, the
EsCVAE-I model gets the best performance in emotion accuracy metric, while
the EsCVAE-II model achieves better score in naturalness metric.

Table 2. Human evaluation in terms of emotion accuracy and naturalness.

Corpora Model Acc. Naturalness

NLPCC corpus Seq2Seq - 1.080

CVAE - 1.163

EsCVAE-I 0.283 1.176

EsCVAE-II 0.250 1.217

STC-2 corpus Seq2Seq - 1.170

CVAE - 1.187

EsCVAE-I 0.367 1.193

EsCVAE-II 0.353 1.250

In the progress of human evaluation, we found that vanilla seq2seq model
failed to capture emotion interaction, and most dull responses generated by this
model, such as “Me too” and “Haha”, are considered as emotionally inappro-
priate. On the other hand, the EsCVAE-I and EsCVAE-II model are capable
of learning frequent EIPs from the training corpus and generating reasonable
emotional responses. For example, when the post utterance is in a negative emo-
tional state (anger, disgust, ...), the EsCVAE based models tend to predict the
negative emotional category, and vice versa (as shown in Table 3).

In addition, the emotion accuracy in human evaluation is much lower than in
automatically evaluation, which indicates that it is still hard to assess a dialogue
model at emotion level, since this metric is complicate and subjective.

Learning to Converse Emotionally Like Humans 107

Table 3. Sample responses generated by each model (original Chinese and English
translation).

5 Conclusion

In this paper, we propose two kinds of emotion sensitive conditional variational
autoencoder (EsCVAE) structure for emotional conversation, to model the inner
relationship of emotional interaction in human dialogue and generate emotional
responses. To our best knowledge, this is the first work to generate an appro-
priate emotion category for current large-scale conversation generation model.
Automatic and manual evaluation results show that EsCVAE based models can
predict a reasonable emotion category for response generation by learning emo-
tion interaction pattern from the training corpus.

We leave the exploration of EsCVAEs with attention mechanism for future
work. Additional accuracy improvements might be also achieved by extended
features (e.g. topics, dialog-act). At the same time, we will improve our model
by considering polite rules and persona model to avoid generating offensive
responses. We also plan to investigate the applicability of our model for task-
oriented conversation.

108 R. Zhang and Z. Wang

Acknowledgements. This work is supported by the Science and Technology Program
of Guangzhou, China(No. 201802010025), the Fundamental Research Funds for the
Central Universities(No. 2017BQ024), the Natural Science Foundation of Guangdong
Province(No. 2017A030310428) and the University Innovation and Entrepreneurship
Education Fund Project of Guangzhou(No. 2019PT103). The authors also thank the
editors and reviewers for their constructive editing and reviewing, respectively.

References

1. André, E., Rehm, M., Minker, W., Bühler, D.: Endowing spoken language dia-
logue systems with emotional intelligence. In: André, E., Dybkjær, L., Minker, W.,
Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 178–187. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24842-2 17

2. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Gen-
erating sentences from a continuous space. In: Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning, pp. 10–21 (2016)

3. Ghosh, S., Chollet, M., Laksana, E., Morency, L.P., Scherer, S.: Affect-LM: a neural
language model for customizable affective text generation. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, pp. 634–642 (2017)

4. Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., Xing, E.P.: Toward controlled
generation of text. In: International Conference on Machine Learning, pp. 1587–
1596 (2017)

5. Liu, C.W., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., Pineau, J.: How not
to evaluate your dialogue system: An empirical study of unsupervised evaluation
metrics for dialogue response generation. In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 2122–2132 (2016)

6. Martinovski, B., Traum, D.: Breakdown in human-machine interaction: the error
is the clue. In: Proceedings of the ISCA Tutorial and Research Workshop on Error
Handling in Dialogue Systems, pp. 11–16 (2003)

7. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 311–318. Association for Compu-
tational Linguistics (2002)

8. Polzin, T.S., Waibel, A.: Emotion-sensitive human-computer interfaces. In: ISCA
Tutorial and Research Workshop (ITRW) on Speech and Emotion (2000)

9. Prendinger, H., Mori, J., Ishizuka, M.: Using human physiology to evaluate subtle
expressivity of a virtual quizmaster in a mathematical game. Int. J. Hum. Comput.
Stud. 62(2), 231–245 (2005)

10. Semeniuta, S., Severyn, A., Barth, E.: A hybrid convolutional variational autoen-
coder for text generation. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 627–637 (2017)

11. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation.
In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), vol. 1, pp. 1577–1586 (2015)

12. Shen, X., Su, H., Li, Y., Li, W., Niu, S., Zhao, Y., Aizawa, A., Long, G.: A con-
ditional variational framework for dialog generation. In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), vol. 2, pp. 504–509 (2017)

https://doi.org/10.1007/978-3-540-24842-2_17

Learning to Converse Emotionally Like Humans 109

13. Skowron, M.: Affect listeners: acquisition of affective states by means of conver-
sational systems. In: Esposito, A., Campbell, N., Vogel, C., Hussain, A., Nijholt,
A. (eds.) Development of Multimodal Interfaces: Active Listening and Synchrony.
LNCS, vol. 5967, pp. 169–181. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12397-9 14

14. Skowron, M., Rank, S., Theunis, M., Sienkiewicz, J.: The good, the bad and the
neutral: affective profile in dialog system-user communication. In: D’Mello, S.,
Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6974, pp.
337–346. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24600-
5 37

15. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. In: Advances in Neural Information Processing Sys-
tems, pp. 3483–3491 (2015)

16. Vinyals, O., Le, Q.: A neural conversational model. arXiv preprint
arXiv:1506.05869 (2015)

17. Yuan, J., Zhao, H., Zhao, Y., Cong, D., Qin, B., Liu, T.: Babbling - The HIT-SCIR
system for emotional conversation generation. In: Huang, X., Jiang, J., Zhao, D.,
Feng, Y., Hong, Y. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 632–641.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73618-1 53

18. Zhang, R., Wang, Z., Mai, D.: Building emotional conversation systems using multi-
task Seq2Seq learning. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds.)
NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 612–621. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-73618-1 51

19. Zhao, T., Zhao, R., Eskenazi, M.: Learning discourse-level diversity for neural
dialog models using conditional variational autoencoders. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, pp. 654–664 (2017)

20. Zhou, H., Huang, M., Zhang, T., Zhu, X., Liu, B.: Emotional chatting machine:
emotional conversation generation with internal and external memory. arXiv
preprint arXiv:1704.01074 (2017)

21. Zhu, Q., Zhang, W., Zhou, L., Liu, T.: Learning to start for sequence to sequence
architecture. arXiv preprint arXiv:1608.05554 (2016)

https://doi.org/10.1007/978-3-642-12397-9_14
https://doi.org/10.1007/978-3-642-12397-9_14
https://doi.org/10.1007/978-3-642-24600-5_37
https://doi.org/10.1007/978-3-642-24600-5_37
http://arxiv.org/abs/1506.05869
https://doi.org/10.1007/978-3-319-73618-1_53
https://doi.org/10.1007/978-3-319-73618-1_51
http://arxiv.org/abs/1704.01074
http://arxiv.org/abs/1608.05554

Response Selection of Multi-turn
Conversation with Deep Neural Networks

Yunli Wang1, Zhao Yan2, Zhoujun Li1(B), and Wenhan Chao1

1 Beihang University, Beijing, China
{wangyunli,lizj,chaowenhan}@buaa.edu.cn

2 Tencent, Beijing, China
zhaoyan@tencent.com

Abstract. This paper describes our method for sub-task 2 of Task 5:
multi-turn conversation retrieval, in NLPCC2018. Given a context and
some candidate responses, the task is to choose the most reasonable
response for the context. It can be regarded as a matching problem. To
address this task, we propose a deep neural model named RCMN which
focus on modeling relevance consistency of conversations. In addition,
we adopt one existing deep learning model which is advanced for multi-
turn response selection. And we propose an ensemble strategy for the
two models. Experiments show that RCMN has good performance, and
ensemble of two models makes good improvement. The official results
show that our solution takes 2nd place. We open the source of our code
on GitHub, so that other researchers can reproduce easily.

Keywords: Multi-turn conversation · Response selection
Relevance consistency

1 Introduction

The task 5 of NLPCC 2018 focus on how to utilize context to conduct multi-turn
human-computer conversations. It contains two sub-tasks: response generation
and response retrieval. We signed up the response retrieval task, which is to
select the most reasonable response for context from some given candidates.
The data set is real multi-turn human-to-human conversations in Chinese, and
it is in open domain.

The retrieval task can be regarded as a matching problem, which is to give
a matching score between context and response. The challenges of this task are
how to make full use of context and response: (1) identify important information
in context for response, (2) model the relationship between context and response,
(3) model the relationship between utterances in context.

Sometimes the relevance intensity of utterances in different conversations
may be quite different, especially for open domain conversations. Contexts with
different relevance intensity often have different requirement of relevance between
the context and a proper response. So, we think the last one of those challenges
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 110–119, 2018.
https://doi.org/10.1007/978-3-319-99495-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_10&domain=pdf

Response Selection of Multi-turn Conversation with Deep Neural Networks 111

is the most important for this task. To tackle these challenges, we propose a
model named RCMN using the self-matching information in context to add a
local relevance threshold for matching. In addition, we also adopt an existing
model named SMN [11]. To the best of our knowledge, SMN is state-of-the-
art model for multi-turn conversations matching. SMN focus on the relevance
between response and each utterances of context and considers the matching
information in both word level and sentence level. We finally ensemble the two
models to predict. In Sect. 4, we will introduce our method in detail. Experiments
in Sect. 5 show that RCMN is a comparable model to SMN. And because the
two models have different significant diversity, model ensemble has achieved good
improvement. Experiments details will be introduced in Sect. 5.

2 Related Work

As mentioned, this task can be regarded as a matching problem. Matching
tasks can be divided into single turn conversation matching task and multi-turn
conversation matching task. And the task is closer to multi-turn conversation
matching.

For single turn text matching task, there are several notable works: Huang
et al. (2013) propose a neural network structure which use word hashing strategy
and full-connection feed-forward neural network for text matching [3]. This is
an early application of neural networks to text matching. Hu et al. (2014) adopt
convolutional neural network for the representation of query and response, pro-
pose two neural network structures: ARC-I and ARC-II [2]. Wan et al. (2016)
adopt bidirectional LSTM for query and responses representation respectively
and explore three different interaction functions for modeling matching signals
between query and response [9]. Yang et al. (2016) propose a value shared weight
strategy and a question attention network for text matching [13]. Wan et al.
(2016) propose 2D-GRU for accumulating matching information in word inter-
action tensor [10]. Xiong et al. (2017) adopt kernel pooling for dealing with
interaction tensor [12].

Recently, researchers begin to pay attention to multi-turn conversations
matching. Lowe et al. (2015) concatenated the utterances of context and then
treated multi-turn matching as single turn matching [6]. Zhou et al. (2016) pro-
pose a multi-view model including an utterance view and a word view to improve
multi-turn response selection [14]. Wu et al. (2017) match a response with each
utter-ance at first and accumulate matching information instead of sentences by
a GRU, thus useful information for matching can be sufficiently retained [11].

3 Problem Formalization

In this task, the training data consists of raw multi-turn conversations. In the
testing data, there are 10 candidates for each dialogue session. Among candidates
for each session, only one reply is the ground truth while other candidates are

112 Y. Wang et al.

randomly sampled from the data sets. We can abstract the retrieval problem as
follow:

Assume that we have a data set D = {ci, ri, yi}Ni=1. ci represents the con-
text of conversation. Each ci consists of ki utterances: ci = {u1, u2, ..., uk}i.
ri represents a candidate response of context. yi represents whether ri is ground
truth for ci. yi = 1 means ri is a proper response for ci, otherwise yi = 0. Thus,
our goal is to learning a model M , for each pair of ci and ri, M(ci, ri) given a
matching degree between them. When yi = 1, M(ci, ri) is expected to output a
value that as close to 1 as possible, and the situation is opposite when yi = 0.
Therefore, we can transform this matching task into a classification task during
the training process. And In the prediction process, for each ci, we use M to
measure the matching degree for ci and all the candidate responses of ci, then we
choose the rj in candidate responses set {r1, r2, ..., rt} with the highest matching
degree as the correct response.

Note that testing data has no yi for sample i. And the training data consists of
raw conversation so we should transform it into the form of D. We will introduce
how to process the training data in Sect. 5.

4 System Description

As mentioned, our system adopted two deep neural networks and ensemble them
for predicting. In this Section, we will first introduce RCMN we proposed in
detail. And then we will introduce SMN briefly. Finally, we will introduce how
we ensemble the two models.

4.1 Relevance Consistency Matching Network

As mentioned, sometimes the relevance intensity of utterances in different con-
versations may be quite different. Assume that there are two conversations, one
has strong relevance between each two utterances of context denoted as c1, the
other has weak relevance denoted as c2, the proper responses for c1 and c2 are r1
and r2 respectively. If there is a model that not consider the relevance intensity
in context, the model is likely to predict that M(c1, r1) is close to 1 but M(c2, r2)
is close to 0, but the right output is both 1. To solve this problem in RCMN, we
consider to use the self-matching information in context. So, we first use RNN
[8] to get sentence level representation of utterances in context and response.
Then we let each two utterances in context and response do an interaction, then
we can get an interaction tensor. Hence, the interaction tensor contains infor-
mation of context relevance intensity and relevance between response and each
utterance in context. Considering the outstanding performance of convolutional
neural network in image processing and pattern recognition, we employ CNN [5]
for extracting local features in interaction tensor into high level representation
of matching features which is named final matching vector. To transfer the final
matching vector into matching score, we adopt a Multilayered perception which
can do a nonlinear mapping. The architecture of RCMN is shown in Fig. 1.

Response Selection of Multi-turn Conversation with Deep Neural Networks 113

Fig. 1. The architecture of RCMN.

RCMN consists of 4 parts: Sentence RNN Layer, Global Interaction Layer,
Convolution and Pooling Layer, Output Layer.

Sentence RNN Layer transfer utterances and response with word embedding
representation into a sentence level representation. Each utterance and response
will be encoded into one vector. We use the last state of GRU [1] as output.
Then the Global Interaction Layer use these vectors to generate interactions of
each (u, r) and (u, u) pair. We denote Sentence RNN Layers output as:

S = [u1, u2, ..., uk, r] (1)

In this layer, we use a series of matrixes denoted as [w1, w2, ..., wl] as inter-
action weight. For wi, we can get an interaction matrix mi, mi is computed as
follow:

mi = STwiS (2)

After Global Interaction Layer, we will get l interaction matrixes which can
also be called interaction tensor. The interaction tensor is the input of Con-
volution and Pooling Layer which contains a convolution operation and a max
pooling operation. Each mi will be a channel of convolution. The output of Con-
volution and Pooling Layer will be concatenated into one vector named final
matching vector. Finally, Output Layer which is a Multilayer perceptron use the
final matching vector to calculate the final matching score between context and
response.

4.2 Sequential Matching Network

For better modeling the relationship of response and each utterance in context,
we adopt SMN which consider the matching information in both word level and

114 Y. Wang et al.

sentence level as a supplement. It consists of three parts: Utterance-Response
Matching Layer, Matching Accumulation Layer, Matching Prediction Layer.

Utterance-Response Matching Layer used both CNN and RNN. It concerned
the matching information between each utterance of context and response. And
it considered both word level and sentence level matching information. After
Utterance-Response Matching Layer, we got some single turn matching vectors
for each utterance of context and response pair. Then Matching Accumulation
Layer used GRU to model the matching information of the entire conversation,
by letting those single turn matching vectors go through this GRU. Finally,
Matching Prediction Layer used dense layers transfers the output of Matching
Accumulation Layer into matching degree.

Due to space limitation, we will not discuss SMN further more. See [11] for
more details.

4.3 Model Ensemble

We use the weighted average of the results of each model as an ensemble result.
To get a better ensemble result, weight of each model should be positively related
to models performance. We denote the weight of Mi using traind to train as wd

mi
,

the data set d as d = {traind, vald, testd}, the precision of Mi on vald when using
traind for training as pdmi

. For convenience, we set the wd
mi

as follow:

wd
mi

=
pdmi

∑L
j (

∑H
d pdmj

)
(3)

where L means the number of models, H means the number of validation data
sets. In this paper, L is equal to 2. We denote the result of Mi on sample q
when use traind for training as rdmi

. Then the ensemble result ER of q can be
formalized as follow:

ERq =
∑L

i=1(
∑H

d=1 wd
mi

· rdmi
)

L · H
(4)

5 Experiments

Our code is available at https://github.com/jimth001/NLPCC2018 Multi Turn
Response Selection. It is implemented using python 3.6. Main external packages
we used are TensorFlow1, thulac2, word2vec3, NumPy4.

5.1 Data Sets and Metrics

We used the data sets provided by NLPCC 2018. Table 1 gives the statistics.
1 https://tensorflow.google.cn/
2 http://thulac.thunlp.org/
3 https://pypi.org/project/word2vec/
4 http://www.numpy.org/

https://github.com/jimth001/NLPCC2018_Multi_Turn_Response_Selection
https://github.com/jimth001/NLPCC2018_Multi_Turn_Response_Selection
https://tensorflow.google.cn/
http://thulac.thunlp.org/
https://pypi.org/project/word2vec/
http://www.numpy.org/

Response Selection of Multi-turn Conversation with Deep Neural Networks 115

Table 1. Statistics of origin data sets.

Train Test

Number of contexts 5000K 10K

Positive responses per context 1 1

Negative responses per context - 9

Average turns of context 3.10 3.10

Average length of utterance 10.18 10.77

Participants are required submit the index of the ground truth they inferred
for each conversation. The evaluation metric is precision of retrieved results. We
give a formalization description as follows:

percision =
∑N

i I(arg minj(M(ci, rij)) = arg mink(yik))
|D| (5)

rij ∈ {r1, r2, ..., rt}i (6)

yik ∈ {y1, y2, ..., yt}i (7)

where {r1, r2, ..., rt}i are candidate responses of ci, {y1, y2, ..., yt}i are the labels
for {r1, r2, ..., rt}i. I(·) is an indicator function.

5.2 Experiments on Training Data

In the training and validation process, we shuffle the training data provided by
organizer and partition it into 8 folds. We choose one-fold as validation set, one-
fold as testing set, and others as training set. And we use random sampling to
select 9 negative responses for each conversation in validation and testing set.
We denote the validation set, training set and testing set as val1, train1 and
test1 respectively. For further experiments, we use the same method to generate
val2, train2 and test2. Table 2 gives the statistics. We use validation set to select
hyper parameters, and use testing set to test the effect of our models.

Table 2. Statistics of data sets divided from training set.

train1 val1 test1 train2 val2 test2

Number of contexts 3750K 625K 625K 3750K 625K 625K

Positive responses per context 1 1 1 1 1 1

Negative responses per context - 9 9 - 9 9

Average turns of context 3.10 3.09 3.10 3.10 3.10 3.09

Average length of utterance 10.59 10.61 10.57 10.59 10.58 10.59

Because the training data only has raw conversations, which means that there
is no (c, r, y) pairs in the data. So, we manually construct these pairs using the

116 Y. Wang et al.

following strategy: For each conversation in training data, take the last turn as
r, other as c, and the y is 1. In the training process, for each c, random sampling
2 sentences in the whole data set as r, and the corresponding y is 0.

Our preprocessing of text is simple. We selected thulac as our tokenizer and
removed stop words using default stop words list in thulac. We adopted word2vec
[7] to generate word embedding. We set main parameters of thulac as follows:
user dict is None, T2S is True, seg only is True, filt is True. And main parameters
of word2vec are set as follows: size is 200, window is 8, sample is 1e-5, cbow is 0,
min count is 6. Parameters not mentioned are set as default value. Only train1

is used for pre-train word embedding, and all of our experiments is based on it.
The word embedding is not trainable in both models.

Finally, we set some same parameters for both two models: the maximum
context length is 10, the utterance length is 50. We padded zeros if context length
and utterance length is less than 10 and 50 respectively. If context length and
utterance length is more than 10 and 50, we chose the last 10 and 50 respec-
tively. The parameters were updated by stochastic gradient descent with Adam
algorithm [4] on a single 1080Ti GPU. The initial learning rate is 0.001, and
the parameters of Adam, β1 and β2 are 0.9 and 0.999 respectively. We adopted
cross entropy loss for training.

We finally set SMN parameters following [11]: the dimensionality of the hid-
den states of GRU in Utterance-Response Matching Layer is 200, window size
of convolution and pooling is (3, 3), the dimensionality of the hidden states of
GRU in Matching Accumulation Layer is 50.

We finally set parameters of RCMN as follows: the dimensionality of the
hidden states of GRU is 200, the shape of interaction weight is (200, 2, 200),
window size of convolution and pooling is (3, 3), the number of filters is 8, the
dimensionality of the hidden layer of MLP is 50.

The experiments result based on training data released by organizer is shown
in Table 3.

5.3 Experiment Result on Testing Data and Analysis

We used train1 and train2 to train RCMN and SMN. And ensemble these models
using the method introduced in Sect. 4. The official ranking results on test data
sets are summarized in Table 4.

We conducted ablation experiments on official test data to examine the use-
fulness of models and training data sets. Experiment result is shown in Table 5.
We can see that each model and data set contribute to the final result. The con-
tribution of train1 is more than the contribution of train2. The contribution of
RCMN is more than the contribution of SMN. Result of single model on official
test data is shown in Table 6.

Experiments shown in Tables 3 and 5 show that RCMN is a comparable
model to state-of-the-art model for multi-turn conversation response selection.
Table 3 also shows that RCMN and SMN are insensitive to data not seen on this
data set, because that the performance has not significant improvement when
training data and validation data have overlap. For example, train1 and val1

Response Selection of Multi-turn Conversation with Deep Neural Networks 117

Table 3. Experiments result on training data.

Training set Model name Testing set Precision

train1 SMN val1 60.10

train2 SMN val1 58.80

train1 RCMN val1 59.00

train2 RCMN val1 59.56

train1 RCMN+SMN val1 61.91

train2 RCMN+SMN val1 62.58

train1 and train2 RCMN+SMN val1 63.48

train1 SMN val2 60.64

train2 SMN val2 58.96

train1 RCMN val2 59.81

train2 RCMN val2 58.91

train1 RCMN+SMN val2 62.66

train2 RCMN+SMN val2 62.27

train1 and train2 RCMN+SMN val2 63.64

train1 SMN test1 60.17

train2 SMN test1 58.81

train1 RCMN test1 59.08

train2 RCMN test1 59.67

train1 RCMN+SMN test1 62.02

train2 RCMN+SMN test1 62.69

train1 and train2 RCMN+SMN test1 63.55

train1 SMN test2 60.69

train2 SMN test2 58.86

train1 RCMN test2 59.82

train2 RCMN test2 58.92

train1 RCMN+SMN test2 62.72

train2 RCMN+SMN test2 62.23

train1 and train2 RCMN+SMN test2 63.69

Table 4. Official results on test data.

System name Precision

ECNU 62.61

wyl buaa 59.03

Yiwise-DS 26.68

laiye rocket 18.13

ELCU NLP 10.54

118 Y. Wang et al.

Table 5. Evaluation results of model ablation.

Models and data sets Precision Loss of performance

All 59.03 -

– SMN 57.51 1.52

− SMN on train1 58.84 0.19

− SMN on train2 58.86 0.17

– RCMN 56.41 2.61

− RCMN on train1 58.22 0.81

− RCMN on train2 58.68 0.35

– train1 57.44 1.59

– train2 58.33 0.70

Table 6. Single model on official test data.

Training set Model name Precision

train1 SMN 56.11

train2 SMN 53.24

train1 RCMN 55.92

train2 RCMN 55.58

have no overlap but train1 and val2 have. Model Ablation shows that RCMN
slightly outperform SMN on official testing data. We think that RCMN does not
obviously outperform SMN on NLPCC 2018 data set because RCMN does not
consider the matching information in word level and the relevance intensity of
conversations in the data set is not quite different. Table 6 shows that SMN using
train2 for training is weaker than RCMN using train1 or train2 for training
on official testing data. This is probably because train2 is more different on
relevance intensity of conversations from official testing data. If so, this is also
a proof of that RCMN can adapt to different conversations having different
relevance intensity. Ensemble result shows that model ensemble brings good
improvement. We think its because of the significant diversity of the two models.

6 Conclusion

In this paper, we proposed RCMN which considered self-matching information
in context for response selection. RCMN focus on better modeling the relevance
consistency of conversations but lacks in considering word level matching infor-
mation. We also employed an existing model named SMN. Experiments in Sect. 5
show that RCMN is a comparable model to SMN, which is regarded as state-of-
the-art model for multi-turn conversation response selection. We also proposed
an ensemble strategy for the two models. And experiments show that ensemble
of models makes good improvement. We have given some reasonable analysis for

Response Selection of Multi-turn Conversation with Deep Neural Networks 119

experiments result in Sect. 5. The official results show that our solution takes 2nd
place. In feature work, we will pay more attention to capture more matching infor-
mation in single turn matching and to model relevance intensity more effectively.

Acknowledgments. This work was supported in part by the Natural Science Foun-
dation of China (Grand Nos. U61672081, 1636211, 61370126), and Beijing Advanced
Innovation Center for Imaging Technology (No. BAICIT-2016001) and National Key
R&D Program of China (No. 2016QY04W0802).

References

1. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated
recurrent neural networks on sequence modeling. Eprint Arxiv (2014)

2. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for
matching natural language sentences. Adv. Neural Inf. Process. Syst. 3, 2042–2050
(2015)

3. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-
tured semantic models for web search using clickthrough data. In: ACM Interna-
tional Conference on Conference on Information & Knowledge Management, pp.
2333–2338 (2013)

4. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Computer
Science (2014)

5. Lecun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (2014)

6. Lowe, R., Pow, N., Serban, I., Pineau, J.: The ubuntu dialogue corpus: a large
dataset for research in unstructured multi-turn dialogue systems. Computer Sci-
ence (2015)

7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. Adv. Neural Inf. Process.
Syst. 26, 3111–3119 (2013)

8. Rumerlhar, D.E.: Learning representation by back-propagating errors. Nature
323(3), 533–536 (1986)

9. Wan, S., Lan, Y., Guo, J., Xu, J., Pang, L., Cheng, X.: A deep architecture for
semantic matching with multiple positional sentence representations, pp. 2835–
2841 (2015)

10. Wan, S., Lan, Y., Xu, J., Guo, J., Pang, L., Cheng, X.: Match-SRNN: modeling the
recursive matching structure with spatial RNN. Comput. Graph. 28(5), 731–745
(2016)

11. Wu, Y., et al.: Sequential matching network: a new architecture for multi-turn
response selection in retrieval-based chatbots. In: Meeting of the Association for
Computational Linguistics, pp. 496–505 (2017)

12. Xiong, C., Dai, Z., Callan, J., Power, R., Power, R.: End-to-end neural ad-hoc
ranking with kernel pooling, pp. 55–64 (2017)

13. Yang, L., Ai, Q., Guo, J., Croft, W.B.: aNMM: ranking short answer texts with
attention-based neural matching model. In: ACM International on Conference on
Information and Knowledge Management, pp. 287–296 (2016)

14. Zhou, X., et al.: Multi-view response selection for human-computer conversation.
In: Conference on Empirical Methods in Natural Language Processing, pp. 372–381
(2016)

Learning Dialogue History for Spoken
Language Understanding

Xiaodong Zhang, Dehong Ma, and Houfeng Wang(B)

Institute of Computational Linguistics, Peking University, Beijing 100871, China
{zxdcs,madehong,wanghf}@pku.edu.cn

Abstract. In task-oriented dialogue systems, spoken language under-
standing (SLU) aims to convert users’ queries expressed by natural lan-
guage to structured representations. SLU usually consists of two parts,
namely intent identification and slot filling. Although many methods
have been proposed for SLU, these methods generally process each utter-
ance individually, which loses context information in dialogues. In this
paper, we propose a hierarchical LSTM based model for SLU. The dia-
logue history is memorized by a turn-level LSTM and it is used to assist
the prediction of intent and slot tags. Consequently, the understanding
of the current turn is dependent on the preceding turns. We conduct
experiments on the NLPCC 2018 Shared Task 4 dataset. The results
demonstrate that the dialogue history is effective for SLU and our model
outperforms all baselines.

Keywords: Spoken language understanding · Dialogue history
Hierarchical LSTM

1 Introduction

In recent years, task-oriented dialogue systems have a rapid development and
widespread application, e.g., voice assistant in mobiles and intelligent customer
service. Spoken language understanding (SLU) plays an import role in task-
oriented dialogue systems. An utterance of a user is often first transcribed to text
by an automatic speech recognizer (ASR). The SLU then interprets the meaning
of the utterance and convert the unstructured text to structured representations.
The result of SLU is passed to dialogue management module to update dialogue
state and make dialogue policy. Therefore, the performance of SLU is critical to
a task-oriented dialogue system.

SLU usually consists of two parts, namely intent identification and slot fill-
ing. Intent identification can be viewed as an utterance classification problem,
and slot filling can be viewed as a sequence labeling problem. Take the utterance
in Table 1 as an example. The intent of the utterance is navigation. There are
two slots in the utterance, i.e., the origin the Forbidden City and the destina-
tion Peking University. With the IOB (Inside, Outside, Beginning) annotation

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 120–132, 2018.
https://doi.org/10.1007/978-3-319-99495-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_11&domain=pdf

Learning Dialogue History for Spoken Language Understanding 121

Table 1. An example utterance for SLU.

Utterance Go to Peking University from the Forbidden City

Slots O O B-dest I-dest O B-orig I-orig I-orig

Intent Navigation

method, the slot labels for each word are listed in Table 1. The category of intent
and slot is usually defined by domain experts.

For intent identification, lots of classifiers have been used by previous work,
including support vector machines (SVM) [5], Adaboost [22], and convolu-
tional neural networks (CNN) [24]. For slot filling, the popular methods include
maximum entropy Markov models (MEMM) [12], conditional random fields
(CRF) [17], and recurrent neural networks (RNN) [13]. In consideration of intent
identification and slot filling are correlative, recent works have focused on the
joint model of the two tasks [4,10,26].

Previous work mainly processes each utterance individually, which does not
make use of dialogue context. In task-oriented dialogue systems, dialogue his-
tory is important to the understanding of the current utterance. As is shown in
Table 2, the third turns in Dialogue 1 and 2 are both “Cancel”. If only looking
at this turn, it is impossible to identify whether the intent is to cancel navigation
or cancel phone call. The same problem occurs in slot filling. If only looking at
the second turns in Dialogue 3 and 4, it is hard to tell whether “Washington” is
a name of a place or a person. Fortunately, with the preceding turns, it is pos-
sible to make the correct predictions. Therefore, how to model and use dialogue
history for SLU is worth of research.

Table 2. Some sample dialogues.

ID Dialogue

1 A: Go to Peking University

B: Planning route to Peking University

A: Cancel

2 A: Call Tom

B: Calling Tom for you

A: Cancel

3 A: Where are you going?

B: Washington

4 A: Who would you like to call?

B: Washington

For modeling dialogue history, Serban et al. propose a hierarchical recur-
rent encoder-decoder (HRED) model, which uses a high-level context RNN to

122 X. Zhang et al.

keep track of past utterances [19]. However, HRED is only designed for non-
task-oriented conversational dialogue systems. Following HRED, we propose a
hierarchical long short-term memory based model for SLU (HLSTM-SLU). In
HLSTM-SLU, a low-level LSTM is used to learn inner-turn representations. Max-
pooling is used to obtain a fixed-length vector of a turn. A high-level LSTM reads
the vectors iteratively and memorize useful dialogue history. The contextual rep-
resentation of a turn is used in two aspects. On one hand, it is utilized to make
prediction for the intent of the current turn. One the other hand, it is con-
catenated with low-level representation to predict the slot label for each word.
Consequently, the dialogue history is available for both intent identification and
slot filling and contributes to the two tasks.

The rest of the paper is organized as follows. The related work is surveyed in
Sect. 2. In Sect. 3, we introduce the proposed HLSTM-SLU model. Section 4 dis-
cusses the experimental setup and results on the NLPCC dataset. The conclusion
is given in Sect. 5.

2 Related Work

The study of SLU surged in the 1990s with the Air Travel Information System
(ATIS) project [16]. The early systems are basically rule-based [23]. Develop-
ers are required to write quantities of syntactic or semantic grammars. Due to
the informality of spoken language and ASR errors, rule-based methods have
run into the bottleneck and data-driven statistical approaches have become the
mainstream.

For intent identification, word n-grams are typically used as features with
generic entities, such as dates, locations. Many classifiers have been used by prior
work, such as SVM [5] and Adaboost [22]. Some researchers tried to use syntactic
information. Hakkani et al. presented an approach populating heterogeneous
features from syntactic and semantic graphs of utterance for call classification [6].
Tur et al. proposed a dependency parsing based sentence simplification approach
that extracts a set of keywords and uses those in addition to entire utterances for
completing SLU tasks [22]. For slot filling, Moschitti et al. employed syntactic
features via syntactic tree kernels with SVM [15]. Many works used CRF because
it is a well-performed model for sequence labelling [17]. Jeong and Lee proposed
triangular CRF, which coupled an additional random variable for intent on top of
a standard CRF [8]. Mairesse et al. presented an efficient technique that learned
discriminative semantic concept classifiers whose output was used to recursively
construct a semantic tree, resulting in both slot and intent labels [11].

Recently, various deep learning models have been explored in SLU. The initial
try is deep belief networks (DBN), which have been used in call routing classi-
fication [18] and slot filling [3]. Tur et al. used deep convex networks (DCN) for
domain classification and produced higher accuracy than a boosting-based classi-
fier [21]. RNN has shown excellent performance on slot filling and outperformed
CRF [13,14]. Yao et al. improved RNN by using transition features and the
sequence-level optimization criterion of CRF to explicitly model dependencies

Learning Dialogue History for Spoken Language Understanding 123

of output labels [25]. Many joint models are proposed to leverage the corre-
lation of the two tasks. Xu and Sarikaya improved the triangular CRF model
by using convolutional neural networks (CNN) to extract features automati-
cally [24]. Zhang and Wang used representations learned by Grated Recurrent
Unit (GRU) to predict slot labels and used a vector obtained by max-pooling
of these representations to predict intent labels [26]. Liu and Lane proposed a
conditional RNN model that can be used to jointly perform SLU and language
modeling [10].

To model dialogue history, Serban et al. propose a HRED model, which uses
a high-level context RNN to keep track of past utterances [19]. Furthermore,
Serban et al. extended HRED by introducing Variational Autoencoder (VAE)
and proposed VHRED model [20]. VHRED can generate more meaningful and
diverse responses. HRED and VHRED are both used in conversational dialogue
systems, while our propose HLSTM-SLU is designed for task-oriented dialogue
systems.

3 The Proposed Method

In this section, we describe the HLSTM-SLU model in detail. Due to the
dataset used in the paper is a Chinese dataset, we use Chinese dialogues as
the input to introduce our model. The model can be applied to English dia-
logues with minor modifications. We consider a dialogue D = {T1, · · · , Tm}
as a sequence of m turns. Each Ti is a sequence of n Chinese characters, i.e.,
Ti = {ci,1, · · · , ci,n}. The outputs of the model for Ti are intent label ŷT

i and
slot labels ŷc

i = {ŷc
i,1, · · · , ŷc

i,n}. An overview of the model is illustrated in Fig. 1.

B-PER I-PER I-PER

max

CALLO O O

max

CALL

Fig. 1. The structure of HLSTM-SLU. (Color figure online)

124 X. Zhang et al.

3.1 Inputs

HLSTM-SLU processes Chinese text at the character level. The input of the
model contains two parts, i.e., characters and additional features. The jth char-
acter in the ith turn ci,j is mapped to a low-dimensional dense vector ei,j ∈ R

de

via a lookup table, where de is the dimension of character embeddings. The
additional feature of ci,j is a 0–1 sparse vector ai,j ∈ R

da , where da is the total
number of features. We use two kinds of features, namely part-of-speech and
domain lexicons. Domain lexicons contain collected words for several domains,
e.g., singers, songs, and so on.

Table 3 lists feature vectors of an example utterance “ ” (little apple).
Feature “B-A” and “I-A” denote the beginning and following characters of adjec-
tives respectively. Similarly, “B-N” and “I-N” are the beginning and following
characters of nouns, and “B-song” and “I-song” are the matching result of the
song lexicon. The omitted features are all 0.

Table 3. An example of additional feature vectors.

The sparse feature vector is convert to a low-dimensional dense vector
via a linear transformation. Formally, the dense feature vector ai,j for ai,j is
computed by

ai,j = Waai,j (1)

where Wa ∈ R
da×da is the transformation matrix and da is the dimension of the

dense feature vector.
The input xi,j ∈ R

de+da for LSTM layer is the concatenation of the character
embedding and the dense representation of features, i.e.,

xi,j = [ci,j ; ai,j] (2)

where [·; ·] denotes concatenation of two vectors. With this representation as the
input, the LSTM can obtain lexical information to cover the shortage of sequence
modeling at the character level.

3.2 Hierarchical LSTM

RNN is a family of neural network that can process variable-length sequences.
It uses a recurrent hidden state to take into account the influence of past states.
Concretely, it takes a sequence of vectors X = {x1, · · · , xn} as input and outputs
a sequence H = {h1, · · · , hn} that is the representation of the sequence at each
time step.

Learning Dialogue History for Spoken Language Understanding 125

It was hard to for the vanilla RNN to capture long-term dependencies because
the gradients tend to vanish or explode [1]. Some more sophisticated activation
functions with gating units were designed, among which the most representative
variant is long short-term memory (LSTM) [7]. LSTM uses several gates to
control the proportion of the input and the proportion of the previous state to
forget. Formally, the computation of LSTM is as follows:

it = σ(Wixt + Uiht−1 + bi) (3)
ft = σ(Wfxt + Ufht−1 + bf) (4)
ot = σ(Woxt + Uoht−1 + bo) (5)
ĉt = tanh(Wcxt + Ucht−1 + bc) (6)
ct = ft � ct−1 + it � ĉt (7)
ht = ot � tanh(ct) (8)

where it, ft, ot are input gate, forget gate and output gate respectively, σ is a
sigmoid function, Wi, Wf , Wo, Wc, Ui, Uf , Uo, Uc are weight matrices, bi, bf ,
bc are biases, and xt is the input at the time step t.

A bidirectional LSTM consists of a forward and a backward LSTM. The
forward LSTM reads the input sequence as it is ordered and calculates for-
ward hidden states (

−→
h 1, ...,

−→
h n). The backward LSTM reads the sequence in

the reserve order and calculates backward hidden states (
←−
h 1, ...,

←−
h n). The bidi-

rectional hidden state is obtained by concatenating the forward and backward
hidden state, i.e.,

ht = [
−→
h t;

←−
h t] (9)

A dialogue can be considered as a sequence at two levels, i.e., a sequence
of characters for each turn and a sequence of turns. Intuitively, HLSTM-SLU
models a dialogue with two LSTMs: one at the character level and one at the
turn level. The character-level LSTM is bidirectional. The hidden states hc

i,j for
the jth character in the ith turn is calculated by

hc
i,j = BLSTM(xi,j , h

c
i,j−1, h

c
i,j+1) (10)

where BLSTM(xt, ht−1, ht+1) is an abbreviation for Eq. (9), and xi,j is as
described in Eq. (2). The character-level LSTM is illustrated by the red part
in Fig. 1.

Then, a fixed-length representation for the ith turn is obtained by the max-
pooling of all hidden states in the turn, i.e.,

rTi =
n

max
k=1

hc
i,k (11)

where the max function is an element-wise function, and n is the number of
characters in the turn.

The turn-level LSTM is unidirectional. This is because only preceding turns
are available in an online system. Therefore, the representation of the ith turn

126 X. Zhang et al.

with dialogue history rDi is calculated by

rDi = LSTM(rTi , rDi−1) (12)

where LSTM(xt, ht−1) is an abbreviation for Eqs. (3)–(8). The turn-level LSTM
is illustrated by the blue part in Fig. 1. In this way, rDi can learn important
information from preceding turns, which is useful for making predictions at the
current turn.

3.3 Intent and Slot Tagger

The rDi is used for predicting intent labels, which is illustrated by the yellow
part in Fig. 1. Instead of making individual prediction for each turn, we select
the best label sequence of all turns with a CRF, which has demonstrated good
performance on many sequence labeling tasks [2,9]. The CRF layer is not illus-
trated in Fig. 1 for simplification. Concretely, for a dialogue D = {T1, · · · , Tm},
the unnormalized score for intent tags at Ti is calculated by a fully-connected
network with rDi as input, i.e.,

sTi = WT
s rDi + bTs (13)

where WT
s is a weight matrix, bTs is a bias vector, sTi is the score vector and sTi,k

is the score of the kth intent tag for the ith turn.
For a sequence of tags yT = {yT

1 , · · · , yT
m}, the score of the sequence is

S(yT) =
m∑

i=1

sTi,yT
i

+
m−1∑

i=1

AyT
i ,yT

i+1
(14)

where A is a matrix of transition scores for intent tags and Aj,k represents the
transition score from the tag j to tag k.

The probability for the sequence yT is computed by a softmax over all possible
tag sequences, i.e.,

p(yT) =
eS(yT)

∑
ỹT ∈Y T eS(ỹT)

(15)

where Y T is all possible intent tag sequences.
During training, the objective is to maximize the log-probability of the correct

tag sequence. During decoding, the predicted intent tag sequence is the one with
the maximum score:

ŷT = argmax
ỹT ∈Y T

S(ỹT) (16)

Although all possible sequences are enumerated in Eqs. (15) and (16), they
can be computed efficiently using dynamic programming.

As for slot filling, to make use of the dialogue history, the model rereads a turn
with the contextual turn representation, which is illustrated by the green part in
Fig. 1. Concretely, for a turn Ti, the hidden states of the character-level LSTM

Learning Dialogue History for Spoken Language Understanding 127

hc
i,j and the turn representation with dialogue history rDi , another bidirectional

LSTM is used to learn the character representation with dialogue history hd
i,j .

Formally, we have

hd
i,j = BLSTM(xd

i,j , h
d
i,j−1, h

d
i,j+1) (17)

xd
i,j = [hc

i,j ; r
D
i] (18)

We also use the CRF layer for predict slot tags for each turn. The calculation
is similar to Eqs. (13)–(16) and we describe it briefly. For each turn Ti, we have

sci,j = W c
shd

i,j + bcs (19)

S(yc
i) =

n∑

j=1

sci,j,yc
i,j

+
n−1∑

i=1

Byc
i,j ,y

c
i,j+1

(20)

p(yc
i) =

eS(yc
i)

∑
ỹc
i ∈Y c

i
eS(ỹc

i)
(21)

ŷc
i = argmax

ỹc
i ∈Y c

i

S(ỹc
i) (22)

The loss function of the model is the sum of negative log-probability of the
correct tag sequence for both intent and slot, i.e.,

L = − 1
m

(
log(p(yT)) +

m∑

i=1

log(p(yc
i))

)
(23)

4 Experiments

4.1 Dataset

We use NLPCC 2018 Shared Task 4 dataset1 in our experiment. The dataset is
a sample of the real query log from a Chinese commercial task-oriented dialog
system. It includes three domains, namely music, navigation and phone call,
and an additional domain OTHERS, which is the data not covered by the three
domains. The dataset contains 4705 dialogues with 21352 turns in the training
set and 1177 dialogues with 5350 turns in the testing set. The statistics of the
intents and slots in the dataset is listed in Table 4.

We use two metrics given by the task organizer. The first metric is macro
F1 of intents and the second one is the precision of both intents and slots. The
detailed equations can be found at the guideline2.

1 http://tcci.ccf.org.cn/conference/2018/taskdata.php.
2 http://tcci.ccf.org.cn/conference/2018/dldoc/taskgline04.pdf.

http://tcci.ccf.org.cn/conference/2018/taskdata.php
http://tcci.ccf.org.cn/conference/2018/dldoc/taskgline04.pdf

128 X. Zhang et al.

Table 4. The number of intents and slots in the NLPCC dataset.

Intent Train Test Slot Train Test

music.play 6425 1641 Song 3941 983

Singer 1745 473

Theme 191 45

Style 69 26

Age 48 15

Toplist 44 16

Emotion 38 2

Language 29 2

Instrument 14 7

Scene 7 0

music.pause 300 75 -

music.prev 5 4 -

music.next 132 34 -

navigation.navigation 3961 1039 Destination 3805 1014

custom destination 132 17

Origin 14 9

navigation.open 245 56 -

navigation.start navigation 33 4 -

navigation.cancel navigation 835 206 -

phone call.make a phone call 2796 674 phone num 1100 256

contact name 779 224

phone call.cancel 22 18 -

OTHERS 6598 1599 -

Total 21352 5350 11956 3089

4.2 Experimental Setup

We compare our model with the following baselines:

– BLSTM A bidirectional LSTM model with only character embeddings as
input.

– BLSTM-FT: A bidirectional LSTM model with character embeddings and
additional features as input.

– BLSTM-CRF: Compared to BLSTM-FT, it adds a CRF layer for decoding
slot tag sequences.

– HLSTM-Intent: The difference between HLSTM-Intent and the proposed
HLSTM-SLU is that it only uses dialogue history for intent identification,
but not for slot filling.

We only use the official provided data for training without using addi-
tional data. We shuffle the data randomly at dialogue granularity and set apart

Learning Dialogue History for Spoken Language Understanding 129

10% dialogues as development set. All hyper-parameters are tuned on the devel-
opment set. Jieba3 is used for part-of-speech tagging. The neural networks are
implemented using TensorFlow. The dimension of character embeddings and
dense feature vector are both 100. The character embeddings are pretrained by
GloVe4 with a large unlabeled Chinese corpus. The dimension of character-level
LSTM is 300 (each direction is 150), and the dimension of turn-level LSTM is
300. Models are trained using Adam optimization method using the learning
rate set to 0.001.

As shown in Table 4, the data is imbalanced for different intents, which does
harm to the performance of the model. We solve the problem from two aspects.
First, we use over sampling method. The dialogues that contains the scarce
intents are copied for many times. Second, we write some simple rules to identify
some intents.

To correct ASR errors, we perform error corrections for song slot using the
song lexicon in the dataset. If a song predicted by the model is not found in the
lexicon, we try to find a song from the lexicon that has the same pinyin with the
predicted song. If still not found, we try to find a song of which the Levenshtein
distance with the predicted song is equal to 1. If multiple candidates exist, we
randomly select one.

4.3 Experimental Results

The results are demonstrated in Table 5. We can see that the BLSTM preforms
worst on both metrics. With additional features, the BLSTM-FT outperforms
BLSTM by a large margin. This is because the part-of-speech and lexicon match-
ing information is useful for predicting slot tags. The BLSTM-CRF improves the
results further. The reason is that the CRF layer model the transition of tags
explicitly, which reduces the situation of incomplete or redundant slot values and
illegal tag sequences. HLSTM-Intent uses dialogue history for intent identifica-
tion, which improves the score of intent significantly. Our HLSTM-SLU model
uses dialogue history not only for intent identification but also for slot filling
and obtains the best performance on the two metrics. The results support our
argument that the dialogue history is important for the two tasks in SLU.

4.4 Case Study

We give the result of three models for an example dialogue to show the difference
of the models intuitively. The dialogue is selected from the testing set. It contains
two turns, as follows.

– Turn 1: (Make a call with Bluetooth.)
– Turn 2: (Zhang Jie.)

3 https://github.com/fxsjy/jieba.
4 https://nlp.stanford.edu/projects/glove/.

https://github.com/fxsjy/jieba
https://nlp.stanford.edu/projects/glove/

130 X. Zhang et al.

Table 5. Results of HLSTM-SLU and baselines.

Method F1 for Intent Precision for intent & Slot

BLSTM 88.56 83.38

BLSTM-FT 89.24 86.95

BLSTM-CRF 89.31 88.62

HLSTM-Intent 93.61 90.21

HLSTM-SLU 94.19 90.84

The results of three models are demonstrated in Table 6. For BLSTM-CRF,
the Turn 2 is misclassified as OTHERS. It is because the BLSTM-CRF process
each turn individually. The obvious clue of making a phone call in Turn 1 is
not utilized when processing Turn 2. The HLSTM-Intent uses dialogue history
for intent prediction and therefore it predicts the intent of Turn 2 correctly.
However, it does not identify the contact name. The HLSTM-SLU uses dialogue
history for both tasks and the prediction is totally correct.

Table 6. The comparative result with baselines on an example dialogue.

5 Conclusion

Dialogue history provides import information for SLU in dialogues. In this paper,
we propose a HLSTM-SLU model to represent dialogue history and use it for
SLU. The HLSTM-SLU uses a character-level LSTM to learn inner-turn repre-
sentation. Then, the dialogue history is memorized by a turn-level LSTM and it
is used to assist the prediction of intent and slot tags. The experimental results
demonstrate that the dialogue history is effective for SLU and our model outper-
forms all baselines. In future work, we will test HLSTM-SLU on English datasets
to investigate the generalization of the model.

Acknowledgments. Our work is supported by National Natural Science Foundation
of China (No. 61433015).

Learning Dialogue History for Spoken Language Understanding 131

References

1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

2. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug),
2493–2537 (2011)

3. Deoras, A., Sarikaya, R.: Deep belief network based semantic taggers for spoken
language understanding. In: INTERSPEECH, pp. 2713–2717 (2013)

4. Guo, D., Tur, G., Yih, W.t., Zweig, G.: Joint semantic utterance classification and
slot filling with recursive neural networks. In: SLT, pp. 554–559. IEEE (2014)

5. Haffner, P., Tur, G., Wright, J.H.: Optimizing SVMs for complex call classification.
In: ICASSP, vol. 1, pp. 632–635. IEEE (2003)

6. Hakkani-Tür, D., Tur, G., Chotimongkol, A.: Using syntactic and semantic graphs
for call classification. In: Proceedings of the ACL Workshop on Feature Engineering
for Machine Learning in Natural Language Processing (2005)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Jeong, M., Lee, G.G.: Triangular-chain conditional random fields. IEEE Trans.
Audio Speech Lang. Process. 16(7), 1287–1302 (2008)

9. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: NAACL-HLT, pp. 260–270 (2016)

10. Liu, B., Lane, I.: Joint online spoken language understanding and language mod-
eling with recurrent neural networks. In: SIGDIAL, p. 22 (2016)

11. Mairesse, F., et al.: Spoken language understanding from unaligned data using
discriminative classification models. In: ICASSP, pp. 4749–4752. IEEE (2009)

12. McCallum, A., Freitag, D., Pereira, F.C.: Maximum entropy Markov models for
information extraction and segmentation. In: lCML, vol. 17, pp. 591–598 (2000)

13. Mensil, G., et al.: Using recurrent neural networks for slot filling in spoken language
understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 23(3), 530–539
(2015)

14. Mesnil, G., He, X., Deng, L., Bengio, Y.: Investigation of recurrent-neural-network
architectures and learning methods for spoken language understanding. In: INTER-
SPEECH, pp. 3771–3775 (2013)

15. Moschitti, A., Riccardi, G., Raymond, C.: Spoken language understanding with
Kernels for syntactic/semantic structures. In: ASRU, pp. 183–188. IEEE (2007)

16. Price, P.J.: Evaluation of spoken language systems: the ATIS domain. In: Speech
and Natural Language (1990)

17. Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken
language understanding. In: Eighth Annual Conference of the International Speech
Communication Association (2007)

18. Sarikaya, R., Hinton, G.E., Ramabhadran, B.: Deep belief nets for natural language
call-routing. In: ICASSP, pp. 5680–5683. IEEE (2011)

19. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.C., Pineau, J.: Building end-to-
end dialogue systems using generative hierarchical neural network models. AAAI
16, 3776–3784 (2016)

20. Serban, I.V., et al.: A hierarchical latent variable encoder-decoder model for gen-
erating dialogues. In: AAAI, pp. 3295–3301 (2017)

21. Tur, G., Deng, L., Hakkani-Tür, D., He, X.: Towards deeper understanding: deep
convex networks for semantic utterance classification. In: ICASSP, pp. 5045–5048.
IEEE (2012)

132 X. Zhang et al.

22. Tur, G., Hakkani-Tür, D., Heck, L., Parthasarathy, S.: Sentence simplification for
spoken language understanding. In: ICASSP, pp. 5628–5631. IEEE (2011)

23. Ward, W., Issar, S.: Recent improvements in the CMU spoken language under-
standing system. In: Proceedings of the Workshop on Human Language Technol-
ogy, pp. 213–216 (1994)

24. Xu, P., Sarikaya, R.: Convolutional neural network based triangular CRF for joint
intent detection and slot filling. In: ASRU, pp. 78–83. IEEE (2013)

25. Yao, K., Peng, B., Zweig, G., Yu, D., Li, X., Gao, F.: Recurrent conditional random
field for language understanding. In: ICASSP, pp. 4077–4081. IEEE (2014)

26. Zhang, X., Wang, H.: A joint model of intent determination and slot filling for
spoken language understanding. In: IJCAI, pp. 2993–2999 (2016)

A Neural Question Generation System
Based on Knowledge Base

Hao Wang, Xiaodong Zhang, and Houfeng Wang(B)

MOE Key Lab of Computational Linguistics,
Peking University, Beijing 100871, China
{hhhwang,zxdcs,wanghf}@pku.edu.cn

Abstract. Most of question-answer pairs in question answering task
are generated manually, which is inefficient and expensive. However, the
existing work on automatic question generation is not good enough to
replace manual annotation. This paper presents a system to generate
questions from a knowledge base in Chinese. The contribution of our
work contains two parts. First we offer a neural generation approach
using long short term memory (LSTM). Second, we design a new format
of input sequence for the system, which promotes the performance of the
model. On the evaluation of KBQG of NLPCC 2018 Shared Task 7, our
system achieved 73.73 BLEU, and took the first place in the evaluation.

Keywords: Question answering · Generation · Knowledge base

1 Introduction

Question answering (QA) is a practical and challenging problem of artificial
intelligence (AI). QA contains several tasks, like text based QA, knowledge based
QA and table based QA. To train a QA system, it is important to get labeled
data with high quality. The performance of a QA system is highly depend on
the quality of the training QA pairs. However, most of labeled QA pairs, such
as [2,15], are labeled manually, which is inefficient and expensive. Because of
that, size of the training sets are limited.

Automatic question generation has already been a challenge task for expand-
ing size of data for QA systems. Zhou et al. [18] worked on generating ques-
tions from raw text, which has rich information. However, structured knowl-
edge contains less text information, which make it harder to generate questions
from them. Although there are some work on question generation with multi-
ple facts [4], questions that only contain one fact are much more common than
those with several facts. Therefore, we work on generating questions with only
one fact.

Most of previous works, like Rus et al. [12], are based on hand-crafted rules.
However, designing a well-defined rules takes much human effort, and it per-
forms terrible on new situations, which means the rules need to be updated

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 133–142, 2018.
https://doi.org/10.1007/978-3-319-99495-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_12&domain=pdf

134 H. Wang et al.

frequently. Besides, limited to the form of templates, the questions generated by
those methods are lack of diversity.

There are also some previous works based on seq2seq model [3], which is
widely used by machine translation [6,10], summarization [7,11] and dialog gen-
eration [14,17]. Serban et al. [13] works on the SimpleQuestions [2] dataset
in English, and release an English question generation dataset based on Sim-
pleQuestions. Liu et al. [9] works on generating Chinese questions by using a
template-based manner, but the generated questions is still different from those
asked by human. As we can see from Fig. 1, conjunctions and question words in
the output of T-seq2seq are generated improperly.

In this paper, we propose a new system to generate questions from a Chinese
structured knowledge base. In NLPCC 2018 Shared Task 7, our system won the
first place on the KBQG subtask. Our contributions contain three parts: (1) we
improve the seq2seq model, which performs better on question generation task;
(2) our system has different input with the previous work, which helps the model
to generate questions with proper conjunction words; and (3) we evaluate our
model by comparing with other different models, and show the contribution of
each part in our model.

Fig. 1. The questions generated by Template-based seq2seq learning (T-seq2seq) [9]
and our system. The questions our model generated are more similar to those asked
by human. The differences of generation are shown in black.

2 Task Description

A KB, or knowledge base, is a structured database, which contains some entities
and the relationships between those entities. Each relationship connects two
entities. For example, Phoenix Mountain and Shanxi Province are connected by
the relation location, which means that Phoenix Mountain is located in Shanxi
Province. Those two entities with a relationship formed a triple of KB.

Given a triple I = (subject, relationship, object), and the goal of our system
is to generate a question q = {c1, c2, ..., cn}, which can be answered based on the

A Neural Question Generation System Based on Knowledge Base 135

given triple. Besides, to use those generated question to train the QA model, we
hope the generation is similar with those asked by human.

The performance of the system is evaluated by comparing the questions asked
by human and machine.

3 Structure of Question Generation Model

In this section, we introduce the structure of our generation model. Our model
is based on seq2seq model, which is an universal neural model on generating
sequences. The model can be divided into an encoder of input triple, and a
question decoder.

3.1 Construction of Input Sequence

In each triple I, we have subject, relationship and object. As we know, for most
cases, subject and relationship should be shown in the generation. Although
object would not be shown directly in the question, it is also important for the
system to understand the target of the question. Therefore, the answer object
is converted into some special tokens, which are shown on Fig. 2. <date> repre-
sents all phrases of dates, and <time> represents the specific time. For example,
in the input sequence, “1 1 12:00” (12:00, Jan.1) will be replaced by “<date>
<time>”. <number> represents a number is replaced here. Name of books are
convert to <book>. <sp name> represents all other phrases in western char-
acters, numbers and some symbols, which are widely used of name of products
and some foreign people. It is easy to find out those phrases by using patterns.
When generating input sequence, we convert those phrases into special tokens,
and the sequence is named as token seq.

Fig. 2. Some examples of special tokens used in our system.

However, it is hard to find Chinese name by using patterns, but it is important
for the system to recognize those name. Therefore, we use HanLP toolkit1, a
framework that provides some core processing tools, to find names of people in
Chinese. In HanLP, names can be found by role tagging [16]. After converting the

1 https://github.com/hankcs/HanLP.

https://github.com/hankcs/HanLP

136 H. Wang et al.

input sequence to token seq, we replace words in the object of triple, excluding
some conjunctions and adjectives, to their POS tags. The new sequence is called
token pos seq.

For subjects of triples are used to replace <ent> token of the output sequence,
they are not part of the input sequences. Besides, a special token <is> is inserted
to split the relationship and the object. Examples of the input sequences are
shown in Fig. 3. In Fig. 3, “nr” represents the token is name of a person, and
all POS tags which start with “v” represent verbs, and those start with “q”
represent quality words.

Fig. 3. Some examples of input sequence.

3.2 Encoder

Given a input sequence X = {x1, x2, ..., xn}, where n is the length of input
sequence, and suppose we have a vocabulary V , which contains characters
and tokens. Each xi ∈ R

|m| is a one-hot vector, which represents a token in
the vocabulary. The encoder converts those tokens first into their embeddings
{e1, e2, ..., en}, by looking up the embedding matrix E ∈ R

|V |×m, where m is the
size of embedding. Then, we use a 3-layer LSTM network to encode the input
sequence x. The structure of each LSTM layer is:

ft = σ(Wf · [ht−1, et] + bf) (1)

it = σ(Wi · [ht−1, et] + bi) (2)

C̃t = tanh(WC · [ht−1, et] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo · [ht−1, et] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

In Eqs.(1–6), ht is the hidden state of the LSTM layer at time t, and et, ot ∈ Rn

are input and output of each layer at step t. Wf , bf ,Wi, bi,WC , bC ,Wo, bo are
trainable parameters.

A Neural Question Generation System Based on Knowledge Base 137

3.3 Decoder

The structure of the decoder is shown in Fig. 4. Our decoder is a neural network
that models the conditional probability p(y|H), while H = {h1, h2, ..., hn} is
the hidden states of encoder. We use an LSTM network with attention and
CopyNet [5] as our decoder.

Fig. 4. Structure of the decoder. Hidden states of the encoder are used in decoding.

We have a vocabulary list V , which is same as the vocabulary for encoder,
and use <UNK> to represent the OOV (out-of-vocabulary) word. Since there
are some words that not contained in V are useful, words in the input sequence
X are also included in generation candidates, which makes CopyNet to output
some OOV words. To read the states from encoders, we build a memory matrix
M , which is initialized by {h1, h2, ..., hn}, and will be updated while decoding.
For each step t, we can get the probability of generating any target word yt as,

p(yt|st, yt−1, ct,M) = p(yt,g|st, yt−1, ct,M) + p(yt, c|st, yt−1, ct,M) (7)

where g represents the generate-mode, and c represents the copy-mode. The two
probability are calculated by

p(yt,g|·) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
Z

eψg(yt), yt ∈ V

0, yt ∈ X ∩ V

1
Z

eψg(<UNK>) yt /∈ X ∪ V

; (8)

p(yt, c|·) =

⎧
⎨

⎩

1
Z

∑

j:xj=yt

eψc(yt), yt ∈ X

0 yt /∈ X
. (9)

138 H. Wang et al.

In Eqs. (8–9), ψg and ψc are score functions for two modes, while Z is the nor-
malization term shared by both two probabilities. The score of copy-mode is

ψc(yt) = tanh(hT
j Wc)st, xj ∈ X. (10)

In Eq. (10), hidden states in M are used to represent the input sequence. Location
of each token in the sequence is important for copying. ψg is similar with the
scorer function in the basic seq2seq model. It is based on a 3-layer LSTM network
with attention. Input of the first LSTM layer is embedding of the former output
word. Attention of our model is inspired by [10], which gets a great improvement
to seq2seq models. That is,

ψg(yt) = vT
i Ws tanh(Wt[st, at]) (11)

In Eq. (11), vi is the one-hot indicator vector for vi, and st is the t-th hidden
state of the decoder LSTM network. at is the attention vector calculated by
hidden states:

at =
n∑

i=1

αtihi (12)

while αti is the normalization weight calculated by:

αti =
eg(st,hi)

∑n
j=1 eg(st,hj)

, (13)

where g(st, hj) represents the relevance between the hidden state for decoder
and encoder. In our model, the relevance score is measured by

g(st, hj) = sT
t hj . (14)

The input yt−1 of decoder is different with the original seq2seq network. It
is represent as [e(yt−1); ζ(yt−1)]T , where e(yt−1) is the word embedding of yt−1,
and ζ(yt−1) is the weighted sum of M , i.e.

ζ(yt−1) =
n∑

τ=1

ρtτhτ , (15)

ρtτ =

⎧
⎨

⎩

1
K

p(xτ , c|st−1,M), xτ = yt−1

0, otherwise
. (16)

In (16), K is the normalization term.
To avoid the improper topic words generated by seq2seq model, we use a

template-based method. That is, the system is set to generate questions by
replacing the subject entity to a <ent> token. Then, to get the complete ques-
tion, we convert <ent> back to the subject. Subject entities in all training data
and test golds are also replaced to <ent>, and those cases without <ent> are
not be used to train the model.

A Neural Question Generation System Based on Knowledge Base 139

3.4 Train

Seq2seq model with CopyNet and attention is an end-to-end model, which can
be trained using back-propagation. We train the model in batches. The objective
of training is to minimize the Cross-Entropy (CE) loss:

L = −
n∑

i=1

log p(yans
i), (17)

where yans
i is the i-th word of the answer. The model can be learned to improve

both generate-mode and copy-mode. If the target token can be found in source
sequence, the copy-mode is contributed to the model and can be trained, while
the copy-mode is discouraged when the token is not in the input.

4 Evaluation

In this section, we first introduce the dataset we use. Then we show the settings
of our model. After that, we compare our system with other systems.

4.1 Dataset and Evaluation Metrics

We take our evaluation on the dataset released by knowledge based question
generation (KBQG) subtask of NLPCC 2018 Shared Task 7. There are 24,479
answer-question pairs in the training set, and 357 answer-question pairs in the
test set. The evaluation of shared task is based on BLEU-4 score with case
insensitive. All the questions are generated by human. In the train set, each case
has one question. And in the test set, each case is corresponded to three answers.
For each case, the BLEU score is determined by the most similar answer with
the output of model.

4.2 Settings of the System

The preprocessing on input sequence of our system is described in Sect. 3.1.
The input sequences are split by Chinese character, punctuations and special
tokens after preprocessing. All the embeddings of tokens are 200-dimensional
vectors pre-trained on Chinese Wikipedia documents by word2vec, and all of
the vectors are trainable. Encoder and decoder share the same embedding and
vocabulary. Based on the training set, we build a vocabulary with 15,435 words,
containing special tokens. We use Adam optimizer [8] for optimization, with
1e-3 as the initial learning rate. The batch size of the training stage is 32. All
the implementations of our system is based on TensorFlow framework [1]. To
evaluate the system during training, we extract the training set to a training set
with 20,000 pairs randomly, and rest of the pairs into a validation set. All these
configurations are based on the performance of our validation set.

We offer four systems to solve the result. Three of them are single models
with different input sequences. One of them is character-by-character raw input,

140 H. Wang et al.

and the other two have token seq and token pos seq as their input respectively.
There is also an ensemble model, whose result is constructed by three sub-
models using token seq as input sequence, and another three sub-models using
token pos seq. Two of them are submitted to the competition, their name are
shown in Table 1. All these sub-models are trained separately, and on test cases,
the p(yt|·) is calculated by:

p(yt|·) =
6∑

i=1

1
Z

pi(pt|·), (18)

while Z is the normalization term of all sub-models.

4.3 Result

The BLEU-4 of the systems is shown in Table 1. To show the contribution of each
part of our system, we offer three system whose settings are different with our sys-
tem. Our ensemble system and single system are all much better than other sys-
tems of the task. Compared with raw input, the special designed input sequences
lead to 4 BLEU of improvement. The ensemble model combines the advantage
of different input sequences and stochastic learning of each sub-models.

Table 1. Comparison between other systems in KBQG task.

System name BLEU-4

AQG, SWU 49.79

AQG-PAC greedy relation predict, SWU 51.46

AQD-PAC soft relation predict, SWU 51.62

AQG-question sentence relation predict, SWU 53.32

CCNU-319 59.82

LPAI, Soochow Univ 63.67

unique AI group, CCNU 64.38

Ours with raw input (single model) 66.18

Ours with token pos seq (single model, ICL-1) 70.21

Ours with token seq (single model) 70.81

Ours (ensemble model, ICL-2) 73.73

4.4 Error Analysis

To find the reason of improper generations, we analysis some cases man-
ually. First, in most cases whose relationships are not in the training set,
the generated questions are in the same pattern “<ent> relationship

” (What/ How many/ Who is the relationship of <ent>?).

A Neural Question Generation System Based on Knowledge Base 141

It is better than most earlier models, whose question words in their genera-
tion are “ ” (what) only, but still needs to be improved. Besides, some
of generated questions contain incomplete words. For example, for the triple
“ ”(Which Clu does Da Cruz work for?), “ ”(b) of
the word “ ”(Club) is missed. The reason of this fault is that the our model
is character based, and it is hard to for the system to learn word information to
decoder.

5 Conclusion

In this paper, we propose a neural generation system to generate questions from
structured knowledge base. Our system achieves a great performance in the
competition of NLPCC 2018 Shared Task 7. Then, we analysis the contribution
of each feature of our model by different experiments. After that, we evaluate
our system manually, to know the reason of errors in generations.

In future work, it is important to improve the accuracy of generated words
and fluency of sentences. Besides, it is also important to get a dataset with diverse
questions, which can help exploring to improve the diversity of the question
generation systems.

Acknowledgments. Our work is supported by National Natural Science Foundation
of China (No. 61370117).

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M.: TensorFlow: a system for large-scale machine
learning. OSDI 16, 265–283 (2016)

2. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question
answering with memory networks. CoRR abs/1506.02075 (2015)

3. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2014, 25–29 October 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp.
1724–1734 (2014)

4. Colin, E., Gardent, C., Mrabet, Y., Narayan, S., Perez-Beltrachini, L.: The
WebNLG challenge: generating text from DBPedia data. In: INLG 2016 - Pro-
ceedings of the Ninth International Natural Language Generation Conference, 5–8
September 2016, Edinburgh, UK, pp. 163–167 (2016)

5. He, S., Liu, C., Liu, K., Zhao, J.: Generating natural answers by incorporating
copying and retrieving mechanisms in sequence-to-sequence learning. In: Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, 30 July–4 August, Volume 1: Long Papers, pp.
199–208 (2017)

142 H. Wang et al.

6. Johnson, M., Schuster, M., Le, Q.V., Krikun, M., Wu, Y., Chen, Z., Thorat, N.,
Viégas, F.B., Wattenberg, M., Corrado, G., Hughes, M., Dean, J.: Google’s mul-
tilingual neural machine translation system: enabling zero-shot translation. TACL
5, 339–351 (2017)

7. Kim, M., Moirangthem, D.S., Lee, M.: Towards abstraction from extraction: mul-
tiple timescale gated recurrent unit for summarization. In: Proceedings of the
1st Workshop on Representation Learning for NLP, Rep4NLP@ACL 2016, Berlin,
Germany, 11 August 2016, pp. 70–77 (2016)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

9. Liu, T., Wei, B., Chang, B., Sui, Z.: Large-scale simple question generation by
template-based Seq2seq learning. In: Huang, X., Jiang, J., Zhao, D., Feng, Y.,
Hong, Y. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 75–87. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73618-1 7

10. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. In: Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
17–21 September 2015, pp. 1412–1421 (2015)

11. Nallapati, R., Zhou, B., dos Santos, C.N., Gülçehre, Ç., Xiang, B.: Abstractive
text summarization using sequence-to-sequence RNNs and beyond. In: Proceedings
of the 20th SIGNLL Conference on Computational Natural Language Learning,
CoNLL 2016, Berlin, Germany, 11–12 August 2016, pp. 280–290 (2016)

12. Rus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., Moldovan, C.: The first
question generation shared task evaluation challenge. In: Proceedings of the 6th
International Natural Language Generation Conference, pp. 251–257. Association
for Computational Linguistics (2010)

13. Serban, I.V., Garćıa-Durán, A., Gülçehre, Ç., Ahn, S., Chandar, S., Courville,
A.C., Bengio, Y.: Generating factoid questions with recurrent neural networks: the
30m factoid question-answer corpus. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, ACL 2016, 7–12 August 2016,
Berlin, Germany, Volume 1: Long Papers (2016)

14. Song, Y., Yan, R., Li, X., Zhao, D., Zhang, M.: Two are better than one: an
ensemble of retrieval- and generation-based dialog systems. CoRR abs/1610.07149
(2016)

15. Yin, W., Schütze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional
neural network for modeling sentence pairs. TACL 4, 259–272 (2016)

16. Zhang, H.P., Liu, Q.: Automatic recognition of chinese personal name based on
role tagging. Chin. J. Comput. Chin. Edn. 27(1), 85–91 (2004)

17. Zhou, H., Huang, M., Zhang, T., Zhu, X., Liu, B.: Emotional chatting machine:
emotional conversation generation with internal and external memory. In: Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA, 2–7 February 2018 (2018)

18. Zhou, Q., Yang, N., Wei, F., Tan, C., Bao, H., Zhou, M.: Neural question generation
from text: a preliminary study. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong,
Y. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 662–671. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73618-1 56

https://doi.org/10.1007/978-3-319-73618-1_7
https://doi.org/10.1007/978-3-319-73618-1_56

Knowledge Graph/IE

ProjR: Embedding Structure Diversity
for Knowledge Graph Completion

Wen Zhang, Juan Li, and Huajun Chen(B)

Zhejiang University, Hangzhou, China
{wenzhang2015,lijuan18,huajunsir}@zju.edu.cn

Abstract. Knowledge graph completion aims to find new true links
between entities. In this paper, we consider an approach to embed a
knowledge graph into a continuous vector space. Embedding methods,
such as TransE, TransR and ProjE, are proposed in recent years and
have achieved promising predictive performance. We discuss that a lot
of substructures related with different relation properties in knowledge
graph should be considered during embedding. We list 8 kinds of sub-
structures and find that none of the existing embedding methods could
encode all the substructures at the same time. Considering the struc-
ture diversity, we propose that a knowledge graph embedding method
should have diverse representations for entities in different relation con-
texts and different entity positions. And we propose a new embedding
method ProjR which combines TransR and ProjE together to achieve
diverse representations by defining a unique combination operator for
each relation. In ProjR, the input head entity-relation pairs with differ-
ent relations will go through a different combination process. We con-
duct experiments with link prediction task on benchmark datasets for
knowledge graph completion and the experiment results show that, with
diverse representations, ProjR performs better compared with TransR
and ProjE. We also analyze the performance of ProjR in the 8 differ-
ent substructures listed in this paper and the results show that ProjR
achieves better performance in most of the substructures.

Keywords: Diversity structures · Knowledge graph embedding
Knowledge graph completion

1 Introduction

Knowledge graphs (KGs) are built to represent knowledge and facts in the world
and have become useful resources for many artificial intelligence tasks such as
web search and question answering. A knowledge graph could be regarded as a
multi-relational directed graph with entities as nodes and relations as labeled
edges. An instance of an edge is a fact triple in the form of (h, r, t) and h, r, t
denote the head entity, relation, and tail entity respectively. For example, (Steve
Jobs, isFounderOf , Apple Inc.) represents the fact that Steve Jobs is the

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 145–157, 2018.
https://doi.org/10.1007/978-3-319-99495-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_13&domain=pdf

146 W. Zhang et al.

founder of company Apple. Many huge knowledge graphs have been built auto-
matically or semi-automatically in recent years, such as Yago [19], WordNet [13]
and Google Knowledge Graph1. Though typical knowledge graphs may contain
more than millions of entities and billions of facts, they still suffer from incom-
pleteness.

Much work has focused on knowledge graph completion. Some tried to extract
more triples through large text corpora, such as OpenIE [1] and DeepDive [26].
Others tried to get new triples by reasoning based on the existing knowledge
graph. Traditional reasoning methods including ontology inference machine, such
as Pellet2, which relies on a well-defined ontology. Knowledge graph embedding
is another way to complete knowledge graphs. It tries to embed all the elements
in a knowledge graph, including entities and relations, into a continuous vector
space while preserving certain properties of the original KG. KG embedding
makes it possible to complete the knowledge graph through implicit inference by
calculations between the vector representations.

We regard the basic process of most knowledge graph embedding methods
as two steps: (1) get combined representation of the given head entity-relation
pair through a combination operator C(h, r) and then (2) compare the simi-
larity between candidate tail entities and the combined representation through
a similarity operator S(C(h, r), t). The goal is to make the similarity between
true candidate entities and combined representation as large as possible and the
similarity for false candidate entities as small as possible.

There are a lot of knowledge graph embedding methods proposed in the last
few years. One of the simple but effective method is TransE [4] which represents
each entity and relation as a vector. The combination operator is defined as an
addition and the similarity operator is defined based on distance. ProjE [16]
is another knowledge graph embedding method whose basic idea is almost the
same with TransE. ProjE also assigns each entity and relation with one vector.
The combination operator of ProjE is a global linear layer and the similarity
operator is defined as a dot product between the candidate vector and com-
bined representation. ProjE performs better than TransE in link prediction task
because of the different definition of the final loss function.

Considering the different properties of relations, improved methods, such as
TransH [21], TransR [12] and TransD [9], are proposed based on TransE. Those
methods inspired us to consider the structure diversity of knowledge graph as
relations of different properties always correspond to different graph structures.
We list 8 kinds of graph structures in this paper and find that none of the previous
embedding methods can properly encode all of these structures at the same time.
Some methods such as TransR can encode N-1, N-N, 1-N-1 structures but not
one-relation-circle structures. Some methods, such as ProjE, could encode one-
relation-circle structures but not N-1, N-N, 1-N-1 structures.

1 https://www.google.com/intl/en-419/insidesearch/features/search/knowledge.
html.

2 http://pellet.owldl.com/.

https://www.google.com/intl/en-419/insidesearch/features/search/knowledge.html
https://www.google.com/intl/en-419/insidesearch/features/search/knowledge.html
http://pellet.owldl.com/

ProjR: Embedding Structure Diversity for Knowledge Graph Completion 147

The reason why TransR can encode 1-N, N-N, and 1-N-1 structures is that
before calculating the similarity, TransR uses a relation specific matrix to project
entity vector to relation space and get a new entity representation. In other
words, every entity in TransR has one vector representation under each different
relation context. The reason why ProjE can encode one-relation-circle structures
is that the vector representation for one entity under different entity position (as
a head entity or as a tail entity) is different. So the key point to enable embedding
methods to encode the diversity of knowledge graph is that every entity should
have diverse representations in different relation contexts and entity positions.

In this paper, we propose a new embedding method ProjR which combines
TransR and ProjE together. To achieve diverse representation for entities in
different relation contexts, we define a unique combination operator for each
relation in ProjR. To achieve diverse representations for entities under different
entity position, we follow the process of ProjE to project head entity vector
through a matrix during combination process and not project tail entity dur-
ing similarity operator. We conduct link prediction experiments on knowledge
graph completion benchmark datasets and evaluate the results in the same way
as previous work. The evaluation results show that ProjR achieves better predic-
tive performance compared with both TransR and ProjE, and also some other
embedding methods. We also analyze the performance of ProjR with the 8 dif-
ferent substructures listed in Table 6 and the results show that ProjR achieves
better performance in most of the substructures compared with ProjE.

The contributions of this paper are as follows:

– We list 8 kinds of graph structures to analyze the structure diversity of knowl-
edge graph and also find examples from real knowledge graph Freebase for
each structure.

– We analyze the ability of most related embedding models to encode the struc-
ture diversity and find that diverse representations for entities in different
relation contexts and entity positions are helpful for encoding the structure
diversity in knowledge graph.

– We propose a new knowledge graph embedding method ProjR based on the
idea of diverse representations for entities. The experiment results on link
prediction tasks show that ProjR achieves better performance than TransR
and ProjE. The experiment results of the performance of ProjR on different
structures also prove that with diverse representations for entities ProjR could
handle the structure diversity of knowledge graph more properly.

2 Related Work

We summarize the related methods in Table 1 with information of the score
function and the number of parameters to learn during training. The work most
related to ours are TransR [12] and ProjE [16].

TransR: TransR [12] is an extended method of TransE [4]. We call them
translation-based methods because their basic assumption is that the relation r

148 W. Zhang et al.

Table 1. A summary for the most related methods. The bold lower letter denotes
vector representation and the bold upper letter denotes the matric representation. I
denotes identity matrix. ne and nr are the number of entities and relations in knowledge
base, respectively. d denotes the embedding dimension.

Model Sore function S(h, r, t) #Parameters

C(h, r) S(h, r, t)

TransE h + r ‖C(h, r) − t‖l1/2 (ne + nr)d

TransH (h − w�
r hwr + r) ‖C(h, r) − (t − w�

r twr)‖2
2 (ne + 2nr)d

TransR Mrh + r ‖C(h, r) − Mrt‖2
2 (ne + nr)d + nrd

2

TransD (rph
�
p + Ik×k)h + r ‖C(h, r) − (rpt

�
p + Id×d)t‖2

2 2(ne + nr)d

ProjE tanh(D1h + D2r + b1) σ(C(h, r) · t + b2) (ne + nr + 5)d

in triple (h, r, t) could be regarded as a translation from the head entity h to the
tail entity t. TransE represents each entity and relation with one vector and make
the constraint for a true triple (h, r, t) as h+ r ≈ t. Unstructured [3] is a special
case of TransE which sets all relation vectors as zero vectors. Considering the dif-
ferent properties of relations, TransH [21] defines a hyperplane for each relation
and projects head and tail entities onto the current relation hyperplane before
the calculation of distance. Different from TransE and TransH which represent
all elements in the same vector space, TransR represents entities in entity space
and represents relations in relation space. And entities h and t should be pro-
jected into the current relation space through the relation projection matrix Mr.
TransD [9] is an extended method of TransR which defines dynamic projection
matrices related with both relations and entities. TransH, TransR and TransD
all achieve diverse representations for entities in different relation contexts by
different projection strategies but unable to encode one-relation-circle because
there is only one representation for one entity with same relation context.

ProjE: ProjE [16] is another knowledge graph embedding method which gets
the combined representation of an input head entity-relation pair through a
global linear layer. Then projecting all the candidate entity vectors onto the
combined vector result which could be regarded as a similarity computation.
But different from translation-based methods which optimize a margin-based
pairwise ranking loss, ProjE optimizes a cross entropy based ranking loss of a list
of candidate entities collectively which makes ProjE more flexible with negative
candidate sampling and enhance the ability to handle very large datasets. ProjE
also points out that the number of negative samples will affect the embedding
results obviously. ProjE is able to encode the one-relation-circle structures.

Other Methods: RESCAL [15] regards the whole knowledge graph as a multi-
hot tensor and embeds the knowledge graph based on tensor factorization. NTN
[17] is a neural tensor network which represents each relation as a tensor. HOLE
[14] employs correlation between different dimensions of entity vectors dur-
ing training of the vector representations. Some methods also combine other

ProjR: Embedding Structure Diversity for Knowledge Graph Completion 149

information together with fact triples. RTransE [6] and PTransE [11] employ the
path information of 2–3 length over knowledge graph. Jointly [20], DKRL [24],
TEKE [22] and SSP [23] combine unstructured entity description texts together
with the structured triples during training. The external text information makes
those methods more likely to cover the out-of-knowledge-graph entities. TKRL
[25] considers the information of entity class. But in this paper, we only focus
on the methods that only use triples’ information.

3 Our Method

In this section, we first introduce 8 kinds of structures to prove the structure
diversity of knowledge graph and analyze the ability of the most related embed-
ding methods to encode these 8 kinds of structures. Then we introduce the new
method ProjR.

3.1 Structure Diversity of Knowledge Graph

The complex connections between entity nodes cause the structure diversity
of knowledge graph. Relations with different properties are always related to
different graph structures. We introduce 8 kinds of substructures in this section.

1-1 relation structure means that one entity links to at most one entity
through this relation. 1-N relation structure means that one entity links to more
than one entities through this relation. N-1 relation structure means that there
are more than one entities linking to the same entity through this relation. N-N
relation structure means that one entity link to more than one entities through
this relation and one entity also could be linked to more than one entities through
this relation. Those four kinds relation properties are first proposed in [21].
1-N-1 structure means that there are more than one relation that link one same
entity to another same entity. C1, C2, C3 are special case of one-relation-
circle (ORC) substructures which is first proposed in [27]. C1 means that one

Table 2. This table lists the ability of five most related KG embedding methods to
encode the substructures and the number of vector representations for every entity
and relation. nr denotes the number of relations in knowledge graph. In the column of
“types of structure”, “

√
” means model in current row can encode the substructure in

current column and “×” means can’t.

Method # representations Types of substructure

Entity Relation 1-1 1-N N-1 N-N 1-N-1 C1 C2 C3

TransE [4] 1 1
√ × × × × × × ×

TransH [21] nr 1
√ √ √ √ √ × × ×

TransR [12] nr 1
√ √ √ √ √ × × ×

TransD [9] nr 1
√ √ √ √ √ × × ×

ProjE [16] 2 2
√ × × × × √ √ √

150 W. Zhang et al.

entity connects to itself by one relation. C2 means that two entity connects to
each other by the same relation. C3 means that three entities connect to each
other through the same relation and the connections form a circle if ignoring the
direction of relations.

In Table 2, we analyze the ability of related embedding models to encode
these 8 kinds of structures. We regard one method could encode one kind struc-
ture if and only if it is possible to let the similarity score of all the true triple
participating in the current structure to be nearly the maximum value. We cal-
culate the vector representation of entities and relations following this rule: we
regard any projection operation result of one entity as a representation for it.
For example, with triple (h, r, t) in TransH, the head entity h and the tail entity
t will be projected onto the relation r specific hyperplane before calculating the
distance, which means each entity has a vector representation on every relation
hyperplane. So there are nr representations for each entity in TransH.

Although none of them could encode all the structures, we also could conclude
that diverse representations for entities will improve the capability of encoding
structure diversity. TransH, TransR and TransD are able to encode 1-N, N-1 and
N-N relation structures because they separate the representations for entities in
different relation contexts and have nr kinds of representations for every entity.
ProjE is able to encode C1, C2 and C3 because the different representations
for one entity in different entity positions enable ProjE to decompose the one-
relation-circle structures.

To make embedding model more powerful to encode the structure diver-
sity, we combine TransR and ProjE and propose ProjR based on the key idea
of diverse representations for entities in different relation contexts and entity
positions.

3.2 ProjR

In ProjR, we define a score function to calculate the probability of an input
triple (h, r, t) to be true. And we regard the probability score function as two
parts: a combination operator and a similarity operator.

Combination Operator: The input of combination operator is head entity-
relation pair (h, r). The head entity embedding is set as h ∈ R

d and the relation
embedding is set as r ∈ R

d. d is the dimension of embedding vectors.
To achieve diverse representations for entities in different relation contexts,

ProjR defines a combination operator Cr(h) for each relation r:

Cr(h) = chr = tanh(De
rh + Dr

rr + bc)

De
r ∈ R

d×d is a diagonal matrix defined for linear transformation of head entity
related with relation r. Dr

r ∈ R
d×d is a diagonal matrix defined for linear trans-

formation of relation r. We choose the diagonal matrix instead of normal matrix
in consideration of the balance between diverse representation ability and the
number of parameters. bc ∈ R

d is a global bias vector. tanh(z) = ez−e−z

ez+e−z is

ProjR: Embedding Structure Diversity for Knowledge Graph Completion 151

a nonlinear activate function in which the output value will be constrained to
(−1, 1). Each combination operator will project entity with a different diagonal
matric and generate a specific representation for each entity.

Similarity Operator: After getting the vector result chr from combination
operator for (h, r), ProjR calculates the similarity between the chr and the tail
entity vector t as the final probability score for triple (h, r, t) to be true. To
achieve the diverse representations for entities in different entity positions, we
use the tail entity vector directly without any projection. Although defining
another projection matrix for the tail entity related with relation r will further
improve the ability of ProjR to encode diversity of structures in knowledge graph,
it will also increase a lot of parameters.

Considering the convenience for computation, we define the similarity oper-
ator as follows:

S(h, r, t) = σ(t · chr)
t ∈ R

d. We use dot product to simulate the similarity between chr and t. And
σ(z) = 1

1+e−z is used to constrain the final output to (0, 1) as a probability score.

Loss Function: During training, we define the following learning objective:

L = −
∑

(h,r,t)∈�
log(S(h, r, t))

−
∑

(h′,r,t′)∈�′
log(1 − S(h′, r, t′)) + λ

∑

p∈P

‖p‖

� is the set of positive triples in training data. And �′ is the set of false
triples generated for each training triple. The negative triple generation will be
introduced in next section. P is the set of parameters to be learned in ProjR.
λ

∑
p∈P ‖p‖ is a regularization term with the summation of L1 norm of all

elements in P . λ is the regularization parameter. The training goal is to minimize
loss function L.

4 Experiments

In this paper, we conduct the experiment of link prediction and evaluate the
embedding results with the benchmark knowledge graphs WN18 and FB15k
which are subsets of WordNet [13] and Freebase [2] respectively (Table 3).

Table 3. Statistic of experiment dataset

Dataset # Rel # Ent # Train # Valid # Test

WN18 18 40943 141442 5000 5000

FB15k 1345 14951 483142 50000 59071

152 W. Zhang et al.

4.1 Link Prediction

Link prediction aims to predict the missing entity given one entity and relation
such as (h, r, ?) and (?, r, t). (h, r, ?) is tail entity prediction given head entity
and relation. (?, r, t) is head entity prediction given tail entity and relation.

Data Prepare: As ProjR always predicts tail entities given head entity-relation
pair, we regard head entity prediction (?, r, t) as a tail entity prediction (t, r−1, ?).
r−1 denotes the reverse relation of r. To get the embedding of r−1, for each triple
(h, r, t), we add reverse relation triple (t, r−1, h) into training dataset.

To generate negative triples (h′, r′, t′), we follow the process of ProjE and ran-
domly select m percent of entities in dataset to replace the tail entity t of (h, r, t)
which means there will be m × ne negative triples for every training triple. ne is
the number of entities in experiment dataset. m ∈ (0, 1) is a hyperparameter.

Table 4. Results on WN18 and FB15k for link prediction. The result numbers under-
lined are the best results among TransR, ProjE, and ProjR. The bold result numbers
are the best results among all the methods.

Method WN18 FB15k

Mean Rank Hit@10(%) Mean Rank Hit@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter

Unstructured [3] 315 304 35.3 38.2 1074 979 4.5 6.3

RESCAL [15] 1180 1163 37.2 52.8 828 689 28.4 44.1

SE [5] 1011 985 68.5 80.5 273 162 28.8 39.8

SME(linear) [3] 545 533 65.1 74.1 274 154 30.7 40.8

SME(Bilinear) [3] 526 509 54.7 61.3 284 158 31.3 41.3

LFM [8] 469 456 71.4 81.6 283 164 26.0 33.1

TransE [4] 263 251 75.4 89.2 243 125 34.9 47.1

TransH(unif) [21] 318 303 75.4 86.7 211 84 42.5 58.5

TransH(bern) [21] 401 388 73.0 82.3 212 87 45.7 64.4

CTransR(unif) [12] 243 230 78.9 92.3 233 82 44 66.3

CTransR(bern) [12] 231 218 79.4 92.3 199 75 48.4 70.2

TransD(unif) [9] 242 229 79.2 92.5 211 67 49.4 74.2

TransD(bern) [9] 224 212 79.6 92.2 194 91 53.4 77.3

TransR(unif) [12] 232 219 78.3 91.7 226 78 43.8 65.5

TransR(bern) [12] 238 225 79.8 92.0 198 77 48.2 68.7

ProjE listwise [16]a – – – – 214 60 48.1 78.8

ProjR(this paper) 356 345 82.6 95.0 195 41 52.3 83.3
aThe link prediction result of ProjE on FB15k is the latest result provided by
author after fixing a bug in the original code. The corresponding parameter setting
of the results are: embedding dimension d = 200, batchsize b = 512, learning rate
r = 0.0005, negative candidate sampling proportion m = 0.1 and max iteration
number iter = 50.

ProjR: Embedding Structure Diversity for Knowledge Graph Completion 153

Training: We use Adaptive Moment Estimation (Adam) [10] as the optimizer
during training with the default parameter setting: β1 = 0.9, β2 = 0.999,
ε = 1e−8. We also apply a dropout [18] layer on the top of combination opera-
tion to prevent overfitting and the hyperparameter of dropout rate is set to 0.5.
Before training, we randomly initialize all the entity and relation vectors from a
uniform distribution U [− 6√

k
, 6√

k
] as suggested in [7]. The diagonal matrices are

initialized with identity diagonal matrix. The bias vector is initialized as zero
vector. For both datasets, we set the max training iterations to 100.

Evaluation: We evaluate link prediction following the same protocol of previous
work: for every testing triple (h, r, t), we first predict t with input (h, r), then
predict h with input (t, r−1). To predict t, we replace t with each entity e in
experiment dataset and calculate the similarity score through S(h, r, e). Then
rank the scores in ascending order and get the rank of the original right tail entity.
The processing of head prediction is the same as tail prediction. Aggregating
all the ranks of testing triples, we follow the two metrics used in previous work:
Mean Rank and Hit@10. Mean Rank is the averaged rank of all the testing triples.
Hit@10 is the proportion of ranking score of testing triple that is not larger than
10. A good link predictor should achieve lower mean rank and higher hit@10. We
also follow the Filter and Raw settings as previous work. Filter setting means
filtering the triples in training data when generating negative triples to prevent
false negative ones. Raw setting means without filtering.

Table 5. Experimental results on FB15k by mapping different patterns (%)

Method Predict Head(Hit@10) Predict Tail(Hit@10)

1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

Unstructured [3] 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6

SE [5] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME(linear) [3] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME(Bilinear) [3] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE [4] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH(unif) [21] 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8

TransH(bern) [21] 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

CTransR(unif) [12] 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3

CTransR(bern) [12] 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8

TransD(unif) [9] 80.7 85.8 47.1 75.6 80.0 54.5 80.7 77.9

TransD(bern) [9] 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

TransR(unif) [12] 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

TransR(bern) [12] 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

ProjE listwise [16] 61.4 90.1 53.2 83.3 61.3 63.5 89.4 85.5

ProjR(this paper) 90.3 93.3 64.5 81.0 90.7 78.3 96.6 85.0

154 W. Zhang et al.

Result: The result of link prediction is in Table 4. We directly copy the results of
previous methods from their original paper as WN18 and FB15k are two bench-
mark datasets. The parameter settings for ProjR’s results on WN18 in Table 4
are: embedding dimension d = 100, learning rate r = 0.01, batchsize b = 2000,
negative candidate sampling proportion m = 0.001. The parameter settings on
FB15k are: d = 200, r = 0.01, b = 4000,m = 0.005. From Table 4, we could con-
clude that: (1) As a combination method of TransR and ProjE, ProjR achieves
better performance on FB15k than ProjE and TransR. And on WN18, ProjR
performs better than TransR on Hit@10. (2) Though on some tasks TransD per-
forms better than ProjR, ProjR has less parameters than TransD. The number
of parameters in ProjR is (ne +4nr +1)k while that in TransD is 2(ne +nr) and
ne � nr.

To analyze how diverse representations improve the link prediction results of
different types of relations. We also conduct the experiment of link prediction

Table 6. Hit@10 of ProjE and ProjR on some examples of 8 kinds of substructures.
The results are in the form of x/y in which x is the result of ProjE and y is the result
of ProjR. The third column is the number of testing triples related with current row
relation in testing data.

Type Example relations # Hit@10 (%)

Head Tail

1-1 /influence/peer relationship/peers 21 66.7/90.5 66.7/85.7

/business/employment tenure/person 43 72.1/79.1 67.4/72.1

/tv/tv program/program creator 23 95.6/95.6 95.7/95.7

1-N /film/writer/film 105 92.4/93.3 86.7/87.6

/location/country/second level divisions 68 100.0/100.0 28.4/77.6

/people/cause of death/people 98 87.8/83.7 77.6/79.6

N-1 /music/group member/membership 22 50.0/59.1 68.2/77.3

/people/person/nationality 508 2.2/13.2 87.4/93.1

/people/person/education/institution 358 52.2/73.2 69.3/79.1

N-N /award/award winner/awards won 1045 90.4/93.8 90.4/93.0

/tv/tv genre/programs 105 96.2/95.2 87.6/90.5

/music/genre/parent genre 100 75.0/83.0 86.0/90.0

1-N-1 /award/award winner/award 655 63.8/64.7 94.4/94.7

/award/award nominee/award nominations 1555 83.0/82.7 94.0/96.4

C1 /education/educational institution/campuses 60 78.3/100.0 80.0/100.0

/education/educational institution campus 68 80.9/100.0 80.9/100.0

/location/hud county place/place 48 20.8/100.0 22.9/100.0

C2 /people/person/spouse s 54 33.3/40.7 27.8/35.2

/influence/influence node/influenced 235 71.5/63.4 68.5/55.7

/location/location/adjoin s 284 77.8/88.7 75.0/83.4

C3 /location/location/contains 608 92.6/97.2 85.7/84.0

/location/adjoining relationship/adjoins 284 77.8/88.7 75.0/83.5

ProjR: Embedding Structure Diversity for Knowledge Graph Completion 155

mapping different structures. In this experiment, we only consider 1-1, 1-N, N-1
and N-N as the other four relation properties could be included in this four
types. We choose FB15k as the dataset of this experiment because it contains
more relations than WN18. The Hit@10 result of filter setting on FB15k mapping
different substructures are showed in Table 5.

