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Abstract The next generation of X-ray Free Electron Laser (FEL) advanced light
sources allow users to drastically change beam properties for various experiments.
The main advantage of FELs over synchrotron light sources is their ability to pro-
vide more coherent, brighter flashes of light by tens of orders of magnitude with
custom bunch lengths down to tens of femtoseconds. The wavelength of the brighter,
more coherent light produced by an FEL is extremely dependent on both the electron
beam energy, which must be adjusted between different experiments, and maintain-
ing minimal electron bunch emittance. A large change in beam energy and bunch
length usually requires a lengthy manual re-tuning of almost the entire accelerator.
Therefore, unlike traditional machines which can operate for months or years at fixed
energies, RF, and magnet settings FELs must have the ability to be completely re-
tuned very quickly. For example, the Linac Coherent Light Source (LCLS) FEL can
provide electrons at an energy range of 4–14 GeV and 1 nC pulses with 300 fs pulse
width down to 20 pC pulses with 2 fs pulse width. The next generation of X-ray
FELs will provide even bright, shorter wave-length (0.05 nm at EuXFEL, 0.01 nm
at MaRIE), more coherent light, and at higher repetition rates (2 MHz at LCLS-II
and 30,000 lasing bunches/second at EuXFEL, 2.3 ns bunch separation at MaRIE)
than currently possible, requiring smaller electron bunch emittances than achievable
today. Therefore, the next generation of light sources face two problems in terms
of tuning and control. In parallel with the difficulties of improving performance to
match tighter constraints on energy spreads and beam quality, existing and espe-
cially future accelerators face challenges in maintaining beam quality and quickly
tuning between various experiments. We begin this chapter with a brief overview of
some accelerator beam dynamics and a list of control problems important to particle
accelerators. In the second half of this chapter we introduce some recently developed
model-independent techniques for the control and tuning of accelerators with a focus
on a feedback based extremum seeking method for automatic tuning and optimiza-
tion which can tune multiple coupled parameters simultaneously and is incredibly
robust to time-variation of system components and noise.

A. Scheinker (B)
Los Alamos National Laboratory, Los Alamos, NM, USA
e-mail: ascheink@lanl.gov

© Springer Nature Switzerland AG 2018
T. Lookman et al. (eds.), Materials Discovery and Design, Springer Series
in Materials Science 280, https://doi.org/10.1007/978-3-319-99465-9_9

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99465-9_9&domain=pdf


218 A. Scheinker

9.1 Introduction

Particle accelerators are large complex systems composed of many thousands of
coupled components which include radio frequency (RF) electromagnetic accelerat-
ing cavities, magnets, cooling systems, and detectors. For many decades accelerators
have been designedwith specific, static, operating conditions inmind, such as specific
beam energies, currents, repetition rates, and bunch separations. For example, the
Los Alamos Neutron Science Center accelerator is a ∼1 km long linear accelerator
that has two fixed design energies of 100 and 800MeV, and 8 fixed beam types which
vary in terms of bunch length, charge/bunch, and repetition rate. Once the accelerator
is tuned up following a maintenance outage, it is mostly continuously run with the
various beam types accommodated by a fixed magnet/RF system setup, with inter-
mediate tuning by operators to make up for small disturbances and fluctuations. The
advanced photon source (APS) is a ∼1 km circumference synchrotron with magnet
and RF systems tuned for a fixed 7 GeV electron beam which can be sent to various
user stations with unique magnet and optic systems including monochromators for
the production of specific light energy ranges from 3.5 to 100 keV. The Large Hadron
Collider at CERN is the world’s most powerful accelerator with a circumference of
27 km and beam energy of 6.5 TeV per beam for two counter circulating proton
beams. The machine is run at a fixed energy for years at a time while massive detec-
tors at four collision points collect data for fundamental particle physics research.
The three machines described above encompass a majority of existing accelerators,
which are designed for and operated at fixed settings, providing very specific beam
types and energies.

Unlike the static machines described above, the next generation of X-ray Free
Electron Laser (FEL) advanced light sources are being designed and operated with
the fundamentally different approach of allowing users to drastically change beam
properties for various experiments. The main advantage of FELs over synchrotron
light sources such as theAPS is their ability to providemore coherent, brighter flashes
of light by tens of orders of magnitude with custom bunch lengths down to tens of
femtoseconds. The wavelength of the brighter, more coherent light produced by an
FEL is extremely dependent on the electron beam energy, which must be adjusted
between different experiments. A large change in beam energy and bunch length
requires the re-tuning of almost the entire accelerator. For example, the shortest, few
femtosecond electron bunches require an adjustment of the source in lowering the
total electron bunch charge so that the space charge forces of such short pulses are
manageable. The bunch compressor system and RF energy settings and offsets must
then also be adjusted to provide the new, shorter bunch length. Finally, depending
on the required light and therefore electron beam energy of the given experiment,
the magnet focusing systems throughout the accelerator and the undulator must be
retuned. Therefore, unlike traditional machines which can operate for months or
years at fixed energies, RF, and magnet settings FELs must have the flexibility to be
completely re-tuned. For example, the Linac Coherent Light Source (LCLS) FEL
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can provide electrons at an energy range of 4–14 GeV and 1 nC pulses with 300 fs
pulse width down to 20 pC pulses with 2 fs pulse width.

The next generation of X-ray FELs will provide even bright, shorter wave-length
(0.05 nm at EuXFEL, 0.01 nm at MaRIE), more coherent light, and at higher rep-
etition rates (2 MHz at LCLS-II and 30000 lasing bunches/second at EuXFEL, 2.3
ns bunch separation at MaRIE) than currently possible, requiring smaller electron
bunch emittances than achievable today. Existing light sources are also exploring
new and exotic schemes such as two-color operation (LCLS, FLASH, SwissFEL).
To achieve their performance goals, the machines face extreme constraints on their
electron beams. TheLCLS-II requires<0.01% rms energy stability, a factor of>10×
more than the existing LCLS [1], while the EuXFEL requires <0.001 deg rms RF
amplitude and phase errors, respectively (current state of the art is ∼0.01) [2].

Therefore, the next generation of light sources face two problems in terms of
tuning and control. In parallelwith the difficulties of improving performance tomatch
tighter constraints on energy spreads and beam quality, existing and especially future
accelerators face challenges inmaintaining beam quality and quickly tuning between
various experiments. It can take up to 10 h to retune the low energy beam sections
(<500 MeV) and they still achieve sub-optimal results, wasting valuable beam time.
Future accelerators require an ability to quickly tune between experiments and to
compensate for extremely closely spaced electron bunches, such asmight be required
for MaRIE, requiring advanced controls and approaches such as droop correctors [3,
4].

While existing and planned FELs have automatic digital control systems, they are
not controlled precisely enough to quickly switch between different operating con-
ditions [5]. Existing controls maintain components at fixed set points, which are set
based on desired beam and light properties, such as, for example, the current settings
in a bunch compressor’s magnets. Analytic studies and simulations initially provide
these set points. However, models are not perfect and component characteristics drift
in noisy and time-varying environments; setting a magnet power supply to a certain
current today does not necessarily result in the same magnetic field as it would
have 3 weeks ago. Also, the sensors are themselves noisy, limited in resolution, and
introduce delays. Therefore, even when local controllers maintain desired set points
exactly, performance drifts. The result is that operators continuously tweak parame-
ters tomaintain steady state operation and spend hours tuningwhen large changes are
required, such as switching between experiments with significantly different current,
beam profile (2 color, double bunch setups), or wavelength requirements. Similarly,
traditional feed-forward RF beam loading compensation control systems are lim-
ited by model-based beam-RF interactions, which work extremely well for perfectly
known RF and beam properties, but in practice are limited by effects which include
un-modeled drifts and fluctuations and higher order modes excited by extremely
short pulses. These limitations have created an interest in model-independent beam-
based feedback techniques that can handle time-varying uncertain nonlinear systems
[6–13], as well as machine learning, and other optimization techniques [14–18].

We begin this chapter with a list of control problems important to particle accel-
erators and a brief overview of simple beam dynamics, including longitudinal and
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transverse effects and the coupling between them and an overview of RF systems.
The second half of this chapter introduces some recently developed techniques for
the control and tuning of accelerators with a focus on a feedback based extremum
seeking method for automatic tuning and optimization.

