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Preface

This book addresses aspects of data analysis and optimal learning as part of the
co-design loop for future materials science innovation. The scientific process must
cycle between theory and design of experiments and the conduct and analysis
of them, in a loop that can be facilitated by more rapid execution. Computational and
experimental facilities today generate vast amounts of data at an unprecedented rate.
The role of visualization and inference and optimization methods, in distilling the
data constrained by materials theory predictions, is key to achieving the desired
goals of real-time analysis and control. The importance of this book lies in
emphasizing that the full value of knowledge-driven discovery using data can only
be realized by integrating statistical and information sciences with materials science,
which itself is increasingly dependent on experimental data gathering efforts. This is
especially the case as we enter a new era of big data in materials science with
initiatives in exascale computation and with the planning and building of future
coherent light source facilities such as the upgrade of the Linac Coherent Light
Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL),
and Matter Radiation in Extremes (MaRIE), the signature concept facility from Los
Alamos National Laboratory. These experimental facilities, as well as present syn-
chrotron light sources being upgraded and used in novel ways, are expected to
generate hundreds of terabytes to several petabytes of in situ spatially and temporally
resolved data per sample. The questions that then arise include how we can learn
from this data to accelerate the processing and analysis of reconstructed
microstructure, rapidly map spatially resolved properties from high throughput data,
devise diagnostics for pattern detection, and guide experiments toward desired
information and create materials with targeted properties or controlled functionality.

The book is an outgrowth of a conference held in Santa Fe, May 16–18, 2016 on
“Data Science and Optimal Learning for Materials Discovery and Design”. In
addition, we invited a number of other authors active in these efforts, who did not
participate in Santa Fe, to also contribute chapters. The authors are an interdisci-
plinary group of experts who include theorists surveying the open questions and
future directions in the application of data science to materials problems, and
experimentalists focusing on the challenges associated with obtaining, analyzing,
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and learning from data from large-scale user facilities, such as the Advanced Photon
Source (APS) and LCLS. We have organized the chapters so that we start with a
broad and fascinating perspective from Lav Varshney who discusses the rela-
tionship between accelerated materials discovery and problems in artificial intelli-
gence, such as computational creativity, concept learning, and invention, as well as
machine learning in other scientific domains. He shows how the connections lead to
a number of common metrics including “dimension”, information as measured in
“bits” and Bayesian surprise, an entropy-related measure measured in “wows”.
With the thought-provoking title “Is Automated Materials Design and Discovery
Possible?”, Mike McKerns suggests that the tools traditionally used for finding
materials with desired properties, which often make linear or quadratic approxi-
mations to handle the large dimensionality associated with the data, can be limiting
as global optimization requires dealing with a highly nonlinear problem. He dis-
cusses the merits of the method of “Optimal Uncertainty Quantification” and the
software tool Mystic as a possible route to handle such shortcomings. The impor-
tance of the choice and influence of material descriptors or features on the outcome
of machine learning is the focus of the chapter by Prasanna Balachandran et al.
They consider a number of materials data sets with different sets of features to
independently track which of the sets finds most rapidly the compound with the
largest target property. They emphasize that a relatively poor machine-learned
model with large error but one that contains key features can be more efficient in
accelerating the search process than a low-error model that lacks such features.

The bridge to the analysis of experimental data is provided by Alisa Paterson
et al. who discuss the least squares and Bayesian inference approaches and show
how they can be applied to X-ray diffraction data to study structure refinement. By
considering single peak and full diffraction pattern fitting, they make the case that
Bayesian inference provides a better model and generally affords the ability to
escape from local minima and provide quantifiable uncertainties. They employ
Markov Chain Monte Carlo algorithms to sample the distribution of parameters to
construct the posterior probability distributions. The development of methods for
extracting experimentally accessible spatially dependent information on structure
and function from probes such as scanning transmission and scanning probe
microscopies is the theme of the chapter by Maxim Ziatdinov et al. They
emphasize the need to cross-correlate information from different experimental
channels in physically and statistically meaningful ways and illustrate the use of
machine learning and multivariate analysis to allow automated and accurate
extraction and mapping of structural and functional material descriptors from
experimental datasets. They consider a number of case studies, including strongly
correlated materials.

