
Chapter 1
Dimensions, Bits, and Wows
in Accelerating Materials Discovery

Lav R. Varshney

Abstract In this book chapter, we discuss how the problem of accelerated materials
discovery is related to other computational problems in artificial intelligence, such
as computational creativity, concept learning, and invention, as well as to machine-
aided discovery in other scientific domains. These connections lead, mathemati-
cally, to the emergence of three classes of algorithms that are inspired largely by the
approximation-theoretic and machine learning problem of dimensionality reduction,
by the information-theoretic problem of data compression, and by the psychology
and mass communication problem of holding human attention. The possible utility
of functionals including dimension, information [measured in bits], and Bayesian
surprise [measured in wows], emerge as part of this description, in addition to mea-
surement of quality in the domain.

1.1 Introduction

Finding newmaterialswith targeted properties is of great importance to technological
development in numerous fields including clean energy, national security, resilient
infrastructure, and human welfare. Classical approaches to materials discovery rely
mainly on trial-and-error, which requires numerous costly and time-intensive exper-
iments. As such, there is growing interest in using techniques from the information
sciences in accelerating the process of finding advanced materials such as new metal
alloys or thermoelectric materials [1, 2]. Indeed the national Materials Genome
Initiative—a large-scale collaboration to bring together new digital data, computa-
tional tools, and experimental tools—aims to quicken the design and deployment of
advanced materials, cf. [3, 4]. In developing these computational tools, there is a
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desire not only for supercomputing hardware infrastructure [5], but also advanced
algorithms.

In most materials discovery settings of current interest, however, the algorithmic
challenge is formidable. Due to the interplay between (macro- and micro-) struc-
tural and chemical degrees of freedom, computational prediction is difficult and
inaccurate. Nevertheless, recent research has demonstrated that emerging statistical
inference and machine learning algorithms may aid in accelerating the materials
discovery process [1].

The basic process is as follows. Regression algorithms are first used to learn the
functional relationship between features and properties from a corpus of some extant
characterized materials. Next, an unseen material is tested experimentally and those
results are used to enhance the functional relationship model; this unseen material
should be chosen as best in some sense. Proceeding iteratively,more unseenmaterials
are designed, fabricated, and tested and the model is further refined until a material
that satisfies desired properties is obtained. This process is similar to the active
learning framework (also called adaptive experimental design) [6], but unlike active
learning, here the training set is typically very small: only tens or hundreds of samples
as compared to the unexplored space that is combinatorial (in terms of constituent
components) and continuous-valued (in terms of their proportions). It should be
noted that the ultimate goal is not to learn the functional relationship accurately, but
to discover the optimal material with the fewest trials, since experimentation is very
costly.

What should be the notion of best in iteratively investigating new materials with
particular desired properties? This is a constructivemachine learning problem,where
the goal of learning is not to find a good model of data but instead to find one or
more particular instances of the domainwhich are likely to exhibit desired properties.
Perhaps the criterion in picking the next sample should be to learn about a useful
dimension in the feature space to get a sense of the entire space of possibilities rather
than restricting to a small-dimensional manifold [7]. By placing attention on a new
dimension of the space, new insights for discovery may be possible [8]. Perhaps the
criterion for picking the next sample should be to choose the most informative, as
in infotaxis in machine learning and descriptions of animal curiosity/behavior [9–
13]. Perhaps the goal in driving materials discovery should be to be as surprising
as possible, rather than to be as informative as possible, an algorithmic strategy for
accelerated discovery one might call surprise-taxis. (As we will see, the Bayesian
surprise functional is essentially the derivative of Shannon’smutual information [14],
and so this can be thought of as a second-order method, cf. [15].)

In investigating these possibilities, we will embed our discussion in the larger
framework of data-driven scientific discovery [16, 17] where theory and computation
interact to direct further exploration. The overarching aim is to develop a viable
research tool that is of relevance to materials scientists in a variety of industries,
and perhaps even to researchers in further domains like drug cocktail discovery. The
general idea is to provide researchers with cognitive support to augment their own
intelligence [18], just like other technologies including pencil-and-paper [19, 20] or
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internet-based tools [21, 22] often lead to greater quality and efficiency of human
thought.