9.1.1 Beam Dynamics

The typical coordinate system for discussing particle accelerator beam dynamics is
shown in Fig. 9.1. The Lorentz force equation:

dP
dt

= e
(

E + v
c

× B
)

, (9.1)

describes charged particle dynamics. In (9.1) e is electron charge, v is velocity,

v = |v|, P = γmv the relativistic momentum, γ = 1/
√
1 − v2

c2 the Lorentz factor, c
the speed of light, E the electric field and B the magnetic field. In a particle accel-
erator E and B sources include electromagnetic accelerating fields, other charged
particles, and magnets used for steering and focusing of the beams. While electric
fields are used to accelerate particles, magnetic fields guide the particles along a
design trajectory and keep them from diverging transversely. We start by reviewing
betatron oscillations, a form of oscillatory motion which is common to all particle
accelerators [19–24].

Betatron oscillations are a general phenomenon occurring in all particle acceler-
ators and are of particular importance in circular machines. For a particle traveling
at the designed beam energy, p = p0, the transverse equations are given by Hill’s
equation

x ′′ = Kx (s)x, y′′ = Ky(s)y, (9.2)

with (x, y) being the transverse particle locations relative to the accelerator axis
(see Fig. 9.1), s (or z) is a parametrization of particle location along the axis of the
accelerator, and x ′(s) = dx(s)/ds. In a ring, the function Kx,y(s + L) = Kx,y(s) is
L-periodic, where L is the circumference of the accelerator, and depends onmagnetic
field strengths. Equation (9.2) resembles a simple harmonic oscillator with position-

x

y

s

ideal orbit

electron position (x,y,s)
^

^

^

Fig. 9.1 A coordinate system centered on the ideal particle orbit. Distance along the orbit is
parametrized by s. Transverse offset from the axis of the orbit is given by x and y
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dependent Kx,y(s). The solution of (9.2) is of the form

px,y(s) = A
√

βx,y(s) cos
(
ψx,y(s) + δ

)
, ψx,y(s) =

s∫

0

dσ

βx,y(σ )
, (9.3)

where βx,y(s) are the periodic solutions of the system of equations

β ′′′
x,y(s) + 4Kx,y(s)β

′
x,y(s) + 2K ′

x,y(s)β(s)x,y = 0, (9.4)

1

2
β(s)x,yβ

′′
x,y(s) − 1

4

(
β ′
x,y(s)

)2 + Kx,y(s)β
2
x,y(s) = 1. (9.5)

The solutions of (9.3) are known as betatron oscillations and are periodic functions
of s with varying amplitude and frequency [20].

In general, betatron motion is governed by equations of the form:

x ′′(s) = −Kx (x, y, s, P, t)x(s) + Fx (x, x
′, y, y′, s, P, t), (9.6)

y′′(s) = −Ky(x, y, s, P, t)y(s) + Fy(x, x
′, y, y′, s, P, t). (9.7)

The nonlinear coupling between x and y depends not only on particle position,
trajectory, energy deviation, and time.

Typically, quadrupole magnets focus the beam transversally, maintaining a tight
bunch along the accelerator axis, and dipole magnets having only a non-zero y
component of magnetic field direct the particles in a circular orbit in the (x, s) plane.
The linear quadrupole and dipole magnetic field components give (9.6), (9.7) of the
form

x ′′ = − p0
p

(
1

ρ2
− K1(s)

)
x + p − p0

p

1

ρ
, (9.8)

y′′ = − p0K1(s)

p
y. (9.9)

K1(s) is periodic and proportional to quadrupole field strength. The value p =√
E2/c2 − m2c2 is the total kinetic momentum. p0 is the designed kinetic momen-

tum. The value ρ is the local radius of curvature [20].
Sources of nonlinearity and coupling in the functions Fx and Fy in (9.6), (9.7)

are nonlinear magnetic field components, misaligned magnets, solenoid fields, mag-
netic field errors, and skew components of magnetic field gradients. Furthermore,
all manufactured magnets are non-ideal and introduce nonlinear field components,
higher order coupling terms given by [23]:

ΔBy + jΔBx = B0

∞∑
n=0

(bn + jan)(x + jy)n. (9.10)
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Fig. 9.2 BPM readings of x and y beam displacement over 500 turns, before and during tuning

Sometimes nonlinear magnets are purposely introduced into the accelerator lattice.
For example, sextuple magnets are placed in regions of high dispersion to mitigate
the fact that particles with various momentums experience non-equal forces from
the same magnetic fields and their trajectories diverge (chromatic effects). Such
magnets result in nonlinear coupling terms such as (x2 − y2) and (1 − Δ)xy, where
Δ = (p − p0)/p [20].

Betatron motion occurs in all accelerators, magnetic lattices are designed to min-
imize betatron oscillations. However, some regions of accelerators require large
amplitude transverse particle motion. If this motion is not carefully, precisely con-
trolled, excessive betatron oscillations are generated. One such section is a group
of pulsed kicker magnets used to horizontally kick the beam out and then inject
back into a machine. During injection kicks an imperfect match of parameters of the
magnets results in the extremely large betatron oscillations, as shown in Fig. 9.2.

9.1.2 RF Acceleration

Particle acceleration in an RF field. For a particle passing through an RF cavity gap
of length L , the energy gain due to an electromagnetic standing wave along the axis
is given by

ΔW = q

L/2∫

−L/2

E(z) cos(ωt (z) + φ)dz, t (z) =
z∫

0

dz

v(z)
, (9.11)

where t (z) has been chosen such that the particle is at the center of the accelerating
gap at t = 0, φ = 0 if the particle arrives at the origin when the field is at a crest,
and v(z) is the velocity of the particle. This energy gain can be expanded as

ΔW = q

L/2∫

−L/2

E(z) [cos(ωt (z)) cos(φ) − sin(ωt (z)) sin(φ)] dz (9.12)
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and rewritten in the form

ΔW = qV0T cos(φ) = qE0T L cos(φ), E0 = V0

L
, (9.13)

where

V0 =
L/2∫

−L/2

E(Z)dz, T =
∫ L/2
−L/2 E(z) cos(ωt (z))dz

V0
− tan(φ)

∫ L/2
−L/2 E(z) sin(ωt (z))dz

V0
,

(9.14)

and T known as the transit-time factor. For typical RF accelerating cavities, the
electric field is symmetric relative to the center of the gap and the velocity change
within an accelerating gap for a relativistic particle is negligible so ωt (z) ≈ ωz/v =
2π z/βλ, where β = v/c and βλ is the distance a particle travels in one RF period.
We can then rewrite the transit-time factor as

T =
∫ L/2
−L/2 E(z) cos (2π z/βλ) dz

V0
. (9.15)

Assuming that the electric field is constant E(z) ≡ E0 within the gap, we get

T = sin(πL/βλ)

πL/βλ
, (9.16)

and plugging back into (9.13) we get

ΔW = qE0βλ

π
cos(φ) sin

(
πL

βλ

)
, (9.17)

which is, as expected, maximized for φ = 0 and L = βλ/2, that is for a particle
that spends the maximal half of an RF period being accelerated through the cavity.
This however would not be an efficient form of acceleration as most of the time the
particle would see a much smaller than maximal RF field. For a given voltage gain
V0, we get a maximum T = 1 with L = 0, which is not realizable. Actual design
values of T depend on individual cavity geometries and desired efficiency.

9.1.3 Bunch Compression

For maximal acceleration, we typically choose φ = 0, especially for highly rela-
tivistic electrons. However, sometimes a nonzero φ is chosen either for longitudinal
bunching or to purposely introduce an energy gradient along the electron bunch
which can then be utilized for bunch compression. We define φ as the relative phase
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between a particle and the zero crossing of the RF field, such that earlier particles,
with φ < 0 will receive a higher energy gain than later particles with φ > 0. The
energy offset of a particle at phase φ at the exit of the RF compressor cavity, relative
to the reference particle, is given by

ΔE1 = ΔE0 − qVrf

E
sin(φ), (9.18)

where Vrf is the compressor voltage, E is beam energy, ΔE0 is the initial energy
offset. Next the beam is transported through a dispersive section with non-zero R56,
where

R56(s) =
s∫

s0

R16(s ′)
ρ(s ′)

ds ′, (9.19)

where R16 is the transverse displacement resulting froman energy error in a dispersive
region of the accelerator. The energy offset is then translated to a longitudinal position
offset according to

Δz1 = Δz0 + R56ΔE1 = Δz0 + R56

(
ΔE0 − qVrf

E
sin(φ)

)
. (9.20)

For an RF field of frequency ωrf , the phase φ relative to the RF at position offsetΔz0
is given by φ = −ωrfΔz0/c. If this phase is small, we can expand sine and rewrite
both the energy and position change as

Δz1 ≈
(
1 + R56

ωrfVrf

cE

)
Δz0 + R56ΔE0, (9.21)

ΔE1 = ΔE0 − eVrfωrf

cE
Δz0. (9.22)

Therefore the final bunch length can be approximated as

σz f =
√(

1 + R56
eVrfωrf

Ec

)2

σ 2
z0 + R2

56σ
2
ΔE0

, (9.23)

where σz0 is the initial bunch length and σΔE0 is the initial beam energy spread [26],
with maximal compression for an RF system adjusted such that R56

eVrfωrf
Ec ≈ −1.

