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Abstract. This paper reviews the checkered history of predictive dis-
tributions in statistics and discusses two developments, one from recent
literature and the other new. The first development is bringing predic-
tive distributions into machine learning, whose early development was so
deeply influenced by two remarkable groups at the Institute of Automa-
tion and Remote Control. As result, they become more robust and their
validity ceases to depend on Bayesian or narrow parametric assumptions.
The second development is combining predictive distributions with ker-
nel methods, which were originated by one of those groups, including
Emmanuel Braverman. As result, they become more flexible and, there-
fore, their predictive efficiency improves significantly for realistic non-
linear data sets.
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1 Introduction

Prediction is a fundamental and difficult scientific problem. We limit the scope
of our discussion by imposing, from the outset, two restrictions: we only want to
predict one real number y ∈ R, and we want our prediction to satisfy a reason-
able property of validity (under a natural assumption). It can be argued that the
fullest prediction for y is a probability measure on R, which can be represented
by its distribution function: see, e.g., [5,6,8]. We will refer to it as the predic-
tive distribution. A standard property of validity for predictive distributions is
being well-calibrated. Calibration can be defined as the “statistical compatibil-
ity between the probabilistic forecasts and the realizations” [8, Sect. 1.2], and
its rough interpretation is that predictive distributions should tell the truth. Of
course, truth can be uninteresting and non-informative, and there is a further
requirement of efficiency, which is often referred to as sharpness [8, Sect. 2.3].
Our goal is to optimize the efficiency subject to validity [8, Sect. 1.2].

This paper is a very selective review of predictive distributions with validity
guarantees. After introducing our notation and setting the prediction problem in
Sect. 2, we start, in Sect. 3, from the oldest approach to predictive distributions,
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Bayesian. This approach gives a perfect solution but under a very restrictive
assumption: we need a full knowledge of the stochastic mechanism generating
the data. In Sect. 4 we move to Fisher’s fiducial predictive distributions.

The first recent development (in [27], as described in Sect. 5 of this paper)
was to carry over predictive distributions to the framework of statistical machine
learning as developed by two groups at the Institute of Automation and Remote
Control (Aizerman’s laboratory including Braverman and Rozonoer and Lerner’s
laboratory including Vapnik and Chervonenkis; for a brief history of the Insti-
tute and research on statistical learning there, including the role of Emmanuel
Markovich Braverman, see [25], especially Chap. 5). That development consisted
in adapting predictive distributions to the IID model, discussed in detail in the
next section. The simplest linear case was considered in [27], with groundwork
laid in [1].

The second development, which is this paper’s contribution, is combination
with kernel methods, developed by the members of Aizerman’s laboratory, first
of all Braverman and Rozonoer [25, p. 48]; namely, in Sect. 6 we derive the
kernelized versions of the main algorithms of [27]. In the experimental section
(Sect. 8), we demonstrate an important advantage of kernelized versions. The
computational efficiency of our methods is studied theoretically in Sect. 6, where
we show that pre-processing a training sequence of length n takes, asymptoti-
cally, the same time as inverting an n × n matrix (at most n3) and, after that,
processing a test object takes time O(n2). Their predictive efficiency is stud-
ied in Sect. 8 experimentally using an artificial data set, where we show that a
universal (Laplacian) kernel works remarkably well.

The standard methods of probabilistic prediction that have been used so
far in machine learning, such as those proposed by Platt [15] and Zadrozny and
Elkan [29], are outside the scope of this paper for two reasons: first, they have no
validity guarantees whatsoever, and second, they are applicable to classification
problems, whereas in this paper we are interested in regression. A sister method
to conformal prediction, Venn prediction, does have validity guarantees akin to
those in conformal prediction (see, e.g., [26, Theorems 1 and 2]), but it is also
applicable only to classification problems. Conformalized kernel ridge regression,
albeit in the form of prediction intervals rather than predictive distributions, has
been studied by Burnaev and Nazarov [2].

2 The Problem

In this section we will introduce our basic prediction problem. The training
sequence consists of n observations zi = (xi, yi) ∈ X×Y = X×R, i = 1, . . . , n;
given a test object xn+1 we are asked to predict its label yn+1. Each observation
zi = (xi, yi), i = 1, . . . , n+1, consists of two components, the object xi assumed
to belong to a measurable space X that we call the object space and the label yi
that belongs to a measurable space Y that we call the label space. In this paper
we are interested in the case of regression, where the object space is the real line,
Y = R.
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In the problem of probability forecasting our prediction takes the form of a
probability measure on the label space Y; since Y = R, this measure can be
represented by its distribution function. This paper is be devoted to this problem
and its modifications.

Our prediction problem can be tackled under different assumptions. In the
chronological order, the standard assumptions are Bayesian (discussed in Sect. 3
below), statistical parametric (discussed in Sect. 4), and nonparametric, espe-
cially the IID model, standard in machine learning (and discussed in detail in
the rest of this section and further sections). When using the method of con-
formal prediction, it becomes convenient to differentiate between two kinds of
assumptions, hard and soft (to use the terminology of [24]). Our hard assumption
is the IID model: the observations are generated independently from the same
probability distribution. The validity of our probabilistic forecasts will depend
only on the hard model. In designing prediction algorithms, we may also use,
formally or informally, another model in hope that it will be not too far from
being correct and under which we optimize efficiency. Whereas the hard model
is a standard statistical model (the IID model in this paper), the soft model is
not always even formalized; a typical soft model (avoided in this paper) is the
assumption that the label y of an object x depends on x in an approximately
linear fashion.