The results in Table 5 show that ProjR improves the ability to encode 1-1,
1-N, N-1 and N-N relations with diverse representations for entities. Among
all structures, the head prediction of N-1 relations and tail prediction of 1-N
relations are the most difficult tasks. And ProjR achieves good improvement on
these two tasks. Compared with the second best result listed in Table 5, ProjR
achieves 11.3% improvement for head prediction of 1-N relations and 14.8%
improvement of tail prediction for N-1 relations.

To understand the ability of ProjR to encode the diversity of knowledge
graph more deeply. We select two or three relations for each type of structure. We
select relations with the principle that the number of testing triples related to the
relation should be larger than 20. We compare the filter Hit@10 result of ProjE
and ProjR on FB15k for each selected relation. The results are listed in Table 6.
The parameter settings for ProjE and ProjR are same as the parameter settings
of the results in Table 4. The results show that ProjR achieves better results
in the majority of the relations for each substructure. A huge improvement is
achieved on C1 structure.

5 Conclusion and Future Work

In this paper, we list 8 kinds of graph substructures to explore the structure
diversity of knowledge graph and propose a new embedding method ProjR to
encode structure diversity more properly based on the idea of diverse represen-
tations for entities in different relation contexts and different entity positions.
In link prediction experiments, ProjR achieves better results compared with the
two most related methods, TransR and ProjE. We explore the results from coarse
to fine to illustrate how ProjR improves the ability to encode the diversity of
structures.

There are some interesting topics that we want to explore in the future: (1) as
shown in Table 6, the prediction results for different relations range hugely, which
means there are still different structures between those relations. (2) Knowledge
graphs are dynamic in the real world and new triples are always added to them.
But existing knowledge graph embedding methods can not handle the dynamic
property of KG.

Acknowledgement. This work is funded by NSFC 61473260/61673338, and Sup-
ported by Alibaba-Zhejiang University Joint Institute of Frontier Technologies.

156 W. Zhang et al.

References

1. Banko, M., Ca-farella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open infor-
mation extraction from the web (2007)

2. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of SIGMOD, pp. 1247–1250 (2008)

3. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data - application to word-sense disambigua-
tion. Mach. Learn. 94(2), 233–259 (2014)

4. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–
2795 (2013)

5. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: Proceedings of AAAI (2011)

6. Garćıa-Durán, A., Bordes, A., Usunier, N.: Composing relationships with transla-
tions. In: Proceedings of EMNLP, pp. 286–290 (2015)

7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of AISTATS, pp. 249–256 (2010)

8. Jenatton, R., Roux, N.L., Bordes, A., Obozinski, G.: A latent factor model for
highly multi-relational data. In: Proceddings of NIPS, pp. 3176–3184 (2012)

9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of ACL, pp. 687–696 (2015)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

11. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for
representation learning of knowledge bases. In: Proceedings of EMNLP, pp. 705–
714 (2015)

12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: Proceedings of AAAI, pp. 2181–2187 (2015)

13. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

14. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge
graphs. In: Proceedings of AAAI, pp. 1955–1961 (2016)

15. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: Proceedings of ICML, pp. 809–816 (2011)

16. Shi, B., Weninger, T.: Proje: Embedding projection for knowledge graph comple-
tion. In: Proceedings of AAAI, pp. 1236–1242 (2017)

17. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor
networks for knowledge base completion. In: Proceedings of NIPS, pp. 926–934
(2013)

18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

19. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of WWW, pp. 697–706 (2007)

20. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text jointly embed-
ding. In: Proceedings of EMNLP, pp. 1591–1601 (2014)

21. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proceedings of AAAI, pp. 1112–1119 (2014)

ProjR: Embedding Structure Diversity for Knowledge Graph Completion 157

22. Wang, Z., Li, J.: Text-enhanced representation learning for knowledge graph. In:
Proceedings of IJCAI, pp. 1293–1299 (2016)

23. Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: semantic space projection for knowl-
edge graph embedding with text descriptions. In: Proceedings of AAAI, pp. 3104–
3110 (2017)

24. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge
graphs with entity descriptions. In: Proceedings of AAAI, pp. 2659–2665 (2016)

25. Xie, R., Liu, Z., Sun, M.: Representation learning of knowledge graphs with hier-
archical types. In: Proceedings of IJCAI, pp. 2965–2971 (2016)

26. Zhang, C.: DeepDive: a data management system for automatic knowledge base
construction (2015)

27. Zhang, W.: Knowledge graph embedding with diversity of structures. In: Proceed-
ings of WWW Companion, pp. 747–753 (2017)

BiTCNN: A Bi-Channel Tree Convolution
Based Neural Network Model
for Relation Classification

Feiliang Ren(&), Yongcheng Li, Rongsheng Zhao,
Di Zhou, and Zhihui Liu

School of Computer Science and Engineering,
Northeastern University, Shenyang 110819, China

renfeiliang@cse.neu.edu.cn

Abstract. Relation classification is an important task in natural language pro-
cessing (NLP) fields. State-of-the-art methods are mainly based on deep neural
networks. This paper proposes a bi-channel tree convolution based neural net-
work model, BiTCNN, which combines syntactic tree features and other lexical
level features together in a deeper manner for relation classification. First, each
input sentence is parsed into a syntactic tree. Then, this tree is decomposed into
two sub-tree sequences with top-down decomposition strategy and bottom-up
decomposition strategy. Each sub-tree represents a suitable semantic fragment in
the input sentence and is converted into a real-valued vector. Then these vectors
are fed into a bi-channel convolutional neural network model and the convo-
lution operations re performed on them. Finally, the outputs of the bi-channel
convolution operations are combined together and fed into a series of linear
transformation operations to get the final relation classification result. Our
method integrates syntactic tree features and convolutional neural network
architecture together and elaborates their advantages fully. The proposed
method is evaluated on the SemEval 2010 data set. Extensive experiments show
that our method achieves better relation classification results compared with
other state-of-the-art methods.

Keywords: Relation classification � Syntactic parsing tree � Tree convolution
Convolutional neural networks

1 Introduction

The aim of relation classification is that given a sentence in which two entities are
labeled, to select a proper relation type from a predefined set for these entities. For
example, given a sentence “The system as described above has its greatest application
in an arrayed <e1> configuration </e1> of antenna <e2> elements </e2>”, a relation
classification system aims to identify that there is a “Component-Whole” relationship
from e2 to e1. Obviously, accurate relation classification results would benefit lots of
NLP tasks, such as sentence interpretations, Q&A, knowledge graph construction,
ontology learning, and so on. Thus, lots of researchers have devoted to this research
field.

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 158–170, 2018.
https://doi.org/10.1007/978-3-319-99495-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_14&domain=pdf

For relation classification, early research mostly focused on features based methods.
Usually, these methods firstly select some syntactic and semantic features from the
given sentences. Then the selected features are fed into some classification models like
support vector machines, maximum entropy, etc. Recently, deep neural network
(DNN) based methods have been widely explored in relation classification and have
achieved state-of-the-art experimental results. The core of these methods is to embed
features into real-valued vectors, and then feed these vectors into DNN architectures.
Usually, deep convolutional neural networks (CNN) and deep recurrent neural net-
works (RNN) are two most widely used architectures for relation classification.

In most recent years, inspired by the broad consensus that syntactic tree structures
are of great help and the great success of DNN, more and more research attention is
being paid to the methods that integrate syntactic tree features into DNN models.
However, most of these existing methods used syntactic tree in a very shallow manner:
syntactic tree structure is often taken as an intermediate supporter from which a specific
kind of context can be extracted for CNN or RNN models. Obviously, such shallow
manner does not make full use of the rich semantic information carried by syntactic tree
structures.

It is worth noting that Socher et al. (2013a, b) introduced Compositional Vector
Grammar (CVG for short), which used a syntactically untied RNN model to learn a
syntactic-semantic compositional vector representation for the category nodes in a
syntactic tree. Inspired by their work, we propose a new relation classification method
that integrates syntactic tree structures into CNN model with a deeper manner.
Specifically, in our method, each input sentence is first parsed into a syntactic tree.
Then this tree is decomposed into two sub-tree sequences with bottom-up and top-
down decomposition methods respectively. Thirdly, each sub-tree is encoded into a
real-valued vector. Fourthly, the two sub-tree vector sequences are fed into a bi-channel
CNN model to generate final classification result. Experimental results show that our
method achieves better results compared with other baseline methods.

2 Related Work

Generally, there are three widely used DNN architectures for relation classification:
CNN, RNN, and their combination.

Zeng et al. (2014) proposed a CNN based approach for relation classification. In
their method, sentence level features are learned through a CNN model that takes word
embedding features and position embedding features as input. In parallel, lexical level
features are extracted from some context windows that are around the labeled entities.
Then sentence level features and lexical level features are concatenated into a single
vector. This vector is fed into a softmax classifier for relation prediction. Wang et al.
(2016) proposed a multi-level attention CNN model for relation classification. In their
method, two levels of attentions are used in order to better discern patterns in
heterogeneous contexts.

Socher et al. (2012) used RNN for relation classification. In their method, they
build recursive sentence representations based on syntactic parsing. Zhang and Wang
(2015) investigated a temporal structured RNN with only words as input. They used a

BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model 159

bi-directional model with a pooling layer on top. Xu et al. (2015a, b) picked up
heterogeneous information along the left and right sub-path of the Shortest Dependent
Path (SDP) respectively, leveraging RNN with LSTM. In their method, the SDP retains
most relevant information to relation classification, while eliminating irrelevant words
in the sentence. And the multichannel LSTM networks allow effective information
integration from heterogeneous sources over the dependency paths. Meanwhile, a
customized dropout strategy regularizes the neural network to alleviate over-fitting.
Besides, there is also other similar work. For example, Hashimoto et al. (2013)
explicitly weighted phrases’ importance in RNNs. Ebrahimi and Dou (2015) rebuilt an
RNN on the dependency path between two labeled entities.

Some researchers combined CNN and RNN for relation classification. For example,
Vu et al. (2015) investigated CNN and RNN as well as their combination for relation
classification. They proposed extended middle context, a new context representation
for CNN architecture. The extended middle context uses all parts of the sentence (the
relation arguments, left/right and between of the relation arguments) and pays special
attention to the middle part. Meanwhile, they used a connectionist bi-directional RNN
model and a ranking loss function is introduced for the RNN model. Finally, CNN and
RNN were combined with a simple voting scheme. Cai et al. (2016) proposed a
bidirectional neural network BRCNN, which consists of two RCNNs that can learn
features along SDP inversely at the same time. Specifically, information of words and
dependency relations are used with a two-channel RNN model with LSTM units. The
features of dependency units in SDP are extracted by a convolution layer. Liu et al.
(2015) used a RNN to model the sub-trees, and a CNN to capture the most important
features on the SDP.

3 Our Model

Figure 1 demonstrates the architecture of our method. The network takes sentences as
input and extracts syntactic tree features and other useful features. These features are
converted into real-valued vector representations and then fed into a bi-channel CNN
model for relation type decision. From Fig. 1 we can see that there are six main
components in our method: tree decomposition, feature extraction, convolution trans-
formation, max-pooling operation, linear transformation and output.

3.1 Tree Decomposition

Each input sentence will firstly be parsed into a syntactic tree by the Stanford Parser.
Then this tree is decomposed into two sub-tree sequences with bottom-up decompo-
sition method and top-down decomposition method. These two kinds of decomposition
methods, whose algorithms are shown in Figs. 2 and 3 respectively, complement each
other and are expected to generate more meaningful and less ambiguous semantic
fragments than words.

For the top-down tree decomposition method, its generated sub-trees don’t contain
any word information. It is expected to extract the common syntactic sub-tree structures
for a specific kind of relationship type, and is also expected to alleviate the over-fitting

160 F. Ren et al.

issue by using these abstract sub-tree structures as features. Taking the sentence in
Fig. 1 as an example, the sub-tree sequence generated by this method is: (S (NP) (VP)),
(NP ((DT) (JJ) (NN))), (VP (VBZ) (PP)), (PP (IN) (NP)), (NP (DT) (NN)).

As for the bottom-up method, it complements with the top-down method. In this
method, word information is taken into consideration. Taking the sentence in Fig. 1 as
an example, if the hyper parameters in Fig. 3 are set as: h = 3, D = 3, and k = 3, the
sub-tree sequence generated by this method would be: (NP ((DT A) (JJ misty) (NN
ridge))), (VP (VBZ uprises) (PP (IN from) (NP (DT the) (NN surge)))).

Fig. 1. Architecture of our method

BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model 161

3.2 Feature Extraction

There are three kinds of features used in our model: syntactic tree features, lexical level
features and entities level features. In Fig. 1, they are denoted as TFeas, LFeas and
EFeas respectively.

• Syntactic Tree Features

Syntactic tree structures can carry more semantic and syntactic information com-
pared with characters, words, or phrases. To make full use of such information, we
embed each sub-tree into a dtree-dimensional real-valued vector. Just like a word
embedding vector can encode different meaning of the word into a vector, we hope that
a tree embedding vectors can also encode as much as possible semantic and syntactic
information for a tree structure. In our method, this kind of tree embedding vectors is
initialized with the method proposed by Socher et al. (2013a, b). Their method can
assign a vector representation for both the nodes in a parsing tree and the whole parsing
tree itself. But in our model, we don’t care the representations of any inner categories in
a parsing tree. Thus, our method assigns a vector representation for the whole tree
structure only.

Fig. 2. Algorithm of top-down tree decomposition

Fig. 3. Algorithm of bottom-up tree decomposition

162 F. Ren et al.

• Lexical Level Features

Lexical level features refer to the features that are related to words. Thus only the
sub-trees generated by the bottom-up decomposition method will involve this kind of
features. There are two kinds of lexical level features used in our method: word
embedding features and position features. The final lexical level features, LFeas, are
the concatenations of these two kinds of features.

1. Word Embedding Features

Word embedding is a kind of word representation method and is widely used in
DNN models. It converts a word into a real-valued vector representation to capture the
rich syntactic and semantic features possessed by this word. Generally, a word
embedding table is a dw*|V| real-valued matrix where each column corresponds to a
word representation. dw is the dimension of a embedding vector, and |V| is the
vocabulary size.

For a sub-tree ti that is generated by the bottom-up decomposition method, each of
its leaf nodes has a word embedding vector. If there are m leaf nodes in ti, its word
embedding features wf(ti) would be the arithmetic mean of its m words’ embeddings, as
shown in:

wf ðtiÞj ¼ avg
Xm

k¼1

wkj; 1 � j � dw ð1Þ

2. Position Features

Position features are used to specify which input items are the labeled entities in a
sentence or how close an input item is to the labeled entities. They have been proved to
be effective for relation classification (Dos et al. (2015); Zeng et al. (2014)). This kind
of features maps a distance value into a randomly initiated ddst-dimensional real-valued
vector.

For a sub-tree ti that is generated by the bottom-up decomposition method, each of
its leaf nodes has two kinds of position features that are related with e1 and e2
respectively. Accordingly, there are two kinds of position features for ti.

If there are m leaf nodes in ti, its position features related with e1, denoted as pf(e1),
would be the arithmetic mean of its m leaf nodes’ position features related with e1. The
computation process is shown in formula 2.

pf ðe1Þj ¼ avg
Xm

k¼1

pkj; 1 � j � ddst ð2Þ

Similarly, the computation process for ti’s position features related with e2, denoted
as pf(e2), is shown in formula 3.

BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model 163

pf ðe2Þj ¼ avg
Xm

k¼1

pkj; 1 � j � ddst ð3Þ

Finally, the position features for ti is the concatenation of pf(e1) and pf(e2).

3. Entities Level Features

Previous research shows that words between the two labeled entities could provide
more useful cues for relation decision. So an attention scheme is used here to enhance
the features extracted from the words that are between the two labeled entities. The
enhanced feature is called entities level features and is denoted as EFeas in Fig. 1.

We first get the syntactic tree for the text that is from the first labeled entity to the
second labeled entity. Then the syntactic tree features and the lexical level features are
extracted with the same method introduced previously. Thirdly, these two kinds of
features are concatenated to form a new feature vector that is denoted as EntityF. The
final EFeas is generated with formula 4.

EFeas ¼ tanh M1 � EntityF þ b1ð Þ ð4Þ

WhereM1 2 Rh1*def is a transformation matrix, h1 is a hyper parameter that denotes
the transformed size, def is the dimension of vector EntityF; b1 is a bias term.

From Fig. 1 we can see that EFeas would be concatenated with the linear trans-
formed max-pooling features. To maintain feature consistency, here we use the linear
transformed EntityF as EFeas.

3.3 Convolution Transformation

Convolution transformation is a kind of linear transformation and is expected to extract
more abstract features.

For the sub-tree sequence that is generated by the bottom-up method, each of its
sub-tree ti is represented by a vector concatenation of TFeas(i) and LFeas(i). The
convolution transformation process is written as formula 5.

CMtrBi ¼ M2 � ðTFeas tið Þ � LFeas tið ÞÞþ b2 8i ð5Þ

For the sub-tree sequence that is generated by the top-down method, each of its
sub-tree ti is represented by TFeas(i). The convolution process is written as formula 6.

CMtrTi ¼ M3 � TFeas tið Þ þ b3 8i ð6Þ

In above formulas, M2 2 Rh2*dbf and M3 2 Rh3*dtf are two transformation matrices,
h2 and h3 are the sizes of transformed hidden layers, dbf and dtf are the dimensions of
sub-tree vectors in the bottom-up and top-down tree sequences respectively. b2 and b3
are bias terms. ⊕ denotes the concatenation operation.

164 F. Ren et al.

3.4 Max-Pooling Operation

After convolution transformation, both CMtrB and CMtrT depend on the length of
input sequence. To apply subsequent standard affine operations, max-pooling operation
is used to capture the most useful and fixed size local features from the output of
convolution transformation. This process is written as formula 7 and 8.

pbi ¼ maxnCMtrB i; nð Þ 0 � i � h2 ð7Þ

pti ¼ maxnCMtrT i; nð Þ 0 � i � h3 ð8Þ

After max-pooling operation, pb and pt will have h2 and h3 elements respectively,
which are no longer related to the length of input.

3.5 Linear Transformation

After the max-pooling operation, pb and pt are concatenated together to form a new
vector p. Then p is fed into a linear transformation layer to perform affine transfor-
mation. This process is written as formula (9).

f ¼ tanh M4 � p þ b4ð Þ ð9Þ

M4 2 Rh4*(h2+h3) is the transformation matrix and h4 is the size of hidden units in
this layer, and b4 isa bias term.

3.6 Output

After linear transformations, vector f and vector EFeas are concatenated together to
form a new vector o. Then o is fed into a linear output layer to compute the confidence
scores for each possible relationship type. A softmax classifier is further used to get the
probability distribution y over all relation labels as formula 10.

y ¼ softmax M5 � oþ b5ð Þ ð10Þ

Here M5 2 Rh5*(h1+h4) and h5 is the number of possible relation types. Softmax is
computed with formula 11.

yi ¼ exi=
X

m

exm ð11Þ

3.7 Dropout Operation

Over-fitting is an issue that cannot be ignored in DNN models. Hinton et al.
(2012) proposed dropout method that has been proved to be effective for alleviating
over-fitting. This method randomly sets a proportion (called drop rate, a hyper-
parameter) of features to zero during training. It is expected to obtain less interdependent

BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model 165

network units, thus over-fitting issue is expected to be alleviated. In our method, dropout
strategy is taken at feature extraction phase and linear transformation phase. Specially,
we take dropout operation on EntityF, TFeas, LFeas in formula 4*6 respectively, and
on p in formula 9. The drop rates for them are denoted as dp1*4 respectively.

3.8 Training Procedure

All the parameters in our method can be denoted as h = (Ew, Et, Ep, M1, M2, M3, M4,
M5, b1, b2, b3, b4, b5), where E

w, Et and Ep represent the embeddings of word, syntactic
tree and position respectively. Ew is initialized by the pre-trained embeddings SENNA
(Collobert et al. 2011).Et is initialized with the method introduced by Socher et al.
(2013a, b). Ep, transformation matrices, and bias terms are randomly initialized. All the
parameters are tuned using the back propagation method. Stochastic gradient descent
optimization technique is used for training. Formally, we try to maximize following
objective function.

J hð Þ ¼
XN

i¼1
logyi ð12Þ

where N is the total number of training samples. During training, each input sentence is
considered independently. And each parameter is updated by applying following
update rule, in which η is the learning rate.

h ¼ h þ g � @logy=@h ð13Þ

4 Experiments and Analysis

4.1 Datasets

The SemEval-2010 Task 8 dataset is used to evaluate our method. In this dataset, there
are 8000 training sentences and 2717 test sentences. For each sentence, two entities that
are expected to be predicted a relation type are labeled. There are 9 relation types
whose directions need to be considered and an extra artificial relation “Other” which
does not need to consider the direction. Thus totally there are 19 relation types in this
dataset.

Macro-averaged F1 score (excluding “Other”), the official evaluation metric, is
used here and the direction is considered. During experiments, all the syntactic trees are
generated by the Stanford Parser (Klein and Manning, 2003). We apply a cross-
validation procedure on the training data to select suitable hyper-parameters. Finally,
the best configurations obtained are: ddst = 75, η = 0.001, h1*4 are 250, 200, 200 and
300 respectively, dp1*4 are all set to 0.5. In Fig. 3, D, h and k are set to 3, 3 and 3
respectively. Other parameters, dw and dtree are 50 and 25 respectively.

166 F. Ren et al.

4.2 Experimental Results and Analyses

In the first part of our experiment, we evaluate the contributions of different kinds of
features and different convolutional channels. To this end, we implement a CNN model
that is similar to the one described in Zeng et al. (2014). This CNN model is denoted as
baseline in which word embedding features and position features are used. Besides, we
implement two other CNN models: one is with the bottom-up tree convolution channel,
and the other is with the top-down tree convolution channel. Then we investigate how
the performance changes when different kinds of features are added. The experimental
results are reported in Table 1.

We can see that our model is very effective and it outperforms the baseline system
greatly. Also we can see that different convolution channels have different classification
performance. Even without LFeas features, the bottom-up tree CNN model achieves
better performance than the top-down tree CNN model. We think the main reason is
that in the bottom-up model, word information is retained and this kind of information
would play positive role for relation classification. This can be further proved by the
experimental results: the performance improves when different kinds of lexical features
are added in the bottom-up tree CNN model.

In the second part of our experiment, we compare our method with several other
state-of-the-art DNN based methods. Because the datasets used are the same, we
directly copy the experimental results reported in Zeng et al. (2014). The comparison
results are shown in Table.

From Table 2 we can see that our method achieves better results compared with
other methods. It is also worth noting that our method is the ONLY ONE that does not
use any external language-dependent resources like WordNet. This shows the effec-
tiveness of embedding syntactic tree features into CNN architecture for relation
classification.

In the third part of our experiment, we compare the classification performance for
different types of relationships. The comparison results are reported in Table 3.

From the experimental results we can see that the performance of different types of
relationships is very different. Even excluding “Other” type, the best performance (for
example, “cause-effect” and “entity-destination”) is almost 10% higher than the worst
performance (for example, “product-producer” and “content-container”). Further

Table 1. Performance of our method with different features

Model F1

Baseline 82.4
Bottom-up tree convolution(without LFeas) 73.0
Bottom-up tree convolution + WordEmb feature 74.6
Bottom-up tree convolution + Position feature 74.0
Bottom-up tree convolution + LFeas 76.3
Top-down tree convolution 65.5
Our model 84.8

BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model 167

investigation shows that for the relationships that model can classify better, there are
usually some clear indicating words in the original sentences. For example, words
“cause”, “caused”, and “causes” are often in the sentences where a “cause-effect”
relationship holds. On the contrary, there are usually few of such kind of indicating
words for the relationships that model classifies worse. As a result, max-pooling
operation couldn’t work well in such cases.

5 Conclusions and Future Work

In this paper, we propose a new relation classification method. The main contributions
of our method are listed as follows.

First, our method uses syntactic tree structures in a deeper manner: the input
sentence is parsed into a syntactic tree. And this tree is further decomposed into two
sub-tree sequences and the convolution operations are performed on the sub-tree
embeddings directly.

Table 2. Comparisons with other methods

Method Features and extra resources used F1

CNN WordNet 82.7
SVM POS, prefixes, morphological, WordNet, dependency

parse, Levin classed, ProBank, FrameNet, NomLex-
Plus, Google n-gram, paraphrases, TextRunner

82.2

RNN -
POS, NER, WordNet

74.8
77.6

MVRNN -
POS, NER, WordNet

79.1
82.4

Our
model

parsing trees 84.8

Table 3. Classification results of different relationships

Relationship P R F

Cause-Effect 95.43% 88.17% 91.65%
Component-Whole 80.45% 81.76% 81.10%
Content-Container 84.38% 77.14% 80.60%
Entity-Destination 95.21% 87.97% 91.45%
Entity-Origin 89.15% 85.82% 87.45%
Instrument-Agency 83.97% 76.61% 80.12%
Member-Collection 91.85% 76.70% 83.59%
Message-Topic 88.51% 74.76% 81.05%
Product-Producer 82.68% 78.60% 80.59%
Other 40.75% 71.43% 51.89%

168 F. Ren et al.

Second, we design two decomposition methods to guarantee the tree decomposition
process performed in a reasonable way, which means that each of the generated sub-
trees has a relatively complete structure and can express a complete meaning.

However, there are still some other issues needed to be further investigated. For
example, experimental results show that there are big performance gaps between dif-
ferent types of relationships, which should be further investigated in the future.

Acknowledgements. This work is supported by the National Natural Science Foundation of
China (NSFC No. 61572120, 61672138 and 61432013).

References

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language
processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

Wang, L., Cao, Z., de Melo, G., Liu, Z.: Relation classification via multi-level attention CNNs.
In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,
pp. 1298–1307 (2016)

Cai, R., Zhang, X., Wang, H.: Bidirectional recurrent convolutional neural network for relation
classification. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, pp. 756–765 (2016)

Xu, K., Feng, Y., Huang, S., Zhao, D.: Semantic relation classification via convolutional neural
networks with simple negative sampling. In: Proceedings of 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 536–540 (2015a)

Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long short term
memory networks along shortest dependency paths. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1785–1794 (2015b)

Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep
neural network. In: Proceedings of the 25th International Conference on Computational
Linguistics, pp. 2335–2344 (2014)

Zhang, Z., Zhao, H., Qin, L.: Probabilistic graph-based dependency parsing with convolutional
neural network. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, pp. 1382–1392 (2016)

Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector grammars. In:
Proceedings of the 51th Annual Meeting of the Association for Computational Linguistics,
pp. 455–465 (2013a)

Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive
deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642
(2013b)

dos Santos, C.N., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural
networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics, pp. 626–634 (2015)

Liu, Y., Wei, F., Li, S., Ji, H., Zhou, M., Wang, H.: A dependency-based neural network for
relation classification. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics, pp: 285–290 (2015)

Vu, N.T., Adel, H., Gupta, P., Schutze, H.: Combining recurrent and convolutional neural
networks for relation classification. In: Proceedings of NAACL-HLT 2016, pp. 534–539
(2015)

BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model 169

Hashimoto, K., Miwa, M., Tsuruoka, Y., Chikayama, T.: Simple customization of recursive
neural networks for semantic relation classification. In: Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pp. 1372–1376 (2013)

Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality through recursive
matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on EMNLP and
Computational Natural Language Learning, pp. 1201–1211 (2012)

170 F. Ren et al.

Using Entity Relation to Improve Event
Detection via Attention Mechanism

Jingli Zhang, Wenxuan Zhou, Yu Hong(B), Jianmin Yao, and Min Zhang

Computer Science and Technology, Soochow University, Suzhou, Jiangsu, China
jlzhang05@gmail.com, chrisnotkris7@gmail.com, tianxianer@gmail.com,

{jyao,minzhang}@suda.edu.cn

Abstract. Identifying event instance in texts plays a critical role in the
field of Information Extraction (IE). The currently proposed methods
that employ neural networks have successfully solve the problem to some
extent, by encoding a series of linguistic features, such as lexicon, part-
of-speech and entity. However, so far, the entity relation hasn’t yet been
taken into consideration. In this paper, we propose a novel event extrac-
tion method to exploit relation information for event detection (ED),
due to the potential relevance between entity relation and event type.
Methodologically, we combine relation and those widely used features in
an attention-based network with Bidirectional Long Short-term Memory
(Bi-LSTM) units. In particular, we systematically investigate the effect
of relation representation between entities. In addition, we also use dif-
ferent attention strategies in the model. Experimental results show that
our approach outperforms other state-of-the-art methods.

Keywords: Event detection · Attention mechanisms · Entity relation

1 Introduction

Event extraction (EE) is an important task in IE. The purpose is to detect event
triggers with specific types and their arguments. This paper only tackles event
detection (ED) task, which is a crucial part of EE, focusing on identifying event
triggers and their categories. Take the following sentence for example:

S1: David Kaplan was killed by sniper fire in the Balkans in 1992.

There is an Attack event is mentioned in S1. The “fire” is annotated as
trigger in ACE-2005 corpus. Thus, an ED system should be able to identify the
trigger as “fire” and assign it an event type Attack .

However, it might be easily misclassified as End-Position event in reality
because “fire” is a polysemy. In this case, Liu et al. [15] utilized entity to rein-
force the classification. Such as in S1, they proposed that considering the word
“sniper”, which serves as an entity (Attacker) of the target event, to get more
confidence in predicting the trigger as an Attack event.

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 171–183, 2018.
https://doi.org/10.1007/978-3-319-99495-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_15&domain=pdf

172 J. Zhang et al.

Unfortunately, although the entity information is considered, there are still
difficulties to identify event type correctly for some sentences. For example, con-
sider the following two instances:

S2: Swenson herself would also leave the NCA.

S3: It’s the Iraqi ambassador’s time to leave the United States.

Table 1 lists the relevant information about S2 and S3. In S2, “leave” is a
trigger of type End-Position. However, in S3, “leave” is a trigger of type Trans-
port, which is more common than End-Position. In addition, the entities in S2
are Non-Governmental and Individual, which have no discrimination for identi-
fying event type with entities (Nation and Individual) in S3. Because they all
indicate institution and individual. However, if we consider the relation between
the entities, which is Membership in S2 and Located in S3, we would have more
confidence in predicting the End-Position event and the Transport event respec-
tively. Such as in S2, Membership indicates the member relationship between
two entities, then the probability that the sentence will contain an End-Position
event will be higher than a Transport event.

Table 1. Event, Entity and Relation labels for the above two instances.

Instance S2 S3

Event leave: End-Position leave: Transport

Entity1 NCA: Non-Governmental United States: Nation

Entity2 swenson: Individual ambassador: Individual

Relation Membership Located

In addition, we note that words in sentence have different contribution
degrees for the correct recognition of trigger. Some words are important, yet
others are meaningless. For example, in S1, “killed” and “sniper” provide more
important clues than other words that an Attack event might happen. Thus,
these words should get more attention than others. Guided by this, we employ
attention mechanism to model the sentence. Attention values indicate the impor-
tance of different words in the sentence of predicting the event type.

To sum up, based on the entity relation information and different significant
clues that different words can provide, we propose an attention-based Bi-LSTM
model and utilize relation type embedding in the model to detect event. In
summary, the contributions of this paper are as follows:

• We analyze the impact of entity relation information in ED task, and effec-
tively merge it to the ED system.

• We propose an attention-based Bi-LSTM model, which aims to capture more
important information within a sentence for ED task. In addition, we also
investigate different attention strategies for the proposed model.

Using Entity Relation to Improve Event Detection via Attention Mechanism 173

• We conduct extensive experiments on the ACE-2005 corpus. The experimen-
tal results show that our method outperforms other state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of some event research works. Section 3 describes the ED task specifi-
cally. Section 4 gives a detailed introduction of our proposed method. Section 5
shows the experimental results and Sect. 6 concludes the paper.

2 Related Work

Event detection is an important subtask of event extraction [5]. Many approaches
have been explored for ED. We divide these methods into feature-based methods
and structure-based methods.

In feature-based methods, Ahn and David [1] leverage lexical, syntactic and
external knowledge features to extract the event. Ji and Grishman [9] use rich
evidence from related documents for the event extraction. Furthermore, Liao
et al. [11] and Hong et al. [8] proposed the cross-event and cross-entity inference
methods to capture more clues from the texts. Benefiting from the common
modelling framework, these methods can achieve the fusion of multiple features,
in addition, they can be used flexibly through feature selection. But feature
engineering requires considerable expertise.

In structure-based methods, the use of neural network for ED has become
a promising research. Some researchers like Nguyen et al. [18] and Chen
et al. [3] learn continuous word representations and regard them as features
to infer whether a word is a trigger or not by exploring neural network. Respec-
tively, Nguyen et al. proposed a Convolutional Neural Network (CNN) with
entity type information and word position information as extra features and
Chen et al. presented a Dynamic Multi-pooling layer (DM-CNN) to capture
information from sentence. Tang et al. [19] presented Bi-LSTM to model the
preceding and following information of a word as people generally believe that
LSTM is good at capturing long-term dependencies in a sequence. Some other
models also effectively improve the performance of ED task, including Nguyen
et al. [17] Bidirectional Recurrent Neural Network (Bi-RNN) and Feng et al. [6]
Hybrid which combines the Bi-LSTM and CNN neural network.

3 Task Description

In this paper, we adopt the event extraction task defined in Automatic Content
Extraction (ACE) evaluation. An event indicates a specific occurrence involving
one or more participants. We introduce some ACE terminologies to facilitate the
understanding of this task:

• Event trigger: the main word that most clearly expresses the occurrence of
an event (typically, a verb or a noun).

• Event argument: the mentions that are involved in an event (participants).

174 J. Zhang et al.

• Entity: an object or a set of objects in one of the semantic categories.
• Relation: some relationship between entities in one sentence.

For easy to understand, we can see the instance of S2: an event extractor
should detect an End-Position event, along with the event trigger “leave”. More-
over, the entities in this sentence are NCA and swenson. The relation between
the entities is Membership. In this paper, we formalize the ED problem as a
multi-class classification problem following previous work [5]. Given a sentence,
we classify every token of the sentence into one of the predefined event classes
or non-trigger class.

In addition, since entity recognition and relation detection are difficult task
in ACE evaluation and not the focus in the event extraction task, we directly
leverage the ground-truth entity and relation labels.

4 Our Approach

We model the ED task as a multi-class classification task. In detail, given a
sentence, we treat every token in this sentence as a trigger candidate, and our
goal is to classify each of these candidates into one of 34 classes.

In this section, we illustrate details of our approach, including the sentences
representation which is the input of the model, the attention strategies, the use
of Bi-LSTM which is to encode semantics of each word with its preceding and
following information, as well as the other details in the model.

4.1 Input

We follow Chen et al. [3] to take all tokens of the sentence as the input. Before
feeding tokens into the network, we transform each of them into a real-valued
vector D. The vector is formed by concatenating a word embedding, an entity
type embedding with a relation type embedding. As shown in Fig. 1.

Fig. 1. Embedding.

Using Entity Relation to Improve Event Detection via Attention Mechanism 175

Word Embedding. In this paper, we limit the context to a fixed length by
trimming longer sentences and padding shorter sentences with special token. We
let n be the fixed length. wi is the current candidate trigger. So, we get the
representation of the sentence: W = {w1, w2, ..., wi, ..., wn}. Then, looking up a
pre-trained word embedding table to get the word embedding representation w.
It is a fixed-dimensional real-valued vector which represents the hidden semantic
properties of a token [4]. We use the Skip-gram model [16,20] to learn word
embeddings on the NYT corpus1.

Entity Type Embedding. Similarly, we limit the sentences to a fixed length
n. However, we only label entities which have been annotated in corpus with
specific symbols. Other non-entity words are labelled as 0. Thus, the entity
representation as follows: E = {0, ...ei, 0, ..., ej , 0, ...}, where ei is the i-th entity
and ej is the j-th entity. Then, we look up the entity type embedding table
(initialized randomly). The result of the entity type embedding is we.

Relation Type Embedding. It is specially used to characterize the embedding
of the ED model using relationship between two entities. For the sentence that
has fixed length n, we set each word as 0 expect when there exists a word which
is an entity ei and is annotated relation type with another entity ej in corpus,
we set it as symbol r. In addition, we set the entity ej as the same symbol with
ei. The relation type representation of this sentence is: R = {0, ..., r, 0, ..., r, 0...}.
Similarly, we look up the relation type embedding table to get the relation type
embedding wr. We randomly initialize embedding vectors for each relation type
(including the non-trigger type) and update them during training procedure.

We concatenate the above three embeddings as the input to the neural net-
work. The process is shown in Fig. 1: D = [w,we, wr]. We denote the final repre-
sentation as D = {d1, d2, ...di, ...dn}, where n is also the length of the sentence
and d represents each word.

4.2 Attention Mechanism

In order to capture the information of important words as much as possible, and
reduce the interference for modeling meaningless words, we leverage attention
mechanism to the neural network. The specific attention structure is shown in
Fig. 2. We follow Liu et al. [13] calculation method of attention value strictly.
Given the sentence and its representation D = {d1, d2, ...di, ...dn}, we treat each
token as a candidate trigger, dc represents the current candidate trigger. Firstly,
we get the relatedness si between dc and the other token representation di in
the sentence by the following equation:

si = tanh(dcTWdi + b) (1)

1 https://catalog.ldc.upenn.edu/LDC2008T19.

https://catalog.ldc.upenn.edu/LDC2008T19

176 J. Zhang et al.

where W is the weight matrix and b is the bias. Then, we calculate the impor-
tance pi of each token in the sentence relative to the current candidate trigger.
Given all the importance weighs, we get the comprehensive information attc
conveyed by D regarding the candidate trigger by computing the weighted sum:

pi =
exp(si)∑n

k=1 exp(sk)
, attc =

n∑

i=1

pi ∗ di (2)

Furthermore, we come up with two attention strategies according to the
different position of the attention mechanism in the model:

Fig. 2. Attention mechanism.

Att1: After obtaining the embedding D of the sentence, we apply the atten-
tion mechanism immediately. As shown in Fig. 2, through the above calculation
method, we get the new embedding representation D after assigning attention
weights. Then, we concatenate D and D as the input I to the Bi-LSTM.

Att2: We use embedding representation D as the input for Bi-LSTM firstly.
And we utilize hidden output H of Bi-LSTM as the input for attention mecha-
nism. Similarly, we can obtain the new hidden representation H after attention
value calculation method. Then, we concatenate H and H for softmax.

4.3 Bi-LSTM

RNN with long short-term memory (LSTM) unit is adopted due to the superior
performance in a variety of NLP tasks [12,14]. Furthermore, Bi-LSTM is a type of
Bi-RNN, which can model word representation with its preceding and following
information simultaneously.

Bi-LSTM consists of input gate, forget gate and output gate. At step t, input
gate accepts a current input xt, previous hidden state ht−1 and previous cell state
Ct−1 as Eq. 3. it controls how much new information can be conveyed to the cell
state. tildeCt indicates new information at the current moment. Forget gate ft
controls how much information of the previous cell moment can be conveyed

Using Entity Relation to Improve Event Detection via Attention Mechanism 177

to the current moment. Ct represents updated cell state. Output gate gets the
current hidden state ht of the step t as Eq. 5.

it = σ(Wi) · [ht−1, xt] + bi, C̃t = tanh(WC · [ht−1, xt] + bc) (3)

ft = σ(Wf) · [ht−1, xt] + bf , Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo) · [ht−1, xt] + bo, ht = ot ∗ tanh(Ct) (5)

The details of our Bi-LSTM architecture for ED are shown in Fig. 3. The
figure shows the case of Att1, so the input of Bi-LSTM consists of six embed-
ding representation: {w,we, wr, w,we, wr}. We can see that Bi-LSTM is com-
posed of two LSTM neural networks, a forward F-LSTM to model the preceding
contexts, and a backward Bi-LSTM to model the following contexts. We can get
the hidden representation hf and hb via running F-LSTM and B-LSTM respec-
tively. Then, we concatenate the hidden embedding hf and hb as the output
H = {h1, h2, ..., hi, ...hn} of Bi-LSTM.

Fig. 3. Bi-LSTM architecture.

4.4 Output

AS mentioned earlier, we formulate ED as a multi-class classification problem.
We predict each token of the sentence whether is an event trigger and assign
event type to it. We use the hidden output H of the Bi-LSTM directly with
Att1 or combine H and H with Att2 as the input to a softmax classifier. Thus,
we can get the predicted probabilities of different types P (yj |xi, Θ), where Θ
represents all the parameters of the model, and xi is the i-th word and yj is the
j-th event type.

4.5 Training

We train the attention-based Bi-LSTM model by optimizing objective function
which is defined as a multi-class cross-entropy loss:

L(Θ) = −
N∑

k=1

C∑

i=1

yilogP (yi|xk, Θ) + λ(Θ) (6)

178 J. Zhang et al.

where N denotes the all candidate triggers in the training process, C denotes
the all event classes, and yi is the real event type of the word xi. λ is the
regularization parameter and Θ represents the all parameters in the model.

In addition, we train the network via stochastic gradient descent (SGD) [18]
with shuffled mini-batches. The gradients are computed using back propagation.

5 Experiments

5.1 Dataset and Evaluation Metric

We use the ACE-2005 corpus in the experiments. For comparison purpose, we
follow Li et al. [10] to select 529 articles in English as the training data set, 30
as development set and 40 for test.

Following the previous work [9], we use Precision (P), Recall (R) and F1

score (F1) as the evaluation metrics of our approach.

5.2 Hyperparameter Settings

The word embeddings are initialized with the 300-dimensional real-valued vec-
tors. The entity type embeddings are specified as the 50-dimensional real-valued
vectors. And the relation type embeddings are initialized with the 20-dimensional
vectors. We follow Feng et al. [6] to set the dropout rate and the batch size.
Table 2 shows the specific setting of parameters used in our experiments.

Table 2. Hyperparameters used in our experiments.

Parameters Values Parameters Values

Word embedding 300-dimensional Dropout rate 0.2

Entity embedding 50-dimensional Learning rate 0.3

Relation embedding 20-dimensional Hidden size 200

Batch size 10 Coefficient 10−3

5.3 Compared Systems

The state-of-the-art models proposed in the past are compared with ours. We
divide the models into three classes:

Feature Based Approaches: Joint : the method in Li et al. [10] which
combines the local and global features and is based on the structured perceptron.
Cross-Entity : Hong et al. [8] model, which employs the name entities as the
additional discriminant features to aid event extraction.

External Resource Based Approaches: Include Chen et al. [2]
DMCNN-DS , which utilizes world knowledge (Freebase) and linguistic knowl-
edge (FrameNet) and Liu et al. [13] GMLATT which takes advantage of the
multilingual information for the ED task.

Using Entity Relation to Improve Event Detection via Attention Mechanism 179

Neural Network Based Approaches: DMCNN : the method in Chen
et al. [3], which uses CNN to do automatical feature extraction. In addition, also
including Nguyen et al. [17] Bi-RNN , Feng [6] Bi-LSTM , Feng [6] Hybrid
model which combines Bi-LSTM and CNN and Liu [15] ATT which exploited
argument information to improve ED via supervised attention mechanisms.

5.4 Experimental Results

Table 3 shows the performance of all methods for both trigger identification and
type classification. It can be observed that our approach outperforms other mod-
els, with a performance gain of no less than 0.5% F1 on event type classification.
The performance mainly benefits from the higher recalls which are 78.5% and
76.3% in two subtasks respectively. In addition, comparing the three experiments
that we did (the last three rows in the table), we found that no matter whether we
merge relation or use attention mechanism, the performance has been improved
to a small extent compared to using Bi-LSTM alone. But when we integrate
two methods with Bi-LSTM, the performance will be greatly improved, which
is 73.9%. The better performance of our approach can be further explained by
the following reasons:

Table 3. Performance of the all methods (n/a: the paper did’t list results of this task).

Methods Trigger identification Type classification

P R F1 P R F1

Joint [10] 76.9 65.0 70.4 73.7 62.3 67.5

Cross-Entity [8] n/a n/a n/a 72.9 64.3 68.3

DMCNN-DS [3] 79.7 69.6 74.3 75.7 66.0 70.7

GMLATT [13] 80.9 68.1 74.1 78.9 66.9 72.4

DMCNN [2] 80.4 67.7 73.5 75.6 63.6 69.1

Bi-RNN [17] 68.5 75.7 71.9 66.0 73.0 69.3

Bi-LSTM [6] 80.1 69.4 74.3 81.6 62.3 70.6

ATT [15] n/a n/a n/a 78.0 66.3 71.7

Hybrid [6] 80.8 71.5 75.9 84.6 64.9 73.4

Bi-LSTM+Att1 (Ours) 74.5 75.1 74.7 72.1 72.6 72.3

Bi-LSTM+Re (Ours) 72.9 77.5 75.1 69.6 74.1 71.8

Re+Bi-LSTM+Att1 (Ours) 73.7 78.5 76.1 71.5 76.3 73.9

• Compared with feature based methods, such as Joint, Cross-Event and Cross-
Entity, neural network based methods, such as CNN and Bi-LSTM, perform
better because they can make better use of word semantic information and
avoid the errors propagated from NLP tools. Moreover, Bi-LSTM performs
better than CNN due to the former can capture more complete information
of the whole sentence, which reduce the loss of information.

180 J. Zhang et al.

• Table 4 lists embedding types used in each method. We can see that relation
type can provide richer information for ED than position (PSN) and depen-
dency (DEP). Because we merge the relation type embedding to the model,
the recall has improved significantly, which is higher 11.4% than Hybrid (add
PSN embedding) and higher 3.3% than Bi-RNN (add DEP embedding).

• Attention mechanism can make certain words get higher attention, capture
more accurate information and ignore the interference of meaningless words.

• We would like to believe that using entity relation and attention simulta-
neously can enhance the performance further. Due to we use not only entity
embedding but also relation embedding which labels two entities in a sentence
with the same relation type label, when we employ attention mechanism in
model, entities is equivalent to get twice attention. Accordingly, model can
better capture the information of key words.

Table 4. Embedding types (PSN: Position; ET: Entity Type; DEP: Dependency; RT:
Relation Type).

Methods Embedding types Methods Embedding types

DMCNN-DS word, PSN ATT word, ET

GMLATT word, ET, PSN DMCNN word, PSN

Bi-RNN word, ET, DEP Bi-LSTM word, PSN

Hybrid word, PSN Ours word, ET, RT

In order to further prove the rationality of the above explanations, we conduct
two extra experiments to do detailed analysis. We use TI and TC to stand for F1

score of Event Trigger Identification and Event Type Classification respectively.

Effect of Different Features. We conduct the experiments with Bi-
LSTM+Att1 to exploit the effects of different feature combinations. We set the
word embedding as the baseline, and then add entity embedding and relation
embedding step by step. Results are shown in Table 5.

According to the result, we can find that both entity embedding and relation
embedding can yield effectively improvement. It seems that, entity embedding
is more effective than relation embedding (by 0.5%) in type classification. How-
ever, relation type embedding is more effective for trigger identification than the
former (by 0.6%). An intuitive explanation is that: we label the entities which
process relationship with the same relation type symbol as the relation type
representation. Although the same labels provide complement information for
trigger identification, it also causes interference to classify trigger.

Moreover, using all as embedding, TI and TC are 76.1% and 73.9% respec-
tively, which integrates the advantages of entity and relation embedding, and
reaches the optimal performance. Such as S2, entity embedding can capture the
important information of “Swenson” and “NCA” rather than other words in sen-
tence. And relation embedding will provide necessary information (Membership
between two entities) to classify End-Position event correctly.

Using Entity Relation to Improve Event Detection via Attention Mechanism 181

Table 5. Performance on different features.

Methods Features TI TC

Bi-LSTM+Att1 word embedding 74.4 71.4

+entity embedding 74.7 72.3

+relation embedding 75.3 71.8

all 76.1 73.9

Effect of Different Attention Strategies. In order to verify whether the
attention mechanism plays a critical role, and compare attention strategies, we
designed three comparison experiments. Taking Re+Bi-LSTM as the baseline,
we add Att1 and Att2 on the basis respectively. Notes that all three methods
combine word, entity and relation embedding. The results are shown in Table 6.

From Table 6, it can be observed that F1 score reduces 1.3% on event type
classification relative to the baseline when we place attention mechanism after
Bi-LSTM (+Att2). However, when we add attention mechanism before entering
the Bi-LSTM model (+Att1), the F1 score improves 2.1% compared to base-
line. This may because: although Bi-LSTM can capture sentence information as
much as possible, it still can’t avoid the loss of some parts of the information,
or change the importance of each word in the original sentence. Thus, employ-
ing attention after the Bi-LSTM will reduce the information of the incomplete
sentence again. By contrast, applying the attention mechanism before Bi-LSTM
is equivalent to process sentences with original complete information, which can
improve the importance of keywords and reduce the interference of meaningless
words. Hereafter, Bi-LSTM model further selects effective information of the
sentence to capture the key information perfectly. Thus, +Att1 can effectively
improve the performance of ED system.

Table 6. Performance on different attention strategies.

Methods TI TC

Re+Bi-LSTM 75.1 71.8

Re+Bi-LSTM+Att1 76.1 73.9

Re+Bi-LSTM+Att2 73.6 70.5

6 Conclusions

In this paper, we verified that integrating an attention mechanism before the
Bi-LSTM neural network, which can assign different attention to words and
better capture the key information of sentences. Furthermore, we first use the
entity relation as the feature for ED, and we confirmed it can provide additional
information for the ED task. In the future, we will further explore the relationship
between entity relation and ED, to unite them into a supporting model.

182 J. Zhang et al.

Acknowledgements. This work was supported by the national Natural Science Foun-
dation of China via Nos. 2017YFB1002104, 61672368 and 61672367.

References

1. Ahn, D.: The stages of event extraction. In: Proceedings of the Workshop on Anno-
tating and Reasoning about Time and Events, pp. 1–8. Association for Computa-
tional Linguistics (2006)

2. Chen, Y., Liu, S., Zhang, X., Liu, K., Zhao, J.: Automatically labeled data gener-
ation for large scale event extraction. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1,
pp. 409–419 (2017)

3. Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J., et al.: Event extraction via dynamic
multi-pooling convolutional neural networks. In: ACL (1), pp. 167–176 (2015)

4. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: Proceedings of the 25th Inter-
national Conference on Machine Learning, pp. 160–167. ACM (2008)

5. Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S.,
Weischedel, R.M.: The Automatic Content Extraction (ACE) program-tasks, data,
and evaluation. In: LREC, vol. 2, p. 1 (2004)

6. Feng, X., Huang, L., Tang, D., Ji, H., Qin, B., Liu, T.: A language-independent
neural network for event detection. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2,
pp. 66–71 (2016)

7. Ghaeini, R., Fern, X., Huang, L., Tadepalli, P.: Event nugget detection with
forward-backward recurrent neural networks. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), vol. 2, pp. 369–373 (2016)

8. Hong, Y., Zhang, J., Ma, B., Yao, J., Zhou, G., Zhu, Q.: Using cross-entity inference
to improve event extraction. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-Volume
1, pp. 1127–1136. Association for Computational Linguistics (2011)

9. Ji, H., Grishman, R.: Refining event extraction through cross-document inference.
In: Proceedings of ACL-08: HLT, pp. 254–262 (2008)

10. Li, Q., Ji, H., Huang, L.: Joint event extraction via structured prediction with
global features. In: ACL (1), pp. 73–82 (2013)

11. Liao, S., Grishman, R.: Using document level cross-event inference to improve
event extraction. In: Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pp. 789–797. Association for Computational Linguistics
(2010)

12. Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130 (2017)

13. Liu, J., Chen, Y., Liu, K., Zhao, J.: Event detection via gated multilingual attention
mechanism. Statistics 1000, 1250 (2018)

14. Liu, P., Qiu, X., Chen, J., Huang, X.: Deep fusion LSTMs for text semantic match-
ing. In: Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol. 1, pp. 1034–1043 (2016)

15. Liu, S., Chen, Y., Liu, K., Zhao, J.: Exploiting argument information to improve
event detection via supervised attention mechanisms, vol. 1, pp. 1789–1797 (2017)

http://arxiv.org/abs/1703.03130

Using Entity Relation to Improve Event Detection via Attention Mechanism 183

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

17. Nguyen, T.H., Cho, K., Grishman, R.: Joint event extraction via recurrent neural
networks. In: HLT-NAACL, pp. 300–309 (2016)

18. Nguyen, T.H., Grishman, R.: Event detection and domain adaptation with convo-
lutional neural networks. In: ACL (2), pp. 365–371 (2015)

19. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network
for sentiment classification. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1422–1432 (2015)

20. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pp. 384–394. Association for
Computational Linguistics (2010)

http://arxiv.org/abs/1301.3781

Five-Stroke Based CNN-BiRNN-CRF
Network for Chinese Named

Entity Recognition

Fan Yang1, Jianhu Zhang1, Gongshen Liu1(B), Jie Zhou1,
Cheng Zhou2, and Huanrong Sun2

1 School of Electric Information and Electronic Engineering,
Shanghai Jiaotong University, Shanghai, China

{417765013yf,zhangjianhu3290,lgshen,sanny02}@sjtu.edu.cn
2 SJTU-Shanghai Songheng Content Analysis Joint Lab, Shanghai, China

{zhoucheng,sunhuanrong}@021.com

Abstract. Identifying entity boundaries and eliminating entity ambigu-
ity are two major challenges faced by Chinese named entity recognition
researches. This paper proposes a five-stroke based CNN-BiRNN-CRF
network for Chinese named entity recognition. In terms of input embed-
dings, we apply five-stroke input method to obtain stroke-level represen-
tations, which are concatenated with pre-trained character embeddings,
in order to explore the morphological and semantic information of char-
acters. Moreover, the convolutional neural network is used to extract
n-gram features, without involving hand-crafted features or domain-
specific knowledge. The proposed model is evaluated and compared with
the state-of-the-art results on the third SIGHAN bakeoff corpora. The
experimental results show that our model achieves 91.67% and 90.68%
F1-score on MSRA corpus and CityU corpus separately.

Keywords: CNN-BiRNN-CRF network
Stroke-level representations · N-gram features
Chinese named entity recognition

1 Introduction

Named entity recognition (NER) is one of the fundamental tasks in the field of
natural language processing (NLP). It plays an important role in the develop-
ment of information retrieval, relation extraction, machine translation, question
answering systems and other applications. The task of NER is to recognize proper
nouns or entities in the text and associate them with the appropriate types, such
as the names of persons (PERs), organizations (ORGs), and locations (LOCs) [1].
Many researchers regard named entity recognition as a sequence labeling task.
Traditional sequence labeling models are linear statistical models, including hid-
den markov model (HMM) [2], support vector machine (SVM) [3], maximum
entropy (ME) [4] and conditional random field (CRF) [5,6].
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 184–195, 2018.
https://doi.org/10.1007/978-3-319-99495-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_16&domain=pdf

Five-Stroke Based CNN-BiRNN-CRF Network for CNER 185

With the development of word embedding technologies, neural networks have
shown great achievements in NLP tasks. Character-based neural architecture has
achieved comparable performance in English NER task [7–10]. Character-level
features such as prefix and suffix could be exploited by the convolution neural
network (CNN) or bidirectional long short-term memory (BiLSTM) structure,
thus helping to capture deeper level of semantic meanings.

Compared with English NER, it is more difficult to identify Chinese entities,
due to the attributes of Chinese words, such as the lack of word boundaries, the
uncertainty of word length, and the complexity of word formation [11]. Inspired by
the character embedding of English, some researches apply radical-level embed-
ding of Chinese to improve the performance of word segmentation [12,13], part-of-
speech (POS) tagging [14], or Chinese NER [15]. However, the acquired semantic
information varies from the character splitting methods, which may lead to incom-
plete or biased results. Cao et al. [16] propose a stroke n-gram model by splitting
each character into strokes, and each stroke is represented by an integer ranging
1 to 5. However, this method will bring about ambiguous information in the case
of different characters with same type of strokes. As shown in Table 1, characters
‘ (sky)’ and ‘ (Husband)’ are encoded into the same representation, so as to
‘ (Reason)’ and ‘ (State)’. Therefore, it is essential to explore a general and
effective way of semantic information extraction.

Recognizing entity boundaries is one of the most challenging problems faced
by Chinese NER task, since entity boundary ambiguity can lead to incorrect
entity identification. According to the word formation rules, many ORG entities
contain the LOC and PER entities inside them. For example, ‘ (Chinese
Navy)’ is a ORG entity with nested LOC entity ‘ (China)’. Although the
recognition of person and location names has achieved good results, the poor
recognition of ORG entities still hinders the overall performance of named entity
recognition [15]. Therefore, we need to pay more attention to the boundaries
identification of ORG entities.

To address above difficulties and challenges, a five-stroke based CNN-BiRNN-
CRF network (CBCNet hereafter) is proposed to optimize Chinese NER task.
The main contributions of our model are summarized as follows:

1. A customized neural model is presented for Chinese NER, which conduces to
the entity boundaries identification and entity ambiguity elimination, espe-
cially for the identification of ORG entities.

Table 1. Comparison of two character encoding methods.

186 F. Yang et al.

2. We propose the five-stroke based representations, and integrate them into
character embeddings to form the final inputs. Then the convolution neu-
ral network with different size of filters is employed to simulate traditional
n-gram model, which helps to identify the prefix and suffix of Chinese named
entities.

3. We conduct experiments on the third SIGHAN bakeoff NER task with
two Chinese annotated corpora. Experimental results show that our
model achieves comparable performance over other existing Chinese NER
architectures.

2 Neural Model for Chinese NER

2.1 Overview of Proposed Architecture

Our CBCNet is built upon the character-based BiLSTM-CRF architecture, as
shown in the Fig. 1. Instead of using the original pre-trained character embed-
dings as the final character representations, we construct a comprehensive char-
acter representation for each character in the input sentence. Firstly, we incor-
porate stroke embeddings into original character embeddings, to construct a
comprehensive character representation for each character in the input sen-
tence. Then, a convolutional layer and a pooling layer are applied to generate
n-gram features contained character representations. After that, we feed charac-
ter embeddings into a BiLSTM-CRF layer, to decode and predict the final tag
sequence for the input sentence.

2.2 Stroke Embedding

In this paper, we use five-stroke character model input method (or Wubi
method)1 to encode input characters. Wubi method is an efficient encoding

Fig. 1. The overall architecture of proposed CBCNet.

1 https://en.wikipedia.org/wiki/Wubi method.

https://en.wikipedia.org/wiki/Wubi_method

Five-Stroke Based CNN-BiRNN-CRF Network for CNER 187

Table 2. Five regions with corresponding strokes.

system which can represent each Chinese character with at most four Roman
letters (keys), according to the structure of each character. In the rule of Wubi
method, 25 keys are divided into five regions, and each region is assigned
with a certain type of strokes, as shown in Table 2. Then, each key stands
for a certain type of components that is similar to the basic stroke in its
own region. Since “Z” is a wild card, it is not listed in the table. By this
means, every Chinese character could be encoded with a Wubi representation.
For example, which means (‘Chinese’,
‘named’, ‘entity’, ‘recognition’) in English, can be encoded into (‘KHK’, ‘YYGY’,
‘WGKB’, ‘QKF’, ‘PUDU’, ‘WSGG’, ‘YKWY’, ‘KEJH’). Moreover, unlike previ-
ous work [16], Wubi method is able to distinguish words with similar structure,
as shown in Table 1.

Santos and Zadrozny [17] introduce a convolutional approach with charac-
ter embeddings, to extract the most important morphological information from
English words. A BiLSTM layer is employed to capture semantic information
of Chinese characters by Dong et al. [15]. In this paper, we compare the two
methods of stroke-level feature extraction, and select the most effective way of
representation. Figure 2 depicts the convolutional approach [17] and recurrent
approach [15] respectively of generating stroke embeddings of character ‘ ’
(Recognition).

For example, given a character xi encoded with a sequence of Q Roman
letters {r1, r2, ..., rQ} (0 ≤ Q ≤ 4) under the look-up table of Wubi method2,
we first transform each letter rq into a one-hot embedding. In the case of the

Fig. 2. Stroke embedding of character ‘ ’ (Recognition) with two approaches.

2 https://github.com/yanhuacuo/98wubi-tables.

https://github.com/yanhuacuo/98wubi-tables

188 F. Yang et al.

character with less than four Roman letters, we will randomly generate the
initial embedding to ensure that each character has a four-dimensional stroke-
level representation. During the training of the model, the stroke embeddings are
continuously updated. Thus, the final stroke-level representation si of character
xi is defined as follows:

si = f(r1, r2, ..., rQ) (1)

where f is the function of a CNN or an RNN approach.
Pre-trained character embeddings are proved to be efficient over randomly

initialized embeddings, since the former contain more contextual information.
Therefore, we apply word2vec [18] to train our character-level embedding on
Chinese Wikipedia backup dump. We concatenate the stroke embedding si to
the character embedding vi as the final representation ci for each character:

ci = vi ⊕ si (2)

where ⊕ is a connection operator, and i indicates the ith character xi in the
sentence S.

2.3 Convolutional Layer

Inspired by Chen et al. [19], which use CNN to simulate a traditional discrete
feature based model for POS tagging. In this paper, we use CNN to extract local
information and n-gram features for the input characters, and we model different
n-gram features by generating different feature map sets.

For example, ci ∈ Rd is the d-dimensional character representation corre-
sponding to the ith character xi in the sentence S. For a sentence with length l
could be represented as:

c1:l = c1 ⊕ c2 ⊕ ... ⊕ cl (3)

where ci:j denotes the connection of ci, ci+1, ..., cj .
The input of the network each time is an l × d matrix for one sentence.

In order to ensure the integrity of the character, the width of convolutional
filters is consistent with the dimension of the character representations. The
convolution of the input matrix with filters are determined by the weights Wk ∈
Rkd×Nk and bias bk ∈ RNk , where Nk is the number of k-gram feature maps.
The k-gram feature map mk

i can be generated from the combination of character
representations ci−� k−1

2 �:i+� k−1
2 � according to the following formula:

mk
i = tanh(WT

k · ci−� k−1
2 �:i+� k−1

2 � + bk) (4)

The length and the order of character representations are maintained by padding
zero to the input in the marginal case. The feature map sets matrix is m ∈
Rl×∑K

k=1 Nk = {m1,m2, ...,mK}, where K is the maximum value of k in k-gram.

Five-Stroke Based CNN-BiRNN-CRF Network for CNER 189

mi is the concatenation of mk
i ∈ Rl×Nk :

mi = m1
i ⊕ m2

i ⊕ ... ⊕ mK
i (5)

Then, max-over-time pooling is applied to progressively reduce the spatial size
of the representation and keep the most important features. Thus, the output
sentence representations c∗ ∈ Rl×d = {c∗

1, c
∗
2, ..., c

∗
l } can be generated after d-

max pooling operation, where c∗
i is:

c∗
i = dmax {mi} (6)

2.4 Bidirectional LSTM Layer

The recurrent neural network (RNN) can effectively obtain the sequence infor-
mation of the texts. As a special kind of RNN, the long short-term Memory
(LSTM) network could not only solve the long-distance dependence problem of
the sequence, but also effectively deal with the vanishing gradient or explod-
ing gradient problem of RNN [15]. In order to make effective use of contextual
information for a specific time frame, we use a bidirectional LSTM (BiLSTM)
architecture. Thus, each hidden state ht of BiLSTM can be formalized as a
concatenation of the hidden states of forward and backward LSTMs:

ht =
−→
ht ⊕ ←−

ht (7)

where
−→
ht (or

←−
ht) can be generated from the multiplication of output gate result

ot and input character representation c∗
t at the specific time frame of t, and the

calculation of ot can refer to previous works [15].

2.5 CRF Layer

The linear CRF can obtain a globally optimal tag sequence by considering
the relationship between adjacent tags. By combining BiLSTM layer and CRF
layer, BiLSTM-CRF layer is able to efficiently make use of contextual fea-
tures as well as sentence-level tag information. Given an input sentence X =
{x1, x2, ..., xl}, we consider the score matrix P , which is the output of BiLSTM
layer, and the transition score matrix A. Thus, for a sequence of prediction results
y = {y1, y2, ..., yl}, the score of the sentence S along with a path of labels could
be defined as:

Score(X, y) =
l∑

i=1

Ayi,yi+1 +
l∑

i=1

Pi,yi
(8)

where Ayi,yi+1 indicates the possibility of the transition from ith label to i+1th
label for a pair of consecutive time steps, Pi,yi

is the score of the ith label of the
ith input character.

190 F. Yang et al.

For the decoding phase, Viterbi algorithm [20] is used to generate optimal
tag sequence y∗, when maximizing the score Score(X, y):

y∗ = arg max
y∈Yx

Score(X, y). (9)

where Yx represents all the possible label sequences for sentence S.

3 Experimental Results and Analysis

3.1 Tagging Scheme

In this paper, we adopt the BIO (indicating Begin, Inside and Outside of the
named entity) tagging set used in the third SIGHAN bakeoff [1], which followed
by tags PER, ORG and LOC that denote persons, organizations and locations
respectively. For instance, B-PER and I-PER denote the begin, inside part of
a person’s name respectively. O means that the character is not included in a
named entity. We employ character-level precision (P), recall (R), and F1-score
(F) as the evaluation metrics, same as the previous works [15].

3.2 Training

We use Tensorflow library to implement our neural network. Table 3 illustrates
the hyper-parameters of all the experiments on different datasets. We train our
network with the error back-propagation, and the network parameters are fine-
tuned by back-propagating gradients. Adagrad algorithm [21] is used as the
network optimizer. To accelerate network training on GPU, we adopt bucketing
strategy [14], which usually implemented in seq2seq model, for the input sen-
tences. That is, the sentences with similar lengths are grouped into the same
buckets, and the sentences in the same buckets are padded into the same length.
In order to reduce over-fitting during network training and improve the accuracy
of neural network model, we apply dropout technique [22] before the BiLSTM
layer with a probability of 0.5.

Table 3. Hyper-parameter settings.

Parameters Details Parameters Details

Character embedding size dc = 64 Optimizer Adagrad

Stroke embedding size ds = 30 Initial learning rate α = 0.2

Number of feature map sets K = 5 Decay rate 0.05

Number of k-gram feature maps Nk = 100 Dropout rate 0.5

LSTM dimensionality h = 200 Batch size 10

Five-Stroke Based CNN-BiRNN-CRF Network for CNER 191

Table 4. The statistics of NER training and testing corpora.

Copora Training Testing

Sentences NEs ORGs/LOCs/PERs Sentences NEs ORGs/LOCs/PERs

MSRA 43907 75059 20584/36860/17615 3276 6190 1331/2886/1973

CityU 48169 112361 27804/48180/36377 6292 16407 4016/7450/4941

Sentences: Number of sentences; NEs: Number of named entities;
LOCs/PERs/ORGs: Number of location/person/organization names.

3.3 Dataset and Preprocessing

We conduct the experiments on the two corpora from the third SIGHAN bake-
off [1]. The MSRA corpus is simplified Chinese character and the CityU corpus
is traditional Chinese character, and both of them are in the CoNLL two col-
umn format. We convert CityU corpus simplified Chinese, so that the look-up
table for pre-trained character embeddings, Wubi encoding method and other
resources are compatible in the experiments. Table 4 shows the statistics of NER
training and testing corpora of MSRA and CityU.

3.4 Evaluation of Different Components

We incrementally add each component on the BiLSTM-CRF with character
embedding model, which is the baseline architecture in our comparison, to eval-
uate the impact of every component on the performance of our model. In gen-
eral, experimental results given in Table 5 shows that “Ours” with stroke-level
information and n-gram features significantly outperforms the baseline model,
achieving 91.67% and 90.68% F1-score on MSRA and CityU separately.

To evaluate the effectiveness of two stroke-level feature extraction
approaches, we test on the RNN and CNN separately, denoted as “+ Stroke
Emb.(RNN)” and “+ Stroke Emb.(CNN)”. Table 5 illustrates that CNN per-
forms a little better than RNN. The reason is that CNN is an unbiased model,
which treats fairly to each input in the same windows. While RNN is a biased
model, in which later inputs are more dominant than earlier inputs. Thus, we

Table 5. Evaluation of different components on two corpora in F1-scores (%)

Variant MSRA CityU

P R F P R F

BiLSTM-CRF (Char. Emb.) 90.98 89.97 90.47 91.32 88.49 89.88

+ Stroke Emb.(RNN) 92.36 90.18 91.25 91.61 88.77 90.16

+ Stroke Emb.(CNN) 92.34 90.31 91.31 91.57 88.96 90.24

+ CNN + Pooling 92.30 90.68 91.48 91.65 89.07 90.34

Ours 92.04 91.31 91.67 91.87 89.53 90.68

192 F. Yang et al.

apply CNN approach to extract stroke-level features in our model. Moreover,
compared with baseline, we could obtain relatively high performance in two
corpora by incorporating stroke embeddings into character embeddings.

From Table 5 in the row “+ CNN + Pooling”, we can see that notable
improvement is achieved by combining 1-gram to K-gram (we set K = 5 for
all the experiments.) features. This phenomenon is consistent with the length
of the named entities, which is about two to five characters. It verifies that our
CBCNet can efficiently identify entity boundaries and eliminate entity ambi-
guity by introducing n-gram features. Besides, the results imply that the n-
gram features have a greater impact on model performance than stroke-level
information.

Furthermore, it can be observed that the optimization of our model on the
MSRA corpus is more significant than that on CityU corpus. The reason is that
CityU corpus contains some English named entities, which are not sensitive to
our two adopted measures.

3.5 Comparison with Previous Works

We compare proposed CBCNet with the reported results of several previous
works on the third SIGHAN bakeoff corpora, as shown in the Tables 6 and 7.
Each row represents the results of a NER model, including F1 scores for each
entity category (PER-F, ORG-F, LOC-F) as well as the total precision (P),
recall (R), and balanced F1-score (F).

Table 6. Evaluation of different models on MSRA corpus (%)

Model MSRA

F-ORG F-LOC F-PER P R F

CRF+Word.Emb. [5] 83.10 85.45 90.09 88.94 84.20 86.51

CRF+Char.Emb. [6] 81.96 90.53 82.57 91.22 81.71 86.20

Knowledge based [4] 85.90 90.34 96.04 92.20 90.18 91.18

Feature templates [23] 86.19 91.90 90.69 91.86 88.75 90.28

BiLSTM-CRF+Radi.Emb. [15] 87.30 92.10 91.77 91.28 90.62 90.95

Ours 88.42 92.31 91.96 92.04 91.31 91.67

Table 7. Evaluation of different models on CityU corpus (%)

Model CityU

F-ORG F-LOC F-PER P R F

CRF+Char.Emb. [6] - - - 92.66 84.75 88.53

Knowledge based [4] 81.01 93.06 91.30 92.33 87.37 89.78

Ours 83.99 93.76 91.63 91.87 89.53 90.68

Five-Stroke Based CNN-BiRNN-CRF Network for CNER 193

Conditional random fields (CRF) is one of the most popular and effective
models for sequence labeling tasks [5,6]. Zhou et al. [5] used a word-level CRF-
model with hand-crafted features incorporated, which won the first place in
the third SIGHAN bakeoff Shared Tasks with 86.51% F1-score in MSRA cor-
pus. Chen et al. [6] utilized character embeddings as the inputs to CRF model
with 86.20% F1-score in MSRA corpus and 88.53% in CityU corpus, while the
improvement of performance is still limited. By incorporating hand-crafted fea-
tures [5,23] or knowledge bases [4] could relatively improve the performance.
However, these methods may result in an inefficiency or failure when processing
large-scale corpora or the datasets in other fields.

Dong et al. [15] implemented Chinese radical embedding into BiLSTM-CRF
framework, achieving good performance. However, some characters cannot be
split into radicals, leading to the failure of semantic feature extraction. Moreover,
they ignore the characteristics of entities word formation. Compared with [15],
we consider both the semantic information by using stroke embedding and con-
textual information by employing CBCNet model. In terms of MSRA corpus,
experimental results indicate that proposed stroke-based CBCNet outperforms
the best deep learning work [15] by +0.72 F1-score and best reported work [23]
by +0.49 F1-score. For CityU corpus as shown in Table 7, compared with other
works, our model obtains the best performances with 90.68% F1-score. More-
over, our model achieves significant improvement on ORG entities thanks to the
extraction of n-gram features.

4 Related Works

Named entity recognition is a fundamental NLP task and studied by many
researchers. Remarkable achievements have been made in the field of English
NER through a variety of methods. An end-to-end architecture is implemented
in [24], with a BiLSTM-CNNs-CRF model. Yang et al. [8] use transfer learning
for jointly training the POS and NER tasks. Then, Liu et al. [9] enhance the
neural framework by introducing a task-aware language model. Xu et al. [25]
propose a FOFE-based strategy, which regards NER as a non-sequence labeling
task. However, these approaches could not be simply transplanted into Chinese
NER systems, due to the characteristics of Chinese named entities (NEs), which
do not have word boundaries or case sensitivity.

BiLSTM-CRF architecture has been used in many Chinese sequence label-
ing problems. Peng and Dredze [26] adopt the model for jointly training Chinese
word segmentation and named entity recognition. By extracting semantic infor-
mation, the performance of labeling could be further improved. Dong et al. [15]
combine radical embeddings with character embeddings in bidirectional LSTM-
CRF model for Chinese NER, and show the efficiency. For the task of Chinese
word segmentation and POS tagging, this fundamental structure also shows
great performance as shown in [14]. He et al. [12] indicate that the performance
of Chinese word segmentation could be boosted largely when tying subcharacters
and character embeddings together.

194 F. Yang et al.

5 Conclusions

In this paper we have presented a novel model for Chinese NER by considering
the semantic information as well as n-gram features, without involving hand-
crafted features or domain-specific knowledge. The empirical study shows the
effectiveness of each components of our architecture. Experiments on two differ-
ent corpora from the third SIGHAN bakeoff also indicate that our model achieves
outstanding performance over other approaches. In the future, we would like to
extend our model to other sequential labeling tasks, such as jointly learning the
Chinese word segmentation, POS tagging and NER.

Acknowledgement. This research work has been funded by the National Natural Sci-
ence Foundation of China (Grant No. 61772337, U1736207 and 61472248), the SJTU-
Shanghai Songheng Content Analysis Joint Lab, and program of Shanghai Technology
Research Leader (Grant No. 16XD1424400).

References

1. Levow, G.A.: The third international Chinese language processing bakeoff: word
segmentation and named entity recognition. In: Proceedings of the Fifth SIGHAN
Workshop on Chinese Language Processing, pp. 108–117 (2006)

2. Fu, G., Luke, K.K.: Chinese named entity recognition using lexicalized HMMs.
ACM SIGKDD Explor. Newslett. 7, 19–25 (2005)

3. Li, L., Mao, T., Huang, D., Yang, Y.: Hybrid models for Chinese named entity
recognition. In: Proceedings of the Fifth SIGHAN Workshop on Chinese Language
Processing, pp. 72–78 (2006)

4. Zhang, S., Qin, Y., Wen, J., Wang, X.: Word segmentation and named entity
recognition for SIGHAN Bakeoff3. In: Proceedings of the Fifth SIGHAN Workshop
on Chinese Language Processing, pp. 158–161 (2006)

5. Zhou, J., He, L., Dai, X., Chen, J.: Chinese named entity recognition with a multi-
phase model. In: Proceedings of the Fifth SIGHAN Workshop on Chinese Language
Processing, pp. 213–216 (2006)

6. Chen, A., Peng, F., Shan, R., Sun, G.: Chinese named entity recognition with
conditional probabilistic models. In: Proceedings of the Fifth SIGHAN Workshop
on Chinese Language Processing, pp. 173–176 (2006)

7. Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs.
arXiv preprint arXiv:1511.08308 (2015)

8. Yang, Z., Salakhutdinov, R., Cohen, W.W.: Transfer learning for sequence tagging
with hierarchical recurrent networks. arXiv preprint arXiv:1703.06345 (2017)

9. Liu, L., et al.: Empower sequence labeling with task-aware neural language model.
arXiv preprint arXiv:1709.04109 (2017)

10. Dong, C., Wu, H., Zhang, J., Zong, C.: Multichannel LSTM-CRF for named entity
recognition in Chinese social media. In: Sun, M., Wang, X., Chang, B., Xiong, D.
(eds.) CCL/NLP-NABD -2017. LNCS (LNAI), vol. 10565, pp. 197–208. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69005-6 17

11. Duan, H., Zheng, Y.: A study on features of the CRFs-based Chinese named entity
recognition. Int. J. Adv. Intell. 3, 287–294 (2011)

http://arxiv.org/abs/1511.08308
http://arxiv.org/abs/1703.06345
http://arxiv.org/abs/1709.04109
https://doi.org/10.1007/978-3-319-69005-6_17

Five-Stroke Based CNN-BiRNN-CRF Network for CNER 195

12. He, H., et al.: Dual long short-term memory networks for sub-character representa-
tion learning. In: Latifi, S. (ed.) Information Technology - New Generations. AISC,
vol. 738, pp. 421–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77028-4 55

13. Yu, J., Jian, X., Xin, H., Song, Y.: Joint embeddings of Chinese words, characters,
and fine-grained subcharacter components. In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 286–291 (2017)

14. Shao, Y., Hardmeier, C., Tiedemann, J., Nivre, J.: Character-based joint segmen-
tation and POS tagging for Chinese using bidirectional LSTM-CRF. arXiv preprint
arXiv:1704.01314 (2017)

15. Dong, C., Zhang, J., Zong, C., Hattori, M., Di, H.: Character-based LSTM-CRF
with radical-level features for Chinese named entity recognition. In: Lin, C.-Y.,
Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS
(LNAI), vol. 10102, pp. 239–250. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50496-4 20

16. Cao, S., Lu, W., Zhou, J., Li, X.: cw2vec: learning Chinese word embeddings with
stroke n-gram information. (2018)

17. Santos, C.D., Zadrozny, B.: Learning character-level representations for part-of-
speech tagging. In: Proceedings of the 31st International Conference on Machine
Learning, pp. 1818–1826 (2014)

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

19. Chen, X., Qiu, X., Huang, X.: A feature-enriched neural model for joint Chinese
word segmentation and part-of-speech tagging. arXiv preprint arXiv:1611.05384
(2016)

20. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)
21. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)
22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:

Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

23. Zhou, J., Qu, W., Zhang, F.: Chinese named entity recognition via joint identifi-
cation and categorization. Chinese J. Electron. 22(2), 225–230 (2013)

24. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-
CRF. arXiv preprint arXiv:1603.01354 (2016)

25. Xu, M., Jiang, H., Watcharawittayakul, S.: A local detection approach for named
entity recognition and mention detection. In: Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, vol. 1, pp. 1237–1247 (2017)

26. Peng, N., Dredze, M.: Improving named entity recognition for Chinese Social Media
with word segmentation representation learning. arXiv preprint arXiv:1603.00786
(2016)

https://doi.org/10.1007/978-3-319-77028-4_55
https://doi.org/10.1007/978-3-319-77028-4_55
http://arxiv.org/abs/1704.01314
https://doi.org/10.1007/978-3-319-50496-4_20
https://doi.org/10.1007/978-3-319-50496-4_20
http://arxiv.org/abs/1611.05384
http://arxiv.org/abs/1603.01354
http://arxiv.org/abs/1603.00786

Learning BLSTM-CRF
with Multi-channel Attribute Embedding

for Medical Information Extraction

Jie Liu(B), Shaowei Chen, Zhicheng He, and Huipeng Chen

College of Computer and Control Engineering, Nankai University, Tianjin, China
jliu@nankai.edu.cn, {chenshaowei,hezhicheng,chenhp}@mail.nankai.edu.cn

Abstract. In Recent years, medical text mining has been an active
research field because of its significant application potential, and infor-
mation extraction (IE) is an essential step in it. This paper focuses on the
medical IE, whose aim is to extract the pivotal contents from the medical
texts such as drugs, treatments and so on. In existing works, introducing
side information into neural network based Conditional Random Fields
(CRFs) models have been verified to be effective and widely used in IE.
However, they always neglect the traditional attributes of data, which
are important for the IE performance, such as lexical and morphologi-
cal information. Therefore, starting from the raw data, a novel attribute
embedding based MC-BLSTM-CRF model is proposed in this paper.
We first exploit a bidirectional LSTM (BLSTM) layer to capture the
context semantic information. Meanwhile, a multi-channel convolutional
neural network (MC-CNN) layer is constructed to learn the relations
between multiple attributes automatically and flexibly. And on top of
these two layers, we introduce a CRF layer to predict the output labels.
We evaluate our model on a Chinese medical dataset and obtain the
state-of-the-art performance with 80.71% F1 score.

Keywords: Medical information extraction · Multi-channel
Convolutional neural network

1 Introduction

Recently, online medical and health services have been rapidly developing, and
a great deal of medical doctor-patient question and answer data has been accu-
mulated on the Internet. Due to the great value and application potential of
this information, text mining about online medical text data has been an active
research field in recent years. A fundamental work of these studies is informa-
tion extraction (IE), whose aim is to extract pivotal contents from the medical
texts such as diseases, symptoms, medicines, treatments and checks. And these
contents can be further used for other text mining works including information
retrieve [20], Pharmacovigilance (PV) [2], and drug-drug interactions [19] tasks.

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 196–208, 2018.
https://doi.org/10.1007/978-3-319-99495-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_17&domain=pdf

BLSTM-CRF with Multi-channel Attribute Embedding for Medical IE 197

IE is an important research in natural language processing (NLP), which
focuses on extracting knowledge from unstructured text [6]. Hand-crafted regular
expressions, classifiers, sequence models and some other methods are always used
in IE. For decades, Conditional Random Fields (CRFs) [13] have been widely
considered as effective models. After that, to construct an end-to-end model
which can automatically learn semantic relations between words without any
hand-crafted features, neural networks have been introduced into CRF methods.
Furthermore, the neural network based CRF models have achieved great success
in IE tasks including name entity recognition (NER) [3,8], opinion extraction
[10], and text chunking [12].

As a domain-specific task, medical IE is a challenging work because the online
medical text data always has plenty of professional terminologies and noise. Thus,
adopting simple neural network based models is not enough. In order to capture
more information, many approaches have been proposed [1,11] to introduce side
information and prior knowledge. However, depending on the LSTM-CRF struc-
ture, the existing methods always neglect the classical attributes of text such as
syntax and morphology. Furthermore, these attribute are not difficult to obtain
and can greatly improve the performance.

In this paper, we focus on the medical IE and aim to utilize the classi-
cal attributes of data to improve the performance. To achieve this, we propose
a novel bidirectional LSTM-CRF model with multi-channel convolution neu-
ral network (MC-BLSTM-CRF), and introduce multiple attributes which cov-
ers aspects of lexical, morphological, and domain-specific information. These
attributes play a strong guiding role in information extraction and are easy to
obtain. A multi-channel convolution neural network (MC-CNN) is built to learn
the hidden representations of multiple attributes automatically and flexibly. To
evaluate our model, we construct a Chinese medical dataset which composed of
doctor-patient question and answer data, and achieve the state-of-the-art result
on it. Experimental results demonstrate that our approach can discover more
meaningful contents than baseline methods. The main contributions of our work
can be summarized as follows:

– We propose a MC-BLSTM-CRF model with multi-channel attribute embed-
ding for medical IE task, which can model relations between tokens, multiple
attributes and labels effectively.

– The proposed method has excellent extensibility and can flexibly capture
meaningful information which is neglected by existing models.

– The experimental results on a Chinese medical IE dataset show that our
model substantially outperforms other baseline methods.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the
related work. Section 3 introduces the details of the MC-BLSTM-CRF model.
Section 4 discusses the experiments setting and results. Finally, we conclude our
work in Sect. 5.

198 J. Liu et al.

2 Related Work

Several works have been proposed to medical IE, and these works can be divided
into two categories: traditional methods and neural network based methods.

Traditional IE methods such as Hidden Markov Models (HMM) and CRF
[13,15,17,18] have achieved great performance and been widely used in various
tasks including medical IE. For instance, Bodnari et al. (2013)[1] developed a
supervised CRF model based on features and external knowledge for medical
NER. Jochim and Deleris (2017) [11] proposed a constrained CRF approach to
consider dependence relations and probability statements in the medical domain.
However, these models rely heavily on feature engineering.

To capture features automatically, neural network based models have been
proposed and been frequently adopted for IE tasks. Collobert et al. (2011) [4]
used a CNN to capture relations between tokens over word embeddings with a
CRF on top. Huang et al. (2015) [9] introduced a BLSTM-CRF model for word
encoding and joint label decoding based on rich hand-crafted spelling features.
Both Lample et al. (2016) [14] and Ma and Hovy (2016) [16] proposed a BLSTM-
CRF model with character-level encoding. For medical IE tasks, Chalapathy
et al. (2016) [2] and Zeng et al. (2017) [21] both adopted a BLSTM-CRF model
to provide end-to-end recognition without hand-craft features. Dong et al.(2017)
[5] presented a transfer learning based on BLSTM to employ domain knowledge
for enhancing the performance of NER on Chinese medical records.

Although neural network based models are useful, side information and prior
knowledge are also important to domain-specific IE. Many studies have proposed
various approaches to introduce side information and prior knowledge [1,5], but
they usually need to design complex features or train model on external corpora
which make these methods more complicated and less scalable. Moreover, they
always neglect the traditional attributes which is meaningful for IE.

Comparing with existing approaches, a MC-BLSTM-CRF model with multi-
channel attribute embedding proposed by us can learn the relations between
traditional attributes of raw data by devising a multi-channel CNN structure.

3 Methodology

In this section, we describe the components of our attribute embedding
based MC-BLSTM-CRF model in details. Given a word sequence X = {x1,
x2, · · · , xn}, its corresponding multi-attribute sequence M = {m1, m2, · · · ,mn}
and label sequence Y = {y1, y2, · · · , yn}, the goal is extracting important infor-
mation by modeling the conditional probability P (Y | X). To achieve this,
we need to consider the semantic relations between words, context relations
between attributes and the transfer relations between labels. Thus, we pro-
pose an attribute embedding based MC-BLSTM-CRF model which introduces
a multi-channel CNN based into a neural network based CRF method. Figure 1
illustrates the overall framework of the attribute embedding based MC-BLSTM-
CRF.

BLSTM-CRF with Multi-channel Attribute Embedding for Medical IE 199

Fig. 1. The overall framework of MC-BLSTM-CRF.

To model semantic relations, each word xi is mapped to a word embedding
vector ewi ∈ Rdw firstly, where dw is the dimension of word embedding. And
then, we exploit a LSTM layer to obtain the hidden representation hi which
contains context semantic information by encoding embedding vector ewi :

hi = F (ewi , hi−1) , (1)

where F is the encoding function, and hi ∈ Rdh , where dh is the dimension of
hidden vectors.

3.1 Bidirectional LSTM

LSTM [7] is a type of RNN which can capture long-distance semantic relation
by maintaining a memory cell to store context information. The memory cell is
constantly updated in the encoding process, and the proportions of information
are determined by three multiplicative gates including input gate, forget gate
and output gate. Although various LSTM architectures have been explored, we
adopt the basic LSTM model similar to [16]. Formally, the encoding process at
the t-th time step is implemented as follow:

it = σ (Whiht−1 + Weie
w
t + bi) , (2)

ft = σ (Whfht−1 + Wefewt + bf) , (3)

c̃t = tanh (Whcht−1 + Wece
w
t + bc) , (4)

ct = ft � ct−1 + it � c̃t, (5)

200 J. Liu et al.

ot = σ (Whoht−1 + Weoe
w
t + bo) , (6)

ht = ot � tanh (ct) , (7)

where ct, it, ft, and ot represent the memory cell, input gate, forget gate
and output gate respectively. ewt and ht donate the word embedding vector and
hidden state vector at time t. Both σ and tanh are the activation functions,
and � represents the element-wise product. W∗ and b∗ are network parameters
which donate the weight matrices and bias vectors.

Although LSTM can solve the long-distance dependency problem, it still lose
some semantic information due to the sequential encoding way of LSTM. For
example, ht only contains the semantic information before time step t. There-
fore, a bidirectional LSTM (BLSTM) is needed to model both the forward and
backward context information in the following form:

−→
ht = F

(

ewt ,
−−→
ht−1

)

,

←−
ht = F

(

ewt ,
←−−
ht+1

)

,
(8)

and the two hidden states are concatenated to obtain the final output as follow:

ht =
[−→
ht ,

←−
ht

]

. (9)

3.2 Multi-channel CNN

Due to professional terminologies existing in the medical text, adopting the sim-
ple neural network based CRF models to medical IE is not enough. Many studies
tried to introduce side information and domain-specific knowledge into the neural
network based models. However, they usually neglect the traditional attributes
of text, which is important for medical IE, such as syntactic attribute. There-
fore, we propose to integrate multiple attributes of words including syntactic,
morphological, and semantic information into existing IE models.

To achieve this, we need to consider how to model context relations among
multiple attributes. In previous IE studies, CNN [16] has been mainly used to
encode character-level representation, and the benefit of CNN has been proved.
Inspired by these studies, to model relations among attributes flexibly and effec-
tively, a multi-channel CNN structure is construct in parallel with capturing
semantic by LSTM. A CNN structure for an attribute is defined as a channel.
Figure 2 shows the CNN structure of one channel.

Formally, given a multi-attribute sequence mi = {mi,1,mi,2, · · · ,mi,k} of
word xi, where k denotes the number of channels and attribute categories.
Firstly, we map each category of attributes to an embedding vector emi,l ∈ Rdl

m ,
where emi,l and dlm represent the l-th attribute embedding of word xi and its
dimension respectively.

Define eml =
{

em1,l, e
m
2,l, · · · , emn,l

}

to represent the l-th attribute embed-
ding of a word sequence and extend its outer border to a padded sequence

BLSTM-CRF with Multi-channel Attribute Embedding for Medical IE 201

Fig. 2. The CNN structure of one channel.Different channels of CNN are used to
capture context relations between different types of attributes.

{0�1�, · · · , 0� β
2 �, em1,l, · · · , emn,l, 0�1�, · · · , 0� β

2 �}, where β is the size of CNN win-
dows. The hidden representation of the l-th attribute can be obtained as follow:

si,l = Wlri,l + bl, (10)

ri,l =
{

em
i−� β

2 �,l, · · · , emi,l, · · · , em
i+� β

2 �,l
}

, (11)

where ri,l denotes the l-th attribute embedding of the current word, its left
neighbors, and its right neighbors in convolution window. si,l is the hidden rep-
resentation of emi,l . Wl and bl are the network parameters which donate the
weight matrices and bias vectors of l-th attribute. To control the proportions
of various attributes in the final representations flexibly, we adopt a variety of
weight matrices and bias vectors for different categories of attributes.

Finally, we obtain the complete representation of the i-th word by concate-
nating multi-attributes of each word and the hidden word vector as follow:

zi = [hi, si,1, si,2, · · · , si,k] . (12)

3.3 CRF

Sequence labeling for IE can be considered as a special classification problem.
However, we cannot intuitively use a classifier because there are some dependen-
cies across the output labels that can be overlooked by the classifier. For example,
in NER tasks with BIO tagging scheme, I-LOC should not follow B-ORG.

Accordingly, we model the label sequence jointly with a CRF layer. Instead
of predicting each label independently, CRF can model the relations between
adjacent labels with a transition score and learn the interactions between a
pair of token and label with a state score. Formally, given a hidden repre-
sentation sequence Z = {z1, z2, · · · , zn}, and an output label sequence Y =
{y1, y2, · · · , yn}, CRF is used to model the conditional probability P (Y | X).
The matrix of transition scores can be denoted by A ∈ Rk×k where k is the

202 J. Liu et al.

number of distinct labels, and the matrix of state scores can be denoted by
P ∈ Rn×k. Thus, we define the probability of a tag sequence as follows:

S(Z, y) =
n

∑

i=1

Ayi−1,yi
+

n
∑

i=1

Pi,yi
, (13)

p(y | Z) =
exp(S(Z, y))

∑

ỹ∈YZ
exp(S(Z, ỹ))

, (14)

where YZ represents all possible label sequences for input Z. During training,
we use the maximum conditional likelihood estimation for parameters learning:

log(p(y | Z)) = S(Z, y) − log
∑

ỹ∈YZ

exp(S(Z, ỹ)). (15)

While predicting, we search the output sequence which obtains the maximum
conditional probability given by:

y∗ = argmaxỹ∈YZ
S(Z, ỹ), (16)

with the Viterbi algorithm.
Finally, we construct our MC-BLSTM-CRF model with the above three lay-

ers. For each word, the hidden representation is obtained by a BLSTM layer,
and the hidden vectors of multiple attributes are computed by a multi-channel
CNN layer. On the top of the two layers, we integrate the hidden representa-
tions of word and multiple attributes, and feed the output vector into the CRF
layer to jointly decode the best label sequence. We use the loss function of label
predicting as the overall optimization objective.

4 Experiments

4.1 Datasets

To validate the effectiveness of our proposed MC-BLSTM-CRF model, we test
the performance of our model on Chinese medical IE task. For this task, we
construct a medical dataset with data crawled from an online medical platform,
haodf.com. For our research, we design five types of labels for medical entities:
disease (D), symptom (S), medicine (M), treatment (T), and check (C). Detailed
statistics of the dataset are shown in Table 1. Considering that lengths of most
entities are short, we adopt the BIO (Beginning, Inside, Outside) tagging scheme.

To ensure the reliability of our experimental results, we divide the dataset into
training set, validation set and test set according to the proportion of 4 : 1 : 1,
and use the 5-fold cross-validation.

https://www.haodf.com/

BLSTM-CRF with Multi-channel Attribute Embedding for Medical IE 203

Table 1. Statistics of the dataset. #Sent and #Token represent the number of sen-
tences and words. #Entities, A#Entities and Avg L denote the total number of entities
in each category, the average number of entities in each sentence and the average length
of entities.

4.2 Attributes

In order to use the traditional attributes to help our model extract more mean-
ingful contents better, we extract a series of attributes of raw data which are
simple and easily accessible. The multiple attributes extracted by us can be
divided into five categories as following, which cover three aspects of lexical,
morphological, and domain-specific information.

– POS attributes: We use Ansj, which is an open source toolkit, to extract
POS attributes. This kind of attributes represent the syntax information.

– English acronym attributes: In Chinese medical text, some professional
terminologies are represented as English acronyms. And these acronyms can
always provide some important information. Accordingly, we use “yes” or
“no” to mark whether a word contains English acronyms.

– Digital attributes: Similar to English acronym, digits also play a unique
role in sentences. We use “yes” or “no” to express if a word contains digits.

– Suffix attributes: In English IE, the suffix of words is often used to improve
recognition performance, and the existing studies have proved the effective-
ness of this operation. For Chinese medical IE, suffix information is also
important. Thus, we choose the last characters of words as suffix attributes.

– Body attributes: Through observation, we found that medical entities are
often related to body parts. Therefore, we build a dictionary of body parts
and use “yes” or “no” to characterize the body attributes (whether

4.3 Experiment Setting

In our experiments, all embeddings are randomly initialized, and the dimensions
of word embeddings, POS embeddings and suffix embeddings are set to 100, 40
and 50 respectively. Meanwhile, embeddings of English character, digital and
body attributes are represented by One-Hot encoding with two dimensions. All
the weight matrices are randomly initialized by sampling from (0.1, 0.1), and all
the biases are initialized to zero. The size of the hidden units for word LSTM is
set to 200, while the numbers of multi-channel CNN kernels are 90, 50, 2, 2 and

204 J. Liu et al.

2 corresponding to POS, suffix, English character, number and body attributes
respectively. The batch size and max iterations are set to 50 and 100.