9.1.4 RF Systems

For a right-cylindrical conducting cavity of radius Rc, as shown in Fig. 9.3, the 010
transverse-magnetic resonant mode, referred to as TM010, is used for acceleration
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Fig. 9.3 Left: Electromagnetic field orientations forTM010 acceleratingmode of a right cylindrical
RF cavity. Center: RLC circuit approximation of the dynamics of a single RF mode. Right: The
axial electric field is maximal on axis and zero at the walls of the cavity and the opposite is true of
the azimuthal magnetic field

because along the axis this mode has a large oscillating electric field and nomagnetic
field, as shown in Fig. 9.3. The electromagnetic fields of the TM010 mode are:

E(r, t) = E0 J0

(
2.405r

Rc

)
eiω0t ẑ = Ez(r)e

iω0t ẑ, (9.24)

B(r, t) = −i E0

√
ε

μ
J1

(
2.405r

Rc

)
eiω0t ϕ̂ = Bϕ(r)eiω0t ϕ̂, (9.25)

where J0 and J1 are Bessel functions of the first kind with zero and first order,
respectively, and the resonant frequency is given by

ω0 = 2.405c

Rc
, c = speed of light. (9.26)

The dynamics of such a single mode of an RF cavity with resonant frequency f0
can be approximated as

V̈cav + ω0

QL
V̇cav + ω2

0Vcav = 1

C
İ , (9.27)

where V̇ = dV
dt , V̈ = d2V

dt2 , ω0 = 2π f0, QL is the loaded quality factor of the res-
onant cavity, L and C are the inductance and capacitance of the cavity structure,
respectively, such that

√
LC = 1

ω0
, and I = Ic + Ib is the input current driving the

RF fields, the sources of which are both the RF generator, Ic, and the beam itself Ib
[19, 27, 28].

For a driving current of the form

Iu(t) = I0 cos(ω0t), (9.28)

after the fast decay of some transient terms, the cavity response is of the form

Vcav(t) = RI0
(
1 − e−t/τ

)
cos(ω0t), τ = 2QL

ω0
. (9.29)
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Fig. 9.4 Amplitude of the cavity field and its phase relative to a reference signal

9.1.5 Need for Feedback Control

Although (9.29) implies that for a desired accelerating gradient one must simply
choose the correct input power level and drive the cavity, as shown in Fig. 9.4. How-
ever, in the real world simply choosing set points for an RF drive signal does not
work because of un-modeled time varying disturbances which perturb cavity fields
from their desired set points. These disturbances include:

1. Temperature variation-induced resonance frequency drifts on the time scales of
minutes to hours.

2. Mechanical vibrations which alter the cavity resonance frequency on the times
scale of milliseconds.

3. RF source voltage and current fluctuations on the time scale of microseconds.
4. RF source voltage droop on the time scale of microseconds.

Furthermore, even if a desired accelerating voltage could be reached within a
desired rise time, when the beam that is to be accelerated shows up, it itself perturbs
the fields both by interacting with the oscillating electrons in the cavity walls and by
drawing energy out of the cavity via the electric field which accelerates it, causing
both amplitude and phase changes on the time scales of nanoseconds which must
be compensated for in order to maintain proper acceleration of subsequent beam
bunches.

Therefore real time active feedback control is always necessary, both to bring
cavity voltage amplitudes and phases to their required set points before beam can be
properly accelerated and during beam acceleration in order to maintain tight bounds
on beam-induced cavity field errors, known as beam loading.

From the abovediscussions it is clear that all of the disturbances experiencedby the
RF systems immediately couple into the transverse and longitudinal beam dynamics.
Similarly, many of the beam dynamics, including the effects of space charge forces,
magnet misalignments, and energy deviations alter a particle’s position within a
bunch and therefore the phase of the RF system relative to the particle’s arrival time
and therefore the entire accelerator is a completely coupled system in terms of the
final beam phase space distribution relative to the RF systems, magnet systems, and
the forces due to the particles in the beam itself.
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9.1.6 Standart Proportional Integral (PI) Control for RF
Cavity

The vast majority of accelerator systems, such as RF feedback and power con-
verters are typically controlled at fixed set points with simple, classical, propor-
tional integral (PI) controllers. Therefore we start with a detailed overview of
RF cavity phase and amplitude PI control. To develop feedback controllers we
must consider the coupled beam-cavity-RF source system. We consider only the
ω0 frequency component of the beam, Ab(t) cos(ω0t + θb(t)), an RF driving cur-
rent of the form Ic(t) = Ac(t) cos(ωt + θc(t)), and a cavity field of the form
Vcav(t) = Acav(t) cos(ωt + θcav(t)). The single second order differential equations
describing the cavity dynamics, (9.27), can then be simplified to two coupled, linear,
first order differential equations:

İ = −ω 1
2
I − ΔωQ + βI,c Ic + βI,b Ib, (9.30)

Q̇ = ΔωI − ω 1
2
Q + βQ,cQc + βQ,bQb, (9.31)

where Δω = ω − ω0 is the difference between RF generator and cavity resonance
frequencies, ω 1

2
= ω0/2QL , and the I and Q quantities represent

I (t) = Acav(t) cos(θcav(t)), Ic(t) = Ac(t) cos(θc(t)), Ib(t) = Ab(t) cos(θb(t)), (9.32)
Q(t) = Acav(t) sin(θcav(t)), Qc(t) = Ac(t) sin(θc(t)), Qb(t) = Ab(t) sin(θb(t)), (9.33)

from which amplitudes and phases can be calculated according to

A•(t) =
√
I 2• (t) + Q2•(t), θ•(t) = arctan

(
Q•(t)
I•(t)

)
. (9.34)

Equations (9.30), (9.31) can be written in the compact linear form

ẋ = Ax + Bcu + Bbd, x =
[
I
Q

]
, A =

[−ω 1
2

−Δω

Δω −ω 1
2

]
, u =

[
Ic
Qc

]
, d =

[
Ib
Qb

]
,

(9.35)
where u refers to the control vector, and the beam itself, d, is thought of as a distur-
bance. The goal of RF feedback control is typically to maintain the cavity field as
given by x at a desired set point thereby ensuring proper acceleration of the beam. In
addition to providing a simple, linear approximation of the dynamics of the beam,
cavity, and RF generator system, (9.35) is very useful because a typical digital RF
system does not have access to the raw cavity voltage signal Vcav(t), but rather to
Icav(t) and Qcav(t), which are provided by down sampling the cavity field signal. For
example, at the Los Alamos Neutron Science Center (LANSCE) linear accelerator,
fRF = 201.25MHz RF signals of the form Vcav(t) = Acav(t) cos(2π fRF t + θcav(t))
are first mixed down via local oscillators to signals at an intermediate frequency
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f I F = 25MHz, of the form Acav(t) cos(2π f I F t + θcav(t)), which can be expanded
in the I, Q formalism as:

Acav(t) cos(2π f I F t + θcav(t))

= Acav(t) cos(θcav(t))︸ ︷︷ ︸
Icav(t)

cos(2π f I F t) − Acav(t) sin(θcav(t))︸ ︷︷ ︸
Qcav(t)

cos(2π f I F t)

= Icav(t) cos(2π f I F t) − Qcav(t) cos(2π f I F t) sin(2π f I F t). (9.36)

Then, by oversampling the signal (9.36) at the rate fs = 4 × f I F , the analog to digital
converter (ADC) collects samples at time steps nt = n

f s :

Vcav

(
n

4 f I F

)
= Icav

(
n

4 f I F

)
cos

(nπ

2

)
− Qcav

(
n

4 f I F

)
sin

(nπ

2

)
, (9.37)

directly receiving the samples:

{Icav(0),−Qcav(ts),−Icav(2ts), Qcav(3ts), . . . } . (9.38)

The job of the RF control system is to maintain the cavity fields at amplitude
and phase set points, As(t) and θs(t), respectively, which translate into I and Q set
points: Is(t) = As(t) cos(θs(t)), Qs(t) = As(t) sin(θs(t)). The most simple typical
RF feedback control system first compares the cavity I and Q signals to their set
points and calculates error signals Ie(t) = Icav(t) − Is(t), Qe(t) = Qcav(t) − Qs(t),
and then performs proportional-integral feedback control of the form

Ic(t) = −kp Ie(t) − ki

t∫

0

Ie(τ )dτ, Qc(t) = −kpQe(t) − ki

t∫

0

Qe(τ )dτ.

