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Abstract Recent advances in scanning probemicroscopy and scanning transmission
electronmicroscopy have opened unprecedented opportunities in probing themateri-
als structural parameters and electronic properties in real space on a picometre-scale.
At the same time, the ability of modern day microscopes to quickly produce large,
high-resolution datasets has created a challenge for rapid physics-guided analysis of
data that typically contain several hundreds to several thousand atomic or molecular
units per image. Here it is demonstrated how the advanced statistical analysis and
machine learning techniques can be used for extracting relevant physical and chemi-
cal information from microscope data on multiple functional materials. Specifically,
the following three case studies are discussed (i) application of a combination of
convolutional neural network and Markov model for analyzing positional and ori-
entational order in molecular self-assembly; (ii) a combination of sliding window
fast Fourier transform, Pearson correlation matrix and canonical correlation analysis
methods to study the relationships between lattice distortions and electron scattering
patterns in graphene; (iii) application of a non-negative matrix factorization with
physics-based constraints and Moran’s analysis of spatial associations to extracting
electronic responses linked to different types of structural domains frommulti-modal
imaging datasets on iron-based superconductors. The approaches demonstrated here
are universal in nature and can be applied to a variety of microscopic measurements
on different materials.
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5.1 Introduction

According to the established paradigm of structure-property relationship, there is a
direct link between materials atomic structure and their optical, mechanical, elec-
tronic, and magnetic functionalities [1, 2]. This allows scenarios in which relatively
small changes in the material structural and chemical compositions may have a deci-
sive impact on the physical properties of the system. Examples include ultra-high
piezoelectric response of relaxor ferroelectrics due to interaction between nanopolar
domains and acouwestic phonon mode [3], filamentary superconductivity associated
with nonuniform distribution of Pr dopants in iron arsenides [4], high critical-current
density due to clustering of oxygen vacancies in cuprates [5–7], reduced mobility
of Dirac electrons in graphene transistor devices due to formation of charge nano-
puddles [8, 9], fluctuating superconducting state above a transition temperature (Tc)
in high-Tc cuprates associated with emergence of nanometre-sized electron pairing
regions [10], and emergence of glassy mixed-phases state in manganites linked to a
quenched chemical disorder [11].

The advances in scanning transmission electron and scanning probe microscopies
(STEM and SPM) have opened an unprecedented path towards simultaneously prob-
ing thematerial structural parameters (e.g. bond lengths) and its functional properties
(e.g. electronic polarization or superconducting gap) in real space with a nanometer
precision, making them the perfect tools for studying nanoscale inhomogeneities
and their role in bulk crystalline behavior [12, 13]. Examples in SPM include direct
imaging of chemical bonds in molecules [14], visualizing atomic collapse in artifi-
cial nuclei on graphene [15], and inferring mechanisms behind fundamental physical
phenomena, such as high-Tc superconductivity, fromsingle atomdefect induced scat-
tering patterns [6]. Meanwhile, STEM experiments can produce picometer-resolved
images of ferroelectric polarization [16, 17], octahedral tilts [18], and chemical
expansion strains [19]. Furthermore, combination of STEM and SPM with different
spectroscopic techniques, such as optical and Raman spectroscopy, electron energy
loss spectroscopy and mass spectroscopy have led to a rise of new multi-modal
imaging capabilities that now allow a simultaneous capturing of materials struc-
tural, electronic, chemical, and optical properties at the nano and meso-scales. Such
experimental capabilities allow, in principle, constructing combinatorial libraries of
lattice configurations and functionalities at the single-defect level. This, however,
requires first a development of methods for extracting all the experimentally acces-
sible (spatially-dependent) information on structure and function variables and for
cross-correlating the information fromdifferent “channels” in physically-meaningful
and statistically-meaningful ways.

We illustrate several frameworks based onmachine learning andmultivariate anal-
ysis that allow automated and highly accurate extraction and mapping of different
structural and functional descriptors from experimental datasets as well as study-
ing their local correlations. The approach for a two-channel microscopic imaging
experiment is schematically outlined in Fig. 5.1. It starts with recording ‘structure’
and ‘function’ information over the same sample area via two different acquisition
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Fig. 5.1 Schematic workflow for structure-property relationships analysis. a 2-channel (‘structure’
and ‘function’) data acquisition. b Processing data from both channels to extract relevant structure
and function descriptors. d Mining the combinatorial library of lattice configurations and func-
tionalities. For systems with multiple structural orders one can apply correlative analysis ‘toolbox’
directly to the processed structural data (c–d)

channels (Fig. 5.1a). In this case, the first channel corresponds to 2D images in which
Z is a ‘structural’ variable used to calculate lattice parameters, such as inter-atomic
(or atomic columns) distances and apparent heights. The second channel represents
3D dataset in which G is a ‘function’ variable, for example, differential conductance
or electron energy loss. After performing an image alignment such that, the data
from both channels is cleaned from spurious noise features and outliers in a way that
minimizes the information loss (e.g., using principal component analysis). The next
step is constructing structural and functional descriptors. For structure channel, one
may adapt various pattern recognition techniques from a field of computer vision,
such as sliding window Fast Fourier Transform, deep neural networks and Markov
random field. For function channel, blind source un-mixing/decomposition methods
such as Bayesian linear unmixing and non-negative matrix factorization performed
on hyperspectral “functional” data can generally provide a physically meaningful
separation of spectral information when multiple ‘phases’ are present in the dataset
(Fig. 5.1b, c). Once completed, one proceeds to performing direct data mining of
structure-property relationships from correlative analysis of the derived structural
and functional descriptors (Fig. 5.1d). The correlation analysis ‘toolbox’ typically
includes methods such as Pearson correlation matrix, global and local Moran’s cor-
relative analysis, and linear and kernel canonical correlation analysis. Note well that
for systems with multiple order parameters and/or systems where both structural and
electronic information can be effectively extracted from a single image, the corre-
lation analysis can be performed directly on variables extracted from the structure
channel.