We chose Adam as the optimization method for training with learning rates
0.015. And we adopt a dropout rate of 0.5 to mitigate overfitting.

For evaluation, we calculate the precision, recall, and F1 score with full word
matching based method. This method means that an entity is correct only if all
words of this entity are correctly predicted.

4.4 Experiment Results

To verify the performances of MC-BLSTM-CRF, we compare it against a vari-
ety of representative baselines. We can divide the baselines into two categories:
traditional methods and neural network based methods. Details of baselines are
shown as follows:

– CRF: CRF is a classical method for IE. For tagging processing, it can capture
the transfer relations between labels, and relations between tokens and labels.
With this method, we need to manually design features.

– BLSTM: LSTM is a variant of RNN network. It can capture long-term
distance semantic relations among tokens automatically without any manual
features as input. And then, the hidden vectors will be fed into a softmax layer
for tag prediction. To learn forward and backward semantic information, we
adopt bidirectional LSTM (BLSTM).

– CNN: CNN can capture the semantic relations between tokens by convolu-
tion. Compared with LSTM, it has better parallelism and flexibility. But it
can only capture the semantic context feature in a certain window around a
given token. We also construct a softmax layer to predict labels.

– BLSTM-CRF: BLSTM-CRF is a model that uses CRF to replace the soft-
max layer for labeling.

– CNN-CRF: This method is an extension of the CNN method which replaces
the softmax layer with a CRF layer to retain the label relations.

Table 2 illustrates the performance of our models and baseline models on the
Chinese medical dataset, and lists the best result on valid set (Dev), test set
(Test) and the test result corresponding to the best valid set result (Dev-Test).
We can see that BLSTM-CRF and CNN-CRF models outperform CRF model
with 0.5% and 2.3% on Test F1 score, which proves that the neural network can
capture semantic features effective without heavy hand-crafted features.

Meanwhile, both the BLSTM-CRF and CNN-CRF models are superior to
BLSTM and CNN architectures with 0.45% on Dev-Test F1 score respectively,
because the CRF layer can learn the transfer relations among output labels
besides the relations between states and labels.

Despite BLSTM and CNN can both capture effective semantic information
of words, the performance of CNN is still lower than BLSTM with about 2.0%
on Dev-Test F1 score. The reason is that CNN can only consider the context
within a certain kernel window, while BLSTM can retain all of the important

BLSTM-CRF with Multi-channel Attribute Embedding for Medical IE 205

Table 2. Performance comparison among MC-BLSTM-CRF and baselines.

Model Dev Test Dev-Test

Precision Recall F1 Precision Recall F1 Precision Recall F1

CRF - - - 81.49 70.11 75.36 - - -

CNN 79.64 71.87 75.55 78.74 71.54 74.93 78.80 70.86 74.61

CNN-CRF 80.08 72.67 76.18 79.68 72.33 75.81 79.07 71.50 75.06

BLSTM 79.28 74.86 76.99 79.35 75.10 77.12 79.34 74.40 76.75

BLSTM-CRF 81.28 74.87 77.93 80.25 75.22 77.65 80.17 74.49 77.20

Ours Model 82.82 79.60 81.18 82.56 79.55 81.01 82.45 79.05 80.71

information in sentences with the memory cell. Therefore, this proves the validity
of using LSTM for word-level encoding in our model.

Furthermore, compared with the baselines, we can find that the MC-BLSTM-
CRF model proposed by us achieves higher scores with at least 3.2% on Dev,
Test and Dev-Test F1 score. Therefore, it demonstrates that the attribute fea-
tures captured by the multi-channel convolution layer can supplement extra
information which is important to improve the performance.

4.5 Effectiveness Analysis

To demonstrate the effectiveness of multi-channel attribute embedding, we
experiment with different attributes. Figure 3 shows the results. We can find
that POS and suffix attributes play a important role in improving the perfor-
mance of the model, while the English character, digital and body attributes
have a slight promotion. We suppose that there are two reasons. Firstly, the
POS and suffix attributes have more significant and diversified information. We
extract 91 types of POS attributes and 11000 types of suffix attributes while
other attributes are only “yes” or “no” value. And through a statistical analysis,
we found that these two attributes have more indicative effect for information

Fig. 3. Attribute analysis of MC-BLSTM-CRF.

206 J. Liu et al.

extraction. For instance, drugs usually appear after a verb or punctuation mark
and ends with “ (tablet)”, “ (capsule)”, and so on. Secondly, in the process
of encoding, the semantic representation of POS and suffix attributes are richer.
The embeddings of POS and suffix attributes are vectors with 40 and 50 dimen-
sions respectively while embeddings of other attributes are one-hot vectors with
2 dimension.

In general, the results prove that our method can use the traditional
attributes to enhance the semantic information which is helpful to the perfor-
mance. Furthermore, attribute fusion can bring a great promotion to the model.

4.6 Case Study

For better understand what information learned from the multi-channel CNN
layer can be supplemented to the BLSTM layer, we randomly pick out three
sentences from our dataset and compare the recognition results of MC-BLSTM-
CRF model with LSTM-CRF.

According to Table 3, we can find that the recognition result of our model
is obviously better than that of BLSTM-CRF, and the improvement is three-
fold: (1) the optimization of recognition boundary, (2) the recognition of med-
ical terminologies, (3) the recognition of symptom descriptions. For example,
in sentence 1, “ (Ultrasonic artery examination)” can be recog-
nized by MC-BLSTM-CRF, while BLSTM-CRF can introduce the noise word
“ (First)”. For sentence 2 and 3, MC-BLSTM-CRF can find more medical
terminologies like “ (Gefarnate Tablets)” and symptom descriptions

Table 3. Case study.

BLSTM-CRF with Multi-channel Attribute Embedding for Medical IE 207

like “ (Stomach often grunted)” consisting of multi-words than
BLSTM-CRF.

5 Conclusion

In this paper, we proposed a attribute embedding based MC-BLSTM-CRF
model for medical IE task. The main contribution of this model is to capture
relations between attributes effectively and flexibly with a multi-channel CNN
layer and use these attributes to improve recognition performance. Experimental
results showed that our model outperforms the existing methods for IE. Mean-
while, the case study results showed our model’s capability of learning domain-
specific information which is helpful to improve recognition performance.

Acknowledgement. This research is supported by the National Natural Science
Foundation of China under the grant No. U1633103 and 61502499, the Science and
Technology Planning Project of Tianjin under the grant No. 17ZXRGGX00170, the
Natural Science Foundation of Tianjin under the grant No. 18JCYBJC15800, and the
Open Project Foundation of Information Technology Research Base of Civil Aviation
Administration of China under the grant No. CAAC-ITRB-201601.

References

1. Bodnari, A., Deléger, L., Lavergne, T., Névéol, A., Zweigenbaum, P.: A supervised
named-entity extraction system for medical text. In: Working Notes for CLEF 2013
Conference (2013)

2. Chalapathy, R., Borzeshi, E.Z., Piccardi, M.: An investigation of recurrent neural
architectures for drug name recognition. In: Proceedings of the Seventh Interna-
tional Workshop on Health Text Mining and Information Analysis, pp. 1–5 (2016)

3. Chiu, J.P.C., Nichols, E.: Named entity recognition with bidirectional LSTM-
CNNs. Computer Science (2015)

4. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

5. Dong, X., Chowdhury, S., Qian, L., Guan, Y., Yang, J., Yu, Q.: Transfer bi-
directional LSTM RNN for named entity recognition in Chinese electronic medical
records. In: 19th IEEE International Conference on e-Health Networking, Appli-
cations and Services, pp. 1–4 (2017)

6. Hassan, H., Awadallah, A.H., Emam, O.: Unsupervised information extraction
approach using graph mutual reinforcement. In: EMNLP, pp. 501–508 (2006)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Hu, Z., Ma, X., Liu, Z., Hovy, E.H., Xing, E.P.: Harnessing deep neural networks
with logic rules. In: Proceedings of ACL (2016)

9. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
Computer Science (2015)

10. Irsoy, O., Cardie, C.: Opinion mining with deep recurrent neural networks. In:
Proceedings of EMNLP, pp. 720–728 (2014)

208 J. Liu et al.

11. Jochim, C., Deleris, L.A.: Named entity recognition in the medical domain with
constrained CRF models. In: Proceedings of ACL, pp. 839–849 (2017)

12. Kudoh, T., Matsumoto, Y.: Use of support vector learning for chunk identification.
In: CoNLL, pp. 142–144 (2000)

13. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: Proceedings of the
Eighteenth International Conference on Machine Learning, pp. 282–289 (2001)

14. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: NAACL, pp. 260–270 (2016)

15. Luo, G., Huang, X., Lin, C., Nie, Z.: Joint entity recognition and disambiguation.
In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pp. 879–888 (2015)

16. Ma, X., Hovy, E.H.: End-to-end sequence labeling via bi-directional LSTM-CNNs-
CRF. In: Proceedings of ACL (2016)

17. Passos, A., Kumar, V., McCallum, A.: Lexicon infused phrase embeddings for
named entity resolution. In: Proceedings of the Eighteenth Conference on Compu-
tational Natural Language Learning, pp. 78–86 (2014)

18. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recog-
nition. In: Proceedings of the Thirteenth Conference on Computational Natural
Language Learning, pp. 147–155 (2009)

19. Segura-Bedmar, I., Mart́ınez, P., de Pablo-Sánchez, C.: Using a shallow linguistic
kernel for drug-drug interaction extraction. J. Biomed. Inform. 44(5), 789–804
(2011)

20. Takaki, O., Murata, K., Izumi, N., Hasida, K.: A medical information retrieval
based on retrievers’ intentions. In: HEALTHINF 2011 - Proceedings of the Inter-
national Conference on Health Informatics, pp. 596–603 (2011)

21. Zeng, D., Sun, C., Lin, L., Liu, B.: LSTM-CRF for drug-named entity recognition.
Entropy 19(6), 283 (2017)

Distant Supervision for Relation
Extraction with Neural Instance Selector

Yubo Chen1(B), Hongtao Liu2, Chuhan Wu1, Zhigang Yuan1, Minyu Jiang3,
and Yongfeng Huang1

1 Next Generation Network Lab, Department of Electronic Engineering,
Tsinghua University, Beijing, China

{yb-ch14,wuch15,yuanzg14}@mails.tsinghua.edu.cn, yfhuang@tsinghua.edu.cn
2 Tianjin Key Laboratory of Advanced Networking,

School of Computer Science and Technology, Tianjin University, Tianjin, China
htliu@tju.edu.cn

3 Fan Gongxiu Honor College, Beijing University of Technology, Beijing, China
ryancoper@emails.bjut.edu.cn

Abstract. Distant supervised relation extraction is an efficient method
to find novel relational facts from very large corpora without expensive
manual annotation. However, distant supervision will inevitably lead
to wrong label problem, and these noisy labels will substantially hurt
the performance of relation extraction. Existing methods usually use
multi-instance learning and selective attention to reduce the influence of
noise. However, they usually cannot fully utilize the supervision infor-
mation and eliminate the effect of noise. In this paper, we propose a
method called Neural Instance Selector (NIS) to solve these problems.
Our approach contains three modules, a sentence encoder to encode input
texts into hidden vector representations, an NIS module to filter the less
informative sentences via multilayer perceptrons and logistic classifica-
tion, and a selective attention module to select the important sentences.
Experimental results show that our method can effectively filter noisy
data and achieve better performance than several baseline methods.

Keywords: Relation extraction · Distant supervision
Neural Instance Selector

1 Introduction

Relation extraction is defined as finding relational sentences and specify rela-
tion categories from plain text. It is an important task in the natural language
processing field, particularly for knowledge graph completion [7] and question
answering [10]. Distant supervision for relation extraction aims to automatically
label large scale data with knowledge bases (KBs) [14]. The labeling procedure
is as follows: for a triplet (ehead, etail, r) in KB, all sentences (instances) that
simultaneously mention head entity ehead and tail entity etail constitute a bag
and are labeled as relation r.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 209–220, 2018.
https://doi.org/10.1007/978-3-319-99495-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_18&domain=pdf

210 Y. Chen et al.

However, distant supervised relation extraction is challenging because the
labeling method usually suffers from the noisy labeling problem [17]. A sen-
tence may not express the relation in the KB when mentioning two entities.
Table 1 shows an example of the noisy labeling problem. Sentence 2 mentions
New Orleans and Dillard University without expressing the relation /loca-
tion/location/contains. Usually, the existence of such noisy labels will hurt the
performance of relation extraction methods. Thus, it’s important to eliminate
such noise when constructing relation extraction models.

Several approaches have been proposed to eliminate negative effects of noise
instances. For example, Riedel et al. [17] proposed to use graphical model to pre-
dict which sentences express the relation based on the at-least-once assumption.
Zeng et al. [24] propose to combine multi-instance learning [4] with Piecewise
Convolutional Neural Networks (PCNNs) to choose the most likely valid sen-
tence and predict relations. However, these methods ignore multiple informative
sentences and only select one sentence from each bag for training. Therefore,
they cannot fully exploit the supervision information.

In recent years, attention mechanism is introduced to this task to select
information more effectively. Lin et al. [11] and Ji et al. [9] used bilinear and
non-linear form attention respectively to assign higher weights to valid sentences
and lower weights to invalid ones. Then the bag is represented as a weighted
sum of all sentences’ representations. However in these methods, the softmax
formula of attention weights will assign positive weights to noisy data. These
positive weights of noisy sentences violated the intuition that noisy sentences
cannot provide relational information. Thus such attention based models can’t
fully eliminate the negative effect of noise.

In this paper we proposed a method called Neural Instance Selector (NIS) to
further utilize rich supervision information and alleviate negative effect of noisy
labeling problem. Our approach contains three modules. A sentence encoder
transforms input texts into distributed vector representations with PCNN. A
Neural Instance Selector filters less informative sentences with multilayer per-
ceptrons and logistic classification. The NIS module can select multiple valid
sentences, and exploit more information than MIL method. A selective attention
module selects more important sentences with higher weights. In order to further

Table 1. An example of noisy labeling problem. The bold words are head/tail entities.

Triplet Instances Noisy?

(New Orleans, Dillard
University, /loca-
tion/location/contains)

1. Jinx Broussard, a communications
professor at Dillard University in New
Orleans, said . . .

No

2. When he came here in May 2003 to pick up
an honorary degree from Dillard University,
his dense schedule didn’t stop him . . . ever
since he lived in New Orleans in the 1950’s

Yes

Distant Supervision for Relation Extraction with Neural Instance Selector 211

eliminate noise effects than attention-based methods, we only assign attention
weights to selected sentences. Experimental results on the benchmark dataset
validate the effectiveness of our model.

2 Related Work

Early works focused on feature-based methods for relation extraction. GuoDong
et al. [6] explored lexical and syntactic features with textual analysis and feed
them into a SVM classifier. Bunescu et al. [3] connected weak supervision with
multi-instance learning [4] and extend it to relation extraction. Riedel et al.
[17] proposed at-least-once assumption to alleviate the wrong label problem.
However, these methods lack the ability of fully utilizing supervision information
and suppress noise. Besides, these methods cannot effectively use the contextual
information.

Recent works attempt to use neural networks for supervised relation extrac-
tion. Socher et al. [19] represented words with vectors and matrices and use
recursive neural networks to compose sentence representation. Zeng et al. [25],
Nguyen et al. [16] and dos Santos et al. [18] extracted sentence level vector
representation with CNNs. Other work adopted recurrent neural networks to
this task [20,26]. However, these methods need sentence-annotated data, which
cannot be applied to large scale corpus without human annotation.

In order to apply neural networks to distant supervision, Zeng et al. [24]
proposed PCNN to capture sentence structure information, and combined it
with Multi-Instance Learning [4] (MIL) to select the sentence with the highest
right probability as bag representation. Although proved effective, MIL suffers
from information loss problem because it ignored the presence of more than one
valid instances in most bags. Recently attention mechanism attracted a lot of
interests of researchers [1,12,15,22]. Considering the flaw of MIL, Lin et al. [11]
and Ji et al. [9] introduced bilinear and non-linear attention respectively into
this task to make full use of supervision information by assigning higher weights
to valid instances and lower weights to invalid ones. The two attention models
significantly outperform MIL method. However, they suffer from noise residue
problem because noisy sentences have harmful information but still have positive
weights. The residue weights of noisy data mean that attention methods cannot
fully eliminate the negative effects of noise.

Different from MIL and attention methods, we propose a method named NIS
to further solve the information loss and noise residue problem. First, We use
PCNNs [24] to learn sentence representations. Second, an NIS module takes all
sentences’ representations in a bag as input, and uses a MLP to capture the
information of noise. Third, a logistic classifier takes MLP output to select valid
sentences and filter noisy ones. The NIS module can alleviate information loss
problem by retaining more than one valid sentences. Finally, we assign attention
weights to selected sentences and use them to compute bag representation. In this
way noise residue problem is reduced by avoiding assigning weights to unselected
sentences. Experimental results show that the NIS module can alleviate these
two problems and bring better performance to baseline models.

212 Y. Chen et al.

3 Methodology

In this section, we will introduce our method. Our framework contains three
parts, which is shown in Fig. 1. We will introduce these parts each by each.

Instance
Selector

Sentence
Encoder

Selective
Attention

sentence
representation

input
sentence

selected sentence
representation

Fig. 1. Details of Instance Selector framework.

3.1 Sentence Encoder

Sentence encoder transforms the sentence into its distributed representation.
First, words in a sentence are transformed into dense real-valued vectors. For
word token w, we use pre-trained word embeddings as low dimension vector
representation. Following Zeng et al. [24], we use position embeddings as extra
position feature. We compute the relative distances between each word and two
entity words, and transform them to real-valued vectors by looking up randomly-
initialized embedding matrices. We denote the word embedding of word w by
ww ∈ R

dw and two position embeddings by p(1)
w ,p(2)

w ∈ R
dp . The word represen-

tation sw is then composed by horizontal concatenating word embeddings and
position embeddings:

sw = [ww;p(1)
w ;p(2)

w]. sw ∈ R
(dw+2×dp) (1)

Then, given a sentence and corresponding entity pair, we apply PCNN to
construct a distributed representation of the sentence. Compared with common
CNN, PCNN uses a piecewise max-pooling layer to capture sentence structure
information. A sentence is divided into three segments by two entity words, then
max-pooling is executed on each segment respectively. Following Zeng et al. [24],
we apply tanh as activation function. We denote convolution kernel channels by
c, and the output of PCNN by f(i) ∈ R

3c.

3.2 Instance Selector

Although previous work yields high performance, there still exists some draw-
backs. MIL suffers from information loss problem because it ignored multiple
valid sentences and used only one sentence for representing a bag and train-
ing. Attention-based methods have noise residue problem because they assigned

Distant Supervision for Relation Extraction with Neural Instance Selector 213

sentence
representation

MLP Logistic
Classifier

0

1

1

0

selected sentence
representation

Neural Instance Selector

Fig. 2. The structure of NIS module. The 1s among the outputs of Logistic Noise
Classifier indicate the corresponding sentence is valid, and 0s indicates invalid.

small but still positive weights to harmful noisy sentences, which means noise
effects weren’t completely removed.

In order to alleviate these two negative effects, we propose a method called
Neural Instance Selector (NIS) to pick out more informative sentences.
Figure 2 shows the structure of NIS. We use a small neural network to classify
valid and invalid sentences. The core component of NIS is a Multilayer Percep-
tron (MLP) used for capturing information of noise. Then MLP output vectors
are fed into a logistic noise classifier to produce sentence-level selection results.
As shown in Fig. 2, NIS module has the ability of retaining multiple valid sen-
tences, naturally reducing information loss problem. Then we alleviate noise
residue problem by only assigning attention weights to selected sentences. The
unselected noisy data will not be assigned weights, and will not participate in
training process.

One alternative way for selecting instances is removing MLP and directly
feeding PCNN output into logistic classifier [5]. However, we discover that this
choice performs worse than NIS. This is because noise information is more com-
plex than relation information, therefore requires deeper structure to be cap-
tured. The MLP can improve the non-linear fitting ability of instance selector.
Also, the sentence level classifier has many alternatives. We conduct experiments
on logistic classifier and two-class softmax classifier, and choose logistic classifier
because of its better performance.

3.3 Selective Attention

The object of attention mechanism is to learn higher weights for more explicit
instances and lower weights for less relevant ones. Attention-based models repre-
sent the ith bag Mi (with label yi) as a real-valued vector ri. We denote the jth
sentence’s representation in the ith bag as f(j)i . Previous work used bilinear [11]
and non-linear form [9] attention. Considering computational efficiency and effec-
tiveness, we choose the non-linear form in our method, denoted as APCNN.

214 Y. Chen et al.

Intuitively, relation information is useful when recognizing informative sen-
tences. So we introduce relation representation and concatenate it with sen-
tence representation to compute attention weights. Inspired by translation-based
knowledge graph methods [2,21], the relation r is represented as the difference
vector of entity word embeddings: vrel = we1 − we2 . Then α(j) is computed
through a hidden layer:

α(j) =
exp(e(j))

∑
k exp(e(k))

, (2)

e(j) = Wa
T (tanh[f(j)i ;vrel]) + ba. (3)

With attention weights α(j) computed, Mi is represented by ri =
∑|Mi|

j=1 α(j)f(j)i .
The bag representation is fed into a softmax classifier to predict relations and
compute cross-entropy objective function J(θ) = −∑T

i=1 log p(yi|oi; θ):

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our NIS mechanism on the dataset developed by Riedel et al. [17] by
aligning Freebase triplets with the New York Times (NYT) corpus. The training
data is aligned to the years of 2005–2006 of the NYT corpus, and the testing to
year of 2007. The dataset contains 53 relations (including ‘NA’ for no relation)
and 39,528 entity pairs. Training data includes 522,611 sentences, the test set
includes 172,448 sentences.

Following Lin et al. [11], we evaluate our method in the held-out evaluation.
It provides an approximate measure of precision without time-consuming manual
evaluation. We report the aggregate precision/recall curve and Precision@N in
our experiments.

4.2 Parameter Settings

In our experiments, we use word2vec, proposed by Mikolov et al. [13], to pre-train
word embeddings on NYT corpora. We select the dimension of word embedding
dw among {50, 100, 200, 300}, the dimension of position embedding dp among
{5, 10, 20}, the number of feature maps c among {100, 200, 230}, batch size
among {50, 100, 150, 160, 200}. The best configurations are: dw = 50, dp = 5,
c = 230, the batch size is 100. We choose MLP hidden layers’ dimensions as
[512, 256, 128, 64]. We use dropout strategy [8] and Adadelta [23] to train our
models. For training, we set the iteration number over the training set as 20,
and decay the learning rate every 10 epochs.

Distant Supervision for Relation Extraction with Neural Instance Selector 215

Fig. 3. Aggregate precision/recall curves for PCNN+MIL, APCNN, APCNN+ATS,
APCNN+NIS. APCNN denotes the non-linear attention method proposed by Ji et
al. [9]. We choose 0.8 × max(attention weight) as APCNN+ATS threshold with the
highest performance in our experiments.

4.3 Performance Evaluation

We compare our method with two previous works: PCNN+MIL [24] selects the
sentence with the highest right probability as bag representation; APCNN [9]
use non-linear attention to assign weights to all sentences in a bag. In order to
prove the superiority of our NIS module, we propose a more intuitive and sim-
pler way for instance selection: we set a threshold on attention weights and filter
sentences with lower weights than threshold. We denote this method as Atten-
tion Threshold Selector (ATS). We adopt both ATS and NIS to APCNN to
demonstrate the effectiveness of instance selectors, denoted as APCNN+ATS
and APCNN+NIS respectively. Figure 3 shows the aggregated precision/recall
curves, and Table 2 shows the Precision@N with N = {100, 200, 500} of our
approaches and all the baselines. From Fig. 3 and Table 2 we have the following
observations:

Table 2. Precision@N of PCNN+MIL, APCNN, APCNN+ATS, APCNN+NIS.

Precision@N (%) Top 100 Top 200 Top 500 Average

PCNN+MIL 71.72 67.84 61.62 66.89

APCNN 78.79 76.38 66.33 73.83

APCNN+ATS 73.74 76.38 65.53 71.88

APCNN+NIS 78.79 76.38 69.94 75.04

216 Y. Chen et al.

1. For both ATS and NIS, the instance selector methods outperform
PCNN+MIL. It indicates that instance selectors can alleviate information
loss problem because it can pick out more than one valid sentences in a bag.

2. Figure 3 shows that the instance selectors bring better performance compared
with APCNN for both ATS and NIS method on high recall range. This is
because the attention weights are assigned only to selected sentences. It indi-
cates that our method can reduce noise residue problem because the weights
of unselected sentences are masked as zero.

3. The NIS method achieves the highest precision over most of the entire recall
range compared to other methods including the ATS. It indicates that NIS
method can effectively eliminate negative effects of insufficient information
utilization and residue noisy weights. It also proves that NIS is better than
ATS at filtering noise because the MLP provides deeper structure to handle
the complexity of noise information.

4.4 Effectiveness of NIS Module

The NIS module we propose has independent parameters, thus can be adapted
to various kinds of neural relation extraction methods. To further demon-
strate its effectiveness on different methods, we (1) replace MIL module of
PCNN+MIL with our NIS module (denoted as PCNN+NIS). Note that this
method is a sentence-level extraction, different from all other settings; (2)
replace APCNN and APCNN+NIS’s non-linear attention with bilinear form
attention [11] (denoted as PCNN+ATT and PCNN+ATT+NIS respec-
tively). We report the aggregated precision/recall curves of all the NIS methods
in Fig. 4. From Fig. 4 we can see that:

Fig. 4. Aggregate precision/recall curves of PCNN+MIL, PCNN+ATT, APCNN,
PCNN+NIS, PCNN+ATT+NIS, APCNN+NIS.

Distant Supervision for Relation Extraction with Neural Instance Selector 217

1. Models with NIS module outperform all the corresponding baseline methods,
proving its effectiveness and robustness on different structures.

2. PCNN+NIS model has better performance than PCNN+MIL. It indicates
the role of NIS module in filtering noise. Lin et al. [11] have proved that
sentence-level PCNN has worse performance than PCNN+MIL because it
ignores the effect of noise. But our sentence-level PCNN+NIS method defeats
PCNN+MIL, which means NIS module can filter out most noise sentences
and improve sentence-level performance.

3. PCNN+NIS model also outperforms attention-based models. This is actually
a comparison between hard selection and soft selection strategy. The result
demonstrates that NIS’s hard selection strategy can effectively reduce the
negative effects of residue weights brought by soft attention strategy.

4.5 Analysis of ATS Threshold

Although not so powerful as NIS method, ATS method still brings improvement
to APCNN model. However, ATS method needs a fine-tuned threshold to achieve
its best performance. Higher thresholds bring back information loss problem
because more informative sentences are neglected. Lower thresholds bring back
noise residue problem because more noisy sentences are selected and assigned
weights. We conduct experiments on ATS with different thresholds. For clarify,
we use a histogram to approximate precision/recall curves of different thresholds,
shown in Fig. 5.

Fig. 5. Aggregate precision/recall histogram of ATS with different thresholds. ATS(α)
means the threshold is α×max(attention weights). APCNN is equivalent to ATS(0).
ATS(1.0) means only select the sentence with maximum attention weight as bag rep-
resentation, similar to PCNN+MIL. We use histogram for clarify because some of the
curves are too close.

218 Y. Chen et al.

In our experiments, the best model is ATS(0.8). With higher thresholds
(ATS(1.0) and ATS(0.9)), the precisions decline significantly because less infor-
mative sentences are utilized. ATS(1.0) selects only the sentence with maxi-
mum attention weight to train. Similar to MIL select strategy, ATS(1.0) also
has similar performance to PCNN+MIL. With lower thresholds (ATS(0.6) and
ATS(0.4)), the performance decreases slightly, close to APCNN model (equiva-
lent to ATS(0)). The reason is that when threshold is lower, more invalid sen-
tences are involved in training, which means the noise effects cannot be fully
eliminated. The change of performance with the threshold perfectly shows the
impact of information loss and noise residue on relation extraction. It also proves
the superiority of NIS because it provides deeper structure to capture the com-
plex information of noise and doesn’t require fine-tuned threshold.

4.6 Case Study

Table 3 shows an example of selection result and attention weights of a bag. The
bag contains three instances in which the 1st instance is invalid. The remaining
instances are informative because they all contain significantly keywords that
express the corresponding relation /people/person/place lived. APCNN assigns
bigger weight to the 1st sentence (invalid) than the 2nd sentence (valid). There-
fore, the big noise residue will substantially hurt performance. Our NIS module
correctly selects last 2 sentences as valid ones. The selection results shows NIS’s
ability of filtering noise sentences.

With the help of NIS, attention mechanism only assigns weights to selected
sentences. APCNN+NIS assigns a very high weight to the 3rd sentence because
the appearance of lived strongly indicates the place lived relation. The 2nd

Table 3. An example of selection result and attention weight. The bold strings are
head/tail entities, and the red strings are keywords to predict the relation. The relation
/place lived corresponds the /people/person/place lived in Freebase.

Triplet Instances APCNN+NIS APCNN

Select. Att.

(Jane Jacobs,
Toronto,
/place lived)

1. Alice Sparberg Alexiou, the author of
the biography “Jane Jacobs: Urban
Visionary” . . . in a panel discussion based
on the work of Ms. Jacobs, the urban
planner who died in April in Toronto

0 - 0.3503

2. Dovercourt has a penchant for arriving
at rock clubs and bars with books by the
famed urban critic Jane Jacobs, who
has made Toronto her home for nearly
40 years

1 0.2890 0.0875

3. Jane Jacobs, the activist who took
him on, now lives in Toronto

1 0.7110 0.5623

Distant Supervision for Relation Extraction with Neural Instance Selector 219

sentence has home, but the semantic is not strong enough. The attention weights
demonstrates that our attention module is able to selectively focus on more rel-
evant sentences.

5 Conclusion

Distant supervision for relation extraction is an efficient method to find rela-
tional sentences in very large corpus without manual annotation. Existing meth-
ods suffers from information loss and noise residue problem. We proposed a
method named NIS to alleviate these two negative effects simultaneously. We
use a sentence encoder to transform input texts to vector representation, an
NIS module to select multiple valid sentences and an attention module to assign
weights to selected sentences. We conduct experiments on a widely used dataset
and experimental results validate the effectiveness of our method.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

3. Bunescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation
extraction. In: Proceedings of the Conference on Human Language Technology
and Empirical Methods in natural Language Processing, pp. 724–731. Association
for Computational Linguistics (2005)

4. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artif. intell. 89(1–2), 31–71 (1997)

5. Feng, J., Huang, M., Zhao, L., Yang, Y., Zhu, X.: Reinforcement learning for
relation classification from noisy data (2018)

6. GuoDong, Z., Jian, S., Jie, Z., Min, Z.: Exploring various knowledge in relation
extraction. In: Proceedings of the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pp. 427–434. Association for Computational Linguistics (2005)

7. Han, X., Liu, Z., Sun, M.: Neural knowledge acquisition via mutual attention
between knowledge graph and text (2018)

8. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

9. Ji, G., Liu, K., He, S., Zhao, J., et al.: Distant supervision for relation extraction
with sentence-level attention and entity descriptions. In: AAAI, pp. 3060–3066
(2017)

10. Lee, C., Hwang, Y.G., Jang, M.G.: Fine-grained named entity recognition and rela-
tion extraction for question answering. In: Proceedings of the 30th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 799–800. ACM (2007)

11. Lin, Y., Shen, S., Liu, Z., Luan, H., Sun, M.: Neural relation extraction with
selective attention over instances. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1,
pp. 2124–2133 (2016)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1207.0580

220 Y. Chen et al.

12. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-
tion without labeled data. In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2, vol. 2, pp. 1003–1011. Association
for Computational Linguistics (2009)

15. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In:
Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)

16. Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional
neural networks. In: Proceedings of the 1st Workshop on Vector Space Modeling
for Natural Language Processing, pp. 39–48 (2015)

17. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without
labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML
PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15939-8 10

18. Santos, C.N.d., Xiang, B., Zhou, B.: Classifying relations by ranking with convo-
lutional neural networks. arXiv preprint arXiv:1504.06580 (2015)

19. Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality
through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 1201–1211. Association for Computational Lin-
guistics (2012)

20. Sorokin, D., Gurevych, I.: Context-aware representations for knowledge base rela-
tion extraction. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 1784–1789 (2017)

21. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text jointly embed-
ding. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1591–1601 (2014)

22. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: Neural image caption generation with visual
attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

23. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

24. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via
piecewise convolutional neural networks. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1753–1762 (2015)

25. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolu-
tional deep neural network. In: Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics: Technical Papers, pp. 2335–2344
(2014)

26. Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu, B.: Attention-based bidirec-
tional long short-term memory networks for relation classification. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), vol. 2, pp. 207–212 (2016)

http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-642-15939-8_10
http://arxiv.org/abs/1504.06580
http://arxiv.org/abs/1212.5701

Complex Named Entity Recognition via
Deep Multi-task Learning from Scratch

Guangyu Chen1, Tao Liu1, Deyuan Zhang2(B), Bo Yu3, and Baoxun Wang3

1 School of Information, Renmin University of China, Beijing, China
{hcs,tliu}@ruc.edu.cn

2 School of Computer, Shenyang Aerospace University, Shenyang, China
dyzhang@sau.edu.cn

3 Tricorn (Beijing) Technology Co., Ltd, Beijing, China
{yubo,wangbaoxun}@trio.ai

Abstract. Named Entity Recognition (NER) is the preliminary task in
many basic NLP technologies and deep neural networks has shown their
promising opportunities in NER task. However, the NER tasks covered in
previous work are relatively simple, focusing on classic entity categories
(Persons, Locations, Organizations) and failing to meet the requirements
of newly-emerging application scenarios, where there exist more informal
entity categories or even hierarchical category structures. In this paper,
we propose a multi-task learning based subtask learning strategy to com-
bat the complexity of modern NER tasks. We conduct experiments on
a complex Chinese NER task, and the experimental results demonstrate
the effectiveness of our approach.

Keywords: Complex named entity recognition · Multi-task learning
Deep learning

1 Introduction

Nowadays, many basic NLP technologies have been utilized in the newly-
emerging application scenarios, among which the Named Entity Recognition
(NER) models are believed to be of paramount importance for locating the
essential information slots and predicting user intentions in the task-oriented
AI products, especially the ones with speech interface such as conversational
agents1, smart speakers2.

This work is supported by visiting scholar program of China Scholarship Council
and National Natural Science Foundation of China (Grant No. 61472428 and No.
U1711262). The work was done when the first author was an intern in Tricorn
(Beijing) Technology Co., Ltd.
Bo Yu is currently working in Baidu, Inc.

1 https://dueros.baidu.com/.
2 https://developer.amazon.com/alexa.

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 221–233, 2018.
https://doi.org/10.1007/978-3-319-99495-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_19&domain=pdf
https://dueros.baidu.com/
https://developer.amazon.com/alexa

222 G. Chen et al.

Compared to traditional NER tasks focusing on the classic entity categories
involving names of persons, locations, organizations, etc. [4,11,21], the NER
modules for the task-oriented scenarios of new AI products are facing the more
complex situation with more informal entity categories or even hierarchical cat-
egory structures (Fig. 1 gives an example). The difference is basically brought by
the requirements of practical task-oriented systems which take spoken language
as the interactive interface, since it is much more difficult to parse spoken lan-
guage sentences to detect slots or predict intentions. More importantly, in the
task-oriented NER scenarios, the complex entity categories significantly increase
the difficulty of human annotation. Consequently, the amount of high-quality
annotated datasets generally can not be guaranteed, which blocks the NER
models from achieving satisfying performance with no doubt.

For the task-oriented NER models which take spoken languages as input,
the limitation of the amount of human-annotated data is a severe problem that
should be handled first. From the perspective of the principle of NER, this
task objectively keeps the correlation with the other NLP tasks such as word
segmentation, part-of-speech (POS) tagging, etc. More importantly, the NER
model is very possible to benefit from the performance improvements on such
tasks, since they are logistically the basis of the NER task. Consequently, it
is fairly reasonable to conduct the multi-task learning procedure upon a basic
shared learnable component, which can be updated in accordance with each
training iteration of each task. This architecture becomes more practicable due to
the natural characteristics of deep learning models, since the parameter sharing
and fine-tuning mechanisms are suitable for building trainable shared layers
providing implicit representations of linguistic knowledge.

In this paper, we propose a learning strategy to combat the complex NER
task by firstly dividing the NER task into fine-grained subtasks (according to
domain affiliation) then integrating these subtasks into the multi-task learning
process and finally training them from scratch. A key aspect of our idea is that
these fine-grained subtasks will get better performance without the disturbance
coming from other domains.

Fig. 1. An example of the complex NER task facing by new AI products. All the six
entity names in this figure belong to the same domain of ‘Location’ in traditional NER
tasks. It demonstrates the complex NER is a challenging learning problem. On the one
hand, the model not only needs to classify which domain (Person, Location, Organi-
zation) the named entity belongs to, but also needs to dive down and get the correct
fine-grained category. On the other hand, the boundaries between these categories may
be blurry. For example, “Lijiang” is an administrative division, but in a specific context
it may refer to the “Old Town of Lijiang” which is a scenery spot.

Complex NER via Deep MTL from Scratch 223

The remaining part of this paper is organized as follows. Section 2 surveys the
related studies. Our proposed methodology is presented in Sect. 3. The experi-
mental results are given and analyzed in Sect. 4. Finally, we conclude our work
in Sect. 5.

2 Related Work

NER is a challenging learning problem considering the amount of supervised
training data available and the few constraints on the kinds of words that can
be names. As a result, orthographic features and language-specific knowledge
resources, such as gazetteers, are widely used to improve the NER tasks’ perfor-
mance [6,16,22]. However, this practice ruins the possibility of training the NER
task from scratch, since the language-specific resources and features are costly
to obtain when facing new language or new domains.

Multi-task learning (MTL) has led to success in many applications of lan-
guage processing [5] by sharing representations between related tasks [1,3]. Com-
pared with single-task learning, the architecture commonly used in MTL has
shared bottom layers and several individual top layers for each specific task. By
jointly (or iteratively) training on related tasks, the representation capacity of
the shared layers are enhanced. On MTL for sequence labeling tasks, Ando [1]
proposed a multi-task joint training framework that shares structural parameters
among multiple tasks, and improved the performance on various tasks includ-
ing NER. Collobert [6] presented a task independent convolutional network and
employed multi-task joint training to improve the performance of chunking. The
BiLSTM-CRFs neural architecture proposed by Lample [15] achieved state-of-
the-art results [23]. These previous works exclusively focused on the traditional
named entity recognition, however, the named entity categories are much more
complicated in practical applications nowadays. We argue that it would be ben-
eficial to take apart the original complex NER task into fine-grained subtasks.
In the training process, each subtask is trained independently, while in the test-
ing process, these subtasks will be executed simultaneously and the results of
these subtasks will be integrated to produce the final result. This perspective
also makes it easy to add these subtasks into MTL’s iterative training procedure
with an end-to-end manner. To the best of our knowledge, the work that is closet
to ours is [19], which focuses on domain adaptation with a simple NER classifi-
cation category, but their work does not explore the possibility of applying it to
the more complicated NER task.

3 Multi-task Learning Architecture for NER

In this section, we first provide a brief description of LSTMs used in our archi-
tecture, and then present a baseline model for single sequence tagging tasks
based on Bidirectional LSTM (Bi-LSTM) recurrent units. Finally we elaborate
on the iteration training procedure of MTL and the details about NER subtasks
training strategy.

224 G. Chen et al.

3.1 Basic Bi-LSTM Structure

Recurrent neural networks are a sort of neural networks taking the input data in
the form of vector sequence (x1, x2, . . . , xn) and generating the sequence output
(h1, h2, . . . , ht) which represents the context information encoded in every step
of the input vectors. It has been shown the traditional RNNs tend to be biased
toward the recent tokens, which caused the failure of learning long-term depen-
dencies [2]. Long Short-term Memory networks (LSTMs) [12] are put forward to
combat the above problem by applying additional gates to control the propor-
tion of input given to the memory cell, and the proportion of the previous state
to forget. There are several architectures of LSTM units. We used the following
implementations [9]:

ft = σ(Wfxt + Ufht−1 + bf) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (4)

ht = ot � tanh(ct) (5)

where � denotes element-wise product and σ is the sigmoid logistic function
(defined as σ = 1/(1 + e−x)).

For an input sequence (x1, x2, . . . , xn) containing n characters, the output
−→
ht

encodes the left context information of character t in the input sequence, which
means the network models the input sentence only in forward direction. It is
usually helpful by adding another LSTM reading reversely and concatenating
both outputs as the final output ht = [

−→
ht ,

←−
ht]. This is referred as the bidirectional

LSTM [10]. It has been demonstrated that this bidirectional architecture will
improve the performance in many sequence labeling tasks, thus it has become
the common building component in such tasks and is extensively used in many
sequence tagging tasks such as Chinese word segmentation (SEG), POS tagging
and NER.

3.2 Single Task Training

We start with a basic neural network (NN) model for training single sequence
tagging task in this subsection, then move on to the structure for iterative train-
ing in Sect. 3.3.

The NN model for single sequence tagging tasks can be seen in Fig. 2. For
an input character sequence X = {w1, w2, . . . , wn}, it can be transformed to a
sequence of character vectors with length n by performing embedding lookup
operation on each character wi. Then, this vector sequence will be fed to the
Bi-LSTM layer. Finally, a fully connected layer and a softmax layer will be used
to produce the final tagging result. This structure can be easily applied to many
sequence tagging tasks in an end-to-end manner and have the capacity of being
integrated into the MTL environment.

Complex NER via Deep MTL from Scratch 225

Fig. 2. The architecture of our Bi-LSTM recurrent network for single sequence tagging
task. Character embeddings successively pass though a bidirectional LSTM layer, a
fully connected layer and a softmax layer to generate the predicted outputs. This
architecture can be employed directly in the MTL environment by simply dividing it
into shared parts and task specific parts which marked by the red box and blue box
above. Figure 3 gives the further detail in MTL aspects.

We employ mini-batch Adam optimizer [13] to train our neural network in
an end-to-end manner with back propagation. In order to train the model with
batched inputs, input sentences will be tailed to a fixed length before the embed-
ding lookup operation, thus the lengths of input sentences for the Bi-LSTM layer
are equal. When performing evaluation for the NER task, the Viterbi algorithm
[8] is used to decode the most probable tag sequence.

3.3 Multi-Task Training Scheme

Multi-task training is desirably leveraged to boost model performance, since
different sequence tagging tasks (such as SEG, POS and NER) in the same lan-
guage share language-specific characteristics and should learn similar underlying
representation. To apply the basic NN model mentioned above to the multi-task
mechanism, we divide the parameters (Wt) of single task t into two sets (task
specific set and shared set):

Wt = Wtshare ∪ Wtspec (6)

226 G. Chen et al.

according to different roles of the parameters. We share all the parameters below
the fully connected layer including character embeddings to learn language-
specific characteristics for all the tasks, and the rest are regarded as task specific
parameters. These two sets are marked out in Figs. 2 and 3 respectively.

There are two patterns commonly used in MTL, one of which is training
different tasks jointly (optimize more than one loss function at a time), for
example, training the SEG task and the NER task simultaneously by maximizing
a weighted joint objective [18]:

Lossjoint = λLossSEG + LossNER (7)

where λ trades off between better segmentation or better NER. However, this
approach needs additional modifications to the model architecture and it is hard
to combine too many tasks. Thus, we adopt the iterative training mechanism of
MTL. For each iteration, all the tasks are trained sequentially. For each task t,
we first load previous trained parameters for initialization. The shared parame-
ter set is initialized with the latest Wtshare if there exists one. The task specific
parameter set is initialized with the latest Wtspec of the same task if there exists
one. Otherwise, we make a random initialization of parameters. Then, we per-
form gradient descent steps to update model parameters Wt until the model
performance tends to be stable, and then switch to training the next task. In
this way, the models for all the tasks are gradually optimized through the iter-
ative training process and the performance for each task is improved. We show
the effect of this iterative training mechanism in the experiment.

Fig. 3. The architecture used for NER subtask training. In the MTL training process,
the parts marked by blue boxes are task-specific and the parts located in the red box is
shared by all the tasks. To combat the complexity of the NER task, we divide the NER
task into three fine-grained subtasks (NERTravel, NERShopping, NEREntertainment)
according to the domain affiliation.

Complex NER via Deep MTL from Scratch 227

3.4 NER Subtasks Training Scheme

To reduce the complexity of the complex NER task, we divided it into three fine-
grained subtasks (NERTravel, NERShopping, NEREntertainment) by splitting
the dataset according to the domain affiliation (Sect. 4 presents the detail of
data processing). Since the training data for each NER subtask is isolate, it is
possible to treat them as independent sequence tagging tasks and combine them
into the iterative training process of MTL. This design captures two intuitions.
First, each fined-grained subtask only focuses on a single domain and will get
better performance since the labels needed to predict are downsized, without
the disturbance of other domains. Second, since SEG and POS tasks may bring
fundamental and latent contributions to NER task, it could be helpful to enhance
the representation capacity of shared layers by training with SEG and POS tasks.
After adding these tasks, the final architecture is shown in Fig. 3.

During evaluation, we employ these NER models on the same test set, collect
the results and perform merging operations:

(1) Ideally, these models’ predictions will be non-intersected, for example the
named entity “Beijing Hotel” belongs to the Travel domain, thus it will only
get the named label from NERTravel. The other two subtasks will neglect
this entity, thus this merging operation can be performed by simply merging
theses models’ predictions.

(2) However, due to the complexity of our NER task, there is a possibility that
these models may given different tagging results for the same entity which
can not be merged, e.g. for named entity “Shaolin Temple”, NERTravel

marks it as SCENE (scenery spot) while NEREntertainment marks it as
FILM. And in more complex situations, these results can be overlapping. In
these cases, the tagging result with higher sentence probability (generated
by the Viterbi decoding operation) will be chosen as the final result. We find
there are rare situations (about 0.5% of total entities) that need this further
merging operation from experiments, which demonstrates theses subtasks
have the capacity of concentrating on entities of their own domains.

4 Experiments and Analysis

In this section, we first introduce the datasets used in SEG, POS and NER tasks.
Then we present the details of tagging schemes and embedding settings. Finally
we give the results and the analysis of our experiment.

4.1 Datasets

We consider three tasks: sentence segmentation, part-of-speech tagging, and com-
plex named entity recognition. All these tasks are in Chinese, and each task
corresponds to a dataset. Chinese Treebank 9.03 datasets are used for SEG and

3 https://catalog.ldc.upenn.edu/ldc2016t13.

228 G. Chen et al.

Table 1. The NER tags for each domain and their proportions in total named entities.

Domain Tag Entity number Percentage (%)

Travel CATER 88944 37.1

HOTEL 9186 3.8

SCENE 36641 15.3

Shopping PROD BRAND 17934 7.5

PROD TAG 44138 18.4

Entertainment TV 19052 7.9

FILM 16125 6.7

MUSIC 5032 2.1

ENT OTHER 2822 1.2

POS tagging, and each contains 13.2k training sentences. An internal dataset
crawled from Chinese forums and Chinese News websites is used for complex
NER. It is preprocessed with data cleaning, and labeled with nine entity types4

covering domains of travel, shopping and entertainment. The NER dataset con-
tains 189.7k sentences, and each sentence only belongs to one domain. Entity
distribution of this dataset is shown in Table 1. Note that the datasets for SEG
(POS) and NER are drawn from different distributions, yet share many com-
monalities and still make contributions to each task. To combat the complexity
of the complex NER task, we propose the subtask strategy. It consists of the
following steps:

(1) Hold out 10% of the NER dataset for testing. The remaining part
NERremain is used for further process.

(2) Split NERremain into three subsets according to the domain affiliation, since
each sentence belongs to one domain in our NER dataset.

(3) Balance the dataset of each subtask by equally adding sentences that drawn
from the other two datasets with the out-of-domain labels transformed to
“O”. The motivation is to prevent biased model for each subtask if the
training data is only drawn from one domain.

(4) For each subset, split the data using an 8:1 for training and validation.

Table 2 shows the tags and volumes of datasets for all subtasks after processing
with the subtask strategy.

4.2 Tagging Schemes

The goal of NER is to assign a named entity label to each character of a sentence.
In our NER task, we used a “BMESO” tagging format, where B-label and E-
label represent the beginning and ending of a named entity respectively, M-label
4 CATER,HOTEL,SCENE,PROD TAG,PROD BRAND,FILM,MUSIC,TV,

ENT OTHER.

Complex NER via Deep MTL from Scratch 229

Table 2. Tags contained in each subtask and the sentence volume of each dataset.
Note that these three tasks share the same test set and the domain-unrelated tags will
be transformed to tag “O” (for Others) during testing.

Subtask Tag Train set Validation set Test set

NERTravel CATER HOTEL SCENE 151751 18968 18967

NERShopping PROD BRAND PROD TAG 77071 9633 18967

NEREntertainment ENT OTHER FILM MUSIC TV 61456 7681 18967

represents the remaining section of an entity except both ends, and the S-label
represents a singleton entity. For the character that do not belongs to any entity
type, we use “O” as its label. Sentences can also be tagged in a more concise
format as “BMO” if we throw away the information about singleton entity and
entity ending. However, works in [7,20] showed that using a more expressive
tagging scheme like “BMESO” improves the model performance marginally. We
employ this expressive format in our experiments.

4.3 Preprocessing and Pretrained Embeddings

In the iterative training process, to make it possible for sharing the charac-
ter embedding layer between different tasks, we use the same vocabulary of
size 10571 covering most of the Chinese characters and punctuations. During
training, the numbers and English words in the corpus will be replaced with
“ DIGIT” and “ ALPHABET”, and for the characters out of this vocabulary,
we use “ UNK” to represent them. To initialize the lookup table, we use pre-
trained character embeddings which are trained by the word2vec [17] tool. We
observe improvements using pretrained embeddings compared with randomly
initialized ones and finally set the embedding dimension to 256 for improving
the model’s learning capability.

4.4 Results and Analysis

We consider three baselines, the first baseline is a linear chain Conditional Ran-
dom Field (CRF) [14] commonly used in sequence labeling task. The second
baseline is the single NN model mentioned in Sect. 3.2. The last baseline inte-
grates the single NN model into the MTL pattern mentioned in Sect. 3.3. Com-
pared with the proposed fine-grained model, the difference is that it takes the
complex NER task as a whole. Table 3 presents the test results for complex NER
in terms of precision, recall and F1 score. Table 4 gives the details of F1 results in
each domain. Table 5 shows the F1 scores achieved by the proposed fine-grained
model in each training iteration.

As shown in Table 3, the Single Model (Method 2) gets a lower precision
but achieves a higher recall, which results in a marginal increase (+0.72) in F1
compared to the CRF model. For the MTL based models (Method 3 and 4), both

230 G. Chen et al.

Table 3. Statistics of NER results on test dataset. The methods 3 and 4 use the
iterative training scheme of MTL. All these models haven’t used external labeled data
such as gazetteers and knowledge bases.

Method Precision (%) Recall (%) F1 (%)

1 CRF 82.78 74.75 78.56

2 Single Model 80.59 78.00 79.28

3 Single Model with MTL 82.04 78.78 80.37

4 Fine-grained Model with MTL 83.56 81.57 82.55

Table 4. F1 results in domains of Travel, Shopping and Entertainment. The fine-
grained model (Method 4) beats all the others in all domains, and the improvements are
more than 2% compared with the integrated model (Method 3). It demonstrates that
this fine-grained training scheme eliminates the interference from the other domains
which helps the model learn better.

Method F1 (%)

NERTravel NERShopping NEREntertainment

1 CRF 81.31 79.29 68.36

2 Single Model 82.53 78.71 69.52

3 Single Model with MTL 83.53 79.77 71.17

4 Fine-grained Model with MTL 85.81 81.82 73.40

Table 5. The evaluation F1 achieved by the Fine-grained Model with MTL. The last
row displays the max improvement gained in iteration processes, which shows the MTL
scheme helps improve models’ performance.

Iteration F1 (%)

SEG POS NERTravel NERShopping NEREntertainment

1 95.44 89.86 85.87 81.89 72.12

2 95.51 90.07 85.79 82.10 72.84

3 95.66 90.10 86.17 82.17 73.42

4 95.74 90.01 86.18 82.94 73.52

Improvement 0.3 0.24 0.31 1.05 1.4

of them improve performances over the Single Model. Knowing that the SEG and
POS tasks help the model better learn effective representations, the Single Model
with MTL (Method 3) gives us an increase of +1.81 and the Fine-grained Model
gives us the biggest improvement of +3.99, in terms of F1 score. In the MTL
settings, the Fine-grained Model outperforms the Single Model with MTL, which
demonstrates that the subtask training strategy does benefit the performance
of complex NER. This can be further confirmed by the experimental results in

Complex NER via Deep MTL from Scratch 231

Table 4, where the proposed fine-grained model beats all the other baselines in
all domains.

Considering the results in Table 5, we find that SEG, POS and NERTravel

get small improvements compared with NERShopping and NEREntertainment.
The reason is as follows. The tasks of SEG and POS are much easier than NER,
thus their top limits are easy to achieve and the room for further improvement
is also limited. For NERTravel, the data volume of this task is the largest in the
three subtasks (nearly twice the data volume of the others), which means it can
be trained more sufficiently thus leaving less room for improvement. Among these
subtasks, NEREntertainment gets the worst F1 score, which is mainly because the
film entities and TV entities have similar contexts, and it is hard to discriminate
them without the help of knowledge bases. However, NEREntertainment achieves
the highest F1 improvement in the MTL process, which verifies the efficiency of
MTL framework.

5 Conclusions

In this paper, we have proposed a learning strategy to combat the complex
NER task by first dividing the NER task into fine-grained subtasks (according
to domain affiliation), then integrate these subtasks into a multi-task learning
process and finally train from scratch. The experimental results show that these
fine-grained subtasks will get better results without the disturbance from other
domains.

In this work, we mainly focus on the complex NER tasks which only cover
three domains. In the future, we will test this strategy on NER tasks with more
domains. Furthermore, it will be interesting to apply our approach to other
languages.

References

1. Ando, R.K., Zhang, T.: A framework for learning predictive structures from mul-
tiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005). http://
dl.acm.org/citation.cfm?id=1046920.1194905

2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994). https://doi.
org/10.1109/72.279181

3. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
4. Chieu, H.L., Ng, H.T.: Named entity recognition: a maximum entropy approach

using global information. In: Proceedings of the 19th International Conference on
Computational Linguistics, COLING 2002, vol. 1, pp. 1–7. Association for Com-
putational Linguistics, Stroudsburg (2002)

5. Collobert, R., Weston, J.: A unified architecture for natural language pro-
cessing: deep neural networks with multitask learning. In: Proceedings of
the 25th International Conference on Machine Learning, ICML 2008, pp.
160–167. ACM, New York (2008). https://doi.org/10.1145/1390156.1390177,
https://doi.acm.org/10.1145/1390156.1390177

http://dl.acm.org/citation.cfm?id=1046920.1194905
http://dl.acm.org/citation.cfm?id=1046920.1194905
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1145/1390156.1390177
https://doi.acm.org/10.1145/1390156.1390177

232 G. Chen et al.

6. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011). http://dl.acm.org/citation.cfm?id=1953048.2078186

7. Dai, H.J., Lai, P.T., Chang, Y.C., Tsai, R.T.H.: Enhancing of chemical com-
pound and drug name recognition using representative tag scheme and fine-
grained tokenization. J. Cheminform. 7(Suppl 1), S14–S14 (2015). https://
doi.org/10.1186/1758-2946-7-S1-S14, http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4331690/. 1758-2946-7-S1-S14[PII]

8. Forney, G.D.: The viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973). https://
doi.org/10.1109/PROC.1973.9030

9. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Comput. 12, 2451–2471 (1999)

10. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks 18(5), 602–610
(2005). https://doi.org/10.1016/j.neunet.2005.06.042, http://www.sciencedirect.
com/science/article/pii/S0893608005001206. iJCNN 2005

11. Grishman, R., Sundheim, B.: Design of the MUC-6 evaluation. In: Proceedings of
the 6th Conference on Message Understanding, MUC6 1995, pp. 1–11. Association
for Computational Linguistics, Stroudsburg (1995)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

13. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization (2014)
14. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: proba-

bilistic models for segmenting and labeling sequence data. In: Proceedings of the
Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–
289. Morgan Kaufmann Publishers Inc., San Francisco (2001). http://dl.acm.org/
citation.cfm?id=645530.655813

15. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 260–270. Association for Computational
Linguistics (2016)

16. Lin, D., Wu, X.: Phrase clustering for discriminative learning. In: Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP: Volume 2 -
Volume 2, ACL 2009, pp. 1030–1038. Association for Computational Linguistics,
Stroudsburg (2009). http://dl.acm.org/citation.cfm?id=1690219.1690290

17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/
1301.3781

18. Peng, N., Dredze, M.: Learning word segmentation representations to improve
named entity recognition for chinese social media. CoRR abs/1603.00786 (2016).
http://arxiv.org/abs/1603.00786

19. Peng, N., Dredze, M.: Multi-task domain adaptation for sequence tagging. In:
Proceedings of the 2nd Workshop on Representation Learning for NLP, pp. 91–100.
Association for Computational Linguistics (2017). http://aclweb.org/anthology/
W17-2612

20. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recog-
nition. In: Proceedings of the Thirteenth Conference on Computational Natural
Language Learning, CoNLL 2009, pp. 147–155. Association for Computational Lin-
guistics, Stroudsburg (2009). http://dl.acm.org/citation.cfm?id=1596374.1596399

http://dl.acm.org/citation.cfm?id=1953048.2078186
https://doi.org/10.1186/1758-2946-7-S1-S14
https://doi.org/10.1186/1758-2946-7-S1-S14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331690/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331690/
https://doi.org/10.1109/PROC.1973.9030
https://doi.org/10.1109/PROC.1973.9030
https://doi.org/10.1016/j.neunet.2005.06.042
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://www.sciencedirect.com/science/article/pii/S0893608005001206
https://doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=1690219.1690290
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1603.00786
http://aclweb.org/anthology/W17-2612
http://aclweb.org/anthology/W17-2612
http://dl.acm.org/citation.cfm?id=1596374.1596399

Complex NER via Deep MTL from Scratch 233

21. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In: Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003, CONLL
2003, vol. 4, pp. 142–147. Association for Computational Linguistics, Stroudsburg
(2003)

22. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, ACL 2010, pp. 384–394.
Association for Computational Linguistics, Stroudsburg (2010). http://dl.acm.org/
citation.cfm?id=1858681.1858721

23. Yang, Z., Salakhutdinov, R., Cohen, W.W.: Multi-task cross-lingual sequence tag-
ging from scratch. CoRR abs/1603.06270 (2016). http://arxiv.org/abs/1603.06270

http://dl.acm.org/citation.cfm?id=1858681.1858721
http://dl.acm.org/citation.cfm?id=1858681.1858721
http://arxiv.org/abs/1603.06270

Machine Learning for NLP

Hierarchical Attention Based
Semi-supervised Network Representation

Learning

Jie Liu(B), Junyi Deng, Guanghui Xu, and Zhicheng He

College of Computer and Control Engineering, Nankai University, Tianjin, China
jliu@nankai.edu.cn, {dengjunyi,xugh,hezhicheng}@mail.nankai.edu.cn

Abstract. Network Embedding is a process of learning low-dimensional
representation vectors of nodes by comprehensively utilizing network
characteristics. Besides structure properties, information networks also
contain rich external information, such as texts and labels. However,
most of the traditional learning methods do not consider this kind of
information comprehensively, which leads to the lack of semantics of
embeddings. In this paper, we propose a Semi-supervised Hierarchical
Attention Network Embedding method, named as SHANE, which can
incorporate external information in a semi-supervised manner. First, a
hierarchical attention network is used to learn the text-based embeddings
according to the content of nodes. Then, the text-based embeddings and
the structure-based embeddings are integrated in a closed interaction
way. After that, we further introduce the label information of nodes into
the embedding learning, which can promote the nodes with the same
label closed in the embedding space. Extensive experiments of link pre-
diction and node classification are conducted on two real-world datasets,
and the results demonstrate that our method outperforms other compar-
ison methods in all cases.

Keywords: Network representation learning
Hierarchical attention network · Semi-supervised learning

1 Introduction

Information network is a data form with rich structure and semantic informa-
tion. With the prevalence of various social media, massive social networks have
attracted a lot of researchers’ attention. The applications of information net-
work include various aspects, such as node classification, community detection,
and content recommendation. Network representation learning is the foundation
of these network applications. Different from the one-hot vectors, network rep-
resentation can map each node into a low-dimensional, dense and real-valued
vector, thus avoiding the effect of sparsity.

Most of the studies on network representation are based on network struc-
ture information, such as the sequences generated by network nodes [5,14], the
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 237–249, 2018.
https://doi.org/10.1007/978-3-319-99495-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_20&domain=pdf

238 J. Liu et al.

first-order and second-order proximities [18], and the adjacency matrix [4]. With
further research, the external information of nodes are considered to improve the
quality of embeddings, such as text information [9,17,19,22] and label informa-
tion [10,20]. The introduction of text feature can enrich the semantics of nodes
and improve the performance of representation learning. It is noteworthy that
people usually write sentences first, and then compose the whole document with
multiple sentences. However, when considering the text information of a net-
work, existing works usually obtain the text feature matrix of the nodes based
on words, which ignores the hierarchical structure. In order to incorporate the
document structure (document consists of sentences, sentences consist of words),
it is necessary to obtain document representations in a hierarchical way. Besides,
different words and sentences contain varying amounts of information, even the
same words in different sentences can play different roles. So how to make a
difference between different components of nodes’ content is a practical problem
which needs to be solved. In addition to the text information, label is another
important attribute of network nodes, and it is a kind of significant supervised
information on directing practical tasks such as classification. Making full use of
this supervised information will further enrich the network embeddings [10,20].
However, since the network is usually large-scale, there are still a lot of unlabeled
nodes, thus the rational use of labeled data and unlabeled data is important for
network representation learning.

In view of the above problems, we propose a hierarchical structure
based semi-supervised network representation learning method, Semi-supervised
Hierarchical Attention Network Embedding (SHANE), which can learn the hier-
archical relational network embeddings by integrating text and label features of
nodes. In SHANE, we adopt a hierarchical attention structure to extract text
features at different levels [23], which can model the hierarchical semantic infor-
mation of network. Meanwhile, label information is utilized in a semi-supervised
manner to make full use of both labeled data and unlabeled data. We apply
the proposed model to link prediction and node classification. The experiment
results show that the proposed model outperforms all the comparison methods.
Our contributions are summarized as follows:

– We propose a SHANE model, which can integrate structures, texts, and labels
of nodes together, and learn network embeddings in a semi-supervised man-
ner.

– We use hierarchical attention network to model the nodes’ text features, which
can capture the semantic features more granularly.

– We extensively evaluate our representations with multiple tasks on two real-
world citation networks. Experimental results prove the effectiveness of the
proposed model.

2 Model

The overall architecture of the proposed model is shown in Fig. 1. It consists of
Word Encoder, Sentence Encoder, and Node Encoder. Word Encoder and Sen-
tence Encoder constitute the text-based representation learning process, while

Hierarchical Attention Based Semi-supervised Network Embedding 239

Fig. 1. The illustration of SHANE model.

the Node Encoder combines structure-based embedding, text-based embedding,
and label information together. We describe the details of different components
in the following sections.

2.1 Problem Formulation

First of all, we introduce the related notions and define the problem formally.
Let G = (V,E, T, L) denotes a given information network, where V is the set of
nodes, E is the edge set that indicates the relation between nodes, T denotes
the text information of nodes and L is the label information of nodes. Each
edge eu,v ∈ E represents the relationship between two nodes (u, v). The text
information of node u is Du = (Su1, Su2, · · · , Suq), where Sui is the ith sentence
of u and q is the sentences number of u. Sui = (w1

ui, w
2
ui, · · · , wm

ui), where wj
ui is

the j th word of sentence Sui and m is the words number of sentence Sui. The
label information of u is lu.

Given an information network, the goal of our model is to learn a low-
dimensional vector u for each node u, that can integrate its structure, text and
label information.

2.2 Text-Based Representation Learning

As mentioned above, the text information of nodes usually has a natural hierar-
chical structure. That is, each document contains multiple sentences, and each
sentence contains multiple words. Empirically, each word and sentence are of
different importance in a document, and learning all sentences and words indis-
criminately will lose the focus of text content. So we use a hierarchical attention

240 J. Liu et al.

network [23] to learn the text-based embedding ut for each node u, and we
describe the learning process in details as follow.

Word Encoder. Assume that u contains q sentences, and each sentence con-
tains m words. We can get the word sequence of sentence Sui by table looking-up,
so the sentence can be expressed as Sui = (w1

ui,w
2
ui, · · · ,wm

ui), where wj
ui ∈ Rd

is a d-dimensional embedding vector. Then a bidirectional GRU [1] is applied to
encode the word sequences as:

−→
h wj

ui =
−−−→
GRU(wj

ui), j ∈ [1,m],
←−
h wj

ui =
←−−−
GRU(wj

ui), j ∈ [m, 1].
(1)

The word annotation hwj
ui of wj

ui should contain two directions of information,
which can be simply obtained by concatenating

−→
h wj

ui and
←−
h wj

ui . Considering
that words contribute differently to the sentence representation, the attention
mechanism is used to identify the importance of words, and the operations can
be expressed as follows:

gij = tanh
(
Wwh

wj
ui + bw

)
,

αwj
ui =

exp(gT
ijCw)∑

(exp(gT
ijCw))

,

sui =
∑
j

αwj
ui h

wj
ui ,

(2)

where sui is the embedding of the ith sentence of node u, Cw is the global word-
level context vector, and αij is a normalized importance weight used to fuse
word annotations to get the representation of sentence.

Sentence Encoder. Sentence encoder is similar to the word encoder except
that the objects are sentences, so we omit the equations due to lack of space.
Similar bidirectional GRU and attention layers are applied to the sentence encod-
ing process, and then we can get the text embedding uh

t encoded by hierarchical
attention network.

To avoid the deviation of the learned representation from the original text,
after getting the embedding from hierarchical attention network, we add it with
another vector ua

t , which is the mean of word embeddings of this node. Then,
we can get the text-based representation ut of node u.

ut = uh
t + ua

t . (3)

Overall, two layers of bidirectional GRUs extract the latent features of words
and sentences, in which the word-level attention is used to capture the lexical
features, and the sentence-level attention is used to capture the textual features.
Therefore, the hierarchical learning method can obtain text information with
different granularities.

Hierarchical Attention Based Semi-supervised Network Embedding 241

2.3 Structure-Based Representation Learning

In addition to the text-based embeddings discussed above, the structures of
nodes are also crucial information of the network. Structure features reflect the
connection characteristics of nodes. In general, two nodes with an edge between
them are similar in structure. Therefore, while getting the text-based embeddings
of nodes, we also learn a network structure based embedding us for each node.
In order to comprehensively learn the node representations, it is necessary to
consider the correlation between structure features, the relationship between
text features, and their interactions.

Following CANE [19], we set the log-likelihood functions of each part as
follows:

Lss(u) =
∑

eu,v∈E

wu,v log p(vu
s | uv

s),

Ltt(u) =
∑

eu,v∈E

wu,v log p(vt | ut),

Lst(u) =
∑

eu,v∈E

wu,v log p(vu
s | ut),

Lts(u) =
∑

eu,v∈E

wu,v log p(vt | uv
s),

(4)

where v is a node connected with u. wu,v is the weight of the edge between
node u and v. uv

s is the structure-based embedding of u when it connects with
v. The uses of symbols of v are analogous to u. Thus, we can comprehensively
model the interaction between u and v through Eq. 4. For each u ∈ {uv

s ,ut} and
v ∈ {vu

s ,vt}, the conditional probability of v generated by u is defined through
a softmax function:

p(v | u) =
exp(uT · v)∑
z∈V exp(uT · z) . (5)

The structure-based embeddings are free parameters to learn, and the text-
based embeddings are obtained through the method described in the previous
section. Note that the structure-based embeddings of u are different according
to the node it connects, and the motivation of this setting is that a node has
different connection characteristics when connected with different nodes. The
final structure-based embedding is the mean of them:

us =
1

|Eu|
∑

eu,v∈E

uv
s , (6)

where |Eu| is the edges number of u.

2.4 Semi-supervised Hierarchical Attention Network Embedding

Label is another valuable external information of nodes. Nodes with the same
label may also be similar in representations. Thus in this section, we incorporate

242 J. Liu et al.

label information into the learning process. However, the label information of a
network in the real world is mostly incomplete, and only a subset of nodes have
the corresponding class labels. Therefore, we design our model under a semi-
supervised manner so that it can make full use of labeled and unlabeled nodes
simultaneously.

Firstly, for the unlabeled nodes, we only consider its structure and text fea-
tures. So we add the log-likelihood functions in Eq. 4 together to get the objective
function of unlabeled nodes:

Lunlabel(uu) = α · Lts(uu) + β · Ltt(uu) + θ · Lst(uu)
+ γ · Lts(uu),

(7)

where uu ∈ Lu and Lu represents the unlabeled node subset, and α, β, θ, γ
control the weights of each part.

For the label matching loss of the nodes, we map the node embeddings into
the label space by using a fully-connected layer. Then we can get the nodes’
predicted label distributions. The purpose of label matching loss is to minimize
the distance between predicted label distribution and ground truth distribution.

Lmatch(ul) = −lu log p(l̂u | ul) + Ω, (8)

where ul ∈ Ll, and Ll represents the node subset with label information. lu is
the ground truth and l̂u is the predicted label distribution. Ω is the regularizing
term for the parameters in Eq. 8. Then the objective function of labeled node ul

can be denoted as follow:

Llabel(ul) = α · Lts(ul) + β · Ltt(ul) + θ · Lst(ul)

+ γ · Lts(ul) − λLmatch(ul),
(9)

where λ is the weight of label matching loss. Therefore, the overall objective
function of SHANE can be defined as:

L =
∑
ul∈Ll

Llabel(ul) +
∑

uu∈Lu

Lunlabel(uu). (10)

2.5 Model Optimization

In order to maximize the objective function, we need to calculate the conditional
probabilities, which have an expensive computational cost. So we employ the
negative sampling technology [12] to reduce the calculation cost. For each u ∈
{uv

s ,ut} and v ∈ {vu
s ,vt}, the objective functions in Eq. 4 can be transformed

as follow:

log σ(uT · v) +
k∑

i=1

Ez∼P (v)[log σ(uT · z)], (11)

where k is the number of negative samples, and σ is the sigmoid function. We
set P (v) ∝ d

3/4
v as proposed in [12], where dv is the degree of node v. So in the

process of optimization, we replace the corresponding parts of Eq. 10 with the
form of Eq. 11. Then, we use Adam to optimize the whole objective function.

Hierarchical Attention Based Semi-supervised Network Embedding 243

3 Experiments

In this section, experiments are performed to verify the effectiveness of the pro-
posed method, including link prediction and node classification.

3.1 Dataset

We conduct our experiments on two citation networks that are commonly used
in network representation learning:

– Cora is a citation network. We adopt the version processed by CANE [19].
The network contains 2277 machine learning papers in 7 categories and there
are 5214 edges between them. The text features of nodes are the abstracts of
these papers.

– DBLP is a computer science bibliography. It contains 30422 nodes in 4
research areas with the same setting as that of [13], and the edge number
is 41206. Abstracts of these papers are treated as text information as well.

3.2 Baseline

To investigate the performance of the proposed model, we compare our model
with 7 state-of-the-art methods, including structure-only models, text-only mod-
els, structure-text models and structure-text-label models. The details of the
comparison methods are described as follow:

– DeepWalk [14] is a structure-only model that employs random walk and
Skip-Gram [12] to learn the embeddings of nodes.

– LINE [18] can learn nodes embeddings of large-scale networks by considering
the first-order and second-order proximities and it is a structure-only model.

– node2vec [5] is an improved method of DeepWalk with a biased random
walk procedure, which only considers the structure information of network.

– Doc2vec [8] learns the embeddings of documents by predicting the co-
occurrence probability of words, and it is a pure text representation learning
method.

– TADW [22] is a structure-text model, which learns the structure features
and text features of the network by matrix decomposition.

– CANE [19] can learn the content aware embeddings of nodes, and it intro-
duce text information into the learning process.

– TriDNR [13] is a network representation learning method that considers the
structure, text and label information of nodes simultaneously.

3.3 Link Prediction

Link prediction is an important applications of network representation learning.
The primary purpose of this task is to predict whether there is an edge between
two nodes in the network. In practical applications, it can be used for recommen-
dation tasks, such as book recommendation. We adopt AUC [6] to evaluate the

244 J. Liu et al.

performance of link prediction. When the AUC is higher than 0.5, it indicates
that the similarity of the connected nodes is higher than the unconnected nodes.
So higher AUC means better performance. It can be calculated as follows:

AUC =

∑
i∈positive ranki − M(1+M)

2

M × N
, (12)

where M and N are the numbers of the connected node pairs and the uncon-
nected node pairs, respectively. In the evaluation process, we calculate the sim-
ilarities of the node pairs and rank them. The ranki is the number of correct
orders and positive is the collection of connected node pairs in the test set.

In order to verify the effectiveness of each model on link prediction task,
the models are trained with different proportions of edges in the network. The
training proportion of edges ranges from 15% to 95%, and the experimental
results on the two datasets are shown in Tables 1 and 2. It is worth noting
that HANE is a simplified form of the model proposed in this paper, which
is designed to verify the effect of the introduction of label information. HANE
doesn’t consider the label information of nodes. Besides, since Doc2vec is a

Table 1. Link prediction performance on Cora.

Training edge 15% 25% 35% 45% 55% 65% 75% 85% 95%

DeepWalk 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3

LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3

node2vec 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2

TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7

CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7

TriDNR 83.7 84.7 85.2 85.5 85.8 85.9 86.3 87.2 87.7

HANE 93.0 94.1 94.8 95.0 95.5 95.8 96.2 97.5 98.3

SHANE 92.7 93.3 95.1 95.7 96.0 96.5 96.9 97.8 98.5

Table 2. Link prediction performance on DBLP.

Training edge 15% 25% 35% 45% 55% 65% 75% 85% 95%

DeepWalk 71.2 72.8 74.3 74.5 74.6 75.5 81.4 81.7 82.4

LINE 57.4 60.5 63.2 66.0 66.4 68.8 67.2 68.2 69.9

node2vec 67.0 79.2 84.4 88.1 90.0 91.8 93.2 94.1 95.4

TADW 72.0 78.5 88.5 86.0 87.9 89.2 90.5 91.3 93.4

CANE 91.0 92.2 94.5 94.6 94.8 94.9 95.2 95.7 96.2

TriDNR 86.2 86.0 86.6 86.7 87.2 87.8 88.4 88.6 90.7

HANE 92.4 93.6 95.3 95.6 96.3 96.5 96.7 97.0 97.4

SHANE 92.6 93.4 95.3 96.1 96.3 96.4 96.8 97.2 97.9

Hierarchical Attention Based Semi-supervised Network Embedding 245

text-only method, so we do not analyze it in this part of the experiment. From
Tables 1, 2, we have the following observations:

– Structure-text methods outperform structure-only methods, especially when
the reserving proportion of the edge is small. This phenomenon shows that the
introduction of text features can significantly improve the quality of embed-
dings and capture the internal relationship between nodes better.

– The performances of all methods increase with the training ratio of edges, but
the methods considering text information are relatively stable. It proves that
adequate structure information is conducive to the representation learning,
and it also shows that the introduction of text information can supplement
the lack of network structure information.

– Either HANE or SHANE performs better than other comparison methods on
Core and DBLP, which proves the effectiveness of the hierarchical structure
based method proposed in this paper, and our methods can be well adapted
to different scales of networks.

– According to the comparison between HANE and SHANE, the introduction of
label information achieves a slight improvement in link prediction. It shows
that the label information is not the primary factor in the nodes relation
learning on these datasets.

3.4 Node Classification

Node classification is also a typical application of network representation learn-
ing. While link prediction can evaluate the ability of models to learn the con-
nection characteristics, node classification can verify the ability to capture the
group characteristics of nodes. To reduce the influence of the differences between
classifiers, we adopt a standard linear SVM on the embeddings learned by all
the methods. We use the Macro-F1 score [11] as the evaluation metric, and
the higher Macro-F1 means the better performance of classification. In order to
study the performance of models under different label completeness, the classifi-
cation experiment is conducted under the condition of retaining different ratios
of labeled nodes. For the unsupervised models, the changes in the ratio of labeled
data are reflected in varying the amount of labeled data used for training clas-
sifiers. Experimental results on the two datasets are shown in Tables 3 and 4.
From these tables, we have following observations:

– Generally speaking, the performances of structure-text models are superior
to the text-only method, and both of them perform better than the structure-
only methods, which proves that the text information is critical when learning
the group characteristics of the nodes.

– Both TriDNR and SHANE introduce the label and text information into the
learning process, but the classification performances of SHANE are better
than TriDNR. It shows that the way of introducing external information can
also affect the performance of network representation learning.

246 J. Liu et al.

– The experimental results on two datasets show that the proposed model
exhibits consistent superior performance to other comparison methods, which
proves the effectiveness of the SHANE model. It can efficiently capture the
properties of nodes and improve the quality of the network embeddings.

Table 3. Node classification performance on Cora.

Ratio of labeled nodes 10% 30% 50% 70%

DeepWalk 0.446 0.635 0.697 0.733

LINE 0.259 0.299 0.331 0.353

node2vec 0.715 0.761 0.784 0.793

Doc2vec 0.530 0.617 0.654 0.670

TADW 0.413 0.781 0.838 0.852

CANE 0.825 0.861 0.863 0.871

TriDNR 0.655 0.677 0.714 0.744

SHANE 0.852 0.871 0.873 0.886

Table 4. Node classification performance on DBLP.

Ratio of labeled nodes 10% 30% 50% 70%

DeepWalk 0.379 0.454 0.459 0.461

LINE 0.328 0.362 0.371 0.372

node2vec 0.448 0.473 0.475 0.476

Doc2vec 0.574 0.598 0.604 0.605

TADW 0.660 0.687 0.697 0.699

CANE 0.801 0.810 0.817 0.822

TriDNR 0.724 0.742 0.747 0.748

SHANE 0.806 0.811 0.821 0.850

Figure 2 shows how the performances of the proposed methods change over
the proportion of labeled nodes on Cora. The training proportion of the labeled
data ranges from 10% to 70%. It can be seen from the figure that the perfor-
mances of the models are improved when the proportion of the labeled data
increases, but SHANE always performs better than HANE. This phenomenon
illustrates that the semi-supervised learning method proposed in this paper is
effective. The introduction of label information is beneficial to capture the char-
acteristics of nodes, thus improving the quality of network embeddings.

Hierarchical Attention Based Semi-supervised Network Embedding 247

Fig. 2. Performance variation on different training ratio of labeled data.

4 Related Work

Recently, more and more studies focus on how to learn effective network embed-
dings. The related methods can be divided into two main categories, including
the methods only considering network structure, and the methods introducing
external information. As a classic structure-only method, DeepWalk [14] learns
embeddings of network by performing truncated random walks over networks.
On the basis of DeepWalk, Grover et al. proposed node2vec [5] which extends
DeepWalk by modifying the random walk strategy. LINE [18] preserves both
the first-order proximity and the second-order proximity of the network. These
methods can capture the network structure features well, but there is a lack
of understanding the semantics of nodes. In order to enrich the semantics of
embeddings, many methods introduce external information into the process of
learning. PTE [17], CANE [19], and TADW [22] introduce the content of nodes
to enrich the network representations. In addition to text, there is also some
other external information that can be considered, such as MMDW [20] and
DDRW [10]. Although these methods use external information, they do not take
into account the hierarchical structure of node content which is an important
feature of nodes.

Text representations learning methods are needed when considering the text
information of the network. Traditional text representation learning methods,
such as LDA [3] and NMF [2], learn the representation of text from the perspec-
tive of topic distribution. In recent years, due to the rapid development of neural
network and deep learning, text representation learning methods based on the
neural network have made significant progress, such as CNNs [7] and LSTM [16]
to learn text representations. Recently, attention mechanism is widely used in
Natural Language Processing tasks, and Bahdanau et al. first introduced it to
NLP for machine translation task [1]. After that, attention mechanism has been
widely applied to various applications, such as syntactic parsing [21] and natural
language Q&A [15]. The hierarchical attention network [23] proposed by Yang
et al. takes into account the hierarchical structure of documents, and applies
two levels of attention mechanisms at the word and sentence-level, respectively,
which improves the performance of text classification.

248 J. Liu et al.

5 Conclusion

In this paper, we proposed a semi-supervised hierarchical attention network
embedding method, i.e. SHANE. It integrates rich external information into the
learning process. The proposed SHANE leverages hierarchical attention network
to learn the text-based embedding, which can effectively model the hierarchi-
cal structure of the text. Through a semi-supervised learning framework, the
embeddings of nodes can be learned by incorporating structure, text and label
information together. Extensive experiments conducted on two citation datasets
demonstrate the effectiveness and superiority of the proposed model.

Acknowledgement. This research is supported by the National Natural Science
Foundation of China under the grant No. U1633103 and 61502499, the Science and
Technology Planning Project of Tianjin under the grant No. 17ZXRGGX00170, the
Natural Science Foundation of Tianjin under the grant No. 18JCYBJC15800, and the
Open Project Foundation of Information Technology Research Base of Civil Aviation
Administration of China under the grant No. CAAC-ITRB-201601.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. CoRR abs/1409.0473 (2014)

2. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algo-
rithms and applications for approximate nonnegative matrix factorization. Com-
put. Stat. Data Anal. 52(1), 155–173 (2007)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

4. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pp. 891–900 (2015)

5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of KDD, pp. 855–864 (2016)

6. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

7. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. In: Proceedings of ACL, pp. 655–665 (2014)

8. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
In: Proceedings of the 31st International Conference on Machine Learning, pp.
1188–1196 (2014)

9. Li, H., Wang, H., Yang, Z., Liu, H.: Effective representing of information network
by variational autoencoder. In: Proceedings of IJCAI, pp. 2103–2109 (2017)

10. Li, J., Zhu, J., Zhang, B.: Discriminative deep random walk for network classifica-
tion. In: Proceedings of ACL (2016)

11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of NIPS,
pp. 3111–3119 (2013)

Hierarchical Attention Based Semi-supervised Network Embedding 249

13. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network represen-
tation. In: Proceedings of IJCAI, pp. 1895–1901 (2016)

14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of KDD, pp. 701–710 (2014)

15. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks.
In: Proceedings of NIPS, pp. 2440–2448 (2015)

16. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. In: Proceedings of ACL, pp.
1556–1566 (2015)

17. Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale het-
erogeneous text networks. In: Proceedings of the 21st ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1165–1174 (2015)

18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: Proceedings of WWW, pp. 1067–1077 (2015)

19. Tu, C., Liu, H., Liu, Z., Sun, M.: CANE: context-aware network embedding for
relation modeling. In: Proceedings of ACL, pp. 1722–1731 (2017)

20. Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-margin DeepWalk: discriminative learn-
ing of network representation. In: Proceedings of IJCAI, pp. 3889–3895 (2016)

21. Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., Hinton, G.E.: Grammar
as a foreign language. In: Proceedings of NIPS, pp. 2773–2781 (2015)

22. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning
with rich text information. In: Proceedings of IJCAI, pp. 2111–2117 (2015)

23. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical atten-
tion networks for document classification. In: Proceedings of the NAACL, pp. 1480–
1489 (2016)

Joint Binary Neural Network
for Multi-label Learning

with Applications to Emotion
Classification

Huihui He and Rui Xia(B)

School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing, China

hehuihui1994@gmail.com, rxia@njust.edu.cn

Abstract. Recently the deep learning techniques have achieved success
in multi-label classification due to its automatic representation learning
ability and the end-to-end learning framework. Existing deep neural net-
works in multi-label classification can be divided into two kinds: binary
relevance neural network (BRNN) and threshold dependent neural net-
work (TDNN). However, the former needs to train a set of isolate binary
networks which ignore dependencies between labels and have heavy com-
putational load, while the latter needs an additional threshold function
mechanism to transform the multi-class probabilities to multi-label out-
puts. In this paper, we propose a joint binary neural network (JBNN),
to address these shortcomings. In JBNN, the representation of the text
is fed to a set of logistic functions instead of a softmax function, and the
multiple binary classifications are carried out synchronously in one neural
network framework. Moreover, the relations between labels are captured
via training on a joint binary cross entropy (JBCE) loss. To better meet
multi-label emotion classification, we further proposed to incorporate the
prior label relations into the JBCE loss. The experimental results on the
benchmark dataset show that our model performs significantly better
than the state-of-the-art multi-label emotion classification methods, in
both classification performance and computational efficiency.

Keywords: Sentiment analysis · Emotion classification
Multi-label classification

1 Introduction

Multi-label emotion classification, is a sub-task of the text emotion classification,
which aims at identifying the coexisting emotions (such as joy, anger and anxiety,
etc.) expressed in the text, has gained much attention due to its wide potential
applications. Taking the following sentence
Example 1: “Feeling the warm of her hand and the attachment she hold to me,
I couldn’t afford to move even a little, fearing I may lost her hand”
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 250–259, 2018.
https://doi.org/10.1007/978-3-319-99495-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_21&domain=pdf

Joint Binary Neural Network 251

for instance, the co-existing emotions expressed in it contain joy, love, and
anxiety.

Traditional multi-label emotion classification methods normally utilize a two-
step strategy, which first requires to develop a set of hand-crafted expert fea-
tures (such as bag-of-words, linguistic features, emotion lexicons, etc.), and then
makes use of multi-label learning algorithms [5,14,16,17,22] for multi-label clas-
sification. However, the work of feature engineering is labor-intensive and time-
consuming, and the system performance highly depends on the quality of the
manually designed feature set. In recent years, deep neural networks are of grow-
ing attention due to their capacity of automatically learn the internal repre-
sentations of the raw data and integrating feature representation learning and
classification into one end-to-end framework.

Existing deep learning methods in multi-label classification can be roughly
divided into two categories:

– Binary relevance neural network (BRNN), which constructs an independent
binary neural network for each label, where multi-label classification is con-
sidered as a set of isolate binary classification tasks and the prediction of the
label set is composed of independent predictions for individual labels.

– Threshold dependent neural network (TDNN), which normally constructs
one neural network to yield the probabilities for all labels via a softmax
function, where the probabilities sum up to one. Then, an additional threshold
mechanism (e.g., the calibrated label ranking algorithm) is further needed to
transform the multi-class probabilities to multi-label outputs.

The structures of BRNN and TDNN are shown in Fig. 1(a) and (b), respectively.

Fig. 1. Different ways of constructing neural networks for multi-label classification.

However, both kinds of methods have their shortcomings. The former one,
BRNN, usually known in the literature as binary relevance (BR) transformation
[12], not only ignores dependencies between labels, but also consumes much more
resources due to the need of training a unique classifier and make prediction
for each label. The latter one, TDNN, although has only one neural network,
can only yield the category probabilities of all class labels. Instead, it needs an

252 H. He and R. Xia

additional threshold function mechanism to transform the category probabilities
to multi-label outputs. However, building an effective threshold function is also
full of challenges for multi-label learning [4,7,10,15,20].

In this paper, we propose a simple joint binary neural network (JBNN), to
address these two problems. We display the structure of JBNN in Fig. 1(c). As
can be seen, in JBNN, the bottom layers of the network are similar to that
in TNDD. Specifically, we employ a Bidirectional Long Short-Term Memory
(Bi-LSTM) structure to model the sentence. The attention mechanism is also
constructed to get the sentence representation. After that, instead of a softmax
function used in TDNN, we feed the representation of a sentence to multiple
logistic functions to yield a set of binary probabilities. That is, for each input
sentence, we conduct multiple binary classifications synchronously in one neural
network framework. Different from BRNN, the word embedding, LSTMs, and
the sentence representation are shared among the multiple classification compo-
nents in the network. Moreover, the relations between labels are captured based
on a joint binary learning loss. Finally, we convert the multi-variate Bernoulli
distributions into multi-label outputs, the same as BRNN. The JBNN model
is trained based on a joint binary cross entropy (JBCE) loss. To better meet
the multi-label emotion classification task, we further proposed to incorporate
the prior label relations into the JBCE loss. We evaluate our JBNN model on
the widely-used multi-label emotion classification dataset Ren-CECps [9]. We
compare our model with both traditional methods and neural networks. The
experimental results show that:

– Our JBNN model performs much better than the state-of-the-art traditional
multi-label emotion classification methods proposed in recent years;

– In comparison with the BRNN and TDNN systems, our JBNN model also
shows the priority, in both classification performance and computational
efficiency.

2 Model

2.1 Joint Binary Neural Network

A Bi-LSTM structure is first employed to model the sentence. On the basis of
Bi-LSTM, we propose our Joint Binary Neural Network (JBNN) for multi-label
emotion classification. The structure of JBNN is shown in Fig. 2.

Before going into the details of JBNN, we first introduce some notations.
Suppose E = {e1, e2, . . . , em} is a finite domain of possible emotion labels. For-
mally, multi-label emotion classification may be defined as follows: giving the
dataset D = {(x(k), y(k)) | k = 1, . . . , N} where N is the number of examples in
the D. Each example is associated with a subset of E and this subset is described
as an m-dimensional vector y(k) = {y1, y2, . . . , ym} where y

(k)
j = 1 only if sen-

tence x(k) has emotion label ej , and y
(k)
j = 0 otherwise. Given D, the goal is to

learn a multi-label classifier that predicts the label vector for a given example.
An example is a sentence in emotion classification.

Joint Binary Neural Network 253

Fig. 2. Overview of the joint binary neural network.

As shown in Fig. 2, in JBNN, each word is represented as a low dimensional,
continuous and real-valued vector, also known as word embedding [2,6]. All the
word vectors are stacked in a word embedding matrix Lw ∈ Rd×|V |, where d
is the dimension of word vector and |V | is vocabulary size. After we feed word
embedding to Bi-LSTM, we can get hidden states [h1, h2, . . . , hn] for a sentence
as the initial representation.

Since not all words contribute equally to the representation of the sentence,
we adopt the attention mechanism [1,18] to extract such words that are impor-
tant to the meaning of the sentence. Assume ht is the hidden states outputted in
Bi-LSTM. We use an attention function to aggregate the initial representation
of the words to form the attention vector v, also called sentence representation.
Firstly, we use

ut = tanh (wht + b), (1)

as a score function to calculate the importance of ht in the sentence, where w and
b are weight matrix and bias respectively. Then we get a normalized importance
weight αt for the sentence through a softmax function:

αt =
exp(uT

t u1)∑
t exp(uT

t u1)
. (2)

After computing the word attention weights, we can get the final representation
v for the sentence using equation:

v =
∑

t

αtht. (3)

254 H. He and R. Xia

After getting the sentence representation v, traditional Bi-LSTM based
classification model normally feed v into a softmax function to yield multi-
class probabilities for multi-class classification. Our JBNN model differs from
the standard model in that, we feed the feature vector v to C logistic func-
tions, instead of a softmax function, to predict a set of binary probabilities
{p(yj = 1 | x), j = 1, . . . , C}.

p(yj = 1 | x) = pj =
1

1 + ewjv+bj
, (4)

p(yj = 0 | x) = 1 − pj , (5)

where wj and bj are the parameters in j-th logistic component.
Each component will receive a binary probabilities which determines whether

this label is True or False in the current instance (i.e., whether the label belongs
to the instance):

ŷj = arg maxyj
p(yj | x). (6)

At last, we concatenate ŷj to form the final predictions ŷ = [ŷ1, . . . , ŷC].

2.2 Joint Binary Cross Entropy Loss with Label Relation Prior

The JBNN model can be trained in a supervised manner by minimizing the
following Joint Binary Cross Entropy (JBCE) loss function:

L = −
C∑

j

(
yj log pj + (1 − yj) log(1 − pj)

)
+ λ||θ||2, (7)

where λ is the weight for L2-regularization, and θ denotes the set of all parame-
ters. Note that different from the standard cross entropy loss defined in a multi-
class classification task, our JBCE loss is defined in a set of binary classification
tasks.

To better meet the multi-label emotion classification task, inspired by [22], we
further proposed to incorporate the prior label relations defined in the Plutchik’s
wheel of emotions [8] into the JBCE loss.

Plutchik’s psychoevolutionary theory of emotion is one of the most influential
classification approaches for general emotional responses. He considered there to
be eight primary emotions: anger, fear, sadness, disgust, surprise, anticipation,
trust, and joy. The wheel Plutchik’s is used to illustrate different emotions in a
compelling and nuanced way. It includes several typical emotions and its eight
sectors indicate eight primary emotion dimensions arranged as four pairs of
opposites.

In the emotion wheel, emotions sat at opposite end have an opposite rela-
tionship, while emotions next to each other are more closely related. As shown
in Fig. 3, we followed [22] by measuring the relations ws,t between the s-th and
t-th emotions based on the angle between them.

Joint Binary Neural Network 255

Fig. 3. Plutchik’s wheel of emotions.

– In case of emotion pairs with 180◦ (i.e., opposite to each other), define
ws,t = −1;

– In case of emotion pairs with 90◦, define ws,t = 0;
– In case of emotion pairs with 45◦, define ws,t = 0.5;
– In case of emotion pairs with 135◦, define ws,t = −0.5.

On this basis, the union loss function is defined as:

L = −
C∑

j=1

(
yj log pj + (1 − yj) log(1 − pj)

)

+ λ1

∑

s,t

ws,t(ps − pt)
2 + λ2||θ||2.

(8)

The behind motivation is that if two emotions (such as joy and love) have a high
positive correlation, we hope the prediction on the two emotions remain similar.
On the contrary, if two emotions (such as joy and sorrow) have a high negative
correlation, we hope the predictions on the two emotions remain different.

3 Experiments

3.1 Experimental Settings

We conduct the experiments on the Ren-CECps corpus [9] which was widely
used in multi-label emotion classification. It contains 35,096 sentences selected
from Chinese blogs. Each sentence is annotated with 8 basic emotions, such as
anger, anxiety, expect, hate, joy, love, sorrow and surprise.

Due to the inherent differences in classification problems, common metrics for
multi-label classification are different from those used in single-label classifica-
tion. In this study, five popular evaluation metrics are adopted in the multi-label

256 H. He and R. Xia

classification experiment include Hamming Loss (HL), One-Error (OE), Cover-
age (Co), Ranking Loss (RL), and Average Precision (AP) [21]. Hamming loss
is a label-based metric, and the rest can be divided into ranking-based metrics.

We utilize word2vec1 to train the word vectors on the 1.1 million Chinese
Weibo corpora provided by NLPCC20172. The dimension of word embedding
vectors is set as 200 and the size of hidden layer is set as 100. All out-of-
vocabulary words are initialized to zero. The maximum sentence length is 90.
All weight matrices and bias are randomly initialized by a uniform distribution
U(−0.01, 0.01). TensorFlow is used to implement our neural network model. In
model training, learning rate is set as 0.005, L2-norm regularization is set as
1e−4, the parameter λ1 in the emotion constraint term is set as 1e−3. We use
the stochastic gradient descent (SGD) algorithm and Adam update rule with
shuffled mini-batch for parameter optimization.