When we think about human intelligence, we think about the kinds of abilities
that people have, such as memory, deductive reasoning, association, perception,
abductive reasoning, inductive reasoning, and problem solving. With technological
advancement over the past century, computing technologies have progressed to the
stage where they too havemany of these abilities. The pinnacle of human intelligence
is often said to be creativity and discovery, ensconced in such activities as music
composition, scientific research, or culinary recipe design. One might wonder, then,
can computational support help people to create and discover novel artifacts and
ideas?

In addressing this question, we will take inspiration from related problems
including computational creativity, concept learning, and invention, as well as from
machine-aided discovery in other scientific domains. Connections to related prob-
lems lead, mathematically, to the emergence of three classes of accelerated dis-
covery algorithms that are inspired largely by the approximation-theoretic [23] and
machine learning problem of dimensionality reduction [24], by the information-
theoretic problem of data compression [25, 26], and by the psychology and mass
communication problem of holding human attention. The possible utility of func-
tionals including dimension, information [measured in bits], and Bayesian surprise
[measured inwows], emerge as part of this description, in addition tomeasurement of
quality in the domain. It should be noted that although demonstrated in other creative
and scientific domains, accelerated materials discovery approaches based on these
approximation-theoretic and information-theoretic functionals remain speculative.

1.2 Creativity and Discovery

Whether considering literary manuscripts, musical compositions, culinary recipes,
or scientific ideas, the basic argument framing this chapter is that it is indeed pos-
sible for computers to create novel, high-quality ideas or artifacts, whether operat-
ing autonomously or semi-autonomously by engaging with people. As one typical
example, consider a culinary computational creativity system that uses reposito-
ries of existing recipes, data on the chemistry of food, and data on human hedonic
perception of flavor to create new recipes that have never been cooked before, but
that are flavorful [27–29]. As another example, consider a machine science system
that takes the scientific literature in genomics, generates hypotheses, and tests them
automatically to create new scientific knowledge [30]. Some classical examples of
computational creativity include AARON, which creates original artistic images that
have been exhibited in galleries around the world [31], and BRUTUS, which tells
stories [32]. Several new applications, theories, and trends are now emerging in the
field of computational creativity [33–35].

Although several specific algorithmic techniques have been developed in the lit-
erature, the basic structure of many computational creativity algorithms proceed by
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first taking existing artifacts from the domain of interest and intelligently performing
a variety of transformations andmodifications to generate new ideas; the design space
has combinatorial complexity [36]. Next, these generated possibilities are assessed
to predict if people would find them compelling as creative artifacts and the best
are chosen. Some algorithmic techniques combine the generative and selective steps
into a single optimization procedure.

A standard definition of creativity emerging in the psychology literature [37] is
that: Creativity is the generation of an idea or artifact that is judged to be novel and
also to be appropriate, useful, or valuable by a suitably knowledgeable social group.
A critical aspect of any creativity algorithm is therefore determining a meaningful
characterization of what constitutes a good artifact in the two distinct dimensions of
novelty and utility. Note that each domain—whether literature or culinary art—has
its own specific metrics for quality. However, independent of domain, people like to
be surprised and there may be abstract information-theoretic measures for surprise
[14, 38–40].

Can this basic approach to computational creativity be applied to accelerating dis-
covery through machine science [41]? Most pertinently, one might wonder whether
novelty and surprise are essential to problems like accelerating materials discovery,
or is utility the only consideration. The wow factor of newly creative things or newly
discovered facts is important in regimes with an excess of potential creative artifacts
or growing scientific literature, not only for ensuring novelty but also for capturing
people’s attention. More importantly, however, it is important for pushing discovery
into wholly different parts of the creative space than other computational/algorithmic
techniques can. Designing for surprise is of utmost importance.

For machine science in particular, the following analogy to the three layers of
communication put forth by Warren Weaver [42] seems rather apt.