(9.39)

Typically particle accelerators are pulsed at rates of tens to hundreds of Hz. For
example, in the LANSCE accelerator, the RF drive power is turned on for 1ms at a
rate of 120Hz. Once RF is turned on, cavity fields build up and reach steady state
within a few hundred microseconds, after which the cavities are ready to accelerate
the beam, whose sudden arrival perturbs the cavity fields, as shown in Fig. 9.5.

Although the initial I and Q set points are in the forms of smooth ramps, as seen
from the shape of the cavity field amplitude in Fig. 9.5, once the field has reached
steady state and before the beam has arrived, the set points are fixed in order to
maintain a precise field amplitude and phase offset of the bunches relative to the RF
zero crossing. Therefore, in what follows we consider the cavity set points only after
steady state has been reached and they are therefore constants of the form:

Is(t ≥ Trise) ≡ Is(Trise) = Ir , Qs(t ≥ Trise) ≡ Qs(Trise) = Qr . (9.40)
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Fig. 9.5 The RF source, Ic(t), is turned on at a rate of 120 Hz, for ∼1 ms per pulse. The beam,
Ib(t), arrives around ∼350 µs into the pulse after the cavity field, Vcav(t), has had time to settle.
The beam’s arrival disrupts the cavity field’s steady state

Plugging the feedback (9.39) into the cavity dynamics (9.35) and rewriting the
dynamics in terms of the error variables, we are then left with the closed loop system

ẋe = Axe + Axr − kp Bcxe − ki Bc

t∫

0

xe(τ )dτ + Bbd, xe =
[

Ie
Qe

]
, xr =

[
Ir
Qr

]
.(9.41)

Taking the Laplace transform of both sides of (9.41), assuming that we are at steady
state so that xe(Trise) = 0, we get

sXe(s) = AXe(s) + 1

s
Axr − kpBcXe(s) − 1

s
ki BcXe(s) + BdD(s)

=⇒
Xe(s) = (

s2 I − s
(
kpBc − A

) + ki Bc
)−1

(Axr + sBdD(s)) . (9.42)

The gains, ki and kp of the simple PI feedback control loop are then tuned in order
to maintain minimal error despite the disturbances Axr and sBdD(s). The constant
term Axr is due to the natural damping of the RF cavity and is easily compensated
for. Themore important andmore difficult to deal with term is sBdD(s), which, in the
time domain is proportional to the derivative of the beam current Bd ḋ(t). Because the
beam is typically ramped up to an intense current very quickly (tens ofmicroseconds)
or consists of an extremely short pulse, the derivative term is extremely disruptive to
the cavity field phase and amplitude. Some typical beam current and bunch timing
profiles are shown in Fig. 9.6. Currently LCLS is able to accelerate 1 nC during
extremely powerful ∼3 µs RF pulses, with a separation of 8.3 ms between bunches.
The European XFEL is pushing orders of magnitude beyond the LCLS bunch timing
with 1 nC pulses separated by only 220 ns. This is extremely challenging for an
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Fig. 9.6 Beam current time profiles of several accelerators are shown

RF system which must maintain field amplitude and phase set points and recover
between bunches. The proposed MaRIE accelerator will push this problem another
order of magnitude in attempting to accelerate high charge pulses with only ∼2.5 ns
of separation.

Although the PI controller used in (9.41) can theoretically hold the error xe arbi-
trarily close to zero arbitrarily fast by choosing large enough gains ki and kp relative
to the magnitude of the beam disturbance

∥∥Bd ḋ(t)
∥∥, in practice all control gains

are limited by actuator saturation, response time, and most importantly, delay in the
feedback loop. A typical RF feedback loop is shown in Fig. 9.7 and may experience
as much as 5µs of round trip delay, which is an large delay relative to beam transient
times.

Consider for example the following scalar, delay system, where the goal is to
quickly drive x(t) to zero from an arbitrary initial condition, but only being able to
do so based on a controller which uses a delayed measurement of x(t), x(t − D).
Considering a simply proportional feedback control, u = −kx , for the system

ẋ(t) = u(x(t − D)) =⇒ ẋ(t) = −kx(t − D), (9.43)

taking Laplace transforms we get

sX (s) − x(0) = −ke−Ds X (s) =⇒ X (s) = x(0)

s + ke−Ds
. (9.44)

If we assume the delay is small, D 
 1, we can approximate e−Ds ≈ 1 − Ds, invert
the Laplace transform and get the solution
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Fig. 9.7 Typical digital RF control setup with signals coming from the cavity into the digital
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Fig. 9.8 Cavity field errors with frequency shift, RF power droop, beam loading, and simple
proportional-integral feedback control

x(t) = x(0)eγ t , γ = −k

1 − kD
, (9.45)

which exponentially converges to 0 for γ < 0, requiring that k satisfy 1
D > k > 0, a

limit on possible stabilizing values of the feedback control gain. If our system (9.43)
had an external disturbance, d(t) the gain limit would be a major limitation in terms
of compensating for large or fast d(t).

Because of such limitations, a feedback only LLRF system’s response to beam
loading would typically look like the results shown in Fig. 9.8, where each intense
beam pulse causes a large deviation of the accelerating field’s voltage from the design
phase and amplitude, which must be restored before the next bunch can be properly
accelerated.
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9.2 Advanced Control and Tuning Topics

For problems which can be accurately modeled, such as systems that do not vary
with time and for which extensive, detailed diagnostics exist, there are many power-
ful optimization methods such as genetic algorithms (GA), which can be used during
the design of an accelerator by performing extremely large searches over parameter
space [29]. Such multi-objective genetic algorithms (MOGA) have been applied for
the design of radio frequency cavities [30], photoinjectors [31], damping rings [32],
storage ring dynamics [33], lattice design [34], neutrino factory design [35], simul-
taneous optimization of beam emittance and dynamic aperture [36], free electron
laser linac drivers [37] and various other accelerator physics applications [38]. One
extension of MOGA is multi-objective particle swarm optimization, has been used
for emittance reduction [39]. Brute force approaches such as GA and MOGA search
over the entire parameter space of interest and therefore result in global optimiza-
tion, however, such model-based approaches are only optimal relative to the specific
model which they are using, which in practice rarely exactly matches the actual
machine when it is built. Differences are due to imperfect models, uncertainty, and
finite precision of construction. Therefore, actual machines settings undergo exten-
sive tuning and tweaking in order to reach optimal performance. Recently efforts
have been made to implement a GA method on-line for the minimization of beam
size at SPEAR3 [40]. Robust conjugate direction search (RCDS) is another optimiza-
tion method. RCDS is model independent, but at the start of optimization in must
learn the conjugate directions of the given system, and therefore is not applicable
to quickly time-varying systems [41, 42]. Optimization of nonlinear storage ring
dynamics via RCDS and particle swarm has been performed online [43].

Although many modern, well behaved machines can possibly be optimized with
any of the methods mentioned above, and once at steady state, the operation may
not require the fast re-tuning future light sources will require algorithms with an
ability to quickly switch between various operating conditions and to handle quickly
time-varying systems, based only on scalar measurements, rather than a detailed
knowledge of the system dynamics, when compensating for complex collective
effects. If any of the methods above were used, they would have to be repeated
every time component settings were significantly changed and it is highly unlikely
that they would converge or be well behaved during un-modeled, fast time-variation
of components. Therefore, a model-independent feedback-based control and tuning
procedure is required which can function on nonlinear and time varying systemswith
many coupled components.