In the following,we analyze structure-property relationship on differentmolecular
and solid state systems using data obtained from constant-current mode and spectro-
scopic mode of scanning tunneling microscope [20]. The STM topographic images
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obtained in a constant-current mode represent a 2-dimensional dataset where Z(R)
is a convolution of height variations and electronic density of states in each R(X,Y )
point (pixel) on the surface. The spectroscopic mode of STM (usually referred to as
STS) produces a 3-dimensional set of data where the value of differential conduc-
tance G(R′, V) is proportional to local density of states at specific energy E = eV at
each R(X ′,Y ′) point on the surface. For all cases studied here R(X ′,Y ′) = R(X,Y ).
The necessary mathematical frameworks will be introduced separately for each case
study.

5.2 Case Study 1. Interplay Between Different Structural
Order Parameters in Molecular Self-assembly

5.2.1 Model System and Problem Overview

To demonstrate an application of advanced data science tools to molecular resolved
STM images, a self-assembly of C21H12 molecules [21, 22] is chosen as a model
system (Fig. 5.2a). Each individual molecular unit in the self-assembly can be viewed
as a fragment bowl of buckminsterfullerene (hereafter, buckybowl). A buckybowl
in the self-assembly can reside in two different structural conformations (bowl-up
and bowl-down) as well as in multiple lateral orientations with respect to the sub-
strate. In the absence of external perturbation and/or substrate disorder the molecular
monolayer forms a long-range superperiodic pattern, in which each bowl-down state
is surrounded by six bowl-up states. In the following, this superstructure is referred
to as 2U1D, where U and D stand for bowl-up and bowl-down states, respectively.
At the low tip-sample separation distances in the constant current STM experiment
(typically achieved at sample bias Us � 0.1 V) it is usually possible to induce a
switching between different molecular degrees of freedom via mechanochemistry
effects, whereas at large separation distances (at Us � 1 V) the switching events,
particularly those involving structural changes, are minimized [22]. Thus one can
interpret the scans at low and high bias voltages as “writing” (albeit randomly)
and “reading” molecular patterns, respectively. The representative STM image of
buckybowl self-assembly is shown in Fig. 5.2c. The STM data used as an input in
the current analysis was acquired in the reading regime; prior to acquisition of the
image of interest, several STM scans were performed over the same area at the lower
tip-surface distances (switching regime) producing additional “excitations”, that is,
enhancing a disorder, in the initial molecular structure. A global 2-dimensional Fast
Fourier Transform (2D FFT) obtained from image in Fig. 5.2c shows a strong sup-
pression of peaks associated with 2U1D structure (compared to peaks in the outer
hexagon associated with positional order in molecular lattice) indicating a presence
of disorder in the molecular film. In the following, an approach based on a synergy of
ab-initio simulations, Markov random field model and convolutional neural network
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Fig. 5.2 Self-assembly of sumanene molecules (buckybowls) on gold substrate. a Chemical struc-
ture of sumanene. b Experimental STM image of individual buckybowl. Adapted with permission
from [22]. Copyright 2018 American Chemical Society.c Large-scale STM image over field of
view with approximately 1000 molecules. The inset shows FFT transform of data in (c). The yellow
circles denote FFT spots associated with a formation of 2U1D superlattice. Adapted from [23]

is introduced for “reading out” complex molecular patterns of buckybowls on gold
substrate from molecule-resolved STM images [23].

5.2.2 How to Find Positions of All Molecules in the Image?

The first crucial step in analyzing the STM data on complex surface molecular struc-
tures is the identification and extraction of positions of all molecules for each image.
Simple visual examination of STM image in Fig. 5.2c suggests that it contains up to
about 1000 individual molecules. The normalized cross-correlation is performed to
obtain correlation surfaces defined as

γ(u, v) =
∑

x,y[ f (x, y) − f u,v][t (x − u, y − v) − t]
{∑x,y[ f (x, y) − f u,v]2

∑
x,y[t (x − u, y − v) − t]2}0.5 (5.1)

where f is the original image, t is the template, f u,v is the mean of f (x, y) in
the region under the template, t is the mean of the template. The bowl-up DFT-
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simulated STM image is chosen as a template, which produced the highest accuracy
in determination the positions of molecular centers. The uniform threshold is applied
to the generated correlation surface γ, with cutoff set to 0.35, in order to maximize
the number of extracted molecules. This results in a binary image, for which the
connected components are identified and their centers are assigned as centers of the
correspondingmolecules. The apparent height Im of eachmolecule, which represents
a convolution of an actual geometric height and local density of electronic states,
is calculated as Im = ∑15

x=1

∑15
y=1 ix,y where ix,y is the intensity of pixel at position

x, y in the extracted image patch for molecule m. The summation is performed
for 15 × 15 pixel patches around the center of each molecule. To remove outliers
due to possible contaminations on a surface which may not directly associate with
molecules, a maximum intensity value defined as Imax = mean(I ) + 3 ∗ std(I ) is
introduced such that all intensities that exceed the maximum value are scaled back
set to Imax .

Once all positions and intensities are identified a principal component analysis is
performed on the stack of images of individual molecules. The aim of the principal
component analysis (PCA) can be interpreted as finding a lower dimensional rep-
resentation of data with a minimum loss of important (relevant) information [24].
Specifically, in PCA one performs an orthogonal linear transformation that maps the
data into a new coordinate system such that the greatest variance comes to lie on the
first coordinate called the first principal component, the second greatest variance on
the second coordinate, and so forth. Hence, the most relevant information (including
information on the orientation/rotation of molecules) can be represented by a small
number of principal components with the largest variance, whereas the rest of the
(low-variance) components correspond to ‘noise’. The PCA analysis suggests that
suggests that a likely number of rotational classes needed to be considered for this
dataset is four.