In the rest of this paper we will use a fixed parameter a > 0, determining the
amount of regularization that we wish to apply to our solution to the problem
of prediction. Regularization becomes indispensable when kernel methods are
used.

3 Bayesian Solution

A very satisfactory solution to our prediction problem (and plethora of other
problems of prediction and inference) is given by the theory that dominated
statistical inference for more than 150 years, from the work of Thomas Bayes
and Pierre-Simon Laplace to that of Karl Pearson, roughly from 1770 to 1930.
This theory, however, requires rather strong assumptions.

Let us assume that our statistical model is linear in a feature space
( , in the terminology of Braverman and his col-
leagues) and the noise is Gaussian. Namely, we assume that x1, . . . , xn+1 is a
deterministic sequence of objects and that the labels are generated as

yi = w · F (xi) + ξi, i = 1, . . . , n + 1, (1)

where F : X → H is a mapping from the object space to a Hilbert space H, “·” is
the dot product in H, w is a random vector distributed as N(0, (σ2/a)I) (I being
the identity operator on H), and ξi are random variables distributed as N(0, σ2)
and independent of w and between themselves. Here a is the regularization
constant introduced at the end of Sect. 2, and σ > 0 is another parameter, the
standard deviation of the noise variables ξi.
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It is easy to check that

E yi = 0, i = 1, . . . , n,

cov(yi, yj) =
σ2

a
K(xi, xj) + σ21{i=j}, i, j = 1, . . . , n,

(2)

where K(x, x′) := F (x) · F (x′). By the theorem on normal correlation (see, e.g.,
[18, Theorem II.13.2]), the Bayesian predictive distribution for yn+1 given xn+1

and the training sequence is

N

(
k′(K + aI)−1Y,

σ2

a
κ + σ2 − σ2

a
k′(K + aI)−1k

)
, (3)

where k is the n-vector ki := K(xi, xn+1), i = 1, . . . , n, K is the kernel matrix
for the first n observations (the training observations only), Ki,j := K(xi, xj),
i, j = 1, . . . , n, I = In is the n × n unit matrix, Y := (y1, . . . , yn)′ is the vector
of the n training labels, and κ := K(xn+1, xn+1).

The weakness of the model (1) (used, e.g., in [23, Sect. 10.3]) is that the
Gaussian measure N(0, (σ2/a)I) exists only when H is finite-dimensional, but
we can circumvent this difficulty by using (2) directly as our Bayesian model,
for a given symmetric positive semidefinite K. The mapping F in not part of the
picture any longer. This is the standard approach in Gaussian process regression
in machine learning.

In the Bayesian solution, there is no difference between the hard and
soft model; in particular, (2) is required for the validity of the predictive
distribution (3).

4 Fiducial Predictive Distributions

After its sesquicentennial rule, Bayesian statistics was challenged by Fisher and
Neyman, who had little sympathy with each other’s views apart from their com-
mon disdain for Bayesian methods. Fisher’s approach was more ambitious, and
his goal was to compute a full probability distribution for a future value (test
label in our context) or for the value of a parameter. Neyman and his followers
were content with computing intervals for future values (prediction intervals)
and values of a parameter (confidence intervals).

Fisher and Neyman relaxed the assumptions of Bayesian statistics by allow-
ing uncertainty, in Knight’s [11] terminology. In Bayesian statistics we have an
overall probability measure, i.e., we are in a situation of risk without any uncer-
tainty. Fisher and Neyman worked in the framework of parametric statistics,
in which we do not have any stochastic model for the value of the parameter
(a number or an element of a Euclidean space). In the next section we will discuss
the next step, in which the amount of uncertainty (where we lack a stochastic
model) is even greater: our statistical model will be the nonparametric IID model
(standard in machine learning).
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The available properties of validity naturally become weaker as we weaken
our assumptions. For predicting future values, conformal prediction (to be dis-
cussed in the next section) ensures calibration in probability, in the terminology
of [8, Definition 1]. It can be shown that Bayesian prediction satisfies a stronger
conditional version of this property: Bayesian predictive distributions are cal-
ibrated in probability conditionally on the training sequence and test object
(more generally, on the past). The property of being calibrated in probability
for conformal prediction is, on the other hand, unconditional; or, in other words,
it is conditional on the trivial σ-algebra. Fisher’s fiducial predictive distributions
satisfy an intermediate property of validity: they are calibrated in probability
conditionally on what was called the σ-algebra of invariant events in [13], which
is greater than the trivial σ-algebra but smaller than the σ-algebra representing
the full knowledge of the past. Our plan is to give precise statements with proofs
in future work.