Level A (The technical problem)
Communication: How accurately can the symbols of communication be transmitted?
Machine Science: How accurately does gathered data represent the state of nature?
Level B (The semantic problem)
Communication: How precisely do the transmitted symbols convey the desired meaning?
Machine Science: How precisely does the measured data provide explanation into the nature of
the world?
Level C (The effectiveness problem)
Communication: How effectively does the received meaning affect conduct in the desired way?
Machine Science: How surprising are the insights that are learned?

A key element of machine science is therefore not just producing accurate and
explanatory data, but insights that are surprising as compared to current scientific
understanding.

In the remainder of the chapter, we introduce three basic approaches to discovery
algorithms, based on dimensions, information, and surprise.
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1.3 Discovering Dimensions

One of the central problems in unsupervised machine learning for understanding,
visualization, and further processing has been manifold learning or dimensionality
reduction. The basic idea is to assume that a given set of data points that have some
underlying low-dimensional structure are embedded in a high-dimensional Euclidean
space, and the goal is to recover that low-dimensional structure. Note that the low-
dimensional structure can be much more general than a classical smooth manifold
[43, 44]. Such machine learning-based approaches generalize, in some sense, clas-
sical harmonic analysis and approximation theory where a fixed representation, say
a truncated representation in the Fourier basis, is used as a low-dimensional repre-
sentation [23].

The most classical approach, principal components analysis (PCA) [45, 46], is a
linear transformation of data defined so the first principal component has the largest
possible variance, accounting for as much of the data variability as possible. The
second principal component has the highest variance possible under the constraint
that it is orthogonal to the first principal component, and so on. This linear trans-
formation method, accomplished by computing an eigenbasis, also turns possibly
correlated variables into values of linearly uncorrelated variables. It can be extended
to work with missing data [47]. One of the distinguishing features of PCA is that the
learned transformation can be applied directly to data that was not used to train the
transformation, so-called out-of-sample extension.

There are several nonlinear dimensionality reduction algorithms that first con-
struct a sparsely-connected graph representation of local affinity among data points
and then embed these points into a low-dimensional space, trying to preserve asmuch
of the original affinity as possible. Examples include locally linear embedding [48],
multidimensional scaling methods that try to preserve global information such as
Isomap [49], spectral embeddings such as Laplacian eigenmaps [50], and stochastic
neighbor embedding [51]. Direct out-of-sample extension is not possible with these
techniques, and so further techniques such as the Nyström approximation are needed
[52].

Another approach that supports direct out-of-sample extension is dimensionality
reduction using an autoencoder. An autoencoder is a feedforward neural network that
is trained to approximate the identity function, such that it maps a vector of values
to itself. When used for dimensionality reduction, a hidden layer in the network is
constrained to contain only a small number of neurons and so the network must
learn to encode the vector into a small number of dimensions and then decode it
back. Consequently, the first part of the network maps from high to low-dimensional
space, and the second maps in the reverse manner.

With this background on dimensionality reduction, we can now present an accel-
erated discovery algorithm that essentially pursues dimensions in order to prioritize
investigation of data. This Discovery through Eigenbasis Modeling of Uninteresting
Data (DEMUD) algorithm, due toWagstaff et al. [7], is essentially based on PCA and
is meant not just to prioritize data for investigation but also provide domain-specific
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explanations for why a given item is potentially interesting. The reader will notice the
fact that novel discovery algorithms could be developed using other dimensionality
reduction techniques that can be updated and with direct out-of-sample extension in
place of PCA, for example using autoencoders.

The basic idea of DEMUD is to use a notion of uninterestingness to judge what
to select next. Data that has already been seen, data that is not of interest due to its
category, or prior knowledge of uninterestingness are all used to iteratively model
what should be ignored in selecting a new itemof high interest. The specific technique
used is to first compute a low-dimensional eigenbasis of uninteresting items using
a singular value decomposition UΣV T of the original dataset X and retaining the
top k singular vectors (ranked by magnitude of the corresponding singular value).
Data items are then ranked according to the reconstruction error in representing in
this basis: items with largest error are said to have the most potential to be novel,
as they are largely in an unmodeled dimension of the space. In order to initialize,
we use the whole dataset, but then proceed iteratively in building up the eigenbasis.
Specifically, the DEMUD algorithm takes the following three inputs: X ∈ R

n×d as
the input data, XU = ∅ as the initial set of uninteresting items, and k as the number
of principal components to be used in XU. Then it proceeds as follows.