5.2.3 Identifying Molecular Structural Degrees of Freedom
via Computer Vision

Convolutional neural networks. The identification of molecular “shapes” (differ-
ent orientation with respect to substrate) is performed using a technique from a field
of computer vision known as convolutional neural networks. Convolutional neural
networks (cNN) represent one of the key examples of a successful application of
neuroscientific principles to the field of machine leaning. The cNNs are used for
processing data which is characterized by a known, grid-like topology such as 2-
dimensional grid of pixels obtained in the STM constant current experiments [25].
The architecture of the convolutional network used in the current work is shown in
Fig. 5.3a and it includes convolutional layers, pooling layers, as well as a fully con-
nected “dense” layer. The convolution layer is formed by running learnable kernels
(‘filters’) of the selected size over the input image (or image in the previous layer).
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Fig. 5.3 Deep learning of molecular features. a Schematic graph of convolutional neural network
(cNN) architecture for determining of molecular lateral degrees of freedom on the substrate. b
Role of dynamical averaging (admixture of a different rotational class) in probability of the correct
class assignment. c Error rate for cNN only and for cNN refined with Markov random field model.
Adapted from [23]

The pooling layers produce downsampled versions of the inputmaps. The i-th feature
map in layer l, denoted as V l

i can be expressed as [26]

V l
i =

∑

i∈Mi

V (l−1)
j ∗ Kl

i, j + Bl
i (5.2)

Here K is a kernel connecting the i-th feature map in layer l and the j-th feature map
layer (l − 1), Bl

i describes the bias, and Mi corresponds to a selection of input maps.
The output Zl

i is a fully connected (“dense”) layer that takes as input the “flattened”
feature maps of the layer below it:

Zl
i =

∑

i∈Mi

∑

m∈Mi

∑

n∈Mi

(V (l−1)
j )m,nW

l
i, j,m,n (5.3)

whereWl
i, j,m,n connects i-th unit at positionm, n in the feature map of layer (l − 1) to

the j-th unit in layer l. The cNN is trained on a set of synthetic STM images (25,000
samples) obtained from DFT simulations of different rotational classes.
Markov random field. The unique aspect of the present approach is that the cNN is
followed by Markov random field model [27] which takes into account probabilities
of neighboring molecules to be in the same lateral orientation on the substrate. This
allows us to “refine” the results learned by neural network in a fashion that takes into
account physics of the problem. The MRF model makes use of an undirected graph
G = (V, E), in which the nodes V are associated with random variables (Xv)v∈V ,
and E is a set of edges joining pairs of nodes. The underlying assumption of Markov
property is that each randomvariable depends on other randomvariables only through
its neighbors:

Xv ⊥ XV \v∪N (v)|XN (v), (5.4)

for N (v) = neighbors of v. Importantly, the explicit Markov structure implicitly
carries longer-range dependencies. These priors are directly linked to the underlying
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Fig. 5.4 Molecular self-assembly as Markov random field model (MRF). a Graphical Markov
model structure used for analysis of a molecular self-assembly. b Error rate as a function of standard
deviation of normalized STM intensity distributions and an optimization parameter (p-value). The
arrow shows the value of these parameters for the analysis of the synthetic data. Adapted from [23]

physics of the system, that is, the presence of short-range interactions in molecular
assembly which are now explicitly taken into account during image analysis. The
experimental STM data on buckybowls is mapped on to a graph such that each
molecule is represented as a node, and edges are connections to each molecule’s
nearest neighbors (Fig. 5.4a). The posterior distribution of an MRF can be factorized
over individual molecules such that

P(x |z) = 1

Z

∏

<i j>

Ψi j (xi , x j )
∏

i

Ψi (xi , zi ) (5.5)

where Z is the partition function, andΨi (xi , zi ) andΨi j (xi , x j ) are unary and pairwise
potentials, respectively. These potentials are defined based on the knowledge about
physical and chemical processes in the molecular system, such as a subtle interplay
between a difference in adsorption energy for U andDmolecules, molecular interac-
tions different molecular configurations, and imperfection of the substrate. Finding
an exact solution toMRFmodel is intractable in such a case as it would require exam-
ining all 2n combinations of state assignments, where n is the number of molecules,
that is, about 1000 for examined images. However, one can obtain a close approxi-
mate solution by using a max-product loopy belief propagation method [28], which
is a message-passing algorithm for performing inference onMRF graphs, with unary
and pairwise potentials as an input. Briefly, from initial configuration, nodes propa-
gate message containing their beliefs about state of the neighboring nodes given all
other neighboring nodes messages. This results in an iterative algorithm. All mes-
sages start at 1, and are further updated as max-product of potentials and incoming
messages:
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msg(x j )i→ j = maxl [
∑

xi

Ψi j (xi , x j )Ψi (xi , zi ) ∗
∏

k=neighbors of i �= j

msg(X)k→i ]
(5.6)

At each iteration belief is calculated for each node and the state with highest belief
is selected, until message update converges:

Belie f (xi ) = Ψi (xi , zi ) ∗
∏

j=neighbors of i

msg(xi ) j→i (5.7)

According to theoretical modeling, it is unlikely that two neighboring molecules
can have the same rotational state [29]. Therefore assign probability of each class to
have a neighbor of its own class is considered to be 1% and probabilities to have a
neighbor of other 3 rotational classes is considered to be 33%. Finally, the decoding
using loopy belief propagation is performed in order to acquire a more precise solu-
tion. Note well that by tuning a graph structure and/or form of the potentials one can
easily apply Markov random field approach to other molecular order parameters or
even different molecular architectures. Indeed, one can also apply MRF to decoding
different conformational states of molecules (note that an application of the cNN
to a problem of determining different conformational states typically returns rela-
tively poor results). For MRFmodelling of bowl-up and bowl-down states, the unary
potentials Ψi (xi , zi ) over molecular states are assigned based on the proximity of a
particular molecule’s intensity in the STM image to the threshold value between the
states T. The node probabilities are calculated as two logistic functions:

Ψi (xi = 1, zi = Ii ) = 1

1 + Exp[S ∗ (T − Ii )] (5.8a)

Ψi (xi = 2, zi = Ii ) = 1 − Ψi (xi = 1, zi = Ii ) (5.8b)

where Ii ∈ [0, 1] is the intensity of a given molecule i, and S is a parameter that
controls the growth rate of the logistic function. The logistic functions allow us to
assign molecular intensities sufficiently far from the threshold as belonging to their
corresponding class with probability of ∼1, while also providing more flexibility in
the region around the threshold value itself. Next, the pairwise potentials Ψi j (xi , x j )

for the molecular system are determined. The optimal 2U1D configuration proposed
above is characterized by six U molecules surrounding one D molecule, such that
D molecule is never allowed to have the nearest neighbor in the same bowl con-
formation. As we are interested in the distortion of an ideal 2U1D structure (six
bowl-up molecules surrounding one bowl-down molecule), a disorder parameter p
is introduced such that a probability of D and U molecules having their neighbor in
the same conformational state becomes p and 1 − p, respectively.