Fisher did not formalize his fiducial inference, and it has often been regarded
as erroneous (his “biggest blunder” [7]). Neyman’s simplification, replacing prob-
ability distributions by intervals, allowed him to state suitable notions of validity
more easily, and his approach to statistics became mainstream until the Bayesian
approach started to reassert itself towards the end of the 20th century. However,
there has been a recent revival of interest in fiducial inference: cf. the BFF
(Bayesian, frequentist, and fiducial) series of workshops, with the fourth one
held on 1–3 May 2017 in Cambridge, MA, right after the Braverman Read-
ings in Boston. Fiducial inference is a key topic of the series, both in the form
of confidence distributions (the term introduced by David Cox [4] in 1958 for
distributions for parameters) and predictive distributions (which by definition
[17, Definition 1] must be calibrated in probability).

Since fiducial inference was developed in the context of parametric statis-
tics, it has two versions, one targeting computing confidence distributions and
the other predictive distributions. Under nonparametric assumptions, such as
our IID model, we are not interested in confidence distributions (the parameter
space, the set of all probability measures on the observation space X×R, is just
too big), and concentrate on predictive distributions. The standard notion of
validity for predictive distributions, introduced independently by Schweder and
Hjort [16, Chap. 12] and Shen, Liu, and Xie [17], is calibration in probability,
going back to Philip Dawid’s work (see, e.g., [5, Sect. 5.3] and [6]).

5 Conformal Predictive Distributions

In order to obtain valid predictive distributions under the IID model, we will
need to relax slightly the notion of a predictive distribution as given in [17]. In
our definition we will follow [22,27]; see those papers for further intuition and
motivation.

Let U = U [0, 1] be the uniform probability distribution on the interval [0, 1].
We fix the length n of the training sequence. Set Z := X × R; this is our
observation space.
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A function Q : Zn+1 × [0, 1] → [0, 1] is a randomized predictive system
(RPS) if:

R1a For each training sequence (z1, . . . , zn) ∈ Zn and each test object xn+1 ∈ X,
the function Q(z1, . . . , zn, (xn+1, y), τ) is monotonically increasing in both
y and τ .

R1b For each training sequence (z1, . . . , zn) ∈ Zn and each test object xn+1 ∈ X,

lim
y→−∞ Q(z1, . . . , zn, (xn+1, y), 0) = 0,

lim
y→∞ Q(z1, . . . , zn, (xn+1, y), 1) = 1.

R2 For any probability measure P on Z, Q(z1, . . . , zn, zn+1, τ) ∼ U when
(z1, . . . , zn+1, τ) ∼ Pn+1 × U .

The function

Qn : (y, τ) ∈ R × [0, 1] �→ Q(z1, . . . , zn, (xn+1, y), τ) (4)

is the randomized predictive distribution (function) (RPD) output by the ran-
domized predictive system Q on a training sequence z1, . . . , zn and a test object
xn+1.

A conformity measure is a measurable function A : Zn+1 → R that is invari-
ant with respect to permutations of the first n observations. A simple example,
used in this paper, is

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (5)

ŷn+1 being the prediction for yn+1 computed from xn+1 and z1, . . . , zn+1 as train-
ing sequence. The conformal transducer determined by a conformity measure A
is defined as

Q(z1, . . . , zn, (xn+1, y), τ) :=
1

n + 1

(∣∣{i = 1, . . . , n + 1 | αy
i < αy

n+1

}∣∣
+τ

∣∣{i = 1, . . . , n + 1 | αy
i = αy

n+1

}∣∣), (6)

where (z1, . . . , zn) ∈ Zn is a training sequence, xn+1 ∈ X is a test object, and
for each y ∈ R the corresponding conformity scores αy

i are defined by

αy
i := A(z1, . . . , zi−1, zi+1, . . . , zn, (xn+1, y), zi), i = 1, . . . , n,

αy
n+1 := A(z1, . . . , zn, (xn+1, y)).

(7)

A function is a conformal transducer if it is the conformal transducer determined
by some conformity measure. A conformal predictive system (CPS) is a function
which is both a conformal transducer and a randomized predictive system. A
conformal predictive distribution (CPD) is a function Qn defined by (4) for a
conformal predictive system Q.

The following lemma, stated in [27], gives simple conditions for a conformal
transducer to be an RPS; it uses the notation of (7).
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Lemma 1. The conformal transducer determined by a conformity measure A
is an RPS if, for each training sequence (z1, . . . , zn) ∈ Zn, each test object
xn+1 ∈ X, and each i ∈ {1, . . . , n}:
– αy

n+1 − αy
i is a monotonically increasing function of y ∈ R;

– limy→±∞
(
αy
n+1 − αy

i

)
= ±∞.

6 Kernel Ridge Regression Prediction Machine

In this section we introduce the Kernel Ridge Regression Prediction Machine
(KRRPM); it will be the conformal transducer determined by a conformity mea-
sure of the form (5), where ŷn+1 is computed using kernel ridge regression, to
be defined momentarily. There are three natural versions of the definition, and
we start from reviewing them. All three versions are based on (1) as soft model
(with the IID model being the hard model).