3.2 Comparison with Traditional Multi-label Learning Models

In this section, we compare JBNN with six strong multi-label learning models
for multi-label emotion classification, namely EDL [22], ML-KNN [21], Rank-
SVM [21], MLLOC [3], ECC [11], LIFT [19]. For each algorithm, ten-fold cross
validation is conducted.

Table 1 shows the experimental results of the proposed method in compar-
ison with the six strong multi-label learning methods. The two-tailed t-tests
with 5% significance level are performed to see whether the differences between
JBNN and the compared models are statistically significant. We can find that
the MLLOC method is the worst, and the ECC method performs better than
MLLOC. The experimental performance of MLKNN and LIFT is similar, while
the performance of RankSVM is slightly worse than them. Among these tradi-
tional multi-label learning models, EDL performs the best. However, our model
improves the EDL method with an impressive improvement in all kinds of eval-
uation metrics, i.e., 10.02% reduction in RL, 4.60% reduction in HL, 12.04%

Table 1. Experimental results in comparison with traditional multi-label learning
methods (mean ± std). ‘↓’ means ‘the smaller the better’. ‘↑’ means ‘the larger the
better’. Boldface highlights the best performance. ‘•’ indicates significance difference.

Algorithm RL(↓) HL(↓) OE(↓) Co(↓) AP(↑)
ECC [11] 0.3281 ± 0.0659• 0.1812 ± 0.0940• 0.6969 ± 0.0598• 2.7767 ± 0.0876• 0.5121 ± 0.0892•
MLLOC [3] 0.4742 ± 0.0734• 0.1850 ± 0.0659• 0.6971 ± 0.0924• 3.6994 ± 0.0764• 0.4135 ± 0.0568•
ML-KNN [21] 0.2908 ± 0.0431• 0.2459 ± 0.0781• 0.5339 ± 0.0954• 2.4480 ± 0.0981• 0.5917 ± 0.0742•
Rank-SVM [21] 0.3055 ± 0.0579• 0.2485 ± 0.0458• 0.5603 ± 0.0921• 2.5861 ± 0.0777• 0.5738 ± 0.0892•
LIFT [19] 0.2854 ± 0.0427• 0.1779 ± 0.0597• 0.5131 ± 0.0666• 2.4267 ± 0.0492• 0.5979 ± 0.0891•
EDL [22] 0.2513 ± 0.0560• 0.1772 ± 0.0568• 0.5239 ± 0.0945• 2.1412 ± 0.0235• 0.6419 ± 0.0235•
JBNN (Our

approach)

0.1511 ± 0.0030 0.1312 ± 0.0009 0.4035 ± 0.0073 1.7864 ± 0.0193 0.7171 ± 0.0041

1 https://code.google.com/archive/p/word2vec/.
2 http://www.aihuang.org/p/challenge.html.

https://code.google.com/archive/p/word2vec/
http://www.aihuang.org/p/challenge.html

Joint Binary Neural Network 257

reduction in OE, 35.48% reduction in Co and 7.52% increase in AP. In short, it
can be observed that our JBNN approach performs consistently the best on all
evaluation measures. The improvements are all significant in all situations.

3.3 Comparison with Two Types of Neural Networks (BRNN and
TDNN)

These models usually utilize neural networks to automatically extract features of
sentence and obtain final results. In this section, we compare our proposed JBNN
with two major neural networks for multi-label classification, namely BRNN and
TDNN, with multi-label classification performance and computational efficiency.
We implement all these approaches based on the same neural network infrastruc-
ture, use the same 200-dimensional word embeddings, and run them on the same
machine. The details of implement are as follows:

– BRNN is implemented by constructing multiple binary neural networks, as
shown in Fig. 1(a), based on Bi-LSTM and attention mechanism.

– TDNN is implemented using the method in [13], which used a neural network
based method to train one multi-class classifier and c binary classifiers to get
the probability values of the c emotion labels, and then leveraged Calibrated
Label Ranking (CLR) method to obtain the final emotion labels.

Classification Performance. In Table 2, we report the performance of JBNN,
BRNN and TDNN models. From this table, we can see that our JBNN model per-
forms significantly better than BRNN among all five kinds of evaluation metrics.
Compared with the TDNN, our JBNN model is much better in Ranking Loss,
Hamming Loss, One-Error, Average Precision. In general, our JBNN model per-
forms better than both BRNN and TDNN models. The improvements according
to two-tailed t-test are significant.

Computational Efficiency. We also report the size of parameters and runtime
cost of BRNN, TDNN and JBNN in Table 3. From Table 3, we can find that our
JBNN model is much simpler than BRNN and TDNN. For example, our JBNN
model only has 0.28 M parameters, while BRNN has 2.53M parameters and
TDNN has 2.81M parameters. As for runtime cost, we can see that BRNN and
TDNN are indeed computationally expensive. Our JBNN model is almost 8
times faster than BRNN and 9 times faster than TDNN in model training. In
summary, our JBNN model has significantly priority against BRNN and TDNN
in computation efficiency.

Table 2. Experimental results in comparison with two types of neural networks meth-
ods (mean ± std). ‘↓’ means ‘the smaller the better’. ‘↑’ means ‘the larger the better’.
Boldface highlights the best performance. ‘•’ indicates significance difference.

AlgorithmRL(↓) HL(↓) OE(↓) Co(↓) AP(↑)
BRNN 0.1612 ± 0.0051• 0.1346 ± 0.0015• 0.4243 ± 0.0073• 1.8779 ± 0.0371• 0.7017 ± 0.0054•
TDNN 0.1532 ± 0.0040• 0.1334 ± 0.0013• 0.4148 ± 0.0098• 1.7922 ± 0.0299 0.7115 ± 0.0060•
JBNN 0.1511 ± 0.0030 0.1312 ± 0.0009 0.4035 ± 0.0073 1.7864 ± 0.0193 0.7171 ± 0.0041

258 H. He and R. Xia

Table 3. Computational Efficiency of different neural networks. Params means the
number of parameters, while Time cost means runtime (seconds) of each training epoch.

Algorithm Params(↓) Time cost(↓)

BRNN 2.53M 265 s

TDNN 2.81M 305 s

JBNN 0.28M 35 s

4 Conclusion

In this paper, we have proposed a joint binary neural network (JBNN) model for
multi-label emotion classification. Unlike existing multi-label learning neural net-
works, which either needs to train a set of binary networks separately (BRNN),
or although model the problem within a multi-class network, an extra thresh-
old function is needed to transform the multi-class probabilities to multi-label
outputs (JDNN), our model is an end-to-end learning framework that integrates
representation learning and multi-label classification into one neural network.
Our JBNN model is trained on a joint binary cross entropy (JBCE) loss. Fur-
thermore, the label relation prior is also incorporated to capture the correlation
between emotions. The experimental results show that our model is much better
than both traditional multi-label emotion classification methods and the rep-
resentative neural network systems (BRNN and TDNN), in both multi-class
classification performance and computational efficiency.

Acknowledgments. The work was supported by the Natural Science Foundation of
China (No. 61672288), and the Natural Science Foundation of Jiangsu Province for
Excellent Young Scholars (No. BK20160085).

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

3. Huang, S.J., Zhou, Z.H., Zhou, Z.: Multi-label learning by exploiting label corre-
lations locally. In: AAAI, pp. 949–955 (2012)

4. Lenc, L., Král, P.: Deep neural networks for Czech multi-label document classifi-
cation. arXiv preprint arXiv:1701.03849 (2017)

5. Li, S., Huang, L., Wang, R., Zhou, G.: Sentence-level emotion classification with
label and context dependence. In: ACL, pp. 1045–1053 (2015)

6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1701.03849

Joint Binary Neural Network 259

7. Nam, J., Kim, J., Loza Menćıa, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-
label text classification — revisiting neural networks. In: Calders, T., Esposito, F.,
Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp.
437–452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-
9 28

8. Plutchik, R.: Chapter 1 - a general psychoevolutionary theory of emotion. Elsevier
Inc. (1980)

9. Quan, C., Ren, F.: Sentence emotion analysis and recognition based on emotion
words using ren-cecps. Int. J. Adv. Intell. 2(1), 105–117 (2010)

10. Read, J., Perez-Cruz, F.: Deep learning for multi-label classification. arXiv preprint
arXiv:1502.05988 (2014)

11. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04174-7 17

12. Spyromitros, E., Tsoumakas, G., Vlahavas, I.: An empirical study of lazy multilabel
classification algorithms. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos,
A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 401–406. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87881-0 40

13. Wang, Y., Feng, S., Wang, D., Yu, G., Zhang, Y.: Multi-label Chinese microblog
emotion classification via convolutional neural network. In: Li, F., Shim, K., Zheng,
K., Liu, G. (eds.) APWeb 2016. LNCS, vol. 9931, pp. 567–580. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45814-4 46

14. Wang, Y., Pal, A.: Detecting emotions in social media: a constrained optimization
approach. In: IJCAI, pp. 996–1002 (2015)

15. Xu, G., Lee, H., Koo, M.W., Seo, J.: Convolutional neural network using a thresh-
old predictor for multi-label speech act classification. In: BigComp, pp. 126–130
(2017)

16. Xu, J., Xu, R., Lu, Q., Wang, X.: Coarse-to-fine sentence-level emotion classifi-
cation based on the intra-sentence features and sentential context. In: CIKM, pp.
2455–2458 (2012)

17. Yan, J.L.S., Turtle, H.R.: Exposing a set of fine-grained emotion categories from
tweets. In: IJCAI, p. 8 (2016)

18. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical atten-
tion networks for document classification. In: HLT-NAACL, pp. 1480–1489 (2016)

19. Zhang, M.L., Wu, L.: Lift: multi-label learning with label-specific features. IEEE
Trans. Pattern Anal. Mach. Intell. 37(1), 107–120 (2015)

20. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to func-
tional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10),
1338–1351 (2006)

21. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng. 26(8), 1819–1837 (2014)

22. Zhou, D., Zhang, X., Zhou, Y., Zhao, Q., Geng, X.: Emotion distribution learning
from texts. In: EMNLP, pp. 638–647 (2016)

https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.1007/978-3-662-44851-9_28
http://arxiv.org/abs/1502.05988
https://doi.org/10.1007/978-3-642-04174-7_17
https://doi.org/10.1007/978-3-540-87881-0_40
https://doi.org/10.1007/978-3-319-45814-4_46

Accelerating Graph-Based Dependency
Parsing with Lock-Free Parallel

Perceptron

Shuming Ma(B), Xu Sun, Yi Zhang, and Bingzhen Wei

MOE Key Lab of Computational Linguistics, School of EECS,
Peking University, Beijing, China

{shumingma,xusun,zhangyi16,weibz}@pku.edu.cn

Abstract. Dependency parsing is an important NLP task. A popular
approach for dependency parsing is structured perceptron. Still, graph-
based dependency parsing has the time complexity of O(n3), and it suf-
fers from slow training. To deal with this problem, we propose a parallel
algorithm called parallel perceptron. The parallel algorithm can make full
use of a multi-core computer which saves a lot of training time. Based on
experiments we observe that dependency parsing with parallel percep-
tron can achieve 8-fold faster training speed than traditional structured
perceptron methods when using 10 threads, and with no loss at all in
accuracy.

Keywords: Dependency parsing · Lock-free · Structured perceptron

1 Introduction

Dependency parsing is an important task in natural language processing. It tries
to match head-child pairs for the words in a sentence and forms a directed graph
(a dependency tree). Former researchers have proposed various models to deal
with this problem [1,11].

Structured perceptron is one of the most popular approaches for graph-based
dependency parsing. It is first proposed by Collins [3] and McDonald et al. [9]
first applied it to dependency parsing. The model of McDonald is decoded with
an efficient algorithm proposed by Eisner [5] and they trained the model with
structured perceptron as well as its variant Margin Infused Relaxed Algorithm
(MIRA) [4,16]. It proves that MIRA and structured perceptron are effective algo-
rithms for graph-based dependency parsing. McDonald and Pereira [11] extended
it to a second-order model while Koo and Collins [6] developed a third-order
model. They all used perceptron style methods to learn the parameters.

Recently, many models applied deep learning to dependency parsing. Titov
and Henderson [17] first proposed a neural network model for transition-based
dependency parsing. Chen and Manning [2] improved the performance of neu-
ral network dependency parsing algorithm while Le and Zuidema [7] improved
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 260–268, 2018.
https://doi.org/10.1007/978-3-319-99495-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_22&domain=pdf

Accelerating Graph-Based Dependency Parsing 261

the parser with Inside-Outside Recursive Neural Network. However, those deep
learning methods are very slow during training [13].

To address those issues, we hope to implement a simple and very fast depen-
dency parser, which can at the same time achieve state-of-the-art accuracies.
To reach this target, we propose a lock-free parallel algorithm called lock-free
parallel perceptron. We use lock-free parallel perceptron to train the parameters
for dependency parsing. Although lots of studies implemented perceptron for
dependency parsing, rare studies try to implement lock-free parallel algorithms.
McDonald et al. [10] proposed a distributed perceptron algorithm. Nevertheless,
this parallel method is not a lock-free version on shared memory systems. To
the best of our knowledge, our proposal is the first lock-free parallel version of
perceptron learning.

Our contribution can be listed as follows:

– The proposed method can achieve 8-fold faster speed of training than the
baseline system when using 10 threads, and without additional memory cost.

– We provide theoretical analysis of the parallel perceptron, and show that it
is convergent even with the worst case of full delay. The theoretical analysis
is for general lock-free parallel perceptron, not limited by this specific task of
dependency parsing.

2 Lock-Free Parallel Perceptron for Dependency Parsing

The dataset can be denoted as {(xi, yi)}ni=1 while xi is input and yi is correct
output. GEN is a function which enumerates a set of candidates GEN(x) for
input x. Φ(x, y) is the feature vector corresponding to the input output pair
(x, y). Finally, the parameter vector is denoted as α.

In structured perceptron, the score of an input output pair is calculated as
follows:

s(x, y) = Φ(x, y) · α (1)

The output of structured perceptron is to generate the structure y′ with the
highest score in the candidate set GEN(x).

In dependency parsing, the input x is a sentence while the output y is a
dependency tree. An edge is denoted as (i, j) with a head i and its child j. Each
edge has a feature representation denoted as f(i, j) and the score of edge can be
written as follows:

s(i, j) = α · f(i, j) (2)

Since the dependency tree is composed of edges, the score are as follows:

s(x, y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

α · f(i, j) (3)

Φ(x, y) =
∑

(i,j)∈y

f(i, j) (4)

262 S. Ma et al.

Algorithm 1. Lock-free parallel perceptron
1: input: Training examples {(xi, yi)}n

i=1

2: initialize: α = 0
3: repeat
4: for all Parallelized threads do
5: Get a random example (xi, yi)
6: y′ = argmaxz∈GEN(x)Φ(x, y) · α
7: if (y′ �= y) then α = α + Φ(x, y) − Φ(x, y′)
8: end for
9: until Convergence

10:
11: return The averaged parameters α∗

The proposed lock-free parallel perceptron is a variant of structured percep-
tron [12,14]. We parallelize the decoding process of several examples and update
the parameter vector on a shared memory system. In each step, parallel percep-
tron finds out the dependency tree y′ with the highest score, and then updates
the parameter vector immediately, without any lock of the shared memory. In
typical parallel learning setting, the shared memory should be locked, so that no
other threads can modify the model parameter when this thread is computing
the update term. Hence, with the proposed method the learning can be fully par-
allelized. This is substantially different compared with the setting of McDonald
et al. [10], in which it is not lock-free parallel learning.

3 Convergence Analysis of Lock-Free Parallel Perceptron

For lock-free parallel learning, it is very important to analyze the convergence
properties, because in most cases lock-free learning leads to divergence of the
training (i.e., the training fails). Here, we prove that lock-free parallel perceptron
is convergent even with the worst case assumption. The challenge is that several
threads may update and overwrite the parameter vector at the same time, so we
have to prove the convergence.

We follow the definition in Collins’s work [3]. We write GEN(x) as all incor-
rect candidates generated by input x. We define that a training example is
separable with margin δ > 0 if ∃U with ‖U‖ = 1 such that

∀z ∈ GEN(x), U · Φ(x, y) − U · Φ(x, z) ≥ δ (5)

Since multiple threads are running at the same time in lock-free parallel per-
ceptron training, the convergence speed is highly related to the delay of update.
Lock-free learning has update delay, so that the update term may be applied on
an “old” parameter vector, because this vector may have already been modified
by other threads (because it is lock-free) and the current thread does not know
that. Our analysis show that the perceptron learning is still convergent, even
with the worst case that all of the k threads are delayed. To our knowledge, this
is the first convergence analysis for lock-free parallel learning of perceptrons.

Accelerating Graph-Based Dependency Parsing 263

We first analyze the convergence of the worse case (full delay of update).
Then, we analyze the convergence of optimal case (minimal delay). In experi-
ments we will show that the real-world application is close to the optimal case
of minimal delay.

3.1 Worst Case Convergence

Suppose we have k threads and we use j to denote the j’th thread, each thread
updates the parameter vector as follows:

y′
j = argmax

z∈GEN(x)

Φj(x, y) · α (6)

Recall that the update is as follows:

αi+1 = αi + Φj(x, y) − Φj(x, y′
j) (7)

Here, y′
j and Φj(x, y) are both corresponding to jth thread while αi is the param-

eter vector after ith time stamp.
Since we adopt lock-free parallel setting, we suppose there are k perceptron

updates in parallel in each time stamp. Then, after a time step, the overall
parameters are updated as follows:

αt+1 = αt +
k∑

j=1

(Φj(x, y) − Φj(x, y′
j)) (8)

Hence, it goes to:

U · αt+1 = U · αt +
k∑

j=1

U · (Φj(x, y) − Φj(x, y′
j))

≥ U · αt + kδ

where δ is the separable margin of data, following the same definition of Collins
[3]. Since the initial parameter α = 0, we will have that U · αt+1 ≥ tkδ after t
time steps. Because U · αt+1 ≤ ‖U‖‖αt+1‖, we can see that

‖αt+1‖ ≥ tkδ (9)

On the other hand, ‖αt+1‖ can be written as:

‖αt+1‖2 = ‖αt‖2 + ‖
k∑

j=1

(Φj(x, y) − Φj(x, y′
j))‖2

+ 2αt · (
k∑

j=1

(Φj(x, y) − Φj(x, y′
j)))

≤ ‖αt‖2 + k2R2

264 S. Ma et al.

where R is the same definition following Collins [3] such that Φ(x, y)−Φ(x, y′
j) ≤

R. The last inequality is based on the property of perceptron update such that
the incorrect score is always higher than the correct score (the searched incorrect
structure has the highest score) when an update happens. Thus, it goes to:

‖αt+1‖2 ≤ tk2R2 (10)

Combining Eqs. 10 and 9, we have:

t2k2δ2 ≤ ‖αt+1‖2 ≤ tk2R2 (11)

Hence, we have:
t ≤ R2/δ2 (12)

This proves that the lock-free parallel perceptron has bounded number of
time steps before convergence even with the worst case of full delay, and the
number of time steps is bounded by t ≤ R2/δ2 in the worst case. The worst case
means that the parallel perceptron is convergent even if the update is extremely
delayed, such that k threads are updating based on the same old parameter
vector.

3.2 Optimal Case Convergence

In practice the worst case of extremely delayed update is not probable to happen,
or at least not always happening. Thus, we expect that the real convergence
speed should be much faster than this worst case bound. The optimal bound is
as follows:

t ≤ R2/(kδ2) (13)

This bound is derived when the parallel update is not delayed (i.e., the update
of each thread is based on a most recent parameter vector). As we can see, in
the optimal case we can get k times speed up by using k threads for lock-free
parallel perceptron training. This can achieve full acceleration of training by
using parallel learning.

4 Experiments

4.1 Dataset

Following prior work, we use English Penn TreeBank (PTB) [8] to evaluate our
proposed approach. We follow the standard split of the corpus, using section
2-21 as training set, Sect. 22 as development set, and Sect. 23 as final test set.
We implement two popular model of graph-based dependency parsing: first-
order model and second-order model. We tune all of the hyper parameters in
development set. The features in our model can be found in McDonald et al. [9,
11]. Our baselines are traditional perceptron, MST-Parser [9]1, and the locked
version of parallel perceptron. All of the experiment is conducted on a computer
with the Intel(R) Xeon(R) 3.0 GHz CPU.
1 www.seas.upenn.edu/∼strctlrn/MSTParser/MSTParser.html.

www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html

Accelerating Graph-Based Dependency Parsing 265

4.2 Results

Table 2 shows that our lock-free method can achieve 8-fold faster speed than the
baseline system, which is better speed up when compared with locked parallel
perceptron. For both 1st-order parsing and 2nd-order parsing, the results are
consistent that the proposed lock-free method achieves the best rate of speed up.
The results show that the lock-free parallel peceptron in real-world applications
is near the optimal case theoretical analysis of low delay, rather than the worst
case theoretical analysis of high delay.

The experimental results of accuracy are shown in Table 1. The baseline
MST-Parser [9] is a popular system for dependency parsing. Table 1 shows that
our method with 10 threads outperforms the system with single-thread. Our lock
system is slightly better than MST-Parser mainly because we use more feature
including distance based feature – our distance features are based on larger size
of contextual window.

Figure 1 shows that the lock-free parallel perceptron has no loss at all on
parsing accuracy on both 1st-order and 2nd-order parsing setting, in spite of the
substantial speed up of training.

Figure 2 shows that the method can achieve near linear speed up, and with
almost no extra memory cost.

Table 1. Accuracy of baselines and our method.

Models 1st-order 2nd-order

MST Parser 91.60 92.30

Locked Para-Perc 91.68 92.55

Lock-free Para-Perc 5-thread 91.70 92.55

Lock-free Para-Perc 10-thread 91.72 92.53

Table 2. Speed up and time cost per pass of our algorithm.

Models 1st-order 2nd-order

Structured Perc 1.0 × (449 s) 1.0 × (3044 s)

Locked Para-Perc 5.1 × (88 s) 5.0 × (609 s)

Lock-free Para-Perc 5-thread 4.3 × (105s) 4.5 × (672 s)

Lock-free Para-Perc 10-thread 8.1× (55 s) 8.3× (367 s)

266 S. Ma et al.

Fig. 1. Accuracy of different methods for dependency parsing.

Fig. 2. Speed up and memory cost of different methods for dependency parsing.

5 Conclusions

We propose lock-free parallel perceptron for graph-based dependency parsing.
Our experiment shows that it can achieve more than 8-fold faster speed than the
baseline when using 10 running threads, and with no loss in accuracy. We also
provide convergence analysis for lock-free parallel perceptron, and show that it
is convergent in the lock-free learning setting. The lock-free parallel perceptron
can be directly used for other structured prediction NLP tasks.

Acknowledgements. The authors would like to thank the anonymous reviewers for
insightful comments and suggestions on this paper. This work was supported in part
by National Natural Science Foundation of China (No. 61673028).

Accelerating Graph-Based Dependency Parsing 267

References

1. Bohnet, B.: Very high accuracy and fast dependency parsing is not a contradiction.
In: Proceedings of the 23rd International Conference on Computational Linguistics,
pp. 89–97 (2010)

2. Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural
networks. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 740–750 (2014)

3. Collins, M.: Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In: Proceedings of the ACL-2002
Conference on Empirical Methods in Natural Language Processing-Volume 10, pp.
1–8. Association for Computational Linguistics (2002)

4. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

5. Eisner, J.: Three new probabilistic models for dependency parsing: an exploration.
In: Proceedings of the 16th Conference on Computational Linguistics, pp. 340–345
(1996)

6. Koo, T., Collins, M.: Efficient third-order dependency parsers. In: Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, pp.
1–11 (2010)

7. Le, P., Zuidema, W.: The inside-outside recursive neural network model for depen-
dency parsing. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 729–739 (2014)

8. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated cor-
pus of English: the penn treebank. Comput. Linguist. 19(2), 313–330 (1993)

9. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of depen-
dency parsers. In: Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pp. 91–98 (2005)

10. McDonald, R., Hall, K., Mann, G.: Distributed training strategies for the struc-
tured perceptron. In: Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 456–464. Association for Computational Linguistics (2010)

11. McDonald, R.T., Pereira, F.C.N.: Online learning of approximate dependency pars-
ing algorithms. In: 11st Conference of the European Chapter of the Association
for Computational Linguistics (2006)

12. Sun, X.: Towards shockingly easy structured classification: a search-based proba-
bilistic online learning framework. Technical report, arXiv:1503.08381 (2015)

13. Sun, X.: Asynchronous parallel learning for neural networks and structured models
with dense features. In: COLING (2016)

14. Sun, X., Matsuzaki, T., Okanohara, D., Tsujii, J.: Latent variable perceptron algo-
rithm for structured classification. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI 2009), pp. 1236–1242 (2009)

15. Sun, X., Ren, X., Ma, S., Wang, H.: meProp: sparsified back propagation for accel-
erated deep learning with reduced overfitting. In: Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6–11 August 2017, pp. 3299–3308 (2017)

16. Taskar, B., Klein, D., Collins, M., Koller, D., Manning, C.D.: Max-margin parsing.
In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing (EMNLP), vol. 1, p. 3 (2004)

http://arxiv.org/abs/1503.08381

268 S. Ma et al.

17. Titov, I., Henderson, J.: A latent variable model for generative dependency parsing.
In: Proceedings of the 10th International Conference on Parsing Technologies, pp.
144–155 (2007)

18. Wei, B., Sun, X., Ren, X., Xu, J.: Minimal effort back propagation for convolutional
neural networks. CoRR abs/1709.05804 (2017)

Memory-Based Matching Models
for Multi-turn Response Selection

in Retrieval-Based Chatbots

Xingwu Lu1, Man Lan1,2(B), and Yuanbin Wu1,2(B)

1 School of Computer Science and Software Engineering,
East China Normal University, Shanghai 200062, People’s Republic of China

51174506023@stu.ecnu.edu.cn, {mlan,ybwu}@cs.ecnu.edu.cn
2 Shanghai Key Laboratory of Multidimensional Information Processing,

Shanghai, China

Abstract. This paper describes the system we submitted to Task 5 in
NLPCC 2018, i.e., Multi-Turn Dialogue System in Open-Domain. This
work focuses on the second subtask: Retrieval Dialogue System. Given
conversation sessions and 10 candidates for each dialogue session, this
task is to select the most appropriate response from candidates. We
design a memory-based matching network integrating sequential match-
ing network and several NLP features together to address this task. Our
system finally achieves the precision of 62.61% on test set of NLPCC
2018 subtask 2 and officially released results show that our system ranks
1st among all the participants.

Keywords: Multi-turn conversation · Response selection
Neural networks

1 Introduction

Recently, more and more attention is paying to building open domain chat-
bots that can naturally converse with humans on vary topics. Existing work on
building chatbots includes generation-based methods [1–3] and retrieval-based
methods [4–7]. Compared to generation-based chatbots, retrieval-based chatbots
enjoy the advantages of informative and fluent responses, because they select a
proper response for the current conversation from a repository.

Different from the single-turn conversation, multi-turn conversation needs to
consider not only the matching between the response and the input query but
also matching between the response and context in previous turns. The chal-
lenges of the task are how to identify important information in previous utter-
ances and properly model the utterances relationships to ensure the consistency
of conversation.

There have been many attempts to address these challenges where the state-
of-the-art methods include dual LSTM [4], Multi-View LSTM [6], Sequential

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 269–278, 2018.
https://doi.org/10.1007/978-3-319-99495-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_23&domain=pdf

270 X. Lu et al.

Matching Network (SMN) [7] and so on. Among them, SMN improves the lever-
aging of contextual information by matching a response with each utterance in
the context on multiple levels of granularity with a convolutional neural network,
and then accumulates the matching vectors into a chronological order through
a recurrent neural network to model sequential relationships among utterances.
Although SMN model has achieved remarkable results, there are still problems
of inconsistency between response and context. On the one hand, the context
of the dialogue may sometimes be complex. For example, some utterances are
interrelated and some are even reversed. On the other hand, important context
cues require global information to be captured.

In this work, based on SMN, we develop a novel way of applying multiple-
attention mechanism, which is proven to be effective in multiple tasks such as
sentiment analysis [8,9], dependency parsing [10] and coherence modeling [11].
Different from the SMN that only considers the sequential relationships of the
context, our method also synthesizes important features in complex context.
Besides, considering the effectiveness of NLP features in some retrieval tasks
[12], we also design several effective NLP features. Specifically, our framework
first adopts matching vectors to produce the memory. After that, we pay multiple
attentions on the memory and nonlinearly combine the attention results with a
recurrent network, i.e. Long Short-term Memory (LSTM) [13] networks. Finally,
we combine the output of the LSTM network with the output of SMN and NLP
features to calculate the final matching score. Our system finally achieves the
precision of 62.61% on the test set of NLPCC 2018 Task 51 and ranks 1st among
all the participants.

The rest of this paper is structured as follows: we describe the system archi-
tecture and detailed modules in Sect. 2, and present the experimental results in
Sect. 3. Finally, Sect. 4 presents our conclusion and future work.

2 The Approach

2.1 Model Overview

The architecture of our model is shown in Fig. 1, which consists of three main
modules, i.e., SMN, MBMN and NLP. The left red wire frame is sequential
matching network (SMN) module, which is based on [7]. It is designed to identify
important information in previous utterances and model the sequential relation-
ships in context. Considering that SMN may not capture implied and complex
contextual features, we design the memory-based matching network (MBMN)
module, i.e., the middle green wire frame. As shown in the right blue wire frame,
we also design several effective NLP features in NLP features module since it is
proved to be effective in some retrieval tasks. Finally, we concatenate the out-
puts of these three modules in the matching prediction layer to calculate the
final matching score. Next we give detailed description.

1 http://tcci.ccf.org.cn/conference/2018/dldoc/taskgline05.pdf

http://tcci.ccf.org.cn/conference/2018/dldoc/taskgline05.pdf

Memory-Based Matching Models for Multi-turn Response Selection 271

Fig. 1. System architecture of our approach. The dotted lines on MBMN module indi-
cate the memory building is alternative.

2.2 Sequential Matching Network (SMN)

We follow [7] and design the SMN module. The source code2 of SMN is released
by [7]. This module has two advantages: (1) identify and extract semantic struc-
tures that are useful for response selection in each utterance and (2) model
chronological relationships of the context. As shown on the left of Fig. 1, this
module is divided into two layers: utterance-response matching layer (first layer)
and matching accumulation layer (second layer). The two layers reflect the above
two advantages respectively and their implementations are shown as follows:

• Utterance-Response Matching Layer: This layer matches a response candidate
with each utterance in the context on a word level and a segment level,
and the important matching information from the two levels is distilled by
convolution, pooling and then encoded into a matching vector.

• Matching Accumulation Layer: We feed the matching vectors into the match-
ing accumulation layer where they are accumulated in the hidden states of a
recurrent neural network with gated recurrent units (GRU) [14] following the
chronological order of the utterances in the context.

2 https://github.com/MarkWuNLP/MultiTurnResponseSelection.

https://github.com/MarkWuNLP/MultiTurnResponseSelection

272 X. Lu et al.

2.3 Memory-Based Matching Network (MBMN)

The SMN model only considers semantic structures and chronological relation-
ships in utterances, ignoring the important features in complex context. Herein,
we design MBMN module to distill cue information that should be captured by
global context information and some important contextual information that have
long-distance dependence on the query. These cue and important information are
captured and retained by memory.

2.3.1 Memory Building
In order to explore the effectiveness of memory, we use two different ways to
build memory: matching vectors memory (MVM) and sequence matching vectors
memory (SMVM). We define the representation of memory as [c1, . . . , cn] and
their implementation are shown as follows:

• Matching Vectors Memory (MVM): Suppose that matching vectors
[v1, . . . , vn] is the output of the first layer in SMN module, we directly use
the matching vectors as memory vectors, i.e., [c1, . . . , cn] = [v1, . . . , vn].

• Sequence Matching Vectors Memory (SMVM): MVM simply uses the match-
ing vectors as memory, which ignores the sequential features in the context.
Considering the sequential features dominate in dialogue utterances, we use
the hidden states of final GRU in second layer and utterance GRU in first
layer of SMN module to build the memory. Then, [c1, . . . , cn] is defined as

ci = tanh(W1,1hui,nu
+ W1,2hi + bi) (1)

where W1,1 ∈ R
q×p, W1,2 ∈ R

q×q and b1 ∈ R
q are parameters, p is the hidden

size of utterance GRU, q is the hidden size of final GRU, hi and hui,nu
are

the i-th hidden states of final GRU and the final hidden state of the i-th
utterance GRU respectively.

2.3.2 Multiple Attentions on Memory
To accurately select the candidate response, it is essential to: (1) correctly distill
the related context information from its utterance-response matching memory;
and (2) appropriately manufacture such information as the input of the matching
prediction. We employ multiple attentions to fulfil the first aspect, and a recur-
rent network for the second aspect which nonlinearly combines the attention
results with LSTMs.

Particularly, we employ a LSTM to update the episode e (i.e., hidden state
of LSTM) after each attention. Let et−1 denote the episode at the previous time
and st is the current information attended from the memory C, and the process
of updating et is as follows:

it = σ(Wist + Uiet−1) (2)

ft = σ(Wfst + Ufet−1) (3)

Memory-Based Matching Models for Multi-turn Response Selection 273

ot = σ(Wost + Uoet−1) (4)

g = tanh(Wcst + Ucet−1) (5)

Ct = f � Ct−1 + i � g (6)

ht = ot � tanh(Ct) (7)

where Wi,Wf ,Wo,Wc ∈ R
h×c, Ui, Uf , Uo, Uc ∈ R

h×h are parameters, h is the
hidden size of LSTM and c is the size of memory vector ci, a zero vector is
denoted as e0.

For calculating the attended information st at time t, the input of an atten-
tion layer includes the memory slices ci(1 ≤ i ≤ N), N is the number of utter-
ances, the previous episode et−1 and hr,n, which is the final hidden state of the
response GRU in the first layer of SMN module. We first calculate the attention
score of each memory slice ci as follows:

gti = vT tanh(Wcci + Weet−1 + Wrhr,n + battn) (8)

where Wc, We, Wr and battn are parameters.
Then we calculate the normalized attention score of each memory slice as:

αti =
exp(gti)

∑T
j=1 exp(gtj)

(9)

Finally, the inputs to a LSTM at time t are the episode et−1 at time t − 1 and
the content st, which is read from the memory as:

st =
N∑

i=1

αtici (10)

2.4 NLP Features

This task provides 10 candidate responses corresponding to the context in test
dataset and participants are required to rerank the candidates and return the
top one as a proper response to the context. We connect all utterances as a
post and measure the matching level of the post and its candidate response.
We design several traditional NLP features to capture the relevance between
the post context and their candidate response. The details of these features are
shown as follows:

• Word Matching Feature: Word is the basic unit of sentence and the matching
of word level benefits the matching of sentence level. Given the post and
response as A and B, we record the matching information using the following
ten measure functions: |A|, |B|, |A∩B|, |A∩B|/|A|, |A∩B|/|B|, |A−B|/|A|,
|A − B|/|B|, |A ∩ B|/|A ∪ B|, |A ∪ B| − |A ∩ B|/|A ∪ B|, ||A| − |B||, where
|A| stands for the number of non-repeated words in A, |A − B| means the
number of non-repeated words found in A but not in B, |A ∩ B| stands for
the set size of non-repeated words found in both A and B, and |A∪B| means
the set size of shared words found in either A or B.

274 X. Lu et al.

• Character Matching Feature: Similar to word matching, all sentences are
treated as the set of single-character representations, then we use above ten
measure functions to represent character matching.

• Unigram Feature: We extract unigram to represent each sentence, and each
vector stores the corresponding TF-IDF of the words in the sentence. We
adopt kernel functions to calculate sentence pair matching score. Here we
use two types of kernel functions: linear and non-linear. The liner functions
contain Cosine, Chebyshev, Manhattan, and Euclidean. And the non-liner
functions contain Polynomial, Sigmoid and Laplacian.

2.5 Matching Prediction

The representations of above three modules described in Sects. 2.2, 2.3 and 2.4
are concatenated (denoted as [p1, p2, p3]) to calculate the final matching score
g(u, r). We define ui represents a conversation context, ri represents a response
candidate and yi ∈ {0, 1} denotes label. Then we use softmax to obtain the final
matching score g(u, r) as follows:

g(u, r) = softmax(W2[p1, p2, p3] + b2), (11)

where W2 and b2 are parameters.
We learn g(u, r) by minimizing cross entropy with dataset D. Let Θ denotes

the parameters, then the objective function L(D,Θ) of learning is formulated
as:

−
|D|∑

i=1

[yilog(g(ui, ri)) + (1 − yi)(1 − log(g(ui, ri)))] (12)

2.6 Parameter Learning

All models are implemented using Tensorflow. We train word embeddings on
the training data using word2vec [15] and the dimensionality of word vectors is
set as 200. As previous works did [7], we set the hidden size of utterance GRU
and response GRU as 200, window size of convolution and pooling as (3, 3), the
number of feature maps as 8 and the dimensionality of matching vectors as 50.
Different from [7], we tune the hidden size of final GRU in second layer of SMN
module in [50, 100, 200, 300] and choose 200 finally. The LSTM in the MBMN
module uses a hidden size of 200. We try the number of attention cycles in [1, 3, 5,
7, 9] and set 5 finally. The parameters are updated by stochastic gradient descent
with Adam algorithm [16] and the initial learning rate is 0.001. We employ early
stop as a regularization strategy. Models are trained in mini-batches with a batch
size of 256. Hyperparameters are chosen using the validation set.

3 Experiments

3.1 Datasets

Specifically, this task provides 5, 000, 000 conversation sessions containing con-
text, query and reply as the training set and extra 10, 000 conversation sessions

Memory-Based Matching Models for Multi-turn Response Selection 275

only contain context and query as the test set. Participants are required to select
a appropriate reply from 10 candidates corresponding to the sessions in test set.
Examples of the datasets are shown in Table 1.

Table 1. Data format of multi-turn response selection examples.

We randomly split the data into 4,960,000/40,000 for training/validation.
For each dialogue in training and validation set, we take the reply as a posi-
tive response for the previous turns as a context and randomly sample another
response from the 5 million data as a negative response. The ratio of the posi-
tive and the negative is 1:1 in training set, and 1:9 in validation set. The word-
segmentation is obtained with jieba3. We set the maximum context length (i.e.,
number of utterances) as 10. We pad zeros if the number of utterances in a con-
text is less than 10, otherwise we keep the last 10 utterances. Table 2 gives the
statistics of the training set, validation set and test set.

Table 2. Statistics of the training set, validation set and test set.

Train Val Test

context-response pairs 9.92M 400K 100K

candidates per context 2 10 10

positive candidates per context 1 1 1

Max. # turns per context 86 50 34

Avg. # turns per context 3.10 3.07 3.10

Max. # words per utterance 135 93 94

Avg. # words per utterance 5.97 6.22 6.28

To evaluate the performance, given 10 candidates, we calculate precision at
top 1.
3 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba

276 X. Lu et al.

3.2 Experiments on Training Data

In order to explore the effectiveness of each module, we perform a series of
experiments. Table 3 lists the comparison of different modules on training set.
We observe the following findings:

(1) The MBMN(SMVM) performs the best among all single models. The per-
formance of MBMN(MVM) is lower than SMN. The possible reason may be
that SMN captures the sequential relationship of utterances in the context
and sequential relationship plays a dominant role in this dialogues context.

(2) The memory-based matching modules are quite effective. The combined
model MBMN(MVM)+SMN performs better than any single model. It indi-
cates that the memory-based matching module is able to distill the cue
information captured by global information in complex context rather than
sequential context alone.

(3) The performance of model MBMN(MVM)+SMN is comparable to that of
MBMN(SMVM)+SMN. It shows that the MBMN(SMVM) model itself has
taken advantage of sequential features and its combination with SMN may
not significantly improve the performance.

(4) The combination of three modules, i.e., MBMN(MVM)+SMN+NLP,
achieves the best performance, which proves the effectiveness of our designed
NLP features.

Therefore, the system configuration for our final submission is the combined
model of MBMN(MVM)+SMN+NLP.

Table 3. Performance of different modules on validation set. (MVM) means the model
based on matching vectors memory, (SMVM) means the model based on sequence
matching vectors memory and “+” means module combination.

Model Precision (%)

Single model NLP features 39.67

SMN [ACL2017] 61.76

MBMN(MVM) 60.03

MBMN(SMVM) 61.97

Combined model MBMN(MVM)+SMN 62.11

MBMN(SMVM)+SMN 62.08

MBMN(MVM)+SMN+NLP 62.26

MBMN(SMVM)+SMN+NLP 62.16

3.3 Results on Test Data

Table 4 shows the results of our system and the top-ranked systems provided by
organizers for this Retrieval Dialogue System task. Our system finally achieves
the precision of 62.61% on the test set and ranks 1st among all the participants.
This result validates the effectiveness of our model.

Memory-Based Matching Models for Multi-turn Response Selection 277

Table 4. Performance of our system and the top-ranked systems in terms of precision
(%). The numbers in the brackets are the official rankings.

Team ID Precision (%)

ECNU 62.61 (1)

wyl buaa 59.03 (2)

YiwiseDS 26.68 (3)

4 Conclusion

In this paper, we design three modules of sequential matching network, memory-
based matching network and NLP features to perform multi-turn response selec-
tion in retrieval dialogue system. The system performance ranks 1st among all
the participants. In future work, we consider to design more effective memory to
incorporate the location and inner semantic information of context in dialogues.

Acknowledgements. The authors would like to thank the task organizers for their
efforts, which makes this event interesting. And the authors would like to thank all
reviewers for their helpful suggestions and comments, which improve the final version
of this work. This work is supported by the Science and Technology Commission of
Shanghai Municipality Grant (No. 15ZR1410700) and the open project of Shanghai
Key Laboratory of Trustworthy Computing (No. 07dz22304201604).

References

1. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364 (2015)

2. Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.-Y.,
Gao, J., Dolan, B.: A neural network approach to context-sensitive generation of
conversational responses. arXiv preprint arXiv:1506.06714 (2015)

3. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.C., Pineau, J.: Building end-
to-end dialogue systems using generative hierarchical neural network models. In:
AAAI, vol. 16, pp. 3776–3784 (2016)

4. Lowe, R., Pow, N., Serban, I., Pineau, J.: The Ubuntu dialogue corpus: a large
dataset for research in unstructured multi-turn dialogue systems. Computer Sci-
ence (2015)

5. Yan, R., Song, Y., Wu, H.: Learning to respond with deep neural networks for
retrieval-based human-computer conversation system. In: Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 55–64. ACM (2016)

6. Zhou, X., Dong, D., Wu, H., Zhao, S., Yu, D., Tian, H., Liu, X., Yan, R.: Multi-view
response selection for human-computer conversation. In: Conference on Empirical
Methods in Natural Language Processing, pp. 372–381 (2016)

7. Wu, Y., Wu, W., Xing, C., Zhou, M., Li, Z.: Sequential matching network: a new
architecture for multi-turn response selection in retrieval-based chatbots (2017)

8. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory
network, pp. 214–224 (2016)

http://arxiv.org/abs/1503.02364
http://arxiv.org/abs/1506.06714

278 X. Lu et al.

9. Chen, P., Sun, Z., Bing, L., Yang, W.: Recurrent attention network on memory
for aspect sentiment analysis. In: Conference on Empirical Methods in Natural
Language Processing, pp. 452–461 (2017)

10. Zhang, Z., Liu, S., Li, M., Zhou, M., Chen, E.: Stack-based multi-layer attention
for transition-based dependency parsing. In: Conference on Empirical Methods in
Natural Language Processing, pp. 1677–1682 (2017)

11. Logeswaran, L., Lee, H., Radev, D.: Sentence ordering and coherence modeling
using recurrent neural networks (2017)

12. Tay, Y., Phan, M.C., Tuan, L.A., Hui, S.C.: Learning to rank question answer
pairs with holographic dual LSTM architecture (2017). https://doi.org/10.1145/
3077136.3080790. arXiv arXiv:1707 (2017)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

14. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://doi.org/10.1145/3077136.3080790
https://doi.org/10.1145/3077136.3080790
http://arxiv.org/abs/1707
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.6980

NEUTag’s Classification System for Zhihu
Questions Tagging Task

Yuejia Xiang1(&), HuiZheng Wang1, Duo Ji2, Zheyang Zhang1,
and Jingbo Zhu1

1 Natural Language Processing Laboratory,
Northeastern University, Shenyang, China

xiangyuejia@qq.com,

{wanghuizhen,zhujingbo}@mail.neu.edu.cn,

hldnpqzzy@sina.com
2 Criminal Investigation Police University of China, Shenyang, China

18640037173@168.com

Abstract. In the multi-label classification task (Automatic Tagging of Zhihu
Questions), we present a classification system which includes five processes.
Firstly, we use a preprocessing step to solve the problem that there is too much
noise in the training dataset. Secondly, we choose several neural network
models which proved effective in text classification task. Then we introduce k-
max pooling structure to these models to fit this task. Thirdly, in order to obtain
a better performance in ensemble process, we use an experiment-designing
process to obtain classification results that are not similar to each other and all
achieve relatively high scores. Fourthly, we use an ensemble process. Finally,
we propose a method to estimate how many labels should be chosen. With these
processes, our F1 score achieves 0.5194, which ranked No. 3.

Keywords: Multi-label classification � Question tagging � Ensemble learning

1 Introduction

In the automatic tagging task of Zhihu questions, we need to pick out at most 5 labels
out of a set which contains more than 25000 labels. Tagging a label of one question
means the question belongs to a class which is corresponding with this label. So, we
use term ‘label’ as a synonym for term ‘class’ in this paper. And main difficulties of this
task are shown as follows.

• Zhihu question texts which contain a large number of non-subject-related terms and
other noise are too informal to be analysis.

• There are too many classes and the semantic gaps between some classes are so
narrow, which observably increase the difficulty of classification.

• As numbers of labels of different questions are frequently different, it is difficult to
estimate how many labels should be chosen for a certain question in order to reach a
better performance.

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 279–288, 2018.
https://doi.org/10.1007/978-3-319-99495-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_24&domain=pdf

We use a preprocessing process to reduce the adverse effect of noise. This process
includes three parts: word segmentation, data cleaning and long-text truncation.
Because the neural networks based classification model have been corroborated
superior to some traditional classification models [1], notably superior when facing
tasks with lots of categories [1–4], we select several neural network based models:
RNNText [5], CNNText [6], RCNNText [7], and fastText [8]. What’s more, in order to
make these neural network-based models more suitable for our task, we introduce k-
max pooling structure to them to build a baseline.

In order to obtain better classification results, we use an ensemble process. As we
all know, an outstanding ensemble effect requires many classification results that not
similar to each other and all achieve relatively high scores [9]. So we use some methods
to design experiments, in order to find some results that meet our needs. Moreover, we
propose a method to measure the differences between classification results, which can
be used to guide the design of experiments.

Finally, we propose a method to estimate how many labels should be chosen. Our
method is a post-processing process, as the method forecast the number via the analysis
of relations between statistical characteristics of classification results and the number of
labels.

The paper is organized as follows. Section 2 introduces details of our system.
Section 3 contains our experimental results and analysis. Section 4 includes summa-
rization and future works. Finally, we express our thanks and appreciations.

2 Our System

2.1 Preprocessing

Our preprocessing process includes word segmentation, data cleansing and long-text
truncation. Moreover, we divide data cleansing into two parts: a stopword process that
is used to filter useless words and a rule-based matching process which is designed to
clean up rubbish information such as web sites, page formats, etc. What’s more,
because neural network models do not perform well in the classification of text which
is very long [10], we introduce long-text truncation to suffer this disadvantage [7],
while some texts in our training dataset reach tens of times the length of average
(Fig. 1).

2.2 Baseline

In order to build our baseline, we choose four models: RNNText [5], CNNText [6],
RCNNText [7] and fastText [8], which have been proved effective in text classification
tasks. And then make a small change to their structures. The change is using k-max
pooling structures to replace max pooling structures [11], in order to get better adap-
tation to milt-label classification task.

All models we used could be unified with one process: after using embedding
layers, they extract context information by CNN-based, RNN-based or NN-based
structures, and then they use fully connected layers, named as classifiers to produce
classification results. The general structures of these models are shown in Fig. 2.

280 Y. Xiang et al.

2.3 Design Experiments

In order to find out some classification results that perform well in the following
ensemble process, we propose the experiment designing process. In the process, we
design lots of experiments by methods listed as follows.

• Use different models in our baseline: RNNText, CNNText, RCNNText or fastText.
• Use different input forms: char-level or word-level. (Different from a char-level

method that directly splits original text into character [2], our char-level method
splits the text which underwent the word segmentation process and the prepro-
cessing process).

• Use different parameters of model structures: the number of hidden layers, the size
of hidden layer units and the batch size.

• Use different training dataset: using additional data or not, a random proportion of
data will not be used.

Fig. 1. This is a flow chart of our system, where the solid arrows represent the training process,
while the dotted arrows represent the testing process.

Fig. 2. General structures of models in our baseline

NEUTag’s Classification System for Zhihu Questions Tagging Task 281

And then we choose classification results that not similar to each other and all
achieve relatively high scores, for obtain an outstanding ensemble effect [9]. Moreover,
we propose a method to evaluate the differences between classification results, which
can be used to guide the designing of experiments. This method evaluates the differ-
ences by the difference of normalized accuracy rate distribution on each label
(DoNARD), and the algorithm is shown in Algorithm 1.

Algorithm 1
Input: A: experiment result A’s accuracy rate on all labels, B: experiment result B’s
accuracy rate on all labels, T: the number of labels, w: 100000
Output: DoNARD: a number denote the difference between experiment results
begin
for: i = 1, 2, …, T do:
xi = Ai

∑ AtT
t=1

, yi = Bi
∑ BtT
t=1

DoNARD = w × ∑ (xi − yi)2T
t=1

end.

We believe that the larger the DoNARD, the larger the difference. By comparing
the DoNARD values with scores, we analyze the influence of each method that has
been listed. Therefore we use DoNARD to guide the experiments designing process.

2.4 Ensemble

In the ensemble process, the input data is the classification result of our experiment.
Firstly, we will assign a weight to each result. Then, we consider the weighted sum of
these results as the outcome of our ensemble process. Finally, we use a program to
choose these weights’ value, in order to get the highest score.

2.5 Estimate Number of Labels

To estimate how many labels should be chosen for each problem is quite difficult in
multi-label classification task. Firstly, because probabilities of each label in different
questions are tremendous difference, we failed to find out a threshold to judge whether
a label should be chosen or not. Secondly, we do not simply estimate the number of
labels appeared in the standard answer, but also need to consider the performance of the
classification result. For example, top 5 labels of a question are shown in Table 1, and
standard labels are ‘Healthy’, ‘Life’ and ‘Bodybuilding’. The scores for selecting k-top
labels are shown in Table 2.

Table 1. Top five labels of the question

Label Healthy Bodybuilding Motion Travel Life

Probability 1.841 1.648 1.520 0.9165 0.8426

282 Y. Xiang et al.

In this case, when selecting top five or top two labels, we can get higher scores than
select top three labels.

In our method, we need to calculate that how many labels are predicted for each
question can help us get the highest score in training dataset. After analysis the rela-
tionship between statistics of classification results and the optimal number of labels, we
find that the sum of probability of top five labels is positive correlation to the optimal
number. So we propose a method based on the top five label-probabilities’ sum
(T5LPS) to estimate the number of labels.

3 Results

3.1 Dataset Sources

Our training dataset includes 721,608 questions from official training dataset and
350,000 additional questions from Zhihu website. Each question includes a title, a
description and some labels. There are 25,551 different labels in our dataset.

3.2 Performance Evaluation Indicators

This task uses the positional weighted precision to evaluate performance. Let
correct numpi denotes the count of predicted tags which are correct at position i,
predict numpi denotes the count of predicted tags at position i and ground truth num
denotes the count of correct tags.

P ¼
P5

i¼1 correct numpi=log iþ 2ð Þ
P5

i¼1 predict numpi=log iþ 2ð Þ

R ¼
P5

i¼1 correct numpi

ground truth num

F1 ¼ 2� P� R
PþR

3.3 Preprocessing

In this part, we compare the effect of each preprocessing method. Firstly, we show the
effect of word segmentation which is based on jieba segmentation tool in Table 3.
Secondly, we show more experiment results in Table 4.

Table 2. Scores for selecting k-top labels

K-top 1 2 3 4 5

Score 0.6206 0.8000 0.6942 0.6206 0.7843

NEUTag’s Classification System for Zhihu Questions Tagging Task 283

We can see that, after segmentation the system score (the highest score of models in
our baseline) increases 0.0063. And we find that fastText is more sensitive to seg-
mentation than either RNNText or CNNText, while RCNNText’s sensitivity is the
least.

The reason is that, as we analysis, single character carries little information which
benefits classification, while the fastText’s structure do not have Excellent abstract
ability provided by deep networks, fastText is more sensitive. [12] Another reason is
that the char-level text’s length is much bigger than word-level text’s. Thus, char-level
is more difficult to be learnt [13].

In Table 4, we only show the best result of each method in preprocessing, for
example, in stopword method we use a manually selected stopword dictionary with the
help of TF/IDF and in the long-text truncation method we use a value which is three
times the value of question texts’ average length as a truncation threshold. From the
experiment results, we get some conclusions that are shown as follows.

• Replacing numbers with uniform expression would lower score, via some labels are
sensitive to the value of numbers.

• The method which cleans all punctuations promotes the score, because punctuations
do not contribute to classification in this task and there are a lot of useless punc-
tuations which are used as emoticons in the text.

• As long-text truncation brings an improvement, we consider that words in the tail of
a long text have little contribution to classification and bring adverse effect to our
system because they are so long [13].

• The combination of various preprocessing methods brings an additional score of
0.0030.

Table 3. Effect of word segmentation

Model Score before seg Score after seg Score improving

RCNNText 0.3413 0.3455 0.0042
RNNText 0.3598 0.3661 0.0063
fastText 0.2775 0.3583 0.0808
CNNText 0.3213 0.3337 0.0124

Table 4. More experiment results in preprocessing

Experiment Score change Score

baseline 0.4070
baseline + word-level 0.0063 0.4133
baseline + word-level + unified expression of all number –0.0012 0.4121
baseline + word-level + clean all punctuation 0.0054 0.4187
baseline + word-level + stopword 0.0035 0.4168
baseline + word-level + rule-based matching 0.0021 0.4154
baseline + word-level + simplify traditional forms of characters 0.0029 0.4162
baseline + word-level + long-text truncation 0.0011 0.4144
baseline + preprocessing 0.0243 0.4313

284 Y. Xiang et al.

3.4 Baseline

We try to apply k-max pooling structure to RNNText, CNNText, RCNNText and
fastText models. And experiments are shown in Table 5 that used same preprocessing,
based on whole training dataset and additional dataset.

We find that Max Pooling structure performance best in RCNNText and fastText,
while 2-max Pooling structure performance best in RNNText and CNNText. But 3-
max Pooling structure performance worst. So we introduce 2-max Pooling structure to
RNNText and CNNText models. The reason of this phenomenon needs further study
whether k-max pooling structure benefit from an better expression ability in multi-label
classification task [5].

We can see that 2-max pooling structure is effective in some models,

3.5 Design Experiments

With methods listed in Sect. 2.3, we design hundreds of experiments. Firstly, we check
the effectiveness of our char-level method in Table 6. Then with the help of DoNARD
method, we analyze the influence on classification results of each method in Table 7.
Finally, we show several models in Table 8, with which we obtaining an optimal
ensemble effect.

Table 5. Scores of experiments

RNNText CNNText RCNNText fastText

Max pooling 0.4623 0.4174 0.4557 0.3251
2-max pooling 0.4632 0.4349 0.4425 0.2682
3-max pooling 0.4584 0.4197 0.4441 0.2682

Table 6. Effect of our char-level method

Experiments Score

RNNText + char-level [2] 33.02
RNNText + our char-level method 35.95

Table 7. The analysis of various changes on RNNText

Change of original model DoNARD Ensemble’s effect

Using word-level 1.585 0.0107
Double hidden layer size 6.395 0.0082
Adding a hidden layer 0.716 0.0055
Using additional data 2.402 0.0236
30% random data will not be use 1.535 0.0076

NEUTag’s Classification System for Zhihu Questions Tagging Task 285

Our char-level method is effective, because it removes the noise in original texts,
that achieves a better result.

We find that, when the DoNARD is in the range of about (1, 3), the effect of
ensemble is better. We consider that if the DoNARD is too large, it means one result is
much worse than another, so the effect of ensemble is poor. And if the DoNARD is too
small, this indicates that these two results are too similar, so the ensemble not works
well. When we use changes such as word-level, size of hidden layer and external
dataset, we achieve better performance of ensemble process, so we designed more
experiments with these changes.

After our analysis, there are two conclusions which are shown as follows. Firstly,
compared ‘RNNText + word-level’ with ‘RNNText + word-level + additional data’,
we find that using additional data is effective. It can improve about 0.0396 score.
Secondly, as fastText achieves the best performance in our experiments, we guess that
the hierarchical softmax structure in word2vet benefits most in fastText model and this
still needs further works [12].

3.6 Ensemble

Different from translation task, where an ensemble method based on checkpoints of one
experiment can yield a boost of performance [14], in this task the ensemble method is
useless, as shown in Table 9.

So, we use an ensemble method based on results (best checkpoints) of several
experiments. After searching the best weights of classification results in the range of
[0.2, 5], we get the highest score which reaches 0.4954. And we show the weights of all
classification results in Table 10 with the progressive ensemble performance after
ensemble each classification result.

Table 8. Several models which are used in our ensemble process

Experiment Shortened form Score

fastText + word-level + batch size*0.25 + additional data FW1 0.4763
RNNText + word-level + hidden size*2 + additional data LW1 0.4704
RNNText + word-level + additional data LW2 0.4701
RNNText + char-level + additional data LW3 0.4561
RNNText + word-level LW4 0.4352
RCNNText + word-level + randomly not use 30% data RW1 0.4350
RNNText + char-level + dim*2 LC1 0.4302

Table 9. Ensemble method based on checkpoints of one experiment

Checkpoint Checkpoint-1 Checkpoint-2 Checkpoint-3 Checkpoint-4 Ensemble

Score 0.4208 0.4356 0.4267 4229 0.4354

286 Y. Xiang et al.

We find that the optimal weights that we searched in the range of [0.2, 5] are all
close to 1, and the highest score only has 0.0003 higher than using weights that all
equal 1. Therefore, it suggests that we should focus on the process of designing
experiments instead of focus on searching optimal weights.

3.7 Estimate Number of Labels

With the help of our method, we estimate the number of labels based on T5LPS values,
the score improves about 0.0240. Details are shown in Table 11, in which we use T to
denote T5LPS value.

We expect that the performance can still be improved if we find out better statistics
than T5LPS. However, this statistical requires manual screening which is expensive.
And we found that the parameters in Table 11 need to be re-tuned manually on training
datasets to achieve the best performance for different ensemble results.

4 Conclusions

In our experiments, the effect of all processes evaluated by F1 score is show as follows.
0.0139 from using 2-maxPool structure, 0.0243 from using preprocessing, 0.0450 from
designing experiment (including 0.0396 from using additional data), 0.0191 from using
ensemble process and 0.0240 from estimating the number of labels. And our conclu-
sions are listed as follows.

• The preprocessing has a significant effect, because reducing noises in texts and
shortening the length of texts are beneficial for classification.

• The 2-max pooling structure is effective in multi-label classification tasks.
• The method we proposed to measure the differences between models is useful to

guide the designing of experiments.
• The method we proposed to estimate the number of labels is important, as it can

promote the performance of the system effectively.
• Using additional training data can improve the performance of classification

remarkably.

Table 10. Weight of each classification result

Experiment FW1 LW3 LW1 LW4 LW2 RW1 LC1

Weight 1.12 1.08 1.06 1.06 1.00 1.00 0.96
Ensemble’s effect
of each step

0.009961 0.005085 0.001124 0.001067 0.001038 0.0008841

Table 11. Details of T5LPS method

Conditions T > 13 13 > T > 10 10 > T > 6 6 > T > 3 3 > T

Number of Labels 5 4 3 2 1

NEUTag’s Classification System for Zhihu Questions Tagging Task 287

Acknowledgements. This work was supported in part by the National Project
(2016YFB0801306) and the open source project (PyTorchText in GitHub). The authors would
like to thank anonymous reviewers, Le Bo, Jiqiang Liu, Qiang Wang, YinQiao Li, YuXuan Rong
and Chunliang Zhang for their comments.

References

1. Saha, A.K., Saha, R.K., Schneider., K.A.: A discriminative model approach for suggesting
tags automatically for stack overflow questions. In: 10th IEEE Working Conference on
Mining Software Repositories, San Francisco, pp. 73–76 (2013)

2. Yang, Z., Yang, D., Dyer, C., He, X., Smola A., Hovy, E.: Hierarchical attention networks
for document classification. In: Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, New Orleans,
pp. 1480–1489 (2017)

3. Conneau, A., Schwenk, H., Cun, Y.L.: Very Deep Convolutional Networks for Text
Classification. arXiv preprint arXiv:1606.01781 (2017)

4. Johnson, R., Zhang, T.: Semi-supervised convolutional neural networks for text categoriza-
tion via region embedding. Adv. Neural. Inf. Process. Syst. 28, 919–927 (2015)

5. Zhou, Y., Xu, B., Xu, J., Yang, L., Li, C., Xu, B.: Compositional recurrent neural networks
for Chinese short text classification. In: 2016 IEEE, Omaha, pp. 137–144 (2016)

6. Kim, Y.: Convolutional Neural Networks for Sentence Classification. Eprint Arxiv (2014)
7. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text

classification. In: AAAI Conference on Artificial Intelligence, Austin, pp. 2267–2273 (2015)
8. Jouling, A., Grave, E., Bojanowshi, P., Mikolov, T.: Bag of Tricks for Efficient Text

Classification. arXiv preprint arXiv:1607.01759 (2016)
9. Zhou, Z.H.: Machine Learning. Tsinghua University Press, Beijing (2016)
10. Sundermeyer, M., SchlÜter, R., Ney, H.: LSTM neural networks for language modeling.

Interspeech 31(43), 601–608 (2012)
11. Li, W., Wu, Y.: Multi-level gated recurrent neural network for dialog act classification. In:

COLING 2016, Osaka, pp. 1970–1979 (2016)
12. Peng, H., Li, J.X., Song, Y.Q., Liu, Y.P.: Incrementally learning the hierarchical softmax

function for neural language models. In: 2016, AAAI, Feinikesi (2016)
13. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A Convolutional Neural Network for

Modelling Sentences. arXiv preprint arXiv:1404.2188 (2014)
14. Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation systems for

WMT 16. WMT16 Shared Task System Description (2016)

288 Y. Xiang et al.

http://arxiv.org/abs/1606.01781
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1404.2188

Machine Translation

Otem&Utem: Over- and
Under-Translation Evaluation Metric

for NMT

Jing Yang1,2, Biao Zhang1, Yue Qin1, Xiangwen Zhang1,
Qian Lin1, and Jinsong Su1,2(B)

1 Xiamen University, Xiamen, China
{zb,qinyue,xwzhang,linqian17}@stu.xmu.edu.cn

2 Provincial Key Laboratory for Computer Information Processing Technology,
Soochow University, Suzhou, China

jingy@stu.xmu.edu.cn, jssu@xmu.edu.cn

Abstract. Although neural machine translation (NMT) yields promis-
ing translation performance, it unfortunately suffers from over- and
under-translation issues [31], of which studies have become research
hotspots in NMT. At present, these studies mainly apply the dominant
automatic evaluation metrics, such as BLEU, to evaluate the overall
translation quality with respect to both adequacy and fluency. How-
ever, they are unable to accurately measure the ability of NMT systems
in dealing with the above-mentioned issues. In this paper, we propose
two quantitative metrics, the Otem and Utem, to automatically eval-
uate the system performance in terms of over- and under-translation
respectively. Both metrics are based on the proportion of mismatched n-
grams between gold reference and system translation. We evaluate both
metrics by comparing their scores with human evaluations, where the
values of Pearson Correlation Coefficient reveal their strong correlation.
Moreover, in-depth analyses on various translation systems indicate some
inconsistency between BLEU and our proposed metrics, highlighting the
necessity and significance of our metrics.

Keywords: Evaluation metric · Neural machine translation
Over-translation · Under-translation

1 Introduction

With the rapid development of deep learning, the studies of machine transla-
tion have evolved from statistical machine translation (SMT) to neural machine
translation (NMT) [28,29]. Particularly, the introduction of attention mecha-
nism [1] enables NMT to significantly outperform SMT. By now, attentional
NMT has dominated the field of machine translation and continues to develop,
pushing the boundary of translation performance.

Despite of its significant improvement in the translation quality, NMT tends
to suffer from two specific problems [31]: (1) over-translation where some words
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 291–302, 2018.
https://doi.org/10.1007/978-3-319-99495-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_25&domain=pdf

292 J. Yang et al.

are unnecessarily translated for multiple times, and (2) under-translation where
some words are mistakenly untranslated. To address these issues, researchers
often learn from the successful experience of SMT to improve NMT [7,9,31,33].
In these studies, the common practice is to use the typically used translation
metrics, such as BLEU [24], METEOR [2] and so on, to judge whether the
proposed models are effective. However, these metrics are mainly used to measure
how faithful the candidate translation is to its gold reference in general, but not
for any specific aspects. As a result, they are incapable of accurately reflecting the
performance of NMT models in addressing the drawbacks mentioned previously.

Let us consider the following example:

– Source Sentence: tā hūyù měiguó dùı zhōngdōng héṕıng yào yǒu mı́ngquè de
kànfǎ, b̀ıng wèi cǐ fāhuī zuòyòng, yǐ shǐ liánhéguó yǒuguān juéỳı néng dédào
qièsh́ı zh́ıx́ıng.

– Reference 1: he urged that the united states maintain a clear notion of the
peace in the middle east and play its due role in this so that the un resolutions
can be actually implemented.

– Reference 2: he urged u.s. to adopt a clear position in the middle east peace
process and play its role accordingly. This is necessary for a realistic execution
of united nations’ resolutions.

– Reference 3: he called for us to make clear its views on mideast peace and
play its role to ensure related un resolutions be enforced.

– Reference 4: he called on the us to have a clear cut opinion on the middle
east peace, and play an important role on it and bring concrete implementation
of relative un resolutions.

– Candidate 1: he called on the united states to have a clear view on peace
in the middle east peace and play a role in this regard so that the relevant un
resolutions can be effectively implemented. (BLEU = 45.83)

– Candidate 2: he called on the united states to have a clear view on in the
middle east and play a role in this regard so that the relevant un resolutions
can be effectively implemented. (BLEU = 46.33)

Obviously, two candidate translations have different translation errors. Specif-
ically, in Candidate 1, the Chinese word “héṕıng” is over-translated, and thus
“peace” appears twice in Candidate 1. In contrast, in Candidate 2, “héṕıng” is
under-translated, for its translation is completely omitted. However, the BLEU
metric is unable to distinguish between these two kinds of translation errors and
assigns similar scores to these two candidates. This result strongly indicates the
incapability of BLEU in detecting the over- and under-translation phenomena.
Therefore, it is significant for NMT to explore better translation quality metric
specific to over-translation and under-translation.

In this paper, we propose two novel automatic evaluation metrics: “Otem”
short for over-translation evaluation metric and “Utem” short for under-
translation evaluation metric, to assess the abilities of NMT models in dealing
with over-translation and under-translation, respectively. Both metrics count the
lexical differences between gold reference and system translation, and provide

Otem&Utem: Over- and Under-Translation Evaluation Metric for NMT 293

Fig. 1. Intuitive comparison of BLEU, Otem and Utem. We use gray circle to illustrate
the gold reference (left) and candidate translation (right). Capital “A” denotes the
matched n-grams, while capital “B” and “C” denotes the mismatched parts.

quantitative measurement according to the proportion of mismatched n-grams.
Figure 1 shows the intuitive comparison among BLEU, Otem and Utem. The
BLEU calculates the precision of matched n-grams (A) over the whole candi-
date translation (A + C). By contrast, the Otem focuses on the proportion of
repeated n-grams in the candidate translation (C) over the whole candidate (A
+ C), and the Utem estimates the proportion of untranslated n-grams in the
reference (B) over the whole reference (A + B). Clearly, BLEU is correlated with
both Utem and Otem but incapable of inferring them.

To evaluate the effectiveness of our proposed metrics, we conducted transla-
tion experiments on Chinese-English translation using various SMT and NMT
systems. We draw the following two conclusions: (1) There exists strong corre-
lations between the proposed metrics and human evaluation measured by the
Pearson Correlation Coefficient, and (2) The significant improvement in terms
of BLEU score doesn’t imply the same improvement in Otem and Utem, by
contrast, our proposed metrics can be used as supplements to the BLEU score.
Moreover, further analysis shows the diverse characteristics of the NMT systems
based on different architectures.

2 Related Work

Usually, most of the widely-used automatic evaluation metrics are used to per-
form the overall evaluation of translation quality. On the whole, these metrics can
be divided into the following three categories: (1) The Lexicon-based Metrics
are good at capturing the lexicon or phrase level information but can not ade-
quately reflect the syntax and semantic similarity [2,4,5,8,15,16,23,24,27]; (2)
The Syntax/Semantic-based Metrics exploit the syntax and semantic sim-
ilarity to evaluate translation quality, but still suffer from the syntax/semantic
parsing of the potentially noisy machine translations [11,17–20,22,30,34]; (3)
The Neural Network-based Metrics mainly leverage the embeddings of the
candidate and its references to evaluate the candidate quality [3,12,13].

Since our metrics involve n-gram matching, we further discuss the two sub-
classes in the first aspect: (1) Evaluation Metrics based on N-gram Match-
ing. By utilizing the n-gram precisions between candidate and references, the
F-measure, the recall and so on, these metrics attain the goal to evaluate the

294 J. Yang et al.

overall quality of candidate [2,4,5,8,16,24]. (2) Evaluation Metrics based on
Edit Distance. The core idea of these metrics [15,23,25,27] is to calculate the
edit distance required to modify a candidate into its reference, which can reflect
the discrepancy between a candidate and its references.

Our work is significantly different from most of the above-mentioned stud-
ies, for we mainly focus on the over- and under-translation issues, rather than
measuring the translation quality in terms of adequacy and fluency. The work
most closely related to ours is the N-gram Repetition Rate (N-GRR) proposed
by Zhang et al. [35], which merely computes the portion of repeated n-grams for
over-translation evaluation. Compared with our metrics, the OTEM in particu-
lar, N-GRR is much simpler for it completely ignores the n-gram distribution in
gold references and doesn’t solve length bias problem. To some extent, OTEM
can be regarded as a substantial extension of N-GRR.

Meanwhile, the metrics proposed by Popovic and Ney [25] also evaluate the
MT translation on different types of errors such as missing words, extra words
and morphological errors based on edit distance. However, its core idea extends
from WER and PER, and it only takes the word-level information into consid-
eration, while the length bias problem can’t be solved similarly. The evaluation
of addition and omission can be seen as the simplified 1-gram measurement of
OTEM and UTEM theoretically. In addition, Malaviya et al. [21] also presented
two metrics to account for over- and under-translation in MT translation. Unlike
our model, however, the problem of length bias was also not solved in this work.

3 Our Metrics

In this section, we give detailed descriptions of the proposed metrics. The ideal
way to assess over-translation or under-translation problems is to semantically
compare a source sentence with its candidate translation and record how many
times each source word is translated to the target word, which unfortunately
is shown to be trivial. Therefore, here we mainly focus on the study of simple
but effective automatic evaluation metrics for NMT specific to over- and under-
translation.

Usually, a source sentence can be correctly translated into diverse target ref-
erences which differ in word choices or in word orders even using the same words.
Besides that, there are often no other significant differences among the n-gram
distributions of these target references. If the occurrence of a certain n-gram in
the generated translation is significantly greater than that in all references, we
can presume that the generated translation has the defect of over-translation.
Similarly, if the opposite happens, we can assume that under-translation occurs
in the generated translation. Based on these analyses, we follow Papineni et al.
[24] to design Otem and Utem on the basis of the lexical matchings between
candidate translations and gold references:

Otem/Utem := LP ∗ exp

(
N∑

n=1

wn logmpn

)
, (1)

Otem&Utem: Over- and Under-Translation Evaluation Metric for NMT 295

where LP indicates a factor of length penalty, N is the maximum length of
the considered n-grams, and mpn denotes the proportion of the mismatched
n-grams contributing to the metric by the weight wn. It should be noted that
here we directly adapt the weight definition of BLEU [24] to ours, leaving more
sophisticated definitions to future work. Specifically, we assume that different
n-grams share the same contribution to the metric so that wn is fixed as 1

N .
Although this formulation looks very similar to the BLEU, the definitions of
BP and pn, which lie at the core of our metrics, differs significantly from those
of BLEU and mainly depend on the specific proposed metrics. We elaborate
more on these details in the following subsections.

3.1 Otem

As described previously, when over-translation occurs, the candidate translation
generally contains many repeated n-grams. To capture this characteristic, we
define mpn to be the proportion of these over-matched n-grams over the whole
candidate translation as follows:

mpn =

∑
C∈{Candidates}

∑
n-gram∈C

Countover (n-gram)

∑
C′∈{Candidates}

∑
n-gram′∈C′

Countcand (n-gram)
, (2)

where {Candidates} denotes the candidate translations of a dataset,
Countover(·) calculates the over-matched times of the n-gram from the can-
didate translation, and Countcand(·) records the occurrence of the n-gram in the
candidate translation. When referring to Countover(·), we mainly focus on two
kinds of over-matched n-grams: (1) the n-gram which occurs in both reference
and candidate, and its occurrence in the latter exceeds that in the former; and
(2) the n-gram that occurs only in candidate, and its occurrence exceeds 1.

Moreover, we define the over-matched times of n-gram as follows:
⎧
⎪⎪⎨

⎪⎪⎩

Countcand(n-gram) − Countref (n-gram), if Countcand(n-gram) > Countref (n-gram) > 0;

Countcand(n-gram) − 1, if Countcand(n-gram) > 1 and Countref (n-gram) = 0;

0, otherwise,

(3)
where Countref (n-gram) denotes the count of n-gram in its reference. When

multiple references are available, we choose the minimum Countover(n-gram)
for this function, as we argue that a n-gram is not over-matched as long as it is
not over-matched in any reference. Back to the Candidate 1 mentioned in Sect. 1,
Countcand(“peace”) is 2, while Countref (“peace”) in all references is 1, and thus
Countover(“peace”) is calculated as 1.

Another problem with over-translation is that candidates tend to be longer
because many unnecessary n-grams are generated repeatedly, which further
causes the calculation bias in Otem. To remedy this, we introduce the length
penalty LP to penalize long translations. Formally,

LP =

{
1, if c < r;

e1− r
c , otherwise,

(4)

296 J. Yang et al.

where c and r denote the length of candidate translation and its reference
respectively. For multiple references, we select the one whose length is closest to
the candidate translation, following Papineni et al. [24].

3.2 Utem

Different from Otem, Utem assesses the degree of omission in the candidate
translation for a source sentence. Whenever under-translation occurs, some n-
grams are often missed compared with its reference. Therefore, we define mpn to
be the proportion of these under-matched n-grams over the reference as follows:

mpn =

∑
R∈{References}

∑
n-gram∈R

Countunder (n-gram)

∑
R′∈{References}

∑
n-gram′∈R′

Countref (n-gram)
, (5)

where {References} indicates the gold references from a dataset, and Countref (·)
counts the occurrence of n-gram in the reference.

Note that the above formula only deals with one reference for each source sen-
tence, however, both numerator and denominator in Eq. 5 suffer from the selec-
tion bias problem, when there are multiple references. In this case, we employ
a default strategy to preserve the minimum Countunder(·) value as well as the
maximum Countref (·) value for each n-gram based on an optimistic scenario.

As for Countunder(·), we mainly consider two types of under-matched n-
grams: (1) the n-gram that occurs in both reference and candidate, and its
occurrence in the former exceeds that in the latter; and (2) the n-gram that
appears only in reference. Furthermore, we calculate their Countunder(·) as
follows:{

Countref (n-gram)− Countcand(n-gram), if Countref (n-gram) > Countcand(n-gram);

0, otherwise.

(6)
In this way, the more parts are omitted in translation, the larger Countunder(·)

will be, which as expected can reflect the under-translation issue. Still take the
Candidate 2 described in Sect. 1 as an example, we find that Countref (“peace”)
is 1, so, Countunder(“peace”) is computed as 1.

Furthermore, when some source words or phrases are untranslated, the result-
ing candidate translation generally tends to be shorter. Accordingly, we also
leverage the length penalty LP to penalize short translations, i.e.

LP =

{
1, if c > r;

e1− c
r , otherwise.

(7)

where the definitions of c and r are the same as those in Eq. 4.

4 Experiments

We evaluated our proposed metrics on Chinese-English translation task.

Otem&Utem: Over- and Under-Translation Evaluation Metric for NMT 297

4.1 Datasets and Machine Translation Systems

We collected 1.25M LDC sentence pairs with 27.9M Chinese words and 34.5M
English words as the training corpus. Besides, we chose the NIST 2005 dataset
as the validation set and the NIST 2002, 2003 and 2004 datasets as the test sets.
Each source sentence in these datasets is annotated with four different references.

For the sake of efficiency, we only kept the sentences of length within 50
words to train NMT models. In this way, there are 90.12% of parallel sentences
were involved in our experiments. As for the data preprocessing, we segmented
Chinese words using Stanford Word Segmenter1, and English tokens via Byte
Pair Encoding (BPE) [26]. We set the vocabulary size to 30K for NMT model
training. For all the out-of-vocabulary words in the corpus, we replaced each of
them with a special token UNK. Finally, our vocabularies covered 97.4% Chinese
words and 99.3% English words of the corpus.

We carried out experiments using the following state-of-the-art MT systems:

(1) PbSMT and HieSMT : We trained a phrase-based (PbSMT) [14] and
a hierarchical phrase-based (HieSMT) [6] SMT system using MOSES with
default settings. GIZA++ and SRILM are used to generate word alignments
and 5-gram language model respectively.

(2) RNNSearch: a re-implementation of the attention-based NMT model [1]
based on dl4mt tutorial. We set word embedding size as 620, hidden layer
size as 1000, learning rate as 5 × 10−4, batch size as 80, gradient norm as
1.0, and beam size as 10. All the other settings are the same as in [1].

(3) Coverage: an enhanced RNNSearch equipped with a coverage mecha-
nism [31]. We used the same model settings as in the above RNNSearch.

(4) FairSeq : a convolutional sequence-to-sequence learning system [10]. We
used 15 convolutional encoder and decoder layers with a kernel width of 3,
and set all embedding dimensions to 256. Others were kept as default.

(5) Transformer : model [32] reimplemented by Tsinghua NLP group2. We
trained the base Transformer using 6 encoder and decoder layers with 8
heads, and set batch size as 128.

4.2 Comparison with Human Translation

In theory, our metrics are capable of distinguishing human translation with no
over- and under-translation issues from the machine translated ones that may
suffer from these issues. To verify this, we collected the translations produced
by RNNSearch and one of four references of each source sentence in NIST 2002
dataset. We compare them by calculating the mismatch proportion mpn against
three other gold references. Figure 2 shows the results.

Not surprisingly, with the increase of n-gram length, the proportion of over-
matched n-grams drops gradually. This is reasonable because long n-grams are

1 https://nlp.stanford.edu/software/segmenter.html.
2 https://github.com/thumt/THUMT.

https://nlp.stanford.edu/software/segmenter.html
https://github.com/thumt/THUMT

298 J. Yang et al.

(a) OTEM distinguish human translation
from RNNSearch translation

(b) UTEM distinguish human translation
from RNNSearch translation

Fig. 2. Comparison between RNNSearch and human translation on NIST 2002 dataset
in terms of mismatch proportion mpn, where n ranges from 1 to 4. (a) is for Otem,
and (b) is for Utem.

more difficult to be generated repeatedly. By contrast, the proportion of under-
matched n-grams grows steadily. The underlying reason is that long n-grams
tend to be more difficult to be matched against the reference. No matter how
long the n-gram is, our Otem metric assigns significantly greater scores to the
human translations than the machine translated ones. Meanwhile, the scores of
our Utem metric on the human translations are also significantly less than those
of machine translation. Besides, it is clear that both Otem and Utem metrics
show great and consistent difference between the evaluation score of RNNSearch
and human translation, strongly indicating their ability in differentiating human
translations from the machine translated ones.

4.3 Human Evaluation

In this section, we investigate the effectiveness of Otem and Utem by mea-
suring their correlation and consistency with human evaluation. Existing man-
ual labeled dataset is usually annotated with respect to faithfulness and flu-
ency, rather than over- and under-translation. To fill this gap, we first annotate
a problem-specific evaluation dataset. Then we examine our proposed metrics
using the Pearson Correlation Coefficient (Pearson’s r).

Data Annotation. Following the similar experimental setup in [24], we used
the NIST 2002 dataset for this task. In order to avoid selection bias problem, we
randomly sampled five groups of source sentences from this dataset. Each group
contains 50 sentences paired with candidate translations generated by different
NMT systems (including RNNSearch, Coverage, FairSeq and Transformer). In
total, this dataset consists of 1000 Chinese-English sentence pairs.

We arranged two annotators to rate translations in each group from 1 (almost
no over- or under-translation issue) to 5 (serious over- or under-translation issue),
and average their assigned scores to the candidate translation as the final man-
ually annotated score. The principle of scoring is the ratio of over-translated

Otem&Utem: Over- and Under-Translation Evaluation Metric for NMT 299

or under-translated word occurrence in candidate translations. It is to be noted
that this proportion has a certain subjective influence on scoring according to
the length of the candidate and source sentence. For example, with the same
over-translated number of words in the candidate (e.g. 5 words), the score can
change from 2 (few words have been over-translated) to 4 (a large number of
words have been over-translated) for a long sentence with the length of 60 words
and a short sentence with the length of 10 words.

Correlation with Human Evaluation. We collected the annotated sentence
pairs for each NMT system, and summarized the average manually annotated
score with the corresponding Otem and Utem in Fig. 3. We find that both
Otem and Utem are positively correlated with the manually annotated score.
To further verify this observation, we computed the Pearson’s r for both metrics,
where the value is 0.9461 and 0.8208 for Otem (p < 0.05) and Utem (p < 0.05),
respectively. These Pearson’s r values strongly suggest that our proposed metrics
are indeed highly consistent with human judgment (notice that lower Otem and
Utem score indicates a better translation).

We also provide comparison between manually annotated score and BLEU
score in Fig. 4. Obviously, BLEU score demonstrates rather weak association

Fig. 3. Correlation between human judgment and Otem, Utem. Clear positive corre-
lation is observed for both metrics.

Fig. 4. Correlation between human judgment and BLEU.

300 J. Yang et al.

with the over-translation. By contrast, its correlation with the under-translation
is much stronger. We conjecture that this is because some important clauses
are left untranslated, leading to the occurrence of under-translation, and in con-
sequence, the generated translation usually suffers from unfaithfulness issue, a
critical aspect for BLEU evaluation. In addition, we also calculated the corre-
sponding Pearson’s r between the manually annotated scores and BLEU. The
value of Pearson’s r for the over- and under-translation is −0.1889 and −0.9192,
of which p values are larger than 0.05, indicating that the negative correlation
is not significant. In other words, BLEU score is incapable of fully reflecting the
over- and under-translation issues.

4.4 Analysis on MT Systems

We summarize the BLEU, Otem, Utem scores for different MT systems in
Table 1. Particularly, we show Otem-2(2-gram) rather than Otem-4(4-gram)
because of data sparsity issue.

From Table 1, although all NMT systems outperform all SMT systems with
respect to the BLEU score, we observe that for Otem score, almost all SMT
systems outperform all NMT systems. We contribute this to the hard-constraint
coverage mechanism in SMT which disables the decoder to repeatedly translate
the same source phrases. Sharing similar strength with the coverage mecha-
nism in SMT, Coverage yields substantial improvements over the RNNSearch.
It is very interesting that although FairSeq and Transformer produce very sim-
ilar BLEU scores, Transformer achieves significantly better Otem scores than
FairSeq. We argue that this is because attention in Transformer builds up strong
dependencies with both source and previous target words, while convolution in
FairSeq can only capture local dependencies.

We can also discover that in terms of Utem score, all MT systems show
similar results, although NMT systems remarkably outperform SMT systems
regarding the BLEU score. Through the coverage mechanism, SMT can success-
fully enforce the translation of each source word. On the contrary, Coverage fails
to share this strength. The underlying reason is complicated, which, we argue,
requires much more efforts.

Table 1. Case-insensitive BLEU-4/Otem-2/Utem-4 score on NIST Chinese-English
translation task. Bold highlights the best result among all systems.

Model Dev MT02 MT03 MT04

PbSMT 33.09/1.00/56.41 34.50/0.84/52.96 33.46/0.80/55.46 35.23/0.98/55.36

HierSMT 34.18/0.78/55.77 36.21/0.66/52.14 34.44/0.58/54.88 36.91/0.74/54.62

RNNSearch 34.72/2.05/60.31 37.95/1.67/54.68 35.23/2.08/56.88 37.32/1.78/58.49

Coverage 35.02/1.30/61.06 38.40/1.01/55.09 36.18/1.48/55.96 37.92/1.27/57.90

FairSeq 38.84/1.84/58.65 41.90/1.24/53.79 40.67/1.81/54.71 42.32/1.89/55.57

Transformer 38.90/1.02/57.76 41.33/0.77/52.79 40.62/0.94/54.26 42.74/0.83/55.56

Otem&Utem: Over- and Under-Translation Evaluation Metric for NMT 301

Overall, different MT systems show different characteristics with respect to
over- and under-translation. BLEU score itself can hardly reflect all these above
observations, which highlights the necessity of our work.

5 Conclusion

In this paper, we have proposed two novel evaluation metrics, Otem and Utem,
to evaluate the performance of NMT systems in dealing with over- and under-
translation issues, respectively. Although our proposed metrics are based on lex-
ical matching, they are highly correlated to human evaluation, and very effective
in detecting the over- and under-translation occurring in the translations pro-
duced by NMT systems. Moreover, experimental results show that the coverage
mechanism, CNN-based FairSeq and attention-based Transformer possess spe-
cific architectural advantages on overcoming these undesired defects.

Acknowledgement. The authors were supported by Natural Science Foundation of
China (No. 61672440), the Fundamental Research Funds for the Central Universities
(Grant No. ZK1024), Scientific Research Project of National Language Committee of
China (Grant No. YB135-49), and Research Fund of the Provincial Key Laboratory
for Computer Information Processing Technology in Soochow University (Grant No.
KJS1520). We also thank the reviewers for their insightful comments.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR (2015)

2. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with
improved correlation with human judgments. In: ACL Workshop (2005)

3. Chen, B., Guo, H.: Representation based translation evaluation metrics. In: ACL
(2015)

4. Chen, B., Kuhn, R.: AMBER: a modified BLEU, enhanced ranking metric. In:
WMT (2011)

5. Chen, B., Kuhn, R., Foster, G.: Improving AMBER, an MT evaluation metric. In:
WMT (2012)

6. Chiang, D.: Hierarchical phrase-based translation. Comput. Linguist. 33(2), 201–
228 (2007)

7. Cohn, T., Hoang, C.D.V., Vymolova, E., Yao, K., Dyer, C., Haffari, G.: Incorpo-
rating structural alignment biases into an attentional neural translation model. In:
NAACL (2016)

8. Doddington, G.: Automatic evaluation of machine translation quality using n-gram
co-occurrence statistics. In: HLT (2002)

9. Feng, S., Liu, S., Yang, N., Li, M., Zhou, M., Zhu, K.Q.: Improving attention
modeling with implicit distortion and fertility for machine translation. In: COLING
(2016)

10. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. In: ICML (2017)

11. Giménez, J., Màrquez, L.: Linguistic features for automatic evaluation of heteroge-
nous MT systems. In: WMT (2007)

302 J. Yang et al.

12. Gupta, R., Orasan, C., van Genabith, J.: ReVal: a simple and effective machine
translation evaluation metric based on recurrent neural networks. In: EMNLP
(2015)

13. Guzmán, F., Joty, S., Màrquez, L., Nakov, P.: Pairwise neural machine translation
evaluation. In: ACL (2015)

14. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL
(2003)

15. Leusch, G., Ueffing, N., Ney, H.: A novel string to string distance measure with
applications to machine translation evaluation. In: Mt Summit IX (2003)

16. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: ACL
Workshop (2004)

17. Liu, D., Gildea, D.: Syntactic features for evaluation of machine translation. In:
ACL Workshop (2005)

18. Lo, C.k., Tumuluru, A.K., Wu, D.: Fully automatic semantic MT evaluation. In:
WMT (2012)

19. Lo, C.k., Wu, D.: MEANT: an inexpensive, high-accuracy, semi-automatic metric
for evaluating translation utility based on semantic roles. In: ACL (2011)

20. Lo, C.k., Wu, D.: MEANT at WMT 2013: a tunable, accurate yet inexpensive
semantic frame based MT evaluation metric. In: WMT (2013)

21. Malaviya, C., Ferreira, P., Martins, A.F.: Sparse and constrained attention for
neural machine translation. arXiv preprint arXiv:1805.08241 (2018)

22. Mehay, D.N., Brew, C.: BLEUÂTRE: flattening syntactic dependencies for MT
evaluation. In: MT Summit (2007)

23. Nießen, S., Och, F.J., Leusch, G., Ney, H.: An evaluation tool for machine trans-
lation: fast evaluation for MT research. In: LREC (2000)

24. Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a method for automatic
evaluation of machine translation. In: ACL (2002)

25. Popović, M., Ney, H.: Towards automatic error analysis of machine translation
output. Comput. Linguist. 37(4), 657–688 (2011)

26. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: ACL (2016)

27. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of transla-
tion edit rate with targeted human annotation. In: AMTA (2006)

28. Sundermeyer, M., Alkhouli, T., Wuebker, J., Ney, H.: Translation modeling with
bidirectional recurrent neural networks. In: EMNLP (2014)

29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NIPS (2014)

30. Owczarzak, K., van Genabith, J., Way, A.: Dependency-based automatic evaluation
for machine translation. In: SSST (2007)

31. Tu, Z., Lu, Z., Liu, Y., Liu, X., Li, H.: Modeling coverage for neural machine
translation. In: ACL (2016)

32. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
33. Yang, Z., Hu, Z., Deng, Y., Dyer, C., Smola, A.: Neural machine translation with

recurrent attention modeling. In: EACL (2017)
34. Yu, H., Wu, X., Xie, J., Jiang, W., Liu, Q., Lin, S.: RED: a reference dependency

based MT evaluation metric. In: COLING (2014)
35. Zhang, B., Xiong, D., Su, J.: A GRU-gated attention model for neural machine

translation. arXiv preprint arXiv:1704.08430 (2017)

http://arxiv.org/abs/1805.08241
http://arxiv.org/abs/1704.08430

Improved Neural Machine Translation
with Chinese Phonologic Features

Jian Yang1, Shuangzhi Wu2, Dongdong Zhang3,
Zhoujun Li1(B), and Ming Zhou3

1 Beihang University, Beijing, China
{yangjian123,lizj}@buaa.edu.cn

2 Harbin Institute of Technology, Harbin, China
v-shuawu@microsoft.com

3 Microsoft Researcher Asian, Beijing, China
{dozhang,mingzhou}@microsoft.com

Abstract. Chinese phonologic features play an important role not only
in the sentence pronunciation but also in the construction of a native
Chinese sentence. To improve the machine translation performance, in
this paper we propose a novel phonology-aware neural machine transla-
tion (PA-NMT) model where Chinese phonologic features are leveraged
for translation tasks with Chinese as the target. A separate recurrent
neural network (RNN) is constructed in NMT framework to exploit Chi-
nese phonologic features to help facilitate the generation of more native
Chinese expressions. We conduct experiments on two translation tasks:
English-to-Chinese and Japanese-to-Chinese tasks. Experimental results
show that the proposed method significantly outperforms state-of-the-art
baselines on these two tasks.

Keywords: Neural Machine Translation · Chinese phonology

1 Introduction

Neural Machine Translation (NMT) with the attention-based encoder-decoder
framework [2] has been proved to be the most effective approach to machine
translation tasks on many language pairs [2,13,21,24]. In a conventional NMT
model, an encoder reads in source sentences of variable lengths, and trans-
forms them into sequences of intermediate hidden vector representations. With
weighted attention operations, the hidden vectors are combined and fed to the
decoder to generate target translations.

There have been much work to improve the performance of NMT models,
such as exploring novel network architectures [7,22] and introducing prior knowl-
edge of syntax information [4,6,12,23]. As the translation accuracy of NMT
increases along with new algorithms and models proposed, it still suffers from
the challenge of generating idiomatic and native translation expressions on target
languages. Intuitively, native expressions may relate to phonologic knowledge of a
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 303–315, 2018.
https://doi.org/10.1007/978-3-319-99495-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_26&domain=pdf

304 J. Yang et al.

language beyond the surface form of words. In terms of Chinese, linguists pointed
that Chinese phonologic features play an important role in both the sentence pro-
nunciation and the construction of native Chinese sentences [25]. For instance, in
the translation example of Fig. 1, the meaning of the verb phrase ‘raise money’
can be literally represented in Chinese as “ (raise) (money)”, “
(raise) (money)” or “ (raise) (money)”. But the last two Chinese
expressions are more native than the first one. The reason is that, from Chi-
nese phonologic perspective, the verb-object pair is more common to have the
same number of syllables. Therefore, the disyllable-disyllable collocation “
(raise) (money)” and the monosyllable-monosyllable collocation “ (raise)

(money)” acted as verb-object pairs in the references appear more native than
the disyllable-monosyllable collocation “ (raise) (money)” in the NMT
baseline. There was previous work applying phonologic features to significantly
improve the performance of tasks such as name entity recognition [3]. But Chi-
nese phonologic features have not been explored in translation tasks when Chi-
nese is the target language. In this paper, we propose a novel phonology-aware
neural machine translation (PA-NMT) model where Chinese phonologic features
are taken into account for translation tasks with Chinese as target. A PA-NMT
model encodes source inputs with bi-directional RNNs and associates them with
target word prediction via attention mechanism as in most NMT models, but it
comes with a new decoder which is able to leverage Chinese phonologic features
to help facilitate the generation of target Chinese sentences. Chinese phonology
is equivalently represented by Chinese Pinyin, which includes syllable structure
(the sequence of Chinese words) and intonation. Intonation mainly consists of
high-level tone(first tone), rising tone(second tone), low tone(third tone), falling
tone(fourth tone) and neutral tone. Our new decoder in PA-NMT consists of two
RNNs. One is to generate the sequence of translation words, and the other is to
produce the corresponding Chinese phonologic features, which are further used
to help the selection of translation candidates from a phonological perspective.

Fig. 1. The meaning of the translation in NMT baseline is correct, but its expression
is not native comparing to the references.

We evaluate our method on publicly available data sets with English-Chinese
and Japanese-Chinese translation tasks. Experimental results show that our
model significantly improves translation accuracy over the conventional NMT
baseline systems.

Improved Neural Machine Translation with Chinese Phonologic Features 305

The major contribution of our work is two folds:

(1) We propose a new PA-NMT model to leverage Chinese phonologic features.
Our PA-NMT can encode target phonologic features and use them to help
rank the translation candidates, so that the translation results of PA-NMT
can be more native and accurate.

(2) Our PA-NMT model can achieve high quality results on both English-
Chinese and Japanese-Chinese translation tasks, on publicly available
data sets.