Testing on synthetic data. Prior to analyzing real experimental data, a validity of the
described approach is tested on synthetic dataset(s). Specifically, the DFT-based cal-
culations of the STM signal associated with an individual molecule for each config-
uration are combined with Markov Chain Monte Carlo sampler to generate synthetic
images of molecular self-assembly containing a large number (�1000) of molecules.
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Additionally, the synthesized data is “distorted” by addition of blurring associated
with a convolution with the STM tip probe function, Poisson noise associated with
tunnelling statistics, and dynamical averaging due to potential admixture of another
azimuthal rotational state to a given structural configuration. Since the exact distribu-
tion of molecular states in synthetic data is known for each sample, one can evaluate
an error rate for this method. It was found that the proposed approach results in a
remarkably accurate identification of different molecular conformational and rota-
tional states in scenarios where the distribution of the STM intensities in the synthetic
data closely resembles the typical experimental data. The MRF approach allowed
to identify accurately distributions of bowl-up and bowl-down configurations in the
large scale synthetic STM images, even when no estimations regarding the p-value is
available apriori (Fig. 5.4b), while its addition to cNN helped to improve the decod-
ing results by reducing number of misclassified states (Fig. 5.3c). It was also found
that the cNN framework allows to obtain a reliable classification of molecules rota-
tional states even in the presence of relatively strong dynamical averaging between
proximate rotational states of the molecule (Fig. 5.3b) which is relatively common
in the STM experiments [30, 31].

5.2.4 Application to Real Experimental Data: From Imaging
to Physics and Chemistry

Having confirmed that the introduced approach works on synthetic data we proceed
to analysis of real experimental data. The results if full decoding of rotational (via
cNN+MRF) and conformational (via MRF) states are presented in Fig. 5.5. Once
a full decoding is performed, it becomes possible to explore a nature of disorder
in the molecular self-assembly by searching for local correlations between different
molecular degrees of freedom.Of the specific interest is a potential interplay between
molecule bowl inversion and azimuthal rotation of the neighboring molecules. To
obtain such an insight,method based on calculation the so-calledMoran’s I is adopted
that can measure a spatial association between the distributions of two variables at
nearby locations on the lattice [32]. The ‘correlation coefficient’ for global Moran’s
I is given by

I = N
∑

i

∑
j wi j

∑
i

∑
j wi j (Xi − X)(Y j − Y )

∑
i (Yi − Y )2

(5.9)

where N is the number of spatial units, X and Y are variables, X and Y are corre-
spondingmeans, andw is theweightmatrix defining neighbor interactions. It is worth
noting that the presence of the spatial weight matrix in the definition of Moran’s I
allows us to impose constrains on the number of neighbors to be considered. For
highly inhomogeneous system, one may use the so-called local indicators of spatial
association which can evaluate the correlation between two orders at the neighboring
points on the lattice for each individual coordination sphere. This is achieved through
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Fig. 5.5 Application of the current method to experimental data of buckybowls on gold (111).
Decoding of rotational states (cNN+MRF) and bowl-up/down states (MRF, p=7) for the experi-
mental image from Fig. 5.1c. b Zoomed-in area from red rectangle in a where numbers denote an
accuracy of state determination. Adapted from [23]

calculating local bivariate Moran’s I for each spatial unit such as

Ixy =
∑

i

∑
j �=i wi j xiyi

W
(5.10)

where x and y are standardized to zero mean and variance of 1.
The results for spatial correlation between bowl-up/down configuration and dif-

ferent rotational classes for the first ‘coordination sphere’ is shown in Fig. 5.6a where

Fig. 5.6 From imaging to physics. a Local indicators of spatial associations based on the Moran’s
I calculated for the first coordination “sphere”. b Proposed reaction mechanism involving change
in molecular rotational state(s) after bowl inversion. Adapted from [23]
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a different size of circles reflects different values of the Moran’s I across a field of
view. Generally, the map in Fig. 5.6a implies a spatial variation in coupling between
the two associated order parameters, which could also be sensitive to presence of
defects. The average value of Moran’s I for the first ‘coordination sphere’ is 0.310,
whereas the average value for correlation of rotational classeswith bowl-up and bowl-
down molecular conformations are 0.246 and 0.426 respectively. This result can be
interpreted as that a bowl-up-to-bowl-down inversion of a molecule that creates an
‘additional’ molecule in theD state requires a larger change in a rotational state of the
neighboring molecules in order to compensate for a formation of energetically unfa-
vorable, “extra” bowl-down state (as compared to a reversed, bowl-down-to-bowl-up
inversion). Based on these findings, it is possible to propose a two-stage “reaction”
mechanism, where in the first stage an excitation of a new bowl-down state elevates
the energy of the system, which is then relaxed in the second stage of the proposed
reaction through adjustment of rotational states of the nearby molecule(s). The latter
is associated with the obtained values of Moran’s I. The crude value for energy dif-
ference between different rotational states induced by bowl inversion, and calculated
by estimating Boltzmann factor directly from the ratio of two different correlation
values, is ≈0.015 eV.