The type of tuning problems that we are interested in have recently been
approached with powerful machine learning methods [15, 44], which are show-
ing very promising results. However, these methods require large training sets in
order to learn how to reach specific machine set points, and interpolate in between.
For example, if a user requests a combination of beam energy, pulse charge, and
bunch length, which was not a member of a neural network-based controller’s learn-
ing set, the achieved machine performance is not predictable. Furthermore, machine
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components slowly drift with time and un-modeled disturbances are present and limit
any learning-based algorithm’s abilities. Extremum seeking (ES) is a simple, local,
model-independent algorithm for accelerator tuning, whose speed of convergence
allows for the optimization and real-time tracking of many coupled parameters for
time-varying nonlinear systems. Because ES is model independent, robust to noise,
and has analytically guaranteed parameter bounds and update rates, it is useful for
real time feedback in actual machines. One of the limitations of ES is that it is a local
optimizer which can possible be trapped in local minima.

It is our belief that the combination of ES and machine learning methods will
be a powerful method for quickly tuning FELs between drastically different user
desired beam and light properties. For example, once a deep neural network (NN)
has learned a mapping of machine settings to light properties for a given accelerator
based on collected machine data, it can be used to quickly bring the machine within
a local proximity of the required settings for a given user experiment. However,
the performance will be limited by the fact that the machine changes with time,
that the desired experiment settings were not in the training data, and un-modeled
disturbances. Therefore, once brought within a small neighborhood of the required
settings via NN, ES can be used to achieve local optimal tuning, which can also
continuously re-tune to compensate for un-modeled disturbances and time variation
of components. In the remainder of this chapter we will focus on the ES method,
giving a general overview of the procedure and several simulation and in-hardware
demonstrations of applications of the method. Further details on machine learning
approaches can be found in [15, 44] and the references within.

9.3 Introduction to Extremum Seeking Control

The Extremum seeking method described in this chapter is a recently developed
general approach for the stabilization of noisy, uncertain, open-loop unstable, time-
varying systems [6, 7]. The main benefits of this approach are:

1. The method can tune many parameters of unknown, nonlinear, open-loop unsta-
ble systems, simultaneously.

2. The method is robust to measurement noise and external disturbances and can
track quickly time-varying parameters.

3. Although operating on noisy and analytically unknown systems, the parameter
updates have analytically guaranteed constraints, which make it safe for in-
hardware implementation.

This method has been implemented in simulation to automatically tune large sys-
tems of magnets and RF set points to optimize beam parameters [11], it has been
utilized in hardware at the proton linear accelerator at the Los Alamos Neutron
Science Center to automatically tune two RF buncher cavities to maximize the RF
system’s beam acceptance, based only on a noisy measurement of beam current [12],
it has been utilized at the Facility for Advanced Accelerator Experimental Tests, to



234 A. Scheinker

non-destructively predict electron bunch properties via a coupling of simulation and
machine data [13], it has been utilized for bunch compressor design [45], and has
been used for the automated tuning of magnets in a time-varying lattice to contin-
uously minimize betatron oscillations at SPEAR3 [8]. Furthermore, analytic proofs
of convergence for the method are available for constrained systems with general,
non-differentiable controllers [9, 10].

9.3.1 Physical Motivation

It has been shown that unexpected stability properties can be achieved in dynamic
systems by introducing fast, small oscillations. One example is the stabilization of
the vertical equilibrium point of an inverted pendulum by quickly oscillating the
pendulum’s pivot point. Kapitza first analyzed these dynamics in the 1950s [46].
The ES approach is in some ways related to such vibrational stabilization as high
frequency oscillations are used to stabilize desired points of a system’s state space
and to force trajectories to converge to these points. This is done by creating cost
functions whose minima correspond to the points of interest, allowing us to tune a
large family of systems without relying on any models or system knowledge. The
method even works for unknown functions, where we do not choose which point
of the state space to stabilize, but rather are minimizing an analytically unknown
function whose noisy measurements we are able to sample.

To give an intuitive 2D overview of thismethod, we consider finding theminimum
of an unknown function C(x, y). We propose the following scheme:

dx

dt
= √

αω cos (ωt + kC(x, y)) (9.46)

dy

dt
= √

αω sin (ωt + kC(x, y)) . (9.47)

Note that although C(x, y) enters the argument of the adaptive scheme, we do not
rely on any knowledge of the analytic form of C(x, y), we simply assume that it’s
value is available for measurement at different locations (x, y).

The velocity vector,

v =
(
dx

dt
,
dy

dt

)
= √

αω [cos (θ(t)) , sin (θ(t))] , (9.48)

θ(t) = ωt + kC(x(t), y(t)), (9.49)

has constant magnitude, ‖v‖ = √
αω, and therefore the trajectory (x(t), y(t))moves

at a constant speed. However, the rate at which the direction of the trajectories’
heading changes is a function of ω, k, and C(x(t), y(t)) expressed as:
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Fig. 9.9 The subfigure in the bottom left shows the rotation rate, ∂θ
∂t = ω + ∂C(x,y)

∂t , for the part of
the trajectory that is bold red, which takes place during the first 0.5 s of simulation. The rotation of
the parameters’ velocity vector v(t) slows down when heading towards the minimum of C(x, y) =
x2 + y2, at which time k ∂C

∂t < 0, and speeds up when heading away from the minimum, when

k ∂C
∂t > 0. The system ends up spending more time heading towards and approaches the minimum

of C(x, y)

dθ

dt
= ω + k

(
∂C

∂x

dx

dt
+ ∂C

∂y

dy

dt

)
. (9.50)

Therefore, when the trajectory is heading in the correct direction, towards a decreas-
ing value of C(x(t), y(t)), the term k ∂C

∂t is negative so the overall turning rate ∂θ
∂t

(9.50), is decreased. On the other hand, when the trajectory is heading in the wrong
direction, towards an increasing value of C(x(t), y(t)), the term k ∂C

∂t is positive,
and the turning rate is increased. On average, the system ends up approaching the
minimizing location of C(x(t), y(t)) because it spends more time moving towards
it than away.

The ability of this direction-dependent turning rate scheme is apparent in the
simulation of system (9.46), (9.47), in Fig. 9.9. The system, starting at initial location
x(0) = 1, y(0) = −1, is simulated for 5 swith update parametersω = 50, k = 5,α =
0.5, andC(x, y) = x2 + y2.We compare the actual system’s (9.46), (9.47) dynamics
with those of a system performing gradient descent:

dx̄

dt
≈ −kα

2

∂C(x̄, ȳ)

∂ x̄
= −kα x̄ (9.51)

d ȳ

dt
≈ −kα

2

∂C(x̄, ȳ)

∂ ȳ
= −kαȳ, (9.52)

whose behavior our system mimics on average, with the difference
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max
t∈[0,T ]

‖(x(t), y(t)) − (x̄(t), ȳ(t))‖ (9.53)

made arbitrarily small for any value of T , by choosing arbitrarily large values of ω.
Towards the end of the simulation, when the system’s trajectory is near the origin,

C(x, y) ≈ 0, and the dynamics of (9.46), (9.47) are approximately

∂x

∂t
≈ √

αω cos (ωt) =⇒ x(t) ≈
√

α

ω
sin (ωt) (9.54)

∂y

∂t
≈ √

αω sin (ωt) =⇒ y(t) ≈ −
√

α

ω
cos (ωt) , (9.55)

a circle of radius
√

α
ω
, which is made arbitrarily small by choosing arbitrarily large

values of ω. Convergence towards a maximum, rather than a minimum is achieved
by replacing k with −k.

9.3.2 General ES Scheme

For general tuning, we consider the problem of locating an extremum point of the
function C(p, t) : Rn × R

+ → R, for p = (p1, . . . , pn) ∈ R
n , when only a noise-

corrupted measurement y(t) = C(p, t) + n(t) is available, with the analytic form of
C unknown. For notational convenience, in what follows we sometimes write C(p)

or just C instead of C(p(t), t).
The explanation presented in the previous section used sin(·) and cos(·) functions

for the x and y dynamics to give circular trajectories. The actual requirement for
convergence is for an independence, in the frequency domain, of the functions used to
perturb different parameters. In what follows, replacing cos(·)with sin(·) throughout
makes no difference.