Algorithm 1 DEMUD [7]
1: Let U = SV D(X, k) be the initial model of XU and let μ be the mean of the data
2: while discovery is to continue and X �= ∅ do
3: Compute reconstructions x̂ = UUT (x − μ) + μ for all x ∈ X
4: Compute error in reconstructions R(x) = ‖x − x̂‖2 = ‖x − (UUT (x − μ) + μ)‖2 for all

x ∈ X
5: Choose x ′ = argmaxx∈X R(x) to investigate next
6: Remove this data item from the data set and add it to the model, i.e. X = X\{x ′} and XU =

XU ∪ {x ′}.
7: Update U and μ by using the incremental SVD algorithm [53] with inputs (U, x ′, k).
8: end while

The ordering of data to investigate that emerges from the DEMUD algorithm is
meant to quickly identify rare items of scientific value, maintain diversity in its selec-
tions, and also provide explanations (in terms of dimensions/subspaces to explore)
to aid in human understanding. The algorithm has been demonstrated using hyper-
spectral data for exploring rare minerals in planetary science [7].

1.4 Infotaxis

Having discussed how the pursuit of novel dimensions in the space of data may
accelerate scientific discovery, we now discuss how pursuit of information may do
likewise. In Shannon information theory, themutual information functional emerges
from the noisy channel coding theorem in characterizing the limits of reliable
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communication in the presence of noise [54] and from the rate-distortion theorem
in characterizing the limits of data compression [55]. In particular, the notion of
information rate (e.g. measured in bits) emerges as a universal interface for commu-
nication systems. For two continuous-valued random variables, X ∈ X and Y ∈ Y
with corresponding joint density fXY (x, y) and marginals fX (x) and fY (y), the
mutual information is given as

I (X; Y ) =
∫

Y

∫

X

fXY (x, y) log
fXY (x, y)

fX (x) fY (y)
dxdy.

If the base of the logarithm is chosen as 2, then the units of mutual information are
bits. The mutual information can also be expressed as the difference between an
unconditional entropy and a conditional one.

There are several methods for estimating mutual information from data, ranging
from plug-in estimators for discrete-valued data to much more involved minimax
estimators [56] and ensemble methods [57]. For continuous-valued data, there are a
variety of geometric and statistical techniques that can also be used [58, 59].

Mutual information is often used to measure informativeness even outside the
communication settings where the theorems are proven, since it is a useful mea-
sure of mutual dependence that indicates how much knowing one variable reduces
uncertainty about the other. Indeed, there is an axiomatic derivation of the mutual
informationmeasure, where it is shown that it is the unique (up to choice of logarithm
base) function that satisfies certain properties such as continuity, strong additivity,
and an increasing-in-alphabet-size property. In fact, there are several derivations with
differing small sets of axioms [60].

Of particular interest here is the pursuit of information as a method of discov-
ery, in an algorithm that is called infotaxis [9–13]. The infotaxis algorithm was first
explicitly discussed in [9] who described it as a model for animal foraging behav-
ior. The basic insight of the algorithm is that it is a principled way to essentially
encode exploration-exploitation trade-offs in search/discovery within an uncertain
environment, and therefore has strong connections to reinforcement learning. There
is a given but unknown (to the algorithm) probability distribution for the location of
the source being searched for and the rate of information acquisition is also the rate
of entropy reduction. The basic issue in discovering the source is that the underlying
probability distribution is not known to the algorithm but must be estimated from
available data. Accumulation of information allows a tighter estimate of the source
distribution. As such, the searcher must choose either to move to the most likely
source location or to pause and gather more information to make a better estimate of
the source. Infotaxis allows a balancing of these two concerns by choosing to move
(or stay still) in the direction that maximizes the expected reduction in entropy.