2 Background: Neural Machine Translation

Neural Machine Translation (NMT) is an end-to-end paradigm [2,7,22] which
directly models the conditional translation probability P (Y |X) of the source
sentence X and the target translation Y . It usually consists of three parts: the
encoder, attention mechanism and the decoder.

For the RNN based NMT model, the RNN encoder bidirectionally encodes
the source sentence into a sequence of context vectors H = h1, h2, h3, ..., hm,
where m is the source sentence length and hi = [h i, hi], h i and hi are calculated
by two RNNs from left-to-right and right-to-left respectively. The RNN can be
a Gated Recurrent Unit (GRU) [5] or a Long Short-Term Memory (LSTM) [9]
in practice. In this paper, we use GRU for all RNNs.

Based on the encoder states, the decoder generates target translations with
length n word by word with probability

P (Y |X) =
n∏

j=1

P (yj|y<j, H) (1)

The probability P (yj |y<j ,H) for the jth target word is computed by

P (yj|y<j, H) = g(sj, yj−1, cj) (2)

where g is a nonlinear, potentially multi-layered, function that outputs the prob-
ability of yj , sj is the j-th hidden state of decoder RNN, computed by

sj = fRNN(yj−1, sj−1, cj)

cj is the source context which is calculated by the attention mechanism. The
attention mechanism is proposed to softly align each decoder state with the
encoder states, where the attention score ajk is computed to explicitly quantify
how much each source word contributes to the target word by the following
equations,

ajk =
exp(ejk)∑m
d=1 exp(ejd)

(3)

306 J. Yang et al.

The calculation for ejk can be in several ways [14], in this paper we compute
ejk by

ejk = vT
a tanh(Wasj−1 + Uahk) (4)

where va, Wa, Ua are the weight matrix. The final source context cj is the
weighted sum of all encoder states

cj =
n∑

k=1

ajkhk. (5)

3 Phonology-Aware Neural Machine Translation Model

A phonology-aware neural machine translation (PA-NMT) model is an extension
to the conventional NMT model augmented with Chinese phonologic features.
The Chinese phonology is equivalently represented by Chinese Pinyin, so we
model the phonologic features by Chinese Pinyin associated with tones. For a
Chinese sentence, it has a corresponding Pinyin sequence with the same length.
PT−2,PT−1Given a source sentence X = x1, x2, .., xm, its target translation
Y = y1, y2, .., yn and Y ’s Pinyin sequence P = P1, P2, .., Pn, the goal of our
model is to use P to help the generation of Y . Figure 2 sketches the global
overview of our PA-NMT model. Our model first encode source words in the
conventional way as described in Sect. 2. In decoder, we use two recurrent neural
networks (RNN) to model phonologic features and generate target words. At
each timestep, the word RNN generates a list of translation candidates and the
phonetic RNN helps to re-score the translation candidates based on phonologic
features. Specially, we leverage two attention models for the two decoder RNNs.
One is for modeling the phonetic features, the other is used for target word
generation.

4 Model Encoder

Our encoder follows the standard RNN encoder [2] (left part in Fig. 2), which
bidirectionally reads the input sequence and generate a sequence of context
vectors H = h1, h2, h3, ..., hm, where m is the source sentence length and
hi = [h i, hi], h i and hi are calculated by two RNNs as described in Sect. 2.

4.1 Phonetic-Aware Decoder

Unlike the standard decoder [2], we use phonetic RNN to read Pinyins of history
words and rescore current translation candidates as shown in Fig. 2 right top
part. The right bottom part is a standard RNN decoder. We map the word
dictionary to a Pinyin dictionary one by one, thus the words and Pinyins can

Improved Neural Machine Translation with Chinese Phonologic Features 307

Fig. 2. Overview of PA-NMT model. The phonetic RNN only takes the Pinyin of
history words as input and helps re-score the translation candidates. The word RNN
is a standard RNN decoder with attention model which is omitted in the figure to
simplify readability.

be aligned in their dictionaries. During decoding we force the phonetic RNN to
read Pinyins of previous words generated by the word RNN,

yP
i = σP(yi−1) (6)

where σP is the function which map predicted word to Pinyin which has the
most probability. Thus the decoding procedure of the two RNNs can be aligned.

Although both RNNs have separate parameters, word RNN is in a coherent
feature with phonetic RNN. By denoting the hidden state of phonetic decoder
as sP

i , the calculation in phonetic RNN is as follows,

sP
i = GRUP(sP

i−1, y
P
i−1, c

P
i) (7)

where cP
i is the source context vector and yP

i−1 is the Pinyin of previous word
yi−1. The context vector cP

i depends on the source states [h1, ..., hm] and is
calculated by the attention model,

cP
i =

last∑

j=1

aP
ij · hj (8)

The weight aP
ij of each annotation hj is computed by

aP
ij =

exp(eij)∑last
k=1 exp(eik)

(9)

308 J. Yang et al.

where eij is computed as

eP
ij = vT

Ptanh(WP [sP
i−1; hj]) (10)

With sP
i and cP

i , the phonetic can calculate a probability list by softmax as

p(Pi|P1, ...,Pi−1, x) = g(Pi−1, si, c
P
i) (11)

We rescore the prediction of a new word by adding the log probability of the
two softmax list. Thus the score of the new translation candidate yi is

score = p(yj |y<j ,X) + α log (Pj |P<j ,X) (12)

where Pj is the corresponding Pinyin for the Chinese word yj , and α is a hyper-
parameter which control the importance of Chinese phonologic decoder. We set
α to 0.5 in experiments. We find that when α is too big, it will make model worse.
When α approximates zero, our model fails to extract phonological feature. In
order to better preserve the Pinyin information, we use two attention parameters
to store the Chinese character and pinyin alignment information respectively.

In our model, one RNN extracting phonological features interacts with
another RNN in two aspects. For every timestep, word RNN generates next
input of phonetic RNN which is converted from word to Pinyin to keep consis-
tent with phonetic RNN. While predicting next word, phonetic RNN evaluate
results of word RNN to generate final predicted candidates.

4.2 Chinese Polyphone Disambiguation

When mapping Chinese words to Pinyins, the major problem is that there could
be multiple polyphone candidates for one Chinese word. Given a Chinese sen-
tence, its Pinyin sequence expression is usually deterministic based on the con-
text of the whole sentence. In our work, to align the Pinyin sequence and word
sequence, the Pinyins are generated from the words with context-free informa-
tion. To make disambiguation of Pinyin generation, we heuristically map each
Chinese word to the Pinyin with the highest probability in terms of statistics
over a Chinese monolingual corpus of 20 million sentences.

4.3 Model Training

Different form the objective function to train the conventional NMT model, for
our joint PA-NMT model, we use the sum of log-likelihoods of word sequence
and Pinyin sequence as our objective function:

J(θ) =
∑

(X,Y,P)∈D

log P (P|X) + log P (Y |X) (13)

Thus, our training data format is (source sentence, (target Chinese sentence,
target Chinese Pinyin)). In this way, we incorporate the phonological features
into Chinese sentence generation.

Improved Neural Machine Translation with Chinese Phonologic Features 309

5 Experiment

5.1 Setup

In the English-Chinese task, we use a subset from LDC corpus1 which has around
2.6M sentence pairs from News domain. We use NIST 2008 as testset which
has 4 references for each source sentence. We also make several other testsets
by reversing the direction of Chinese-English sets NIST 2003, NIST 2005 and
NIST 2012, as these sets all have four English reference, we just use the first
reference as English source sentence. We use the WMT2009 English-Chinese set
for development.

In the Japanese-Chinese task, we use 2.87M sentence pairs from ASPEC
Japanese-Chinese corpus [15]2. The development data contains 1, 784 sentences,
and the test data contains 1, 812 sentences with single reference per source
sentence. Both source and target language are tokenized with our in-house tools.

For the training data of target Chinese sentences in both the English-Chinese
task and the Japanese-Chinese task, we covert them into Chinese Pinyin using
our in-house implemented tool based on a statistical translation model with the
accuracy of above 90%.

In the neural network training, the vocabulary size is limited to 30 K high
frequent words for both source and target languages. All low frequent words are
normalized into a special token unk and post-processed by following the work
in [14]. The size of word embedding and transition action embedding is set to
512. The dimensions of the hidden states for all RNNs are set to 1024. All model
parameters are initialized randomly with Gaussian distribution [8] and trained
on a NVIDIA Tesla 1080 GPU. The stochastic gradient descent (SGD) algorithm
is used to tune parameters with a learning rate of 1.0. The batch size is set to
128. In the update procedure, Adadelta [26] algorithm is used to automatically
adapt the learning rate. The beam sizes for both word prediction and transition
action prediction are set to 8 in decoding.

The baselines in our experiments is a neural translation system, denoted by
RNNsearch which is an in-house implementation of the attention-based neu-
ral machine translation model [2] using the same parameter settings as our
PA-NMT model. The evaluation results are reported with the word level and
character level case-insensitive IBM BLEU-4 [17] denoted as word-BLEU and
char-BLEU respectively. A statistical significance test is performed using the
bootstrap resampling method proposed by [11] with a 95% confidence level.

5.2 Evaluation Results

We first evaluate our method on the English-Chinese translation task. The
evaluation results over all test sets against baselines are listed in bottom part
1 LDC2002E17, LDC2002E18, LDC2003E07, LDC2003E14, LDC2005E83, LDC2-

005T06, LDC2005T10, LDC2006E17, LDC2006E26, LDC2006E34, LDC2006E85,
LDC2006E92, LDC2006T06, LDC2004T08, LDC2005T10.

2 http://orchid.kuee.kyoto-u.ac.jp/ASPEC/.

http://orchid.kuee.kyoto-u.ac.jp/ASPEC/

310 J. Yang et al.

Table 1. Evaluation results on English-Chinese and Japanese-Chinese translation tasks
with word-BLEU% and char-BLEU% metrics. The “Average” row in the English-
Chinese part refers to the averaged result of all test sets. The numbers in bold indicate
statistically significant difference (p < 0.05) from baselines.

Japanese-Chinese

RNNsearch PA-NMT

word-BLEU char-BLEU word-BLEU char-BLEU

dev 33.41 44.49 34.03 45.23

devtest 33.38 44.35 34.26 45.26

test 33.53 44.57 34.19 45.26

English-Chinese

RNNsearch PA-NMT

word-BLEU char-BLEU word-BLEU char-BLEU

NIST2003 18.38 30.79 19.34 32.07

NIST2005 17.02 28.87 17.90 30.17

NIST2008 22.71 34.30 23.94 35.10

NIST2012 13.51 23.33 14.37 24.52

Avg. 17.91 29.32 18.89 30.47

of Table 1. From the table, our PA-NMT outperforms RNNsearch on all the
test sets on both word- and char- BLEU scores, where our model surpasses the
baseline most on NIST 2008 set with 1.23 and 0.80 more scores on the two
metrics. In terms of the average word-BLEU scores, our model outperforms the
baseline by 0.98 BLEU points. And on the average char-BLEU scores, our model
also outperforms the baseline by 1.14 BLEU points which shows our proposed
phonology-aware NMT model performs much better than traditional sequence-
to-sequence NMT model.

We also report results on the Japanese-Chinese translation task. The top part
of Table 1 shows the comparison results with the evaluation metrics of word- and
char- BLEU. From the table, our method outperforms the NMT baseline on the
three datasets in terms of both word- and char- BLEUs.

5.3 Case Study

We sampled some translation examples from the test sets to make case study
of how our method can improve the English-Chinese translation task. In the
examples in Table 2, there are merely two phonology aspects we investigated:
auxiliary word and syllable repetition.

Auxiliary word Structural auxiliary words have almost no actual grammatical
meaning but play a role in the language structure. They just express the sound of
the utterance or make the syllable of the language symmetry. In modern Chinese,

Improved Neural Machine Translation with Chinese Phonologic Features 311

Table 2. Translation examples of RNNsearch and our PA-NMT on English-Chinese
translation task. RNNsearch fails to generate pure Chinese sentences. Whereas with
the help of the phonologic knowledge, our PA-NMT can get much better translations.

“ (de)” is one of the important structural auxiliary words. But if the word “
(de)” in a incorrect position, it will disturb syllables of the whole sentence.

As shown in the first example of Table 2, “ ”
can be represented by Pinyin as “wǒmen búnéng liúgěi hòurén de chénzhòng
fùdān”. “ (de)” splits the Pinyin sequence into two parts “wǒmen búnéng
liúgěi hòurén de” and “chénzhòng fùdān”. The former part modifies the latter
part. It will lead a unbalanced pronunciation for native speakers, because both
“wǒmen búnéng liúgěi hòurén de” and “chénzhòng fùdān” have too many sylla-
bles which will make the whole sentence unstable and lead difficulty of speaking.
However, in the sentence “ (búnéng liúgěi hòurén
chénzhòng fùdān)”, “ (chénzhòng)” modify “ (fùdān)”. From seman-
tic perspective, both “wǒmen búnéng liúgěi hòurén de chénzhòng fùdān” and
“wǒmen búnéng liúgěi hòurén chénzhòng de fùdān” have the same meaning in

312 J. Yang et al.

Chinese. “ (chénzhòng)” and “ (fùdān)” are both two-syllable word,
“ (chénzhòng) (fùdān)” will be more easy to read. Our model’s trans-
lation is “ (we) (cannot) (give) (later generations) (leave)

(heavy) (burden)” and it’s Pinyin is “wǒmen búnéng gěi hòuràn
liúxià chénzhòng fùdān”. The sentence don’t have “()de” in a incorrect posi-
tion of the whole sentence which ensure keeping the original meaning unchanged
and make pronunciation of sentence more fluent and authentic in Chinese.

Syllable repetition Syllable repetition also affect the rhythm of sentences. In sec-
ond example, “injuring 37 people” is translated into “ (injuring) (peo-
ple)” in RNNsearch and “ (make) (people) (injured)” in our model.
We are not used to speaking continuous “ren” in Chinese because it can break the
rhythm of whole sentence. Pinyin of “ (injuring) (people)” is “shāngrén
sānsh́ıq̄i rén”. The Pinyin sequence is spoken as two parts “shāngrén” which is
word and “sānsh́ıq̄i rén” which has four syllables. Two adjacent sequence both
have “ (ren)” as their ending. On the one hand, Except some special usage,
we are not used to it. Generally speaking, we can speak “ (make) (peo-
ple) (injured)” or “ (people) (injured)” which avoid continuously
use the same monosyllable word in our daily. On the other hand, “ (make)

(people) (injured)” has three parts “ (make)” , “ (people)” and
“ (injured)”. They all have similar number of syllables. We are accustomed
to using this style which make the whole sentence are more rhythmic.

In the last example, we can see the RNNsearch’s translation express the
same meaning “ (one)” twice. But this kind of expression of Chinese is illegal
in grammar. The first “ (one)” and “ (one of)” behind it together is
regarded as an adjective and play a role in attribute. The first “ (one)”
will result in a semantic and phonological repetition in Chinese. The RNNsearch
consider more on semantic information. PA-NMT consider both semantic fea-
ture and phonological feature. In most real cases, Chinese native speaker rarely
express the similar words twice despite that they play different roles in the sen-
tence. Hence, the Chinese sentence only keeps “ (one of)” translated by
PA-NMT. We can see that PA-NMT avoid the repetition of pronunciation.

These examples mainly reflects in the usage of syllable structure in Chinese.
Our model generates more native Chinese sentence with considering the combi-
nation of syllables and repetition of several syllables. Because Chinese charac-
ters are monosyllables, the syllables in sentences are very important in English-
Chinese translation which considers balancing syllables in sentence. Each word
only has each syllable. Hence, Pinyin is suitable for model to collect phonolog-
ical features. By introducing Chinese phonologic feature, our model can learn
the both semantic and phonetic information.

6 Related Work

Recently, neural machine translation (NMT) has achieved better performance
than SMT in many language pairs [13,16,19,24,27]. A lot of work has been

Improved Neural Machine Translation with Chinese Phonologic Features 313

done to incorporate linguistic knowledge into NMT models [4,6,12,23]. A tree-
to-sequence attentional NMT model is proposed in [6] where source-side HPSG
tree was used. [4] leveraged the phrase-structure trees as in the Penn Chinese
Treebank as prior knowledge for NMT inputs. They proposed a tree-coverage
model to let the attention depend on the source-side syntax. In these models,
the source dependency structure is used. For the target side, [1] proposed to
replace the target sentence with the linearized, lexicalized constituency tree.
[23] proposed to jointly learn target translation and dependency parsing.

Many languages like Russian use morphological information to improve trans-
lation quality in recent work [20]. Chinese linguistic features have been leveraged
to help NLP tasks. For example, Chinese radicals were used as additional fea-
tures to improve machine translation [10,18]. Chinese phonologic features were
explored to address named entity recognition problem [3]. Different from those
work, in this paper we propose to involve Chinese target phonetic features into
NMT model to help translate pure and native Chinese sentences.

7 Conclusion

In this paper, we propose a novel phonology-aware neural machine translation
(PA-NMT) model where Chinese phonologic features are used for translation
tasks with Chinese as target. Our model encodes these features in the NMT
decoder by another recurrent neural network (RNN), aiming to help facilitate
the generation of target Chinese sentences. Our method tries to collect and
use phonological features to optimize language model which is different from
RNNsearch. Experimental results show that our method can boost the trans-
lation generation and achieve significant improvements on the translation qual-
ity of NMT systems. Along this research direction, in future work we will try
to integrate other prior knowledge, such as semantic information, into NMT
systems.

Acknowledgments. This work was supported in part by the Natural Science Foun-
dation of China (Grand Nos. U1636211,61672081,61370126), and Beijing Advanced
Innovation Center for Imaging Technology (No. BAICIT-2016001) and National Key
R&D Program of China (No. 2016QY04W0802).

References

1. Aharoni, R., Goldberg, Y.: Towards string-to-tree neural machine translation. In:
Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pp. 132–140. Association for Computational Lin-
guistics, Vancouver, Canada, July 2017. http://aclweb.org/anthology/P17-2021

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR 2015 (2015)

3. Bharadwaj, A., Mortensen, D., Dyer, C., Carbonell, J.: Phonologically aware neural
model for named entity recognition in low resource transfer settings. In: Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pp. 1462–1472 (2016)

http://aclweb.org/anthology/P17-2021

314 J. Yang et al.

4. Chen, H., Huang, S., Chiang, D., Chen, J.: Improved neural machine translation
with a syntax-aware encoder and decoder. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1936–1945. Association for Computational Linguistics, Vancouver, Canada,
July 2017. http://aclweb.org/anthology/P17-1177

5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of ENMLP 2014, October 2014

6. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural
machine translation. In: Proceedings of ACL 2016, August 2016

7. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122 (2017)

8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. Aistats 9, 249–256 (2010)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Zhang, J., Matsumoto, T.: Improving character-level Japanese-Chinese neural
machine translation with radicals as an additional input feature (2003)

11. Koehn, P.: Statistical significance tests for machine translation evaluation. In:
EMNLP, pp. 388–395. Citeseer (2004)

12. Li, J., Xiong, D., Tu, Z., Zhu, M., Zhang, M., Zhou, G.: Modeling source syntax
for neural machine translation. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 688–697.
Association for Computational Linguistics, Vancouver, Canada, July 2017. http://
aclweb.org/anthology/P17-1064

13. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: Proceedings of EMNLP 2015, September 2015

14. Luong, T., Sutskever, I., Le, Q., Vinyals, O., Zaremba, W.: Addressing the
rare word problem in neural machine translation. In: Proceedings of ACL 2015,
July 2015

15. Nakazawa, T., et al.: ASPEC: Asian scientific paper excerpt corpus. In: Chair,
N.C.C., et al. (eds.) Proceedings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC 2016), pp. 2204–2208. European Language
Resources Association (ELRA), Portoroz, Slovenia, May 2016

16. Neubig, G.: Lexicons and minimum risk training for neural machine translation:
NAIST-CMU at WAT2016. In: Proceedings of the 3rd Workshop on Asian Trans-
lation (WAT2016), Osaka, Japan, December 2016

17. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of ACL 2002 (2002)

18. Kuang, S., Han, L.: Apply Chinese radicals into neural machine translation: deeper
than character level

19. Shen, S., et al.: Minimum risk training for neural machine translation. In: Proceed-
ings of ACL 2016, August 2016

20. Song, K., Zhang, Y., Zhang, M., Luo, W.: Improved English to Russian translation
by neural suffix prediction. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (2018)

21. Tu, Z., Lu, Z., Liu, Y., Liu, X., Li, H.: Modeling coverage for neural machine
translation. In: Proceedings of ACL 2016, August 2016

22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 6000–6010 (2017)

http://aclweb.org/anthology/P17-1177
http://arxiv.org/abs/1705.03122
http://aclweb.org/anthology/P17-1064
http://aclweb.org/anthology/P17-1064

Improved Neural Machine Translation with Chinese Phonologic Features 315

23. Wu, S., Zhang, D., Yang, N., Li, M., Zhou, M.: Sequence-to-dependency neural
machine translation. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 698–707. Association
for Computational Linguistics, Vancouver, Canada, July 2017. http://aclweb.org/
anthology/P17-1065

24. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

25. Xia, L.: A brief discussion on phonology and rhythm beauty in English-Chinese
translation (2003). https://wenku.baidu.com/view/c3666404a200a6c30c225901020
20740be1ecd76.html

26. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

27. Zhang, B., Xiong, D., Su, J., Duan, H., Zhang, M.: Variational neural machine
translation. In: Proceedings of EMNLP 2016, November 2016

http://aclweb.org/anthology/P17-1065
http://aclweb.org/anthology/P17-1065
http://arxiv.org/abs/1609.08144
https://wenku.baidu.com/view/c3666404a200a6c30c22590102020740be1ecd76.html
https://wenku.baidu.com/view/c3666404a200a6c30c22590102020740be1ecd76.html
http://arxiv.org/abs/1212.5701

Coarse-To-Fine Learning for Neural
Machine Translation

Zhirui Zhang1(B), Shujie Liu2, Mu Li2, Ming Zhou2, and Enhong Chen1

1 University of Science and Technology of China, Hefei, China
zrustc11@gmail.com, cheneh@ustc.edu.cn
2 Microsoft Research Asia, Beijing, China

{shujliu,mingzhou}@microsoft.com, limugx@outlook.com

Abstract. In this paper, we address the problem of learning better
word representations for neural machine translation (NMT). We pro-
pose a novel approach to NMT model training based on coarse-to-fine
learning paradigm, which is able to infer better NMT model parameters
for a wide range of less-frequent words in the vocabulary. To this end,
our proposed method first groups source and target words into a set of
hierarchical clusters, then a sequence of NMT models are learned based
on it with growing cluster granularity. Each subsequent model inherits
model parameters from its previous one and refines them with finer-
grained word-cluster mapping. Experimental results on public data sets
demonstrate that our proposed method significantly outperforms base-
line attention-based NMT model on Chinese-English and English-French
translation tasks.

Keywords: Neural machine translation · Coarse-to-fine learning
Hierarchical cluster

1 Introduction

As a recently proposed novel approach to machine translation, and despite its
short history [2,7,14,29], neural machine translation (NMT) has been making
rapid progress from catching up with statistical machine translation (SMT) [3,6,
15] to outperforming it by significant margins on many language pairs [10,18,30,
31,34]. Aside from better translation performance, NMT also demonstrates other
appealing properties such as little requirements for human feature engineering or
prior domain knowledge, so it is also drawing attention from researchers working
on other NLP tasks [24,27,32].

Much recent work in the literature focuses on addressing the issue of
restricted vocabulary size in NMT systems. Popular NMT system implemen-
tations employ moderate-sized vocabularies typically containing most frequent
30K–80K words, and map all the other words to a single <unk> label. Luong
et al. [19] proposed a method which uses lexicon look-up to replace generated
<unk> labels in target translations. This method solves part of the problem,
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 316–328, 2018.
https://doi.org/10.1007/978-3-319-99495-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_27&domain=pdf

Coarse-To-Fine Learning for Neural Machine Translation 317

but the translation still cannot be well recovered when the unknown word rate
is high, due to the fact that too many words with distinct usages sharing a
single <unk> label leads to a substantial amount of ambiguities. Jean et al.
[13] tackled the small vocabulary size limit with an efficient softmax approxi-
mation algorithm, which enables to use very large vocabulary in NMT systems.
Although this method effectively reduces the unknown word rate and brings fur-
ther improvement to translation accuracy, we note that the inclusion of more
words in a larger vocabulary intensifies the challenge of learning accurate usage
for the less-frequent words, even if they are not viewed as unknown words. For
example, the Chinese word (alter), which appears near the tail of a 50K-
word vocabulary in terms of frequency, is such a long-tail less-frequent word. Due
to its small number of occurrences in the training data, the learnt representation
in a conventional NMT model is very likely to overfit to its specific usage in the
training corpus, and as a result usually left ignored in unseen contexts during
decoding. Figure 1 shows an incorrect translation example caused by this word.

Fig. 1. Example of incorrect translation of less-frequent word.

In this paper, we present a novel NMT training method based on coarse-to-
fine paradigm, which is able to learn better NMT model parameters for less-
frequent words that do not have sufficient usage coverage in the training data.
The presented method is inspired by a common linguistic observation that a
group of words belonging to the same syntactic/semantic class, for instance,
large, enormous, gigantic, mammoth, tend to share certain properties such as col-
locations and translations, and are expected to be close to each other in embed-
ding space. This gives the opportunity that if we can assign a less-frequent word
to an appropriate class whose representation can be more accurately learned, it
could benefit from inheriting part of the class’ representation which generalizes
better to unseen contexts. Our proposed method works as follows: at first, source
and target words are grouped into a set of hierarchical tree-structured clusters
based on bilingual data, then a sequence of NMT models are learned based on
sets of clusters at different levels of the clustering tree with finer and finer granu-
larity. When training each model, the training data is first transformed such that
all words are replaced with their corresponding clusters at the specified hierar-
chical level. Every cluster’s representation is initialized with its parent cluster’s
representation learned by the previous model, then the standard NMT training
process is performed to refine the model parameters.

318 Z. Zhang et al.

We conduct experiments on public Chinese-English and English-French
translation data sets. Experimental results demonstrate that our proposed
method significantly outperforms baseline attention-based NMT model on these
two translation tasks.

2 Neural Machine Translation

In this work, we concentrate on applying our coarse-to-fine learning method to
sequence-to-sequence NMT models. In particular, we follow the neural machine
translation architecture proposed by Bahdanau et al. [2].

Neural machine translation system is implemented as an encoder-decoder
framework with recurrent neural networks (RNN), which can be Gated Recurrent
Unit (GRU) [7] or Long Short-Term Memory (LSTM) [12] networks in practice.
The encoder reads in the source sentence X = (x1, x2, ... , xT) and transforms
it into a sequence of hidden states h = (h1, h2, ... , hT), using a bi-directional
recurrent neural network. The decoder uses another recurrent neural network to
generate a corresponding translation Y = (y1, y2, ... , yT ′) based on the encoded
sequence of hidden state h. At each time i, the conditional probability of each
word yi from a target vocabulary Vy is computed by

p(yi|y<i, h) = g(yi−1, zi, ci) (1)

where zi is the ith hidden state of the decoder and is calculated conditional
on the previous hidden state zi−1, previous word yi−1 and the source context
vector ci:

zi = RNN(zi−1, yi−1, ci) (2)

In attention-based NMT, the context vector ci is a weighted sum of the hidden
states (h1, h2, ... , hT) with the coefficients α1, α2, ... , αT computed by

αt =
exp (a(ht, zi−1))∑
k exp (a(hk, zi−1))

(3)

where a is a feed-forward neural network with a single hidden layer.
The whole model is jointly trained to maximize the conditional log-

probability of the correct translation given a source sentence with respect to
the parameters θ of the model:

θ∗ = arg max
θ

N∑

n=1

|yn|∑

i=1

log p(yn
i |yn

<i, x
n) (4)

where (xn, yn) is the n-th training pair of sentences, and |yn| is the length of the
n-th target sentence yn.

Note that in this model, the dominant parts of the parameters θ are word
embedding matrices and weight matrix for the output layer. All of them are
closely related to representations of source and target words, therefore learning
accurate parameters for them plays a critical role in searching for good NMT
models.

Coarse-To-Fine Learning for Neural Machine Translation 319

3 Coarse-To-Fine Learning for NMT

Conceptually there are two major steps in our coarse-to-fine learning method:
constructing a hierarchical cluster tree and learning a sequence of gradually
refined NMT models. Figure 2 shows the overview framework of our approach.
Based on bilingual data, a set of cluster hierarchies {H0, . . . , Hl} is formed with
increasing granularity and finally expands to the full vocabulary V . M0, . . . ,Ml

are NMT models which use H0, . . . , Hl as vocabularies at different level respec-
tively and trained by bilingual data. The following of this section details how
these two tasks are performed.

Fig. 2. The coarse-to-fine learning framework for neural machine translation.

3.1 Hierarchical Clustering

In this paper, we adopt the agglomerative hierarchical clustering algorithm to
build cluster hierarchies for a given set of words.

Agglomerative hierarchical clustering algorithm works in a bottom-up man-
ner. It starts with every word as a singleton cluster:

C0 = {a0 = {w0}, a1 = {w1}, ..., an = {wn}} (5)

where C0 is the set of initial clusters, ai stands for cluster i, wi denotes word
in V and n = |V | is the vocabulary size. Then the algorithm merges pairs of
clusters step by step, until all clusters have been merged into a single cluster
that contains all words. Specifically, at each step k, we have the set of clusters
Ck = {..., au, ..., av, ...}. We calculate the similarity for each pair of clusters in

320 Z. Zhang et al.

Ck and combine two closest clusters au, av to form a new cluster a′ = (au, av).
The new set of clusters Ck+1 can be represented as:

Ck+1 = (Ck \ {au, av}) ∪ {a′} (6)

It can be easily seen that each combination reduces the number of clusters by
one. So this clustering algorithm needs n steps to finish the entire procedure
in total, and we have |Ck| = n − k.

The similarity between two clusters is measured by the cosine metric of clus-
ter embeddings. At first, cluster embeddings in C0 are initialized with word
embeddings, which are trained from bilingual data with an improved skip-gram
model proposed by Luong et al. [17]. In the following steps, the embedding of a
new cluster is computed as the average of its two sub-clusters, so embedding of
every cluster can be computed in a bottom-up order.

Apparently, the clustering process described above generates too many clus-
ter sets, and it is not necessary to use all of them. Instead, before starting NMT
model training, a subset of the agglomerative hierarchical clustering results needs
to be selected for actual model refinement purpose.

Concretely, H0, . . . , Hl are selected in a way that the number of clusters will
grow at a geometric rate γ. Let n0 = |H0| be the size of initial cluster H0, Hi

can be determined by the following condition

Hi = Ck, n0γ
i = |Ck| (7)

For the last cluster set Hl, as a special case, we have Hl = C0 = V while
n0γ

l ≥ |C0|.
Note that the selected cluster sets H0, . . . , Hl remain to be a tree structure

with each cluster set Hi representing one hierarchy of the tree. For any cluster
cp ∈ Hj , there must be a parent cluster cq ∈ Hi satisfying cp ⊆ cq if j > i.

In NMT task, the above-mentioned process is extended to support to use
hierarchical clusters to refine vocabularies on both source and target side. First,
we build two cluster trees, S and T for source and target words respectively,
then each hierarchy of the final cluster tree is constructed by combining the
corresponding hierarchy of these two cluster trees: Hi = (Si, Ti).

3.2 NMT Model Refinement

When NMT model Mi−1 finishes training, model Mi will be learned based on the
selected cluster set Hi. The learning process mostly follows the standard training
procedure, but it differs from conventional NMT training in two aspects.

The first difference is the requirement for vocabulary mapping, because model
Mi is expected to be trained on the vocabulary defined by Hi instead of the origi-
nal vocabulary V . So a pre-processing step is needed to convert every word token
in the training data into its corresponding cluster. Let (xn, yn) and (cxn, cyn)
denote a word sentence pair and its cluster sentence pair respectively, and θi

Coarse-To-Fine Learning for Neural Machine Translation 321

denote the model parameters of model Mi, the objective function of NMT model
training should be updated to be

θ∗
i = arg max

θi

N∑

n=1

|yn|∑

j=1

log p(cyn
j |cyn

<j , cx
n)

The second difference is related to the model parameter initialization. In a
conventional NMT model, all parameters are randomly initialized with some
heuristics [11]. But in the coarse-to-fine learning process, only the first model
M0 is initialized in this way. All the subsequent models inherit their parameters
from its previous model, that is, Mi+1’s parameters will be initialized with ones
of Mi.

Not all parameters in model Mi+1 can be inherited from Mi directly because
their parameter structures are not fully compatible. Mi+1 uses a larger vocab-
ulary and thus has more parameters. Extra parameters in Mi+1 belong to 3
categories: source word embedding, target word embedding, and weight matrix
of output layer.

Our solution to this problem is to leverage the inclusion relations between
clusters in Hi and Hi+1. The basic principle is that all sub-clusters in Hi+1

inherit parameters of the same category from their parent cluster in Hi. Sup-
pose E(Hi) and E(Hi+1) are embedding matrices of Mi and Mi+1, Wo(Hi) and
Wo(Hi+1) denote weight matrices of output layers of Mi and Mi+1, and cq is
parent cluster of {cp1 , cp2 , cp3}. Formally, for any cluster cp ∈ Hi+1, and its
parent cluster cq ∈ Hi, we have

E(Hi+1)[cp] = E(Hi)[cq] (8)

WT
o (Hi+1)[cp] = WT

o (Hi)[cq] (9)

Note that Eq. 8 works for both source and target clusters, while Eq. 9 is only
applied to target clusters.

We notice that changing vocabulary and migrating related parameters during
model transition could lead to temporary deviations in model prediction, but the
deviations will be automatically fixed by later training process.

We use a validation set D to determine when to transit model learning from
Mi to Mi+1. For each epoch during the training process, we check the perplexity
change ratio ΔPPL from the last epoch: if ΔPPL is smaller than a pre-specified
threshold α, the training for Mi finishes and Mi+1 is started in the next epoch.

Algorithm 1 shows the overall training procedure. Lines 2–6 perform model
initialization—except for the first model M0, every other model is initialized
with its previous model and parameter transformation function Γ defined in
Eqs. 8 and 9. Word-cluster mapping is done in line 7, and lines 8–15 handle
the learning of model Mi over training data T , in which α is the threshold for
minimum perplexity reduction.

322 Z. Zhang et al.

Algorithm 1. Coarse-To-Fine Training Algorithm for NMT
Input : Bilingual data T = {(xn, yn)};

Validation set D;
Cluster hierarchies H0, . . . , Hl;

Output: A sequence of NMT models M0, . . . , Ml;
1 for i ← 0 to l do
2 if i == 0 then
3 Initialize θ0 in M0 ;
4 else
5 θi = Γ (θi−1, Hi−1, Hi) ;
6 end
7 {(cxn, cyn)} = Map({(xn, yn)}, Hi);
8 for e ← 0 to max epoch do
9 θe

j = arg max
θj

∑
T log p(cyn|cxn) ;

10 pple = CalcPerpelxity(D, θe
j) ;

11 ΔPPL = pple−1−pple

pple−1 ;

12 if ΔPPL < α then
13 break ;
14 end

15 end

16 end

4 Experiments

4.1 Setup

We evaluate our approach on two translation tasks: Chinese-English and English-
French. In all experiments, we use BLEU [20] as the automatic metric for trans-
lation quality evaluation.

Dataset. For Chinese-English translation, we select our training data from LDC
collection which consists of 5.2M sentence pairs with 102.1M Chinese words and
107.7M English words respectively. NIST OpenMT 2006 evaluation set is used
as validation set, and NIST 2003, NIST 2005, NIST 2008 datasets as test sets.

For English-French translation, we choose a subset of the WMT 2014 training
corpus used in Jean et al. [13]. This training corpus contains 12M sentence pairs
with 304M English words and 348M French words. The concatenation of news-
test 2012 and news-test 2013 is used as the validation set and news-test 2014 as
the test set.

For each language pair, both source and target words are grouped into a clus-
ter hierarchy respectively with agglomerative hierarchical clustering algorithm
based on word embeddings. We utilize improved skip-gram model proposed by
Luong et al. [17] to train word embedding on bilingual data.

Coarse-To-Fine Learning for Neural Machine Translation 323

Training Setting. We limit the vocabulary to contain up to 80 K most frequent
words on both the source and target side, and convert remaining words into the
<unk> token. In practice, we note that some of the most frequent words such as
functional words, cannot gain benefit from the coarse-to-fine learning process, so
we keep the 5,000 most frequent words to be singleton clusters throughout model
refinement process, and all the hierarchical clustering and cluster set selection
tasks are only performed on the remaining part of the vocabulary.

We adopt the RNNSearch model proposed by Bahdanau et al. [2] as our
baseline, which uses a single layer GRU for encoder and decoder. The dimension
of word embedding (for both source and target words) is set to 512 and the size
of hidden layer is set to 1024. The matrix and vector parameters are initialized
using a normal distribution with a mean of 0 and a variance of

√
6/(drow + dcol),

where drow and dcol are the number of rows and columns in the structure [11].
Each NMT model is trained on a Tesla K40m GPU and optimized with the
Adadelta [35] algorithm with mini-batch size set to 80. At test time, beam
search is employed to find the best translation with beam size 12 and trans-
lation probabilities normalized by the length of the candidate translations. In
post-processing step, we follow the work of Luong et al. [19] to handle <unk>
replacement. Other hyper-parameters used in clustering and model refinement
set as α = 0.05, n0 = 100 and γ = 10. In addition, we define every 1M sentences
as an epoch in coarse-to-fine training process.

4.2 Results on Chinese-English Translation

Table 1 shows the evaluation results from different models on NIST datasets,
in which CTF-NMT represents our coarse-to-fine methods for NMT training.
In addition, we also compare our method with sub-word models - Byte Pair
Encoding (BPE) [26]1. All the results are reported based on case-insensitive
BLEU.

We can observe that CTF-NMT can bring significant improvement across
different test sets. These results demonstrate that coarse-to-fine training process
can learn better NMT model parameters for less-frequent words so that NMT

Table 1. Case-insensitive BLEU scores (%) on Chinese-English translation. The “Aver-
age” denotes the average results of all datasets.

System NIST2006 NIST2003 NIST2005 NIST2008 Average

RNNSearch 36.97 39.17 38.97 29.35 36.11

RNNSearch + BPE 37.58 39.73 39.87 30.48 36.92

CTF-NMT 39.14 41.69 41.02 32.66 38.63

CTF-NMT + BPE 39.72 42.20 42.24 32.90 39.26

1 We learn BPE models on pre-processed source and target sentences respectively with
78K merge operations.

324 Z. Zhang et al.

can yield higher quality translations. Besides, our approach achieves 1.71 points
BLEU improvement than RNNSearch+BPE on average. Since BPE method
splits up all words to sub-word units and expects to learn better representa-
tion for similar words that share some sub-word units, there still exist plenty
syntactic or semantic similar words that do not share any sub-word units, like
apple and orange. Our approach uses pre-trained word embedding to better
characterize relations between these words and leverage it in NMT training,
thus NMT can learn better representation for similar words. Actually, our app-
roach also can be complementary to BPE method. We apply this method in
the data preprocessed by BPE method, called CTF-NMT + BPE. In this way,
another 0.63 BLEU points improvement can be achieved, which adds up to 3.15
points BLEU improvement over baseline NMT model on average. This confirms
the effectiveness of combining our method with sub-word models.

4.3 Results on English-French Translation

For English-French translation task, in addition to the baseline RNNSearch sys-
tem, we also include results from other existing NMT systems. Experiment
results are shown in Table 2. In order to be comparable with other work, all
the results are reported based on case-sensitive BLEU.

First, we can see that the baseline NMT model with 80K vocabulary achieves
comparable results with Jean et al. [13], which use a larger vocabulary. Also, our
CTF-NMT significantly outperforms baseline NMT model with 1.34 points on
test set, while achieves 0.52 points improvement than RNNSearch+BPE. When
we combine our approach with BPE method, we obtain the best BLEU score
36.12 in Table 2. We believe our approach can get more improvements with deep
model in future experiments.

Table 2. Case-sensitive BLEU scores (%) on English-French translation. The
“PosUnk” denotes Luong et al. [19]’s technique of handling rare words. The “MRT”
denotes minimum risk training proposed in Shen et al. [28]. The “LAU” represents
Linear Associative Unit proposed in Wang et al. [33].

System Architecture Vocab Size Test

Sutskever et al. [29] LSTM with 4 layers 80K 30.59

Luong et al. [19] LSTM with 6 layers + PosUnk 40K 32.70

Shen et al. [28] Gated RNN with search + PosUnk + MRT 30K 34.23

Jean et al. [13] Gated RNN with search + PosUnk + LV 500K 34.60

Wang et al. [33] LAU with 4 layers 30k 35.10

Zhou et al. [37] LSTM with 16 layers + F-F connections 30k 35.90

RNNSearch Gated RNN with search + PosUnk 80K 34.33

RNNSearch + BPE Gated RNN with search + BPE 80K 35.15

CTF-NMT Gated RNN with search + PosUnk 80K 35.67

CTF-NMT + BPE Gated RNN with search + BPE 80K 36.12

Coarse-To-Fine Learning for Neural Machine Translation 325

Figure 3 shows both perplexity and translation BLEU changes at different
stages of model training for two translation tasks. To make model training with
different cluster hierarchies comparable, we use word-level perplexity, which can
be computed by the assumption that the probability of all words in one cluster
is uniform. The BLEU is also computed at word level. We replace the generated
target cluster with a word which has highest unigram probability in the cluster.
From Fig. 3, it can be seen that the coarse-to-fine learning method performs con-
sistently better (for both perplexity and BLEU) than the baseline NMT model
throughout the model training process. Another observation is that, compared
with the baseline system, the coarse-to-fine method needs to learn from similar
amount of data (and similar training time) to achieve peak translation accuracy
on validation set.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

BL
EU

(%
)

Pe
rp

le
xi

ty

Mini-batches

RNNSearch PPL
C2F-NMT PPL
RNNSearch BLEU
C2F-NMT BLEU

(a) Chinese-English Translation

20

21

22

23

24

25

26

27

28

29

30

31

32

6

7

8

9

10

11

12

13

14

15

16

17

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

BL
EU

(%
)

Pe
rp

le
xi

ty

Mini-batches

RNNSearch PPL
C2F-NMT PPL
RNNSearch BLEU
C2F-NMT BLEU

(b) English-French Translation

Fig. 3. The perplexity (PPL) and BLEU scores on Chinese-English and English-French
validation sets for RNNSearch and CTF-NMT as training progresses.

5 Related Work

This has been a long history that coarse-to-fine method is used in computer
vision research, such as face detection [9] and object recognition [21]. This
method has also been successfully applied to NLP tasks such as syntactic pars-
ing [22]. Charniak et al. [4] propose a multilevel coarse-to-fine PCFG parsing
algorithm, aiming at improving the efficiency of search for the best parse. Petrov
et al. [23] propose a coarse-to-fine approach to statistical machine translation.
They utilize an encoding-based language projection in conjunction with order-
based projections to achieve speed-ups in decoding.

As a new paradigm for MT, neural machine translation has drawn more
and more attention from a wide range of researchers. Resolving the OOV issue
in NMT system is one of the focuses. One line of efforts [13,19] concentrated
on rare words that do not exist in the system vocabulary. Jean et al. [13]
explore the way based on importance sampling to directly use large vocabulary.

326 Z. Zhang et al.

Luong et al. [19] propose replacement methods to handle rare words. In another
direction, Costajussa et al. [8] and Sennrich et al. [26] propose character-based
or subword-based neural machine translation to tackle the rare words problem.
The character-based or subword-based encoding, from certain perspective, per-
forms implicit clustering on words and affixes, and it is especially useful for
morphologically rich languages such as German and Russian.

Recently, Arthur et al. [1] propose to incorporate external resources into
NMT systems. Their approach employs external translation lexicons to rectify
the probability distribution of rare words in the output layer. Zhang et al. [36]
propose a method that leverages synthesized data to incorporate bilingual dictio-
naries in NMT systems, following previous work of exploiting large-scale mono-
lingual data [5,25]. Li et al. [16] propose another method for OOV translation in
NMT system: OOV words are replaced with similar in-vocabulary words during
training and decoding, and the replaced words are recovered based on align-
ment information in decoding. Theoretically, their method can be used in in-
vocabulary less-frequent words, but it is usually difficult to determine the set of
words to be replaced, and requirement for accurate similar words brings more
complexity to the training.

6 Conclusion

In this paper, we have presented a novel coarse-to-fine learning framework for
neural machine translation. With the help of hierarchical clusters of words, our
proposed method constructs a sequence of NMT models where each model refines
its previous one. The key step is that each subsequent model inherits its model
parameters according to cluster hierarchical relations, so that more precise rep-
resentations can be learnt for less-frequent words in the vocabulary. Empirical
evaluations are conducted in Chinese-English and English-French translation
tasks on public available data sets. Experimental results demonstrate that our
proposed method significantly outperforms baseline attention-based NMT model
on these tasks.

In the future work, we plan to extend our approach to other NLP tasks and
sequence-to-sequence models. Another direction we are interested in is to explore
the possibility to leverage the coarse-to-fine method in incremental NMT model
learning to speed-up the training process.

References

1. Arthur, P., Neubig, G., Nakamura, S.: Incorporating discrete translation lexicons
into neural machine translation. In: EMNLP (2016)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. CoRR abs/1409.0473 (2014)

3. Brown, P.F., Pietra, S.D., Pietra, V.J.D., Mercer, R.L.: The mathematics of statis-
tical machine translation: Parameter estimation. Computational Linguistics (1993)

4. Charniak, E., et al.: Multilevel coarse-to-fine PCFG parsing. In: HLT-NAACL
(2006)

Coarse-To-Fine Learning for Neural Machine Translation 327

5. Cheng, Y., et al.: Semi-supervised learning for neural machine translation. In: ACL
(2016)

6. Chiang, D.: Hierarchical phrase-based translation. Computational Linguistics
(2007)

7. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP (2014)

8. Costa-jussà, M.R., Fonollosa, J.A.R.: Character-based neural machine translation.
In: ACL (2016)

9. Fleuret, F., Geman, D.: Coarse-to-fine face detection. Int. J. Comput. Vis. 41,
85–107 (2001)

10. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.: Convolutional
sequence to sequence learning. In: ICML (2017)

11. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS (2010)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
(1997)

13. Jean, S., Cho, K., Memisevic, R., Bengio, Y.: On using very large target vocabulary
for neural machine translation. In: ACL (2015)

14. Kalchbrenner, N., Blunsom, P.: Recurrent continuous translation models. In:
EMNLP (2013)

15. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: HLT-
NAACL (2003)

16. Li, X., Zhang, J., Zong, C.: Towards zero unknown word in neural machine trans-
lation. In: IJCAI (2016)

17. Luong, T., Pham, H., Manning, C.D.: Bilingual word representations with mono-
lingual quality in mind. In: HLT-NAACL (2015)

18. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: EMNLP (2015)

19. Luong, T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare
word problem in neural machine translation. In: ACL (2015)

20. Papineni, K., Roucos, S.E., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: ACL (2002)

21. Pedersoli, M., Vedaldi, A., Gonzàlez, J., Roca, F.X.: A coarse-to-fine approach for
fast deformable object detection. In: CVPR (2011)

22. Petrov, S.: Coarse-to-fine natural language processing. In: Theory and Applications
of Natural Language Processing (2009)

23. Petrov, S., Haghighi, A., Klein, D.: Coarse-to-fine syntactic machine translation
using language projections. In: EMNLP (2008)

24. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. In: EMNLP (2015)

25. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models
with monolingual data. In: ACL (2016)

26. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: ACL (2016)

27. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation.
In: ACL (2015)

28. Shen, S., et al.: Minimum risk training for neural machine translation. In: ACL
(2016)

29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NIPS (2014)

328 Z. Zhang et al.

30. Tu, Z., Lu, Z., Liu, Y., Liu, X., Li, H.: Modeling coverage for neural machine
translation. In: ACL (2016)

31. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
32. Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., Hinton, G.E.: Grammar

as a foreign language. In: NIPS (2015)
33. Wang, M., Lu, Z., Zhou, J., Liu, Q.: Deep neural machine translation with linear

associative unit. In: ACL (2017)
34. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap

between human and machine translation. CoRR abs/1609.08144 (2016)
35. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701

(2012)
36. Zhang, J., Zong, C.: Bridging neural machine translation and bilingual dictionaries.

CoRR abs/1610.07272 (2016)
37. Zhou, J., Cao, Y., Wang, X., Li, P., Xu, W.: Deep recurrent models with fast-

forward connections for neural machine translation. In: TACL (2016)

Source Segment Encoding for Neural
Machine Translation

Qiang Wang1,2(B), Tong Xiao1,2, and Jingbo Zhu1,2

1 Natural Language Processing Lab, Northeastern University, Shenyang, China
{xiaotong,zhujingbo}@mail.neu.edu.cn

2 NiuTrans Inc., Shenyang, China
wangqiangneu@gmail.com

Abstract. Sequential word encoding lacks explicit representations of
structural dependencies (e.g. tree, segment) over the source words in neu-
ral machine translation. Instead of using source syntax, in this paper we
propose a source segment encoding (SSE) approach to modeling source
segments in encoding process by two methods. One is to encode off-
the-shelf n-grams of the source sentence into original source memory.
The other is to jointly learn an optimal segmentation model with the
translation model in an end-to-end manner without any supervision of
segmentation. Experimental results show that the SSE method yields an
improvement of 2.1+ BLEU points over the baselines on the Chinese-
English translation task.

Keywords: Source segment encoding · Structure learning
Neural machine translation

1 Introduction

Neural machine translation (NMT) exploits an encoder-decoder framework to
model the whole translation process in an end-to-end fashion, and has achieved
state-of-the-art performance in many language pairs [17,19,22]. For the encoder,
a popular way is to treat the source sentence as a sequence of words. In a view
point of memory network [18], the encoder reads the source sentence, and then
builds a source memory where each memory cell is corresponding to a source
word, referred to as a word-level cell.

Recent studies suggested that the sequential word encoding lacks explicit
representations of the structural dependencies (e.g. tree, segment) among the
source words [4,7,8,13]. Many studies resort to source syntax to improve word-
level representation by enhancing word embedding [13,16], guiding encoding
order [4], or learning latent graph structure of the source-side [7]. Most of these
works are required to prepare a good source parser in advance, which is scarce
for some languages and may cause the error propagation for the downstream
applications. Alternatively, [8] propose to model latent source-side segment in the
attention layer of NMT. But their method slows down the system significantly.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 329–340, 2018.
https://doi.org/10.1007/978-3-319-99495-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_28&domain=pdf

330 Q. Wang et al.

In this paper, we develop a source segment encoding (SSE) approach to
enhancing original word-level representation by using source segment. In form,
the source segment consists of a subsequence of consecutive source words1. The
segment has the advantage of putting more emphasis on local dependencies over
the words, which is proved helpful in NMT [8]. In SSE, we propose two meth-
ods to incorporate the source segment in encoding. One is to directly encode
off-the-shelf n-grams of the source sentence into the source memory, where a
n-gram is equivalent to a segment. However, the size of segments explodes as
n gets larger. To alleviate this problem, we present the other method which
jointly learns a segmentation model with the translation model to capture an
optimal segmentation of the source sentence. The segmentation model is trained
end-to-end without any supervisions of segmented sentences. Afterwards, the
source memory is enhanced by combining the original word-level cells with the
representations of all segmentations (referred to as segment-level cells). In addi-
tion, our model is light and requires almost no modification of the standard
decoder network. We evaluate our model on Chinese→English translation task.
Experimental results on various test sets show that our model yields an average
improvement of 2.1+ BLEU points over the baseline.

2 Attention-Based NMT

Given a source sentence X = (x1, . . . , xLs
), and a target sentence Y =

(y1, . . . , yLt
), the translation probability P (Y |X) can be decomposed by the

chain rule:

P (Y |X) =
Lt∏

t=1

P (yt|y<t,X) (1)

where y<t = (y1, . . . , yt−1) denotes the previous translated sequence. The NMT
directly models the conditional probability as:

P (yt|y<t,X) = φ(H, zt−1, e
′
yt−1

) (2)

where H is the source memory of X, zt−1 is the target hidden state at the
decoding time step t − 1, e′

yt−1
is the target word embedding of the previous

generated word, φ(·) is the function of predicting the next target word.
Following the attention-based model presented in [1], we model H using a

bidirectional recurrent neural network (bi-RNN) consisting of a forward RNN
and a backward RNN [15] to represent a source sentence as a sequence of memory
cells. More formally, H = (h1, . . . , hLs

), where hi = [
−→
h i;

←−
h i] is a memory cell

constructed by the concatenation of the forward annotation vector
−→
h i and the

backward annotation vector
←−
h i:
−→
h i =

−→
f (exi

,
−→
h i−1)

←−
h i =

←−
f (exi

,
←−
h i+1)

(3)

1 Actually, the basic unit can be smaller than word, e.g. subword or character. We use
word as the basic unit of source language in this paper.

Source Segment Encoding for Neural Machine Translation 331

where
−→
f (·) and

←−
f (·) are two gated recurrent units (GRUs) [2], exi

is the source
word embedding of word xi.

At the decoding time step t, the function φ generates the distribution of next
target word using a conditional GRU2:

φ(H, zt−1, e
′
yt−1

) ∝ g(e′
yt−1

, zt, ct) (4)

where g(·) is a two-layer feedforward neural network, and ct is the context vector
as the source condition linking up the encoder and the decoder. A two-layer GRU
is used to calculate zt. The first GRU layer produces the intermediate state z̃t
based on the input (zt−1, e

′
yt−1

), and the second GRU layer produces the current
state zt with the input (z̃t, ct). ct is defined as a weighted sum of each cell in H:

ct =
Ls∑

j=1

at,j ∗ hj (5)

where at,j is the alignment weight of the j-th source word and t-th target word.
at,j is normalized over (x1, . . . , xLs

) with a single-layer feedforward neural net-
work r:

at,j =
exp{r(z̃t, hj)}∑Ls

k=1 exp{r(z̃t, hk)}
(6)

3 Source Segment Encoding

For the conventional attention model in NMT (as described in Sect. 2), every
memory cell hi makes a contribution to the context vector ct by matching its own
state hi with the decoding state z̃t, which is a case of content-based addressing
[6]. Intuitively, more cells can produce more substantial context due to various
views provided by different cells. However, for the standard model, the source
memory is built by word-level cells and the number of memory cells is limited to
be equal to the source words count. On the other hand, a segment corresponds to
a block of memory cells in a memory network. Introducing segment also makes
sense as a segment contains more hierarchical and structural information than
an independent cell. As a result, in our approach, we extend the source memory
by incorporating the segment-level cells.

Given a source sentence X, the set of all segments in X is S(X) = {Xj
i },

where Xj
i = (xi, . . . , xj), 1 ≤ i ≤ j ≤ Ls. Taking computing cost into consider-

ation, we choose a subset S̃(X) ⊂ S(X) to delegate the set of whole segments,
where |S̃(X)| = m. Then we define a function ψ(·) to encode every segment
Sk ∈ S̃(X) into a vector sk, where |sk| = |hi| = 2d, and d is the dimension
of

−→
h i. Let H = (h1, . . . , hLs

) be the baseline word-level cells as described in

2 We follow the implementation in dlmt, referred to https://github.com/nyu-dl/dl4mt-
tutorial/blob/master/docs/cgru.pdf.

https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf

332 Q. Wang et al.

Sect. 2, and S = (s1, . . . , sm) be the segment-level cells generated by ψ(·), we
concatenate all encodings together as the final source memory H∗:

H∗ =[H;S]
=[(h1, . . . , hLs

); (s1, . . . , sm)]
(7)

The advantage is that the number of the cells can be arbitrary, and is not
restricted to the length of the source sequence. Note that as we do not change
the model parameters of the original encoding, we can reuse the baseline model
when training the SSE model. Then the attention model computes the alignment
weights as usual but with the new source memory H∗ = (h∗

1, . . . , h
∗
Ls+m)3:

a∗
t,j =

exp{r(z̃t, h∗
j)}∑Ls+m

k=1 exp{r(z̃t ∗ h∗
k)}

(8)

where

c∗
t =

Ls+m∑

j=1

a∗
t,j ∗ h∗

j (9)

In the following we describe two methods for producing S = (s1, . . . , sm).

3.1 N-Gram-Based SSE

In phrase-based Statistical Machine Translation [9], all source phrases limited by
a max length are memorized explicitly in a big phrase table. When translating
a sentence, the decoder accesses the table and then generates corresponding
translations. Inspired by this, a direct way to construct S̃(X) is to use a variety
of off-the-shelf n-grams. More specifically, given the order of n-gram (i.e., n), we
can generate all possible segments S̃ng(X) = {xj

i} subject to j − i + 1 ≤ n.
Next, the core problem is how to represent a segment. Instead of encod-

ing a segment using the last hidden state of recurrent neural network [2],

Fig. 1. An example of RNN-MINUS for encoding a segment. The dotted rounded
rectangle denotes the encoded segment. <s> and </s> represent the beginning and
ending of a sentence respectively, with dummy vectors.

3 We share the same model parameters for aligning the word-level cells and the
segment-level cells. Independent parameters may bring further improvement, which
needs our further investigation.

Source Segment Encoding for Neural Machine Translation 333

we follow the span encoding in syntactic parsing [3,21]. Here we refer to
this method as RNN-MINUS. Given the bidirectional RNN encoding H =
{[

−→
h 1;

←−
h 1], . . . , [

−→
h Ls

;
←−
h Ls

]}, RNN-MINUS encodes a segment xj
i as:

ψng(x
j
i) = [

−→
h j − −→

h i−1;
←−
h i − ←−

h j+1] (10)

For the beginning and ending of the sequence, we add dummy vectors
−→
h 0 =

0 and
←−
h Ls+1 = 0 to make Eq. (10) feasible. See Fig. 1 for the RNN-MINUS

encoding of an example sequence.
The idea behind RNN-MINUS is simple: assuming that the information

before entering a segment is Is (i.e., information of {x1, . . . , xs−1}), and the infor-
mation after passing through this segment is Ie (i.e., information of {x1, . . . , xe}),
then we can regard the information offered by this segment as Ie − Is. In NMT,
we generally regard the hidden state of bidirectional RNN in each time step as
the corresponding encoded information. Therefore, for segment xj

i , the left-to-
right information offered by the forward RNN can be represented as

−→
h j −−→

h i−1.
Likewise, the right-to-left information for xj

i is represented as
←−
h i − ←−

h j+1.
It is worth noting that although RNN-MINUS generates encodings for each

individual segment, it is still context dependent. As [
−→
h i;

←−
h i] encodes the left

and right contexts of the position i, the value of the subtraction of these vec-
tors may vary in different contexts. In other words, the same segment can have
different representations when the surrounding context changes. In addition,
RNN-MINUS is based on the existing encoding representations with no increase
in model size.

3.2 Joint-Learning-Based SSE

The n-gram-based SSE is straightforward but the size of used segments scales
linearly with the order of n. In consequence, the encoding of segments consumes
more memory space (especially for GPU) and slows down the system. As a result,
we propose to an end-to-end joint learning of both source segmentation model
and translation model, which can learn a latent and optimal segmentation of a
source sentence rather than accessing all possible segments.

To determine a segment, we define two tags B and M for each position in
the source sequence like [14], where B denotes the beginning of a segment, and
M denotes the case of the middle. Then we build an identifier layer on top of the
bi-RNN encoder to estimate the probability of the identity tag of each position,
which can be regarded as a sequence labeling problem with two tags in each
position. In this work we model this problem using a uni-directional GRU layer
Layergru followed by a two-layer feedforward neural network Layerfnn. Figure 2
illustrates the network architecture of the identifier layer. The final result is a
scalar denoting the probability of B for the position j, which is computed as:

P (B|j) = sigmoid(W1 ∗ oj + b1)
oj = tanh(W2 ∗ vj + b2)
vj = gru(hj , vj−1)

(11)

334 Q. Wang et al.

Fig. 2. An example of learning latent segments in the identifier layer. The tag of each
position is induced from existing encoding representations by bi-RNN. S denotes the
learned segments. In this case, our model compresses the source sequence with 5 words
into 3 segments.

where oj ∈ R
di×1, vj ∈ R

di×1 are the outputs of the first layer of Layerfnn and
Layergru respectively. di is the dimension of the hidden states in the identifier
layer. W1 ∈ R

1×di , b1 ∈ R
1, W2 ∈ R

di×di , b2 ∈ R
di are model parameters in

Layerfnn. P (M|j) can be obtained by 1 − P (B|j). Then, we infer the tag for
each position as follows:

T (j) =

⎧
⎨

⎩

B j = 1
B j 	= 1, P (B|j) ≥ P (M|j)
M j 	= 1, P (B|j) < P (M|j)

(12)

To prevent the sequence of illegal tags, we always assign B to the begin-
ning position. After having the tag for each position, we can take every word
sequence between two Bs as an identified segment. For example, the tag
sequence (B1,B2,M3,M4,B5) contains 3 segments (1, 1), (2, 4), (5, 5). Obviously,
the obtained segments essentially define a segmentation of the sentence.

However, unfortunately, we cannot use RNN-MINUS directly to represent the
learned segments as the increased model parameters in identifier layer are not
reachable during back-propagation4. To learn these parameters, we follow the
idea used in the local attention model [12]. We explicitly make these parameters

4 These parameters control the decisions of segmentation, and are not differentiable
with respect to the loss of translation, which is a similar problem to hard attention
model [24]. The hard attention model picks up a determined source word to align,
whereas our model chooses a determined segmentation of source sentence.

Source Segment Encoding for Neural Machine Translation 335

part of the translation model, and define the encoding of xj
i with its boundary

confidence, as follows:

ψjl(x
j
i) = [β

−→
h j − α

−→
h i−1;α

←−
h i − β

←−
h j+1]

α = P (B|i)
β = P (M|j)

(13)

In this model, α and β are the left-boundary confidence and the right-boundary
confidence of a segment respectively. By using the encoding method defined
in Eq. 13, the increased parameters as part of the model can be learned in the
standard back-propagation procedure. The boundary confidence also can be seen
as a special case of dropout [10], which can alleviate the segmentation errors to
some extent and improve the robustness of our segmentation model.

4 Experiments

4.1 Setup

We evaluated our proposed approach on word-based Chinese→English transla-
tion task. We used part bitext provided within NIST12 OpenMT5 and we chose
NIST 2006 (MT06) as the validation set, and 2004 (MT04), 2005 (MT05), 2008
(MT08) as the test sets. All the sentences of more than 50 words were filtered out.
Data on both sides was tokenized by an in-house implement, where the Chinese-
side data was segmented based on n-gram language model. The resulting training
data consisted of 1.85M sentence pairs. We limited the vocabularies to the most
frequent 30K words in Chinese and English. All the out-of-vocabulary words
were replaced with <UNK>.

Table 1. Translation results (BLEU score) on Chinese→English tasks. WC denotes the
standard encoding of word-level cells, while SC-ngram and SC-joint denotes segment-
level cells using our n-gram-based SSE and joint-learning-based SSE respectively.

Valid. Test
� System MT06 MT04 MT05 MT08 Ave.
1 PBSMT 32.09 36.65 31.30 25.99 31.31
2 NMT baseline (WC) 36.88 43.14 36.02 29.57 36.24
3 + SC-ngram (n=1) 38.31 44.55 37.20 30.15 37.30
4 + SC-ngram (n=4) 38.48 44.67 37.58 30.28 37.51
5 + SC-joint 39.26 45.69 38.17 31.19 38.35
6 SC-ngram (n=1) 37.24 43.65 35.73 29.56 36.31
7 SC-ngram (n=4) 38.67 44.95 37.81 30.63 37.80
8 SC-joint 20.39 23.32 18.26 14.59 18.72

5 LDC2000T46, LDC2000T47, LDC2000T50, LDC2003E14, LDC2005T10,
LDC2002E18, LDC2007T09, LDC2004T08.

336 Q. Wang et al.

The sizes of both source and target word embedding were set to 512. We set
d = 1024 and di = 100 respectively. We followed [17] and used the same dropout
mask at each time step, with the dropout probability of 0.1 for full words and
0.2 for other layers. We trained all the NMT models using stochastic gradient
algorithm Adadelta [25] with mini-batch size of 80. The baseline NMT models
were tuned for 10 epochs and then finetuned by fixing the both source and
target embeddings for 10 epochs. Our models were further tuned and finetuned
based on the well-tuned baseline NMT model. At test time, we employed beam
search with the beam size of 12. All the translation results were evaluated by
case-insensitive BLEU-4 metric using mteval-v13a.pl. In our experiments, we
compared our method with two baselines learned on the same bilingual training
data. One is the phrase-based system provided within the NiuTrans open-source
SMT toolkit [23]. The other is a standard attention-based NMT system using
bidirectional RNN as encoder.

5 Results and Analysis

5.1 Evaluation of Translations

Table 1 shows the BLEU scores in different settings. We can see that all the
NMT systems benefit from the combination of our segment-level cells (�3–5). It
confirms that explicitly incorporating bigger linguistic units in encoding helps.
This result also agrees with the findings in [4].

In particular, the best result is obtained by combining the word-level cells
with the joint-learning-based SSE (�5), which yields an average improvement of
2.1+ BLEU points than the NMT baseline (�2). It suggests that learning the
segmentation model along with the translation process jointly is effective, even
without any supervisions of segmentation. The segmentation errors caused by
our segmentation model do not present heavy hurt for translation performance.

Compared row 4 with row 5, the joint-learning-based SSE is more effective
than simply arranging all the possible n-grams. More interestingly, we find that
if we only use the segment-level cells in joint-learning-based SSE (�8), the trans-
lation performance will decrease dramatically. The reason could be that the
segment-level cells are sketchy representations of the source sentence, while the
more concrete representations are contained in word-level cells.

Consider n-gram-based SSE, when n = 1, using the combination of word-level
cells with segment-level cells (�3) outperforms approximate 1.0 BLEU point than
using segment-level cells alone (�6). But it is worth noting that using indepen-
dent segment-level cells of n = 1 (�6) obtains an almost identical performance
compared to the baseline (�2). A possible explanation is that the encoding of
segment with length 1 is different from conventional word-level cells. That is, the
segment is represented by the subtraction of adjacent states and the resulting
can put more emphasis on the meaning of the independent word. However, the
explicit meaning of word is ambiguous in standard encoding procedures as the
bidirectional RNN gives a global meaning in each position.

Source Segment Encoding for Neural Machine Translation 337

To our surprise, the superiority of combination disappears when n = 4 (�4
vs. �7). It seems that the word-level cells do not play their part and are drowned
when mixed with bigger segments. It indicates that using context-sensitive local
encoding is comparable to global encoding based on RNN. This finding is con-
sistent with the result in [5]. [5] use a convolution neural network with position
embedding, which can be seen as a case of context-sensitive local encoding.

Fig. 3. Translation performance and Speed (words/second) with different n using n-
gram-based SSE in Chinese→English task. Average length of source sentence in test
set for inference is 24 words.

5.2 Impact of n

Figure 3(a) shows the BLEU scores on all the test sets along with different set-
tings of n. We only compare the segment-level cells in order to eliminate the
effect of the standard word-level cells. It is obvious that BLEU is improved as
n increases. The best result is achieved when n = 4, with sharp decreases as
n grows bigger. The largest gap is 1.49 BLEU points in all test tests averagely
(n = 4 vs. n = 1). It is an evidence that the translation model can generate
better translation results by observing more source contexts. It is also consis-
tent with our intuition that learning and memorizing more source segments are
important in the translation process. However, when n is too large (n > 4 in
our experiments), BLEU starts to drop sharply meaning that current model is
saturated and can not benefit from more cells. We also plot the system speed
as a function of n (Fig. 3(b)). As expected, a choice of larger n slows down the
system. Together with the BLEU results in Fig. 3(a), it suggests that choosing
n around 3 is optimal for trade-off of BLEU improvement and speed decrease.

5.3 Samples of Learned Segments

Table 2 presents three samples of the learned source segments by our joint-
learning-based SSE in Chinese→English task. An interesting finding is that our

338 Q. Wang et al.

Table 2. Samples of learned source segments in Chinese→English translation task. A
red rectangle denotes a segment.

model appears capable of capturing the positions of subject, verb and tem-
poral adverbial. For example, “zhōngguó” (“China” in English), “r̀ıběn
zēngzhǎng sùdù” (“the growth rate of Japanese economic” in English) is the sub-
jects of the 1st and 2nd samples respectively; “cǎigòu” (“purchase” in English),
“ ” (“implement” in English) is the verbs of the 1st and 3rd samples respec-
tively; “mı́ngnián” (“next year” in English) is the temporal adverbial of the 2nd
sample. Note that the segmentation model is trained without any supervisions
of segmented sentences, and learned absolutely from the translation procedures.

6 Related Work

The essence of our model is to improve the original encoder network. Apart from
those syntax-enhancement methods as introduced in Sect. 1 [4,7,13,16], multi-
task learning and deeper network can also enhance the representational power
of the encoder.

In multi-task learning framework, the encoder network is shared in different
tasks, which can benefit from joint objective function. The translation model
can be trained with the source syntax parsing task in [11], or with the source
reorder task in [26]. Both these methods require other external resources, such as
human-annotated treebanks or source-side monolingual data, whereas our model
only needs bitext data for translation model.

Deeper encoder network models have also been successfully employed in
NMT. [27] introduce the fast-forward connections method to train a deep Long
Short-Term Memory (LSTM) network (18 LSTM layers) as the encoder. Also,
[5] propose a deep convolutional encoder with source position embedding. These
models have a high cost for training and inference, whereas our model is light
and easy to be implemented. It is worth noting that [5] also can be seen as a
case of modeling segment in some sense due to the local filters in convolution
neural network. However, our model is still based on recurrent neural network.

Another related work is [20], which apply a pre-prepared phrase table to
label the source phrases and can directly generate a target phrase at one step.
By contrast, our approach learns all segments without any supervision.

Source Segment Encoding for Neural Machine Translation 339

7 Conclusion

In this paper, we propose two simple yet effective methods to explicitly model
the source segments in the encoder of attention-based NMT. In the first method,
we directly encode off-the-shelf n-grams of the source sentence into source mem-
ory. In the second method, we jointly learn a segmentation model with transla-
tion model in the end-to-end manner. Both of the methods require no external
resources (e.g. segmented sentences). Experimental results on the word-based
Chinese-to-English translation task show that our method outperforms the base-
line significantly. It is observed that using larger linguistic unit helps and gives
further improvements on top of the word-based NMT system. In addition, we
give an evidence that context-sensitive local encoding is comparable to global
encoding based on recurrent neural network. Also, we present that the auto-
matically learned segmentation model is sensitive to some key constituents of a
sentence (e.g. subject, verb, temporal adverbial) in some cases.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of the 3rd International Conference on
Learning Representations (2015)

2. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Associa-
tion for Computational Linguistics (2014)

3. Cross, J., Huang, L.: Span-based constituency parsing with a structure-label system
and provably optimal dynamic oracles. In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 1–11. Association for
Computational Linguistics (2016)

4. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural
machine translation. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 823–833. Association
for Computational Linguistics (2016)

5. Gehring, J., Auli, M., Grangier, D., Dauphin, Y.N.: A convolutional encoder model
for neural machine translation. arXiv preprint arXiv:1611.02344 (2016)

6. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint
arXiv:1410.5401 (2014)

7. Hashimoto, K., Tsuruoka, Y.: Neural machine translation with source-side latent
graph parsing. arXiv preprint arXiv:1702.02265 (2017)

8. Kim, Y., Denton, C., Hoang, L., Rush, A.M.: Structured attention networks. arXiv
preprint arXiv:1702.00887 (2017)

9. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceed-
ings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology-Volume 1, pp. 48–54.
Association for Computational Linguistics (2003)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1702.02265
http://arxiv.org/abs/1702.00887

340 Q. Wang et al.

11. Luong, M.T., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence
to sequence learning. arXiv preprint arXiv:1511.06114 (2015)

12. Luong, T., Pham, H., Manning, D.C.: Effective approaches to attention-based neu-
ral machine translation. In: Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1412–1421. Association for Computational
Linguistics (2015)

13. Nadejde, M., Reddy, S., Sennrich, R., Dwojak, T., Junczys-Dowmunt, M., Koehn,
P., Birch, A.: Syntax-aware neural machine translation using CCG. arXiv preprint
arXiv:1702.01147 (2017)

14. Peng, F., Feng, F., McCallum, A.: Chinese segmentation and new word detec-
tion using conditional random fields. In: COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics (2004)

15. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Sig. Process. 45(11), 2673–2681 (1997)

16. Sennrich, R., Haddow, B.: Linguistic input features improve neural machine trans-
lation. In: Proceedings of the First Conference on Machine Translation: Volume 1,
Research Papers, pp. 83–91. Association for Computational Linguistics (2016)

17. Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation sys-
tems for WMT 16. In: Proceedings of the First Conference on Machine Translation:
Volume 2, Shared Task Papers, pp. 371–376. Association for Computational Lin-
guistics (2016)

18. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:
Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

19. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

20. Tang, Y., Meng, F., Lu, Z., Li, H., Yu, P.L.: Neural machine translation with
external phrase memory. arXiv preprint arXiv:1606.01792 (2016)

21. Wang, W., Chang, B.: Graph-based dependency parsing with bidirectional LSTM.
In: Proceedings of ACL, vol 1, pp. 2306–2315 (2016)

22. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016)

23. Xiao, T., Zhu, J., Zhang, H., Li, Q.: NiuTrans: an open source toolkit for phrase-
based and syntax-based machine translation. In: Proceedings of the ACL 2012 Sys-
tem Demonstrations, pp. 19–24. Association for Computational Linguistics (2012)

24. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel,
R.S., Bengio, Y.: Show, attend and tell: neural image caption generation with
visual attention. In: ICML, vol. 14, pp. 77–81 (2015)

25. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

26. Zhang, J., Zong, C.: Exploiting source-side monolingual data in neural machine
translation. In: Proceedings of EMNLP (2016)

27. Zhou, J., Cao, Y., Wang, X., Li, P., Xu, W.: Deep recurrent models with fast-
forward connections for neural machine translation. Trans. Assoc. Comput. Lin-
guist. 4, 371–383 (2016)

http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1702.01147
http://arxiv.org/abs/1606.01792
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1212.5701

Youdao’s Winning Solution
to the NLPCC-2018 Task 2 Challenge:

A Neural Machine Translation Approach
to Chinese Grammatical Error Correction

Kai Fu(B), Jin Huang, and Yitao Duan

NetEase Youdao Information Technology (Beijing) Co., LTD, Beijing, China
{fukai,huangjin,duan}@rd.netease.com

Abstract. The NLPCC 2018 Chinese Grammatical Error Correction
(CGEC) shared task seeks the best solution to detecting and correct-
ing grammatical errors in Chinese essays written by non-native Chinese
speakers. This paper describes Youdao NLP team’s approach to this
challenge, which won the 1st place in the contest. Overall, we cast the
problem as a machine translation task. We use a staged approach and
design specific modules targeting at particular errors, including spelling,
grammatical, etc. The task uses M2 Scorer [5] to evaluate every system’s
performance, and our final solution achieves the highest recall and F0.5.

Keywords: Grammatical error correction · Machine translation

1 Introduction

Chinese is the most spoken language in the world. With the growing trend in
economic globalization, more and more non-native Chinese speakers are learning
Chinese. However, Chinese is also one of the most ancient and complex languages
in the world. It is very different from other languages in both spelling and syn-
tactic structure. For example, unlike English or other western languages, there
is no different forms of plurality and verb tenses in Chinese. Also, reiterative
locution is much more common in Chinese than it is in e.g., English. Because
of these differences, it is very common for non-native Chinese speakers to make
grammatical errors when using Chinese. Effective Chinese Grammatical Error
Correction (CGEC) systems can provide instant feedback to the learners and
are of great value during the learning process.

However, there are much fewer studies on Chinese grammatical error cor-
rection compared with the study of English grammatical error correction. Rel-
evant resources are also scarce. The NLPCC 2018 CGEC shared task provides
researchers with both platforms and data to investigate the problem more thor-
oughly. The goal is to detect and correct grammatical errors present in Chinese
essays written by non-native speakers of Mandarin Chinese. Performance is eval-
uated by computing the overlap between a system’s output sequence and the gold
standard.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 341–350, 2018.
https://doi.org/10.1007/978-3-319-99495-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_29&domain=pdf

342 K. Fu et al.

Youdao’s NLP team has been actively studying language learning technolo-
gies as part of the Company’s greater endeavour to advance online education
with AI. Through careful analysis of the problem, we tackle it using a three-
stage approach: first we remove the so called “surface errors” (e.g., spelling
errors, to be elaborated later) from the input. We then cast the grammatical
error correction problem as a machine translation task and apply a sequence-
to-sequence model. We build several models for the second stage using different
configurations. Finally, those models are combined to produce the final output.
With careful tuning, our system achieves the highest recall and F0.5, ranking
first in the task.

This paper describes our solution. It is organized as follows. Section 2
describes the task, as well as the corresponding data format. Section 3 describes
the related research work on grammatical error correction. Section 4 illustrates
how our whole system works. Section 5 presents evaluation results. We summa-
rize in Sect. 6.

2 Chinese Grammatical Error Correction

Although Chinese Grammatical Error Diagnosis (CGED) task has been held for
a few years, this is the first time correction is introduced into the challenge.
The CGEC task aims at detecting and correcting grammatical errors in Chinese
essays written by non-native Chinese speakers. The task provides annotated
training data and unlabeled test data. Each participant is required to submit
the corrected text on the test data.

The training data consists of sentences written by Chinese learners and cor-
rected sentences revised by native Chinese speakers. It should be noted that
there may be 0 ∼ N corrected results for the sentences. Specifically, the distri-
bution of original sentences and corrected sentences in the training data is shown
in Table 1, and typical examples of the data are shown in Table 2.

Table 1. Overview of the training data.

Corrected Sentence Sentences Number

0 123,500

1 299,789

2 170,261

3+ 123,691

Total 717,241

The task uses M2 Scorer [5] to evaluate every system’s performance. It eval-
uates correction system at the phrase level in terms of correct edits, gold edits,
and use these edits to calculate F0.5 for each participant.

Youdao’s Winning Solution to the NLPCC-2018 Task 2 Challenge 343

Table 2. Samples from training data.

3 Related Work

Grammar Error Correction (GEC) task has been attracting more and more
attention since the CoNLL 2013–2014 Shared task. Most earlier GEC systems
build specific classifiers for different errors and combine these classifiers to form
a hybrid system [11]. Later, some researchers begin to treat GEC as a translation
problem and propose solutions based on Statistical Machine Translation (SMT)
models [2]. Some achieve fairly good results with improved SMT [3]. Recently,
with the development of deep learning, Neural Machine Translation (NMT) has
emerged as a new paradigm in machine translation, outperforming SMT sys-
tems with great margin in terms of translation quality. Yuan and Briscoe [16]
apply NMT to the GEC task. Specifically, they use a classical translation model
framework: a bidirectional RNN encoder and an RNN decoder with attention.
To address the issue of out of vocabulary (OOV) words, Ji [8] presents a GEC
model based on hybrid NMT, combining both word and character level informa-
tion. Chollampatt et al. [4] proposes using convolution neural network to better
capture the local context via attention.

Until this year, studies on Chinese grammatical error problem have been
focused on diagnosis, spearheaded by Chinese Grammatical Error Diagnosis
shared task. Both Zheng [17] and Xie [15] treat CGED as a sequence labeling
problem. Their solutions combine the traditional method of conditional random
fields (CRF) and long short term memory (LSTM) network.

4 Methodology

In this paper, we regard the CGEC task as a translation problem. Specifically,
we aim at letting the neural network learn the corresponding relation between
wrong and corrected sentences, and translate the wrong sentence into the correct
one. However, unlike in conventional machine translation task, the source sen-
tences in GEC contain numerous types of errors. This is the nature of the GEC
problem (otherwise there is no need to perform corrections). As a result, the
apparent patterns in the GEC parallel corpus are far more sparse and difficult
to learn. On the other hand, grammar is the higher level of abstraction of a lan-
guage and there are only a few grammatical mistakes language learners tend to
make. The traditional Chinese Grammatical Error Diagnosis (CGED) task deals

344 K. Fu et al.

with only four types of grammatical errors: redundant words (R), missing words
(M), bad word selection (S) and disordered words (W) [17]. Therefore once the
surface errors (e.g., spelling errors) are removed, it becomes relatively easier for
the model to learn to identify them. We thus use a three-stage approach: a pre-
processing stage aimed to remove most of the surface errors (e.g., spelling and
punctuation errors), transformation stage that identifies and corrects grammat-
ical errors and ensemble stage that combines the above two stages to generate
the final output. Separating the stages allows us to use different modules target-
ing at their specific goals and tuned individually. This results in better overall
performance.

4.1 Data Preparation

During this task, in addition to the training data NLPCC provides, we make use
of two public datasets:

Language Model. Language model is commonly used in the field of grammar
correction since it’s able to measure the probability of a word sequence. Specifi-
cally, a grammatically correct sentence will get a higher probability in language
model while a grammatically incorrect or uncommon word sequence will reduce
the probability of the sentence. We use a language model as an assistant model
to provide features to score the results. The model we use is a character-based
5-gram Chinese language model trained on 25 million Chinese sentences crawled
from the Internet.

Similar Character Set. Since Chinese is logographic, the causes of spelling
errors are quite different from languages that are alphabetical such as English.
For example, Chinese characters with similar shapes or pronunciations are often
confused, even for native speakers. Also, since Chinese words are typically shorter
(2 to 4 characters), the usual dictionary and edit-distance based spell correction
method does not perform well. To this end, we design a specific algorithm for
Chinese spell correction. Specifically, we obtain Similar Shape and Similar Pro-
nunciation Chinese character set (generally referred to as the Similar Character
Set (SCS)) from the SIGHAN 2013 CSC Datasets [9,14]. The following are some
sample entries in the data:

– Similar Shape:
– Similar Pronunciation:

We use SCS to generate candidate spell corrections and the language model
to pick the most probable one.

NLPCC Data Processing. Training a machine translation model requires par-
allel corpus in the form of a collection of (srcSent, tgtSent) pairs where srcSent
is the source sentence and tgtSent the target sentence. The NLPCC 2018 CGEC
shared task provides training corpus where each sentence is accompanied with 0
or more corrected sentence(s). The original data contains about 0.71 million sen-
tences. We process the data and generate 1.22 million (srcSent, tgtSent) pairs

Youdao’s Winning Solution to the NLPCC-2018 Task 2 Challenge 345

where srcSent is the sentence probably containing grammatical mistakes and
tgtSent the corrected result. If there is no error in srcSent, tgtSent remains
the same as srcSent. If there are multiple corrections for an incorrect sentence,
multiple pairs are generated. Next, we use the character based 5-gram language
model to filter out sentence pairs where the score of srcSent is significantly lower
than that of tgtSent. After the data cleaning step, the data size is reduced to
0.76 million.

4.2 Spelling Error Correction

The main component in the preprocessing stage that removes most of the surface
errors is a spelling correction model. For this we use a simple 5-gram language
model. The probability of a character sequence W of length n is given by:

P (w1, w2, ..., wn) = p(w1)p(w2|w1) · · · p(wn|w1, w2, ..., wn−1) (1)

The perplexity of the sequence is defined as the geometric average of the
inverse of the probability of the sequences:

PP (W) = P (w1, w2, ..., wn)− 1
n (2)

We will use PP (W) as the language model score. Higher PP (W) indicates
less likely sentence.

To perform spelling error correction, we first divide the sentence x into char-
acters. For each character c in x, we generate candidate substitution character
set Sc using SCS. We then try to replace c in the sentence by every c′ ∈ Sc.
Among the sentences (including the original one) with the lowest perplexity will
be selected.

4.3 Grammatical Error Correction Model

After removing the spelling errors, we treat the grammatical error correction task
as a translation problem and use a Neural Machine Translation (NMT) model
to correct the errors, i.e., “translating” an incorrect sentence into grammatically
correct one. Recently, neural networks have shown superior performance in var-
ious NLP tasks and they have done especially well in sequence modeling such as
machine translation. Generally, most neural translation models are based on the
encoder-decoder paradigm, in which the encoder (a neural network) encodes the
input sequence (x1, x2, ..., xn) into a sequence of hidden states (h1, h2, ..., hn) and
the decoder (also a neural network) generates the output sequence (y1, y2, ...ym)
based on hidden state. An obvious advantage of this framework is that it does
not need to explicitly extract linguistic features.

There are several variants of NMT models. They can be based on Recurrent
Neural Network (RNN) such as Long Short Term Memory (LSTM) or Gated
Recurrent Unit (GRU) [1,10], or Convolutional Neural Network (CNN) [6,7].
The recent Transformer model is a new encoder-decoder framework based on

346 K. Fu et al.

the self-attention mechanism, proposed by Google in 2017 [13]. Transformer has
shown excellent capability and achieved state of the art performance in machine
translation. Thus we adopt it for our task. However, our framework is general
and once a new, more advanced MT model emerges, we can easily upgrade the
system with the new model.

Specifically, when the transformer reads in a sequence, it encodes it by several
self-attentional iterations. Decoding is done in a similar manner. The Attention
mechanism (scaled dot-product Attention) is defined as:

Attention(Q,K, V) = softmax(
QKT

√
d

)V (3)

where Q represents the query matrix packed from individual queries, K the keys
used for processing the query, and V the values to be retrieved. The transformer
adopt multiple attention heads:

MultiHead(Q,K, V) = [head1, ..., headh]WO (4)

where headi = Attention(QWQ
i ,KWK

i , V WV
i). Besides, a residual connection

and hierarchical normalization are added for each attentional layer.
We used the open source tensorflow-based implementation, tensor2tensor 1,

to train the transformer model. The hidden size parameter is set to 800. All the
other parameters are in the default configuration.

4.4 Models Ensemble and Reranking

NMT models can be configured in different ways to suit different situations. They
can be character-based or word-based. To handle rare and out-of-vocabulary
words, sub-words can also be used [12]. The general understanding in the machine
translation community is that sub-word models perform the best. In the case of
CGEC, however, we have to deal with various errors and each may be handled
using different tools or configurations. For example, spelling and character level
syntax errors in Chinese are not handled well by (sub-)word level models which
do a good job at correcting word level grammatical errors. Therefore we take
a hybrid approach and build several models using different configurations. We
then use a reranking mechanism to select among the model results the best one
for each error.

We build the following 5 models, which all take spelling error correction as
the first step:

M1: Spelling Checker alone
M2: Spelling Checker + Character NMT
M3: Spelling Checker + Character + Sub-word NMTs
M4: Spelling Checker + Sub-word NMT
M5: Spelling Checker + Sub-word + Character NMTs

1 https://github.com/tensorflow/tensor2tensor

https://github.com/tensorflow/tensor2tensor

Youdao’s Winning Solution to the NLPCC-2018 Task 2 Challenge 347

M3 and M5 use the same models but in different order. They may pro-
duce different results since the input to a model can be altered by the models
preceding it.

For an input sentence x, each of the five models above will output a corrected
result. The reranking is simply scoring them using the 5-gram language model.
The pipeline of this process is shown in Fig. 1.

Output1 Output2 Output3 Output4 Output5

Optimal solution y

M5

5-gram language model

input sentence: x

Spelling Checker
Spelling Checker

Character

Spelling Checker

Character

Sub-word

Spelling Checker

Sub-word

Spelling Checker

Sub-word

Character

M4M3M2M1

Fig. 1. Ensemble models.

5 Experiment Results

Among the 0.76 million sentence pairs generated according to the method
described in Sect. 4.1, we take 3,000 pairs as the valid data set. The remain-
ing are used for training. The validation set is mainly for parameter tuning and
model selection.

The NLPCC 2018 CGEC shared task allows 3 submissions. Table 3 shows
the performance of our models on the evaluation dataset for the 3 submissions.
The differences among the models are mainly due to different selection strategies
during the ensemble stage. Specifically, in all the cases, we use the 5-gram lan-
guage model to score the outputs from the five individual models. S1 selects the
result with the lowest perplexity. S2 behaves like S1 when the difference between
the two lowest perplexity results is greater than a certain threshold (we set the
threshold at a small value), otherwise it chooses the sentence with the second
lowest perplexity. S3 behaves like S2 except that it makes a random selection

348 K. Fu et al.

Table 3. Results on evaluation dataset.

Method Annotator0 Annotator1 Annotator0,1

Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

S1 34.17 17.94 28.94 34.30 17.79 28.93 35.24 18.64 29.91

S2 34.18 17.78 28.86 34.40 17.68 28.93 35.34 18.52 29.91

S3 34.16 17.73 28.82 34.33 17.60 28.85 35.28 18.45 29.83

between the outputs with the two lowest scores when the perplexity difference
is less than the certain threshold. The purpose of this perturbation is to test the
language model’s selection capability.

Gold Standard is annotated by two annotators, denoted Annotator0 and 1
respectively. The union of the two is denoted Annotator0,1. S1 performs best,
with the highest recalls and F0.5 scores against all three annotations. S2 performs
very closely. Both S1 and S2 are better than S3, showing that the language model
is indeed capable of selecting correct sentences.

To evaluate contributions of each component, we test them individually.
Table 4 shows the results. They all show significant performance drop if run
individually. For example, the spelling checking model performs the worst and
its F0.5 score drops more than 15 % points compared with our overall system.
This clearly shows that our staged approach is effective.

Table 4. Results of each component on evaluation dataset.

Method Annotator0 Annotator1 Annotator0,1

Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

Best model 34.17 17.94 28.94 34.30 17.79 28.93 35.24 18.64 29.91

Sub-word level NMT 30.26 10.82 22.26 30.85 10.89 22.57 31.66 11.40 23.36

Char level NMT 32.08 11.00 23.19 32.43 10.96 23.31 33.31 11.52 24.16

Spelling checker 39.11 4.17 14.61 39.21 4.11 14.49 39.36 4.24 14.83

6 Conclusion

This paper describes our solution to the NLPCC 2018 shared task 2. Ours is a
staged approach. We first use a spelling error correction model to remove the
spelling mistake. This reduces perturbation to later models and allows them to
perform better. We then cast the problem into a translation task and use neu-
ral machine translation models to correct the grammatical errors. Experiments
demonstrate that each stage plays a significant role. Our solution achieves the
highest F0.5 score and recall rates in all the three annotation files.

There is still plenty of room for improvement and future investigation. Due to
the time constraint, we only used a simple 5-gram model for correcting spelling
errors. A more sophisticated model such as neural network would perform better.

Youdao’s Winning Solution to the NLPCC-2018 Task 2 Challenge 349

There are also techniques that we would like to try to improve the effectiveness
of the 2nd stage (e.g., data augmentation). Finally, grammatical error correction
is only a small initial step into advancing language learning through AI. The cur-
rent solutions do not handle semantic issues well. This certainly is a challenging
research direction that has great potential to change many aspects of language
learning. Our goal is to build comprehensive products that could make learning
more effective.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Brockett, C., Dolan, W.B., Gamon, M.: Correcting ESL errors using phrasal SMT
techniques. In: Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computational
Linguistics, pp. 249–256. Association for Computational Linguistics (2006)

3. Chollampatt, S., Ng, H.T.: Connecting the dots: Towards human-level grammatical
error correction. In: Proceedings of the 12th Workshop on Innovative Use of NLP
for Building Educational Applications, pp. 327–333 (2017)

4. Chollampatt, S., Ng, H.T.: A multilayer convolutional encoder-decoder neural net-
work for grammatical error correction. arXiv preprint arXiv:1801.08831 (2018)

5. Dahlmeier, D., Ng, H.T.: Better evaluation for grammatical error correction. In:
Proceedings of the 2012 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL HLT
2012, pp. 568–572. Association for Computational Linguistics, Stroudsburg (2012).
http://dl.acm.org/citation.cfm?id=2382029.2382118

6. Gehring, J., Auli, M., Grangier, D., Dauphin, Y.N.: A convolutional encoder model
for neural machine translation. arXiv preprint arXiv:1611.02344 (2016)

7. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122 (2017)

8. Ji, J., Wang, Q., Toutanova, K., Gong, Y., Truong, S., Gao, J.: A nested
attention neural hybrid model for grammatical error correction. arXiv preprint
arXiv:1707.02026 (2017)

9. Liu, C.L., Lai, M.H., Tien, K.W., Chuang, Y.H., Wu, S.H., Lee, C.Y.: Visually
and phonologically similar characters in incorrect chinese words: analyses, identi-
fication, and applications. ACM Trans. Asian Lang. Inf. Process. (TALIP) 10(2),
10 (2011)

10. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

11. Rozovskaya, A., Chang, K.W., Sammons, M., Roth, D., Habash, N.: The Illinois-
Columbia system in the CoNLL-2014 shared task. In: Proceedings of the Eighteenth
Conference on Computational Natural Language Learning: Shared Task, pp. 34–42
(2014)

12. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 (2015)

13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 6000–6010 (2017)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1801.08831
http://dl.acm.org/citation.cfm?id=2382029.2382118
http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1707.02026
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.07909

350 K. Fu et al.

14. Wu, S.H., Liu, C.L., Lee, L.H.: Chinese spelling check evaluation at SIGHAN bake-
off 2013. In: Proceedings of the Seventh SIGHAN Workshop on Chinese Language
Processing, pp. 35–42 (2013)

15. Xie, P., et al.: Alibaba at IJCNLP-2017 task 1: Embedding grammatical features
into LSTMS for Chinese grammatical error diagnosis task. In: Proceedings of the
IJCNLP 2017, Shared Tasks, pp. 41–46 (2017)

16. Yuan, Z., Briscoe, T.: Grammatical error correction using neural machine trans-
lation. In: Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp.
380–386 (2016)

17. Zheng, B., Che, W., Guo, J., Liu, T.: Chinese grammatical error diagnosis with
long short-term memory networks. In: Proceedings of the 3rd Workshop on Natural
Language Processing Techniques for Educational Applications (NLPTEA2016),
pp. 49–56 (2016)

NLP Applications

Target Extraction via Feature-Enriched
Neural Networks Model

Dehong Ma, Sujian Li, and Houfeng Wang(B)

MOE Key Lab of Computational Linguistics, Peking University,
Beijing 100871, China

{madehong,lisujian,wanghf}@pku.edu.cn

Abstract. Target extraction is an important task in target-based senti-
ment analysis, which aims at identifying the boundary of target in given
text. Previous works mainly utilize conditional random field (CRF) with
a lot of handcraft features to recognize the target. However, it is hard
to manually extract effective features to boost the performance of CRF-
based methods. In this paper, we employ gated recurrent units (GRU)
with label inference, to find valid label path for word sequence. At the
same time, we find that character-level features play important roles
in target extraction, and represent each word by concatenating word
embedding and character-level representations which are learned via
character-level GRU. Further, we capture boundary features of each word
from its context words by convolution neural networks to assist the iden-
tification of the target boundary, since the boundary of a target is highly
related to its context words. Experiments on two datasets show that our
model outperforms CRF-based approaches and demonstrate the effec-
tiveness of features learned from character-level and context words.