Given a training sequence (z1, . . . , zn) ∈ Zn and a test object xn+1 ∈ X, the
kernel ridge regression predicts

ŷn+1 := k′(K + aI)−1Y

for the label yn+1 of xn+1. This is just the mean in (3), and the variance is
ignored. Plugging this definition into (5), we obtain the deleted KRRPM. Alter-
natively, we can replace the conformity measure (5) by

A(z1, . . . , zn+1) := yn+1 − Êyn+1, (8)

where
Êyn+1 := k̄′(K̄ + aI)−1Ȳ (9)

is the prediction for the label yn+1 of xn+1 computed using z1, . . . , zn+1 as the
training sequence. The notation used in (9) is: k̄ is the (n + 1)-vector ki :=
K(xi, xn+1), i = 1, . . . , n + 1, K̄ is the kernel matrix for all n + 1 observations,
K̄i,j := K(xi, xj), i, j = 1, . . . , n+1, I = In+1 is the (n+1)×(n+1) unit matrix,
and Ȳ := (y1, . . . , yn+1)′ is the vector of all n + 1 labels. In this context, K is
any given kernel, i.e., symmetric positive semidefinite function K : X2 → R. The
corresponding conformal transducer is the ordinary KRRPM. The disadvantage
of the deleted and ordinary KRRPM is that they are not RPSs (they can fail
to produce a function increasing in y in the presence of extremely high-leverage
objects).

Set
H̄ := (K̄ + aI)−1K̄ = K̄(K̄ + aI)−1. (10)

This hat matrix “puts hats on the ys”: according to (9), H̄Ȳ is the vector
(Êy1, . . . , Êyn+1)′, where Êyi, i = 1, . . . , n + 1, is the prediction for the label yi of
xi computed using z1, . . . , zn+1 as the training sequence. We will refer to the
entries of the matrix H̄ as h̄i,j (where i is the row and j is the column of the
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entry), abbreviating h̄i,i to h̄i. The usual relation between the residuals in (5)
and (8) is

yn+1 − ŷn+1 =
yn+1 − Êyn+1

1 − h̄n+1
. (11)

This equality makes sense since the diagonal elements h̄i of the hat matrix are
always in the semi-open interval [0, 1) (and so the numerator is non-zero); for
details, see Appendix A. Equation (11) motivates using the studentized residuals
(yn+1 − Êyn+1)(1 − h̄n+1)−1/2, which are half-way between the deleted residuals
in (5) and the ordinary residuals in (8). (We ignore a factor in the usual def-
inition of studentized residuals, as in [14, (4.8)], that does not affect the value
(6) of the conformal transducer.) The conformal transducer determined by the
corresponding conformity measure

A(z1, . . . , zn+1) :=
yn+1 − Êyn+1√

1 − h̄n+1

(12)

is the (studentized) KRRPM. Later in this section we will see that the KRRPM
is an RPS. This is the main reason why this is the main version considered in
this paper, with “studentized” usually omitted.

An Explicit Form of the KRRPM
According to (6), to compute the predictive distributions produced by the
KRRPM (in its studentized version), we need to solve the equation αy

i = αy
n+1

(and the corresponding inequality αy
i < αy

n+1) for i = 1, . . . , n + 1. Combining
the Definition (7) of the conformity scores αy

i , the Definition (12) of the confor-
mity measure, and the fact that the predictions Êyi can be obtained from Ȳ by
applying the hat matrix H̄ (cf. (10)), we can rewrite αy

i = αy
n+1 as

yi − ∑n
j=1 h̄ijyj − h̄i,n+1y√

1 − h̄i

=
y − ∑n

j=1 h̄n+1,jyj − h̄n+1y√
1 − h̄n+1

.

This is a linear equation, Ai = Biy, and solving it we obtain y = Ci := Ai/Bi,
where

Ai :=

∑n
j=1 h̄n+1,jyj√

1 − h̄n+1

+
yi − ∑n

j=1 h̄ijyj√
1 − h̄i

, (13)

Bi :=
√

1 − h̄n+1 +
h̄i,n+1√
1 − h̄i

. (14)

The following lemma, to be proved in Appendix A, allows us to compute (6)
easily.

Lemma 2. It is always true that Bi > 0.

The lemma gives Algorithm 1 for computing the conformal predictive distribu-
tion (4). The notation i′ and i′′ used in line 6 is defined as i′ := min{j | C(j) =
C(i)} and i′′ := max{j | C(j) = C(i)}, to ensure that Qn(y, 0) = Qn(y−, 0) and



Conformal Predictive Distributions with Kernels 111

Algorithm 1. Kernel Ridge Regression Prediction Machine
Require: A training sequence (xi, yi) ∈ X × R, i = 1, . . . , n.
Require: A test object xn+1 ∈ X.
1: Define the hat matrix H̄ by (10), K̄ being the (n + 1) × (n + 1) kernel matrix.
2: for i ∈ {1, 2, . . . , n} do
3: Define Ai and Bi by (13) and (14), respectively.
4: Set Ci := Ai/Bi.

5: Sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n).
6: Return the following predictive distribution for yn+1:

Qn(y, τ) :=

{
i+τ
n+1

if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}
i′−1+τ(i′′−i′+2)

n+1
if y = C(i) for i ∈ {1, . . . , n}.

(15)

Qn(y, 1) = Qn(y+, 1) at y = C(i); C(0) and C(n+1) are understood to be −∞
and ∞, respectively. Notice that there is no need to apply Lemma 1 formally;
Lemma 2 makes it obvious that the KRRPM is a CPS.