As noted, this algorithmic idea has been used to explain a variety of human/animal
curiosity behaviors and also been used in several engineering settings.
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1.5 Pursuit of Bayesian Surprise

Rather than moving within a space to maximize expected gain of information (max-
imize expected reduction of entropy), would it ever make sense to consider maxi-
mizing surprise instead. In the common use of the term, pursuit of surprise seems to
indicate a kind of curiosity that would be beneficial for accelerating discovery, but
is there a formal view of surprise as there is for information? How can we compute
whether something is likely to be perceived as surprising?

A particularly interesting definition is based on a psychological and information-
theoretic measure termed Bayesian surprise, due originally to Itti and Baldi [38, 40].
The surprise of each location on a feature map is computed by comparing beliefs
about what is likely to be in that location before and after seeing the information.
Indeed, novel and surprising stimuli spontaneously attract attention [61].

An artifact that is surprising is novel, has a wow factor, and changes the observer’s
world view. This can be quantified by considering a prior probability distribution of
existing ideas or artifacts and the change in that distribution after the new artifact
is observed, i.e. the posterior probability distribution. The difference between these
distributions reflects howmuch the observer’sworld viewhas changed. It is important
to note that surprise and saliency depend heavily on the observer’s existing world
view, and thus the same artifactmay be novel to one observer and not novel to another.
That is why Bayesian surprise is measured as a change in the observer’s specific prior
probability distribution of known artifacts.

Mathematically, the cognitively-inspired Bayesian surprise measure is defined as
follows. LetM be the set of artifacts known to the observer, with each artifact in this
repository being M ∈ M . Furthermore, a new artifact that is observed is denoted D.
The probability of an existing artifact is denoted p(M), the conditional probability
of the new artifact given the existing artifacts is p(D|M), and via Bayes’ theorem
the conditional probability of the existing artifacts given the new artifact is p(M |D).
The Bayesian surprise is defined as the following relative entropy (Kullback-Leibler
divergence):

s = D(p(M |D)||p(M)) =
∫

M

p(M |D) log
p(M |D)

p(M)
dM

One might wonder if Bayesian surprise, s(D), has anything to do with measures
of information such as Shannon’s mutual information given in the previous section.
In fact, if there is a definable distribution on new artifacts q(D), the expected value
of Bayesian surprise is the Shannon mutual information.

E[s(D)] =
∫

q(D)D(p(M |D)||p(M))dD =
∫ ∫

M

p(M, D) log
p(M |D)

p(M)
dMdD,
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which by definition is the Shannon mutual information I (M; D). The fact that the
average of the Bayesian surprise equals the mutual information points to the notion
that surprise is essentially the derivative of information.

Let us define the weak derivative, which arises in the weak-* topology [62], as
follows.

DefinitionLetA be a vector space, and f a real-valued functional defined on domain
Ω ⊂ A , where Ω is a convex set. Fix an a0 ∈ Ω and let θ ∈ [0, 1]. If there exists a
map f ′

a0 : Ω → R such that

f ′
a0(a) = lim

θ↓0
f [(1 − θ)a0 + θa] − f (a0)

θ

for all a ∈ Ω , then f is said to be weakly differentiable in Ω at a0 and f ′
a0 is the

weak derivative in Ω at a0.
If f is weakly differentiable in Ω at a0 for all a0 in Ω , then f is said to be weakly

differentiable.
The precise relationship can be formalized as follows. For a fixed reference dis-

tribution F0 = q(D), the weak derivative of mutual information is:

I ′
F0(F) = lim

θ↓0
(I ((1 − θ)F0 + θF0) − I (F0))

θ
=

∫
s(x)q(x)dx − I (F0)

Indeed, even the Shannon capacity C of communication over a stochastic kernel
p(M |D) can be expressed in terms of the Bayesian surprise [63]:

C = max
q(D)

I (M; D) = min
p(M)

max
d∈M

s(d),

therefore all communicated signals should be equally surprising when trying to max-
imize information rate of communication.