1 Introduction

Target extraction is a fundamental work in the task of target-based sentiment
analysis, which tries to find all targets (e.g. entity, product...) in open corpus
like tweets, product comments, etc. For example, in the sentence “I vote to send
Dwyane Wade to the NBA All-Star Game.”, the destination of target extract-
ing is to identify all targets: person: Dwyane Wade and organization: NBA.
The popular approach is regarding target extraction task as a sequence labeling
problem. The goal of sequence labeling is to assign a label for each element in
the sequence, and we can use Hidden Markov Model (HMM), Max Entropy and
Conditional Random Field (CRF) to tackle sequence labeling task. Generally in
target extraction task, the label set is composed of the three symbols {B, I, O},
which stand for the target beginning, the target inside and non-target respec-
tively. In the above example, the labels of the words Dwyane Wade and NBA
are “B-PERSON, I-PERSON ” and “B-ORGANIZATION ” respectively while
all the other words are labeled O.

Although CRF-based approaches [19] could achieve good results on target
extraction, they suffer from automatically extracting effective features for boost-
ing system performance. Recently, neural network methods have exhibited their
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 353–364, 2018.
https://doi.org/10.1007/978-3-319-99495-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_30&domain=pdf

354 D. Ma et al.

ability of feature extraction. [26] study the effect of word embeddings and auto-
matic feature combinations on the task by extending a CRF baseline using neural
networks. [23] use recursive neural networks (RNN) to extract features, feed fea-
tures to CRF and get good performance on target extraction. However, they just
use neural networks as a feature extractor and do not make full use of neural
networks’ ability on sequence labeling. In this paper, we prefer to explore the
potentials of neural networks in sequence labeling for the task of target extrac-
tion. To make use of neural networks, we take gated recurrent unit (GRU) [3]
networks rather than CRF as decoder because GRU is good at modeling long
distance dependency which is good for sequence labeling. As we know, there
are dependencies between target labels. For example, label I will never follow
label O in a sequence of labels. To avoid these illegal transitions between labels,
we adopt a transition matrix [5] which measures the probability of jumping from
label i to label j to ensure valid paths of labels and discourage all other paths.

In target extraction, we find that character-level features are a key factor for
deciding the labels of a sequence. In the example above, the initial characters of
the targets are uppercase. In addition, many words have different variants, but
with a similar meaning. In such cases, characters can be used to strengthen the
word representation. Further, out-of-vocabulary words are hard to be tackled
because they have the same representation without distinction. But character-
level representation of word could address this problem in some degree. Thus,
to incorporate character-level features into our model, we use character-level
GRU on word character sequence to obtain character-level representation for
each word.

Although GRU can learn long distance dependency of words, the context of
a word also plays an important role in target extraction. In the example above,
2-word contexts of Dwyane are ‘to send’ and ‘Wade to’. From the left context
and right context, the label of Dwyane tends to be B. From the context of Wade,
we can infer that the label of Wade should be I. To learn context features of
word, we employ convolution neural networks (CNN) on the word context.

We evaluate our model on two open-domain datasets [19], and experimen-
tal results show that our method achieves the state-of-the-art performance and
validate the effectiveness of character-level features and context features.

2 Model

In this section, we first display the details of our model. After that, we introduce
the details of our model. The overall architecture of our model is shown in Fig. 1.

Our model consists of three parts which are character-level layer, word-
level layer and label inference layer. The character-level layer mainly learns
the character-level representation for each word to assist word level layer and
address the OOV words problem via stack bidirectional gated recurrent unit net-
works (SBi-GRU). The word-level layer has two parts which the first part also
utilize SBi-GRU to learn the long distance dependencies between words and the
second part learn the local feature for each word in its context. The last part
finds a valid path via modeling labels dependencies with transition score matrix.

Target Extraction via Feature-Enriched Neural Networks Model 355

M y T i t t e r a l u e i s $ 9 5

My Twitter value is $95

w v

bi-gru

bi-gru

cnn

StSt−1 St+1

Fig. 1. The overall architecture of our model.

2.1 Embeddings

The first step of neural networks is to transform words and characters into
distributed representation, which is also called embeddings [1,16–18].

In our model, word embeddings and characters embedding are used. Formally,
we have a word dictionary W of size |W | and a character dictionary C of size
|C|. W and C are extracted from training data. Word and character will be
transformed into corresponding real-value vector if they are in the dictionary.
Otherwise, they will be assigned a unique real-value vector. We suppose that a
sentence consists of n words and each word i is composed of m characters. The
word embeddings of all words are [W1,W2, ...,Wn] and the character embeddings
of word i is [C1

i , C2
i , ..., Cm

i], where Wi ∈ R|W |∗dw and Cj
i ∈ R|C|∗dc . dw and dc

are word embedding size and character embedding size. Word embeddings and
character embeddings can be learned during training process or pre-trained from
large corpus by language model.

2.2 Character-Level Layer

Character-level features are important to target extracting and have positive
impact on out-of-vocabulary word problem. To incorporate character-level fea-
tures, we adopt stack bidirectional gated recurrent units networks (SBi-GRU).
The Gated Recurrent Unit (GRU) networks is an extension of recurrent neu-
ral networks (RNN) because RNN suffers from the gradient vanishing and

356 D. Ma et al.

exploration when processing long sequence, and GRU is defined by:

zt = σ(Wz · xt + Uz · ht−1) (1)
rt = σ(Wr · xt + Ur · ht−1) (2)

ĥt = tanh(Wh · xt + Uh · (rt � ht)) (3)

ht = (1 − zt) � ht−1 + zt � ĥt (4)

where xt is the input at time step t, ht−1 is the hidden state at time step t − 1,
zt and rt are update gate and reset gate respectively, σ is sigmoid function,
W and U are weight metrics, and � denotes element-wise multiplication. For
simplification, we use ht = GRU(xt, ht−1) to denotes the definition of GRU.

For sequence modeling, it is useful to consider both forward and backward
information at the same time. Bidirectional GRU (Bi-GRU) is good at learn-
ing both direction information, and forward and backward information can be
computed by:

hf
t = GRU(xt, h

f
t−1); (5)

hb
t = GRU(xt, h

b
t−1). (6)

The bidirectional hidden state at time t is the concatenation of forward and
backward hidden state, which is defined as:

ht = hf
t ⊕ hb

t . (7)

where ⊕ is a operation that concatenates two tensors alone the last dimension.
For simplification, we use ht = BiGRU(xt, ht−1) to stand for bidirectional GRU.

Stack bidirectional GRU (SBi-GRU) can learn high level abstract features
for sequence. Therefore, we utilize SBi-GRU to learn effective features for each
word. Assuming a stack bidirectional GRU has N layer using the same layer
function, and the hidden states h

(n)
are iteratively computed from n = 1 to

n = N by:

h
(n)

t = BiGRU(h
(n−1)

t , h
(n)

t−1). (8)

where h
(x)

t is the hidden state of layer x at time t, and h
(0)

is the input sequences.
With the character sequence [C1

i , C2
i , ..., Cm

i] of word i as inputs, we can

obtain the stack bidirectional hidden states [h
(N)

1 , h
(N)

2 , ..., h
(N)

m] as the hidden
states of character sequence. We can get the final character-level features cri for
word i by applying max-pooling or mean-pooling operation on its hidden states.

2.3 Word-Level Layer

In word-level layer, there two parts which serve to learn representation for
each word. The first part is a deep architecture consisting of a SBi-GRU net-
works which are able to build up progressively higher level representations of

Target Extraction via Feature-Enriched Neural Networks Model 357

sequence data. The input sequences are the concatenation of word embeddings
[W1,W2, ...,Wn] and character-level word representations [cr1, c

r
2, ..., c

r
n]. The hid-

den state of word i from SBi-GRU is h
(n)

t according to Eq. 8.
In target extracting, it is beneficial to capture local features around word. We

employ the convolution neural networks (CNN) to learn local features on context
window [Wt−� k

2 �, ...,Wt, ...,Wt+� k
2 �] for word t, and k is the context window size,

which is defined as:

ci = f(Wf · X + bf). (9)

where f is non-linear function, Wf ∈ Ruv is filter used to produce new features,
X is the concatenation of context window of word t, and bf is bias.

The filter will produce a feature map c = [c1, c2, ..., ck−u+1]. We then apply
the max-pooling operation on c and get the local features ĉ = max(c). The
concatenation of the outputs of stack bidirectional GRU and convolution neural
networks is word t’s features f(t) = h

(n)

t ⊕ ĉ. The word features are fed into
linear transformation layer with activation:

ft = σ(Wl · f(t) + bl). (10)

where σ is activation function, Wl and bl is weight matrix and bias respectively.
After that, we use non-linear layer to project ft into the label space by:

yt = σ(Wp · ft + bp). (11)

where Wp and bp are weight matrix and bias respectively, and σ is non-linear
function.

2.4 Label Inference Layer

In sequence labeling task, there are dependencies between labels, but word level
loss discards this kind of label dependency information. To model the dependen-
cies between labels of sequence, [5] introduce a transition score Ai,j to measure
the probability jumping from label i to label j in a successive words. For an
input sequence x = [xi, x2, ..., xn] and its label sequence y = [y1, y2, ..., yn], a
sentence level score is the sum of transition score and labeling probability, which
is computed by:

S(x, y, θ) =
n∑

t=1

(Ai−1,i + yi
t). (12)

where yi
t is the score of ith label at tth word, and θ = [Wz,Wr,Wh, Uz,

Ur, Uh,Wf , bf ,Wl, bl,Wp, bp,Ws, bs] are the parameters of our model. We nor-
malize this score over all paths Y via softmax by:

p(y|x) =
exp(S(x, y, θ))∑

ŷ∈Y exp(S(x, ŷ, θ))
. (13)

358 D. Ma et al.

The word embeddings, character-embeddings and θ will be optimized during
training processing, and the training loss is computed by:

loss(x, y) = − log(p(y|x)). (14)

From the formulation above, it is evident that we encourage our model to
produce a valid sequence of output labels. While decoding, we predict the output
sequence that obtains the maximum score given by:

y∗ = arg max
ŷ∈Y

(S(x, ŷ, θ)). (15)

y∗ can be found by dynamic algorithm like viterbi.

3 Experiments

3.1 Datasets and Evaluate Metric

To verify the effectiveness of our model, we conduct experiments on the data of
Mitchell [19]1 which is composed of English and Spanish tweets annotated with
entity and sentiment, and we report ten-fold cross-validation results used in [19]
and [26].

In order to evaluate the performance of target extracting, we adopt f measure
which is defined as:

F = 2 ∗ P ∗ R/(P + R);

P = T/N ;R = T/G.

where t is the number of correctly predicted targets, n and g are the number of
predicted targets and ground truth targets separately.

3.2 Hyperparamters Setting

In our experiments, the character embeddings of two datasets are initialized
by Xavier [6]. The word embeddings of English Dataset and Spanish Dataset
are from [20]2 and [4]3 respectively. All unknown characters and words, weight
matrices and biases are initialized by Xavier. The hidden state size of character-
level and word-level stack bidirectional GRU are set to 300 and 600 respectively,
and the layer number of character-level and word-level stack bidirectional GRU
are all set to 2. We use Adam [11] to optimize all parameters of our model.
We also use dropout on word embeddings and character embeddings to avoid
overfitting, and the dropout rate is set to 0.5.

1 http://www.m-mitchell.com/code/index.html.
2 https://nlp.stanford.edu/projects/glove/.
3 https://spinningbytes.com/resources/embeddings/.

http://www.m-mitchell.com/code/index.html
https://nlp.stanford.edu/projects/glove/
https://spinningbytes.com/resources/embeddings/

Target Extraction via Feature-Enriched Neural Networks Model 359

3.3 Model Comparison

To evaluate the effectiveness of our model comprehensively, we list some baselines
for comparison. All baselines are introduced as follows.

• Discrete is a CRF-based approach, which incorporates many handcraft
features including surface features, linguistic features, cluster features and
sentiment features [26].

• Neural is an extension of Discrete with two changes. The discrete features
in Discrete are replaced by continuous word embeddings, and a hidden neural
layer is added between the inputs and outputs [26].

• Integrated makes a combination of discrete models and neural models by
integrating both types of inputs into a same CRF framework for the reason
that both features can complements each other. [26].

• GRU is a baseline completely based on neural networks without any hand-
craft features and CRF components. GRU utilizes gated recurrent units net-
works to model the long distance dependency between words. GRU then uses
transition matrix to measure the dependencies between labels and obtain the
predicted label for each word.

• Bi-GRU extends the GRU model by model the input sequence with bidirec-
tional gated recurrent networks for both forward information and backward
information which play key role in target extracting, and the other compo-
nents are the same as GRU.

Table 1 shows the performances of our model and other baselines. All baselines
can be split into two parts. Baselines in first part are based on CRF and the
second part baselines take GRU incorporating label inference as decoder.

From the results of CRF-based approaches, we can see that the performance
of Neural model is worst in Spanish dataset and Discrete model obtains worst
results in English dataset. Neural model outperforms Discrete model about
4.83% on English dataset, while Discrete model improves the performance of
Spanish dataset about 1.73% compared with Neural model. This verifies that
both discrete features and word embeddings are useful for target extracting.

Table 1. Performances of baselines and our model.

Model/Dataset English Spanish

P R F P R F

Discrete 0.5937 0.3483 0.4384 0.7077 0.4775 0.5700

Neural 0.5364 0.4487 0.4867 0.6559 0.4782 0.5527

Integrated 0.6069 0.5163 0.5567 0.7023 0.6200 0.6576

GRU 0.5649 0.3849 0.4569 0.6157 0.5045 0.5532

Bi-GRU 0.5780 0.4078 0.4772 0.6281 0.5381 0.5794

Our model 0.6245 0.5185 0.5658 0.6917 0.6325 0.6605

Ensemble 0.6451 0.5089 0.5687 0.7201 0.6189 0.6654

360 D. Ma et al.

The Integrated approach achieves the highest result among CRF-based methods
on two datasets. The great improvements of the F-measure demonstrate that it
is useful to integrate both discrete and neural features into a framework because
both kinds of features can complement each other.

From the performances of approaches in second part, we can observe that
GRU performances better than the worst system on two datasets without any
handcraft features, which demonstrates that recurrent neural networks with label
inference is an alternative approach for target extracting. Bi-GRU outperforms
GRU about 2.03% and 2.62% on English and Spanish datasets respectively. Com-
pared with GRU, Bi-GRU incorporates both forward information and backward
information, we can infer that bidirectional information plays great important
roles in modeling the boundary features in sequence labeling. However, the per-
formances of Bi-GRU are much worse than the Integrated model. This phe-
nomenon implies that only bidirectional information is not enough for target
extracting and more useful features should be added to Bi-GRU.

Finally, we can see that our model achieves the state-of-the-art on two
datasets, which demonstrates the effectiveness of our model. This validates
that character-level features and context features have great influence on target
extracting. We also use an ensemble of 6 our models and improve the perfor-
mance about 0.29% and 0.49% on two datasets respectively. We can also observe
that ensemble model can greatly improve the precision but has negative effect
on the recall compared with single model.

3.4 Model Variants

In this subsection, we design a series of variants to validate the effectiveness of
our model. The first variant is SBi-GRU which contains a SBi-GRU and does
not contain character-level stack bidirectional GRU and context CNN. The sec-
ond variant is SBi-GRU-Context which incorporates context information of each
word by CNN, and the last variant SBi-GRU+Character integrates character-
level features into SBi-GRU via applying stack bidirectional GRU to character
sequence. Table 2 shows the results of our model and its variants.

From the Table 2, we can see that SBi-GRU+Context improves the perfor-
mances about 0.91% and 0.11% on two datasets compared with SBi-GRU model.
This verifies that the context information of each word promotes the performance

Table 2. Performance of the variants of our model.

Model/Dataset English Spanish

P R F P R F

SBi-GRU 0.5728 0.4152 0.4806 0.6458 0.5328 0.5837

SBi-GRU+Context 0.5682 0.4294 0.4897 0.6393 0.5391 0.5848

SBi-GRU+Character 0.5843 0.5313 0.5561 0.6773 0.6324 0.6538

Our model 0.6245 0.5185 0.5658 0.6917 0.6325 0.6605

Target Extraction via Feature-Enriched Neural Networks Model 361

of target extracting indeed because the boundary of target is highly related to
surrounding words. We can also see that context information have positive effect
on improving recall and is little harmful to the precision. But higher recall means
that system can cover more existing target, good system generally has higher
F-measure and similar precision and recall.

Compared with SBi-GRU and SBi-GRU+Context, SBi-GRU+Character
improves both precision and recall and outperforms SBi-GRU about 7.55% and
7.01%, which demonstrates that character-level features are very important to
target extracting because character-level features include morphological charac-
teristics and grammatical features. Further, character-level features can address
OOV words problems in some degree.

Our model integrates character-level features and context information into
SBi-GRU and achieve the best performances. From the results, we can see that
the improvements from SBi-GRU to our model are greater the accumulation of
the improvements from SBi-GRU to SBi-GRU+Context and from SBi-GRU to
SBi-GRU+Character (8.52% > 0.91% + 7.55% and 7.68% > 0.11% + 7.01%),
and we can infer that the character-level features and context information can
complement each other without negative effects in target extracting.

In a word, context information and character-level features play an important
role in target extracting, and we can integrate them into SBi-GRU for better
performances.

3.5 Error Cases

In this subsection, we will show some error cases in English dataset predicted by
our model to show the shortages of our model. Figure 2 shows the error cases.

sergio aguero greets man city fans at the etihad stadium

sergio aguero greets man city fans at the etihad stadium

check out my personal newspaper on the tweeted times
check out my personal newspaper on the tweeted times

(1)

(2)

(3)

(4)

Fig. 2. Error cases. Red, yellow, blue and green denote begin word of Person, inside
word of Person, begin word of Organization, and inside word of Organization respec-
tively. (1) and (3) are the correct labeling sentence. (2) and (4) are labeled by our
model. (Color figure online)

There are main four kinds of errors caused by our model. The first error
case is sergio aguero which should be a person name but is recognized as
organization by our model. From the first error case, we can see that our model
has ability to correctly recognizes the boundary of target but does not match
the true target type. The reason may be that context information is not enough
and we need take the long distance information into account.

362 D. Ma et al.

The second error case caused by our model is man city which should be a
organization target while is ignored by our model. In fact, man is the abbrevia-
tion of manchester, and man is not very common to be a target word. However,
city is often regarded as inside word of target. This error case implies that our
model is not good at finding new target via obvious clues.

The third error case is etihad stadium which should not be a target and
is labeled as an organization by our model. etihad stadium does not appear in
train data and is an existing place, but it should not be regarded as a target.
Although our model does not correctly identify this non-target, it shows our
model have potential in find new words.

The final error case is the tweeted times, our model only recognizes tweeted,
times and misses the. This target contains a very common used function word
the which almost does not be regarded as a part of target. Our model may learn
the information about the and gives the wrong label. To avoid this kind of error,
we need to let our model to associate with the word collection and word context.

From four error cases above, we can observe that our model can achieve com-
parable results but still has some problems illustrated above. The main reason
may be that our model is lack of modeling higher level features like long distance
features, word collection, etc., which are key factors for target extracting.

4 Related Work

Target extracting is a fundamental task for target-based sentiment analysis [7,8].
Early works often used unsupervised approaches which rely on predefined rules
and handcraft features. For example, [21] introduced an unsupervised informa-
tion extraction system which mines reviews in order to build a model of impor-
tant product features, their evaluation by reviewers and their relative quality
across products. [14] proposed a unsupervised approach which consists of two
forms of recommendations based on semantic similarity and aspect associations
respectively for aspect extraction. [25] developed a model to extract aspect term
via unsupervised learning of distributed representations of words and depen-
dency paths.

As supervised learning methods, [24] solved the target extraction by intro-
ducing a phrase dependency parsing which segments an inputs sentence into
phrases and links segments with directed arcs. [15] developed a centering the-
ory to extracting explicit and implicit opinion target from new comments. [22]
proposed a double propagation method which propagates information between
opinion words and targets to extract target and opinion word. [13] developed
a partially-supervised word alignment model to mine opinion relation and used
graph-based algorithm to estimate the confidence of candidate.

Recently, Target extracting is often regarded as sequence labeling task. The
sequence labeling approaches mainly focus on Hidden Markov Model (HMM)
and CRF-based framework. For example, [10] proposed a lexicalized HMM-
based framework to extract specific product related entities expressing review-
ers’ opinion. [12] proposed a CRF-based framework which employs features to

Target Extraction via Feature-Enriched Neural Networks Model 363

extract opinion and object features for review sentence. [9] modeled opinion
target extraction as information extraction task and address it by conditional
random fields. [19] extracted name entities and their sentiment jointly by CRF.

With the development of neural networks (NN) approaches, NN methods
also achieve good performances on target extracting. [26] developed a model
which integrates discrete features and word embeddings into CRF to jointly
extract target and their opinions. [23] built a joint model which integrates recur-
sive neural networks and conditional random fields into a unified framework to
explicit aspect and opinion term extraction. Although above NN approaches
achieve good performance, they do not take the advantage of recurrent neural
networks on sequence labeling [2]. Therefore, we use stack bidirectional GRU
with label inference which integrates character-level features and context fea-
tures to tackle target extracting, and experimental results on two open-domain
datasets validate the effectiveness of our model.

5 Conclusion

In this paper, we propose to use stack bidirectional GRU (SBi-GRU) with label
inference to address target extracting for target-based sentiment analysis. The
first step of our model is to use SBi-GRU to model each word’s character-level
features which have great influence on target extracting. Then, SBi-GRU is
also used to learn long distance feature for each word on the concatenation of
character-level features and word embeddings, and convolution neural networks
are adopted to capture local features around word. Finally, local features with
outputs from sentence-level SBi-GRU are used to infer the target. Experiments
on two datasets show the effectiveness of our model and verify the effectiveness of
character-level and local features. Error cases imply the shortages of our model,
in future work, we will explore how to learn global features for extracting target.

Acknowledgments. We would like to thank the anonymous reviewers for their
insightful suggestions. Our work is supported by National Natural Science Foundation
of China (No. 61370117). The corresponding author of this paper is Houfeng Wang.

References

1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. JMLR 3, 1137–1155 (2003)

2. Chen, X., Qiu, X., Zhu, C., Liu, P., Huang, X.: Long short-term memory neural
networks for Chinese word segmentation. In: EMNLP, pp. 1197–1206 (2015)

3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

4. Cieliebak, M., Deriu, J., Egger, D., Uzdilli, F.: A twitter corpus and benchmark
resources for German sentiment analysis. In: SocialNLP, p. 45 (2017)

5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. JMLR 12, 2493–2537 (2011)

http://arxiv.org/abs/1406.1078

364 D. Ma et al.

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, pp. 249–256 (2010)

7. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: SIGKDD, pp.
168–177. ACM (2004)

8. Hu, M., Liu, B.: Mining opinion features in customer reviews. In: AAAI, vol. 4,
pp. 755–760 (2004)

9. Jakob, N., Gurevych, I.: Extracting opinion targets in a single-and cross-domain
setting with conditional random fields. In: EMNLP, pp. 1035–1045 (2010)

10. Jin, W., Ho, H.H., Srihari, R.K.: A novel lexicalized hmm-based learning framework
for web opinion mining. In: ICML, pp. 465–472 (2009)

11. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Li, F., et al.: Structure-aware review mining and summarization. In: ACL, pp.
653–661 (2010)

13. Liu, K., Xu, H.L., Liu, Y., Zhao, J.: Opinion target extraction using partially-
supervised word alignment model. In: IJCAI, vol. 13, pp. 2134–2140 (2013)

14. Liu, Q., Liu, B., Zhang, Y., Kim, D.S., Gao, Z.: Improving opinion aspect extraction
using semantic similarity and aspect associations. In: AAAI, pp. 2986–2992 (2016)

15. Ma, T., Wan, X.: Opinion target extraction in Chinese news comments. In: Coling,
pp. 782–790 (2010)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

17. Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent
neural network based language model. In: Interspeech, vol. 2, p. 3 (2010)

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119.
Curran Associates, Inc. (2013)

19. Mitchell, M., Aguilar, J., Wilson, T., Van Durme, B.: Open domain targeted sen-
timent. In: ENMLP, pp. 1643–1654 (2013)

20. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: EMNLP, pp. 1532–1543 (2014)

21. Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews.
In: Kao, A., Poteet, S.R. (eds.) Natural Language Processing and Text Mining, pp.
9–28. Springer, London (2007). https://doi.org/10.1007/978-1-84628-754-1 2

22. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction
through double propagation. Comput. Linguist. 37(1), 9–27 (2011)

23. Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Recursive neural conditional random
fields for aspect-based sentiment analysis. arXiv preprint arXiv:1603.06679 (2016)

24. Wu, Y., Zhang, Q., Huang, X., Wu, L.: Phrase dependency parsing for opinion
mining. In: EMNLP, pp. 1533–1541 (2009)

25. Yin, Y., Wei, F., Dong, L., Xu, K., Zhang, M., Zhou, M.: Unsupervised word
and dependency path embeddings for aspect term extraction. arXiv preprint
arXiv:1605.07843 (2016)

26. Zhang, M., Zhang, Y., Vo, D.T.: Neural networks for open domain targeted senti-
ment. In: EMNLP, pp. 612–621 (2015)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-1-84628-754-1_2
http://arxiv.org/abs/1603.06679
http://arxiv.org/abs/1605.07843

A Novel Attention Based CNN Model
for Emotion Intensity Prediction

Hongliang Xie, Shi Feng(✉), Daling Wang, and Yifei Zhang

School of Computer Science and Engineering, Northeastern University, Shenyang, China
x123872842@163.com,

{fengshi,wangdaling,zhangyifei}@cse.neu.edu.cn

Abstract. Recently, classifying sentiment polarities or emotion categories of
social media text has drawn extensive attentions from both academic and indus‐
trial communities. However, limited efforts have been paid for emotion intensity
prediction problem. In this paper, we propose a novel attention mechanism for
CNN model that associates attention based weights for every convolution
window. Furthermore, a new activation function is incorporated into the full-
connected layer, which can alleviate the small gradient problem in function’s
saturated region. Experiment results on benchmark dataset show that our
proposed model outperforms several strong baselines and achieves comparable
performance with the state-of-the-art models. Unlike the reported models that
used different neural network architectures for different emotion categories, our
proposed model utilizes a unified architecture for intensity prediction.

Keywords: Emotion intensity prediction · CNN · Attention mechanism

1 Introduction

The social media platforms such as Facebook, Twitter and Instagram have aggregated
huge amount of personal feelings and altitudes. In recent years, classifying sentiment
polarities (Positive/Negative) or emotion categories (Anger/Fear/Joy/Sadness) of the
user generated content has drawn extensive attentions from both academic and industrial
communities. However, in text we not only convey the emotion category of our feeling,
but also the intensity of that emotion. Therefore, the sentences with the same emotion
category may have quite different intensities, as shown in the following example tweets.

Tweet A: Just got back from seeing @GaryDelaney in Burslem. AMAZING!! Face
still hurts from laughing so much #hilarious.
Tweet B: What a great training course, lots of photos, fun and laughter. Photo’s will
be up soon #Boostercourse #fun.

The above two examples are selected from WASSA-2017 emotion intensity detec‐
tion dataset, and both of them are associated with emotion label ‘Joy’. We can easily
observe that Tweet A express Joy much more intensively than Tweet B. In the original
dataset, the gold intensity label of Tweet A is 0.980 while Tweet B’s gold score is 0.740.
The traditional emotion category classification methods could not distinguish the

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 365–377, 2018.
https://doi.org/10.1007/978-3-319-99495-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_31&domain=pdf

intensity difference of these tweets. In this paper, we regard emotion intensity predicting
as a regression problem. The goal of the algorithm is to predict real-valued score ranging
from 0 to 1, which refers to the degree or amount of this emotion when given the input
sentence and the emotion label of this sentence expressed. A score of 1 means that this
sentence expresses the highest intensity emotion, and the score of 0 means that this
sentence expresses the lowest intensity emotion.

Automatically determining the intensity of emotion felt by speaker has potential appli‐
cations in commerce, public health, intelligence gathering, and social welfare [1]. The
previous studies have achieved promising results for classifying the social media text
according to their embedded emotions. However, limited efforts have been paid for tweet
emotion intensity prediction problem, which has brought in some brand new challenges.
Firstly, emotion intensity prediction is a finer-grained problem than emotion category clas‐
sification and this new task needs to capture the nuances of different emotional words and
provide more effective feature representation for tweets. Secondly, the length limitation of
tweets results in sparseness problem in the feature space and sets up obstacles for extracting
effective features. Thirdly, Twitter has an extremely large user base which leads to rich
textual content, including nonstandard language, creatively spelled words (e.g. happee), and
hash-tagged words (e.g. #luvumon) [1]. These informal writing styles of tweets increase the
difficulties for understanding the semantics in short text.

To tackle these challenges, in this paper, we propose a novel attention mechanism
for Convolutional Neural Network with a revised activation function that are suitable
for the tweet emotion intensity prediction problem. Deep learning method has already
shown some promising results on this topic. For example, Goel et al. leveraged the
ensemble CNN and RNN models to achieve the best performance in WASSA-2017
shared task on emotion intensity [2]. However, they had to train different models for
different emotion categories and the basic models they used treated all words equally in
the modeling of sentences. Different from the existing methods, our proposed CNN
model associates attention based weights for every convolution window. Furthermore,
a new activation function in full-connected layer is proposed which can alleviate the
small gradient problem in saturated region. In summary, our key contributions are as
follows.

• We propose a novel attention mechanism for CNN which makes our model pay more
attention to the words contributing to emotion intensity prediction.

• We introduce a novel activation function in full-connected layer for regression
problem whose result is real-valued and ranges from 0 to 1.

• We conduct experiment on benchmark dataset. Experiment results show that our
proposed model outperforms several strong baselines and achieves comparable
performance with the state-of-the-art non-ensemble models. Unlike that reported
models used different neural network architectures for different emotion categories,
our proposed model utilizes a unified architecture for intensity prediction.

366 H. Xie et al.

2 Related Work

Modeling emotion intensity has attracted more and more attentions from researchers.
The WASSA-2017 EmoInt is a shared task to predict emotion intensity value of the
given English tweet with emotion category label, which was held in conjunction with
EMNLP-2017. And SemEval-2018 also organizes a shared task to predict emotion
intensity value whose dataset has English, Arabic, and Spanish tweets. Continuously
holding these shared tasks show that the academic community is gradually aware of the
importance of this problem.

Methods for solving emotion intensity prediction can be divided into two categories.
One is traditional feature-based methods which rely on a set of features selected from
preprocessing steps. And they usually need another external resources. Mohammad et al.
created a lot of features includes Word N-grams, Character N-grams, Word Embedding
and many Affection Lexicons features [1]. Then they used a L2-regularized L2-loss
SVM regression model to predict the emotion intensity. Köper et al. used affective norms
and automatically extended resources to build features, and then utilized random forest
classifier to predict the emotion intensity [3]. Duppada et al. leveraged the word embed‐
ding and emoji embedding [4] to build features, and then used many regression algo‐
rithms to predict the emotion intensity [5]. The shortage of those methods are that they
rely on manually created affection lexicons and preprocessing steps.

Another category of methods are based on the deep learning technology. Goel et al.
used the feed-forward neural network, multitask deep neural network and sequence
modeling using CNNs and LSTMS to predict the emotion intensity of tweets [2]. And
they also employed the ensemble results of those models to get the state-of-art result in
the WASSA-2017 EmoInt shared tasks. John el al. fed affect clues, sentiment polarity
and word embedding into the deep neural network to predict the emotion intensity [6].
Lakomkin et al. used the character-level and word-level recurrent neural network models
to predict the emotion intensity, and showed that the effectiveness of using the character-
level models to model the noisy and short texts [7]. The shortage of these methods are
that they treat all word equally in the modeling of sentence. But when we judge the
emotional intensity of sentences in reality, different words have quite different effects.
Our experiments demonstrate that we can use attention mechanism to associate different
words with different weights in CNN framework, and the proposed attention mechanism
can indeed help improve the performances of models in predicting emotion intensity.

3 Proposed Method

Given a sentence s and its emotion label, the emotion intensity prediction is a task to get
a real value ranges from 0 to 1 which is in proportion to the emotion intensity. The
schematic overview of our attention based convolutional neural network is shown in
Fig. 1. Given a sentence s, we use the pre-trained word embedding matrix transform it
into a matrix 𝐗. Secondly, we use a LSTM layer encodes this sentence into a vector
representation 𝐯

𝐬
 from the matrix representation 𝐗. Then we use 𝐯

𝐬
 and 𝐗 to compute

attention score 𝐯
𝐚
 by using general method [8]. Each element in the 𝐯

𝐚
 represents the

A Novel Attention Based CNN Model 367

attention score of each word in s. Next we can scale our word embedding in each convo‐
lutional window by the corresponding score. But to make the expectation of convolu‐
tional output unchanged, we need to apply the softmax function to the attention scores
in that convolutional window to transform it into a probability distributions and multiply
the score with the convolutional window size to get the genuine attention score in that
convolutional window. Due to the same word in different convolutional windows having
different attention scores, it will scale with different factors. So we need transform the
𝐗 into the genuine convolutional input 𝐙. After getting the genuine input, we use a CNN
layer extracts the features of the sentences which denotes as 𝐯

𝐟
. Finally, we use a fully-

connected layer and a revised activation function to get the predicted emotion intensity.

I feel very happy today

I feel very happy today

LSTM General
Attention

I feel very happy
feel very happy today

Scale and
concat

CNN

Full-connected
Layer

Y

X

vs

s

va

Z

vf

Revised
Activation
Function

Fig. 1. Schematic overview of attention based Convolutional Neural Network

3.1 Input Representation

Given a sentence s = (𝜔1,𝜔2,… ,𝜔n). We transform every word 𝜔i into a real-valued
vector through by looking up work embedding matrix to provide lexical-semantic
features. The shape of the word embedding matrix 𝐖

𝐯
 is |V| × dw, where |V| is the

vocabulary size and dw is the embedding size. So we map every word 𝜔i into a row vector
𝐖𝐢

𝐯
ℝ

1×dw.
We can get the word embedding matrix from the pretrained word vectors. A common

tool for training word embedding is Word2Vec [9, 10]. This tool leverages a lot of
unsupervised domain corpus as input, and gets the trained word embedding matrix for

368 H. Xie et al.

every word in the dataset. And the trained word vectors can capture a large number of
precise syntactic and semantic word relationships.

Alternatively, we can use the random initialized word embedding matrix. We can
fine-tune this word embedding matrix when we train CNN model. Kim demonstrates
that random initialized word embeddings can also get a good results [11].

There is a big difference between the vocabulary of WASSA-2017 EmoInt training
set and test set. The vocabulary size information of training set and test set is in the
Table 1. If we use the random initialized word embedding matrix, many words that only
appears in test set cannot be trained in the training phase, which has a bad effect on our
experimental results. Therefore, we use pretrained word vectors to bridge the vocabulary
gap and alleviate difficulties introduced by the informal writing styles of tweets, such
as the creatively spelled words, emojis and so on. We use the public available embed‐
dings [12] which were trained on 400 million tweets for ACL WNUT 2015 shared task.

Table 1. The vocabulary size about training set, test set and the overlap vocabulary size

Emotion Training set Test set Overlap in Training & Test set
Anger 3345 3127 1129
Fear 4253 3664 1445
Joy 3263 3057 1110
Sadness 3605 3102 1189

3.2 Attention Mechanism

We propose a novel attention mechanism for CNN to make our model treat different
words with different weights. The LSTM based sentence representation and the word
vector is utilized to compute the weight on this word.

Sentence Representation
We use a LSTM layer [13] to encode our input matrix 𝐗 to a vector 𝐯

𝐬
 which is further

used to compute the attention weight of each word in the sentence. The formulas are as
follow:

𝐢t = sigmoid
(
𝐖

𝐢
𝐡t−1 + 𝐔

𝐢
𝐗t + 𝐛

𝐢

)
(1)

𝐟t = sigmoid
(
𝐖

𝐟
𝐡t−1 + 𝐔

𝐟
𝐗t + 𝐛

𝐟

)
(2)

𝐨t = sigmoid
(
𝐖

𝐨
𝐡t−1 + 𝐔

𝐨
𝐗t + 𝐛

𝐨

)
(3)

𝐜t = tanh
(
𝐖

𝐜
𝐡t−1 + 𝐔

𝐜
𝐗t + 𝐛

𝐜

)
(4)

𝐜
𝐭
= 𝐟t ∗ 𝐜t−1 + 𝐢t ∗ 𝐜t (5)

𝐡t = 𝐨t ∗ tanh
(
𝐜t
)

(6)

A Novel Attention Based CNN Model 369

the above formula, 𝐗
𝐭
 is the t-th word vector in the input matrix 𝐗. The weights

𝐖
𝐢
,𝐔

𝐢
,𝐖

𝐟
,𝐔

𝐟
,𝐖

𝐨
,𝐔

𝐨
,𝐖

𝐜
,𝐔

𝐜
 and bias 𝐛

𝐢
,𝐛

𝐟
,𝐛

𝐨
,𝐛

𝐜
 are the parameters of LSTM layer.

And 𝐜
𝐭
,𝐡

𝐭
 are the value of cell state and hidden state at timestep t. We use the last hidden

state 𝐡
𝐧
 as the vector representation of that sentence which is also denoted as 𝐯

𝐬
.

Attention in Convolutional Window
After get the vector representation of sentence, we need to use the sentence vector 𝐯

𝐬

and every word vector compute the word attention score. We use the general method [8]
to compute the attention weight. In other words this process can be expressed as follow:

𝐯
𝐚
= 𝐗𝐖𝐯

𝐬 (7)

In the Eq. 7, we get a vector 𝐯
𝐚
ℝ

n. Each element in the vector represents the attention
score of each word in the sentence respecting with the sentence vector 𝐯

𝐬
.

As we all know, convolutional neural networks share weight parameters through the
convolution kernel. Due to this fact, we cannot apply attention weight to the convolutional
weights directly. And the convolution operation is equal to the sum of each element in the
tensor produced by the element-wise product of the input matrix and the convolutional
weights. So we can apply the attention weights to the input matrix.

In our model, we use attention mechanism to each convolutional windows. In other
words, we multiply every word vector in the convolutional windows by the corresponding
attention weight. To make the expectation of the convolution result unchanged, we need
to transform the weights in the vector slice corresponding to this convolutional windows
to a probability distribution and then we multiply the transformed probability distribution
by the convolutional window size to get the genuine attention weight vector. At last, we can
multiply the word vector by the genuine attention weight to get the genuine convolution
layer input. This process can be expressed as follow:

𝛂i = l ∗ softmax
(
𝐯
𝐚
[i:i + l]

)
, i ∈ {0, 1,… , n − l} (8)

𝐙
𝐢
=
[
𝛂
𝐢0 ∗ 𝐗(i+0),𝛂𝐢1 ∗ 𝐗(i+1),… ,𝛂

𝐢(l−1) ∗ 𝐗(i+l−1)
]

(9)

In the above equations, we transform the input matrix 𝐗 to the genuine convolutional
layer inputs 𝐙. Each row of the matrix 𝐙 is corresponded to the input of one convolution
operation step. Because sentence length is n and the convolutional window size is l. So
the number of rows of matrix 𝐙 is n-l + 1. And 𝐙

𝐢
(the i-th row of the matrix 𝐙) is a row

vector which dimension is l × dw. From the above Eq. 8, we can easily know that attention
weight of the same word is different when it is in different convolutional operation step.
That is the reason why should make the new matrix 𝐙.

CNN uses max pooling to extract the significant feature in that convolutional
windows. Inspired by adding attention to word embedding [14], our proposed attention
mechanism is able to scale the word embedding in the convolutional window according
to their genuine attention score. That will amplify the related word embedding which is
more important for predicting emotion intensity and shrink unrelated embedding. So we
can extract the significant feature more easily than original CNN architecture.

370 H. Xie et al.

Convolutional Layer
In the above section, we get the genuine convolutional layer’s input matrix 𝐙. Then

we can use the convolution operation on this matrix. But we need to notice that we have
considered the convolutional window size in the process of transforming 𝐗 to the
genuine input matrix 𝐙. So the convolutional window in this convolutional filter is 1.
And the input channel in our model is also 1. Then we get our convolutional filters has
the shape

[
l × dw, 1, 1, k

]
. The parameter k is a hyperparameter which controls the number

of features extracted for each convolution window.
We use max-pooling over the dimension corresponding to convolutional window

after the convolution operation. After the pooling operation, we can get a vector which
has k elements for each convolutional window size. Then we add the non-linear operation
on that vector. We use the ReLU unit as the activation function [15].

3.3 Fully-Connected Layer and Activation Function

We can get an output vector of k dimensions for each convolutional window size for a
sentence. So when we use t different convolutional window sizes to build the final
sentence vector representation that is composed by concatenating t output vectors.

𝐯= [𝐯T
𝐢
𝟏

, 𝐯T
𝐢
𝟐

,… , 𝐯T
𝐢
𝐭

]T (10)

The vector 𝐯
𝐢t
 is the output of convolution layer which convolutional window size is

it. Following the convolutional layer, we use a fully-connected layer to transform the
sentence vector representation to a scalar value which will be used to get the final
predicted value.

One common activation function for output ranging from 0 to 1 is the sigmoid func‐
tion. Its gradient in linear region is much greater than the gradient in non-linear region.
This property is harmful to network learning when the input of activation function is out
of its linear region. Because when the input is in the saturated region, the gradient will
be very small which can easily result in the increment of parameters underflow when
updating parameters and bring in difficulties during model learning. So we need a new
activation function which can control its saturated region and alleviate the small gradient
problem.

Inspired by the idea of ReLU function, we revised the activation function used for
predicting emotion score as follow:

omax = max
(

0, x

2 ∗ gap
+ 0.5

)

(11)

o = min
(
1, omax

)
(12)

In the revised function, we can use the hyperparameter gap to control the linear
region of the activation function. So we can make most of input of the activation function
in its linear region. That will give efficient gradient to the former layer which is beneficial
to learning parameters in the former layer.

A Novel Attention Based CNN Model 371

4 Experiments

4.1 Experimental Setup

Dataset and Metrics
We conduct our experiments on the dataset of WASSA-2017 shared task on emotion

intensity (EmoInt). The number of instances in this dataset is shown in Table 2. This
dataset is composed of four emotion sub-dataset. Each sub-dataset is composed of the
samples expressing same emotion.

Table 2. The number of instances in the experimental dataset

Emotion Training set Development set Test set
Anger 857 84 760
Fear 1147 110 995
Joy 823 79 714
Sadness 786 74 673

We evaluate the models using the Spearman Rank Coefficient of the predicted score
with the gold score of data and the Pearson Correlation Coefficient of the predicted score
with the gold ratings. The correlation scores across all four emotions averaged to get the
final coefficient score.

Settings
We use the pretrained word2vec [12] to initialize the word embedding matrix, and keep

the word embedding fixed when the CNN model is training. Other weight parameters are
initialized using the default Tensorflow initializer. We combine the training set and devel‐
opment set using the 5 fold cross validation on all emotion sub-datasets. And to reduce the
influences of the random factor, we run every model 3 times in every cross-validation.

The result of test set is produced by the model that achieved the best result on valida‐
tion set. But to compare with the result reported by Goel et al. [2], the result of test set in
the Sect. 4.3 is produced by training on the dataset which is composed of merging original
training dataset and validation dataset with determined number of epochs. Because of this,
the result of our proposed model CNN-ATT-RA reported in Table 5 is better than the
results reported in Tables 3 and 6.

Table 3. Pearson correlations of emotion intensity predictions with gold score on test dataset

Model Average Anger Fear Joy Sadness
CNN 69.39 67.24 71.98 65.57 72.77
LSTM 47.10 41.56 45.75 50.92 50.18
SVM 64.82 63.90 65.20 65.40 64.80
CNN-ATT-RA 70.01 68.06 72.62 66.32 73.05

The network parameters are learned by minimizing the Mean Absolute Error
between the actual and predicted values of emotion intensity. We optimize this loss

372 H. Xie et al.

function by Adam optimization algorithm [16] with the default parameters. And the
number of convolutional filters k is set 200 for all model. The convolutional window
size are set as 2, 3 and 4. The hidden vector size of LSTM is 256. The hyperparameter
gap for all emotions are set as 4 except sadness which is 10. All hyperparameters are
selected by cross-validation.

4.2 Compared with Baselines

To illustrate the performance boost of our proposed attention model and the revised
activation function, we compare our model with several strong baseline methods which
includes the basic neural network architecture we use in our proposed model.

– CNN: Convolutional Neural Network using the pretrained word embeddings.
– LSTM: Using LSTM units to encode the sentence.
– SVM: Features includes that constructed by a lot of affection lexicon and many other

common text features used by emotion classifier.
– CNN-ATT-RA: our proposed model.

The experimental results on all sub-dataset are shown in Tables 3 and 4.

Table 4. Spearman coefficient of emotion intensity predictions with gold score on test dataset

Model Average Anger Fear Joy Sadness
CNN 68.38 65.61 69.89 65.61 72.40
LSTM 45.63 39.07 43.02 50.47 49.94
CNN-ATT-RA 69.23 66.73 70.76 66.25 73.20

In the above results, we observe that our proposed model which uses attention weight
in every convolutional window and revised activation function can improve both
Pearson correlation and Spearman coefficient in all emotion dataset. Specifically, our
proposed method outperforms the basic CNN with a relative 0.62% in average Pearson
correlation and with a relative 0.85% in average Spearman coefficient. Our proposed
method outperforms the basic LSTM with a relative 22.91% in average Pearson corre‐
lation and with a relative 23.60% in average Spearman coefficient. Moreover, those
results are obtained by the fine-tuned network. And all of results reported above are
average of results of 5-fold cross validation and the result of each cross validation are
the average of results obtained by repeatedly running models 3 time. That ensure the
improvement of results are indeed benefit from the attention mechanism and the revised
activation function.

The results obtained by SVM is reported in [2]. And there is no results on the
Spearman coefficient in that paper.

We can observe that the results obtained by LSTM is very poor. That may be caused
by lacking of training data. Therefore, the basic LSTM model cannot learn particularly
effective features that can make our prediction precisely.

A Novel Attention Based CNN Model 373

4.3 Compared with Results of WASSA-2017 EmoInt

To demonstrate the effective of our models, we also compare our proposed method with
the reported models in WASSA-2017 EmoInt shared task.

The Pearson correlation results obtained in test dataset is shown in Table 5. Because
those models doesn’t report the Spearman coefficient results on their paper and results
with Spearman coefficient is largely inline with those obtained using Pearson correlation,
we only compare the results on the Pearson correlation.

Table 5. Pearson correlations of emotion intensity predictions with gold scores on test dataset

Approach Average Anger Fear Joy Sadness
FFNN 69.58 67.88 72.42 68.26 69.77
Multi-DL 66.20 64.49 67.74 65.37 67.22
CNN + LSTM 71.79 70.15 72.95 69.14 74.93
Lexicons(BL) 65.00 65.00 66.00 60.00 70.00
Ext.Twitter + BL 70.00 68.00 72.00 66.00 74.00
CNN-LSTM + BL 70.00 69.00 69.00 67.00 76.00
Seernet 71.52 67.84 70.52 72.81 74.89
CNN-ATT-RA 71.76 71.64 72.82 69.24 73.34

In the above results, the model FFNN, Multi-DL and CNN + LSTM are the models
used by the best performing system [2]. The model Lexicons, Ext.Twitter + BL and
CNN-LSTM + BL are models used by the system ranked second in the shared task [3].
The model Seernet [5] are an ensembles models which ranked third in the shared task.

As the experiment settings reported on [2], we train the model on the dataset which
is composed of the merger of training dataset and validation dataset when we use the
model to predict the emotional intensity of samples in the test dataset. The number of
epochs for each emotion is the average of the epochs which achieved best performance
in the validation dataset.

Our proposed model achieves competitive performance with the best single model
of the best system (CNN + LSTM) [2]. CNN + LSTM used different architecture for
different emotion sub-datasets and the architecture was selected by validation dataset.
Different from that, our proposed model use a unified architecture for all emotion dataset.
And our proposed model also performs better than the single model (CNN-LSTM + BL,
Ext.Twitter + BL) which employed many manually constructed features.

Our proposed model achieves better performance than the ensemble model Seernet
[5] which ranks third in the shared task. As we can observe in the results, our proposed
model achieves relatively poor results in joy than the result achieved by Seernet. That
may be caused by predicting emotion intensity of joy is harder than the other emotions
and the number of training data is not enough. So the ensemble methods can get better
performance. The fact that all single model achieves relative poor result than the
ensemble model Seernet in joy sub-dataset can support our view.

374 H. Xie et al.

4.4 Ablation Experiments

To better quantify the contribution of the attention mechanism and the revised activation
function, we conduct an ablation experiments in our model as follows.

– CNN-ATT: Convolutional neural network with our attention mechanism.
– CNN-RA: Convolutional neural network with our revised activation function.

The results of the ablation experiments are shown in Tables 6 and 7.

Table 6. Pearson correlation of ablation experiment on test dataset

Approach Average Anger Fear Joy Sadness
CNN 69.39 67.24 71.98 65.57 72.77
CNN-ATT 69.69 68.57 72.15 65.82 72.23
CNN-RA 69.24 66.96 71.84 65.49 72.67
CNN-ATT-RA 70.01 68.06 72.62 66.32 73.05

Table 7. Spearman coefficient of ablation experiment on test dataset

Approach Average Anger Fear Joy Sadness
CNN 68.38 65.61 69.89 65.61 72.40
CNN-ATT 68.66 66.75 69.95 65.94 72.01
CNN-RA 68.36 65.68 69.80 65.48 72.51
CNN-ATT-RA 69.23 66.73 70.96 66.25 73.20

As the results show, our proposed attention mechanism can achieve better perform‐
ances in most of emotion dataset. And if the revised activation function is used alone,
it may cause a slight decrease in performance. But if we combine the revised activation
function with the attention mechanism, the revised activation function can improve the
performance of the attention mechanism.

The reason why our revised activation function can improve the performance of our
proposed attention mechanism is that we use a LSTM layer to encode the sentence which
is used to compute the attention score. The neural network is distressed by the gradient
vanish. If the input of sigmoid unit is out of its linear region, their gradients are much
smaller than gradients at the linear region. Using our revised activation function in the
output unit, we can control the range of linear region. So we can propagate bigger
gradient to the LSTM unit, which can alleviate the gradient vanish problem in the
network. This mechanism makes the LSTM unit to encode the sentence more precisely
and brings in more accurate attention scores.

5 Conclusion

In this paper, we propose an attention mechanism which can improve the results for
emotion intensity prediction problem. We also present a revised activation function used
in the output unit which can make our attention mechanism work better through

A Novel Attention Based CNN Model 375

controlling linear region of activation function. The experiment results obtained by our
proposed model are better than several baselines and the ensemble system which rank
third in the shared task. And our propose model can achieve competitive performance
with the best performance single model in the task. Unlike the single model that selected
different neural architectures for different emotion sub-datasets, our proposed model use
a unified architecture for all emotion sub-datasets.

Acknowledgements. The work was supported by the National Key R&D Program of China under
grant 2018YFB1004700, and National Natural Science Foundation of China (61772122,
61402091).

References

1. Mohammad, S.M., Bravo-Marquez, F.: WASSA-2017 shared task on emotion intensity.
arXiv preprint arXiv:1708.03700 (2017)

2. Goel, P., Kulshreshtha, D.: Prayas at EmoInt 2017: an ensemble of deep neural architectures
for emotion intensity prediction in tweets. In: Proceedings of the 8th Workshop on
Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 58–65
(2017)

3. Köper, M., Kim, E.: IMS at EmoInt-2017: emotion intensity prediction with affective norms,
automatically extended resources and deep learning. In: Proceedings of the 8th Workshop on
Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. pp. 50–57
(2017)

4. Eisner, B., Rocktäschel, T.: emoji2vec: Learning emoji representations from their description.
arXiv preprint arXiv:1609.08359 (2016)

5. Duppada, V., Hiray, S.: Seernet at EmoInt-2017: tweet emotion intensity estimator. arXiv
preprint arXiv:1708.06185 (2017)

6. John, V., Vechtomova, O.: UWat-Emote at EmoInt-2017: emotion intensity detection using
affect clues, sentiment polarity and word embeddings. In: Proceedings of the 8th Workshop
on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp.
249–254 (2017)

7. Lakomkin, E., Bothe, C.: GradAscent at EmoInt-2017: character- and word-level recurrent
neural network models for tweet emotion intensity detection. arXiv preprint arXiv:
1803.11509 (2018)

8. Luong, M.T., Pham, H.: Effective approaches to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025 (2015)

9. Mikolov, T., Chen, K.: Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781 (2013)

10. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International
Conference on Machine Learning, pp. 1188–1196 (2014)

11. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:
1408.5882 (2014)

12. Godin, F., Vandersmissen, B.: Multimedia Lab @ ACL W-NUT NER shared task: named
entity recognition for Twitter microposts using distributed word representations. In:
Proceedings of the Workshop on Noisy User-generated Text, pp. 146–153 (2015)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. In: Neural Computation, pp. 1735–
1780 (1997)

376 H. Xie et al.

http://arxiv.org/abs/1708.03700
http://arxiv.org/abs/1609.08359
http://arxiv.org/abs/1708.06185
http://arxiv.org/abs/1803.11509
http://arxiv.org/abs/1803.11509
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882

14. Wang, L., Cao, Z.: Relation classification via multi-level attention CNNs. In: Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (2016)

15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (2010)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:
1412.6980 (2014)

A Novel Attention Based CNN Model 377

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Recurrent Neural CRF for Aspect Term
Extraction with Dependency Transmission

Lindong Guo1, Shengyi Jiang1,2(&), Wenjing Du1, and Suifu Gan1

1 School of Information Science and Technology,
Guangdong University of Foreign Studies, Guangzhou, China

1216920263@qq.com, 515056384@qq.com, 657742829@qq.com,

jiangshengyi@163.com
2 Engineering Research Center for Cyberspace Content Security of Guangdong

Province, Guangzhou, China

Abstract. This paper presents a novel neural architecture for aspect term
extraction in fine-grained sentiment computing area. In addition to amalga-
mating sequential features (character embedding, word embedding and POS
tagging information), we train an end-to-end Recurrent Neural Networks
(RNNs) with meticulously designed dependency transmission between recurrent
units, thereby making it possible to learn structural syntactic phenomena. The
experimental results show that incorporating these shallow semantic features
improves aspect term extraction performance compared to a system that uses no
linguistic information, demonstrating the utility of morphological information
and syntactic structures for capturing the affinity between aspect words and their
contexts.

Keywords: Aspect term extraction � Dependency transmission
Recurrent neural networks � CRF

1 Introduction

Aspect term extraction [1, 2], also generally named opinion target extraction [3, 4] in
some literature, is aimed to identify objects commented in subjective texts. For
instance, in a product review of a phone “an average phone with a great screen, but
poor battery life”, the review is targeted at the phone’s “screen” and “battery life”,
which are aspect terms expected to be extracted. Aspect term extraction is an important
prerequisite for fine-grained sentiment analysis. However, sentiment analysis has been
based on sentence or paragraph level for years [5, 6], where much accurate information
and different opinions towards distinct targets could be missed. To overcome such
limitation, aspect-based sentiment analysis has become the focus of a growing number
of research.

There are two types of aspects defined in aspect-based sentiment analysis task:
explicit aspects and implicit aspects [7]. Explicit aspects are words which appear
explicitly in opinioned sentences. In the above example, the opinion targets, “screen”
and “battery life” explicitly mentioned in the text are the explicit aspects. On the
contrary, implicit aspects are the targets that are not explicitly mentioned in the text but

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 378–390, 2018.
https://doi.org/10.1007/978-3-319-99495-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_32&domain=pdf

can be inferred from the context or opinion words. We can see from the following
sentence “My phone is shine but expensive” the appearance and price of the phone are
implicit aspects which can be deduced from the opinion words “shine” (corresponds to
the appearance of the phone) and “expensive” (corresponds to the price of the phone).

In this paper, we focus on the explicit aspect term extraction task. We propose
BiLSTM-DT (Bidirectional LSTM with Dependency Transmission), a novel neural
network architecture combining the ability of learning long-term sequential depen-
dencies of LSTM [8] and the guidance of syntactical structural priors provided by
dependency transmission. The network takes as input a variable length of embeddings,
which consist of character-level embedding, word-level embedding and POS embed-
ding. Specifically, the character-level embedding is the concatenation of the two final
state outputs of a bidirectional Recurrent Neural Networks running over a character
stream. The word-level embedding transforms word tokens to word vectors given a
pre-trained or randomly initialized word embedding lookup table. And the POS
embedding is like the word-level embedding, but it is always initialized randomly at the
beginning of the training phrase and it provides beneficial lexicological information
which is lacking in word-level embedding. The three types of embeddings are then fed
into a bidirectional LSTM network with well-designed dependency transmission
between recurrent units. To ensure that the network learns label dependencies, a CRF
layer is added as the final output to restrict the decoding process. Experimental results
on publicly available datasets show that our proposed model achieves new state-of-the-
art performance.

2 Related Work

Various approaches have been proposed to tackle aspect term extraction. These
approaches can be roughly classified into unsupervised and supervised ones. For
unsupervised approaches, most of them are based on statistics or linguistic rules. With
the assumption that aspects of products are mostly nouns or noun phrases, Hu and Liu
[7] firstly proposed an approach where explicit aspects, with high frequency in corpus,
were extracted by association mining and implicit aspects were also detected by
minimum distance from opinion words. Though easy to implement, the approach
probably obtains low precision because it is vulnerable to frequent noises. For instance,
daily expressions, usually with high frequency, could be mistakenly recognized as
explicit aspects. Later, point-wise mutual information (PMI) was introduced by
Popescu and Etzioni [9]. The precision was improved by computing PMI value
between candidate aspect and some entity-related meronymy discriminators. However,
the algorithm needs to collect product category expressions in advance since the cat-
egory indicators are used to compute PMI scores, and at the same time, the computing
of PMI score needs the help of search engine, which will be a time-consuming process.
Scaffidi et al. [10] proposed an approach based on language model under the
assumption that product aspects are more frequently mentioned in product reviews than
in general English texts. However, this approach based on statistical model resulted in
favorable performance for frequent aspects but instability for infrequent aspects. Dif-
ferent from the above frequency-based methods, syntactic relations between aspects

Recurrent Neural CRF for Aspect Term Extraction with Dependency Transmission 379

and opinion words for aspect term extraction are exploited in follow-up studies
[11–13]. Given a small number of seed opinion words, Qiu et al. [12] proposed an
algorithm called Double Propagation (DP) that iteratively expands opinion words and
extracts aspects simultaneously with pre-defined syntactic rules from dependency parse
trees. However, the rules are often targeted at a specific domain, and often encounter
problems such as matching order conflict.

On the other hand, aspect term extraction can be regarded as a sequence labeling
problem and many supervised methods such as HMMs-based [14] and CRFs-based
[15–17] approaches are developed to solve this problem. Jakob et al. [15] conducted
experiments on four different domains (movies, web-services, cars and cameras), in
which the CRF model was trained with features defined as token, POS tag, short
dependency path, word distance and opinion sentence. Conditional Random Fields
based methods, have no problems as the above rules based method, but they also rely
on a large number of manual process of feature engineering. These features are decisive
for the extraction performance.

Recent studies have found that deep neural networks have the ability to automat-
ically learn feature representations. Therefore, the deep learning based aspect term
extraction has become an important research direction in this field. Liu et al. [18]
proposed to employ different types of Recurrent Neural Networks to extract aspects and
showed that fine-tuning RNNs outperform feature-rich CRF models without any task-
specific manual features. However, the proposed method simply employed RNNs in
conjunction with word embeddings, and hence many linguistic constraints cannot be
learned to deliver beneficial information. Wang et al. [19] proposed an approach
combining Dependency-Tree Recursive Neural Networks with CRF for aspect terms
and opinion words co-extraction, in which syntactic dependencies and semantic
robustness are considered. Our method is inspired by this one, however, we differ in the
way we incorporate syntactic relations into neural networks. Instead of simply taking
recursive neural networks, we adopt Recurrent Neural Networks with carefully-
designed dependency transmission, which are able to take into account the syntactic
structural priors while simultaneously reserve the naturally sequential context. Yin
et al. [20] used RNNs to learn distributed representation of dependency paths and then
fed the learned dependency path embeddings as one of features into CRF model to
extract aspect terms. Essentially, we view this method as a CRF-based model since the
training of embeddings and the extraction model are segregated, and the modeling
capacity of neural networks is not made use of in the supervised phrase.

3 Method

3.1 Overview

In this paper, we investigate the problem of aspect term extraction in opinion mining,
as a sequence labeling task. Our model consists of three components: an embedding
component including character-level embeddings, word embeddings, and POS tagging
embeddings, which capture lexicological and morphological features; a bidirectional
LSTM layer with dependency transmission capturing contextual and syntactic

380 L. Guo et al.

correlations among words; a CRF layer leveraging label information to make valid
predictions. The main architecture of the full model is shown in Fig. 1.

3.2 Embedding Layer

The embedding layer consists of word embedding, character embedding, and POS tag
embedding. Word embedding reflecting resemblance between words has been shown
effective in a wide range of NLP tasks. Therefore we use it as the basic input of our
model. Noting that words themselves of different languages contain rich morphological
(e.g. English) or hieroglyphic (e.g. Chinese) information, we can further exploit a
neural model to encode words from their own characters in order to make full use of
these character-level knowledge. We use Bi-LSTM here since we are tackling English
and Recurrent Neural Networks are capable of capturing position-dependent features.
We also take advantage of the POS tagging information which guarantees providing
strong indicative knowledge for targeted words. Finally, each word in the sentence is
associated with a word embedding, a final state output of the forward pass of the
character Bi-LSTM, a final state output of the backward pass of the character Bi-LSTM
and a POS tagging embedding. These features will be concatenated as a vector and fed
to the next layer.

Fig. 1. Architecture of the full model. The left and right output of the character-level
bidirectional LSTM are concatenated together to form char embedding. Then char embedding,
word embedding, and POS embedding are fed into a sentence-level bidirectional LSTM with
dependency transmission. The CRF layer is employed on top of the LSTM to predict BIO labels.

Recurrent Neural CRF for Aspect Term Extraction with Dependency Transmission 381

3.3 RNNs Incorporating Dependency Transmission

Given a review sentence s ¼ w1;w2; . . .;wTh i consisting of T words, each represented
as an n-dimensional word embedding xt learned by unsupervised neural nets, a
recurrent unit, at time step t, receives the current word embedding xt and the previous
hidden state ht�1, and returns a output representation ht and a new hidden state.

We first produce a dependency parse for each review sentence using an off-the-
shelf dependency parser. In the dependency parse, all words except one are assumed to
have a syntactic governor and there is a pre-defined genre of dependency relationship
represented as an arc between the governor word and the dependent word. The arcs
begin from the previous word and end to the current word will be used in the forward
pass of the Recurrent Neural Networks. Similarly, the arcs arise at the rear word and
drop at the current word will be used in the backward pass of the network, as depicted
in Fig. 2. Each arc is represented as a vector r 2 R

d and an affine function
(f rð Þ ¼ Wrrþ br) is introduced to transform the dependency embedding r to a vector
dr with the same dimension as the hidden state of the recurrent unit.

For each time step t, the input hidden state is now computed from the direct
previous hidden state, the vector dr, and the previous output vector which has a
dependency relation with the current token. As an illustration, consider the relation
“conj” between words “design” and “atmosphere” in Fig. 2(a), we first calculate the
hidden representation of the dependency relation conj as follows:

dconj ¼ f Wrrconjþ br
� �

where Wr and br denote the weight matrix and the bias vector, respectively, and f is a
non-linear activation function. In our experiments, we choose the hyperbolic tangent

Fig. 2. An illustration of the dependency transmission. (a) represents the dependencies used in
the forward pass, and (b) represents the dependencies used in the backward pass.

382 L. Guo et al.

tanh �ð Þ to be the activation function. After this, the new hidden state is now become the
summation of the dependently connected output vector or, the hidden representation
vector dconj and the directly previous hidden state vector ct�1, i.e.:

ct�1 ct�1þ orþ dconj

The updates for LSTM units now become:

it ¼ r Wxixt þWhiht�1þWciðct�1þ or þ dð Þþ biÞ

f t ¼ r Wxf xt þWhfht�1þWcf ðct�1þ or þ d
� �þ bf Þ

ct ¼ f t � ct�1þ it � tanh Wxtxt þWhcht�1þ bcð Þ

ot ¼ r Wxoxt þWhoht�1þWcoðct þ or þ dð Þþ boÞ

ht ¼ ot � tanh ctð Þ

The motivation for this dependency transmission is that the syntactic priors offer
beneficial clues about the high-level abstract concepts of the sentence that may help the
extraction of the aspect words.

3.4 CRF Layer and Objective Function

The CRF layer is superior to conventional cross entropy loss and has been proved
effective in modeling sequence labeling decisions with strong dependencies. In aspect
term extraction scenario, for example, it is impossible that a label I is directly followed
by a label O. Accordingly, we feed the outputs of the previous bidirectional LSTM
layer into a CRF layer as the unary potentials.

Given an input sentence x ¼ x1; x2; . . .; xTh i and a label sequence y ¼ y1; y2; . . .;h
yTi, the score of the label predictions for x is calculated as:

score x; yð Þ ¼
XT

t¼0
Tyt ;ytþ 1 þ

XT

t¼1
Ht;yt

where T is the transition matrix denoting the probabilities of one tag transiting to
another, and H is the matrix stacked by the Bi-LSTM outputs.

The probability for the label sequence y given x is then computed from score x; yð Þ,
using a softmax transformation:

p yjxð Þ ¼ es x;yð Þ
P

ŷ2Yx
es x;ŷð Þ

where Yx is the set containing all conceivable assignments of sequence labels for x.

Recurrent Neural CRF for Aspect Term Extraction with Dependency Transmission 383

The network parameters are chose to minimize the negative log-likelihood of the
gold tag sequence for an input x:

L hð Þ ¼ �
X

x;y

log p yjxð Þð Þ

While inferencing, we find the best label sequence y� that gives a maximum
probability, which can be calculated efficiently by Viterbi algorithm.

y� ¼ argmaxy02YX
p y0jxð Þ

4 Experiments

4.1 Datasets and Evaluation

The experiments are conducted on two publicly available datasets provided by
SemEval-2014 Task 4: Aspect Based Sentiment Analysis. Table 1 presents some basic
corpus statistics and feature statistics we used in the experiments.

Evaluation. We choose the same evaluation metrics suggested in ABSA task.

F1 ¼ 2TP
2TPþFPþFN

True positives (TP) are defined as the set of aspect terms in gold standard for which
there exists a predicted aspect term that matches exactly. In our experiments, t-test is
used to evaluate the statistical significance between two models and the corresponding
p-value is reported in the table.

Table 1. Corpus statistics: words are case-insensitive and an off-the-shelf NLP tool was used to
tokenize the review sentence and generate the POS and dependencies.

Laptop Restaurant
Training set Test set Training set Test set

Sentences 3045 800 3041 800
Aspect terms 2358 654 2786 818
Words 4217 1913 4558 2251
Chars 85 87 80 82
POS 44 44 44 43
Dependency 33 33 33 33

384 L. Guo et al.

4.2 Experimental Settings and Compared Models

Pre-trained Word Embeddings. We used two domain-specific corpus of Amazon
Product Data and Yelp Open Dataset for word embedding pre-training. Due to the
similarity consideration, we chose the Electronics category provided by the Amazon
corpus, which consists of 7,824,482 user reviews. The Yelp Open Dataset consists of
4,736,898 user reviews of various restaurants. All the unlabeled review texts were
tokenized by the MBSP system. We trained the word embeddings of 300-dimensions
using CBOW architecture with negative sampling.

Experimental Settings. For the two labeled review datasets, we perform tokenization,
part-of-speech tagging, and dependency parsing all by Stanford CoreNLP [21]. We
build the char vocabulary and word vocabulary from training set and embedding raw
corpus by removing low frequency words. This resulted in a vocabulary of approximate
20 K/13 K words for Laptop/Restaurant dataset. In addition, we replace normal
number strings, ordinal number, and time expression with NUM, ORD, and $TIM
$, respectively. In test phrase, when encounter an unknown word, we replace it with
UNK. For char level, we just ignore that character. All sentences will be padded to
the maximum length with PAD.

The dimension of the word embedding, character embedding, POS tagging
embedding and dependency embedding is 300, 100, 100, and 100, respectively. The
size of the hidden state of the character Bi-LSTM is set to 100, while the sentence-level
Bi-LSTM is set to 300. We adopt the Adam optimizer default parameters (lr: 0.001,
beta1: 0.9, beta2: 0.999) and batch size 20. All hyper-parameters are chosen via cross
validation. To further eliminate the influence of random error, we train 10 models with
the same hyper-parameters and an average score is calculated on the test set, instead of
only 5 times as [22].

Baseline and Comparable Models. To evaluate the effectiveness of our method with
dependency transmission, we conduct comparison experiments with the following
state-of-the-art models:

ISH_RD_Belarus: The top system for Laptop domain in SemEval 2014 Challenge
Task 4. A linear-chain CRF model with a variety of hand-engineered feature sets,
including token, part-of-speech, named entity, semantic category, semantic orientation,
frequency of token occurrence, opinion target, noun phrase, semantic label and SAO
features. The model was trained on a blend of both two domain training sets and used
to predict all test sets with the same settings.

DLIREC: The top system for Restaurant domain in SemEval 2014 Challenge Task
4. The system also used a CRF-based model with rich handcrafted features. In addition
to general features commonly used in NER systems, voluminous extrinsic resources are
exploited to generate word cluster and name list as features in the system.

RNCRF + F (Wang et al. [19]): A Recursive Neural Network with CRF as the
output layer. The results reported here are produced by the best setting incorporating
hand-crafted features such as name list and sentiment lexicon.

Recurrent Neural CRF for Aspect Term Extraction with Dependency Transmission 385

WDEmb_CRF (W + L + D + B Yin et al. [20]): A CRF-based model with
embedding features as input, in which the word embedding, the linear context
embedding, and the dependency context embedding are trained unsupervisedly.

MIN (Li et al. [22]): A LSTM-based model with memory interactions. The full
model is trained with multi-task learning setting.

Giannakopoulos et al. [23]: A regular bidirectional LSTM based model with CRF
layer as final output. Additionally, the author conducted experiments on automatically
labelled datasets.

4.3 Results and Analysis

In Table 2 we present the extraction performances evaluated by F1 score, compared
with those of previous state-of-the-art models. We see that our model significantly
outperforms the best systems in SemEval 2014 challenge, by 5.67% and 1.96%
absolute gains on Laptop and Restaurant domains respectively, suggesting that deep
neural network is capable of memorizing pivotal patterns for aspect term extraction
while the latter systems rely on extensive hand-crafted feature engineering and template
rules. With consideration of POS tagging information and dependency transmission,
our model have surmounted the results of previous published works on each dataset. It
clearly demonstrates the effectiveness of leveraging linguistic knowledge and the
carefully designed dependency transmissions between recurrent units.

Ablation Experiments. To further provide insight into the contribution of the con-
stituent parts of the overall performance, we carry out ablation experiments. Table 2
presents the ablation results in terms of F1 performance. Without character features, the
extraction performance declines on Laptop domain but is roughly the same on Res-
taurant domain. This is because there are more OOVs in the Laptop domain, which
proves that character-level embedding helps deal with unknown words. We find that
using POS tagging information helps boost the performance since aspect terms usually

Table 2. Experimental results.

Models D1 D2

IHS_RD (CRF-based, top system) 74.55 79.62
DLIREC (CRF-based, top system) 73.78 84.01
RNCRF + F(Wang et al., EMNLP, 2016) 78.42 84.93
W + L + D + B (Yin et al., IJCAI, 2016) 75.16 84.97
MIN (Li et al., EMNLP, 2017) 77.58 –

Giannakopoulos et al., EMNLP, 2017 77.96 84.12
Ours (full model) 80.22 85.96
Ours (-character embedding) 79.54 85.97
Ours (-POS tagging) 79.58 85.38
Ours (-dependency transmission) 79.79 85.41
Ours (only word embedding) 79.77 85.10

386 L. Guo et al.

appear as nominal words or phrases. More importantly, we observed that dependency
transmission is significantly contributive to increasing the performance, indicating that
it is useful for capturing skip information.

Different Word Embeddings. Besides ablation experiments, we also carry experi-
ments to observe the performance with different pre-trained word embeddings. The
experimental results are reported in Table 3. Our domain-specific pre-trained word
embedding yields the best performance on all datasets. The result indicates that the
pertinence of the corpus is probably more important than its size when it is used to train
the word embedding, since the size of Google News corpus is much larger than the
Yelp Dataset or the Amazon Review.

Error Analysis. Table 4 presents some examples which are not handled well by our
model. Sentence (a) and sentence (b) both introduce external aspects which do not
belong to its own domain. The reviewer of sentence (a) expresses his/her opinion by
using the “movie” as a metaphor, while sentence (b) refers to “air flow” with strong
aspect indicator “good”. These linguistic phenomena are not unusual in review text and
bear a non-negligible responsibility for interfering the performance of the extraction
system. Applying metaphor recognition and introducing domain-specific knowledge
may alleviate the interference. We left the verification of this conjecture to future
research. Sentence (c) and sentence (d) are examples in which aspect words appear as
verbs. It is relatively uncommon since aspect words are usually nouns or noun phrases.
Other errors caused by conditions such as human error or unknown words are not
discussed here since this can be solved through qualitative and quantitative
improvements.

5 Conclusion

In this paper, we have presented a novel architecture leveraging both the sequential
message and structural priors for aspect words extraction in opinioned reviews. In
addition to fundamental features such as character-level morphology and word-level
POS tagging, which have been used extensively to improve performance, we inves-
tigate the probability of incorporating structural information into Recurrent Neural
Networks. To achieve this, we equip the recurrent unit with the ability to receive
information from the dependently connected word, and this ensures that the Recurrent
Neural Networks are able to learn features sequentially and structurally. As expected,
the comparison of other state-of-the-art models with the experimental results show that

Table 3. Experimental results with different pre-trained word embeddings

D1 D2

word2vec(GoogleNews, 300d) 75.43 79.98
fastText(Wikipedia, 300d) 73.94 81.43
GloVe(Wikipedia 2014 + Gigaword 5, 300d) 71.51 81.73
Ours(Yelp Dataset/Amazon Review, 300d) 80.22 85.96

Recurrent Neural CRF for Aspect Term Extraction with Dependency Transmission 387

T
ab

le
4.

E
rr
or

an
al
ys
is
.
Fo

r
ea
ch

ex
am

pl
e,

th
e
fi
rs
t
lin

e
re
pr
es
en
ts

th
e
w
or
ds
,
an
d
th
e
se
co
nd

an
d
th
e
th
ir
d
de
no

te
th
e
go

ld
la
be
ls

an
d
th
e
pr
ed
ic
te
d

la
be
ls
,
re
sp
ec
tiv

el
y.

388 L. Guo et al.

the proposed model exhibits a more favorable performance and confirm the effec-
tiveness of the dependency transmission between relational words.

In addition, we have performed error analysis on a few noteworthy sentences,
which may provide future directions to implement a more accurate extraction system.
One of them is the metaphor recognition in reviews since the increasing number of
such sentences used to express analogical feelings about the product, in which the tenor
should be recognized as the aspect instead of the vehicle. Furthermore, though the
proposed architecture is presented in the context of handling aspect words extraction, it
will be a considerable future direction to employ this model to other NLP applications
such as fine-grained sentiment classification and stance detection.

Acknowledgments. The research is supported by the National Natural Science Foundation of
China (No. 61572145) and the Major Projects of Guangdong Education Department for Foun-
dation Research and Applied Research (No. 2017KZDXM031). We would like to acknowledge
the anonymous reviewers for their helpful comments and suggestions.

References

1. Mukherjee, A., Liu, B.: Aspect extraction through semi-supervised modeling. In:
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, pp. 339–348 (2012)

2. Pavlopoulos, J., Androutsopoulos, I.: Aspect term extraction for sentiment analysis: new
datasets, new evaluation measures and an improved unsupervised method. In: Proceedings
of the 5th Workshop on Language Analysis for Social Media (LASM), pp. 44–52 (2014)

3. Liu, K., Xu, L., Zhao, J.: Opinion target extraction using word-based translation model. In:
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning. Association for Computational
Linguistics, pp. 1346–1356 (2012)

4. Liu, K., Xu, L., Liu, Y., et al.: Opinion target extraction using partially-supervised word
alignment model. In: Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence, pp. 2134–2140. AAAI Press (2013)

5. Socher, R., Perelygin, A., Wu, J., et al.: Recursive deep models for semantic composition-
ality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 1631–1642 (2013)

6. Lin, Y., Lei, H., Wu, J., et al.: An empirical study on sentiment classification of Chinese
review using word embedding. In: Proceedings of the 29th Pacific Asia Conference on
Language, Information and Computation: Posters, pp. 258–266 (2015)

7. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 168–177. ACM (2004)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

9. Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews. In: Kao,
A., Poteet, S.R. (eds.) Natural Language Processing and Text Mining, pp. 9–28. Springer,
London (2007). https://doi.org/10.1007/978-1-84628-754-1_2

Recurrent Neural CRF for Aspect Term Extraction with Dependency Transmission 389

http://dx.doi.org/10.1007/978-1-84628-754-1_2

10. Scaffidi, C., Bierhoff, K., Chang, E., Felker, M., Ng, H., Jin, C.: Red Opal: Product-feature
scoring from reviews. In: Proceedings of the 8th ACM Conference on Electronic Commerce,
pp. 182–191. ACM (2007)

11. Zhuang, L., Jing, F., Zhu, X.Y.: Movie review mining and summarization. In: Proceedings
of the 15th ACM International Conference on Information and Knowledge Management,
pp. 43–50. ACM (2006)

12. Qiu, G., Liu, B., Bu, J., et al.: Opinion word expansion and target extraction through double
propagation. Comput. Linguist. 37(1), 9–27 (2011)

13. Teng-Jiao, J., Chang-Xuan, W., De-Xi, L.: Extracting target-opinion pairs based on semantic
analysis. Chin. J. Comput. 40(3), 617–633 (2017)

14. Jin, W., Ho, H.H.: A novel lexicalized HMM-based learning framework for web opinion
mining. In: Proceedings of the 26th Annual International Conference on Machine Learning,
pp. 465–472. ACM (2009)

15. Jakob, N., Gurevych, I.: Extracting opinion targets in a single-and cross-domain setting with
conditional random fields. In: Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, pp. 1035–1045
(2010)

16. Li, F., Han, C., Huang, M., et al.: Structure-aware review mining and summarization. In:
International Conference on Computational Linguistics. Association for Computational
Linguistics, pp. 653–661 (2010)

17. Yang, B., Cardie, C.: Joint inference for fine-grained opinion extraction. In: Proceedings of
the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 1640–1649 (2013)

18. Liu, P., Joty, S., Meng, H.: Fine-grained opinion mining with recurrent neural networks and
word embeddings. In: Conference on Empirical Methods in Natural Language Processing,
pp. 1433–1443 (2015)

19. Wang, W., Pan, S.J., Dahlmeier, D., et al.: Recursive neural conditional random fields for
aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 616–626 (2016)

20. Yin, Y., Wei, F., Dong, L., et al.: Unsupervised word and dependency path embeddings for
aspect term extraction. In: International Joint Conference on Artificial Intelligence,
pp. 2979–2985. AAAI Press (2016)

21. Manning, C., Surdeanu, M., Bauer, J., et al.: The Stanford CoreNLP natural language
processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

22. Li, X., Lam, W.: Deep multi-task learning for aspect term extraction with memory
interaction. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2886–2892 (2017)

23. Giannakopoulos, A., Musat, C., Hossmann, A., et al.: Unsupervised aspect term extraction
with B-LSTM & CRF using automatically labelled datasets. In: Proceedings of the 8th
Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis, pp. 180–188 (2017)

390 L. Guo et al.

Dependency Parsing and Attention
Network for Aspect-Level Sentiment

Classification

Zhifan Ouyang and Jindian Su(B)

School of Computer Science and Engineering,
South China University of Technology, Guangzhou, China

csouzhi@mail.scut.edu.cn, sujd@scut.edu.cn

Abstract. Aspect-level sentiment classification aims to determine the
sentiment polarity of the sentence towards the aspect. The key element of
this task is to characterize the relationship between the aspect and the
contexts. Some recent attention-based neural network methods regard
the aspect as the attention calculation goal, so they can learn the associ-
ation between aspect and contexts directly. However, the above attention
model simply uses the word embedding to represent the aspect, it fails to
make a further improvement on the performance of aspect sentiment clas-
sification. To solve this problem, this paper proposes a dependency sub-
tree attention network (DSAN) model. The DSAN model firstly extracts
the dependency subtree that contains the descriptive information of the
aspect based on the dependency tree of the sentence, and then utilizes
a bidirectional GRU network to generate an accurate aspect represen-
tation, and uses the dot-product attention function for the dependency
subtree aspect representation, which finally yields the appropriate atten-
tion weights. The experimental results on SemEval 2014 Datasets demon-
strate the effectiveness of the DSAN model.

Keywords: Aspect-level sentiment classification · Attention network
Dependency tree

1 Introduction

Aspect-level sentiment classification is a fine-grained task in the field of sentiment
analysis [13], which aims to identify the sentiment expressions for aspects in their
contexts. This task can provide more detailed and in-depth sentiment analysis
results, which has been getting much attention recently. For example, given a
sentence “Air has higher resolution, but the fonts are small.”, the polarity is
positive for the aspect “resolution”, and negative for the aspect “fonts”.

Because the sentiment polarity of an aspect needs to consider both the aspect
and the contexts, the key point is how to characterize the relationship between
the aspect and the contexts [19]. Dependency parsing plays a very important
role in the aspect-level sentiment classification task. In some previous work, the
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 391–403, 2018.
https://doi.org/10.1007/978-3-319-99495-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_33&domain=pdf

392 Z. Ouyang and J. Su

dependency tree is used to extract aspect-related features to build sentiment
classifiers in traditional machine learning methods [7], or to establish aspect-
specific recursive structure used for the input in Recursive Neural Network
methods [4,11].

Since attention mechanism can help to enforce a model to learn the task-
related parts of a sentence [1], some works exploit this advantage and achieve
superior performance for aspect-level sentiment classification, i.e. [2,3,15,17].
The attention-based models regard the aspect as the attention calculation goal,
which enable the model to learn the association between aspect and its contexts
directly. Usually, different aspects in the same sentence might have different
attention weights. Despite of the advantages of attention mechanism, previous
models simply use the word embedding of the aspect to represent the aspect and
calculate the corresponding attention weights, which as a result might lose a lot
of aspect information and the aspect representations are not accurate enough,
so that the attention model fails to learn the appropriate attention weights for
each aspect.

The generation of an accurate aspect representation for each aspect becomes
an important factor to make further improvements on the performance of the
attention models for aspect-level sentiment classification. Similar to modeling
contextual information, utilizing a Recurrent Neural Network (RNN) to model
the aspect and generate aspect representations is a very worthwhile try, which
is the same as to Ma et al. [9]. However, it is insufficient to simply model the
aspect in the form of a noun or a noun phrase.

From the perspective of sentiment expression, we found that when people
express their sentiment about some specific target, they tend to use adjectives
or adverbs to describe the target and express their inner feelings. These modifiers
are closely related with the target, and can form the accurate descriptions of the
aspect in the sentence. By using dependency parsing, we can obviously see that
these modifiers are generally subject to the aspect. Therefore, we can extract a
dependency subtree of the aspect based on the dependency tree of the sentence.
For example, we can extract two dependency subtrees from the sentence “Air has
higher resolution, but the fonts are small.”, as shown in Fig. 1, each of which is

Air

fonts

resolution are

the

but

higher

has

small .

resolution

higher

aspect a1: resolution

fonts

the

aspect a2: fonts

Fig. 1. Dependency parsing tree for sentence: “Air has higher resolution, but the fonts
are small.”, and the dependency subtree of aspect a1 “resolution” and aspect a2 “fonts”.

Dependency Parsing and Attention Network 393

also a sub-sentence of the sentence and includes some context information about
the aspect. So, we can try to model the aspect sub-sentence by RNN networks,
and use it to denote the aspect instead of a noun or a noun phrase.

Motivated by the above intuition, we propose a dependency subtree attention
network (DSAN) model, which is based on dependency parsing and attention
mechanism. DSAN utilizes gated recurrent unit (GRU) to separately modelling
the aspect sub-sentence and the contexts, and uses the attention mechanism
to generate aspect-related sentiment features based on aspect sub-sentence. We
have evaluated our model on Laptop and Restaurant datasets from SemEval 2014
[13]. Experimental results show that our DSAN model achieves the comparable
state-of-the-art performance for aspect-level sentiment classification.

2 Model

In this section, we describe the dependency subtree attention network (DSAN)
model for aspect-level sentiment classification. The architecture of DSAN model
is shown in Fig. 2.

⋯ ⋯

ℎ ℎ ℎ ℎ

⋯

ℎ ℎ ℎ

sentence: s aspect sub-sentence: subs

Embedding
Layer

BGRU Layer

Attention Layer

Predict Layer

Aspect Sentiment

dot

merge function

⋯ ⋯ ⋯

Fig. 2. The architecture of DSAN model

394 Z. Ouyang and J. Su

2.1 Embedding Layer

Let L ∈ R
dw×|V | be a word embedding look-up table which is usually

trained on an external large corpus [10,12], dw be the dimensions of word
vectors and |V | be the size of the vocabulary. Given a sentence s =

{
ws

1,

ws
2, ..., w

s
i , ..., w

s
n

}
and the dependency subtree of an aspect (sub-sentence)

subs = {wsubs
1 , wsubs

2 , ..., wsubs
i , ..., wsubs

m }, the embedding layer project each
word into a low dimensional, continuous and real-valued vector, denoted as
Xs = [xs

1, x
s
2, ..., x

s
i , ..., x

s
n] where xs

i ∈ R
dw represents ws

i , and Xsubs = [xsubs
1 ,

xsubs
2 , ..., xsubs

i , ..., xsubs
n] where xsubs

i ∈ R
dw represents wsubs

i .

2.2 BGRU Layer

RNN has already demonstrated its superior performance on variable-length
sequences modeling. It can capture long-term dependency information of words
and is popularly used in the area of sentiment analysis [18]. In this paper,
we use bidirectional GRU (BGRU) to separately model the contexts and the
aspect. Denote the hidden states of the forward GRU at time step i as

−→
hi =−−−→

GRU(xi,
−−→
hi−1) and the backward GRU as

←−
hi =

←−−−
GRU(xi,

←−−
hi−1), and hi = [

−→
hi ;

←−
hi]

as the output of BGRU at time step i. Then, the output of the contexts and the
aspect modeled by BGRU can be defined as:

Hs = BGRUs(Xs) (1)

Hsubs = BGRUsubs(Xsubs) (2)

where the hidden states Hs = [hs
1, h

s
2, ..., h

s
i , ..., h

s
n], hs

i ∈ R
2d is the repre-

sentations for the contexts, and the hidden states Hsubs = [hsubs
1 , hsubs

2 , ...,
hsubs
i , ..., hsubs

m], hsubs
i ∈ R

2d is the representations for the aspect.

2.3 Position Weight

The position of the aspect helps the model to distinguish different aspects in the
same sentence, and the sentiment expression of the aspect is close to the aspect
in the contexts. Therefore, we bring the positional information of the aspect into
consideration in the form of position weights during attention calculation. We
define the distance as the path of the aspect and context word in the dependency
tree. If the aspect is a phrase, then the distance will be simply calculated with
the last word in the aspect phrase. The calculation formula of the weight for the
context word wi is:

li = 1 − disti,a
2distmax

(3)

where disti,a denotes the distance of context word wi and the aspect a, distmax

denotes the max distance of context words in the input sentence s. The range of
the position weight is limited to [0.5, 1].

Based on Eq. 3, we can get an aspect-customized hidden states of the sentence
s, denoted as Es = [es1, e

s
2, ..., e

s
i , ..., e

s
n], where esi = li · hs

i ∈ R
2d. The position

Dependency Parsing and Attention Network 395

weights can give higher weight to the context word which is close to the aspect.
This can help the model to predict the sentiment of different aspects flexibly and
prevent the model from being misled by a strong unrelated sentiment expression.

2.4 Attention Layer

The goal of the attention layer is to allocate appropriate attention weights to
the words of the sentence according to the aspect. The attention layer gener-
ates aspect-related sentiment features. We employ the attention function which
is similarly as Vaswani et al. [16], and the attention weights calculation is
based on the hidden states Hsubs of sub-sentence and aspect-customized hidden
states Es,

Q = relu(W1H
subs) (4)

K = relu(W2E
s) (5)

Score =
KTQ√

dk
(6)

where W1,W2 ∈ R
dk×2d are linear transfer parameters, Score ∈ R

n×m is an
attention score matrix. Scorei,j represents the attention score of the word wi in
the sentence s and the word wj in the sub-sentence subs. In practice, we found
that adding rectified linear unit (relu) activation function to filter out negative
values can yield a more stable performance. In order to merge the attention
contributions to each word of the sub-sentence subs, we define a column merging
function over score matrix Score,

α =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

softmax

⎛

⎝
m∑

j=1

Scorej

⎞

⎠ , if mode = sum;

softmax

⎛

⎝ 1
m

m∑

j=1

Scorej

⎞

⎠ , if mode = mean;

(7)

where m is the length of the sub-sentence subs, α is the final attention weights
of context words. In this work, the merging function includes two different types,
sum and mean.

After getting the attention weights, we can calculate the final aspect-related
sentiment representations r as follows,

V = Hs + W3X
s (8)

r = V · α (9)

where W3 ∈ R
2d×dw is a linear transfer parameter for the context word embed-

ding sequence Xs. V ∈ R
2d×n is the cumulative result of Hs and Xs, which can

be viewed as a key-value memory network, whose keys and values are K and
V [5] respectively.

396 Z. Ouyang and J. Su

2.5 Sentiment Predict Layer

Finally, we concatenate the last hidden states of BGRU of the sentence s to rep-
resent the sentence, and use a nonlinear transfer to get the final representations
of a sentence after given an aspect,

rs = [
−→
hs
n;

←−
hs
1] (10)

h∗ = relu (W4r + W5r
s + b4) (11)

where h∗ ∈ R
dr , W4,W5 ∈ R

dr×2d and b4 ∈ R
dr are the parameters of nonlinear

layer. Then, we feed the representation h∗ into a softmax layer to predict the
aspect sentiment polarity.

2.6 Model Training

We use the cross entropy as the objective function, and plus an L2 regularization
term to prevent overfitting,

J =
∑

(x,y)∈D

∑

c∈C

P g
c (x, y)logPc(x, y; θ) + λ‖ θ ‖2 (12)

where C is the sentiment category set, D is the collection of training instance,
P g(x, y) is a one-hot vector that indicates the true sentiment of aspect, P (x, y; θ)
is the predicted sentiment probability of the model, θ is the parameter set,
and λ is the regularization weight. We adapt the ADAM method to update
parameters [8].

3 Experiment

3.1 Datasets and Settings

We conduct experiments on two datasets from SemEval task 4 [13], reviews of
laptop and restaurant domain respectively. Each aspect with reviews is labeled
with three sentiment polarities: positive, negative and neutral. Table 1 shows the
final statistics of two datasets.

Table 1. Statistics of two datasets.

DataSet Positive Neutral Negative

Laptop-train 987 460 866

Laptop-test 341 169 128

Restaurant-train 2164 633 805

Restaurant-test 728 196 196

Dependency Parsing and Attention Network 397

We implement the DSAN model with Keras1 and TensorFlow2, and use
spaCy3 to parse the structures of sentences. We use the pre-trained GloVe word
embeddings [12] for our experiments. In addition, we use the Amazon electronic
dataset [6] for laptop domain, and the Yelp Challenge dataset4 for restaurant
domain to train 300-dimension word embeddings with the Skipgram5 training
method. All parameters except word embeddings are initialized with random
uniform distribution U(−0.05, 0.05). The hidden size is set to 120 for both two
BGRU and 100 for the nonlinear layer. To prevent overfitting, we set regular-
ization weight λ to be 0.012, and the dropout rate of two BGRU to be 0.5.
Evaluation metrics are Accuracy and Macro-F1 because the datasets are unbal-
anced.

3.2 Experimental Results

In order to evaluate our DSAN model, we compare it with the following methods:
TD-LSTM[14], MemNet[15], RAM[2], ATAE-LSTM[17], IAN[9].

Tables 2 and 3 show the experiment results of our model compared with other
related models. We denote our models as DSAN-sum, DSAN-mean, which
means using sum and mean mode respectively. In Table 2, all models use pre-
trained Glove 300-dimension word embeddings, The difference is that the first
group whose vocabulary size is 1.9M and the second one is 2.2M. In Table 3, all
models use the skipgram word embeddings that are trained on domain-specific
corpus.

From Tables 2 and 3, we can conclude:

(1) Our DSAN model achieves the comparable results with RAM method on
both Laptop and Restaurant datasets, exceeding other four benchmark
methods except the RAM, which is the state-of-the-art method for aspect-
level sentiment classification. Compared with the RAM method, the two
merge modes of the DSAN model can achieve better performance than the
RAM on the Restaurant dataset, and its performance is slightly lower than
the RAM on the Laptop dataset. The biggest difference between the RAM
model and the DSAN model is that the RAM implements multiply attention
mechanisms based on the GRU network, so it can catch information about
different important parts of a sentence by attention layers, and combine the
result of each attention layer in a non-linear manner. But RAM still simply
uses the word embedding to represent the aspect. The DSAN model utilizes
the bidirectional GRU to model the sub-sentence of the aspect that contain-
ing the descriptive information of aspect, so the aspect can be represented
more accurately than using the way of word embeddings. Therefore, even

1 https://keras.io.
2 https://www.tensorflow.org.
3 https://spacy.io/.
4 https://www.yelp.com/dataset.
5 https://radimrehurek.com/gensim/models/word2vec.html.

https://keras.io
https://www.tensorflow.org
https://spacy.io/
https://www.yelp.com/dataset
https://radimrehurek.com/gensim/models/word2vec.html

398 Z. Ouyang and J. Su

Table 2. Results of different methods on Laptop and Restaurant datasets. The results
with ‘*’ are retrieved from RAM paper, and the results with ‘♦’ are retrieved from the
papers of compared methods. Best results in each group are in bold.

Word embeddings Model Laptop Restaurant

Accuracy Macro-F1 Accuracy Macro-F1

Glove (1.9M
vocabulary size)

TD-LSTM 0.7183∗ 0.6843∗ 0.7800∗ 0.6673∗

MemNet 0.7033∗ 0.6409∗ 0.7816∗ 0.6583∗

RAM 0.7449∗ 0.7135∗ 0.8023∗ 0.7080∗

DSAN-sum 0.7273 0.6878 0.8071 0.7238

DSAN-mean 0.7382 0.7001 0.8080 0.7273

Glove (2.2M
vocabulary size)

ATAE-LSTM 0.6870♦ NA 0.7720♦ NA

IAN 0.7210♦ NA 0.7860♦ NA

DSAN-sum 0.7382 0.6961 0.8009 0.7109

DSAN-mean 0.7461 0.7052 0.7964 0.7136

Table 3. Results of different methods on Laptop and Restaurant datasets with skip-
gram word embeddings. Best results in each group are in bold.

Word embeddings Model Laptop Restaurant

Accuracy Macro-F1 Accuracy Macro-F1

Skipgram TD-LSTM 0.7179 0.6665 0.7848 0.6812

MemNet 0.7257 0.6765 0.8027 0.7076

RAM 0.7445 0.7009 0.7884 0.6835

ATAE-LSTM 0.7257 0.6833 0.7866 0.6802

IAN 0.7194 0.6664 0.7991 0.7046

DSAN-sum 0.7696 0.7265 0.8143 0.7311

DSAN-mean 0.7633 0.7136 0.8134 0.7235

if the DSAN model is calculated with single-layer attention, it also can be
achieve better performance.