The chapter by Brian Patterson et al. provides an excellent overview of the
challenges associated with non-destructive 3D imaging and is a segue into the next
three chapters also focused on imaging from incoherent and coherent light sources.
This work features 3D data under dynamic time dependence at what is currently the
most rapid strain rates available with present light sources. The chapter discusses
issues and needs in the processing of large datasets of many terabytes in a matter of
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days from in situ experiments, and the developments required for automated
reconstruction, filtering, segmentation, visualization, and animation, in addition to
acquiring appropriate metrics and statistics characterizing the morphologies. Reeju
Pokharel describes the technique and analysis tools associated with High Energy
Diffraction Microscopy (HEDM) for characterizing polycrystalline microstructure
under thermomechanical conditions. HEDM captures 3D views in a bulk sample at
sub-grain resolution of about one micron. However, reconstruction from the
diffraction signals is a computationally very intensive task. One of the challenges
here is to develop tools based on machine learning and optimization to accelerate
the reconstruction of images and decrease the time to analyze and use results to
guide future experiments. The HEDM data can be utilized within a physics-based
finite-element model of microstructure.

The final two chapters relate to aspects of light sources, in particular, advances in
coherent diffraction imaging and the outstanding issues in the tuning and control of
particle accelerators. In particular, Edwin Fohtung et al. discuss the recovery of the
phase information from coherent diffraction data using iterative feedback algo-
rithms to reconstruct the image of an object. They review recent developments
including Bragg Coherent Diffraction Imaging (BCDI) for oxide nanostructures, as
well as the big data challenges in BCDI. Finally, Alex Sheinker closes the loop by
discussing the major challenges faced by future coherent light sources, such as
fourth-generation Free Electron Lasers (FELs), in achieving extremely tight con-
straints on beam quality and in quickly tuning between various experimental setups
under control. He emphasizes the need for feedback to achieve this control and
outlines an extremum seeking method for automatic tuning and optimization.

The chapters in this book span aspects of optimal learning, from using infor-
mation theoretic-based methods in the analysis of experimental data, to adaptive
control and optimization applied to the accelerators that serve as light sources.
Hence, the book is aimed at an interdisciplinary audience, with the subjects inte-
grating aspects of statistics and mathematics, materials science, and computer
science. It will be of timely appeal to those interested in learning about this
emerging field. We are grateful to all the authors for their articles as well as their
support of the editorial process.

Los Alamos, NM, USA Turab Lookman
Los Alamos, NM, USA Stephan Eidenbenz
Los Alamos, NM, USA Cris Barnes
Brookhaven, NY, USA Frank Alexander
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Chapter 1
Dimensions, Bits, and Wows
in Accelerating Materials Discovery

Lav R. Varshney

Abstract In this book chapter, we discuss how the problem of accelerated materials
discovery is related to other computational problems in artificial intelligence, such
as computational creativity, concept learning, and invention, as well as to machine-
aided discovery in other scientific domains. These connections lead, mathemati-
cally, to the emergence of three classes of algorithms that are inspired largely by the
approximation-theoretic and machine learning problem of dimensionality reduction,
by the information-theoretic problem of data compression, and by the psychology
and mass communication problem of holding human attention. The possible utility
of functionals including dimension, information [measured in bits], and Bayesian
surprise [measured in wows], emerge as part of this description, in addition to mea-
surement of quality in the domain.

1.1 Introduction

Finding newmaterialswith targeted properties is of great importance to technological
development in numerous fields including clean energy, national security, resilient
infrastructure, and human welfare. Classical approaches to materials discovery rely
mainly on trial-and-error, which requires numerous costly and time-intensive exper-
iments. As such, there is growing interest in using techniques from the information
sciences in accelerating the process of finding advanced materials such as new metal
alloys or thermoelectric materials [1, 2]. Indeed the national Materials Genome
Initiative—a large-scale collaboration to bring together new digital data, computa-
tional tools, and experimental tools—aims to quicken the design and deployment of
advanced materials, cf. [3, 4]. In developing these computational tools, there is a
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2 L. R. Varshney

desire not only for supercomputing hardware infrastructure [5], but also advanced
algorithms.

In most materials discovery settings of current interest, however, the algorithmic
challenge is formidable. Due to the interplay between (macro- and micro-) struc-
tural and chemical degrees of freedom, computational prediction is difficult and
inaccurate. Nevertheless, recent research has demonstrated that emerging statistical
inference and machine learning algorithms may aid in accelerating the materials
discovery process [1].