Unlike previous studies which only considered a bowl inversion process for an
isolated single molecule, the presented analysis based on synergy of convolutional
neural networks, Markov random field model and ab-initio simulations allowed to
obtain a deeper knowledge of local interactions that accompany a switching of con-
formational state of neighboring molecules in the self-assembled layer. This new
advanced understanding of local degrees of freedom in the molecular adlayer could
lead to a controllable formation of various molecular architectures on surfaces which
in turn could result in a realization of multi-level information storage molecular
device or systems for molecular level mechanical transduction. As far as future
directions of applying machine learning and pattern recognition towards molecular
structures are concerned, it should be noted that the physical priors used for input
in cNN and MRF could be also in principle extracted from state-of-the-art ab-initio
analysis and molecular dynamics (MD) simulations. This could potentially provide
more accurate decoding results. In addition, a choice of the optimization parameter
in MRF analysis could be optimized in future using a statistical distance approach
[33]. Finally, we envision an adaption of deep learning technique called domain-
adversarial neural networks [35] which allows to alter theoretically predicted classes
based on the observed data. The underlying idea of this approach is that the theoret-
ical and experimental datasets are similar yet different in such a way that traditional
neural networks may not capture correct features just from the labeled data.
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5.3 Case Study 2. Role of Lattice Strain in Formation
of Electron Scattering Patterns in Graphene

5.3.1 Model System and Problem Overview

Graphene, a two-dimensional honeycomb lattice of sp2-carbon atoms, has attracted
enormous research interest mostly due to its unique electronic properties, such as
anomalous quantum Hall effect and Klein tunneling, which are a consequence of
massless Dirac fermions with linear energy dispersion in the electronic band struc-
ture. Presence of a disorder in graphene lattice, such as substitutional dopants, vacan-
cies and adatoms, as well as nanoscale variations in bond lengths (due to in-plane
and out-of-plane surface deformations), can have a major impact on the material
electronic (and magnetic) structure. Below we describe the study on a relationship
between nanoscale modulations of lattice strain and parameters of electron scattering
induced by point defects in graphene [34]. This study was performed by applying
a combination of sliding window fast Fourier transform, Pearson correlation matrix
and canonical correlation analysis to low-bias atomically-resolved scanning probe
microscopy images of graphene.

Two graphenic systems on different substrates with different types of defects
were chosen. The first system is a topmost graphene layer of graphite peppered with
hydrogen-passivated single atomic vacancies (hereafter denoted as GH ) [36]. The
second system is a monolayer graphene of reduced graphene oxide on gold (111)
substrate (hereafter GO ) covered with oxygen-passivated atomic defects and oxygen
functional groups [37]. The representative scanning probe microscopy images for
GH and GO samples are shown in Fig. 5.7a and b, respectively. Both images were
obtained in a low-bias regime (Us ≤ 0.1 V) where the current is proportional to the
density of states at the Fermi level. The global 2D FFTs for data in Fig. 5.7 a, b shows
(see insets) similar reciprocal space patterns for both systems characterized by the two
hexagons rotated by 30◦ with respect to each other, with their lattice constants differ
by a factor of ≈ √

3. The outer and inner hexagon is associated with lattice structure
and electronic density of states, respectively. Specifically, a formation of the inner
hexagon in undistorted graphene is explained as due to the constructive interference
between incident and backscattered states from the electron valleys at opposite corner
points of the hexagonal Brillouin zone [38, 39]. Owing to the symmetry of graphene
lattice, there are three backscattering channels. For point defect that do not preserve
the symmetry of graphene lattice as well as in graphene with distorted lattice the
scattering probability may be different for each of the three channels. Indeed, it is
possible to observe experimentally (in a real space) a fine structure of the electronic
superlattice around the defects characterized by the alternation of intensities of the
FFT spots in the inner hexagon (see Fig. 5.7a, d and e). The precise origin of such a
modulation in graphene electronic superlattice is not yet well understood.



116 M. Ziatdinov et al.

Fig. 5.7 Imaging lattice and electronic structure in graphenic samples. a STM image of the
top graphene layer of graphite with hydrogen-passivated monoatomic vacancy. Us = 100 mV,
Isetpoint = 0.9 nA. The sliding window used for our analysis is overlaid with the image. b Low-bias
(2 mV) current-mapping c-AFM image of reduced graphene oxide on gold (111) substrate. The 2D
FFT data for both images is shown in the insets. c Schematics of graphene electron scattering in the
reciprocal space. d Hexagonal superperiodic lattice and its 2D FFT. e Staggered-dimer-like elec-
tronic superlattice and it 2D FFT. Both superlattices are also marked in (a). f Schematic depiction
of 3 different strain components in real space used in our analysis. © IOP Publishing. Reproduced
from Ziatdinov et al. [34] with permission. All rights reserved

5.3.2 How to Extract Structural and Electronic Degrees
of Freedom Directly from an Image?

Sliding FFT. The goal is to analyze a structure-property relationship in the two
graphene systems by studying the correlation between local lattice distortions asso-
ciated with kl peaks and electronic features associated with Ke peaks (see Fig. 5.7c).
First, a square window of size (wx , wy) is created and being shifted across the input
image (Tx , Ty) in series of steps xs and ys such that the entire image is scanned. At
each step, the 2D FFT is computed for the image portion that lies within the window
[40]. Hanning window is used to minimize edge effects, as well as a 2 zoom com-
bined and a 2× interpolation function for higher pixel density during the each step of
this sliding FFT procedure. The amplitudes and coordinates of the selected peaks are
extracted from each 2D FFT image by fitting them with 2D Gaussian distribution,
defined as
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G(qx , qy) = A exp[−(
(qx − q0

x )
2 + (qy − q0

y )
2

2σ2
)] (5.11)

Here A is the peak amplitude, (qx , qy) are the Cartesian coordinates of the peak
position, and σ is the standard deviation. The unique aspect of graphene is that charge
density oscillations are commensurate with the underlying atomic lattice. Therefore,
the sliding FFT maps can be used to extract information on both electronic and
structural properties of the material. Specifically, the values of intensity and coor-
dinates associated with inner hexagon peaks provide information about intensity of
electronic scattering and position of Dirac cone. For the outer hexagon, the coordi-
nates of the peaks from local FFT maps give information about the nanoscale strain
distribution in the sample.