(2) In the second group of Table 2, the accuracies of the ATAE-LSTM, IAN,
and DSAN models gradually increase, which demonstrate the importance
of aspect information for aspect-level sentiment classification. All three mod-
els use single-layer attention mechanism, but they have shown an increasing
trend in the use of aspect information. The ATAE-LSTM method simply
uses the word embedding of the aspect as the aspect representations. IAN
method utilizes LSTM to model the aspect themselves, and the DSAN model
utilizes bidirectional GRU to model the aspect and the descriptive infor-
mation of aspect. The experimental results of the ATAE-LSTM, IAN and

Dependency Parsing and Attention Network 399

DSAN models show that the increase in the use of aspect information in the
attention model helps the model to achieve better results.

(3) Word embeddings trained on domain-specific corpus are very helpful to
the final classification results. After using the skipgram word embeddings,
the MemNet, ATAE-LSTM and DSAN models all benefit from the domain
knowledge, which have a great performance improvement on the Laptop and
Restaurant datasets. The TD-LSTM and IAN models also have improve-
ments on the Restaurant dataset to some extent, and performance is closed
on the Laptop dataset. In this paper, the reproducible experimental results
of the RAM model are not as good as those of the original author Chen et al.
[2] on the published GloVe word vector, which may be related to the hyper-
parameter setting of the neural network. Chen et al. [2] did not mention
their hyperparameter settings about the RAM model.

(4) The results of the two merge modes of DSAN model are similar in the three
sets of word embeddings. From the calculation of Formula 7, we can see
that the difference between the sum mode and the mean mode is the scale
factor m, which is the length of the aspect sub-sentence. Since the softmax
function computes each element in the attention weights in an exponential
form, the local part of the words will be assigned more attentional weights
in the sum model. It re-scales this concentration of the attentional weights,
and the distribution of weights is relatively uniform in the mean mode.
However, the dimensional factors have been scaled when calculating the
attention scores of aspect sub-sentence and the sentence, and the length of
most of the aspect sub-sentences are less than 5. So the classification of these
two methods exhibit similar performance.

3.3 Effects of Dependency Subtree

In this subsection, we design a set of model comparison experiments to ana-
lyze the effect of the dependency subtree in the DSAN model. There are three
different models in the comparison experiments. The aspect is represented by
the word embedding in the first model, denoted as W-AN. The second model,
denoted as A-AN, uses bidirectional GRU to model the aspect, and it doesn’t
include the descriptive information of the aspect. The third model is DSAN
model. In the A-AN and DSAN model, the merge mode is sum, so we refer
them as A-AN-sum and DSAN-sum for short.

From Table 4, the performance of W-AN, A-AN-sum, and DSAN-sum on
the Laptop and Restaurant datasets increases sequentially, which reflects their
increasing utilization degree of the aspect information. More accurate that the
aspect representations are catched, more better that the performance of the
attention model in the aspect-level sentiment classification task will achieve.
The experimental results fully proves the importance of the dependency subtree
of the aspect in the DSAN model.

400 Z. Ouyang and J. Su

Table 4. Effects of dependency subtree in DSAN model. Best results in each group
are in bold.

Word embeddings Model Laptop Restaurant

Accuracy Macro-F1 Accuracy Macro-F1

Skipgram W-AN 0.7429 0.7061 0.7955 0.6992

A-AN-sum 0.7571 0.7116 0.8054 0.7123

DSAN-sum 0.7696 0.7265 0.8143 0.7311

3.4 Effects of Position Weight

As mentioned in Sect. 2.3, when different aspects are mentioned in a common
sentence, the position information of the aspect is a very important feature that
can help the model to distinguish different aspects from each other in the same
sentence and make an improvement on the performance in the model.

Therefore, we introduce the position information of the aspect in the form of
position weights, and define the distance of the aspect and the context word as
the path length in dependency tree. We verify the effects of the position weights
in two different word embeddings. Table 5 shows the experiment results of the
effect of the position weights in different word embeddings. The experimental
results prove that the position information of aspect can help model to better
identify different aspects in the same sentence, thereby the model can achieve
better performance. So, designing more effective ways of using position informa-
tion is a worthwhile future work, such as position embedding.

Table 5. Effects of position weights in two different word embeddings. The postposition
base means without position weights, and position means with position weights in the
model. Best results in each group are in bold.

Word embeddings Model Laptop Restaurant

Accuracy Macro-F1 Accuracy Macro-F1

Glove (2.2M vocabulary
size)

DSAN-sum base 0.7288 0.6872 0.7982 0.7087

DSAN-sum position 0.7382 0.6961 0.8009 0.7109

DSAN-mean base 0.7351 0.6958 0.7964 0.7081

DSAN-mean position 0.7461 0.7052 0.7964 0.7136

Skipgram DSAN-sum base 0.7665 0.7213 0.8107 0.7209

DSAN-sum position 0.7696 0.7265 0.8143 0.7311

DSAN-mean base 0.7586 0.7142 0.8098 0.7248

DSAN-mean position 0.7633 0.7136 0.8134 0.7235

Dependency Parsing and Attention Network 401

3.5 Visualize Attention

In this subsection, we pick a review context “Great food but the service was
dreadful!” from the Restaurant datasets as an example to visualize the attention
weights of DSAN model on different aspect in the same sentence. There are
two aspects: “food” and “service”, whose sentiment polarities are positive and
negative respectively. We predict them by Skipgram word embeddings with the
DSAN-sum and DSAN-mean model. Figures 3 and 4 show the attention weights
of the DSAN-sum and DSAN-mean model on these two different aspects in the
same sentence.

Grea
t

foo
d bu

t
the

ser
vic

e
was

dre
ad

ful !

food

service

0.0
0.20
0.40
0.60
0.80
1.0

Fig. 3. Attention weights of DSAN-sum model on “food” and “service”.

Grea
t

foo
d bu

t
the

ser
vic

e
was

dre
ad

ful !

food

service

0.0
0.20
0.40
0.60
0.80

Fig. 4. Attention weights of DSAN-mean model on “food” and “service”.

From Figs. 3 and 4, we can clearly see the difference between the atten-
tion weights of two aspects. Both DSAN-sum and DSAN-mean show a high
degree of attention to aspect-related sentiment expression, and assign most of
the attentional weights, which helps to correctly predict the sentiment of these
two aspects.

In Fig. 3, the DSAN-sum model assigns most of the attention weights to
one or two words. When the DSAN-sum model predicts the aspect “service”,
the word “dreadful” gets more than 90% of the attention weights, which helps
the sentiment polarity of the aspect “service” to be correctly predicted to be
negative. When the DSAN-sum model predicts the aspect “food”, the words
“Great” and “dreadful” also get higher weights, but the word “Great” has much
greater attention weights than the word “dreadful”, and the sentiment polarity
of the aspect “food” is correctly predicted to be positive.

402 Z. Ouyang and J. Su

In Fig. 4, the DSAN-mean model assigns the attention weights more uni-
formly than DSAN-sum relatively. The DSAN-mean model also assigns most
of the attention weights to the word “dreadful” for the aspect “service”, but it
assigns a little weights to the word “Great”. When the DSAN-mean model pre-
dicts the aspect “food”, the word “Great” gets only a little more attention weights
than the word “dreadful”. Although the DSAN-mean model correctly predicts
the aspect “food”, the probability of the positive category is only slightly higher
than the probability of the negative category.

From the visualization of the attention weights of the DSAN-sum and DSAN-
mean model, the performance of the two models is the same as we analyzed in
Sect. 3.2. The sum merge mode of the attention scores makes the model focus
on a local part which gets the major attention weights. The mean merge mode
makes the attention weights uniform relatively, because it already exists a scale
factor

√
dk in the attention function, so the performance of two merge mode is

similar.

4 Conclusions

In this paper, we propose a dependency subtree attention network (DSAN) model
to determine the sentiment polarity of aspect in a sentence. On one hand, DSAN
model can extract the dependency subtree that contains the descriptive informa-
tion of the aspect based on the dependency tree of the sentence, which can offer
more accurate aspect representations and assign e appropriate attention weights
to the context words. On the other hand, DSAN model can better distinguish
multiple aspect from each other in the same sentence by introducing the syn-
tactic distance between aspect and context words. The experimental results on
Laptop and Restaurant datasets show that the descriptive information of aspect
can be more helpful to correctly predict aspect sentiment.

Acknowledgments. This paper is supported by the Applied Scientific and Tech-
nological Special Project of Department of Science and Technology of Guangdong
Province (20168010124010); Natural Science Foundation of Guangdong Province
(2015A030310318); Medical Scientific Research Foundation of Guangdong Province
(A2015065).

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: International Conference on Learning Representations
2015 (2015)

2. Chen, P., Sun, Z., Bing, L., Yang, W.: Recurrent attention network on memory
for aspect sentiment analysis. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 463–472 (2017)

3. Cheng, J., Zhao, S., Zhang, J., King, I., Zhang, X., Wang, H.: Aspect-level senti-
ment classification with heat (hierarchical attention) network. In: Proceedings of
the 26th ACM International Conference on Information and Knowledge Manage-
ment, pp. 97–106 (2017)

Dependency Parsing and Attention Network 403

4. Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural
network for target-dependent twitter sentiment classification. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), vol. 2, pp. 49–54 (2014)

5. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. In: International Conference on Machine Learning
2017, pp. 1243–1252 (2017)

6. He, R., Mcauley, J.: Ups and downs: modeling the visual evolution of fashion trends
with one-class collaborative filtering. In: International Conference on World Wide
Web, pp. 507–517 (2016)

7. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment
classification. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 151–160 (2011)

8. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations 2015 (2015)

9. Ma, D., Li, S., Zhang, X., Wang, H., Ma, D., Li, S., Zhang, X., Wang, H.: Interactive
attention networks for aspect-level sentiment classification. In: Proceedings of the
26th International Joint Conference on Artificial Intelligence, pp. 4068–4074 (2017)

10. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word rep-
resentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

11. Nguyen, T.H., Shirai, K.: PhraseRNN: phrase recursive neural network for aspect-
based sentiment analysis. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 2509–2514 (2015)

12. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, pp. 1532–1543 (2014)

13. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I.,
Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis. In: Proceed-
ings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
pp. 27–35 (2014)

14. Tang, D., Qin, B., Feng, X., Liu, T.: Effective lstms for target-dependent sentiment
classification. In: International Conference on Computational Linguistics, pp. 3298–
3307 (2016)

15. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory
network. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 214–224 (2016)

16. Vaswani, A., Shazeer, N., Parmar, N., Jones, L., Uszkoreit, J., Gomez, A.N., Kaiser,
�L.: Attention is all you need. In: Neural Information Processing Systems 2017, pp.
6000–6010 (2017)

17. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level
sentiment classification. In: Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 606–615 (2016)

18. Yin, Y., Song, Y., Zhang, M.: Document-level multi-aspect sentiment classification
as machine comprehension. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 2044–2054 (2017)

19. Zhang, M., Zhang, Y., Vo, D.T.: Gated neural networks for targeted sentiment
analysis. In: AAAI 2016 Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pp. 3087–3093 (2016)

http://arxiv.org/abs/1301.3781

Abstractive Summarization Improved
by WordNet-Based Extractive Sentences

Niantao Xie1, Sujian Li1(B), Huiling Ren2, and Qibin Zhai3

1 MOE Key Laboratory of Computational Linguistics,
Peking University, Beijing, China

{xieniantao,lisujian}@pku.edu.cn
2 Institute of Medical Information, Chinese Academy of Medical Sciences,

Beijing, China
ren.huiling@imicams.ac.cn

3 MOE Information Security Lab, School of Software and Microelectronics,
Peking University, Beijing, China

qibinzhai@ss.pku.edu.cn

Abstract. Recently, the seq2seq abstractive summarization models have
achieved good results on the CNN/Daily Mail dataset. Still, how to
improve abstractive methods with extractive methods is a good research
direction, since extractive methods have their potentials of exploiting
various efficient features for extracting important sentences in one text.
In this paper, in order to improve the semantic relevance of abstractive
summaries, we adopt the WordNet based sentence ranking algorithm to
extract the sentences which are most semantically to one text. Then, we
design a dual attentional seq2seq framework to generate summaries with
consideration of the extracted information. At the same time, we com-
bine pointer-generator and coverage mechanisms to solve the problems of
out-of-vocabulary (OOV) words and duplicate words which exist in the
abstractive models. Experiments on the CNN/Daily Mail dataset show
that our models achieve competitive performance with the state-of-the-
art ROUGE scores. Human evaluations also show that the summaries
generated by our models have high semantic relevance to the original
text.

Keywords: Abstractive summarization · Seq2seq model
Dual attention · Extractive summarization · WordNet

1 Introduction

For automatic summarization, there are two main methods: extractive and
abstractive. Extractive methods use certain scoring rules or ranking methods
to select a certain number of important sentences from the source texts. For
example, [2] proposed to make use of Convolutional Neural Networks (CNN)
to represent queries and sentences, as well as adopted a greedy algorithm com-
bined with pair-wise ranking algorithm for extraction. Based on Recurrent Neu-
ral Networks (RNN), [10] constructed a sequence classifier and obtained the
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 404–415, 2018.
https://doi.org/10.1007/978-3-319-99495-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_34&domain=pdf

Abstractive Summarization With Extractive Methods 405

highest extractive scores on the CNN/Daily Mail corpus set. At the same time,
The abstractive summarization models attempt to simulate the process of how
human beings write summaries and need to analyze, paraphrase, and reorganize
the source texts. It is known that there exist two main problems called OOV
words and duplicate words by means of abstraction. [16] proposed an improved
pointer mechanism named pointer-generator to solve the OOV words as well as
came up with a variant of coverage vector called coverage to deal with the dupli-
cate words. [12] created the diverse cell structures to handle duplicate words
problem based on query-based summarization. For the first time, a reinforce-
ment learning method based neural network model was raised and obtained the
state-of-the-art scores on the CNN/Daily Mail corpus [14].

Both extractive and abstractive methods have their merits. In this paper, we
employ the combination of extractive and abstractive methods at the sentence
level. In the extractive process, we find that there are some ambiguous words in
the source texts. The different meanings of each word can be acquired through
the synonym dictionary called WordNet. First WordNet based Lesk algorithm
is utilized to analyze the word semantics. Then we apply the modified sentence
ranking algorithm to extract a specified number of sentences according to the
sentence syntactic information. During the abstractive part based on seq2seq
model, we add a new encoder which is derived from the extractive sentences and
put the dual attention mechanism for decoding operations. As far as we know,
it is the first time that joint training of sentence-level extractive and abstractive
models has been conducted. Additionally, we combine the pointer-generator and
coverage mechanisms to handle the OOV words and duplicate words.

Our contributions in this paper are mainly summarized as follows:

– Considering the semantics of words and sentences, we improve the sentence
ranking algorithm based on the WordNet-based simplified lesk algorithm to
obtain important sentences from the source texts.

– We construct two parallel encoders from the extracted sentences and source
texts separately, and make use of seq2seq dual attentional model for joint
training.

– We adopt the pointer-generator and coverage mechanisms to deal with OOV
words and duplicate words problems. Our results are competitive compared
with the state-of-the-art scores.

2 Our Method

Our method is based on the seq2seq attentional model, which is implemented with
reference to [11] and the attention distribution αt is calculated as in [1]. Here,
we show the architecture of our model which is composed of eight parts as in
Fig. 1. We construct two encoders (2© 4©) based on the source texts and extracted
sentences, as well as take advantage of a dual attentional decoder (1© 3© 5© 6©) to
generate summaries. Finally, we combine the pointer-generator (7©) and coverage
mechanisms (8©) to manage OOV and duplicate words problems.

406 N. Xie et al.

Fig. 1. A dual attentional encoders-decoder model with pointer-generator network.

2.1 Seq2seq Dual Attentional Model

Encoders-Decoder Model. Referring to [1], we use two single-layer bidi-
rectional Long Short-Term Memory (BiLSTM) encoders including source and
extractive encoders, and a single-layer unidirectional LSTM (UniLSTM) decoder
in our model, as shown in Fig. 1. For encoding time i, the source texts and the
extracted information respectively input the word embeddings ws

i and we
i into

two encoders. Meanwhile, the corresponding hidden layer states
←→
h s

i and
←→
h e

i are
generated. At decoding step t, the decoder will receive the word embedding from
the step t − 1, which is obtained according to the previous word in the reference
summary during training, or provided by the decoder itself when testing. Next
we acquire the state st and produce the vocabulary distribution P (y t).

Here, we are supposed to calculate
←→
h s

i by the following formulas:

−→
h s

i = LSTM(ws
i ,

−→
h s

i−1) (1)

←−
h s

i = LSTM(ws
i ,

←−
h s

i+1) (2)
←→
h s

i = [
−→
h s

i ;
←−
h s

i] (3)

Also,
←→
h e

i could be obtained as follows:

−→
h e

i = LSTM(we
i ,

−→
h e

i−1) (4)

←−
h e

i = LSTM(we
i ,

←−
h e

i+1) (5)
←→
h e

i = [
−→
h e

i ;
←−
h e

i] (6)

Dual Attention Mechanism. At the tth step, we need not only the previous
hidden state st−1, but also the context vector cs

t−1, c
e
t−1, c

s
t , c

e
t obtained by

the corresponding attention distribution [1] to gain state st and vocabulary
distribution P (y t).

Abstractive Summarization With Extractive Methods 407

Firstly, for source encoder, we calculate the context vector cs
t in the following

way (Vs, Ws
1, W

s
2, b

s are learnable parameters):

esi, t = VsT · tanh(Ws
1 · st + Ws

2 · ←→
h s

i + bs) (7)

αs
i, t =

esi, t∑ns

j=1 esj, t

(8)

cs
t =

ns∑

i=1

αs
i, t · ←→

h s
t (9)

Secondly, for extractive encoder, we utilize the identical method to compute
the context vector ce

t (Ve, We
1, W

e
2, b

e are learnable parameters):

eei, t = VeT · tanh(We
1 · st + We

2 · ←→
h e

i + be) (10)

αe
i, t =

eei, t∑ne

j=1 eej, t

(11)

ce
t =

ne∑

i=1

αe
i, t · ←→

h e
t (12)

Thirdly, we get the gated context vector cg
t by calculating the weighted sum

of context vectors cs
t and ce

t , where the weight is the gate network obtained by
the concatenation of cs

t and ce
t via multi-layer perceptron (MLP). Details are

shown as below (σ is Sigmoid function, Wg, bg are learnable parameters):

g t = σ(Wg · [cs
t ; ce

t] + bg) (13)

cg
t = g t · cs

t + (1 − g t) · ce
t (14)

In the same way, we can obtain the hidden state st and predicte the probabil-
ity distribution P (y t) at time t (Win

1 , Win
2 , bin, Wout

1 , Wout
2 , bout are learnable

parameters).

st = LSTM(st−1, Win
1 · y t−1 + Win

2 · cg
t−1 + bin) (15)

P (y t|y<t,x) = softmax(Wout
1 · st + Wout

2 · cg
t + bout) (16)

2.2 WordNet-Based Sentence Ranking Algorithm

To extract the important sentences, we adopt a WordNet-based sentence ranking
algorithm. WordNet1 is a lexical database for the English language, which groups
English words into sets of synonyms called synsets and provides short definitions
and usage examples. [13] used the simplified lesk approach based on WordNet

1 http://www.nltk.org/howto/wordnet.html.

http://www.nltk.org/howto/wordnet.html

408 N. Xie et al.

to extract abstracts. We refer to its algorithm and set up our sentence ranking
algorithm so as to construct the extractive encoder.

For sentence x = (x1, x2, ..., xn), after filtering out the stop words and
unambiguous tokens through WordNet, we obtain a reserved subsequence x

′
=

(xi1 , xi2 , ..., xim). Since some words contain too many different senses which
may result in too much calculation, we set a window size nwin (default value
is 5) and sort x

′
in descending order according to the number of senses of

words, as well as keep the first nsav (nsav = min(m,nwin)) words left to get
x

′′
= (xs1 , xs2 , ..., xsnsav

). Next, we count the common number of senses of each
word as word weight. Finally, we get the sum weights of each sentence and
acquire an average sentence weight.

Taking a sentence x
′′

= (x1, x2, x3) for instance, we make an assumption
that x1 has two senses ma and mb, x2 has two senses mc and md, while x3 has
two senses me, mf . Currently considering x1 as the keyword, we measure the
number of common words between a pair of sentences, which describe the word
senses of x1 and another word.

Table 1 shows all possible matches of the senses of x1, x2, x3. For the two
senses of x1, we can separately obtain the sum of co-occurrence word pairs for
each meaning. For ma, we obtain countma

= countac + countad + countae +
countaf , for mb, we gain countmb

= countbc + countbd + countbe + countbf .
The significance corresponding to the higher score countx1(countma or countmb

)
is assigned to the the keyword x1.

Table 1. The number of common words between a pair of sentences.

Pair of sentences Common words in
sense description

ma and mc countac

ma and md countad

mb and mc countbc

mb and md countbd

ma and me countae

ma and mf countaf

mb and me countbe

mb and mf countbf

In this way, we’re capable of acquiring the average weight of sentence x .

weightavg =
1

nsav

nsav∑

i=1

countxi
(17)

Let’s assume that document D = (x 1,x 2, ...,xN), which contains a total of
N sentences. We sort them in descending order according to the average weights
of sentences, and then extract the top ntop sentences (default value is 3).

Abstractive Summarization With Extractive Methods 409

2.3 Pointer-Generator and Coverage Mechanisms

Pointer-Generator Network. Pointer-generator is an effective method to
solve the problem of OOV words and its structure has been expanded in Fig. 1.
We borrow the method improved by [16]. pgen is defined as a switch to decide
to generate a word from the vocabulary or copy a word from the source encoder
attention distribution. We maintain an extended vocabulary including the vocab-
ulary and all words in the source texts. For the decoding step t and decoder input
x t, we define pgen as:

pgen = σ(Wp
1 · cs

t + Wp
2 · st + Wp

3 · x t + bp) (18)

Pvocab = P (y t|y<t,x) (19)

P (w t) = pgenPvocab(w t) + (1 − pgen)
∑

i:wi=wt

αs
i, t (20)

where w t is the value of x t, and Wp
1, W

p
2, W

p
3, b

p are learnable parameters.

Coverage Mechanism. Duplicate words are a critical problem in the seq2seq
model, and even more serious when generating long texts like multi-sentence
texts. [16] made some minor modifications to the coverage model [18] which is
also displayed in Fig. 1.

First, we calculate the sum of attention distributions from previous decoder
steps (1, 2, 3, ..., t − 1) to get a coverage vector cov t:

covs
t =

t−1∑

t′=0

αs
t′ (21)

Then, we make use of coverage vector cov t to update the attention distribu-
tion:

esi, t = VsT · tanh(Ws
1 · st + Ws

2 · ←→
h s

i + Ws
3 · covsi, t + bs) (22)

Finally, we define the coverage loss function covlosst for the sake of penalizing
the duplicate words appearing at decoding time t, and renew the total loss:

covlosst =
∑

i

min(αs
i, t, covsi, t) (23)

losst = −log(P (w∗
t)) + λ covlosst (24)

where w∗
t is the target word at tth step, −log(P (w∗

t)) is the primary loss for
timestep t during training, hyperparameter λ (default value is 1.0) is the weight
for covlosst, Ws

1, W
s
2, W

s
3, b

s are learnable parameters.

410 N. Xie et al.

3 Experiments

3.1 Dataset

CNN/Daily Mail dataset2 is widely used in the public automatic summarization
evaluation, which contains online news articles (781 tokens on average) paired
with multi-sentence summaries (56 tokens on average). [16] provided the data
processing script, and we take advantage of it to obtain the non-anonymized
version of the data including 287,226 training pairs, 13,368 validation pairs and
11,490 test pairs, though [10,11] used the anonymized version. During training
steps, we find that 114 of 287,226 articles are empty, so we utilize the remaining
287,112 pairs for training. Then, we perform the splitting preprocessing for the
data pairs with the help of Stanford CoreNLP toolkit3, and convert them into
binary files, as well as get the vocab file for the convenience of reading data.

3.2 Implementation

Model Parameters Configuration. The corresponding parameters of con-
trolled experimental models are described as follows. For all models, we have set
the word embeddings and RNN hidden states to be 128-dimensional and 256-
dimensional respectively for source encoders, extractive encoders and decoders.
Contrary to [11], we learn the word embeddings from scratch during training,
because our training dataset is large enough. We apply the optimization tech-
nique Adagrad with learning rate 0.15 and an initial accumulator value of 0.1,
as well as employ the gradient clipping with a maximum gradient norm of 2.

For the one-encoder models, we set up the vocabulary size to be 50k for source
encoder and target decoder simultaneously. We try to adjust the vocabulary size
to be 150k, then discover that when the model is trained to converge, the time
cost is doubled but the test dataset scores have slightly dropped. In our analysis,
the models’ parameters have increased excessively when the vocabulary enlarges,
leading to overfitting during the training process. Meanwhile, for the models with
two encoders, we adjust the vocabulary size to be 40k.

Each pair of the dataset consists of an article and a multi-sentence summary.
We truncate the article to 400 tokens and limit the summary to 100 tokens for
both training and testing time. During decoding mode, we generate at least 35
words with beam search algorithm. Data truncation operations not only reduce
memory consumption, speed up training and testing, but also improve the exper-
imental results. The reason is that the vital information of news texts is mainly
concentrated in the first half part.

We train on a single GeForce GTX 1080 GPU with a memory of 8114 MiB,
and the batch size is set to be 16, as well as the beam size is 4 for beam search
in decoding mode. For the seq2seq dual attentional models without pointer-
generator, we trained them for about two days. Models with pointer-generator

2 https://cs.nyu.edu/∼kcho/DMQA/.
3 https://stanfordnlp.github.io/CoreNLP/.

https://cs.nyu.edu/~{}kcho/DMQA/
https://stanfordnlp.github.io/CoreNLP/

Abstractive Summarization With Extractive Methods 411

expedite the training, the time cost is reduced to about one day. When we add
coverage, the coverage loss weight λ is set to 1.0, and the model needs about one
hour for training.

Controlled Experiments. In order to figure out how each part of our models
contributes to the test results, based on the released codes4 of Tensorflow, we
have implemented all the models and done a series of experiments.

The baseline model is a general seq2seq attentional model, the encoder con-
sists of a biLSTM and the decoder is made up of an uniLSTM. The second
baseline model is our encoders-decoder dual attention model, which contains two
biLSTM encoders and one uniLSTM decoder. This model combines the extrac-
tive and generative methods to perform joint training effectively through a dual
attention mechanism.

For the above two basic models, in order to explain how the OOV and dupli-
cate words are treated, we lead into the pointer-generator and coverage mech-
anism step by step. For the second baseline, the two tricks are only related to
the source encoder, because we think that the source encoder already covers all
the tokens in the extractive encoder. For the extractive encoder, we adopt two
methods for extraction. One is the leading three (lead-3) sentences technique,
which is simple but indeed a strong baseline. The other is the Modified sentence
ranking algorithm based on WordNet that we explain in details in Sect. 3. It
considers semantic relations in words and sentences from source texts.

3.3 Results

ROUGE [7] is a set of metrics with a software package used for evaluating auto-
matic summarization and machine translation results. It counts the number of
overlapping basic units including n-grams, longest common subsequences (LCS).
We use pyrouge5, a python wrapper to gain ROUGE-1, ROUGE-2 and ROUGE-
L scores and list the F1 scores in Table 2.

We carry out the experiments based on original dataset, i.e., non-anonymized
version of data. For the top three models in table 2, their ROUGE scores are
slightly higher than those executed by [16], except for the ROUGE-L score of
Seq2seq + Attn + PGN, which is 0.09 points lower than the former result. For
the fourth model, we did not reproduce the results of [16], ROUGE-1, ROUGE-2,
and ROUGE-L decreased by an average of 0.41 points.

For the four models in the middle, we apply the dual attention mechanism
to integrate extraction with abstraction for joint training and decoding. These
model variants own a single PGN or PGN together with Cov, achieve better
results than the corresponding vulgaris attentional models simultaneously. We
conclude that the extractive encoders play a role, among which we obtained
higher ROUGE-1 and ROUGE-2 scores based on the Lead-3 + Dual-attn +

4 https://github.com/tensorflow/models/tree/master/research/textsum.
5 https://pypi.org/project/pyrouge/0.1.3/.

https://github.com/tensorflow/models/tree/master/research/textsum
https://pypi.org/project/pyrouge/0.1.3/

412 N. Xie et al.

Table 2. ROUGE F1 scores on CNN/Daily Mail non-anonymized testing dataset for all
the controlled experiment models mentioned above. According to the official ROUGE
usage description, all our ROUGE scores have a 95% confidence interval of at most
±0.25. PGN, Cov, ML, RL are abbreviations for pointer-generator, coverage, mixed-
objective learning and reinforcement learning. Models with subscript a were trained
and tested on the anonymized CNN/Daily Mail dataset, as well as with ∗ are the
state-of-the-art extractive and abstractive summarization models on the anonymized
dataset by now.

Models ROUGE F1 scores

1 2 L

Seq2seq + Attn 31.50 11.95 28.85

Seq2seq + Attn (150k) 30.67 11.32 28.11

Seq2seq + Attn + PGN 36.58 15.76 33.33

Seq2seq + Attn + PGN + Cov 39.16 16.98 35.81

Lead-3 + Dual-attn + PGN 37.26 16.12 33.87

WordNet + Dual-attn + PGN 36.91 15.97 33.58

Lead-3 + Dual-attn + PGN + Cov 39.41 17.30 35.92

WordNet + Dual-attn + PGN + Cov 39.32 17.15 36.02

Lead-3 ([16]) 40.34 17.70 36.57

Lead-3 ([10])a 39.20 15.70 35.50

SummaRuNNer ([10])∗
a 39.60 16.20 35.30

RL + Intra-attn ([14])∗
a 41.16 15.75 39.08

ML + RL + Intra-attn ([14])a 39.87 15.82 36.90

PGN + Cov model, and achieve a better ROUGE-L score on WordNet + Dual-
attn + PGN + Cov model.

Let’s take a look at the five models at the bottom, two of which give the state-
of-the-art scores for the extractive and generative methods our scores are already
comparable to them. It is worthy to mention that based on the dual attention, our
models related to both Lead-3 and WordNet with PGN and Cov have exceeded
the previous best ROUGE-2 scores. When in fact, previous SummaRuNNer, RL
related models are based on anonymized dataset, these differences may cause
some deviations in the comparison of experimental results.

We give some generated summaries of different models for one selected test
article. From Fig. 2, we can see that the red words represent key information
about who, what, where and when. We can match the corresponding keywords in
the remaining seven summaries to find out whether they cover all the significant
points, and check if they are expressed in a concise and coherent way. It can be
discovered from Fig. 2 that most of the models have lost several vital points, and
the model Lead-3 + Dual-attn + PGN has undergone fairly serious repetition.
Our model WordNet + Dual-attn + PGN + Cov holds the main key information
as well as has better readability and semantic correctness reliably.

Abstractive Summarization With Extractive Methods 413

Reference:
six people , including one civilian , are killed when a car bomb explodes near a police sta on .
six others are killed when their armored vehicle is a acked on a highway in northern sinai .
ansar beit al-maqdis , an isis affiliate , claims responsibility .
Seq2seq + A n:
an a ack on a police sta on , a guard is killed in a car bomb .
the a ack comes hours a er another opera on that the group claims responsibility .
the a acks come as the military announced a departure of several senior military posi ons .
Seq2seq + A n + PGN:
six people were killed when a car bomb exploded near the police sta on in al-arish , capital of north sinai .
a first lieutenant , a sergeant and four conscripts were killed when their armored vehicle was a acked on the
highway from al-arish to sheikh zuweid in northern sinai .
ansar beit al-maqdis has claimed many a acks against the army and police in sinai .
Seq2seq + A n + PGN + Cov:
six people were killed when a car bomb exploded near the police sta on in al-arish , capital of north sinai .
ansar beit al-maqdis , a sergeant and four conscripts were killed when their armored vehicle was a acked on
the highway from al-arish to sheikh zuweid in northern sinai .
a third a ack sunday on a checkpoint in rafah le three security personnel injured , a er unknown assailants
opened fire .
WordNet + Dual-a n + PGN:
six people killed when a car bomb exploded near the police sta on in al-arish , capital of north sinai .
a first lieutenant , a sergeant and four conscripts were killed when their armored vehicle was a acked on the
highway .
a third a ack sunday on a checkpoint in rafah le three security personnel injured .
Lead-3 + Dual-a n + PGN:
six people , including one civilian , were killed when a car bomb exploded near the police sta on in al-arish ,
capital of north sinai .
six people , including one civilian , were killed when a car bomb exploded near the police sta on in al-arish ,
capital of north sinai , authori es say .
WordNet + Dual-a n + PGN + Cov:
six people , including one civilian , were killed when a car bomb exploded near the police sta on .
a first lieutenant , a sergeant and four conscripts were killed when their armored vehicle was a acked on the
highway .
ansar beit al-maqdis has claimed many a acks against the army and police in sinai .
Lead-3 + Dual-a n + PGN + Cov:
six people , including one civilian , were killed when a car bomb exploded near the police sta on .
ansar beit al-maqdis , an isis affiliate , claimed responsibility for the a ack .
ansar beit al-maqdis has claimed many a acks against the army and police .

Fig. 2. Summaries for all the models of one test article example.

4 Related Work

Up to now, automatic summarization with extractive and abstractive methods
are under fervent research. On the one hand, the extractive techniques extract
the topic-related keywords and significant sentences from the source texts to con-
stitute summaries. [3] proposed a seq2seq model with a hierarchical encoder and
attentional decoder to solve extractive summarization tasks at the word and sen-
tence levels. Currently [10] put forward SummaRuNNer, a RNN based sequence
model for extractive summarization and it achieves the previous state-of-the-
art performance. On the other hand, abstractive methods establish an intrinsic
semantic representation and use natural language generation techniques to pro-
duce summaries which are closer to what human beings express. [1] applied the
combination of seq2seq model and attention mechanism to machine translation

414 N. Xie et al.

tasks for the first time. [15] exploited seq2seq model to sentence compression to
lay the groundwork for subsequent summarization with different granularities.
[8] used encoder-decoder with attention method to generate news headlines. [20]
added a selective gate network to the basic model in order to control which part
of the information flowed from encoder to decoder. [17] raised a model based on
graph and attention mechanism to strengthen the positioning of vital informa-
tion of source texts.

So as to solve rare and unseen words, [5,6] proposed the COPYNET model
and pointing mechanism, [19] created read-again and copy mechanisms. [11]
made a combination of the basic model with large vocabulary trick (LVT),
feature-rich encoder, pointer-generator, and hierarchical attention. In addition to
pointer-generator, other tricks of this paper also contributed to the experiment
results. [16] presented an updated version of pointer-generator which proved to
be better. As for duplicate words, for sake of solving problems of over or missing
translation, [18] came up with a coverage mechanism to avail oneself of historical
information for attention calculation, while [16] provided a progressive version.
[12] introduced a series of diverse cell structures to solve the duplicate words.

So far, few papers have considered about the structural or sementic issues at
the language level in the field of summarization. [4] presented a novel unsuper-
vised method that made use of a pruned dependency tree to acquire the sentence
compression. Based on a Chinese short text summary dataset (LCSTS) and the
attentional seq2seq model, [9] proposed to enhance the semantic relevance by
calculating the cos similarities of summaries and source texts.

5 Conclusion

In our paper, we construct a dual attentional seq2seq model comprising source
and extractive encoders to generate summaries. In addition, we put forward
the modified sentence ranking algorithm to extract a specific number of high
weighted sentences, for the purpose of strengthening the semantic representation
of the extractive encoder. Furthermore, we introduce the pointer-generator and
coverage mechanisms in our models so as to solve the problems of OOV and
duplicate words. In the non-anonymized CNN/Daily Mail dataset, our results
are close to the state-of-the-art ROUGE F1 scores. Moreover, we get the highest
abstractive ROUGE-2 F1 scores, as well as obtain such summaries that have
better readability and higher semantic accuracies. In our future work, we plan
to unify the reinforcement learning method with our abstractive models.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments on this paper. This work was partially supported by National Natural Science
Foundation of China (61572049 and 61333018). The correspondence author is Sujian Li.

Abstractive Summarization With Extractive Methods 415

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Cao, Z., Li, W., Li, S., Wei, F., Li, Y.: Attsum: Joint learning of focusing and
summarization with neural attention. arXiv preprint arXiv:1604.00125 (2016)

3. Cheng, J., Lapata, M.: Neural summarization by extracting sentences and words.
arXiv preprint arXiv:1603.07252 (2016)

4. Filippova, K., Strube, M.: Dependency tree based sentence compression. In: Pro-
ceedings of the Fifth International Natural Language Generation Conference, pp.
25–32. Association for Computational Linguistics (2008)

5. Gu, J., Lu, Z., Li, H., Li, V.O.: Incorporating copying mechanism in sequence-to-
sequence learning. arXiv preprint arXiv:1603.06393 (2016)

6. Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., Bengio, Y.: Pointing the unknown
words. arXiv preprint arXiv:1603.08148 (2016)

7. Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Text Sum-
marization Branches Out (2004)

8. Lopyrev, K.: Generating news headlines with recurrent neural networks. arXiv
preprint arXiv:1512.01712 (2015)

9. Ma, S., Sun, X., Xu, J., Wang, H., Li, W., Su, Q.: Improving semantic relevance for
sequence-to-sequence learning of chinese social media text summarization. arXiv
preprint arXiv:1706.02459 (2017)

10. Nallapati, R., Zhai, F., Zhou, B.: Summarunner: A recurrent neural network based
sequence model for extractive summarization of documents. In: AAAI, pp. 3075–
3081 (2017)

11. Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al.: Abstractive text summariza-
tion using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023
(2016)

12. Nema, P., Khapra, M., Laha, A., Ravindran, B.: Diversity driven attention
model for query-based abstractive summarization. arXiv preprint arXiv:1704.08300
(2017)

13. Pal, A.R., Saha, D.: An approach to automatic text summarization using wordnet.
In: Advance Computing Conference (IACC), 2014 IEEE International, pp. 1169–
1173. IEEE (2014)

14. Paulus, R., Xiong, C., Socher, R.: A deep reinforced model for abstractive summa-
rization. arXiv preprint arXiv:1705.04304 (2017)

15. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685 (2015)

16. See, A., Liu, P.J., Manning, C.D.: Get to the point: Summarization with pointer-
generator networks. arXiv preprint arXiv:1704.04368 (2017)

17. Tan, J., Wan, X., Xiao, J.: Abstractive document summarization with a graph-
based attentional neural model. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp.
1171–1181 (2017)

18. Tu, Z., Lu, Z., Liu, Y., Liu, X., Li, H.: Modeling coverage for neural machine
translation. arXiv preprint arXiv:1601.04811 (2016)

19. Zeng, W., Luo, W., Fidler, S., Urtasun, R.: Efficient summarization with read-again
and copy mechanism. arXiv preprint arXiv:1611.03382 (2016)

20. Zhou, Q., Yang, N., Wei, F., Zhou, M.: Selective encoding for abstractive sentence
summarization. arXiv preprint arXiv:1704.07073 (2017)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1604.00125
http://arxiv.org/abs/1603.07252
http://arxiv.org/abs/1603.06393
http://arxiv.org/abs/1603.08148
http://arxiv.org/abs/1512.01712
http://arxiv.org/abs/1706.02459
http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1704.08300
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1601.04811
http://arxiv.org/abs/1611.03382
http://arxiv.org/abs/1704.07073

Improving Aspect Identification
with Reviews Segmentation

Tianhao Ning1,2, Zhen Wu1,2, Xin-Yu Dai1,2(B), Jiajun Huang1,2,
Shujian Huang1,2, and Jiajun Chen1,2

1 National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China
{ningth,wuz,huangjj}@nlp.nju.edu.cn,

{daixinyu,yincy,huangsj,chenjj}@nju.edu.cn
2 Collaborative Innovation Center of Novel Software Technology

and Industrialization, Nanjing 210023, China

Abstract. Aspect identification, a key sub-task in Aspect-Based Sen-
timent Analysis (ABSA), aims to identify aspect categories from online
user reviews. Inspired by the observation that different segments of a
review usually express different aspect categories, we propose a reviews-
segmentation-based method to improve aspect identification. Specifi-
cally, we divide a review into several segments according to the sentence
structure, and then automatically transfer aspect labels from the origi-
nal review to its derived segments. Trained with the new constructed
segment-level dataset, a classifier can achieve better performance for
aspect identification. Another contribution of this paper is extracting
alignment features, which can be leveraged to further improve aspect
identification. The experimental results show the effectiveness of our pro-
posed method.

Keywords: Aspect identification · Reviews segmentation
Alignment features

1 Introduction

Sentiment analysis and opinion mining have drawn increasing attention in recent
years because of the rapid growth of user-generated reviews on the Internet. For a
product, users usually evaluate it from multiple aspects in a review. For example,
a review “Get this computer for portability and fast processing!!!” of laptop
domain contains two aspects, namely portability and cpu operation performance.
So instead of classifying the overall sentiment of a review into binary polarity
(positive or negative), a finer-grained task, known as Aspect-Based Sentiment
Analysis (ABSA) [16], is proposed to discover more detailed entities, attributes,
and emotions of users towards various aspects from reviews. In ABSA, a key
sub-task is to identify aspect categories from reviews before sentimental polarity
can be predicted towards each aspect.

Supported by the NSFC (No. 61472183, 61672277, 61772261).

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 416–428, 2018.
https://doi.org/10.1007/978-3-319-99495-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_35&domain=pdf

Improving Aspect Identification with Reviews Segmentation 417

For a specific domain of product or service, the set of aspect categories is usu-
ally predefined as E#A, where E is an entity and A is an attribute of E [10] such
as LAPTOP#PRICE. Users usually express opinions toward multiple aspect cat-
egories in a review. Thus aspect identification can be formulated as a multi-label
classification problem. Some previous works focus on designing the classification
models and feature representations [17–19] and obtain some competitive results.

Different from previous works, we observe that different segments of a review
usually express different aspect categories. For example, as shown in Table 1, the
review “Fantastic for the price, but the keys were not illuminated.” can be divided
into two segments, namely “Fantastic for the price.” and “But the keys were
not illuminated.”. These two segments are mutually independent, the former
segment expresses aspect category LAPTOP#PRICE and the latter describes
aspect category KEYBOARD#DESIGN FEATURES. The example shows that
each segment and its aspect categories have finer-grained mapping relation than
the whole review and overall aspect categories have. Therefore, we claim that
classification performance can be improved if we obtain the finer-grained map-
ping dataset, because we do not need to consider the interference from other
segments when dealing with current segment.

To address the issues, we propose a reviews-segmentation-based method to
divide a review into multiple segments, and then transfer aspect labels from
the original review to corresponding segments automatically. These two steps
will help us construct a review-segment-level labeled dataset with finer-grained
mapping relation. After reviews segmentation and labels transferring, like solving
other classification problems, we train a classifier on the constructed dataset for
predicting aspect categories of new reviews. In this paper, we use Long Short-
Term Memory (LSTM) [5] as classifier.

In addition, we also observe that in reviews some words have strong indication
for aspects. For example, in the review of Table 1, the word “price” expresses the
aspect category LAPTOP#PRICE, the words “keys” and “illuminated” indicate
the aspect category KEYBOARD#DESIGN FEATURES. However, due to the
sparseness of the training data, it is hard to learn some sparse words like “illu-
minated” as important features to identify some aspect categories. Therefore,
we introduce alignment algorithm in machine translation to extract alignment

Table 1. Examples of aspect categories identification.

Review: Fantastic for the price, but the keys were
not illuminated
Aspects: LAPTOP#PRICE,
KEYBOARD#DESIGN FEATURES

Segment 1: Fantastic for the price
Aspects: LAPTOP#PRICE
Segment 2: But the keys were not illuminated
Aspects: KEYBOARD#DESIGN FEATURES

418 T. Ning et al.

features between words and aspect categories, which are used for further improv-
ing the aspect identification performance.

The main contributions of our work can be summarized as follows:

1. We improve the performance of aspect identification with reviews segmen-
tation. Especially, we propose an effective method to divide a review into
multiple segments and transfer the aspect labels from reviews to the corre-
sponding segments.

2. We introduce the alignment algorithm in machine translation to extract the
alignment features to further improve aspect identification.

2 Related Work

The ABSA task was added to the SemEval challenges since 2014 [11]. The sub-
task aspect identification of ABSA predefines aspect categories for a specific
domain, so it can be regarded as a multi-label classification problem. Some early
works employ traditional features and classification algorithms for aspect iden-
tification. [6] follows the one-vs-all strategy and build a binary Support Vector
Machine (SVM) [2] classifier with ngrams and lexicon features for each aspect
category. However, if a token implying an aspect, e.g., “expensive”, is not taken
as a feature, the SVM classifier cannot correctly identify its corresponding cat-
egory. Therefore, [21] enhances the results from the SVM classifier by using
implicit aspect indicators [4]. In addition, Maximum Entropy is also adopted for
aspect identification with bag-of-words-like features (e.g. words, lemmas) [14].

Recently, neural network based models are explored to solve this problem. [17]
extracts lexicon, syntax and word cluster as features, and trains a binary single
layer feedforward network for each aspect category. [18] enhances the system
of [17] by adding neural network features learned from a Deep Convolutional
Neural Network system [15]. Different from previous works, [13] does not use
traditional hand-crafted features, and directly train a convolutional neural net-
work to output probability distributions over all aspect categories.

However, the above works all pay attention to designing hand-crafted features
and classification models, but ignore the phenomenon that different segments of
a review usually expressed different aspect categories, which motivates our work.

3 Method

3.1 Overview of Our Method

From our observation mentioned in Sect. 1, we have strong motivation to train a
segment-level classifier to capture finer-grained mapping relation. To achieve the
goal, we propose an effective method to build the corresponding segment-level
dataset from an original review-level dataset.

Firstly, we use reviews segmentation method according to punctuations or
dependency parsing tree to divide a long review into multiple segments. As Fig. 1

Improving Aspect Identification with Reviews Segmentation 419

I think it’s great product,
it’s easy to use with great

graphics.

LAPTOP#GENERAL

LAPTOP#USABILITY

GRAPHICS#GENERAL

Review Review

I think it’s great product

It’s easy to use with great
graphics

LAPTOP#GENERAL

LAPTOP#USABILITY

GRAPHICS#GENERAL

Review-level dataset

Segment1

Segment2

(a) Step 1: dividing reviews into multiple segments

Review

I think it’s great product

It’s easy to use with great
graphics

LAPTOP#GENERAL

LAPTOP#USABILITY

GRAPHICS#GENERAL

Segment1

Segment2

Segment-level dataset

I think it’s great product

Segments

It’s easy to use with great
graphics

LAPTOP#GENERAL

LAPTOP#USABILITY

GRAPHICS#GENERAL

(b) Step 2: transferring labels from reviews to segments

Fig. 1. Reviews segmentation and labels transferring.

shows, in the step 1 the review “I think it’s great product, it’s easy to use with
great graphics.” will be divided into two segments, namely “I think it’s great
product.” and “It’s easy to use with great graphics.”.

Secondly, we train an LSTM classifier on the original review dataset and
design some conservative rules (refer to Algorithm 1) to transfer the aspect
labels from reviews to the corresponding segments. In above example, the label
LAPTOP#GENERAL will be transferred to the segment “I think it’s great prod-
uct.”. The labels LAPTOP#USABILITY and GRAPHICS#GENERAL will be
transferred to the other segment “It’s easy to use with great graphics.”. After
labels transferring, we will have a segment-level dataset.

Finally, a new LSTM classifier will be trained on the constructed segment-
level dataset for predicting aspect labels of new reviews.

3.2 Reviews Segmentation

Reviews Segmentation with Punctuations. In linguistics, a clause is the
smallest grammatical unit that can express a complete proposition. Sometimes
some sentences themselves are clauses. The simplest reviews segmentation app-
roach is to divide a review into several clauses according to punctuations. How-
ever, this approach does not work when there is no punctuation in the sentence.
For instance, there is no punctuation in the review “It’s more expensive but well
worth it in the long run”, whereas it has two clauses “It’s more expensive” and
“well worth it in the long run”. These two clauses express different aspects. The
similar sentences are quite common in real reviews.

Reviews Segmentation with Dependency Parsing Tree. The above exam-
ple shows that we cannot divide a review into multiple segments when there is

420 T. Ning et al.

no punctuation in the sentence. Therefore, we need to consider more struc-
tural information. Here we present two typical cases in which there are mul-
tiple aspects. In the review “I like the food but the waiter was rude.”, the
first clause “I like the food” describes the aspect category FOOD#GENERAL,
and the second one “the waiter was rude” expresses the aspect category SER-
VICE#QUALITY. In this example, the two aspects are expressed in two inde-
pendent clauses. For another review “Get this computer for portability and
fast processing!”, the word “portability” indicates the aspect category LAP-
TOP#PORTABILITY, and the word “fast processing” expresses the aspect cat-
egory CPU#OPERATION PERFORMANCE. Obviously, the two aspects are
dispersed in syntactic coordinate structures. To divide this review, the common
component “Get this computer for” needs to be replicated for each clause.

w

u

w

v
u

conj/appos

w'

v

Fig. 2. Sentence segmentation with dependency parsing tree.

Fortunately, dependency parsing can address the above issues. Figure 2 shows
how a sentence is divided into multiple relatively complete clauses with depen-
dency parsing tree. We break dependency relations denoted by 〈u, v〉, whose
dependency type is conj (conjunt) or appos (appositional modifier). More specif-
ically, we denote all ancestors of u and their other descendants as w, except the
subtree rooted by u. Let w′ be the clone of w, then we append v and its descen-
dants to w′. One exception is those sentences with compound predicates, like
“subject verb1 object1 and verb2 object2”. In this case, verb1 is u and verb2 is
v, but subject is not an ancestor of verb1 and needs to be appended to verb2.
In our work, this sentence is divided into “subject verb1 object1” and “subject
verb2 object2”.

3.3 Labels Transferring from Reviews to Segments

After reviews segmentation, a complex review is divided into multiple segments.
The next step is to transfer the aspect labels from original review to the corre-
sponding segments. One way for labels transferring is to train a classifier (LSTM)
on the original review-level dataset, and then predict the aspect labels of each
segment. However, with this method, the quality of the constructed segment-
level dataset is not guaranteed and heavily depends on the trained classifier.
Therefore, based on the classifier trained on the review-level dataset, we add

Improving Aspect Identification with Reviews Segmentation 421

Algorithm 1. Labels Transferring Algorithm
Require: A review r, its label bag b, and trained classifier f on review-level labeled

dataset
Ensure: A set s of segments, and corresponding label bags B′

1: s = divided(r), dividing r into segments according to the method in Section 3.2
2: if |s| = 1 then
3: set B′ := {b}
4: else
5: set B′ := [Ø] ∗ |s| {Initialize the label bags B′ whose size is |s|.}
6: for l in b do
7: set flag := False {The flag means whether the label l is transferred to

segments.}
8: for i = 1 to |s| do
9: if f(si)l >= f(r)l then

10: add l to B′
i {Transfer label l to i-th segment.}

11: set flag := True
12: end if
13: end for
14: if flag == False then
15: if r not in s then
16: add r to s {If label l is not transferred to segments, make sure that

review r is in s.}
17: B′

|s|+1 := [Ø] {|s| + 1 is the index of r in s}
18: end if
19: add l to B′

|s|+1 {Return the label l to the review r.}
20: end if
21: end for
22: return s,B′

23: end if

some constraints (refer to Algorithm 1) for labels transferring to improve the
quality of segment-level dataset.

Algorithm 1 demonstrates the pseudocode of Labels Transferring algorithm.
Firstly, we train an LSTM classifier f on review-level labeled dataset. Let f(x)y
be the predicted probability of aspect label y towards the input x. Then, to
ensure the reliability of labels transferring, we set some constraints during the
transferring. Specifically, for each aspect label l of a review r and each segment si
divided from r, l would be transferred from r to si on condition that f(si)l >=
f(r)l. This condition means that the segment si has stronger indication for aspect
label l compared with the whole review r. If none of the segments satisfies the
condition, we will return the label l to the review r and add the original review
r and the label l to the new dataset. We use a classifier and fallback strategy
to ensure that the labels are transferred to review segments as accurately as
possible.

After labels transferring, we have a segment-level labeled dataset, with which
we can train a more powerful classifier for aspect identification.

422 T. Ning et al.

3.4 Alignment Feature

In reviews, some words or phrases have strong indication for expressed aspect
categories. For example, for the review “Fantastic for the price, but the keys
were not illuminated.” in Fig. 3, the word “illuminated” is quite significant for the
identification of aspect category KEYBOARD#DESIGN FEATURES. However,
it is hard to learn the word “illuminated” as an effective feature for a classifier
due to the sparseness of training data. Therefore, we employ alignment algorithm
to extract alignment features between the words in reviews and expressed aspects
to improve aspect identification.

Fantastic for the price, but the keys were not illuminated.

LAPTOP#PRICE is positive; KEYBOARD#DESIGN_FEATURES is negative;

Fig. 3. An alignment example between a review and corresponding parallel data.

Firstly, we build the parallel data for extracting alignment features. The
construction process is illustrated with an example. For the review in Fig. 3,
we can obtain its paired labels (LAPTOP#PRICE, positive) and (KEY-
BOARD#DESIGN FEATURES, negative) (The polarity of aspect is provided
by original datasets). Then we rewrite the paired labels as “LAPTOP#PRICE is
positive; KEYBOARD#DESIGN FEATURES is negative;”. In fact, the original
review and the rewritten text are parallel and express the same meaning towards
expressed aspects. With the parallel training data, we remove those stop-words
and punctuations, and use Giza++ [9] to train IBM model 4 [3] to obtain bidi-
rectional alignment probabilities, which contains the probability from words to
aspects and the probability from aspects to words. We add these probabilities
as alignment features to improve the performance of aspect identification.

3.5 Sequence Encoder and Aspect Identification

In this work, we adopt Long Short-Term Memory (LSTM) to encode reviews or
review segments because of its excellent performance on sequence modeling. For a
review or review segment consisting of n words {w1, w2, · · · , wn}, each word wi is
mapped to its embedding wi ∈ R

d. LSTM network receives [w1,w2, · · · ,wn] and
generates hidden states [h1,h2, · · · ,hn]. Then we concatenate the last hidden
state hn and alignment features in Sect. 3.4 as the final representation r for
aspect identification. We use a linear layer to project representation r into the
target space of C aspect categories. Since aspect identification is a multi-label
classification problem, we add no-linear function sigmoid rather than softmax
before calculating cross entropy loss:

p = σ (Wrr + br) , (1)

Improving Aspect Identification with Reviews Segmentation 423

where Wr and br are weight matrix and bias vector respectively, every dimension
pa of p is in [0, 1] and corresponds to the predicted probability of aspect category
a. We set a threshold θ and make a prediction that a sample has a aspect label
a when pa exceeds the threshold θ. The loss function for optimization when
training is defined as:

L = − 1
M

M∑

m=1

C∑

a=1

(pga(dm) · log(pa(dm)) + (1 − pga(dm)) · log(1 − pa(dm))), (2)

where pga is the gold probability of aspect label a with ground truth being 1 and
others being 0, M denotes the number of training data, dm represents the m-th
sample of training data. Finally, for a review we merge all the predicted results
of its segments as the aspects of the whole review.

4 Experiments

4.1 Setup

– Dataset: We evaluate the effectiveness of the proposed method on
SemEval-2015 task-12 from two domains (laptop and restaurant)1. Statis-
tics of the original datasets are shown in Table 2. In these two datasets, all
aspect categories in testing set exist in training set.

– Preprocessing: We use NLTK [1] to tokenize reviews and keep a vocabu-
lary of 1500 most frequent words excluding stop-words. We use the depen-
dency parser in Stanford CoreNLP [7] for reviews segmentation. Word embed-
dings are pretrained with skip-gram model [8] on the Yelp Phoenix Academic
Dataset, which includes eighteen million user reviews2 in restaurant domain.

– Hyper-parameters selection: We set word vector size to be 300. The
dimensions of hidden states in LSTM are set to be 256. We train all models
with AdaDelta [20]. The predicting thresholds θ are obtained via grid search
in [0.1, 0.3] with increments of 0.01.

– Metrics: We use the precision and recall to compute F1-score as evaluation
metrics of the performance of aspect identification.

Table 2. Statistics of the original datasets.

Dataset Laptop-Train Laptop-Test Restaurant-Train Restaurant-Test

Reviews 1739 761 1315 685

Aspects 81 58 12 12

1 http://alt.qcri.org/semeval2015/task12/.
2 https://www.yelp.com/dataset/challenge/.

http://alt.qcri.org/semeval2015/task12/
https://www.yelp.com/dataset/challenge/

424 T. Ning et al.

4.2 Validating the Performance of Labels Transferring

It is obvious that the quality of new constructed datasets has a significant effect
on the performance of aspect identification. To evaluate the performance of
labels transferring, we randomly select 500 samples from segment-level dataset
in restaurant domain, and invite three experience-rich annotators to manually
annotate the aspect categories of every segment. The results are as the Table 3
shows.

Table 3. Performance of labels transferring from reviews to segments in restaurant
domain.

Precision Recall F1-score

Dependency tree 0.9268 0.9172 0.9220

Punctuation 0.9451 0.8498 0.8949

We validate the performance of labels transferring based on two different
reviews segmentation methods, namely punctuations and dependency tree. From
Table 3, we can observe that even the simple review segmentation method based
on punctuations achieves around 90% F1-score, which proves most of aspect
labels are correctly transferred to corresponding segments. In addition, we obtain
better results of labels transferring with dependency parsing. The precision,
recall and F1-score are all above 91%. The results is reasonable because we
consider more structural information with dependency parsing.

4.3 The Statistics of Reviews Segmentation

In our observation, different segments of a review usually express different aspect
categories, which means we can obtain finer-grained mapping datasets after
reviews segmentation and labels transferring. In order to validate the rationality
of review segmentation, we count the number of data containing n aspects before
and after reviews segmentation respectively. As Fig. 4(a) shows, after reviews
segmentation and labels transferring, on both two domains, we have more sam-
ples with only one aspect, and fewer samples with two or more aspects. More
expected results can be achieved after reviews segmentation with dependency
parsing, as shown in Fig. 4(b). Compared to segmentation with punctuations,
segmentation with dependency parsing achieves more segments with only one
aspect.

Overall, Table 3 and Fig. 4 validate our observation that finer-grained corre-
spondence between aspects and review segments exists. Therefore, we can build
high-quality segment-level datasets with less interference from other segments
after reviews segmentation and labels transferring.

Improving Aspect Identification with Reviews Segmentation 425

(a) Reviews segmentation with punctuations.

(b) Reviews segmentation with dependency parsing.

Fig. 4. Number of data containing n aspects on two review datasets of SemEval-2015
before and after reviews segmentation respectively.

4.4 Baselines

We compare our method with several baseline methods for aspect identification:

– TJUdeM: TJUdeM [21] combines a SVM classifier with implicit aspect indi-
cators. The SVM classifier uses words as features to determine the aspect
categories. Additionally, they identify the implicit aspect indicators manually
by setting a set of indicators for several aspects.

– Sentiue: Sentiue [14] uses a separate Maximum Entropy classifier with bag-
of-words-like features (e.g. words, lemmas) for each entity and each attribute.
Subsequently, heuristics are applied to the output of the classifiers to deter-
mine which aspect categories will be assigned to each sentence.

– NLANGP: NLANGP [17] is the winning system of SemEval-2015 task-12
and achieved the best performance in two domains. They train a sigmoid
feedforward network as a classifier respectively for each aspect category. They
use features containing bag-of-word, n-grams, parsing, and word embeddings
learnt from Amazon and Yelp data [12].

– LSTM: We train an LSTM classifier on original datasets as one of our base-
lines.

426 T. Ning et al.

4.5 Effectiveness of Reviews Segmentation

We use RS as the abbreviation of reviews segmentation. The experimental results
are shown in Table 4. We can observe that in restaurant domain LSTM without
any feature engineering outperforms the traditional classification model TJU-
deM, Sentinue and the winning model NLANGP of SemEval-2015 Task 12.

Table 4. Effectiveness of reviews segmentation for aspect identification on two
datasets. On the basis of LSTM, RS Punc represents reviews segmentation with punc-
tuations, and RS Tree denotes reviews segmentation with dependency parsing. “∗∗”
means that LSTM+RS Punc and LSTM+RS Tree are significantly better than LSTM
with 99% t-test.

Models Restaurant Laptop

Precision Recall F1-score Precision Recall F1-score

TJUdeM 0.4782 0.5806 0.5245 0.4489 0.4821 0.4649

Sentiue 0.6330 0.4720 0.5410 0.5770 0.4410 0.5000

NLANGP 0.6386 0.6155 0.6268 0.6425 0.4209 0.5086

LSTM 0.6919 0.5809 0.6315 0.6009 0.4241 0.4972

LSTM+RS Punc 0.6895 0.6219 0.6540∗∗ 0.6135 0.4420 0.5138∗∗

LSTM+RS Tree 0.6895 0.6361 0.6617∗∗ 0.5899 0.4673 0.5215∗∗

In addition, compared to the baseline methods, LSTM+RS Punc and
LSTM+RS Tree achieve significant improvements on the two datasets. Espe-
cially, LSTM+RS Tree improves the performance over the LSTM by 3.02% on
Restaurant dataset and 2.43% on Laptop dataset in F1-score. The results show
that reviews segmentation is effective for aspect identification.

Compared with LSTM+RS Punc, the model LSTM+RS Tree achieves better
performance on two datasets. The comparison shows that reviews segmentation
with dependency parsing is more reasonable because more structural information
is considered.

4.6 Effectiveness of Alignment Features

To validate the effectiveness of alignment features, we also report the
results of our model incorporating alignment features into representation
of review segments. As shown in Table 5, the LSTM+RS Punc+align and
LSTM+RS Tree+align are our models containing alignment features. When we
add alignment features to representation, more promising results are achieved in
both two domains. The results show that alignment features can strengthen the
connection between some key words and aspect categories. For example, in the
review segment “excellent speed for processing data.”, the alignment probability
from “speed” to LAPTOP#PERFORMANCE is 0.9533. With the probability,
it is quite possible that the review segment is assigned with the aspect category
LAPTOP#PERFORMANCE, which can help improve classifier’s performance.

Improving Aspect Identification with Reviews Segmentation 427

Table 5. Effectiveness of alignment features for aspect identification on two datasets.
The “+align” represents the model using alignment features. “∗” means that
LSTM+RS Punc+align and LSTM+RS Tree+align are significantly better than other
no alignment features methods with 95% t-test.

Models Restaurant Laptop

Precision Recall F1-score Precision Recall F1-score

LSTM+RS Punc 0.6895 0.6219 0.6540 0.6135 0.4420 0.5138

LSTM+RS Punc+align 0.7076 0.6245 0.6635∗ 0.6667 0.4346 0.5262∗

LSTM+RS Tree 0.6895 0.6361 0.6617 0.5899 0.4673 0.5215

LSTM+RS Tree+align 0.7074 0.6335 0.6685∗ 0.6376 0.4620 0.5358∗

5 Conclusion

In this work, we propose a reviews-segmentation-based method to improve aspect
identification. Specifically, we firstly divide a review into multiple segments, then
propose an algorithm to transfer the aspects from the original reviews to the cor-
responding segments. With the segment-level dataset, we can train a more power-
ful classifier for aspect identification. For better identification, we also introduce
the alignment algorithm in machine translation to extract alignment probabili-
ties. With our proposed method and novel alignment features, promising results
are achieved on two benchmark datasets.

References

1. Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL
on Interactive Presentation Sessions, pp. 69–72. Association for Computational
Linguistics (2006)

2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning
Theory, pp. 144–152. ACM (1992)

3. Brown, P.F., Pietra, V.J.D., Pietra, S.A.D., Mercer, R.L.: The mathematics of
statistical machine translation: parameter estimation. Comput. Linguist. 19(2),
263–311 (1993)

4. Cruz, I., Gelbukh, A.F., Sidorov, G.: Implicit aspect indicator extraction for aspect
based opinion mining. Int. J. Comput. Linguist. Appl. 5(2), 135–152 (2014)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Kiritchenko, S., Zhu, X., Cherry, C., Mohammad, S.: NRC-Canada-2014: detecting
aspects and sentiment in customer reviews. In: Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014), pp. 437–442 (2014)

7. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky,
D.: The stanford CoreNLP natural language processing toolkit. In: ACL (System
Demonstrations), pp. 55–60 (2014)

8. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word
representations. In: HLT-NAACL, pp. 746–751 (2013)

428 T. Ning et al.

9. Och, F.J., Ney, H.: Giza++: training of statistical translation models (2000)
10. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.:

SemEval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the
9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495.
Association for Computational Linguistics, Denver (2015)

11. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I.,
Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceed-
ings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
pp. 27–35. Association for Computational Linguistics (2014)

12. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction
through double propagation. Comput. Linguist. 37(1), 9–27 (2011)

13. Ruder, S., Ghaffari, P., Breslin, J.G.: INSIGHT-1 at SemEval-2016 task 5:
deep learning for multilingual aspect-based sentiment analysis. arXiv preprint
arXiv:1609.02748 (2016)

14. Saias, J.: Sentiue: target and aspect based sentiment analysis in SemEval-2015 task
12. In: Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pp. 767–771. Association for Computational Linguistics, Denver,
June 2015

15. Severyn, A., Moschitti, A.: UNITN: training deep convolutional neural network for
twitter sentiment classification. In: Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015), pp. 464–469 (2015)

16. Thet, T.T., Na, J.C., Khoo, C.S.: Aspect-based sentiment analysis of movie reviews
on discussion boards. J. Inf. Sci. 36(6), 823–848 (2010)

17. Toh, Z., Su, J.: NLANGP: supervised machine learning system for aspect category
classification and opinion target extraction. In: Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015), pp. 496–501 (2015)

18. Toh, Z., Su, J.: NLANGP at SemEval-2016 task 5: improving aspect based sen-
timent analysis using neural network features. In: Proceedings of SemEval, pp.
282–288 (2016)

19. Xenos, D., Theodorakakos, P., Pavlopoulos, J., Malakasiotis, P., Androutsopoulos,
I.: AUEB-ABSA at SemEval-2016 task 5: ensembles of classifiers and embeddings
for aspect based sentiment analysis. In: International Workshop on Semantic Eval-
uation, pp. 312–317 (2016)

20. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

21. Zhang, Z., Nie, J.Y., Wang, H.: TJUdeM: a combination classifier for aspect cat-
egory detection and sentiment polarity classification. In: SemEval-2015, p. 772
(2015)

http://arxiv.org/abs/1609.02748
http://arxiv.org/abs/1212.5701

Cross-Lingual Emotion Classification
with Auxiliary and Attention Neural Networks

Lu Zhang, Liangqing Wu, Shoushan Li(&), Zhongqing Wang,
and Guodong Zhou

Natural Language Processing Lab, School of Computer Science and Technology,
Soochow University, Suzhou, China

{lzhang0107,lqwu}@stu.suda.edu.cn,

{lishoushan,wangzq,gdzhou}@suda.edu.cn

Abstract. In the literature, various supervised learning approaches have been
adopted to address the task of emotion classification. However, the performance
of these approaches greatly suffers when the size of the labeled data is limited. In
this paper, we tackle this challenge from a cross-lingual sensoria where the
labeled data in a resource-rich language (i.e., English in this study) is employed
to improve the emotion classification performance in a resource-poor language
(i.e., Chinese in this study). Specifically, we first use machine translation ser-
vices to eliminate the language gap between Chinese and English data and then
propose a joint learning framework to leverage both Chinese and English data,
which develops auxiliary representations from several auxiliary emotion clas-
sification tasks. Furthermore, in our joint learning approach, we introduce an
attention mechanism to capture informative words. Empirical studies demon-
strate the effectiveness of the proposed approach to emotion classification.

Keywords: Sentiment analysis � Emotion classification � Attention mechanism

1 Introduction

Emotion classification aims to determine the involving emotion within a piece of text.
With the tremendous growth of social media, such as Twitter and Facebook, emotion
classification has drawn more and more attention. In the last decade, emotion classi-
fication has been proved to be invaluable in many applications, such as stock markets
[1], online chat [2] and news classification [3].

Conventional approaches to emotion classification mainly conceptualize the task as
a supervised learning problem where sufficient labeled data is essential for training the
model. However, in most scenarios, the annotated corpus for emotion classification is
scarce, and to obtain such labeled data is extremely costly and time-consuming. Some
previous studies tackle this challenge by applying semi-supervised technique to make
use of unlabeled data. For instance, Liu et al. [3] propose a co-training algorithm to
improve the performance of emotion classification by leveraging the information in the
unlabeled data. Li et al. [4] propose a two-view label propagation approach to emotion

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 429–441, 2018.
https://doi.org/10.1007/978-3-319-99495-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_36&domain=pdf

classification by exploiting two views, namely source text and response text in a label
propagation algorithm (Fig. 1).

Instead of semi-supervised learning, we focus on addressing this issue from a cross-
lingual view. On one hand, Chinese emotion corpus is limited but many English
emotion corpora are freely available. On the other, the emotion involved in a given text
may not be learned in an exact manner with the representation in Chinese. However, if
we translate it into English, it becomes easier to determine the emotion. For instance, in
E1, due to the lack of Chinese emotion corpus, “ ” may not exist in the training
set so that it cannot be correctly classified. But if we translate this word into English,
i.e., “big sale”, then we can leverage English emotion corpus to make up for this.
Similarly, in E2, “ ” is a Chinese idiom, which is difficult for machine to
understand. However, if we translate it into English, i.e., “an unsettled state of mind”,
the emotion expressed by this phrase can be understood more easily.

In this study, we propose a joint learning framework, namely, Aux-LSTM-
Attention, which learns simultaneously from the labeled data from both resource-poor
and resource-rich languages. First, machine translation services are used to translate
Chinese emotion corpus into English corpus and also translate English emotion corpus
into Chinese corpus. Then, we view the emotion classification task with original Chinese
emotion corpus as a main task and the emotion classification tasks with additional
corpora as auxiliary tasks. To perform joint learning, we share neural network layers
from the auxiliary tasks into the main task. Consequently, the main task learns the
emotion classification by using the knowledge from both the main and auxiliary tasks
through the layer sharing. Furthermore, we utilize an attention mechanism [5, 6] to
aggregate the representation of informative words into a vector for emotion prediction.
Empirical studies demonstrate that the proposed joint learning approach significantly
outperforms several baseline approaches to emotion classification.

The remainder of this paper is organized as followed. Section 2 gives a brief
overview of related work. Section 3 proposes our joint learning framework on emotion
classification with both resource-poor and resource-rich corpora. Section 4 evaluates
the proposed approach before presenting the concluding remarks in Sect. 5.

E1:
Original:
Translation: There's a big sale on today! Let’s go shopping.
E2:
Original:
Translation: Recently, I'm always in an unsettled state of mind.

Fig. 1. Some examples in Chinese emotion corpus with their English translations

430 L. Zhang et al.

2 Related Work

2.1 Cross-Lingual Sentiment Classification

Sentiment analysis is the field of analyzing people’s opinions, sentiments, attitudes and
emotions from the text they have published [7]. In previous studies, conventional
approaches to sentiment analysis mainly focus on sufficient labeled data [8]. However,
in most scenarios, there is insufficient labeled data and to manually label reliable corpus
is not a trivial task. Cross-lingual addresses this issue in sentiment classification from a
cross-language view.

Over the last decades, there has been a proliferation of work exploring various
aspects of cross-lingual sentiment classification. Mihalcea et al. [9] generate resources
for subjectivity annotations for a new language, by leveraging resources and tools
available for English. Wan [10] uses machine translation services to eliminate the
language gap between Chinese corpus and English corpus. Chinese features and
English features are considered to be two independent views of the classification
problem and a co-training algorithm is employed to make use of unlabeled Chinese
data. Balamurali et al. [11] use WordNet synset identifiers as features of a supervised
classifier. They leverage the linked WordNets of two languages to bridge the language
gap. Prettenhofer and Stein [12] introduce the structural correspondence learning
algorithm to learn a map between the source language and the target language. More
recently, Zhou et al. [13] propose a bilingual document representation learning method
for cross-lingual sentiment classification which directly learns the vector representation
for documents in different languages.

Unlike all above studies, this work focuses on cross-lingual emotion classification.
Compared to cross-lingual sentiment classification, cross-lingual emotion classification
is more challenging due to the fact that the sentiment categories in two languages are
the same while the emotion taxonomies in two languages might be different.

2.2 Emotion Classification

Our work is also related to emotion classification. Tokuhisa et al. [14] propose a data-
oriented method for inferring the emotion of an utterance sentence in a dialog system.
Bhowmick et al. [15] present a method for classifying news sentences into multiple
emotion categories using multi-label KNN classification technique. Xu et al. [16]
propose a coarse-to-fine analysis strategy for emotion classification which takes sim-
ilarities to sentences in training set as well as adjacent sentences in the context into
consideration. Yang et al. [17] introduce an Emotion-aware LDA model to build a
domain-specific lexicon for predefined emotions. Felbo et al. [18] show how millions
of readily available emoji occurrences on Twitter can be used to pertrain models to
learn a richer emotional representation than traditionally obtained through distant
supervision.

Unlike all above studies, our work is the first attempt to apply cross-lingual in
emotion classification.

Cross-Lingual Emotion Classification with Auxiliary and Attention Neural Networks 431

3 Our Approach

3.1 Machine Translation

In this section, we propose our joint learning approach to perform joint learning with
both resource-poor and resource-rich data. In this study, we assume that Chinese is the
resource-poor language and it has only a few labeled samples. English is the resource-
rich language and it has many more labeled samples. In order to overcome the language
gap, we translate one language into the other language with a machine translation tool.
Specifically, we adopt Baidu Translate1 for both English-to-Chinese translation and
Chinese-to-English translation. Figure 2 shows the general framework of the machine
translation in the training phase. We translate the labeled Chinese emotion corpus into
English to set up a translated English view and translate English emotion corpus into
Chinese to establish a translated Chinese view.

3.2 The Main Emotion Classification Task

Figure 3 illustrates the overall architecture of our Aux-LSTM-Attention approach
which contains a main task and three auxiliary tasks. Specially, we consider the
emotion classification task with original Chinese emotion corpus as the main task and
the emotion classification tasks with other corpora as auxiliary tasks. The main idea of
the proposed approach is to employ some auxiliary representations learned from the
auxiliary tasks to assist the performance of the main task. Note that not all words
contribute equally to representing the meaning of a post. Hence, instead of simply

Labeled
Chinese
Emotion
Corpus

Translated
Chinese
Emotion
Corpus

Translated
English
Emotion
Corpus

Labeled
English
Emotion
Corpus

Machine
Translation
(CN-EN)

Machine
Translation
(EN-CN)

Chinese View (CN1)

Translated Chinese
View (CN2)

Translated English
View (EN1)

English View (EN2)

Fig. 2. Framework of the machine translation in the training phase

1 http://fanyi.baidu.com/translate.

432 L. Zhang et al.

http://fanyi.baidu.com/translate

concatenating the representations from the main encoder layer and auxiliary sharing
layers, we introduce an attention mechanism to produce an attention weight vector a
and a weighted hidden representation s. To obtain the auxiliary representations, we
adopt standard LSTM [19] layers as sharing layers between the networks from the main
and auxiliary tasks.

Formally, the middle representation of the main task is generated from both the
main encoder layer and auxiliary sharing layers, i.e.

hmain0 ¼ LSTMmainðTmainÞ ð1Þ

hmain1 ¼ LSTMaux1ðTmainÞ ð2Þ

hmain2 ¼ LSTMaux2ðTmainÞ ð3Þ

hmain3 ¼ LSTMaux3ðTmainÞ ð4Þ

where Tmain ¼ fw1
main. . .w

L
maing represents the input sequence from the Chinese emo-

tion corpus (CN1). hmain0 means the representation for the classification model via the
main encoder layer. While hmain1, hmain2 and hmain3 mean the representations for the
classification model via the auxiliary sharing layers.

LSTM Layer LSTM LayerLSTM Layer LSTM Layer

Softmax Layer

Main Task Output

Auxiliary
LSTM Task

Fully Connected
Layer

Softmax Layer

Auxiliary Task Output

tanh

softmax

1

main
w ... L

main
w 1

1aux
w1

2aux
w 1

3aux
w

1

L

aux
w 2

L

aux
w

3

L

aux
w

1

1main
h

1

L

main
h... 1

2main
h 1

3main
h...

2

L

main
h

3

L

main
h

main
s

aux
h

*
aux

h

Chinese View
(CN1)

Translated
Chinese View

(CN2)

English View
(EN2)

1

0main
h

0

L

main
h

Translated
English View

(EN1)

Fig. 3. The overall architecture of Aux-LSTM-Attention model

Cross-Lingual Emotion Classification with Auxiliary and Attention Neural Networks 433

With these main and auxiliary representations, we compute an attention weight
vector a ¼ ½a1main; a2main; . . .; aLmain� as follows:

mi
main ¼ tanhðWm � ½himain0 � himain1 � himain2 � himain3� þ bmÞ ð5Þ

aimain ¼ softmaxðmi
mainÞ ¼

expðmi
mainÞPL

t¼1 m
t
main

ð6Þ

where 1� i� L and L is the length of the input sequence. himain0, h
i
main1, h

i
main2 and

himain3 represent the i-th word in hmain0, hmain1, hmain2 and hmain3 respectively. � denotes
the concatenate operator. Wm is an intermediate matrix and bm is an offset value.

Then, we compute the final sample representation as a weighted sum of the word
annotations:

smain ¼
XL

i¼1

aimain�½himain0 � himain1 � himain2 � himain3� ð7Þ

To perform emotion classification, a softmax layer is followed to transform smain to
conditional probability distribution:

pðymainjTmainÞ ¼ softmaxðWmain � smain þ bmainÞ ð8Þ

where pðymainjTmainÞ is the output of the main task, Wmain is the weight vector to be
learned and bmain is the bias term.

3.3 The Auxiliary Emotion Classification Task

The representations of three auxiliary tasks are generated from corresponding auxiliary
sharing layers respectively, i.e.,

haux1 ¼ LSTMaux1ðTaux1Þ ð9Þ

haux2 ¼ LSTMaux2ðTaux2Þ ð10Þ

haux3 ¼ LSTMaux3ðTaux3Þ ð11Þ

where Taux1 ¼ fw1
aux1. . .w

L
aux1g, Taux2 ¼ fw1

aux2. . .w
L
aux2g, Taux3 ¼ fw1

aux3. . .w
L
aux3gmean

the input sequences from English-to-Chinese (CN2), Chinese-to-English (EN1) and
English (EN2) emotion corpora respectively. haux1, haux2 and haux3 are the outputs from
three auxiliary sharing layers respectively.

Then, a fully-connected layer followed by a dropout layer is leveraged to gain a
feature vector for classification, i.e.,

h�aux1 ¼ denseðhaux1Þ � Dðp�aux1Þ ð12Þ

434 L. Zhang et al.

h�aux2 ¼ denseðhaux2Þ � Dðp�aux2Þ ð13Þ

h�aux3 ¼ denseðhaux3Þ � Dðp�aux3Þ ð14Þ

where denseð�Þ denotes the output of the fully-connected layer. D defines the dropout
operation and p� is the dropout probability.

Once obtaining the representations of these auxiliary tasks, we feed them into a
softmax layer respectively to perform emotion classification:

pðyaux1jTaux1Þ ¼ softmaxðWaux1 � h�aux1 þ baux1Þ ð15Þ

pðyaux2jTaux2Þ ¼ softmaxðWaux2 � h�aux2 þ baux2Þ ð16Þ

pðyaux3jTaux3Þ ¼ softmaxðWaux3 � h�aux3 þ baux3Þ ð17Þ

where pðyaux1jTaux1Þ, pðyaux2jTaux2Þ and pðyaux3jTaux3Þ are the outputs of the auxiliary
tasks respectively. Waux1, baux1, Waux2, baux2, Waux3 and baux3 are the parameters f or
softmax layers.

3.4 Joint Learning

The model can be trained in an end-to-end manner where the objective loss function is
a linear combination of the main task and auxiliary tasks:

JðhÞ ¼ � k1 �
XN

i¼1

XC

j¼1

y jmain � log pðy jmainjTi
mainÞ � k2 �

XN

i¼1

XC

j¼1

y jaux1 � log pðy jaux1jTi
aux1Þ

� k3 �
XN

i¼1

XC

j¼1

y jaux2 � log pðy jaux2jTi
aux2Þ � k4 �

XN

i¼1

XC

j¼1

y jaux3 � log pðy jaux3jTi
aux3Þ

þ l
2

hk k22

ð18Þ

where y jmain, y
j
aux1, y

j
aux2 and y jaux3 are the ground-truth labels from the main task and

auxiliary tasks. N is the total quantity of training samples. C is the category number. l is
a L2 regularization to bias parameters and h denotes all parameters. k1, k2, k3 and k4 are
the weight parameters to balance the importance of losses between the main task and
auxiliary tasks and k1 þ k2 þ k3 þ k4 ¼ 1. We take Adadelta [20] as the optimizing
algorithm with a learning rate of 1.0. All the matrix and vector parameters are ini-
tialized with a uniform distribution in � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=ðrþ cÞp
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ðrþ cÞp� �

, where r and c are
the rows and columns of the matrices.

4 Experiment

In this section, we systematically evaluate the performance of our approach to emotion
classification.

Cross-Lingual Emotion Classification with Auxiliary and Attention Neural Networks 435

4.1 Experimental Settings

• Data Settings: In order to assess the performance of the proposed approach, we use
the Chinese emotion corpus constructed by Yao et al. [21]. This corpus consists of
14,000 instances, of which 7,407 instances express emotions. Seven basic emotions
are defined as candidate categories, namely anger, happiness, sadness, fear, like,
surprise and disgust. In addition, we use the dataset of SemEval 2018 Task1 as the
English emotion corpus. It contains a lot of tweets and corresponding emotion
categories, i.e., anger, joy, sadness and fear. Table 1 illustrates the distribution of
these two datasets. As to enlarge the corpora mentioned above, we can translate one
language into the other language. The Chinese data is much imbalanced and we
extract a balanced dataset for each emotion category in Chinese. Due to the fact that
the number of instances in fear category is too small, we decide to set the number of
instances in surprise category as the basis to avoid contingency. We use 80% of
instances as training data and the remaining 20% as test data. Furthermore, we set
aside 10% of the training data as development data to fine tune the parameters in
learning algorithm.

• Word Segmentation and Representations: FudanNLP2 is employed to segment
each Chinese post into words and we learn distributed representation of each word
with word2vec3 (The skip-gram model is used) on each dataset. The vector
dimension is set to be 100 and the window size is set to be 5.

• Hyper-parameters: The hyper-parameters in our approach are tuned according to
the performance in the development data. The size of units in LSTM layer is 128
and all models are trained by mini-batch of 32 instances. k1 is set to be 0.5, k2, k3
and k4 are the same as each other.

• Evaluation Metric: We use Macro-F1 (F) and Accuracy to measure the diver-
gences between predicted labels and ground-truth labels. Besides, t-test is used to
determine whether the performance difference is statistically significant.

Table 1. Emotion categories and distribution on two corpora

Emotion #Sentences in Chinese Corpus #Sentences in English Corpus

anger 669 1901
happiness 1460 1816
sadness 1173 1733
fear 148 2452
like 2203 –

surprise 362 –

disgust 1392 –

2 https://github.com/FudanNLP/fnlp/.
3 https://github.com/dav/word2vec/.

436 L. Zhang et al.

https://github.com/FudanNLP/fnlp/
https://github.com/dav/word2vec/

4.2 Experimental Results

In this section, we report the experimental results of our joint learning approach to
emotion classification. For thorough comparison, we provide selected baseline
approaches. In addition, we also implement some state-of-the-art approaches in sen-
timent classification to emotion classification.

• LSTM (CN1): This method applies the standard LSTM model using only the
Chinese emotion corpus for emotion classification.

• CNN-Tensor (CN1) [22]: This is a state-of-the-art approach to sentiment classi-
fication, which appeals to tensor algebra and uses low-rank n-gram tensors to
directly exploit interactions between words already at the convolution stage. It
applies only the Chinese emotion corpus for emotion classification.

• Attention-LSTM (CN1) [23]: This is a state-of-the-art approach to aspect-level
sentiment classification, which leverages the attention mechanism to concentrate on
different parts of a sentence. Note that we ignore aspect embedding and use sen-
tence representations from LSTM to yield an attention weight vector directly. It
applies only the Chinese emotion corpus for emotion classification.

• LSTM (CN1 + EN1): This method combines the results of LSTM (CN1) and
LSTM (EN1) by averaging the probabilities. It applies both Chinese and Chinese-
to-English emotion corpora for emotion classification. This is an ensemble approach
by Wan [24] which is proposed to deal with cross-lingual sentiment classification.
Since the categories in the Chinese corpus and the English corpus are different, this
approach could not be directly applied to combine all corpora (i.e., CN1 + CN2 +
EN1 + EN2).

• LSTM (CN1 + CN2): This method simply merges Chinese and English-to-
Chinese emotion samples in corresponding categories and applies the standard
LSTM model for emotion classification.

• Aux-LSTM (CN1 + CN2): It applies the Aux-LSTM model with both Chinese and
English-to-Chinese emotion corpora for emotion classification. It simply concate-
nates the representations from the main and auxiliary task.

• Aux-LSTM (CN1 + EN1): It applies the Aux-LSTM model with both Chinese and
Chinese-to-English emotion corpora for emotion classification. It simply concate-
nates the representations from the main and auxiliary task.

• Aux-LSTM (CN1 + EN2): It applies the Aux-LSTM model with both Chinese and
English emotion corpora for emotion classification. It simply concatenates the
representations from the main and auxiliary task.

• Aux-LSTM (CN1 + CN2 + EN1 + EN2): It applies the Aux-LSTM model with
all Chinese, English-to-Chinese, Chinese-to-English and English emotion corpora
for emotion classification. It simply concatenates the representations from the main
and auxiliary tasks.

• Aux-LSTM-Attention (CN1 + CN2 + EN1 + EN2): It applies the Aux-LSTM
model with attention on all Chinese, English-to-Chinese, Chinese-to-English and
English emotion corpora for emotion classification.

Table 2 shows the results of different approaches to Chinese emotion classification.
From the table, we can see that all Aux-LSTM models consistently outperform the

Cross-Lingual Emotion Classification with Auxiliary and Attention Neural Networks 437

baseline approaches whichever corpus is employed, which verifies the effectiveness of
the proposed Aux-LSTM model. These results encourage to incorporate other-language
labeled data to improve the performance of emotion classification. However, with the
increase in number of additional corpora, it could not bring about remarkable results
any more. Hence, instead of simply concatenating the representations from the main
encoder layer and auxiliary sharing layers, we introduce an attention mechanism to
provide insight into which words contribute to the emotion classification decision.
Among all these approaches, our Aux-LSTM-Attention model performs best, which
suggests sharing additional corpora and utilizing attention mechanism to capture the
informative words. Significance test shows that the improvement of Aux-LSTM-
Attention model over the other approaches is significant (p-value < 0.05).

To better understand why our joint learning approach is so effective, we calculate the
standard precision (P), recall (R) and F-score (F) in each category. Table 3 demonstrates
these specific results. For clarity, we only report the results of LSTM (CN1) and Aux-
LSTM-Attention (CN1 + CN2 + EN1 + EN2). From Table 3, we can see that our joint
learning approach is obviously superior to LSTM (CN1) in almost every category,
especially in the like category and surprise category. The performance of our approach

Table 2. Performance comparison of different approaches to emotion classification

Macro-F1 Accuracy

LSTM (CN1) 0.39087 0.36255
CNN-Tensor (CN1) 0.41468 0.40125
Attention-LSTM (CN1) 0.44048 0.41573
LSTM (CN1 + EN1) 0.40278 0.37669
LSTM (CN1 + CN2) 0.42063 0.40619
Aux-LSTM (CN1 + CN2) 0.45238 0.43472
Aux-LSTM (CN1 + EN1) 0.45833 0.44773
Aux-LSTM (CN1 + EN2) 0.45040 0.43806
Aux-LSTM (CN1 + CN2 + EN1 + EN2) 0.46429 0.43795
Aux-LSTM-Attention (CN1 + CN2 + EN1 + EN2) 0.49802 0.49355

Table 3. Comparative results with standard precision (P), recall (R) and F-score (F) in each
category

LSTM (CN1) Aux-LSTM-Attention
(CN1 + CN2 + EN1 + EN2)

P R F P R F

anger 0.551 0.681 0.609 0.610 0.694 0.649
happiness 0.393 0. 611 0.478 0.603 0.528 0.563
sadness 0.337 0. 486 0.398 0.494 0.542 0.517
fear 0.409 0. 500 0.450 0.419 0.431 0.425
like 0.346 0. 125 0.184 0.524 0.458 0.489
surprise 0.233 0. 139 0.174 0.408 0.556 0.471
disgust 0.333 0. 194 0.246 0.444 0.278 0.342

438 L. Zhang et al.

is consistent in each category while LSTM (CN1) fluctuates widely. It indicates that our
approach is more effective for predicting emotion in Chinese emotion text.

4.3 Case Study

In Fig. 4, we list two examples from the test set which have not been correctly inferred
by LSTM (CN1) model due to the limitation of Chinese emotion corpus. In E3, “骗子

(liar)” expresses a strong sentiment signal to the emotion anger but it does not exist in
the training set so that this sample could not be correctly classified by LSTM (CN1).
However, when we translate it into English, i.e., liar and it can be found in the
additional English emotion corpus, our Aux-LSTM model can work well. In E4, “炫耀

(show off)” is not contained in the training set either. But if the corresponding trans-
lation “show off” can be found in the additional English emotion corpus, then we can
leverage our Aux-LSTM model to predict the correct emotion (happiness) easily.

4.4 Visualization of Attention

Figure 5 shows the attention visualization for a post in the test set. The color depth
indicates the importance degree of corresponding word - the darker the shade, the more
important the word. Obviously, the attention mechanism obtains the important ele-
ments which carry strong sentiment signals from the whole post dynamically, such as
“terrible” and “exaggerated”.

E3: Ground-truth label: anger
Original: …
Translation: Just received a text message…This is definitely a liar!
LSTM (CN1) Aux-LSTM (CN1+CN2+EN1+EN2)

(surprise) (anger)

E4: Ground-truth label: happiness
Original: …
Translation: To show off! Started the cousin’s journey…even those who are afraid of
insects should go to a book.
LSTM (CN1) Aux-LSTM (CN1+CN2+EN1+EN2)

(like) (happiness)

Fig. 4. Examples of emotion classification

E5: Ground-truth label: fear Predict label: fear

mobilerobbed

Just past the carp bay road , once again a woman

was

witnessed

of the phone . The bandits run very

! It s too exaggeratedfast too terrible !

Fig. 5. Attention visualization

Cross-Lingual Emotion Classification with Auxiliary and Attention Neural Networks 439

5 Conclusion

In this paper, we address the corpus scarce challenge in emotion classification from a
cross-lingual view and propose a joint learning framework, namely Aux-LSTM-
Attention, to perform emotion classification when both resource-poor and resource-rich
corpora exist. Specially, we employ sharing layers to develop auxiliary representations
for the main task. Furthermore, an attention mechanism is utilized to capture the
informative words. Empirical studies show that our joint learning approach success-
fully improves the performance of emotion classification by using the labeled data from
a different language. Moreover, empirical studies demonstrate that our approach out-
performs several strong baseline approaches to emotion classification.

In our future work, we would like to explore tackling the corpus scarcity challenge
by using the labeled data from multiple languages. Furthermore, we will attempt to
apply our approach to other natural language processing tasks in which the annotated
corpus is limited.

Acknowledgements. This research work has been partially supported by two NSFC grants,
No. 61331011 and No. 61672366.

References

1. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1),
1–8 (2011)

2. Galik, M., Rank, S.: Modeling emotional trajectories of individuals in an online chat. In:
MATES, pp. 96–105 (2012)

3. Liu, H., Li, S., Zhou, G., Huang, C., Li, P.: Joint modeling of news reader’s and comment
writer’s emotions. In: ACL, pp. 511–515 (2013)

4. Li, S., Xu, J., Zhang, D., Zhou, G.: Two-view label propagation to semi-supervised reader
emotion classification. In: COLING, pp. 2647–2655 (2016)

5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. CoRR, abs/1409.0473, 2014

6. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks
for document classification. In: NAACL-HLT, pp. 1480–1489 (2016)

7. Liu, B.: Sentiment analysis and opinion mining. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers. 1–167 (2012)

8. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine
learning techniques. In: EMNLP, pp. 79–86 (2002)

9. Mihalcea, R., Banea, C., Wiebe, J.: Learning multilingual subjective language via cross-
lingual projections. In: ACL, pp. 976–983 (2007)

10. Wan, X.: Co-training for cross-lingual sentiment classification. In: ACL, pp. 235–243 (2009)
11. Balamurali, A., Aditya, J., Pushpak, B.: Cross-lingual sentiment analysis for indian

languages using linked wordnets. In: COLING, pp. 73–82 (2012)
12. Prettenhofer, P., Stein, B.: Cross-language text classification using structural correspondence

learning. In: ACL, pp. 1118–1127 (2007)
13. Zhou, X., Wan, X., Xiao, J.: Cross-lingual sentiment classification with bilingual document

representation learning. In: ACL, pp. 1403–1412 (2016)

440 L. Zhang et al.

14. Tokuhisa, R., Inui, K., Matsumoto, Y.: Emotion classification using massive examples
extracted from the web. In: COLING, pp. 881–888 (2008)

15. Bhowmick, P., Basu, A., Mitra, P., Prasad, A.: Multi-label text classification approach for
sentence level news emotion analysis. In: PReMI, pp. 261–266 (2009)

16. Xu, J., Xu, R., Lu, Q.: Coarse-to-fine sentence-level emotion classification based on the
intra-sentence features and sentential context. In: CIKM, pp. 2455–2458 (2012)

17. Yang, M., Peng, B., Chen, Z., Zhu, D., Chow, K.: A topic model for building fine-grained
domain-specific emotion lexicon. In: ACL, pp. 421–426 (2014)

18. Felbo, B., Mislove, A., SØgaard, A., Rahwan, I., Lehmann, S.: Using millions of emoji
occurrences to learn any-domian representations for detecting sentiment, emotion and
sarcasm. In: EMNLP, pp. 1615–1625 (2017)

19. Graves, A.: Generating sequences with recurrent neural networks. CoRR, abs/1308.0850,
2013

20. Zeiler, M.: ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701 (2012)
21. Yao, Y., Wang, S., Xu, R., Liu, B., Gui, L., Lu, Q., Wang, X.: The construction of an

emotion annotated corpus on microblog. J. Chin. Inf. Process. 28(5), 83–91 (2014)
22. Lei, T., Barzilay, R., Jaakkola, T.: Modeling CNNs for text: non-linear, non-consecutive

convolutions. In: EMNLP, pp. 1565–1575 (2015)
23. Wang, Y., Huang, M., Zhao, L., Zhu, X.: Attention-based LSTM for aspect-level sentiment

classification. In: EMNLP, pp. 606–615 (2016)
24. Wan, X.: Using bilingual knowledge and ensemble techniques for unsupervised Chinese

sentiment analysis. In: EMNLP, pp. 553–561 (2008)

Cross-Lingual Emotion Classification with Auxiliary and Attention Neural Networks 441

Are Ratings Always Reliable?
Discover Users’ True Feelings

with Textual Reviews

Bin Hao, Min Zhang(B), Yunzhi Tan, Yiqun Liu, and Shaoping Ma

Department of Computer Science and Technology,
Beijing National Research Center for Information Science and Technology,

Tsinghua University, Beijing 100084, China
{haob15,tyz13}@mails.tsinghua.edu.cn, {z-m,yiqunliu,msp}@tsinghua.edu.cn

Abstract. In e-commerce systems, users’ ratings play an important role
in many scenarios such as reputation and trust mechanisms and recom-
mender systems. A general assumption in these techniques is that users’
ratings represent their true feelings. Although it has long been adopted
in previous work, this assumption is not necessarily true.