The basic process is as follows. Regression algorithms are first used to learn the
functional relationship between features and properties from a corpus of some extant
characterized materials. Next, an unseen material is tested experimentally and those
results are used to enhance the functional relationship model; this unseen material
should be chosen as best in some sense. Proceeding iteratively,more unseenmaterials
are designed, fabricated, and tested and the model is further refined until a material
that satisfies desired properties is obtained. This process is similar to the active
learning framework (also called adaptive experimental design) [6], but unlike active
learning, here the training set is typically very small: only tens or hundreds of samples
as compared to the unexplored space that is combinatorial (in terms of constituent
components) and continuous-valued (in terms of their proportions). It should be
noted that the ultimate goal is not to learn the functional relationship accurately, but
to discover the optimal material with the fewest trials, since experimentation is very
costly.

What should be the notion of best in iteratively investigating new materials with
particular desired properties? This is a constructivemachine learning problem,where
the goal of learning is not to find a good model of data but instead to find one or
more particular instances of the domainwhich are likely to exhibit desired properties.
Perhaps the criterion in picking the next sample should be to learn about a useful
dimension in the feature space to get a sense of the entire space of possibilities rather
than restricting to a small-dimensional manifold [7]. By placing attention on a new
dimension of the space, new insights for discovery may be possible [8]. Perhaps the
criterion for picking the next sample should be to choose the most informative, as
in infotaxis in machine learning and descriptions of animal curiosity/behavior [9–
13]. Perhaps the goal in driving materials discovery should be to be as surprising
as possible, rather than to be as informative as possible, an algorithmic strategy for
accelerated discovery one might call surprise-taxis. (As we will see, the Bayesian
surprise functional is essentially the derivative of Shannon’smutual information [14],
and so this can be thought of as a second-order method, cf. [15].)

In investigating these possibilities, we will embed our discussion in the larger
framework of data-driven scientific discovery [16, 17] where theory and computation
interact to direct further exploration. The overarching aim is to develop a viable
research tool that is of relevance to materials scientists in a variety of industries,
and perhaps even to researchers in further domains like drug cocktail discovery. The
general idea is to provide researchers with cognitive support to augment their own
intelligence [18], just like other technologies including pencil-and-paper [19, 20] or
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internet-based tools [21, 22] often lead to greater quality and efficiency of human
thought.

When we think about human intelligence, we think about the kinds of abilities
that people have, such as memory, deductive reasoning, association, perception,
abductive reasoning, inductive reasoning, and problem solving. With technological
advancement over the past century, computing technologies have progressed to the
stage where they too havemany of these abilities. The pinnacle of human intelligence
is often said to be creativity and discovery, ensconced in such activities as music
composition, scientific research, or culinary recipe design. One might wonder, then,
can computational support help people to create and discover novel artifacts and
ideas?

In addressing this question, we will take inspiration from related problems
including computational creativity, concept learning, and invention, as well as from
machine-aided discovery in other scientific domains. Connections to related prob-
lems lead, mathematically, to the emergence of three classes of accelerated dis-
covery algorithms that are inspired largely by the approximation-theoretic [23] and
machine learning problem of dimensionality reduction [24], by the information-
theoretic problem of data compression [25, 26], and by the psychology and mass
communication problem of holding human attention. The possible utility of func-
tionals including dimension, information [measured in bits], and Bayesian surprise
[measured inwows], emerge as part of this description, in addition tomeasurement of
quality in the domain. It should be noted that although demonstrated in other creative
and scientific domains, accelerated materials discovery approaches based on these
approximation-theoretic and information-theoretic functionals remain speculative.

1.2 Creativity and Discovery

Whether considering literary manuscripts, musical compositions, culinary recipes,
or scientific ideas, the basic argument framing this chapter is that it is indeed pos-
sible for computers to create novel, high-quality ideas or artifacts, whether operat-
ing autonomously or semi-autonomously by engaging with people. As one typical
example, consider a culinary computational creativity system that uses reposito-
ries of existing recipes, data on the chemistry of food, and data on human hedonic
perception of flavor to create new recipes that have never been cooked before, but
that are flavorful [27–29]. As another example, consider a machine science system
that takes the scientific literature in genomics, generates hypotheses, and tests them
automatically to create new scientific knowledge [30]. Some classical examples of
computational creativity include AARON, which creates original artistic images that
have been exhibited in galleries around the world [31], and BRUTUS, which tells
stories [32]. Several new applications, theories, and trends are now emerging in the
field of computational creativity [33–35].

Although several specific algorithmic techniques have been developed in the lit-
erature, the basic structure of many computational creativity algorithms proceed by
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first taking existing artifacts from the domain of interest and intelligently performing
a variety of transformations andmodifications to generate new ideas; the design space
has combinatorial complexity [36]. Next, these generated possibilities are assessed
to predict if people would find them compelling as creative artifacts and the best
are chosen. Some algorithmic techniques combine the generative and selective steps
into a single optimization procedure.