The Dirac point drift and electron scattering intensities along the i-th channel are
computed as �K , �Ki = (Ki − K i )/K i and IKi = I (K+

i → K−
i ), respectively.

To derive a strain map, a strain εi is defined as a variation of the lattice vector ai
along the i-th direction, that is, εi = (ai − ai )/ai , where ai is the mean value of
the lattice vector in the full image (Fig. 5.7f). It is assumed that for the randomly
fluctuating strain fields the mean value of the lattice vector is close to the value of
lattice constant in the unperturbed lattice. The ai is calculated for each step of the
sliding FFT algorithm using a standard relation between real space and reciprocal
space lattices in graphene. The resolution of spatial maps of the derived structural
and electronic descriptors is determined by the size of sliding FFT window and the
size of step.

5.3.3 Direct Data Mining of Structure and Electronic
Degrees of Freedom in Graphene

Pearson and canonical correlation analysis. Once all the structural and electronic
variable of interest are extracted, it becomes possible to explore potential correla-
tions between the corresponding descriptors. Specifically, Pearson correlationmatrix
analysis and canonical correlation analysis are adopted to explore how formation of
various electron interference patterns can be affected by nanoscale variations in the
lattice strain. The correlation parameter for each pair of variables x and y is defined
as a linear Pearson correlation coefficient,

rxy =
∑N

i=1(xi − x)(yi − y)
√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)

(5.12)

where x is the mean of x, y is the mean of y, andN is a number of scalar observations.
While Pearson correlationmatrix analysis is a useful technique for studies of bivariate
correlations, it is useful to adopt amethod called canonical correlation analysis (CCA)
that allows grouping the variables in each multivariate dataset such that optimal
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Fig. 5.8 Canonical correlation analysis (CCA). Schematics of CCA workflow. © IOP Publishing.
Reproduced from Ziatdinov et al. [34] with permission. All rights reserved

correlation is achieved between two sets [41]. Specifically, CCA solves the problem
of finding basis vectors w and v for two multi-dimensional datasets X and Y such
that the correlation between their projections x → 〈w, x〉 and y → 〈v, y〉 onto these
basis vectors is maximized. The canonical correlation coefficient ρ is expressed as

ρ = maxw,v

w′Cxyv
√

w′Cxxwv′Cyyv
(5.13)

whereCxx,Cyy are auto-covariancematrices, andCxy,Cyx are cross-covariancematri-
ces of x and y. The projections a = w′x and b = v′y represent the first pair of
canonical variates (Fig. 5.8).

Application to experimental data. The results of correlation matrix and canonical
correlation analysis for GH sample are summarized are summarized in Fig. 5.9a
and b, respectively. The canonical correlation coefficient is 0.62 and the associated
canonical scores are given by
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Fig. 5.9 Correlative analysis of graphene structural and electronic degrees of freedom. a–bPairwise
Pearson correlation matrix (a) and plot of the canonical variable scores for the correlation between
strain components and scattering intensity for the GH sample. c–d Same for GO sample. © IOP
Publishing. Reproduced from Ziatdinov et al. [34] with permission. All rights reserved

astraini = 0.37(ε1)i + 0.50(ε2)i + 0.36(ε3)i (5.14a)

bampl
t = 0.39(Ik1)i − 0.33(IK2)i + 0.80(IK3)i (5.14b)

where the magnitudes of the coefficients before the variables give the optimal con-
tributions of the individual variables to the corresponding canonical variate. Here
the scattering intensities associated with two channel IK1 and IK2 show a non-
negligible positive correlation with strain components in both Pearson correlation
matrix and the canonical scores. A dependence of electron scattering intensity on
lattice strain for GH sample can be in principle understood within nearest-neighbor
tight-binding model. Specifically, the tight-binding Hamiltonian for graphene mono-
layer is expressed as [42]

H = −γ
∑

〈i, j〉
(a†i b j + h.c.) (5.15)
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where γ is the nearest neighbor hopping parameter, operators a†i (b
†
i ) and ai (bi ) create

and annihilate an electron, respectively, at two graphene sublattices, and h.c. stands
for the Hermitian conjugate. The density of states D(E) in monolayer graphene is
given by

D(E) = |E |
π
√
3γ2

(5.16)

Further, the dependence of the hopping parameter on the bond length can be
described in terms of the exponential decay model [43, 44],

γ ∼= γ0exp(−τε) (5.17)

where τ is typically assigned values between 3 and 4. It follows from (5.16) and
(5.17) that the positive correlation between the strain components and the scattering
amplitudes in channels IK1 and IK3 can be explained by enhancement of the density
of electronic states available for scattering with increasing the bond length. This also
agrees with the first-principles calculations that demonstrated an emergence of new
peaks in the density of states near the Fermi level with increasing the bond length
[45]. Interestingly, a response of channel IK2 to the variations in strain is clearly
different from that of channels IK1 and IK3. The altered behavior of structure-property
relationship for IK2 channel becomes even clearer by looking at canonical variates in
(5.14) that show a negative sign of a coefficient in front of IK2. Such altered behavior
in one of the scattering channels may lead to the formation of observed fine structure
of electronic superlattice, namely, coexistence of staggered dimer-like and hexagonal
superlattices.

Unlike the GH sample, the oxidized graphene layer GO shows a negative corre-
lation between lattice strain and scattering intensities for all the scattering channels
(Fig. 5.9c and d). The CCA canonical variates for GO sample are

astraini = 0.31(ε1)i + 0.73(ε2)i + 0.32(ε3)i (5.18a)

bampl
t = −0.37(Ik1)i − 0.41(IK2)i + 0.80(IK3)i (5.18b)

with CCA coefficient equal to 0.50. This indicates a presence of apparent lattice
contraction in the 2D-projected SPM images caused by out-of-plane “rippling” of
graphene lattice in the presence of oxygen functional groups on the surface. In addi-
tion to out-of-lane surface deformations [46, 47], the attached oxygen functional
groups also cause an expansion of the lattice constant in their vicinity [47, 48]
which, in this case, is hidden from our view “under” the rippled regions in the image.
Similar to the analysis for GH sample, the correlation between scattering intensity
and lattice stain can be explained based on the nearest neighbor tight binding model,
where an increased lattice constant under the curved regions leads to enhanced den-
sity of electronic states available for scattering. Interestingly, the ε2 strain component
and the scattering intensity in IK3 channel display the strongest contribution to their
respective canonical variates indicating non-uniform strain-scattering relation at the
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nanoscale and their potential connection to the variations in the electronic superlattice
patterns in GO sample.