In this paper, we first present an in-depth study of the inconsistency
between users’ ratings and their reviews. Then we propose an approach
to mine users’ “true ratings” which better represent their real feelings,
from textual reviews based on Gated Recurrent Unit (GRU) and hierar-
chical attention techniques. One major contribution is that we are about
the first, to the best of our knowledge, to investigate this new problem of
discovering users’ true ratings, and to provide direct solutions to revise
ratings that are insincere and inconsistent.

Comparative experiments on a real e-commerce dataset have been
conducted, which show that the “true ratings” learned by the proposed
model is significantly better than the original ones in terms of consistency
with the reviews in three sets of crowdsourcing-based evaluations. Fur-
thermore, leveraging different state-of-art recommendation approaches
based on the learned “true ratings”, more effective results have been
achieved at all times in rating prediction task.

Keywords: Rating revision · Review to score
Deep learning for recommendation

1 Introduction

In recommendation systems, users’ ratings are widely used as a basis to learn
user’s preferences and make recommendations in most of the classical algorithms,
such as [2]. In recent years, simultaneously exploiting ratings and reviews for
recommendation attracts more and more attention for its ability to mitigate

This work is supported by Natural Science Foundation of China (Grant No.
61672311, 61532011).

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 442–453, 2018.
https://doi.org/10.1007/978-3-319-99495-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_37&domain=pdf

Review to Score 443

data sparsity and build more accurate models [3,4]. In these models, however,
ratings still play important roles in recommendation task or even been taken as
the targets of learning.

For these ratings-based techniques, the fundamental assumption is that rat-
ings are valid and reliable, which honestly indicate overall feelings of users
towards items. While unfortunately, this assumption is not always true [1,5].
Apart from spam users which have been widely studied previously [6,7], a con-
siderable number of ordinary users also give inconsistent ratings with the corre-
sponding reviews in opinion expression. There have been some observations on
this phenomenon [8] but little work has been done to overcome it, which is the
major topic of this paper. Examples of ratings and their corresponding reviews
given by real ordinary users, who have consumed the products or services, from
a large-scale e-commerce website are shown in Table 1.

Table 1. Examples from real e-commerce dataset, where ratings fail to represent users’
true feelings

No. Ratings Reviews

1 5.0 There was a hole on the socks. The user service wasn’t very friendly

2 5.0 It was too large, especially the sleeves. The styles was Okay

3 5.0 Feel a bit hard, maybe because I just start to use

4 1.0 The clothes are of good quality, and look beautiful

5 3.0 Very beautiful! I like it. Praise!

In this paper, we first investigate the problem where ratings fail to represent
users’ opinion expressed in the reviews. Generally, the user’s review shows more
information on his experience with the item after he has consumed them, which
takes more reliable information than a single rating in many cases. Therefore,
a deep-learning based approach is then proposed for mining users’ true feelings
from textual reviews. Furthermore, we design three experiments for evaluation.
For recommendation scenario, performances of the learned “true ratings” in rat-
ing prediction task, which has been examined via different classical recommen-
dation algorithms. Compared with original ratings, significant improvements are
achieved in all the experiments using the learned ratings.

The main contributions of this work are as follows: (1) To the best of our
knowledge, it is about the first work on detecting biased user ratings and building
models to directly mine users’ “true ratings”. (2) We show how deep-learning-
based approach help in this new problem, representing an inherent connection
between textual information and score ratings. Furthermore, various state-of-art
recommendation algorithms achieved significant performance improvements by
using the learned ratings. (3) The “true ratings” learned by our models can be
applied as groundwork in many scenarios where user ratings are adopted.

444 B. Hao et al.

2 Related Work

Although ratings in e-commerce systems are widely used in many scenarios as
important feedback, they are not always reliable. Some sellers do encourage
buyers to provide positive feedback and avoid negative feedback to show that
consumers are satisfied [8]. The problem of spam users, wherein users promote
or degrade targeted items intentionally through fraudulent ratings and reviews,
is one of the reasons [7]. There has been a lot of work focusing on detecting spam
users [9–11].

Moreover, a growing body of work in recent years has paid attention to
simultaneously exploiting user ratings and reviews in order to improve the per-
formance of recommendations [3,4,12]. In such algorithms, information from
reviews is introduced to better model user preferences and item features. How-
ever, the assumption that the users’ ratings are reliable still serves as a basic
assumption and ratings are directly used in these approaches. Hence it is essen-
tially different from the basic problem of this work, in which the ratings are sup-
posed to be not necessarily reliable and are not encouraged to be used directly.

Differing markedly from previous work, our work focuses on the reliability
of original ratings when they are used to represent the users’ “true feelings”
towards the items. This problem is crucial but has not been well studied. In
this work, we propose a method to mine users’ true feelings from their reviews
in which they describe in detail their experiences of products and services after
consuming them. To the best of our knowledge, this is about the first direct
solutions that are proposed for this problem. We also show that properly revised
ratings also help the previous recommendation algorithms which make use of
rating information.

In general, reviews are written in a free text format with natural language.
To mine users’ “true ratings” accurately, we need to understand semantic and
structural information in reviews, to which deep learning techniques are shown
to be helpful. Recurrent neural networks (RNNs) are able to process arbitrary
sequences of inputs and form some kind of short-term memory using their inter-
nal memories, which make them applicable to tasks such as speech recognition
or text processing [13]. Theoretically, RNNs can efficiently represent more com-
plex patterns. The Gated Recurrent Unit network (GRU) [14] is a special kind
of RNNs and capable of learning long-term dependencies. Attention mechanism
has already been shown effective in many areas, such as machine translation [15]
and sentiment analysis [16]. [17] propose a hierarchical attention network for
document classification. The main difference between us is that they calculate
word attention to find the critical words in the sentence and we calculate it to
find the critical words in the whole review.

3 Are Ratings Always Reliable?

As described above, ratings may sometimes fail to represent users’ true feelings
towards items (i.e., products, services and so on). To investigate this problem

Review to Score 445

with a real-world dataset, we collected a real dataset of clothing and accessories
category from a popular e-commerce website. The dataset is a collection of feed-
back, where each piece of feedback consists of 4 factors: anonymized “UserID”
and “ItemID”, a numerical “rating” (from 1 to 5 stars) and a corresponding
textual “review”. In summary, there are 324,925 pieces of feedbacks provided by
284,848 users towards 27,370 items in the dataset (i.e. on average 11.8 feedback
per item).

To measure users’ true feelings towards items, we randomly selected 15,424
reviews (approximately 5% of the whole dataset) for crowdsourcing-based label-
ing. For each textual review, we hide its original rating and annotators were
randomly selected to manually label five-level ratings according to the given
corresponding reviews. Labeling quality was monitored in real time and unreli-
able annotators were interrupted in the task immediately by the crowdsourcing
platform. Finally, 144 annotators provided valid labels and for each review, 3
labels were received. We also publish this dataset for the convenience of related
researches.1

Some statistics of the labels are shown in Table 2. The average label variance
is 0.2237, which indicates a good labeling consistency. We took the arithmetic
average of the 3 labels as the review’s labeled rating rlab, which is used to
represent user’s true feelings towards an item in this work. It shows that the
mean of all labeled ratings is 4.15, which is much lower than that of original
ratings.

Table 2. Statistics of original and labeled ratings

Original mean Labeled mean Averaged labeled variance

4.46 4.15 0.2237

The distributions of the labeled and original ratings are shown in Fig. 1(a).
57.44% of original ratings are 5 stars, 35.78% are 4 stars, and less than 7%
are 3 stars or less. If we treat 5 and 4 stars as positive feedback, more than
93% of feedback is positive. This percentage is similar to that is discovered in
[8]. However, for labeled ratings, 40.06% of ratings are 5 stars and 41.52% are
4 stars, which shows about 12% less on positive ratings. Hence more diverse
distribution is observed compared with the original one.

Another observation is, generally speaking, the differences between labeled
ratings and original ones are mostly 1 or 2 levels. For example, the original rating
of the review “The price of this hat is too high!” was 5; however, it’s average
label is 3.67. The original rating for the review “This looks good, and I like it
very much.” was 4, but was re-labeled as 5. Detail information of rating differ-
ences distribution is shown in Fig. 1(b). Here the rating difference is defined as
the labeled ratings minus the corresponding original ratings. There are 33.85%

1 It can be downloaded at https://pan.baidu.com/s/1O9r1S5ojGnrraivWwqT42w.

https://pan.baidu.com/s/1O9r1S5ojGnrraivWwqT42w

446 B. Hao et al.

Fig. 1. Labeled ratings statistics. (a) the distribution on rating scores, (b) differences
between ratings (labeled minus original). (Round labeled ratings to the nearest integer)

and 10.51% of reviews for which the labeled ratings are lower and higher than
the original ratings, respectively, when we round the average labeled ratings to
the nearest integer. If we compare the average labeled rating directly with the
original one without round operation, then the proportions of the ratings by
crowdsourcing labeling are respectively 46.62% lower than and 11.43% higher
than the corresponding original ratings, which in total approaches to sixty per-
cent of the data.

Table 3. Number of labeled ratings (columns, rounded to the nearest integer) v.s. that
of original ratings (rows)

Ratings 1 2 3 4 5 Total

1 58 74 62 30 4 228

2 8 49 71 33 7 168

3 7 54 235 303 54 653

4 26 196 1206 3100 986 5514

5 28 125 650 2926 5132 8861

Total 127 498 2224 6392 6183

Moreover, we analyze the distribution of labeled ratings relative to origi-
nal ones, as shown in Table 3. What’s interesting, from the table, some ratings
express completely opposite opinions from what is described in the reviews. For
example, the original rating of the review “The quality is really bad! I will never
buy it again!” was 5; however, it was labeled as 1 by all the three annotators
on account of the strong dissatisfaction it expressed. The original rating for the
review “Good commodity. Its fabrics, colors and other aspects are also relatively
satisfactory.” was 1, which was re-labeled as 5 to reflect the user’s satisfaction
with the item. Similar examples can be found in ratings which are revised by 3

Review to Score 447

levels (e.g. 1 to 4, 5 to 2, etc.). It does happen in real scenarios when users make
misunderstanding on the meaning of the rating stars.

4 Model for Mining Users’ True Feelings from Reviews

To understand users’ true feelings on the items, we propose to analyze the
information expressed in textual reviews, from which we learn revised scores
as the users’ “true ratings”. In general, reviews are written in a free text format.
To mine users’ “true ratings”, we need to analyze the semantic and the struc-
tural information expressed in them, which is the strong point of deep learning
techniques. As a result, we propose a Hierarchical Total Attention (HTA)
model based on deep learning techniques to mine users’ “true ratings” from their
reviews.

4.1 Formalizations

We treat the review as a document d containing n sentences {S1, S2, · · · , Sn}.
The length of the k-th sentence Sk is lk. The embeddings of the words in sentence
Sk are {wk

1 , wk
2 , · · · , wk

lk
}.

4.2 Overview of HTA

The goal of our model is to predict a rating given its corresponding review. We
treat each review as a document and use a hierarchical structure to capture the
relation between sentences in one review and between words in the review. And
we utilize the attention mechanism to automatically assign weights to each word
and sentence. The structure of the HTA model is shown in Fig. 2. First we use
word attention mechanism to get the vector representation of each sentence as
{s1, s2, · · · , sn}. Then we use sentence attention mechanism to get the vector
representation of the review as d . After this, we use a fully connected layer to
get the prediction value of the review r .

4.3 From Word to Sentence Vector

The embeddings of the words in each sentence are inputted and processed by bi-
directional Gated Recurrent Unit(GRU)[14]. The k-th word embedding of the
i-th sentence wi

k is encoded as hi
k. Then we use the attention mechanism to

calculate the attention value of the total words in the review as follows:

score(hj
i) = vT

wtanh(Wwhj
i + bw) (1)

aj
i =

exp(score(hj
i))

∑n
j=1

∑lj
k=1 exp(score(hj

k))
(2)

si =
li∑

j=1

aj
ih

j
i (3)

448 B. Hao et al.

Fig. 2. The neural network architecture of HTA model.

First we calculate each word’s importance of the review in Eq. 1, where score(hj
i)

is a score function which scores the importance of each word in the review, vw
is a word level context vector and vT

w denotes its transpose, Ww is the weight
matrix, bw is the bias. The next step we use softmax function to calculate the
attention weight of each word aj

i in Eq. 2, which is the main difference from [17].
Then we aggregate all the word encoded vector hj

i of a sentence to get its vector
representation in Eq. 3.

4.4 From Sentence to Review Vector

We input each sentence vector to bi-directional Gated Recurrent Unit(GRU)
encoder. The i-th sentence vector of review si is encoded as hi. Then we use the
attention mechanism similar to the word attention to select critical sentences
to form the document representation. The document vector representation is
formed via:

d =
n∑

i=1

aihi (4)

where ai is the attention weight of sentence’s encoded GRU vector hi, which can
be calculated similar to the word attention.

4.5 Regression and Learning

As d is extracted from words and sentences from the review, it can be treated as
the feature vector of the review. We use a fully connected layer and a non-linear
transformation (Relu) to get the final rating r of the review:

r = Relu(Wdd + bd) (5)

Review to Score 449

In this model, all of the parameters are learnt by minimizing the sum of squared
errors between ratings labeled manually and ratings mined from reviews, which
is shown as follows.

L(R) =
∑

rlab∈R

(r − rlab)2 + λ1 ‖Wd‖2 + λ2 ‖bd‖2 (6)

where R denotes the training set of the labeled rating dataset, ‖·‖ denotes the
l2-norm. And the component λ1 ‖Wd‖2 + λ2 ‖bd‖2 is used for regularization to
avoid over-fitting. We also use a dropout technique to avoid over-fitting.

5 Experiment and Discussion

5.1 Dataset and Experimental Settings

As described in Sect. 3, we collected a dataset D of clothing and accessories from
a popular e-commerce website. Then 15,424 feedbacks are randomly selected L
from D which annotators from crowdsourcing platform manually labeled their
ratings according to the feelings users expressed in the textual reviews.

We treated the labeled ratings from the reviews as the representation of users’
true feelings towards items, i.e., the “true ratings”, and designed HTA model to
learn the connection between the textual reviews and the “true ratings”. The
labeled dataset is randomly divided the labeled dataset L into a training set R,
a validation set V , and a testing set T . Specifically, 70% of the labeled dataset
was used for training, 10% for validation and the remaining 20% for testing.
We use the word embeddings from Google trained from Word2Vector model,
each word is presented as a 200 dimension vector. We use five models as our
baselines: Linear Regression (LR), SVM with linear kernel (LinearSVR), Multi-
layer Perceptron with one hidden layer of 100 nodes (MLP), SVM with RBF
kernel (SVR), HAN model depicted in [17]. For the top four models, we use the
average vector of all words in a review as its feature and for the HAN model, we
use the same setting as our model.

To evaluate the performance of our models, we adopted the commonly used
metrics root mean squared error (RMSE) and mean absolute error (MAE), which
are defined as below:

RMSE =

√
√
√
√ 1

n

n∑

j=1

(fj − yj)
2
,MAE =

1
n

n∑

j=1

|fj − yj | (7)

where fj and yj denote the prediction value and the true value, respectively.

5.2 Effectiveness of “True Ratings”

Evaluation of Rating Score Revision. This evaluation task is to measure
the effectiveness of direct rating score revision by estimating the proper rating
given a piece of related review. Crowdsourcing labeled “true ratings” are taken
as the ground truth. Performances on RMSE on the testing set T by HTA model
are given in Table 4. Here, the “Ori” denotes the original ratings and the “HTA”
denote the ratings learned by HTA model, etc.

450 B. Hao et al.

Table 4. Performance of HTA Model

Metric Ori SVR LR LinearSVR MLP HAN HTA

RMSE 0.8163 0.6650 0.5936 0.5879 0.5711 0.4836 0.4803

MAE 0.5393 0.5078 0.4567 0.4323 0.4291 0.3497 0.3431

Evaluation with Pairwise Preference. To make a quantitative evaluation,
we conducted experiments of pairwise preference to examine the consistency of
the learned ratings with the feelings expressed in the reviews by crowdsourcing-
based labeling. In detail, we randomly select 1,000 textual reviews. For easily
distinguishing, we only selected the reviews of which the ratings learned by the
HTA model are at least 1 level different from their original ratings. We then
rounded the rating to the nearest integer to make the two types of ratings have
the same appearances, hence no bias was introduced to annotators. Finally, for
each review, 5 randomly selected annotators were asked to discern which rating
was more consistent with the feeling expressed by the review. If an annotator
found that the learned rating was more consistent, we added an “R2S” tag to the
review; otherwise, an “Ori” tag was added. Then we calculated the percentages
of reviews with different numbers of “R2S” labels, and the results are shown in
Table 5. We can see that almost half of the scores from our model get 5 “R2S”
and 86.9% scores of our model better than the original ones.

Table 5. The percentages of reviews with different numbers of “R2S” labels

#“R2S” = 5 #“R2S” >= 3 #“R2S”< 3 #“R2S” = 0

HTA 48.8% 86.9% 13.1% 3.2%

Evaluation with Preferences on Recommend-Ability. From the above
two sets of experiments, it is shown that given the users’ review information,
ratings from the proposed model work better than the original ones in terms
of theirs consistencies to the users’ feelings that are expressed in reviews. But
there might be some other concerns: it is possible that a user does want to rate
the item with the exact score he gives, while his comments are incomplete in
expressing his opinion to the item. Here we call it review bias.

We design the third experiments that measure the quality of the revised rat-
ings by crowdsourcing platform and try to reduce review bias. For this time the
URLs of the items in the e-commerce system are shown to the crowdsourcing
annotators directly. They are asked to click the link and browse the full informa-
tion of the item, including the item descriptions and the corresponding complete
reviews and ratings. Then the annotators are asked to label the recommend-
ability, i.e. “whether the item is worthy of being recommended” in 5 levels, say
“must not be recommended”, “not a good candidate”, “just so-so”, “good rec-
ommendation candidate” and “strongly recommended”. Each item is evaluated

Review to Score 451

by three annotators. Data is removed if the labels are not reliable, for example,
the annotation procedure is too short to give a careful evaluation.

Finally, 978 items are annotated, and in total 2,459 (rating, review) pairs of
these items are found in the previous experimental dataset. Taking the average
score of the crowdsourcing labels on items recommend-ability as the ground
truth, we evaluate the gap between the average user rating and the recommend-
ability of an item with RMSE. Three types of ratings are measured: the original
ratings (noted as “Original”), HTA model revised ratings (“R2S-HTA”), and the
manually revised ratings according to the reviews by crowdsourcing experiments.

The Results are shown in Table 6. It verifies revised ratings achieved by the
proposed models are significantly better on indicating whether the item is worthy
of being recommended. Encouragingly, the performances of the HTA model is
similar to that of the manually revised scores by the crowds.

Table 6. The gap between items recommend-ability and the ratings

Original R2S-HTA Manual

RMSE 1.5294 1.2317∗∗ 1.2110∗∗
∗∗p < 0.01 compared with the Original one.

5.3 Effectiveness for Rating Prediction

Rating prediction is an important research topic in the field of personalized
recommendation. The aim of rating prediction is to estimate the rating score a
user, say u, will rate for any item i. The rating prediction task differs greatly
from the previous rating score revision task because the textual reviews are not
available and historical information is taken into consideration here.

We evaluate the effectiveness of ratings learned by our model in rating pre-
diction task with two of the state-of-art rating prediction methods, i.e., MF and
BMF, which have been popularly used in recommendation tasks in recent years.

The matrix factorization (MF) model [2]: this model maps user preference
distributions qu and item feature distributions pi to a joint latent factor space
of dimensionality f . It estimates the rating a user u will give to any item i by
using r̂u,i = qTu pi.

The biased matrix factorization (BMF) model [18]: differing from the MF
model, the BMF model explains the full rating value not only by the interaction
of users and items but also by the biases associated with either users or items. It
predicts the rating of item i by user u by using r̂u,i = μ + bu + bi + qTu pi, where
u, bu, bi denote the global average, user bias and item bias, respectively.

The MF and BMF models exploit the past ratings for training, and there are
two kinds of ratings: original ratings (“Ori”), ratings learned by the HTA model
(“HTA”). Whether using the MF or BMF models, we keep all settings the same
except for the sources of ratings. Specifically, we use ratings associated with the
user-item pairs in the whole dataset D except the test set in the labeled dataset
T for training and try to predict the ratings of the user-item pairs in dataset T .

452 B. Hao et al.

The crowdsourcing labeled ratings of dataset T are treated as the ground truth.
For fair comparison, the information of dataset T is never used in any training
procedure.

Table 7 is shown that relative to different rating prediction methods, we are
able to achieve better performance by adopting the ratings learned from textual
reviews. The result verifies our idea that ratings learned from reviews are more
consistent with users’ true feelings; hence we can model users’ preferences more
accurately based on them compare with the original ratings.

Table 7. Performance of rating prediction

Rating MF BMF

RMSE MAE RMSE MAE

Ori 0.7470 0.5329 0.7339 0.5560

SVR 0.7185 0.5701 0.7242 0.5813

LR 0.6377 0.4959 0.6498 0.5202

LinearSVR 0.6622 0.5023 0.6078 0.4837

MLP 0.6198 0.4745 0.6304 0.5045

HAN 0.6021 0.4611 0.6036 0.4792

HTA 0.5691 0.4326 0.5807 0.4582

6 Conclusions and Futurework

In this work, we investigate the basic problem where users’ ratings fail to rep-
resent their true feelings. We conduct extensive empirical analysis on real-world
dataset and propose a deep-learning based approach to recover users’ “true rat-
ings” from textual reviews. The ratings learned by our models are able to provide
a more reliable basis for the rating-based tasks. Experimental results on “true
rating” revision task show that the learned ratings are more consistent with
the reviews compared with the original ratings, and the performance of rating
prediction task has also been improved by adopting the learned ratings.

The main contributions of this work are: (1) To the best of our knowledge,
this is about the first work to detect the unreliability of user ratings and build
models so as to recover users’ “true ratings”; (2) We show the power of deep
learning approach to learn users’ “true ratings” from their reviews, which reveals
the inherent connection between textual information and score ratings; (3) Our
learned “true ratings” also help significantly on rating prediction task. This work
can be taken as the foundation in varied scenarios.

Review to Score 453

References

1. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

2. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 8, 30–37 (2009)

3. Almahairi, A., Kastner, K., Cho, K., Courville, A.: Learning distributed represen-
tations from reviews for collaborative filtering. In: Recsys, pp. 147–154 (2015)

4. Bao, Y., Fang, H., Zhang, J.: Topicmf: Simultaneously exploiting ratings and
reviews for recommendation. In: 28th AAAI Conference, pp. 2–8 (2014)

5. Zhang, Y., Zhang, H., Zhang, M., Liu, Y., Ma, S.: Do users rate or review?
Boost phrase-level sentiment labeling with review-level sentiment classification.
In: SIGIR, pp. 1027–1030 (2014)

6. Gunes, I., Kaleli, C., Bilge, A., Polat, H.: Shilling attacks against recommender
systems: a comprehensive survey. Computer 42(4), 767–799 (2014)

7. Zhang, Y., Tan, Y., Zhang, M., Liu, Y., Ma, S.: Catch the black sheep: unified
framework for shilling attack detection based on fraudulent action propagation.
In: IJCAI, pp. 2408–2414 (2015)

8. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: empir-
ical analysis of eBay’s reputation system. the economics of the internet and e-
commerce. Adv. Appl. Microeconomics 11, 127–157 (2002)

9. Bhaumik, R., Mobasher, B., Burke, R.D.: A clustering approach to unsupervised
attack detection in collaborative recommender systems. In: ICDM, pp. 181–187
(2011)

10. Burke, R., Mobasher, B., Williams, C., Bhaumik, R.: Classification features for
attack detection in collaborative recommender systems. In: KDD, pp. 542–547
(2006)

11. Hurley, N., Cheng, Z., Zhang, M.: Statistical attack detection. In: Recsys, pp. 149–
156 (2009)

12. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating
dimensions with review text. In: 7th ACM Conference on Recommender Systems,
pp. 165–172. ACM, Hong Kong (2013)

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge
(2016)

14. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555
(2014)

15. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

16. Chen, H., Sun, M., Tu, C., Lin, Y., Liu, Z.: Neural sentiment classification with
user and product attention. In: EMNLP, pp. 1650–1659 (2016)

17. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1480–1489 (2016)

18. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. In:
Advances in Artificial Intelligence, vol. 4 (2009)

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1409.0473

The Sogou Spoken Language Understanding
System for the NLPCC 2018 Evaluation

Neng Gong, Tongtong Shen, Tianshu Wang, Diandian Qi, Meng Li,
Jia Wang, and Chi-Ho Li(✉)

Sogou Inc., Beijing, China
{gongneng,shentongtong,wangtianshu,qidiandian,

lizhihao}@sogou-inc.com, lm168260@antfin.com, cdwangjia5@jd.com

Abstract. This report analyzes the problem of spoken language understanding,
how the problem is simplified in the NLPCC shared task, and the properties of
the official datasets. It also describes the system we developed for the shared task
and provides experimental analysis that explains how promising results could be
achieved by careful usage of standard machine learning and natural language
processing techniques and external resources.

1 Introduction

This paper describes the architecture and the technical details for our system used for
the NLPCC 2018 shared task on spoken language understanding, as well as provides
experimental analysis for the choices behind our system architecture.

The structure of the paper is as follows. Section 2 examines the very problem of
spoken language understanding and also the datasets used in the shared task. Two
important insights found in the survey would become the guiding principles in building
our SLU system, which is elaborated in Sect. 3. In Sect. 4 experimental results are
provided to show the effectiveness of the various techniques used in our system. Further
discussions are provided in the Sects. 5 and 6.

2 Problem Definition and Data Analysis

Spoken language understanding (SLU) comprises two tasks, intent identification and
slot filling. That is, given the current query along with the previous queries in the same
session, an SLU system predicts the intent of the current query and also all slots (entities
or labels) associated with the predicted intent. The significance of SLU lies in that each
type of intent corresponds to a particular service API and the slots correspond to the
parameters required by this API. SLU helps the dialog system to decide how to satisfy
the user’s need by calling the right service with the right information.

The authors Meng Li and Jia Wang left the company after the shared task evaluation.

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 454–463, 2018.
https://doi.org/10.1007/978-3-319-99495-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_38&domain=pdf

In real use cases of dialog systems, the difficulty of SLU depends on many factors:

1. Complexity of the intent categorization. Taking the query pattern “ ” (“I
want to go to X”) as example. In some simple design this kind of queries can only
be assigned the intent of navigation or map search. But for more complicated design
the query pattern may also refer to the need of booking flight ticket or train ticket.
The difficulty of disambiguation goes up with the complexity of the categorization.

2. World knowledge. The intent of the last example depends, to certain extent, on
whether there is an airport or train station at the place X.

3. User’s situation. The intent of the last example also depends, to certain extent, on
whether it is too far to drive to X from the user’s current location.

In the NLPCC shared task, the last two factors are removed as it is almost infeasible
to provide comprehensive world knowledge and user’s situation information in a
‘closed’ dataset. The correct interpretation of a query depends solely on linguistic
factors, i.e. the query itself and its preceding queries in the same session. Moreover, the
intent categorization is confined to a system of 11 types of intent (which can be further
grouped into 4 domains: MUSIC, NAVIGATION, PHONE_CALL, and OTHERS) and
15 types of slots, thereby enabling the shared task with a relatively small training dataset.

As in real use cases of dialog systems, the queries in the shared task can be roughly
divided into two kinds, viz. queries with intent-indicating salient phrases and queries
without. By intent-indicating salient phrase (IISP) it is meant a phrase in the query that
shows the intent of the query. E.g. the phrase “ ” in the query “ ” and
the phrases “ ” in the query “ ” are IISPs.

Our examination on the shared task training dataset shows two important insights:

A. For a query with IISP, the intent can be determined by the query itself, without
considering context (the preceding queries). That is a simplification of the use case
of many dialog system products, where the existence of IISP simply limits the range
of possible intents, as shown by the example on last page, “ ”, of which the
correct interpretation depends not only on the IISP but also on context, world
knowledge, etc. Such simplification is due to the low complexity of the intent cate‐
gorization used in the shared task.

B. For a query without IISP, or ‘entity-only’ queries, such as “ ”, “ ”, the
intent can be determined solely by the domain labels of the preceding queries in the
same session. That is also a simplification of the real use case of many dialog system
product, where, for example, whether the mention of a person name should be
interpreted as a phone call request partly depends on whether the name exists in the
user’s phonebook. As all such factual knowledge cannot be provided in the shared
task datasets, the organizing committee released a handful of ‘data annotation prin‐
ciples’ to interpret entity-only queries.

These two insights imply an SLU architecture for the shared task: divide queries into
those with IISPs and those without; the former ones are handled by a ‘context-inde‐
pendent’ SLU model (i.e. it does not consider the preceding queries in the same session
at all), while the latter ones are handled by some context-dependent rules. This SLU
architecture is explained in details in the next section.

The Sogou Spoken Language Understanding System 455

3 System Details

Figure 1 shows the framework of our SLU system, which consists of the context-
dependent rules for entity-only queries and the context-independent model for queries
with IISPs. The entire system feeds the query to the rules first. If the rule-based compo‐
nent returns null result, that means the query is judged to contain IISPs and the model-
based component will continue to process it. Otherwise, it means the query is regarded
as entity-only and the result of the rules is returned as the final output.

Fig. 1. The Sogou SLU system architecture for the shared task.

3.1 Rule-Based SLU

Our SLU rules apply to only six types of single entities, viz. song titles, singer names,
person names, location names, phone numbers, and short commands. Song titles and
singer names are defined by the lists provided by the organization committee, and phone
numbers are defined by the official annotation principles. There is no official guideline
on person names and location names. We used a person name list of around 9 million
entries and a location name list of around 70 million entries provided by Sogou Input
Method Editor () as the definitions of person names and location names
respectively.1 As to short commands like “ ” (“cancel”), we observed the training
dataset and collected a dozen of short commands whose correct interpretations depend,
in accordance with the annotation principles, on the domain labels of preceding queries.

We imposed altogether 12 rules based on the organizing committee’s data annotation
principles and our inspection on the training dataset. Each rule is of the form “if the
query q is listed in a particular lexicon L, and the preceding queries and their predicted
domain labels satisfy certain conditions, then q is assigned a certain intent label and,
with the exception of short commands, the entire q is regarded as a slot of the type
corresponding to L.” The rules are arranged in sequential order in accordance with their
priorities. If a query does not fire any rule then it will be processed by the subsequent

1 If there were no such name lists, the rules could still rely on some lexical analyzer to identify
person names and location names, since these two kinds of names are represented by special
part-of-speech labels in most lexical analyzers. Section 4.1 will compare the value of the name
lists with that of using a lexical analyzer.

456 N. Gong et al.

model-based SLU. If a query fires a rule then the whole process ends with the result
returned by the rule.

3.2 Model-Based SLU Pipeline

The SLU model comprises five components that work in a sequential manner, illustrated
in Fig. 2.

Fig. 2. An example illustrating the mechanism of the model-based SLU.

The first step is lexical analysis, i.e. word segmentation and part-of-speech (POS)
tagging. The words and POS labels are used as features in the subsequent models. For
the shared task we used HanLP [1] as our Chinese lexical analyzer.

Slot Boundary Detection
The second step is slot boundary detection, i.e. to find out the start and end positions of
each slot in the query. This task is considered as sequence labeling using the BILOU
scheme2. We used both character-based and word-based sequence labeling. The char‐
acter-based version is a Conditional Random Field (CRF) model with window size 7,
using lexical features (the characters themselves) and dictionary features, whereas the
word-based version is CRF model with window size 5, using lexical features, POS
features, and dictionary features. By dictionary features we mean features of the form
“whether the current character/word is the prefix/infix/suffix of some entry in a
dictionary of certain entity type”. The dictionaries used are the same as those in the rule-
based SLU. Each CRF model return n outputs3, and all these 2n outputs are passed to
the next step. The rationale behind the use of character-based sequence labeling in addi‐
tion to the word-based version is to reduce the risk due to word segmentation errors. In
Sect. 4 we will see the value of this ‘combination’ strategy in sequence labeling over
the standard practice of doing sequence labeling on word tokens only.

2 B stands for beginning position, I for inside, L for last, O for outside, and U for unit, i.e. both
as beginning and last position.

3 n=3 in our usage.

The Sogou Spoken Language Understanding System 457

Slot Type Classification
The third step is slot type classification, i.e. to identify the type of slot found by the
preceding step. Here we used logistic regression with L2-regularizer as the classifier,
and the predicted slot, its context characters/words, and the POS labels of its context
words (for the word-based input only) as features. As there are several hypotheses from
slot boundary detection, where each hypothesis may contain a different number of
predicted slots, the slot type classifier calculates the average score of the slots in each
hypothesis4 and chooses the hypothesis with the highest average score as output. This
simple strategy of combination is based on the assumption that the best slot boundary
detection hypothesis leads to the highest scored slot type classifier output.

Slot Correction
The fourth step is slot correction, i.e. to identify the ‘spelling errors’ of a slot due to
incorrect speech recognition result, etc. A retrieval based method is used. As there is a
dictionary for each slot type (c.f. Sect. 3.1), if a slot s with predicted type T is not
registered in the dictionary corresponding to T, then s will be matched against the
dictionary entries and the entries with lowest edit distance with s are retrieved. This
process is carried out twice, one representing s and the entries as Chinese character
strings and another representing s and the entries as pinyin strings. The best match is
selected by a re-ranker from these two sets of retrieval results.

Intent Classifier
The last step is the intent classifier. It is based on gradient boosting, using the well-
known XGBoost tool [2] with its default settings. The features used include the word
tokens, query length, and the predicted slots in the preceding steps. Note that the query
length feature is proposed by the observation that in the training set queries with more
than 20 characters are mainly of the intent OTHERS. That is, the query length feature
is a simple hack to distinguish OTHERS from other kinds of intent.

Training Sample Mining
The official training dataset contains about 21,352 samples only and it is tempting to
add more samples from other sources. Although we do have two millions labeled queries
for Sogou voice interface products, the categorization behind these queries are very
different from that used in the shared task, and therefore these assets cannot be directly
applied.

Instead we used a cautious method for introducing more samples. For intent identi‐
fication, the trained classifier is applied to the training dataset itself and the error cases
are believed to be under-represented by the training set. For each under-represented
query q, it is then matched against our own query set using similarity metrics like ngram
overlap ratio, edit distance, etc. Very harsh thresholds on the metrics are used. Those
queries that satisfy the thresholds are taken as new samples and they are labeled with
the same intent as q.

4 That is, if a hypothesis contains N slots, where the i-th slot is assigned a score si by the slot
type classifier, then the score of the hypothesis is 1

n

∑
i
s

i
.

458 N. Gong et al.

New samples for slot filling are introduced in a similar but a bit more complicated
way. Two queries of similar structure may not be similar on their surface forms, as the
slot values in the two queries could be very different from each other. Therefore, when
two queries q and q′ are compared their slot values should first be replaced by the slot
types, thereby converting the queries into query patterns5. If the similarity between query
patterns satisfy a very harsh threshold then q′ would be introduced as a new sample, and
the slot types in q can be projected to those in q′ via the query patterns.

Eventually around 500 samples are chosen as new training instances for intent clas‐
sifier and around 1000 samples for slot filling.

4 Experiments

In this section we present the results of some experiments showing the effectiveness of
the techniques described in the last section. The training and test datasets are the ones
released by the organizing committee. The evaluation criterion for intent classifier is F1,
which is the same criterion for subtask 2. The evaluation criterion used in all other
experiments is precision, the same criterion for subtask 4. In the experiments on slot
filling only, the precision is slightly modified so as not to take the intent label into
account.

4.1 Rule-Based SLU

Among the 5350 queries in the test set, our context-dependent SLU rules are fired by
1265 of them; that is, the rules are responsible for about 23.6% of the queries. The
precision of the rules for both intent identification and slot filling is 96.60%, and the F1
for intent identification only is 96.56%. Moreover, if the identification of person names
and location names in our rules are not based on our own name lists but on the lexical
analyzer HANLP, the F1 of intent identification drops to 93.03%, and the precision for
the entire SLU drops to 92.89%. That is, our name lists reduce nearly half of the errors.

There are two kinds of errors made by the rules. The first kind is due to the incorrect
domain labels predicted by SLU model for the preceding queries. The second kind is
more difficult to analyze. On the one hand these errors may be explained as the noises
in the dictionaries of person names and location names, yet on the other hand it may
also be said that the errors are not of the rules but of the test set itself. For example, the
query “ ” is labeled in the test set as a destination/location name while our system
judges it to be a person name. It seems to be rather arbitrary to say that “ ” is less
likely to be a person name than a location name.

5 For example, the query in the official training set “ ” and the query in
extra resources “ ” are not very similar to each other on their surface
forms. Yet because the correct slots “ ” and “ ” are already labeled in both
sets, we could convert the queries into patterns “ <slot> ” and “ <slot>

”. Similarity can be measured on such query patterns.

The Sogou Spoken Language Understanding System 459

4.2 Slot Filling Models

Table 1 shows the experiment results on slot filling (combining the steps of boundary
detection, type classification, and correction) of the queries that cannot be handled by
rule-based SLU. In the baseline setting, the boundary detector is based only on word-
based sequence labeling and it does not use any dictionary features; no extra training
samples are used either. The other three settings test the values of three techniques, viz.
the combination strategy in boundary detection, the dictionary features in boundary
detection, and more training samples. The results show that both the combination
strategy and the dictionary features are very effective techniques.

Table 1. Experiments on slot filling.

Setting Precision (before slot
correction)

Precision (after slot
correction)

1: Baseline 90.58% 91.70%
2: (1) + combination strategy 91.31% 92.43%
3: (2) + dictionary features 92.39% 93.51%
4: (3) + more samples 92.73% 93.85%

Besides, our slot correction technique consistently makes an absolute improvement
of about 1.1%. The errors of slot correction are mainly due to the noises in the person
and location name lists.

4.3 Intent Classifier

Table 2 shows the experiment results on intent identification of the queries that cannot
be handled by rule-based SLU. The baseline setting is about classifier using word token
features only. The other three setting test the values of three techniques, viz. adding the
slot types predicted by the slot filling models as extra features, adding query length as
extra feature, and adding more training samples. As shown in Table 2, the slot features
are the most useful technique, leading to an absolute improvement of nearly 4%. More‐
over, only about 500 new training samples (2% of the official training set size) reduced
9% of errors. That shows the importance of data and the effectiveness of our mining
techniques.

Table 2. Experiments on intent identification

Setting F1
1: Baseline 91.36%
2: (1) + slot features 95.26%
3: (2) + query length feature 95.46%
4: (3) + more samples 95.97%

460 N. Gong et al.

4.4 The Complete SLU System

As to intent identification only, the complete system produces an F1 score of 96.11%.
Table 3 shows the experiment results of the complete system on both intent identification
and slot filling. The three experiment settings are designed to show the contribution of
the external resources (dictionaries and extra training samples).

Table 3. Experiments on the entire SLU system.

Setting Precision
Rules + Model w/o extra dictionaries and samples 93.42%
Rules + Model with extra dictionaries but not samples 94.24%
Rules + Model with extra dictionaries and samples 94.49%

There are three major types of errors on queries with IISPs. The first type is about
very long queries that contain multiple intent, e.g. “ ”.
This type of errors need a means to split up the query into shorter ones, and/or a multi-
label classifier to select the prominent intent. The second type of errors are due to both
speech recognition errors and data sparsity, such as the query “ ”, for
which the correct form should be “ ”. Although we proposed a mechanism
to mine similar queries from our own query log, the speech recognition errors in our log
are different from those in the official training set. For this example, there are very few
samples for the pattern “ ”, and our speech recognition system seldom makes
this particular mistake. It is not always successful to mine rare query patterns with certain
speech recognition error.

Last but not least, the third type of errors are not of the SLU system but of the labeling
consistency of the datasets. For example, it is difficult to explain why “ ” is
labeled as PHONE_CALL whereas “ ” is not. Similarly, it is difficult to
explain, for the query “ ”, why the slot of CONTACT_NAME
should be “ ” instead of “ ”.

5 Related Works

There are many reviews on SLU as such [3] or as a component in a complete dialogue
system [4]. The various techniques can be divided into two camps, viz. the end-to-end
approaches and the pipelined approaches. An end-to-end approach completes both intent
identification and slot filling in one process, using techniques like [5–7]. In contrast, a
pipelined approach tackles the two tasks one by one, and there are a few choices of the
pipeline architecture and various techniques in implementing the components. We
decided not to use any of the advanced deep learning techniques because it is found in
our pilot experiments that the training data size is too small to produce satisfying results
from any deep learning technique. Similar to [8], we found that traditional methods like
CRF give the optimal results.

Our slot correction method follows a general spelling correction framework using
the noisy channel model [9]. That is, given a misspelled string s, the task is to seek s′

The Sogou Spoken Language Understanding System 461

which maximizes the translation model of P(s|s′) and the language model of P(s′). In our
system, the translation model is the edit distances between s and s′ on both Chinese
character and Pinyin character levels, while the language model is determined by entity
lexicons.

6 Summary and Discussions

In this report, we analyzed the problem of spoken language understanding, how the
problem is simplified in the NLPCC shared task, and the properties of the official data‐
sets. The data survey inspired us to adopt a hybrid approach to SLU, viz. to deal with
entity-only queries with context-dependent rules whereas to deal with queries with
intent-indicating salient phrases with context-independent models. A pipelined frame‐
work is used to integrate individual models to produce the final output. Although the
techniques we used for the model-based SLU are all very ‘old-school’ ones, and yet our
system achieved very promising results. The remaining problems are essentially about
quality of dictionaries, long queries with multiple intent, rare query patterns with speech
recognition errors, and data labeling consistency issues.

The datasets in the shared task seem to be extracted from the query log of some in-
car voice interface product. The SLU problem in industrial products has three charac‐
teristics. First, users’ commands/requests are mostly entity-specific. Therefore, entity
knowledge (or at least lexical resources) is very important to the performance of an SLU
system, and our experimental analysis proves the value of entity knowledge.

Secondly, data annotation is the key. Nowadays most speech assistant or voice inter‐
face products do not provide user feedbacks as effective as users’ clicks in search
engines. So, the only way to judge whether an SLU output is correct solely depends on
annotators’ judgments. We also showed that a few labeled samples in the official datasets
are dubious.

The most important one is that the complexity of the techniques required by SLU is
proportional to the complexity of intent categorization. For the categorization of only
11 intents in the shared task, we have shown that (for queries with IISPs) SLU can be
reliably done with information about the current query only. For a more complicated
categorization which contains, following the example in Sect. 2, navigation intent and
flight/train-booking intent, the SLU models must appeal at least to context (previous
queries) and perhaps even more factors, and will therefore require more complicated
techniques. In general, if there are more than one intents which correspond to similar
query patterns then more advanced techniques are required.

Based on these observations, we hope that the next shared task would be a more
challenging one by having a more fine-grained intent categorization, and a larger and
more accurately labeled dataset.

References

1. HanLP: Han Language Processing. https://github.com/hankcs/HanLP
2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. arXiv:1603.02754 (2016)

462 N. Gong et al.

https://github.com/hankcs/HanLP
http://arxiv.org/abs/1603.02754

3. Tur, G., De Mori, R.: Spoken Language Understanding: Systems for Extracting Semantic
Information from Speec. Wiley, Hoboken (2011)

4. Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: recent advances and new
frontiers. arXiv:1711.01731 (2017)

5. Jeong, M., Lee, G.G.: Triangular-chain conditional random fields. IEEE Trans. Audio Speech
Lang. Process. 16(7), 1287–1302 (2008)

6. Xu, P., Sarikaya, R.: Convolutional neural network based triangular CRF for joint intent
detection and slot filling. In: ASRU (2013)

7. Zhang, X., Wang, H.: A joint model of intent determination and slot filling for spoken language
understanding. In: IJCAI (2016)

8. Vukotic, V., Raymond, C., Gravier, G.:. Is it time to switch to word embedding and recurrent
neural networks for spoken language understanding? In: Interspeech (2015)

9. Kernighan, M., Church, K., Gale, W.: A spelling correction program based on a noisy channel
model. In: COLING (1990)

The Sogou Spoken Language Understanding System 463

http://arxiv.org/abs/1711.01731

Improving Pointer-Generator Network
with Keywords Information for Chinese

Abstractive Summarization

Xiaoping Jiang, Po Hu(&), Liwei Hou, and Xia Wang

School of Computer Science, Central China Normal University,
Wuhan 430079, China

{jiangxp,houliwei}@mails.ccnu.edu.cn,

phu@mail.ccnu.edu.cn, wangx_cathy@163.com

Abstract. Recently sequence-to-sequence (Seq2Seq) model and its variants are
widely used in multiple summarization tasks e.g., sentence compression,
headline generation, single document summarization, and have achieved sig-
nificant performance. However, most of the existing models for abstractive
summarization suffer from some undesirable shortcomings such as generating
inaccurate contents or insufficient summary. To alleviate the problem, we pro-
pose a novel approach to improve the summary’s informativeness by explicitly
incorporating topical keywords information from the original document into a
pointer-generator network via a new attention mechanism so that a topic-
oriented summary can be generated in a context-aware manner with guidance.
Preliminary experimental results on the NLPCC 2018 Chinese document sum-
marization benchmark dataset have demonstrated the effectiveness and superi-
ority of our approach. We have achieved significant performance close to that of
the best performing system in all the participating systems.

Keywords: Abstractive summarization � Sequence to sequence model
Pointer-generator network � Topical keywords � Attention mechanism

1 Introduction

Automatic summarization aims to simplify the long text into a concise and fluent
version while conveying the most important information. It can be roughly divided into
two types: extraction and abstraction. Extractive methods usually extract important
sentences from the original document to generate the summary. However, abstractive
methods often need to understand the main content of the original document first and
then reorganize even generate the new summary content with natural language gen-
eration (NLG). Compared with extractive methods, abstractive methods are more
difficult but are closer to human summarization manner.

Recently, the development of deep neural network makes abstractive summariza-
tion viable among which attention-based sequence-to-sequence (Seq2Seq) models have
increasingly became the benchmark model for abstractive summarization task (Hou
et al. 2018a). Seq2Seq models have encoder-decoder architecture with recurrent neural

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 464–474, 2018.
https://doi.org/10.1007/978-3-319-99495-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_39&domain=pdf

network (RNN) configuration. The attention mechanism is recently added to generate
more focused summary by referencing salient original context when decoding.

However, the existing models usually face two shortcomings: one is the content
inaccuracy and repetition mainly caused by out-of-vocabulary (OOV) words (See et al.
2017), and another is that the existing attention mechanism does not consider topic
information of the original document explicitly which may lead to insufficient
decoding.

In this work, we propose a novel approach to improve the summary’s informa-
tiveness by explicitly incorporating topical keywords information from the original
document into a pointer-generator network via a new attention mechanism so that a
topic-oriented summary can be generated in a context-aware manner with guidance.
Specifically, we first adopt a pointer-generator network proposed by See et al. (2017) to
improve accuracy of the generated content and alleviate the problem of OOV words.
Meanwhile, the coverage mechanism is used to solve content duplication problem.
Second, we put topical keywords extracted from the original document into the
attention mechanism and incorporate it into the pointer-generator network so that
decoder will pay more attention to topic information to better guide the generation of
informative summary. In general, our contributions are as follows:

• We adopt a pointer-generator network model to alleviate the problems of inaccurate
detail description caused by OOV words (Sect. 3.2).

• We encode topical keywords extracted from the original document into the attention
mechanism and incorporate it into the pointer-generator network to enhance the
generated summary’s topic coverage (Sect. 3.3).

• We applied our proposed method to the Chinese document summarization bench-
mark dataset provided by NLPCC 2018 shared task3 and ranked the third among all
the participating systems (Sect. 4).

2 Related Work

Automatic summarization has always been a classic and hot topic in the field of natural
language processing (NLP). Significant progress has been made recently from tradi-
tional extractive summarization to more abstractive summarization (Yao et al. 2017).

Earlier research in the last decade is dominated by extractive methods. Extractive
methods first score each sentence in the original document. Unsupervised sentence
scoring approaches mostly rely on frequency, centrality and probabilistic topic models.
Sentence classification, sentence regression and sequence labeling are the supervised
approaches commonly used to evaluate the importance of sentences. Having predicted
sentences importance score, the next step is to select sentences according to their
information richness, redundancy and some constraint rules (such as total summary
length, etc.). The popular approaches for sentence selection include maximum marginal
relevance (MMR), integer linear programming (ILP) and submodular function maxi-
mization. Recently, it has been shown effective to use neural network to directly predict
the relative importance of a sentence given a set of selected sentences, under the

Improving Pointer-Generator Network with Keywords Information 465

consideration of importance and redundancy simultaneously (Cao et al. 2017; Narayan
et al. 2018).

Although extractive methods have the advantage of preserve the original infor-
mation more complete, especially ensuring the fluency of each sentence, one of the
problems is that they suffer from the secondary or redundant information. More
importantly, there is often a lack of coherence between adjacent sentences in an
extractive summary. With the rapid development of deep learning technology in recent
years, abstractive summarization has gradually become the current research focus.

RNN-based encoder-decoder structure is proposed by Bahdanau et al. (2014) and
used in machine translation successfully. Subsequently, this structure has also been
successfully applied to other fields of NLP, including but not limited to syntactic
parsing (Vinyals and Le 2015), text summarization (Rush et al. 2015) and dialogue
systems (Serban et al. 2016). Rush et al. (2015) first introduce the encoder-decoder
structure and the attention mechanism into summarization task and achieve good
results on DUC-2004 and Gigawords datasets. Later Nallapati et al. (2016) extend their
work and combine additional features to the model, which get better results than Rush
on DUC-2004 and Gigawords datasets. The graph-based attention mechanism is pro-
posed by Tan and Wan (2017) to improve the adaptability of the model to sentence
saliency. Paulus et al. (2017) combine supervised learning with reinforcement learning
while training, and their work not only keeps the readability but also ensures the
flexibility of summary. For latent structure modeling, Li et al. (2017) add historical
dependencies on the latent variables of Variational Autoencoder (VAEs) and propose a
deep recurrent generative decoder (DRGD) to distill the complex latent structures
implied in the target summaries. Nallapati et al. (2016); Gu et al. (2016); Zeng et al.
(2016), See et al. (2017) and Paulus et al. (2017) use copy mechanism to solve the
problem of OOV words in the decoding phase. Moreover, See et al. (2017) propose a
coverage mechanism to alleviate words repetition. In a recent work, Wang et al. (2018)
incorporate topic information into the convolutional sequence-to-sequence (ConvS2S)
model.

3 Model

3.1 Attention-Based Seq2Seq Model

Attention-based Seq2Seq model is first used for machine translation tasks. It is also
used to generate abstractive summary due to the resemblance between abstractive
summarization and machine translation. Attention-based Seq2Seq model mainly con-
sists of three parts: encoder, decoder and the attention mechanism connecting them.

In the encoding phase, the word embedding sequences of the original document are
fed into a single bidirectional LSTM to get the encoder hidden states sequence
h ¼ h1; h2; . . .; hnf g. At each decoding time step, a single unidirectional LSTM reads
the previous word embedding to obtain the decoder hidden state st, which is used for
the output prediction of the current time step. The hidden states of encoder and decoder
pass through a linear layer and a softmax function to get the attention distribution at.
The attention distribution corresponds to a probability distribution of each word in the

466 X. Jiang et al.

original document, that tells which words are more important in the current prediction
process. It is calculated as follows:

eti ¼ vT tan h Whhi þWsst þ battnð Þ ð1Þ
at ¼ softmax etð Þ ð2Þ

Where vT , Wh, Ws and battn are learnable parameters. Once at has been computed, it
is used to produce a weighted sum of the encoder hidden states, which is a dynamic
representation of the original document called the context vector h�t :

h�t ¼
X

i
atihi ð3Þ

Finally, the decoder hidden state st and the context vector h�t pass through two
linear layer and a softmax function to produce the vocabulary distribution Pvocab of the
current time step. The concrete formulas are as follows:

Pvocab ¼ softmax V 0 V st; h
�
t

� �þ b
� �þ b0

� � ð4Þ

P wð Þ ¼ Pvocab wð Þ ð5Þ

Where V 0, V , b and b0 are learnable parameters. P wð Þ represents the probability of
the current prediction for word w. Loss function of the model uses negative log
likelihood:

loss ¼ 1
T

XT

t¼0
�log P w�

t

� �� � ð6Þ

Where w�
t is the target word for the current time step, and T is the total length of the

target summary.

3.2 Pointer-Generator Network

The pointer-generator network proposed by See et al. (2017) is a hybrid model com-
bining both an attention-based Seq2Seq model and a pointer network. It allows the
model to generate new words from a fixed vocabulary or copy words from the original
document. Therefore, for each original document, it will add the words in it to the fixed
vocabulary and get the extended vocabulary. Furthermore, they also adopt the coverage
mechanism to solve repetition problem.

The context vector h�t , the decoder hidden state st and the decoder input xt pass
through a linear layer and a sigmoid function to produce the generation probability
Pgen, which indicates the probability to generate a new word from the fixed vocabulary:

Pgen ¼ r wT
h�h

�
t þwT

s st þwT
x xt þ bptr

� � ð7Þ

Improving Pointer-Generator Network with Keywords Information 467

Where wh� , ws, wx and bptr are learnable parameters. Pgen is used to produce a
weighted sum of the vocabulary distribution Pvocab (referring to formula 4) and the
attention distribution at (referring to formula 2):

P wð Þ ¼ pgenPvocab wð Þþ 1� pgen
� �X

i:wi
ati ð8Þ

The coverage mechanism is introduced into the pointer-generator network to
alleviate repetition problem. It maintains a coverage vector ct (i.e., the sum of attention
distributions), which records the coverage degree of those words which have received
from the attention mechanism so far. The coverage vector in turn affects the attention
distribution for the current time step. The coverage mechanism also calculates addi-
tional coverage loss to punish repeated attention. The whole computation process is
implemented as follows:

ct ¼
Xt�1

t0¼0
at

0 ð9Þ

eti ¼ vT tanh Whhi þWsst þWccti þ battn
� � ð10Þ

covlosst ¼
X

i
min ati; c

t
i

� � ð11Þ

loss ¼ 1
T

XT

t¼0
�logP w�

t

� �þ k
X

i
covlosst

h i
ð12Þ

Where Wc is a new learnable parameter and k represent the weight of the coverage
loss.

3.3 Keywords Attention Mechanism

Recent studies show that the traditional attention mechanism only considers the rela-
tionship between the current target word and the original document, so it fails to grasp
the main gist of the original document and leads to insufficient information (Lin et al.
2018). Imagine that when people write a summary, they usually have a clear under-
standing of the topic content, and the summary they write is often centered around
topic. Therefore, we propose to adopt topical keywords as the guidance information for
the original document and encode them into the attention mechanism to generate
summary with better topic coverage.

In this work, TextRank (Mihalcea 2004) algorithm is used to extract topical key-
words. We extract d topical keywords from the original documents and get their word
embeddings k ¼ k1; k2; . . .; kdf g. As shown in Fig. 1, we calculate the sum of word
embeddings for d keywords and use it as a part of input for the attention distribution.

t ¼
Xd

i¼1
ki ð13Þ

468 X. Jiang et al.

eti ¼ vT tanh Whhi þWsst þWcc
t
i þWttþ battn

� � ð14Þ

Where Wt is a new learnable parameter. We change Eqs. (10) to (14).

4 Experiments

4.1 Dataset

We conduct experiments on the open-available dataset provided by NLPCC 2018
shared task3, which is a Chinese document summarization task. The training set
contains 50000 document-summary pairs, the validation set contains 2000 document-
summary pairs, and the testing set contains 2000 documents without corresponding
golden-standard summaries. We compute the length (i.e., the number of words after
segmentation using jieba1 toolkit) of the original documents and the standard sum-
maries whose statistics are shown in Table 1.

4.2 Evaluation

In this work, we use ROUGE2 toolkit for evaluation. ROUGE is widely used in the
summarization research community for content evaluation, which often calculates the
recall rate of N-grams or words between the machine-generated summary and the

…

context
vector Pgen

Attention
Distribution

Final Distribution
Vocabulary
Distribution

×(1-Pgen)

× Pgen

Encoder Decoder

Keywords

embedding

Decoder
Hidden

state

Encoder
Hidden

state

embedding

embedding

Fig. 1. Pointer-generator model with expanded keywords attention

1 https://pypi.python.org/pypi/jieba/
2 https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5

Improving Pointer-Generator Network with Keywords Information 469

https://pypi.python.org/pypi/jieba/
https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5

golden-standard human summary (Chin 2004). Character-based ROUGE-F score is
used as evaluation metric in this work. We conduct evaluation on both the validation
set and the testing set due to the lack of golden-standard summaries on the testing set.
For the validation set, we calculate and report ROUGE-1, ROUGE-2 and ROUGE-L
scores respectively. For the testing set, we present results provided by the NLPCC 2018
official organizer and the results represent the average score of multiple ROUGE
metrics including ROUGE-1, ROUGE-2, ROUGE-3, ROUGE-4, ROUGE-L, ROUGE-
W-1.2 and ROUGE-SU4.

4.3 Implementation

In our experiments, we first convert all the datasets into plain texts and use jieba toolkit
to conduct word segmentation on both news articles and corresponding summaries.
Then, we use TextRank4ZH toolkit3 to extract keywords from each news articles with
the number of keywords set to 8. Furthermore, we use a vocabulary of 50 k words for
both original documents and target summaries.

Unlike previous work proposed by Hou et al. (2018b), we do not pretrain the word
embeddings in advance and all are learned from scratch during training, and the
dimension of the word embeddings is set to 128. In our proposed approach, the encoder
is a bidirectional LSTM and the decoder is a unidirectional LSTM with both the hidden
layer dimension set to 256. And we set the maximum encoding length (i.e., the
maximum length of the input sequence) to 1000, and the decoding length (i.e., the
output sequence length) is adjusted from 8 to 40. Our model is trained by Adagrad
(Kingma et al. 2014) with learning rate of 0.15 and initial accumulator value of 0.1. We
implement all our experiments with Tensorflow on an NVIDIA TITAN XP GPU and
the batch size is set to 16.

During the training phase, the initial loss value is 10, and then it drops to 7 after the
first 300 times of training, and further drops to 3.5 after 15000 times of training.
Finally, with the increase of training time, the loss value gradually becomes stable and
converges to 3. When the loss value of the model is stable on the training set, the
parameters learned from training phase are used for validation. During the testing
phase, we use beam search to get the target summary and set beam size to 6.

Table 1. The statistics of the NLPCC 2018 document summarization benchmark dataset.

Length Training set Validation set Testing set
Document Summary Document Summary Document Summary

Min 32 6 35 8 7 –

Max 13186 85 8871 44 7596 –

Average 579.4 25.9 579.9 25.8 426.2 –

3 https://github.com/letiantian/TextRank4ZH

470 X. Jiang et al.

https://github.com/letiantian/TextRank4ZH

4.4 Experimental Results and Analysis

The experimental results are shown in Tables 2 and 3. We choose the pointer-generator
network model as the baseline, and we also compare with other representative state-of-
the-art extractive and abstractive summarization approaches.

TextRank. This approach adopts the open-source TextRank4zh toolkit to extract the
most important sentences with highest informatives scores from the original news
article to generate the target summary.

Table 2. Comparison results on the NLPCC 2018 validation dataset using F-measure of
ROUGE

Models R-1 R-2 R-L

TextRank 35.78 23.58 29.60
Pointer-Generator 43.44 29.46 37.66
Pointer-Generator (character) 38.01 24.43 32.32
TextRank + Pointer-Generator 42.79 28.93 37.33
Our Model 44.60 30.46 38.83

Table 3. Examples of the generated summaries set of our approach and the pointer-generator
baseline. Here bold denotes richer information generated by our model.

Improving Pointer-Generator Network with Keywords Information 471

Pointer-Generator. This model has been described in Sect. 3.2.

TextRank + Pointer-Generator. Inspired by the work of Tan et al. (2017), we
combine the TextRank approach with the pointer-generator model to generate the
summary. First, we obtain an 800 words summary extracted by TextRank (Mihalcea
2004). Then, the summary is used as the input of the pointer generator network to
generate the final summary.

Pointer-Generator (character). Basically, there are two typical approaches to pre-
process Chinese document: character-based and word-based (Wang et al. 2018). In this
work, we adopt the word-based approach as we believe that words are more relevant to
latent topic of document than characters. Since the official evaluation metrics are
Character-based ROUGE F score, we also evaluate pointer-generator network using
character-based approach to obtain a comprehensive comparison.

Our Model. The hybrid method combining keywords attention and pointer-generator
network introduced in Sect. 3.3.

According to the results shown in Table 2, we can find that our proposed approach
outperforms all other methods on ROUGE-1, ROUGE-2 and ROUGE-L. The key-
words attention-based pointer-generator network model exceeds the basic pointer-
generator network significantly. In addition, word-based approach achieves higher
ROUGE performance than character-based approach, and abstractive methods always
achieve higher ROUGE performance than TextRank. Furthermore, the method directly
Combining TextRank with pointer-generator does not achieve obviously better results.

Table 3 gives two running cases from which it can be observed that our keywords
attention-based pointer-generator network model produces more coherent, diverse, and
informative summary than the basic pointer-generator network approach.

The testing results are shown in Table 4. The scores are the average of ROUGE-1,
ROUGE-2, ROUGE-3, ROUGE-4, ROUGE-L, ROUGE-SU4 and ROUGE-W1.2
provided by official organizer. Our team ranked the third among all the participating
teams, which is 0.11 points slightly below than the first.

Table 4. Official evaluation results for the formal runs of top-10 participating teams

Team The average score of ROUGE-1, 2, 3, 4, L, SU4, W-1.2

WILWAL 0.29380
Summary++ 0.28533
CCNU_NLP (Our Team) 0.28279
Freefolk 0.28149
Kakami 0.27832
Casia-S 0.27395
Felicity_Dream_Team 0.27211
dont lie 0.27078
CQUT_301_1 0.25998
lll_go 0.25611

472 X. Jiang et al.

5 Conclusion

In this work, we propose a novel abstractive summarization approach which incor-
porates topical keywords information from the original document into a pointer-
generator network via a new attention mechanism. The experimental results show that
our proposed approach can reduce wording inaccuracy while improve the summary’s
informativeness. In the future, we will conduct more experiments on other larger-scale
datasets like CNN/Daily Mail to verify the effectiveness of our method. Besides, we
will also try more advanced keyword extraction algorithm to discover and embed
topical keywords information more effectively.

Acknowledgments. This work was supported by the National Natural Science Foundation of
China (No. 61402191), the Self-determined Research Funds of CCNU from the Colleges’ Basic
Research and Operation of MOE (No. CCNU18TS044), and the Thirteen Five-year Research
Planning Project of National Language Committee (No. WT135-11).

References

Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learning to Align
and Translate. arXiv preprint arXiv:1409.0473 (2014)

Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.C., Pineau, J.: Building end-to-end dialogue
systems using generative hierarchical neural network models. In: AAAI (2016)

Vinyals, O., Le, Q.: A Neural Conversational Model. arXiv preprint arXiv:1506.05869 (2015)
See, A., Liu, P.J., Manning, C.D.: Get to the Point: Summarization with Pointer-Generator

Networks. ACL (2017)
Yao, J.-G., Wan, X., Xiao, J.: Recent advances in document summarization. Knowl. Inf. Syst. 53,

297–336 (2017)
Rush, A.M., Chopra, S., Weston, J.: A Neural Attention Model for Abstractive Sentence

Summarization. arXiv preprint arXiv:1509.00685 (2015)
Nallapati, R., Xiang, B., Zhou, B.: Abstractive Text Summarization Using Sequence-to-Sequence

RNNs and Beyond. arXiv preprint arXiv:1602.06023 (2016)
Tan, J., Wan, X.: Abstractive Document Summarization with a Graph-Based Attentional Neural

Model. ACL (2017)
Paulus, R., Xiong, C., Socher, R.: A Deep Reinforced Model for Abstractive Summarization.

arXiv preprint arXiv:1705.04304 (2017)
Li, P., Lam, W., Bing, L., Wang, Z.: Deep recurrent generative decoder for abstractive text

summarization. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing. EMNLP (2017)

Gu, J., Lu, Z., Li, H., Li, V.O.K.: Incorporating Copying Mechanism in Sequence-to-Sequence
Learning. ACL (2016)

Zeng, W., Luo, W., Fidler, S., Urtasun, R.: Efficient Summarization with Read-Again and Copy
Mechanism. arXiv preprint arXiv:1611.03382 (2016)

Wang, L., Yao, J., Tao, Y., Zhong, L., Liu, W., Du, Q.: A reinforced topic-aware convolutional
sequence-to-sequence model for abstractive text summarization. In: IJCAI-ECAI (2018)

Improving Pointer-Generator Network with Keywords Information 473

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1506.05869
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1611.03382

Hou, L., Hu, P., Bei, C.: Abstractive document summarization via neural model with joint
attention. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Yu. (eds.) NLPCC 2017. LNCS
(NLAI), vol. 10619, pp. 329–338. Springer, Cham (2018a). https://doi.org/10.1007/978-3-
319-73618-1_28

Cao, Z., Wei, F., Li, W., Li, S.: Faithful to the Original: Fact Aware Neural Abstractive
Summarization arXiv:1711.04434 (2017)

Narayan, S., Cohen, S.B., Lapata, M.: Ranking Sentences for Extractive Summarization with
Reinforcement Learning. arXiv preprint arXiv:1802.08636 (2018)

Mihalcea, R.: TextRank: bringing order into texts. In: EMNLP (2004)
Chin, Y.L.: Rouge: A Package for Automatic Evaluation of Summaries. ACL (2004)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Computer Science (2014)
Tan, J., Wan, X., Xiao, J.: From neural sentence summarization to headline generation: a coarse-

to-fine approach. In: IJCAI (2017)
Hou, L.-W., Hu, P., Cao, W.-L.: Chinese abstractive summarization with topical keywords

fusion. Acta Automatica Sinica (2018b)
Lin, J., Sun, X., Ma1, S., Su, Q.: Global Encoding for Abstractive Summarization. ACL (2018)

474 X. Jiang et al.

http://dx.doi.org/10.1007/978-3-319-73618-1_28
http://dx.doi.org/10.1007/978-3-319-73618-1_28
http://arxiv.org/abs/1711.04434
http://arxiv.org/abs/1802.08636

Author Index

Ahuja, Vikram II-144
Alt, Christoph I-3

Bao, Feilong I-40
Bao, Rui II-3
Bao, Zuyi II-117

Cao, Liang-Bin II-154
Cao, Yunbo II-468
Chan, Zhangming I-76
Chang, Baobao II-268
Chao, Wenhan I-110
Chen, Chen II-411
Chen, Enhong I-316
Chen, Guangyu I-221
Chen, Huajun I-145
Chen, Huipeng I-196
Chen, Jiajun I-416
Chen, Shaowei I-196
Chen, Xiaoyu II-420
Chen, Xin II-213
Chen, Yubo I-209
Chen, Yufeng II-203
Chen, Ziyan I-64
Chu, Xiaomin II-92
Chung, Tong Lee II-27
Cui, Lei II-268

Dai, Xin-Yu I-416
Deng, Junyi I-237
Ding, Ruoyao II-224
Ding, Zixiang II-278
Dong, Xiaozheng II-213
Dou, Zehao II-67
Du, Jiachen II-288
Du, Wenjing I-378
Duan, Nan II-452
Duan, Yitao I-341

Fan, Chuang II-288
Fan, Linbo II-351
Fang, Jie II-246
Feng, Chong II-319

Feng, Shi I-365
Fu, Kai I-341
Fu, Lei II-330
Fu, Sihui II-3
Fu, Xingyu I-64

Gan, Suifu I-378
Gan, Zhenye I-16
Gao, Dongfa II-224
Gao, Guanglai I-40
Ge, Tao II-268
Geng, Ji I-3
Gong, Neng I-454
Gui, Lin II-288
Guo, Aodong II-190
Guo, Lindong I-378

Han, Jiafang I-16
Hao, Bin I-442
Hao, Tianyong II-224
He, Chao II-479
He, Huihui I-250
He, Yulan II-288
He, Zhicheng I-196, I-237
Hennig, Leonhard I-3
Hong, Yu I-171, II-213, II-257
Hou, Liwei I-464
Hu, Changjian I-3
Hu, Po I-464
Huang, Bo II-434
Huang, Jiajun I-416
Huang, Jin I-341
Huang, Shujian I-416
Huang, Yafang I-27
Huang, Yongfeng I-209, II-80

Ji, Duo I-279
Jiang, Feng II-92
Jiang, Minghu II-27
Jiang, Minyu I-209
Jiang, Nan II-439
Jiang, Shan II-131
Jiang, Shengyi I-378, II-3

Jiang, Wei II-154
Jiang, Xiaoping I-464
Jiang, Yuru II-340
Jin, Li I-64

Kao, Hsiaohsien II-479

Lan, Man I-269
Li, Changliang II-309
Li, Changsong II-309
Li, Chen II-117
Li, Chi-Ho I-454
Li, Hengchao II-166
Li, Juan I-145
Li, Junhui II-372
Li, Juntao II-446
Li, Lei II-457
Li, Linlin II-117
Li, Meng I-454
Li, Mu I-316
Li, Peifeng II-92, II-235, II-246
Li, Shoushan I-429, II-372, II-429
Li, Sujian I-353, I-404
Li, Weikang II-213
Li, Xiang II-278
Li, Yang I-3
Li, Yongcheng I-158
Li, Yumeng II-383
Li, Zhixing II-190
Li, Zhoujun I-110, I-303
Liang, Guanqing II-479
Lin, Hongfei II-166, II-383, II-411, II-420
Lin, Liansheng II-393
Lin, Qian I-291
Liu, Chunhua I-51, II-131
Liu, Gongshen I-184, II-41, II-105
Liu, Hang II-203
Liu, Hengyou II-117
Liu, Hongtao I-209
Liu, Huan II-372
Liu, Jie I-196, I-237
Liu, Junxin II-80
Liu, Lu I-51
Liu, Mingtong II-203
Liu, Pengyuan II-309
Liu, Qian II-319
Liu, Shujie I-316
Liu, Tao I-221
Liu, Tong II-420

Liu, Yi II-330
Liu, Yiqun I-442
Liu, Yongbin II-190
Liu, Yuchen II-299
Liu, Zhihui I-158
Liu, Zhinan I-40
Lu, Xingwu I-269
Lv, Weifeng I-85

Ma, Dehong I-120, I-353
Ma, Shaoping I-442
Ma, Shuming I-260
Mamidi, Radhika II-144
Mao, Teng II-340
Meng, Jun II-383
Miao, Qingliang I-3
Mo, Li-Ping II-154

Ni, Han II-393
Ning, Tianhao I-416

Ouyang, Chunping II-190
Ouyang, Zhifan I-391

Pang, Kunyuan II-54

Qi, Diandian I-454
Qi, Ji II-309
Qi, Zechuan II-351
Qin, Yue I-291

Ren, Feiliang I-158
Ren, Hongkai II-401
Ren, Huiling I-404
Ren, Yuqi II-420

Schwarzenberg, Robert I-3
Shen, Tongtong I-454
Shi, Huaxing II-178
Shi, Yunsheng II-383
Singh, Navjyoti II-144
Song, Rui II-257
Song, Xinghao II-362
Song, Yan I-76
Su, Jindian I-391
Su, Jinsong I-291
Suburi I-40
Sui, Zhifang II-268
Sun, Huanrong I-184, II-41, II-105

476 Author Index

Sun, Qingying II-429
Sun, Weiwei II-439
Sun, Xu I-260

Tan, Chuanqi I-85
Tan, Yunzhi I-442
Tang, Jintao II-54
Tao, Jiaming II-235

Wan, Xiaojun II-67, II-439, II-457
Wang, Baoxun I-221
Wang, Daling I-365
Wang, Hao I-133
Wang, Houfeng I-120, I-133, I-353
Wang, HuiZheng I-279
Wang, Jia I-454
Wang, Jian II-383, II-420
Wang, Jingjing II-372
Wang, Jiuniu I-64
Wang, Qiang I-329
Wang, Tianshu I-454
Wang, Ting II-54
Wang, Tingwei II-190
Wang, Xia I-464
Wang, Yang II-319
Wang, Yining II-299
Wang, Yongguan II-309
Wang, Yunli I-110
Wang, Yuqian II-16
Wang, Zhenyu I-98
Wang, Zhongqing I-429, II-429
Wei, Bingzhen I-260
Wei, Chen II-16
Wei, Furu I-85, II-268
Wei, Qiang II-351
Wei, Wei II-67
Wei, Yang I-64
Wing-Ki Leung, Cane II-479
Wu, Chuhan I-209, II-80
Wu, Fan II-429
Wu, Fangzhao II-80
Wu, Liangqing I-429
Wu, Shuangzhi I-303
Wu, Wentao II-235
Wu, Yirong I-64
Wu, Yuanbin I-269
Wu, Zhen I-416

Xia, Rui I-250, II-278
Xiang, Yuejia I-279

Xiao, Tong I-329
Xie, Hongliang I-365
Xie, Niantao I-404
Xie, Qiaojing II-16
Xie, Wenxiu II-224
Xie, Xing II-80, II-464
Xu, Bin II-27
Xu, Bo II-166
Xu, Feiyu I-3
Xu, Ge II-393
Xu, Guanghui I-237
Xu, Guangluan I-64
Xu, Guangwei II-117
Xu, Jinan II-203
Xu, Junli II-351
Xu, Ruifeng II-288
Xu, Zhenjing II-16
Xue, Chao II-351
Xun, Endong II-401

Yan, Rui I-76, II-446
Yan, Zhao I-110
Yang, Chunming II-362
Yang, Fan I-184
Yang, Hongwu I-16
Yang, Jian I-303, II-278
Yang, Jing I-291
Yang, Liang II-411
Yang, Liner II-401
Yang, Nan I-85
Yang, Ruoyao I-51
Yang, Xiaohua II-190
Yao, Jianmin I-171, II-257
Yin, Zhaoxia II-330
Yu, Bo I-221
Yu, Dong I-51, II-131
Yu, Hainan II-131
Yu, Jianfei II-278
Yu, Kaidong II-16
Yu, ZhiChen II-16
Yuan, Zhigang I-209
Yue, Tianchi II-411

Zeng, Yunfeng II-3
Zhai, Qibin I-404
Zhang, Biao I-291
Zhang, Chunyue II-178
Zhang, Deyuan I-221
Zhang, Dongdong I-303

Author Index 477

Zhang, Dongyu II-166
Zhang, Fuzheng II-464
Zhang, Haisong I-76
Zhang, Hui II-362
Zhang, Jiajun II-299
Zhang, Jianhu I-184, II-105
Zhang, Jingli I-171, II-257
Zhang, Jun II-330
Zhang, Liming II-3
Zhang, Lu I-429
Zhang, Min I-171, I-442, II-213
Zhang, Rui I-98
Zhang, Shaowu II-166, II-411
Zhang, Wen I-145
Zhang, Xiangwen I-291
Zhang, Xiaodong I-120, I-133
Zhang, Xinghua II-178
Zhang, Yangsen II-340
Zhang, Yi I-260
Zhang, Yifei I-365
Zhang, Yujie II-203
Zhang, Yuyao II-340
Zhang, Zheyang I-279
Zhang, Zhirui I-316
Zhang, Zhuosheng I-27
Zhao, Dongyan I-76
Zhao, Hai I-27

Zhao, Jiangjiang II-351
Zhao, Juan II-27
Zhao, Ning II-351
Zhao, Rongsheng I-158
Zhao, Xuemin II-468
Zhao, Xujian II-362
Zhao, Yan I-51
Zhao, Yang II-299
Zhao, Yuanyuan II-439
Zhao, Zhenyu II-434
Zhao, Zhishan II-288
Zhou, Cheng I-184, II-105
Zhou, Di I-158
Zhou, Guodong I-429, II-92, II-246, II-372,

II-429
Zhou, Jie I-184, II-41, II-105
Zhou, Junpei II-117
Zhou, Kai-Qing II-154
Zhou, Long II-299
Zhou, Ming I-85, I-303, I-316, II-268
Zhou, Qingyu I-85
Zhou, Wenxuan I-171
Zhu, Jingbo I-279, I-329
Zhu, Pengfei I-27
Zhu, Qiaoming II-92, II-213
Zhu, Xiaoxu II-235
Zong, Chengqing II-299

478 Author Index

	Preface
	Organization
	Contents -- Part I
	Contents -- Part II
	Conversational Bot/QA/IR
	Question Answering for Technical Customer Support
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Problem Formalization
	3.2 Intent Category Classification
	3.3 Semantic Matching

	4 Experiments and Discussion
	4.1 Data Set
	4.2 QA-KB and Product-KB
	4.3 Intent Category Classification
	4.4 Semantic Matching
	4.5 The Importance of Intent Classification for Semantic Matching

	5 Conclusion
	References

	Perception and Production of Mandarin Monosyllabic Tones by Amdo Tibetan College Students
	Abstract
	1 Introduction
	2 Perception of Mandarin Tone
	2.1 Experimental Corpus
	2.2 Experimental Subjects
	2.3 Experimental Process
	2.4 Experimental Results

	3 Production of Mandarin Tone
	3.1 Experimental Corpus
	3.2 Experimental Subjects
	3.3 Experimental Process
	3.4 Experimental Results
	3.5 Correlation Between Perception and Production

	4 Production of Mandarin Tone Pronunciation
	4.1 Experimental Corpus
	4.2 Experimental Process
	4.3 Experimental Results

	5 Conclusion
	References

	Effective Character-Augmented Word Embedding for Machine Reading Comprehension
	1 Introduction
	2 Related Work
	3 Model
	3.1 Word Representation Module
	3.2 Attention Learning Module

	4 Evaluation
	4.1 Dataset and Settings
	4.2 Results

	5 Analysis
	6 Conclusion
	References

	Mongolian Grapheme to Phoneme Conversion by Using Hybrid Approach
	Abstract
	1 Introduction
	2 Related Work
	3 Seq2Seq LSTM Model with an Attention Mechanism
	4 Hybrid Approach to Mongolian G2P Conversion
	4.1 Rules
	4.2 Combining Rules with Seq2Seq LSTM Model

	5 Experiments
	5.1 Data Set
	5.2 Setting and Result

	6 Conclusion
	Acknowledgement
	References

	From Plots to Endings: A Reinforced Pointer Generator for Story Ending Generation
	1 Introduction
	2 Related Work
	2.1 Encoder-Decoder Framework
	2.2 Copy and Coverage Mechanisms
	2.3 Reinforcement Learning for NLG

	3 Models
	3.1 Attention-Based Encoder-Decoder Model
	3.2 Pointer-Generator Network with Coverage Mechanism
	3.3 Mixed Loss Method
	3.4 Policy-Gradient Reinforcement Learning

	4 Experiments
	4.1 Dataset
	4.2 Experimental Setting
	4.3 Evaluation Metrics
	4.4 Automatic Evaluation
	4.5 Human Evaluation

	5 Conclusion
	References

	A3Net:Adversarial-and-Attention Network for Machine Reading Comprehension
	1 Introduction
	2 Related Work
	3 Proposed Model
	3.1 Embedding Layer
	3.2 Representation Layer
	3.3 Understanding Layer
	3.4 Pointer Layer
	3.5 Adversarial Training

	4 Experiments
	4.1 Dataset and Evaluation Metrics
	4.2 Model Details
	4.3 Main Results
	4.4 Ablation on Base Model Structure
	4.5 Adversarial Training on Different Target Variables
	4.6 Effective of Adversarial Training

	5 Conclusions
	References

	When Less Is More: Using Less Context Information to Generate Better Utterances in Group Conversations
	1 Introduction
	2 Background Knowledge
	3 Group Conversation Model
	4 Experiments
	5 Conclusion
	References

	I Know There Is No Answer: Modeling Answer Validation for Machine Reading Comprehension
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Answer Extraction Based Method
	3.2 Passage Triggering Based Method
	3.3 Answer Validation Based Method
	3.4 Implementation Details

	4 Experiments
	4.1 Dataset Construction
	4.2 Evaluation Metrics
	4.3 Main Result
	4.4 Model Analysis

	5 Conclusion and Future Work
	References

	Learning to Converse Emotionally Like Humans: A Conditional Variational Approach
	1 Introduction
	2 Related Work
	2.1 Conversation Generation
	2.2 Emotional Intelligence

	3 Proposed Models
	3.1 Problem Definition
	3.2 EsCVAE-I: Conditioned on Emotions only
	3.3 EsCVAE-II: Sensitive to both Content-Level and Emotion-Level Information

	4 Experiment Setup
	4.1 Datasets
	4.2 Model Details
	4.3 Evaluation Results

	5 Conclusion
	References

	Response Selection of Multi-turn Conversation with Deep Neural Networks
	1 Introduction
	2 Related Work
	3 Problem Formalization
	4 System Description
	4.1 Relevance Consistency Matching Network
	4.2 Sequential Matching Network
	4.3 Model Ensemble

	5 Experiments
	5.1 Data Sets and Metrics
	5.2 Experiments on Training Data
	5.3 Experiment Result on Testing Data and Analysis

	6 Conclusion
	References

	Learning Dialogue History for Spoken Language Understanding
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Inputs
	3.2 Hierarchical LSTM
	3.3 Intent and Slot Tagger

	4 Experiments
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Case Study

	5 Conclusion
	References

	A Neural Question Generation System Based on Knowledge Base
	1 Introduction
	2 Task Description
	3 Structure of Question Generation Model
	3.1 Construction of Input Sequence
	3.2 Encoder
	3.3 Decoder
	3.4 Train

	4 Evaluation
	4.1 Dataset and Evaluation Metrics
	4.2 Settings of the System
	4.3 Result
	4.4 Error Analysis

	5 Conclusion
	References

	Knowledge Graph/IE
	ProjR: Embedding Structure Diversity for Knowledge Graph Completion
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Structure Diversity of Knowledge Graph
	3.2 ProjR

	4 Experiments
	4.1 Link Prediction

	5 Conclusion and Future Work
	References

	BiTCNN: A Bi-Channel Tree Convolution Based Neural Network Model for Relation Classification
	Abstract
	1 Introduction
	2 Related Work
	3 Our Model
	3.1 Tree Decomposition
	3.2 Feature Extraction
	3.3 Convolution Transformation
	3.4 Max-Pooling Operation
	3.5 Linear Transformation
	3.6 Output
	3.7 Dropout Operation
	3.8 Training Procedure

	4 Experiments and Analysis
	4.1 Datasets
	4.2 Experimental Results and Analyses

	5 Conclusions and Future Work
	Acknowledgements
	References

	Using Entity Relation to Improve Event Detection via Attention Mechanism
	1 Introduction
	2 Related Work
	3 Task Description
	4 Our Approach
	4.1 Input
	4.2 Attention Mechanism
	4.3 Bi-LSTM
	4.4 Output
	4.5 Training

	5 Experiments
	5.1 Dataset and Evaluation Metric
	5.2 Hyperparameter Settings
	5.3 Compared Systems
	5.4 Experimental Results

	6 Conclusions
	References

	Five-Stroke Based CNN-BiRNN-CRF Network for Chinese Named Entity Recognition
	1 Introduction
	2 Neural Model for Chinese NER
	2.1 Overview of Proposed Architecture
	2.2 Stroke Embedding
	2.3 Convolutional Layer
	2.4 Bidirectional LSTM Layer
	2.5 CRF Layer

	3 Experimental Results and Analysis
	3.1 Tagging Scheme
	3.2 Training
	3.3 Dataset and Preprocessing
	3.4 Evaluation of Different Components
	3.5 Comparison with Previous Works

	4 Related Works
	5 Conclusions
	References

	Learning BLSTM-CRF with Multi-channel Attribute Embedding for Medical Information Extraction
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Bidirectional LSTM
	3.2 Multi-channel CNN
	3.3 CRF

	4 Experiments
	4.1 Datasets
	4.2 Attributes
	4.3 Experiment Setting
	4.4 Experiment Results
	4.5 Effectiveness Analysis
	4.6 Case Study

	5 Conclusion
	References

	Distant Supervision for Relation Extraction with Neural Instance Selector
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Sentence Encoder
	3.2 Instance Selector
	3.3 Selective Attention

	4 Experiments
	4.1 Dataset and Evaluation Metrics
	4.2 Parameter Settings
	4.3 Performance Evaluation
	4.4 Effectiveness of NIS Module
	4.5 Analysis of ATS Threshold
	4.6 Case Study

	5 Conclusion
	References

	Complex Named Entity Recognition via Deep Multi-task Learning from Scratch
	1 Introduction
	2 Related Work
	3 Multi-task Learning Architecture for NER
	3.1 Basic Bi-LSTM Structure
	3.2 Single Task Training
	3.3 Multi-Task Training Scheme
	3.4 NER Subtasks Training Scheme

	4 Experiments and Analysis
	4.1 Datasets
	4.2 Tagging Schemes
	4.3 Preprocessing and Pretrained Embeddings
	4.4 Results and Analysis

	5 Conclusions
	References

	Machine Learning for NLP
	Hierarchical Attention Based Semi-supervised Network Representation Learning
	1 Introduction
	2 Model
	2.1 Problem Formulation
	2.2 Text-Based Representation Learning
	2.3 Structure-Based Representation Learning
	2.4 Semi-supervised Hierarchical Attention Network Embedding
	2.5 Model Optimization

	3 Experiments
	3.1 Dataset
	3.2 Baseline
	3.3 Link Prediction
	3.4 Node Classification

	4 Related Work
	5 Conclusion
	References

	Joint Binary Neural Network for Multi-label Learning with Applications to Emotion Classification
	1 Introduction
	2 Model
	2.1 Joint Binary Neural Network
	2.2 Joint Binary Cross Entropy Loss with Label Relation Prior

	3 Experiments
	3.1 Experimental Settings
	3.2 Comparison with Traditional Multi-label Learning Models
	3.3 Comparison with Two Types of Neural Networks (BRNN and TDNN)

	4 Conclusion
	References

	Accelerating Graph-Based Dependency Parsing with Lock-Free Parallel Perceptron
	1 Introduction
	2 Lock-Free Parallel Perceptron for Dependency Parsing
	3 Convergence Analysis of Lock-Free Parallel Perceptron
	3.1 Worst Case Convergence
	3.2 Optimal Case Convergence

	4 Experiments
	4.1 Dataset
	4.2 Results

	5 Conclusions
	References

	Memory-Based Matching Models for Multi-turn Response Selection in Retrieval-Based Chatbots
	1 Introduction
	2 The Approach
	2.1 Model Overview
	2.2 Sequential Matching Network (SMN)
	2.3 Memory-Based Matching Network (MBMN)
	2.4 NLP Features
	2.5 Matching Prediction
	2.6 Parameter Learning

	3 Experiments
	3.1 Datasets
	3.2 Experiments on Training Data
	3.3 Results on Test Data

	4 Conclusion
	References

	NEUTag’s Classification System for Zhihu Questions Tagging Task
	Abstract
	1 Introduction
	2 Our System
	2.1 Preprocessing
	2.2 Baseline
	2.3 Design Experiments
	2.4 Ensemble
	2.5 Estimate Number of Labels

	3 Results
	3.1 Dataset Sources
	3.2 Performance Evaluation Indicators
	3.3 Preprocessing
	3.4 Baseline
	3.5 Design Experiments
	3.6 Ensemble
	3.7 Estimate Number of Labels

	4 Conclusions
	Acknowledgements
	References

	Machine Translation
	Otem&Utem: Over- and Under-Translation Evaluation Metric for NMT
	1 Introduction
	2 Related Work
	3 Our Metrics
	3.1 Otem
	3.2 Utem

	4 Experiments
	4.1 Datasets and Machine Translation Systems
	4.2 Comparison with Human Translation
	4.3 Human Evaluation
	4.4 Analysis on MT Systems

	5 Conclusion
	References

	Improved Neural Machine Translation with Chinese Phonologic Features
	1 Introduction
	2 Background: Neural Machine Translation
	3 Phonology-Aware Neural Machine Translation Model
	4 Model Encoder
	4.1 Phonetic-Aware Decoder
	4.2 Chinese Polyphone Disambiguation
	4.3 Model Training

	5 Experiment
	5.1 Setup
	5.2 Evaluation Results
	5.3 Case Study

	6 Related Work
	7 Conclusion
	References

	Coarse-To-Fine Learning for Neural Machine Translation
	1 Introduction
	2 Neural Machine Translation
	3 Coarse-To-Fine Learning for NMT
	3.1 Hierarchical Clustering
	3.2 NMT Model Refinement

	4 Experiments
	4.1 Setup
	4.2 Results on Chinese-English Translation
	4.3 Results on English-French Translation

	5 Related Work
	6 Conclusion
	References

	Source Segment Encoding for Neural Machine Translation
	1 Introduction
	2 Attention-Based NMT
	3 Source Segment Encoding
	3.1 N-Gram-Based SSE
	3.2 Joint-Learning-Based SSE

	4 Experiments
	4.1 Setup

	5 Results and Analysis
	5.1 Evaluation of Translations
	5.2 Impact of n
	5.3 Samples of Learned Segments

	6 Related Work
	7 Conclusion
	References

	Youdao's Winning Solution to the NLPCC-2018 Task 2 Challenge: A Neural Machine Translation Approach to Chinese Grammatical Error Correction
	1 Introduction
	2 Chinese Grammatical Error Correction
	3 Related Work
	4 Methodology
	4.1 Data Preparation
	4.2 Spelling Error Correction
	4.3 Grammatical Error Correction Model
	4.4 Models Ensemble and Reranking

	5 Experiment Results
	6 Conclusion
	References

	NLP Applications
	Target Extraction via Feature-Enriched Neural Networks Model
	1 Introduction
	2 Model
	2.1 Embeddings
	2.2 Character-Level Layer
	2.3 Word-Level Layer
	2.4 Label Inference Layer

	3 Experiments
	3.1 Datasets and Evaluate Metric
	3.2 Hyperparamters Setting
	3.3 Model Comparison
	3.4 Model Variants
	3.5 Error Cases

	4 Related Work
	5 Conclusion
	References

	A Novel Attention Based CNN Model for Emotion Intensity Prediction
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Input Representation
	3.2 Attention Mechanism
	3.3 Fully-Connected Layer and Activation Function

	4 Experiments
	4.1 Experimental Setup
	4.2 Compared with Baselines
	4.3 Compared with Results of WASSA-2017 EmoInt
	4.4 Ablation Experiments

	5 Conclusion
	Acknowledgements
	References

	Recurrent Neural CRF for Aspect Term Extraction with Dependency Transmission
	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Embedding Layer
	3.3 RNNs Incorporating Dependency Transmission
	3.4 CRF Layer and Objective Function

	4 Experiments
	4.1 Datasets and Evaluation
	4.2 Experimental Settings and Compared Models
	4.3 Results and Analysis

	5 Conclusion
	Acknowledgments
	References

	Dependency Parsing and Attention Network for Aspect-Level Sentiment Classification
	1 Introduction
	2 Model
	2.1 Embedding Layer
	2.2 BGRU Layer
	2.3 Position Weight
	2.4 Attention Layer
	2.5 Sentiment Predict Layer
	2.6 Model Training

	3 Experiment
	3.1 Datasets and Settings
	3.2 Experimental Results
	3.3 Effects of Dependency Subtree
	3.4 Effects of Position Weight
	3.5 Visualize Attention

	4 Conclusions
	References

	Abstractive Summarization Improved by WordNet-Based Extractive Sentences
	1 Introduction
	2 Our Method
	2.1 Seq2seq Dual Attentional Model
	2.2 WordNet-Based Sentence Ranking Algorithm
	2.3 Pointer-Generator and Coverage Mechanisms

	3 Experiments
	3.1 Dataset
	3.2 Implementation
	3.3 Results

	4 Related Work
	5 Conclusion
	References

	Improving Aspect Identification with Reviews Segmentation
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview of Our Method
	3.2 Reviews Segmentation
	3.3 Labels Transferring from Reviews to Segments
	3.4 Alignment Feature
	3.5 Sequence Encoder and Aspect Identification

	4 Experiments
	4.1 Setup
	4.2 Validating the Performance of Labels Transferring
	4.3 The Statistics of Reviews Segmentation
	4.4 Baselines
	4.5 Effectiveness of Reviews Segmentation
	4.6 Effectiveness of Alignment Features

	5 Conclusion
	References

	Cross-Lingual Emotion Classification with Auxiliary and Attention Neural Networks
	Abstract
	1 Introduction
	2 Related Work
	2.1 Cross-Lingual Sentiment Classification
	2.2 Emotion Classification

	3 Our Approach
	3.1 Machine Translation
	3.2 The Main Emotion Classification Task
	3.3 The Auxiliary Emotion Classification Task
	3.4 Joint Learning

	4 Experiment
	4.1 Experimental Settings
	4.2 Experimental Results
	4.3 Case Study
	4.4 Visualization of Attention

	5 Conclusion
	Acknowledgements
	References

	Are Ratings Always Reliable? Discover Users' True Feelings with Textual Reviews
	1 Introduction
	2 Related Work
	3 Are Ratings Always Reliable?
	4 Model for Mining Users' True Feelings from Reviews
	4.1 Formalizations
	4.2 Overview of HTA
	4.3 From Word to Sentence Vector
	4.4 From Sentence to Review Vector
	4.5 Regression and Learning

	5 Experiment and Discussion
	5.1 Dataset and Experimental Settings
	5.2 Effectiveness of ``True Ratings''
	5.3 Effectiveness for Rating Prediction

	6 Conclusions and Futurework
	References

	The Sogou Spoken Language Understanding System for the NLPCC 2018 Evaluation
	Abstract
	1 Introduction
	2 Problem Definition and Data Analysis
	3 System Details
	3.1 Rule-Based SLU
	3.2 Model-Based SLU Pipeline

	4 Experiments
	4.1 Rule-Based SLU
	4.2 Slot Filling Models
	4.3 Intent Classifier
	4.4 The Complete SLU System

	5 Related Works
	6 Summary and Discussions
	References

	Improving Pointer-Generator Network with Keywords Information for Chinese Abstractive Summarization
	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Attention-Based Seq2Seq Model
	3.2 Pointer-Generator Network
	3.3 Keywords Attention Mechanism

	4 Experiments
	4.1 Dataset
	4.2 Evaluation
	4.3 Implementation
	4.4 Experimental Results and Analysis

	5 Conclusion
	Acknowledgments
	References

	Author Index