Theorem 1 Consider the setup shown in Fig.9.10 (for maximum seeking we replace
k with −k):

ṗi = √
αωi cos (ωi t + ky) , y = C(p, t) + n(t) (9.56)

C(p1,...,pn,t)
ui

pi(t)

cos(•)√αωi

ωit

C

k

1
s

n(t)

y(t)

Fig. 9.10 Tuning of the i th component pi of p = (p1, . . . , pn) ∈ R
n . The symbol 1

s denotes the

Laplace Transform of an integrator, so that in the above diagram pi (t) = pi (0) + ∫ t
0 ui (τ )dτ
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where ωi = ω0ri such that ri �= r j ∀i �= j and n(t) is additive noise. The trajectory
of system (9.56) approaches the minimum of C(p, t), with its trajectory arbitrarily
close to that of

˙̄p = −kα

2
∇C, p̄(0) = p(0) (9.57)

with the distance between the two decreasing as a function of increasing ω0. Namely,
for any given T ∈ [0,∞), any compact set of allowable parameters p ∈ K ⊂ R

m,
and any desired accuracy δ, there exists ω�

0 such that for all ω0 > ω�
0, the distance

between the trajectory p(t) of (9.56) and p̄(t) of (9.57) satisfies the bound

max
p,p̄∈K ,t∈[0,T ]

‖p(t) − p̄(t)‖ < δ. (9.58)

Remark 1 One of the most important features of this scheme is that on average
the system performs a gradient descent of the actual, unknown function C despite
feedback being based only on its noise corrupted measurement y = C(p, t) + n(t).

Remark 2 The stability of this scheme is verified by the fact that an addition of an
un-modeled, possibly destabilizing perturbation of the form f(p, t) to the dynamics
of ṗ results in the averaged system:

˙̄p = f(p̄, t) − kα

2
∇C, (9.59)

which may be made to approach the minimum of C , by choosing kα large enough
relative to the values of

∥∥(∇C)T
∥∥ and ‖f(p̄, t)‖.

Remark 3 In the case of a time-varying max/min location p�(t) ofC(p, t), there will
be terms of the form:

1√
ω

∣∣∣∣
∂C(p, t)

∂t

∣∣∣∣ , (9.60)

which are made to approach zero by increasing ω. Furthermore, in the analysis of
the convergence of the error pe(t) = p(t) − p�(t) there will be terms of the form:

1

kα

∣∣∣∣
∂C(p, t)

∂t

∣∣∣∣ . (9.61)

Together, (9.60) and (9.61) imply the intuitively obvious fact that for systems whose
time-variation is fast, in which the minimum towards which we are descending is
quickly varying, both the value of ω and of the product kα must be larger than for
the time-invariant case.

Remark 4 In the case of different parameters having vastly different response char-
acteristics and sensitivities (such as when tuning both RF and magnet settings in the
same scheme), the choices of k andαmaybe specified differently for each component
pi , as ki and αi , without change to the above analysis.
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Fig. 9.11 ES for
simultaneous stabilization
and optimization of an
unknown, open-loop
unstable system based on a
noise corrupted scalar
measurement

Unknown, noise corrupted, 
and time-variyng

-k
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unstable

ES

C + n(t)

A more general form of the scheme for simultaneous stabilization and optimiza-
tion of an n-dimensional open-loop unstable systemwith analytically unknownnoise-
corrupted output function C(x, t) is shown in Fig. 9.11, but will not be discussed in
detail here.

9.3.3 ES for RF Beam Loading Compensation

The ES method described above has been used both in simulation and optimization
studies and has been implemented in hardware in accelerators. We now return to the
RF problem described in Sect. 9.1.6, where we discussed the fact that due to delay-
limited gains and power limitations, the sudden transient caused by beam loading
greatly disturbs the RF fields of accelerating cavities which must be re-settled to
within prescribed bounds before the next bunches can be brought in for acceleration.
ES has been applied to this beam loading problem in the LANSCE accelerator via
high speed field programmable gate array (FPGA).

In order to control the amplitude and phase of the RF cavity accelerating field, the
I (t) = A(t) cos(θ(t)) and Q(t) = A(t) sin(θ(t)) components of the cavity voltage
signal were sampled as described in Sect. 9.1.6, at a rate of 100 MS/s during a 1000
µs RF pulse. The detected RF signal was then broken down into 10 µs long sections
and feed forward Iff, j (n) and Qff, j (n) control outputs were generated for each 10 µs
long section, as shown in Fig. 9.12.

Remark 5 In the discussion and figures that follow, we refer to Icav(t) and Qcav(t)
simply as I (t) and Q(t).

The iterative extremumseekingwas performedvia finite difference approximation
of the ES dynamics:

x(t + dt) − x(t)

dt
≈ dx

dt
= √

αω cos(ωt + kC(x, t)), (9.62)

by updating the feedforward signals according to
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Fig. 9.12 Top: Iterative scheme for determining I and Q costs during 1–10µs intervals. Bottom:
ES-based feedforward outputs for beam loading transient compensation

Iff, j (n + 1) = Iff, j (n) + Δ
√

αω cos
(
ωnΔ + kCI, j (n)

)
, (9.63)

and
Qff, j (n + 1) = Qff, j (n) + Δ

√
αω sin

(
ωnΔ + kCQ, j (n)

)
, (9.64)

where the individual I and Q costs were calculated as

CI, j (n) =
t j+1∫

t j

|I (t) − Is(t)| dt, (9.65)

CQ, j (n) =
t j+1∫

t j

|Q(t) − Qs(t)| dt. (9.66)

Note that although the I j and Q j parameters were updated on separate costs, they
were still dithered with different functions, sin(·) and cos(·), to help maintain orthog-
onality in the frequency domain. The feed forward signals were then added to the
PI and static feed forward controller outputs. Running at a repetition rate of 120 Hz,
the feedback converges within several hundred iterations or a few seconds.

These preliminary experimental results are shown in Fig. 9.13 and summarized in
Table9.1. The maximum, rms, and average values are all calculated during a 150µs
windowwhich includes the beam turn on transient to capture the worst case scenario.
The ES-based scheme is a >2× improvement over static feed-forward in terms of
maximum errors and a >3× improvement in terms of rms error. With the currently
used FPGA, the ES window lengths can be further reduced from 10µs to 10 ns and
with the latest FPGAs down to 1 ns, which will greatly improve the ES performance.
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Fig. 9.13 Phase and amplitude errors shown before, during, and after beam turn-on transient. The
histogram data shown is collected during the dashed histogram window, and cleaned up via 100
point moving average after raw data was sampled at 100MS/s. Black: Beam OFF. Blue: Beam ON,
feedback, and static feed-forward only. Red: Beam ON, feedback, static feed-forward, and iterative
ES feed-forward

Table 9.1 ES performance during beam turn on transient

No Beam Beam, No ES Beam and ES

max A error (%) ±0.06 ±0.41 ±0.22

rms A error (%) 0.025 0.168 0.066

mean A error (%) −0.003 −0.114 −0.024

max θ error (%) ±0.09 ±0.57 ±0.21

rms θ error (%) 0.028 0.283 0.108

mean θ error (%) 0.016 −0.208 −0.034

9.3.4 ES for Magnet Tuning

ES has also been tested in hardware for magnet-based beam dynamics tuning, as
described in Sect. 9.1.1. At the SPEAR3 synchrotron at LCLS, ES was used for
continuous re-tuning of the eight parameter system shown in Fig. 9.14, in which
the delay, pulse width, and voltage of two injection kickers, K1 and K2, as well as
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Fig. 9.14 Kicker magnets and skew quadrupole magnets. When the beam is kicked in and out of
orbit, because of imperfect magnet matching, betatron oscillations occur, which are sampled at the
BPM every time the beam completes a turn around the machine

the current of two skew quadrupoles S1 and S2, were tuned in order to optimize
the injection kicker bump match, minimizing betatron oscillations. At SPEAR3, we
simultaneously tuned 8 parameters: (1). p1 = K1 delay. (2). p2 = K1 pulse width.
(3). p3 = K1 voltage. (4). p4 = K2 delay. (5). p5 = K2 pulse width. (6). p6 = K2

voltage. (7). p7 = S1 current. (8). p8 = S2 current. The parameters are illustrated in
Figs. 9.14, 9.15. While controlling the voltage for the kicker magnets K1, K2, and
the current for the skew quadrupole magnets S1, S2, in each case a change in the
setting resulted in a change in magnetic field strength.

The cost function used for tuning was a combination of the horizontal, σx ,
and vertical, σy , variance of beam position monitor readings over 256 turns, the
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minimization of which resulted in decreased betatron oscillations,

C =
√√√√ 1

256

256∑
i=1

(x(i) − x̄)2 +
√√√√ 9

256

256∑
i=1

(y(i) − ȳ)2

= σx + 3σy, (9.67)

where the factor of 3 was added to increase the weight of the vertical oscillations,
which require tighter control since the vertical beam size is much smaller and there-
fore users are more sensitive to vertical oscillations.