Algorithm 1 is not computationally efficient for a large test set, since the hat
matrix H̄ (cf. (10)) needs to be computed from scratch for each test object. To
obtain a more efficient version, we use a standard formula for inverting parti-
tioned matrices (see, e.g., [10, (8)] or [23, (2.44)]) to obtain

H̄ = (K̄ + aI)−1K̄ =
(

K + aI k
k′ κ + a

)−1 (
K k
k′ κ

)

=
(

(K + aI)−1 + d(K + aI)−1kk′(K + aI)−1 −d(K + aI)−1k
−dk′(K + aI)−1 d

)(
K k
k′ κ

)

=
(

H + d(K + aI)−1kk′H − d(K + aI)−1kk′

−dk′H + dk′ (16)

(K + aI)−1k + d(K + aI)−1kk′(K + aI)−1k − dκ(K + aI)−1k
−dk′(K + aI)−1k + dκ

)
(17)

=
(

H + d(K + aI)−1kk′(H − I) d(I − H)k
dk′(I − H) −dk′(K + aI)−1k + dκ

)
(18)

=
(

H − ad(K + aI)−1kk′(K + aI)−1 ad(K + aI)−1k
adk′(K + aI)−1 dκ − dk′(K + aI)−1k

)
, (19)

where
d :=

1
κ + a − k′(K + aI)−1k

(20)

(the denominator is positive by the theorem on normal correlation, already used
in Sect. 3), the equality in line (18) follows from H̄ being symmetric (which allows
us to ignore the upper right block of the matrix (16)–(17)), and the equality in
line (19) follows from

I − H = (K + aI)−1(K + aI) − (K + aI)−1K = a(K + aI)−1.
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We have been using the notation H for the training hat matrix

H = (K + aI)−1K = K(K + aI)−1. (21)

Notice that the constant ad occurring in several places in (19) is between 0 and 1:

ad =
a

a + κ − k′(K + aI)−1k
∈ (0, 1] (22)

(the fact that κ − k′(K + aI)−1k is nonnegative follows from the lower right
entry h̄n+1 of the hat matrix (19) being nonnegative; the nonnegativity of the
diagonal entries of hat matrices is discussed in Appendix A).

The important components in the expressions for Ai and Bi (cf. (13) and
(14)) are, according to (19),

1 − h̄n+1 = 1 + dk′(K + aI)−1k − dκ = 1 +
k′(K + aI)−1k − κ

κ + a − k′(K + aI)−1k

=
a

κ + a − k′(K + aI)−1k
= ad, (23)

1 − h̄i = 1 − hi + ade′
i(K + aI)−1kk′(K + aI)ei

= 1 − hi + ad(e′
i(K + aI)−1k)2, (24)

where hi = hi,i is the ith diagonal entry of the hat matrix (21) for the n training
objects and ei is the ith vector in the standard basis of R

n (so that the jth
component of ei is 1{i=j} for j = 1, . . . , n). Let ŷi := e′

iHY be the prediction for
yi computed from the training sequence z1, . . . , zn and the test object xi. Using
(23) (but not using (24) for now), we can transform (13) and (14) as

Ai :=

∑n
j=1 h̄n+1,jyj√

1 − h̄n+1

+
yi − ∑n

j=1 h̄ijyj√
1 − h̄i

= (ad)−1/2
n∑

j=1

adyjk
′(K + aI)−1ej

+
yi − ∑n

j=1 hijyj +
∑n

j=1 adyje
′
i(K + aI)−1kk′(K + aI)−1ej√

1 − h̄i

= (ad)1/2k′(K + aI)−1Y +
yi − ŷi + ade′

i(K + aI)−1kk′(K + aI)−1Y√
1 − h̄i

,

=
√

adŷn+1 +
yi − ŷi + adŷn+1e

′
i(K + aI)−1k√

1 − h̄i

, (25)

where ŷn+1 is the Bayesian prediction for yn+1 (cf. the expected value in (3)),
and

Bi :=
√

1 − h̄n+1 +
h̄i,n+1√
1 − h̄i

=
√

ad +
adk′(K + aI)−1ei√

1 − h̄i

. (26)

Therefore, we can implement Algorithm 1 as follows. Preprocessing the train-
ing sequence takes time O(n3) (or faster if using, say, the Coppersmith–Winograd
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algorithm and its versions; we assume that the kernel K can be computed in time
O(1)):

1. The n × n kernel matrix K can be computed in time O(n2).
2. The matrix (K + aI)−1 can be computed in time O(n3).
3. The diagonal of the training hat matrix H := (K +aI)−1K can be computed

in time O(n2).
4. All ŷi, i = 1, . . . , n, can be computed by ŷ := HY = (K +aI)−1(KY ) in time

O(n2) (even without knowing H).

Processing each test object xn+1 takes time O(n2):

1. Vector k and number κ (as defined after (3)) can be computed in time O(n)
and O(1), respectively.

2. Vector (K + aI)−1k can be computed in time O(n2).
3. Number k′(K + aI)−1k can now be computed in time O(n).
4. Number d defined by (20) can be computed in time O(1).
5. For all i = 1, . . . , n, compute 1 − h̄i as (24), in time O(n) overall (given the

vector computed in 2).
6. Compute the number ŷn+1 := k′(K + aI)−1Y in time O(n) (given the vector

computed in 2).
7. Finally, compute Ai and Bi for all i = 1, . . . , n as per (25) and (26), set

Ci := Ai/Bi, and output the predictive distribution (15). This takes time
O(n) except for sorting the Ci, which takes time O(n log n).