We now comment on a character of Dirac point shift. It is worth recalling that
for the underformed graphene lattice the positions of electron scattering maxima
(“Dirac valleys”) are located at the corners of graphene Brillouin zone. Interestingly,
however, only relatively small correlation between positions ofDirac point and lattice
strain was found in both GO and GH systems. Since the position of the Brillouin
zone corners in both deformed and non-deformed graphene are given by a direct
linear transformation of the reciprocal lattice vectors, these results suggest that in
the deformed graphene lattice the locations of electron scattering maxima do not
necessarily coincide with the corners of the (new) Brillouin zone.

To summarize this section, we have demonstrated a successful approach for ana-
lyzing structure-property relationship at the nanoscale using a combination of sliding
window fast Fourier transform, Pearson correlation matrix and canonical correlation
analysis. A peculiar connection between variations in coupling between lattice strain
components and intensity of electron scattering was found that could explain an
emergence of the experimentally observed fine structure in the electronic super-
lattice. It is worth noting that the analysis demonstrated here was mainly limited to
linear structure-property-relationships.One potentialway to overcome this limitation
would be to use kernelized version ofCCA[49]with physics based kernels. For exam-
ple, onemay construct a certain function F(x, z), where z is a physical parameter that
determines a non-linearity, so that the resultant kernel K (x, y) = F ′(x, z) ∗ F(y, z)
will approximate a linear behavior in a limit of very small z, whereas for large values
of z it will approximate a non-linear behavior.

5.4 Case Study 3. Correlative Analysis in Multi-mode
Imaging of Strongly Correlated Electron Systems

5.4.1 Model System and Problem Overview

In our last case study, a structure-property relationship is analyzed for the case
where structural and electronic information are obtained through two separate chan-
nels of scanning tunneling microscopy experiment on iron-based strongly correlated
electronic system. This type of materials display a rich variety of complex physi-
cal phenomena including an unconventional superconductivity [6]. The Au-doped
BaFe2As2 compound was selected which, at the dopant level of ∼1%, presides in
the spin-density wave (SDW) regime below TN ≈ 110 K [50, 51]. At increased
concentration of Au-dopants, the magnetic interactions associated with SDW phase
become suppressed and the system turns into a superconductor (Tc ≈ 4 K) at ∼3%
[51]. The interactions present in SDW regime may thus provide important clues
about mechanisms behind emergence of superconductivity in FeAs-based systems.
Of specific interest is a region of cleaved Ba(FexAu1−x )2As2 surface (Fig. 5.10) that
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Fig. 5.10 Scanning tunneling microscopy data on Au-doped BaFe2As2. a STM topographic image
showing domain-like structure where two different (as seemingly appears from the topography)
domains are denoted as 1 and 2. b Topographic profile along yellow line in (a). c Smaller topo-
graphic area of a 2-domain-like structure that was used for scanning tunneling spectroscopy (STS
measurements)

seemingly shows a presence of two different domains-like structures (marked 1 and
2 in Fig. 5.10a) separated by a bright linear topographic feature. Manual inspection
of conductance maps at several different values of energy from such region demon-
strates a spatially inhomogeneous electronic structure across the FOV, as well as
potentially different dominant forms of electronic behavior in domain 1 and domain
2, but does not allow an accurate mapping of these electronic behaviors.

5.4.2 How to Obtain Physically Meaningful Endmembers
from Hyperspectral Tunneling Conductance Data?

To gain a deeper insight into the types and spatial distribution of different elec-
tronic behaviors in this 2-domain-like structure, the non-negative matrix factoriza-
tion (NMF) method is applied to a scanning tunneling spectroscopy (STS) dataset
of dimensions 100 × 100 × 400 pixels recorded over a portion of the structure
of interest (Fig. 5.10c). NMF solves the problem of decomposing the input data
represented by matrix X of size m × n, where m is the number of features (m =
512 for this dataset) and n is the number of samples (n = 10,000 for this dataset),
into two non-negative factors W and H such that X ≈ WH [52]. The k columns
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of W are interpreted as source signals (endmembers) whereas H defines the load-
ing maps (abundance). Due to the non-negativity constraint, NMF can be applied
to problems involving finding k � min(m, n) physically-meaningful source signals
(i.e. physically-defined phases) from the input data, such that all the data can be
explained as a mixture of the k basic phases. The NMF can be formally defined as a
constrained optimization problem, which can be written, according to Li and Ngom,
in a general form as [53]

minW,H f (W, H) = 1

2
‖X − WH‖2F +

+
k∑

i=1

(α1 ‖wi‖1 + α2

2
‖wi‖22) +

k∑

i=1

(λ1 ‖hi‖1 + λ2

2
‖hi‖22)
(5.19)

subject to W ≥ 0, H ≥ 0 and where ‖•‖F is the Frobenius norm, wi and hi are the
i-th columns of W and H, respectively, α1 and α2 are regularization parameter for
sparsity and smoothness, respectively, for the endmembers domain, while λ1 and λ2

control sparsity and smoothness, respectively, for the loading maps (abundancies)
domain.