The cost was based on beam position monitor (BPM) measurements in the
SPEAR3 ring based on a centroid x and y position of the beam recorded at each
revolution, as shown in Fig. 9.14. Variances σx and σy were calculated based on
this data, as in (9.67). Feedback was implemented via the experimental physics and
industrial control system (EPICS) [47].

To demonstrate the scheme’s ability to compensate for an uncertain, time-varying
perturbation of the system, we purposely varied the voltage (and therefore resulting
magnetic field strength) of the third kicker magnet, K3(t). The kicker voltage was
varied sinusoidally over a range of ±6% over the course of 1.5 h, which is a very
dramatic and fast change relative to actual machine parameter drift rates and mag-
nitudes. The ES scheme was implemented by setting parameter values, kicking an
electron beam out and back into the ring, and recording beam position monitor data
for a few thousand turns. Based on this data the cost was calculated as in (9.67), based
on a measurement of the horizontal and vertical variance of beam position monitor
readings. The magnet settings were then adjusted, the beam was kicked again, and
a new cost was calculated. This process was repeated and the cost was iteratively,
continuously minimized.

Figure9.14 shows the cost, which is a function of betatron oscillation, versusmag-
net setting K3(t), with and without ES feedback. For large magnetic field deviations,
the improvement is roughly a factor of 2.5.

9.3.5 ES for Electron Bunch Longitudinal Phase Space
Prediction

The Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC
National Accelerator Laboratory produces high energy electron beams for plasma
wakefield acceleration [48]. For these experiments, precise control of the longitudinal
beam profile is very important. FACET uses an x-band transverse deflecting cavity
(TCAV) to streak the beam and measure the bunch profile (Fig. 9.16a). Although the
TCAV provides an accurate measure of the bunch profile, it is a destructive measure-
ment; the beam cannot be used for plasma wakefield acceleration (PWFA) once it
has been streaked. In addition, using the TCAV to measure the bunch profile requires
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Fig. 9.16 The energy spectrum is recorded as the electron bunch passes through a series of magnets
and radiates x-rays. The intensity distribution of the X-rays is correlated to the energy spectrum
of the electron beam (a). This non-destructive measurement is available at all times, and used as
the input to the ES scheme, which is then matched by adaptively tuning machine parameters in the
simulation. For the TCAVmeasurement, the electron bunch is passed through a high frequency (11.4
GHz) RF cavity with a transverse mode, in which it is streaked and passes through a metallic foil
(b). The intensity of the optical transition radiation (OTR) is proportional to the longitudinal charge
density distribution. This high accuracy longitudinal bunch profile measurement is a destructive
technique

adjusting the optics of the final focus system to optimize the resolution and accuracy
of measurement. This makes it a time consuming process and prevents on-the-fly
measurements of the bunch profile during plasma experiments.

There are two diagnostics that are used as an alternative to the TCAV that provide
information about the longitudinal phase space in a non-destructive manner. The
first is a pyrometer that captures optical diffraction radiation (ODR) produced by
the electron beam as it passes through a hole in a metal foil. The spectral content
of the ODR changes with bunch length. The pyrometer is sensitive to the spectral
content and the signal it collects is proportional to 1/σz , where σz is the bunch
length. The pyrometer is an excellent device for measuring variation in the shot-to-
shot bunch profile but provides no information about the shape of the bunch profile or
specific changes to shape. The seconddevice is a non-destructive energy spectrometer
consisting of a half-period vertical wiggler located in a region of large horizontal
dispersion. The wiggler produces a streak of X-rays with an intensity profile that
is correlated with the dispersed beam profile. There X-rays are intercepted by a
scintillating YAG crystal and imaged by a CCD camera (Fig. 9.16b). The horizontal
profile of the x-ray streak is interpreted as the energy spectrum of the beam [49].

The measured energy spectrum is observed to correlate with the longitudinal
bunch profile in a one-to-one manner if certain machine parameters, such as chi-
cane optics, are fixed. To calculate the beam properties based on an energy spectrum
measurement, the detected spectrum is compared to a simulated spectrum created
with the 2D longitudinal particle tracking code, LiTrack [50]. The energy spread of
short electron bunches desirable for plasma wakefield acceleration can be uniquely



244 A. Scheinker

−20

0

20

40

60

80

100

120

140

160
180

0 100 200 300 400 500 600 700
1800

0
200

400
600

800
1000

1200
1400

1600
Step (n)

λ

Spectrum (λ,n)

Linac 2-10 LBCC Linac 11-19

NRLT
NDR

W chicane

Linac 2-10 LBCC Linac 11-19

NRLT

NDR

W chicane

Cost
Minimization

Initial Parameters
(Measure/Guess) pi(0)

Detected Spectrum

Simulated Spectrum

Cost(n+1)

Parameters 
Updated

Adaptive Scheme

Bunch Length 
Prediction

LiTrack Simulation
pi(n+1)

Detected Spectrum
Simulated Spectrum

0 100 200 300 400 500 600 700 800
−20

0
20
40
60
80

100
120
140

0 100 200 300 400 500 600 700 800
−20

0
20
40
60
80

100
120
140

0 100 200 300 400 500 600 700 800
−20

0
20
40
60
80

100
120
140

Parameters iteratively tuned to match simulated 
energy spread spectrum to actual detected sepctrum.

Energy spread spectrum matching leads to
longitudinal bunch density prediction, as confirmed
by comparison to detected TCAV measurements.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

50

100

150

200

250

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

50

100

150

200

250

Predicted Width Peak 1

Detected Width Peak 1

Predicted Width Peak 2

Detected Width Peak 2

W
id

th
 (

µm
)

W
id

th
 (

µm
)

ES Step Number ES Step Number

200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

Position (µm)

A
rb

itr
ar

y 
U

ni
ts

Measured Bunch Profile
Predicted Bunch Profile
Predicted FWHM
Measured FWHM

z[mm]
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

-0.02

-0.015

-0.01

-0.005

0.005

0.01

0.015

0.02

0δ

Tomography(z) IP2B17-Mar-2015 00:24:12

LiTrack

-0.02

-0.015

-0.01

-0.005

0.005

0.01

0.015

0.025

0δ

z[mm]
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

0.03

0.035

Time-varying bunch 
length predictions

Time-varying phase
space predictions

TCAV measurement TCAV Prediction

FACET accelerator

Fig. 9.17 ES scheme at FACET

correlated to the beam profile if all of the various accelerator parameters which
influence the bunch profile and energy spread are accounted for accurately. Unfortu-
nately, throughout the 2km facility, there exist systematic phase drifts of various high
frequency devices, mis-calibrations, and time-varying uncertainties due to thermal
drifts. Therefore, in order to effectively and accurately relate an energy spectrum to
a bunch profile, a very large parameter space must be searched and fit by LiTrack,
which effectively limits and prevents the use of the energy spectrum measurement
as a real time measurement of bunch profile.

Figures9.16 and 9.17 show the overall setup of the tuning procedure at FACET.
A simulation of the accelerator, LiTrack is run in parallel to the machines opera-
tion. The simulation was initialized with guesses and any available measurements of
actual machine settings, p = (p1, . . . , pn). We emphasize that these are only guesses
because even measured values are noisy and have arbitrary phase shift errors. The
electron beam in the actual machine was accelerated and then passed through a series
of deflectingmagnets, as shown in Figs. 9.16b and 9.17, which createdX-rays, whose
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intensity distribution can be correlated to the electron bunch density via LiTrack. This
non-destructive measurement is available at all times, and used as the input to the
ES scheme, which is then matched by adaptively tuning machine parameters in the
simulation. Once the simulated and actual spectrum were matched, certain beam
properties could be predicted by the simulation.

Each parameter setting has its own influence on electron beam dynamics, which in
turn influenced the separation, charge, length, etc, of the leading and trailing electron
bunches.