These formalisms are all well and good, but it is also important to have operational
meaning for Bayesian surprise to go alongside. In fact, there are several kinds of
operational meanings that have been established in a variety of fields.

• In defining Bayesian surprise, Itti and Baldi also performed several psychology
experiments that demonstrated its connection to attraction of human attention
across different spatiotemporal scales, modalities, and levels of abstraction [39,
40]. As a typical example of a such an experiment, human subjects were tasked
with looking at a video of a soccer game while being measured using eye-tracking.
The Bayesian surprise for the video was also computed. The places where the
Bayesian surprise was large was also where the human subjects were looking.
These classes of experiments have been further studied by several other research
groups in psychology, e.g. [64–67].

• Bayesian surprise has not just been observed at a behavioral level, but also at
a neurobiological level [68–70], where various brain processes concerned with
attention have been related to Bayesian surprise.
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• In the engineering of computational creativity systems, it has empirically been
found that Bayesian surprise is a useful optimization criterion for ideas or artifacts
to be rated as highly creative [27–29, 71]. Likewise in marketing [72], Bayesian
surprise has been found to be an effective criterion for designing promotion cam-
paigns [73].

• In the Bayesian model comparison literature, Bayesian surprise is also called
complexity [74] and in thermodynamic formulations of Bayesian inference [75],
an increase in Bayesian surprise is necessarily associated with a decrease in free-
energy due to a reduction in prediction error. It should ne noted, however, that
Bayes-optimal inference schemes do not optimize for Bayesian surprise in itself
[74].

• In information theory, Bayesian surprise is sometimes called the marginal infor-
mation density [76]. When communicating in information overload regimes, it is
necessary for messages to not only provide information but also to attract attention
in the first place. In many communication settings, the flood of messages is not
only immense but also monotonously similar. Some have argued that “it would
be far more effective to send one very unusual message than a thousand typical
ones” [77]. The Bayesian surprise therefore arises in information-theoretic studies
of optimal communication systems. One example is in highly-asynchronous com-
munication, where the receiver must monitor the channel for long stretches of time
before a transmitted signal appears [78]. Moreover, we have shown that Bayesian
surprise is the natural cost function for communication just like log-loss [79] is the
natural fidelity criterion for compression [14] (as follows from KKT conditions
[80]). One can further note that there is a basic tradeoff between messages being
informative and being surprising [14].

Given that Bayesian surprise has operational significance in a variety of psychol-
ogy, neurobiology, statistics, creativity, and communication settings, aswell as formal
derivative relationships to mutual information, one might wonder if an accelerated
discovery algorithm that aims to maximize Bayesian surprise might be effective. In
particular, could surprise-taxis be a kind of second-order version of infotaxis? This
direction may be promising since recent algorithms in accelerated materials discov-
ery [81] imitate the human discovery process, e.g. by using an adaptive scheme based
on Support Vector Regression (SVR) and Efficient Global Optimization (EGO) [82]
and demonstrating on a certain family of alloys, M2AX phases [83].

In developing a surprise-taxis algorithm for materials discovery, however, one
may need to explicitly take notions of quality into account, rather than just pure
novelty concerns, since there may be large parts of the discovery space that have low-
quality possibilities: a Lagrangian balance between differing objectives of surprise
and quality.
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1.6 Conclusion

Althoughmathematically distinct, various problems inmachine learning and artificial
intelligence such as computational creativity, concept learning [84], invention, and
accelerated discovery are all quite closely related philosophically. In this chapter,
we have suggested that there may be value in bringing algorithmic ideas from these
other related problems into acceleratedmaterials discovery, especially the conceptual
ideas of using dimensions, information, and surprise as key metrics for algorithmic
pursuit.

It is an open question whether any of these ideas will be effective, as they have
been in their original domains that include exploring minerals on distant planets [7],
modeling the exploratory behavior of organisms such as moths and worms [9, 11],
and creating novel and flavorful culinary recipes [27–29]. The data and informat-
ics resources that are emerging in materials science, however, provide a wonderful
opportunity to test this algorithmic hypothesis.
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