7 Limitation of the KRRPM

The KRRPM makes a significant step forward as compared to the LSPM of [27]:
our soft model (1) is no longer linear in xi. In fact, using a universal kernel (such
as Laplacian in Sect. 8) allows the function x ∈ X �→ w · F (x) to approximate
any continuous function (arbitrarily well within any compact set in X). However,
since we are interested in predictive distributions rather than point predictions,
using the soft model (1) still results in the KRRPM being restricted. In this
section we discuss the nature of the restriction, using the ordinary KRRPM as
a technical tool.

The Bayesian predictive distribution (3) is Gaussian and (as clear from (1)
and from the bottom right entry of (19) being nonnegative) its variance is at
least σ2. We will see that the situation with the conformal distribution is not as
bad, despite the remaining restriction. To understand the nature of the restric-
tion it will be convenient to ignore the denominator in (12), i.e., to consider the
ordinary KRRPM; the difference between the (studentized) KRRPM and ordi-
nary KRRPM will be small in the absence of high-leverage objects (an example
will be given in the next section). For the ordinary KRRPM we have, in place
of (13) and (14),

Ai :=
n∑

j=1

h̄n+1,jyj + yi −
n∑

j=1

h̄i,jyj ,

Bi := 1 − h̄n+1 + h̄i,n+1.
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Therefore, (25) and (26) become

Ai = adŷn+1 + yi − ŷi + adŷn+1e
′
i(K + aI)−1k

and
Bi = ad + ade′

i(K + aI)−1k,

respectively. For Ci := Ai/Bi we now obtain

Ci = ŷn+1 +
yi − ŷi

ad + ade′
i(K + aI)−1k

= ŷn+1 +
σ2
Bayes/σ2

1 + e′
i(K + aI)−1k

(yi − ŷi), (27)

where ŷn+1 is, as before, the Bayesian prediction for yn+1, and σ2
Bayes is the

variance of the Bayesian predictive distribution (3) (cf. (22)).
The second addend e′

i(K + aI)−1k in the denominator of (27) is the predic-
tion for the label of the test object xn+1 in the situation where all training labels
are 0 apart from the ith, which is 1. For a long training sequence we can expect
it to be close to 0 (unless xi or xn+1 are highly influential); therefore, we can
expect the shape of the predictive distribution output by the ordinary KRRPM
to be similar to the shape of the empirical distribution function of the residuals
yi − ŷi. In particular, this shape does not depend (or depends weakly) on the
test object xn+1. This lack of sensitivity of the predictive distribution to the test
object prevents the conformal predictive distributions output by the KRRPM
from being universally consistent in the sense of [22]. The shape of the predictive
distribution can be arbitrary, not necessarily Gaussian (as in (3)), but it is fitted
to all training residuals and not just the residuals for objects similar to the test
object. One possible way to get universally consistent conformal predictive dis-
tributions would be to replace the right-hand side of (5) by F̂n+1(yn+1), where
F̂n+1 is the Bayesian predictive distribution for yn+1 computed from xn+1 and
z1, . . . , zn+1 as training sequence for a sufficiently flexible Bayesian model (in any
case, more flexible than our homoscedastic model (1)). This idea was referred
to as de-Bayesing in [23, Sect. 4.2] and frequentizing in [28, Sect. 3]. However,
modelling input-dependent (heteroscedastic) noise efficiently is a well-known
difficult problem in Bayesian regression, including Gaussian process regression
(see, e.g., [9,12,19]).

8 Experimental Results

In the first part of this section we illustrate the main advantage of the KRRPM
over the LSPM introduced in [27], its flexibility: for a suitable kernel, it gets the
location of the predictive distribution right. In the second part, we illustrate the
limitation discussed in the previous section: while the KRRPM adapts to the
shape of the distribution of labels, the adaptation is not conditional on the test
object. Both points will be demonstrated using artificial data sets.
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In our first experiment we generate a training sequence of length 1000 from
the model

yi = w1 cos xi,1 + w2 cos xi,2 + w3 sin xi,1 + w4 sin xi,2 + ξi, (28)

where (w1, w2, w3, w4) ∼ N(0, I4) (I4 being the unit 4 × 4 matrix), (xi,1, xi,2) ∼
U [−1, 1]2 (U [−1, 1] being the uniform probability distribution on [−1, 1]), and
ξi ∼ N(0, 1), all independent. This corresponds to the Bayesian ridge regression
model with a = σ = 1. The true kernel is

K((x1, x2), (x′
1, x

′
2))

= (cos x1, cos x2, sin x1, sin x2) · (cos x′
1, cos x′

2, sin x′
1, sin x′

2)
= cos(x1 − x′

1) + cos(x2 − x′
2). (29)

Remember that a kernel is universal [20] if any continuous function can
be uniformly approximated (over each compact set) by functions in the corre-
sponding reproducing kernel Hilbert space. An example of a universal kernel is
the Laplacian kernel

K(x, x′) := exp (−‖x − x′‖) .