The cost that our adaptive scheme was attempting to minimize was then the
difference between the actual, detected spectrum, and that predicted by LiTrack:

C(x, x̂, p, p̂, t) =
∫ ∣∣∣ψ̃(x, p, t, ν) − ψ̂(x̂, p̂, t, ν)

∣∣∣
2
dν, (9.68)

in which ψ̃(x, p, t, ν) was a noisy measurement of the actual, time-varying (due
to phase drift, thermal cycling…) energy spectrum, and ψ̂(x̂, p̂, t, ν) was the
LiTrack, simulated spectrum, x(t) = (x1(t), . . . , xn(t)) represents various aspects
of the beam, such as bunch length, beam energy, bunch charge, etc. at certain loca-
tions throughout the accelerator, p(t) = (p1(t), . . . , pn(t)) represents various time-
varying uncertain parameters of the accelerator itself, such as RF system phase drifts
and RF field amplitudes throughout the machine, x(t) are approximated by their
simulated estimates x̂(t) = (

x̂1(t), . . . , x̂n(t)
)
and actual system parameters, p(t),

are approximated by virtual parameters p̂(t) = (
p̂1(t), . . . , p̂n(t)

)
.

The problem was then to minimize the measurable, but analytically unknown
function C , by adaptively tuning the simulation parameters p̂. The hope was that, by
finding simulation machine settings which resulted in matched spectrums, we would
also match other properties of the real and simulated beams, something we could not
simply do by setting the simulation parameters to the exact machine settings, due to
unknowns, such as time-varying, arbitrary phase shifts.

LiTrackES simulates large components of FACET as single elements. The critical
elements of the simulation are the North Damping Ring (NDR) which sets the initial
bunch parameters including the bunch length and energy spread, the North Ring to
Linac (NRTL) which is the first of three bunch compressors, Linac Sectors 2–10
where the beam is accelerated and chirped, the second bunch compressor in Sector
10 (LBCC), Linac Sectors 11–19 where the beam is again accelerated and chirped,
and finally the FACET W-chicane which is the third and final bunch compressor.

We calibrated the LiTrackES algorithm using simultaneous measurements of the
energy spectrum and bunch profile while allowing a set of unknown parameters to
converge. After convergence we left a subset of these calibrated parameters fixed,
as they are known to vary slowly or not at all and performed our tuning on a much
smaller subset of the parameters:

• p1: NDR bunch length
• p2: NRTL energy offset
• p3: NRTL compressor amplitude
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• p4: NRTL chicane T566
• p5: Phase Ramp

“Phase ramp” refers to a net phase of the NDR and NRTL RF systems with respect
to the main linac RF. Changing the phase ramp parameter results in a phase set offset
in the linac relative to some desired phase.

LiTrackES, the combination ofES andLiTrack, as demonstrated, is able to provide
a quasi real time estimate of many machine and electron beam properties which
are either inaccessible or require destructive measurements. We plan to improve the
convergence rate of LiTrackES by fine tuning the adaptive scheme’s parameters, such
as the gains ki , perturbing amplitudes αi and dithering frequencies ωi . Furthermore,
we plan on taking advantage of several simultaneously running LiTrackES schemes,
which can communicate with each other in an intelligent way, and each of which has
slightly different adaptive parameters/initial parameter guesses, which we believe
can greatly increase both the rate and accuracy of the convergence. Another major
goal is the extension of this algorithm from monitoring to tuning. We hope to one
day utilize LiTrackES as an actual feedback to the machine settings in order to tune
for desired electron beam properties.

9.3.6 ES for Phase Space Tuning

For the work described here, a measured XTCAV image was utilized and compared
to the simulated energy and position spread of an electron bunch at the end of the
LCLS as simulated by LiTrack. The electron bunch distribution is given by a function
ρ(ΔE,Δz) where ΔE = E − E0 is energy offset from the mean or design energy
of the bunch and Δz = z − z0 is position offset from the center of the bunch. We
worked with two distributions:

XTCAV measured : ρTCAV(ΔE,Δz),

LiTrack simulated : ρLiTrack(ΔE,Δz).

These distributions were then integrated along the E and z projections in order to
calculate 1D energy and charge distributions:

ρE,TCAV(ΔE), ρz,TCAV(Δz),

ρE,LiTrack(ΔE), ρz,LiTrack(Δz).

Finally, the energy and charge spread distributions were compared to create cost
values:
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Fig. 9.18 Components of the LCLS beamline

CE =
∫ [

ρE,TCAV(ΔE) − ρE,LiTrack(ΔE)
]2
dΔE, (9.69)

Cz =
∫ [

ρz,TCAV(Δz) − ρz,LiTrack(Δz)
]2
dΔz, (9.70)

whose weighted sum was combined into a single final cost:

C = wECE + wzCz . (9.71)

Iterative extremum seeking was then performed via finite difference approximation
of the ES dynamics (Fig. 9.18):

p(t + dt) − p(t)

dt
≈ dp

dt
= √

αω cos(ωt + kC(p, t)), (9.72)

by updating LiTrack model parameters, p = (p1, . . . , pm), according to

p j (n + 1) = p j (n) + Δ
√

αω j cos
(
ω j nΔ + kC(n)

)
, (9.73)

where the previous step’s cost is based on the previous simulation’s parameter set-
tings,

C(n) = C(p(n)). (9.74)

The parameters being tuned were:

1. L1S phase: typically drifts continuously and is repeatedly corrected via an inva-
sive phase scan. Within some limited range a correct bunch length can be main-
tained by the existing feedback system. This parameter is used for optimizing
machine settings and FEL pulse intensity. When the charge off the cathode is
changed, L1S phase must be adjusted manually.

2. L1X phase:must be changed if L1S phase is changed significantly. This linearizes
the curvature of the beam.

3. BC1 energy: control bunch length and provides feedback to L1S amplitude.
4. L2 phase: drifts continuously with temperature, is a set of multiple Klystrons,

all of which cycle in amplitude and phase. Feedback is required to introduce the
correct energy chirp required for BC2 peak current/bunch length set point. Tuned
to maximize FEL intensity and minimize jitter.
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Fig. 9.19 Parameter convergence and cost minimization for matching desired bunch length and
energy spread profiles

5. BC2 energy: drifts due to Klystron fluctuations, must be changed to optimize
FEL pulse intensity for exotic setups.

6. L3 phase: drifts continuously with temperature, based on a coupled system of
many Klystrons.

Machine tuningworkhas begunwith general analytic studies aswell as simulation-
based algorithm development focused on the LCLS beam line, using SLACs LiTrack
software, a code which captures most aspects of the electron beams phase space evo-
lution and incorporates noise representative of operating conditions. The initial effort
focused on developing ES-based auto tuning of the electron beam’s bunch length and
energy spread by varying LiTrack parameters in order to match LiTrack’s output to
an actual TCAV measurement taken from the accelerator by tuning bunch compres-
sor energies and RF phases. The results are shown in Figs. 9.19 and 9.20. Running
at a repetition rate of 120 Hz, the simulated feedback would have converged within
2 s on the actual LCLS machine.

Preliminary results have demonstrated that ES is a powerful tool with the potential
to automatically tune an FEL between various bunch properties such as energy spread
and bunch length requirements by simultaneously tuning multiple coupled parame-
ters, based only on a TCAV measurement at the end of the machine. Although the
simulation results are promising, It remains to be seen what the limitations of the
method are in the actual machine in terms of getting stuck in local minima and time of
convergence. We plan on exploring the extent of parameter and phase space through
which we can automatically move.
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Fig. 9.20 Measured XTCAV, original LiTrack and final, converged LiTrack energy versus position
phases space of the electron bunch shown

9.4 Conclusions

The intense bunch charges, extremely short bunch lengths, and extremely high ener-
gies of next generation FEL beams result in complex collective effects which couple
transverse and longitudinal dynamics and therefore all of the RF and magnet sys-
tems and their influence on the quality of the light being produced. These future light
sources, especially 4th generation FELs, face major challenges both in achieving
extremely tight constraints on beam quality and in quickly tuning between various,
exotic experimental setups. We have presented a very brief and simple introduction
to some of the beam dynamics important to accelerators and have introduced some
methods for achieving better beam quality and faster tuning. Based on preliminary
results it is our belief is that a combination of machine learning and advanced feed-
back methods such as ES have great potential towards meeting the requirements of
future light sources. Such a combination of ES and machine learning has recently
been demonstrated in a proof of principle experiment at the Linac-Coherent Light
Source FEL [51]. During this experiment we quickly trained a simple neural network
to obtain an estimate of a complex and time-varying parameter space, mapping lon-
gitudinal electron beam phase space (energy vs time) to machine parameter settings.
For a target longitudinal phase space, we used the neural network to give us an initial
guess of the required parameter settings which brought us to within a neighborhood
of the correct parameter settings, but did not give a perfect match. We then used ES-
based feedback to zoom in on and track the actual optimal time-varying parameters
settings.
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