The results on NMF based decomposition into 3 components are shown in
Fig. 5.11 (no new information was obtained by increasing a number of compo-

Fig. 5.11 Extraction of electronic descriptors from STS dataset on Au-doped BaFe2As2. a–cNMF
decomposed spectral endmembers. d–f corresponding loading maps (the same region as shown
Fig. 5.10c)
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nents). Spatial weight of endmember 1 is mainly concentrated within the domain
1 (Fig. 5.11a, d). The corresponding spectral curve shows a reduced density of states
at the negative energies that agrees with the theoretical and angle-resolved photoe-
mission spectroscopy evidence for partial gap opening just below the Fermi level in
the SDW regime. The endmember 2 spectral curve shows a well-defined asymmet-
ric double-peak structure (Fig. 5.11b). Analysis of loading maps for this component
(Fig. 5.11e) reveals that this type of electronic behavior is constrained to point-like
features on the surface. Furthermore, these features are predominantly located in
the domain 2. Therefore, they are associated with a presence of dopant states. Inter-
estingly, the asymmetric double peak structure observed in the endmember 2 is in
a good qualitative agreement with non-magnetic dopant-induced double resonance
peak model in SDW phase. Analysis of loading maps for the endmember 3 suggests
that it may also originate from some form of localized disorder (Fig. 5.11f). These
point-like defect states are located mainly in the domain 2 although there is a diluted
concentration of defect in the domain 1 as well. While there is no well-defined peak
in the density of states associated with this type of defect in the low energy range
of interest (Fig. 5.11c), an alternation of the local density of states around the Fermi
level was still observed as compared to SDW phase (endmember 1). It is there-
fore concluded that endmember 2 and endmember 3 describe two distinct types of
point defect/dopants that have different structural and/or chemical origin. Thus, the
characteristic difference between two domain-like structures 1 and 2 is that there is a
significant accumulation of point “impurities”/dopants in only one of those domains.
This effectively can be interpreted a peculiar transition between “heavily-doped” and
“lightly-doped” regions on the surface.

Correlative analysis of surface geometry and electronic structure. We next pro-
ceed to correlative analysis of STM topographic data and loading maps of NMF
electronic components. Since no atomic lattice was resolved for this surface region,
a correlative analysis is carried out in a pixel-by-pixel fashion. The global Moran’s
I analysis for the NMF components 1, 2, and 3 and topography returns the values of
−0.472, 0.351, and −0.282, respectively. In order to derive physics from such type
of structure-property cross-correlation analysis it is crucial to be able to visualize
directly those regions on the surface that show higher/lower correlation values. For
this purpose, the local indicators of spatial associations described earlier for analy-
sis of correlation between different molecular orders are employed. In addition the
results of local Moran’s analysis can be mapped on to quadrants resulting into what
is known as Moran’s Q maps. The local Moran’s I and Moran’s Q maps are shown in
Fig. 5.12. The analysis of Moran’s I correlation maps for the endmember 1 (SDW)
and endmember 2 (localized defect state) captures a well-defined point-like regions
of positive and negative correlation, respectively, which indicates a relatively large
number of impurities (characterized by localized states) residing in local dips of the
topographic map (Fig. 5.12a, b). The correlative analysis also offers a unique chance
to get an insight into ‘coupling’ of different electronic orders to the boundary between
domain 1 and domain 2 (linear bright topographic feature in Fig. 5.10a, c). Particu-
larly, a peculiar depletion of SDW phase along the domains boundary was found that
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Fig. 5.12 Local indicators of spatial association. Local bivariate Moran’s I and Moran’s Q (quad-
rants) calculated for relationship between topographic data (apparent height) and endmember 1 (a,
d); endmember 2 (b, e); endmember 3 (c, f). Quadrants legend: Q = 1—positive correlation between
high x and high neighboring y’s; Q = 2—negative, low x and high neighboring y’s; Q = 3—positive,
low x and low neighboring y’s; Q = 4—negative, high x and low neighboring y’s

is clearly evident from appearance of a well-defined linear Q = 2 feature in Moran’s
Q maps (Fig. 5.12d), that is, a region in which low local values of SDW component
correspond to high local values of apparent height (topography). Meanwhile, a pres-
ence of Q = 1 features in Fig. 5.12e, f indicates an aggregation of localized states
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associated with both types of structural/chemical disorder (i.e., NMF components 2
and 3) along the extended regions of domain boundary. These chain-like formations
of defects potentially suggest an existence of different conduction mechanism along
the quasi-1D domain boundary.

To summarize this last section, we have developed a framework for an automated
analysis of multimodal imaging data, and illustrated our approach on scanning tun-
neling microscopy/spectroscopy datasets from iron-based strongly correlated elec-
tronic systems. A peculiar domain-like structure characterized by presence/absence
of significant dopants accumulation in different domains and non-trivial depletion
of spin density wave state along the domain boundary were discovered. Further-
more, the analysis showed an interesting aggregation of impurities along the certain
extended regions of the boundary implying a potential for realizing a special type of
domain boundary conductivity under certain conditions. Going forward, we foresee
an application of the outlined approach to analysis of different modes of electron-
boson interaction in high-Tc superconductors as well in other strongly correlated
materials of interest. Finally, we emphasize that this approach is universal, and can
be easily applied to other forms of multimodal imaging techniques, such as STEM-
EELS [54] or multimodal X-ray imaging techniques [55].

5.5 Overall Conclusion and Outlook

Overall, the incorporation of the advanced data analytics and machine learning
approaches in functional and structural imaging coupled with computational-based
simulations could lead to breakthroughs in the rate and quality of materials dis-
coveries. The use of these approaches would enable full information retrieval and
exploration of structure-property relationship in structural and functional imaging
on atomic level in an automated fashion. This, in turn, would allow a creation of
libraries of atomic configurations and associated properties. This information can
be then directly linked to theoretical simulations to enable effective exploration of
material behaviors and properties. Furthermore, knowledge of extant defect config-
urations in solids can significantly narrow the range of atomic configurations to be
probed from the first-principles, thus potentially solving an issue with exponential
growth of number of possible configurations with system size. These approaches
can further be used to build experimental databases across imaging facilities nation-
wide (as well as worldwide), establish links to X-ray, neutron and other structural
databases, and enable immediate in-line interpretation of information flows from
microscopes, X-Ray and neutron facilities and simulations.
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