Laplacian kernels were introduced and studied in [21]; the corresponding repro-
ducing kernel Hilbert space has the Sobolev norm

‖u‖2 = 2
∫ ∞

−∞
u(t)2dt + 2

∫ ∞

−∞
u′(t)2dt

(see [21, Corollary 1]). This expression shows that Laplacian kernels are indeed
universal. On the other hand, the linear kernel K(x, x′) := x ·x′ is far from being
universal; remember that the LSPM [27] corresponds to this kernel and a = 0.

Figure 1 shows that, on this data set, universal kernels lead to better results.
The parameter a in Fig. 1 is the true one, a = 1. In the case of the Bayesian
predictive distribution, the parameter σ = 1 is also the true one; remember that
conformal predictive distributions do not require σ. The right-most panel shows
that, when based on the linear kernel, the conformal predictive distribution can
get the predictive distribution wrong. The other two panels show that the true
kernel and, more importantly, the Laplacian kernel (chosen independently of the
model (28)) are much more accurate. Figure 1 shows predictive distributions for
a specific test object, (1, 1), but this behaviour is typical. The effect of using a
universal kernel becomes much less pronounced (or even disappears completely)
for smaller lengths of the training sequence: see Fig. 2 using 100 training obser-
vations (whereas Fig. 1 uses 1000).

We now illustrate the limitation of the KRRPM that we discussed in the
previous section. An artificial data set is generated as follows: xi ∈ [0, 1],
i = 1, . . . , n, are chosen independently from the uniform distribution U on [0, 1],
and yi ∈ [−xi, xi] are then chosen independently, again from the uniform distri-
butions U [−xi, xi] on their intervals. Figure 3 shows the prediction for xn+1 = 0
on the left and for xn+1 = 1 on the right for n = 1000; there is no visible
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Fig. 1. The predictive distribution for the label of the test object (1, 1) based on a
training sequence of length 1000 (all generated from the model (28)). The red line in
each panel is the Bayesian predictive distribution based on the true kernel (29), and
the blue line is the conformal predictive distribution based on: the true kernel (29) in
the left-most panel; the Laplacian kernel in the middle panel; the linear kernel in the
right-most panel.

Fig. 2. The analogue of Fig. 1 for a training sequence of length 100.

Fig. 3. Left panel: predictions of the KRRPM for a training sequence of length 1000
and x1001 = 0. Right panel: predictions for x1001 = 1. The data are described in the
text.

difference between the studentized and ordinary versions of the KRRPM. The
difference between the predictions for xn+1 = 0 and xn+1 = 1 is slight, whereas
ideally we would like the former prediction to be concentrated at 0 whereas the
latter should be close to the uniform distribution on [−1, 1].

Fine details can be seen in Fig. 4, which is analogous to Fig. 3 but uses a
training sequence of length n = 10. It shows the plots of the functions Qn(y, 0)
and Qn(y, 1) of y, in the notation of (4). These functions carry all information
about Qn(y, τ) as function of y and τ since Qn(y, τ) can be computed as the
convex mixture (1 − τ)Qn(y, 0) + τQn(y, 1) of Qn(y, 0) and Qn(y, 1).
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Fig. 4. Upper left panel: predictions of the (studentized) KRRPM for a training
sequence of length 10 and x11 = 0. Upper right panel: analogous predictions for x11 = 1.
Lower left panel: predictions of the ordinary KRRPM for a training sequence of length
10 and x11 = 0. Lower right panel: analogous predictions for x11 = 1.

In all experiments described in this section, the seed of the Python pseudo-
random numbers generator was set to 0 for reproducibility.

9 Conclusion

In this section we list some directions of further research:

– An important problem in practice is choosing a suitable value of the parameter
a; it deserves careful study in the context of conformal predictive distribu-
tions.

– It was shown in [27] that, under narrow parametric statistical models, the
LSPM is almost as efficient as various oracles that are optimal (or almost
optimal) under those models; it would be interesting to prove similar results
in the context of this paper using (1) as the model and the Bayesian predictive
distribution (3) as the oracle.

– On the other hand, it would be interesting to explore systematically cases
where (1) is violated and this results in poor performance of the Bayesian
predictive distributions (cf. [23, Sect. 10.3, experimental results]). One exam-
ple of such a situation is described in Sect. 7: in the case of non-Gaussian
homogeneous noise, the Bayesian predictive distribution (3) is still Gaussian,
whereas the KRRPM adapts to the noise distribution.

– To cope with heterogeneous noise distribution (see Sect. 7), we need to develop
conformal predictive systems that are more flexible than the KRRPM.
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A Properties of the Hat Matrix

In the kernelized setting of this paper the hat matrix is defined as H =
(K + aI)−1K, where K is a symmetric positive semidefinite matrix whose size
is denoted n × n in this appendix (cf. (10); in our current abstract setting we
drop the bars over H and K and write n in place of n + 1). We will prove, or
give references for, various properties of the hat matrix used in the main part of
the paper.

Numerous useful properties of the hat matrix can be found in literature
(see, e.g., [3]). However, the usual definition of the hat matrix is different from
ours, since it is not kernelized; therefore, we start from reducing our kernelized
definition to the standard one. Since K is symmetric positive semidefinite, it
can be represented in the form K = XX ′ for some matrix X, whose size will be
denoted n×p (in fact, a matrix is symmetric positive semidefinite if and only if it
can be represented as the Gram matrix of n vectors; this easily follows from the
fact that a symmetric positive semidefinite K can be diagonalized: K = Q′ΛQ,
where Q and Λ are n × n matrices, Λ is diagonal with nonnegative entries, and
Q′Q = I). Now we can transform the hat matrix as

H = (K + aI)−1K = (XX ′ + aI)−1XX ′ = X(X ′X + aI)−1X ′

(the last equality can be checked by multiplying both sides by (XX ′ + aI) on
the left). If we now extend X by adding

√
aIp on top of it (where Ip = I is the

p × p unit matrix),

X̃ :=
(√

aIp
X

)
, (30)

and set
H̃ := X̃(X̃ ′X̃)−1X̃ ′ = X̃(X ′X + aI)−1X̃ ′, (31)

we will obtain a (p + n) × (p + n) matrix containing H in its lower right n × n
corner. To find HY for a vector Y ∈ R

n, we can extend Y to Ỹ ∈ R
p+n by

adding p zeros at the beginning of Y and then discard the first p elements in
H̃Ỹ . Notice that H̃ is the usual definition of the hat matrix associated with the
data matrix X̃ (cf. [3, (1.4a)]).

When discussing (11), we used the fact that the diagonal elements of H are
in [0, 1). It is well-known that the diagonal elements of the usual hat matrix,
such as H̃, are in [0, 1] (see, e.g., [3, Property 2.5(a)]). Therefore, the diagonal
elements of H are also in [0, 1]. Let us check that hi are in fact in the semi-
open interval [0, 1) directly, without using the representation in terms of H̃.
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Representing K = Q′ΛQ as above, where Λ is diagonal with nonnegative entries
and Q′Q = I, we have

H = (K + aI)−1K = (Q′ΛQ + aI)−1Q′ΛQ = (Q′(Λ + aI)Q)−1Q′ΛQ

= Q−1(Λ + aI)−1(Q′)−1Q′ΛQ = Q′(Λ + aI)−1ΛQ.(32)

The matrix (Λ + aI)−1Λ is diagonal with the diagonal entries in the semi-open
interval [0, 1). Since Q′Q = I, the columns of Q are vectors of length 1. By (32),
each diagonal element of H is then of the form

∑n
i=1 λiq

2
i , where all λi ∈ [0, 1)

and
∑n

i=1 q2i = 1. We can see that each diagonal element of H is in [0, 1).
The equality (11) itself was used only for motivation, so we do not prove it;

for a proof in the non-kernelized case, see, e.g., [14, (4.11) and Appendix C.7].

Proof of Lemma 2

In our proof of Bi > 0 we will assume a > 0, as usual. We will apply the results
discussed so far in this appendix to the matrix H̄ in place of H and to n + 1 in
place of n.

Our goal is to check the strict inequality

√
1 − h̄n+1 +

h̄i,n+1√
1 − h̄i

> 0; (33)

remember that both h̄n+1 and h̄i are numbers in the semi-open interval [0, 1).
The inequality (33) can be rewritten as

h̄i,n+1 > −
√

(1 − h̄n+1)(1 − h̄i) (34)

and in the weakened form

h̄i,n+1 ≥ −
√

(1 − h̄n+1)(1 − h̄i) (35)

follows from [3, Property 2.6(b)] (which can be applied to H̃).
Instead of the original hat matrix H̄ we will consider the extended matrix

(31), where X̃ is defined by (30) with X̄ in place of X. The elements of H̃ will
be denoted h̃ with suitable indices, which will run from −p + 1 to n + 1, in
order to have the familiar indices for the submatrix H̄. We will assume that
we have an equality in (34) and arrive at a contradiction. There will still be an
equality in (34) if we replace h̄ by h̃, since H̃ contains H̄. Consider auxiliary
“random residuals” E := (I − H̃)ε, where ε is a standard Gaussian random
vector in R

p+n+1; there are p + n + 1 random residuals E−p+1, . . . , En+1. Since
the correlation between the random residuals Ei and En+1 is

corr(Ei, En+1) =
−h̃i,n+1√

(1 − h̃n+1)(1 − h̃i)
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(this easily follows from I − H̃ being a projection matrix and is given in, e.g.,
[3, p. 11]), (35) is indeed true. Since we have an equality in (34) (with h̃ in place
of h̄), Ei and En+1 are perfectly correlated. Remember that neither row number
i nor row number n+1 of the matrix I −H̄ are zero (since the diagonal elements
of H̄ are in the semi-open interval [0, 1)), and so neither Ei nor En+1 are zero
vectors. Since Ei and En+1 are perfectly correlated, the row number i of the
matrix I − H̃ is equal to a positive scalar c times its row number n + 1. The
projection matrix I −H̃ then projects Rp+n+1 onto a subspace of the hyperplane
in R

p+n+1 consisting of the points with coordinate number i being c times the
coordinate number n + 1. The orthogonal complement of this subspace, i.e.,
the range of H̃, will contain the vector (0, . . . , 0,−1, 0, . . . , 0, c) (−1 being its
coordinate number i). Therefore, this vector will be in the range of X̃ (cf. (31)).
Therefore, this vector will be a linear combination of the columns of the extended
matrix (30) (with X̄ in place of X), which is impossible because of the first p
rows

√
aIp of the extended matrix.
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