A standard definition of creativity emerging in the psychology literature [37] is
that: Creativity is the generation of an idea or artifact that is judged to be novel and
also to be appropriate, useful, or valuable by a suitably knowledgeable social group.
A critical aspect of any creativity algorithm is therefore determining a meaningful
characterization of what constitutes a good artifact in the two distinct dimensions of
novelty and utility. Note that each domain—whether literature or culinary art—has
its own specific metrics for quality. However, independent of domain, people like to
be surprised and there may be abstract information-theoretic measures for surprise
[14, 38–40].

Can this basic approach to computational creativity be applied to accelerating dis-
covery through machine science [41]? Most pertinently, one might wonder whether
novelty and surprise are essential to problems like accelerating materials discovery,
or is utility the only consideration. The wow factor of newly creative things or newly
discovered facts is important in regimes with an excess of potential creative artifacts
or growing scientific literature, not only for ensuring novelty but also for capturing
people’s attention. More importantly, however, it is important for pushing discovery
into wholly different parts of the creative space than other computational/algorithmic
techniques can. Designing for surprise is of utmost importance.

For machine science in particular, the following analogy to the three layers of
communication put forth by Warren Weaver [42] seems rather apt.

Level A (The technical problem)
Communication: How accurately can the symbols of communication be transmitted?
Machine Science: How accurately does gathered data represent the state of nature?
Level B (The semantic problem)
Communication: How precisely do the transmitted symbols convey the desired meaning?
Machine Science: How precisely does the measured data provide explanation into the nature of
the world?
Level C (The effectiveness problem)
Communication: How effectively does the received meaning affect conduct in the desired way?
Machine Science: How surprising are the insights that are learned?

A key element of machine science is therefore not just producing accurate and
explanatory data, but insights that are surprising as compared to current scientific
understanding.

In the remainder of the chapter, we introduce three basic approaches to discovery
algorithms, based on dimensions, information, and surprise.
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1.3 Discovering Dimensions

One of the central problems in unsupervised machine learning for understanding,
visualization, and further processing has been manifold learning or dimensionality
reduction. The basic idea is to assume that a given set of data points that have some
underlying low-dimensional structure are embedded in a high-dimensional Euclidean
space, and the goal is to recover that low-dimensional structure. Note that the low-
dimensional structure can be much more general than a classical smooth manifold
[43, 44]. Such machine learning-based approaches generalize, in some sense, clas-
sical harmonic analysis and approximation theory where a fixed representation, say
a truncated representation in the Fourier basis, is used as a low-dimensional repre-
sentation [23].

The most classical approach, principal components analysis (PCA) [45, 46], is a
linear transformation of data defined so the first principal component has the largest
possible variance, accounting for as much of the data variability as possible. The
second principal component has the highest variance possible under the constraint
that it is orthogonal to the first principal component, and so on. This linear trans-
formation method, accomplished by computing an eigenbasis, also turns possibly
correlated variables into values of linearly uncorrelated variables. It can be extended
to work with missing data [47]. One of the distinguishing features of PCA is that the
learned transformation can be applied directly to data that was not used to train the
transformation, so-called out-of-sample extension.

There are several nonlinear dimensionality reduction algorithms that first con-
struct a sparsely-connected graph representation of local affinity among data points
and then embed these points into a low-dimensional space, trying to preserve asmuch
of the original affinity as possible. Examples include locally linear embedding [48],
multidimensional scaling methods that try to preserve global information such as
Isomap [49], spectral embeddings such as Laplacian eigenmaps [50], and stochastic
neighbor embedding [51]. Direct out-of-sample extension is not possible with these
techniques, and so further techniques such as the Nyström approximation are needed
[52].

Another approach that supports direct out-of-sample extension is dimensionality
reduction using an autoencoder. An autoencoder is a feedforward neural network that
is trained to approximate the identity function, such that it maps a vector of values
to itself. When used for dimensionality reduction, a hidden layer in the network is
constrained to contain only a small number of neurons and so the network must
learn to encode the vector into a small number of dimensions and then decode it
back. Consequently, the first part of the network maps from high to low-dimensional
space, and the second maps in the reverse manner.

With this background on dimensionality reduction, we can now present an accel-
erated discovery algorithm that essentially pursues dimensions in order to prioritize
investigation of data. This Discovery through Eigenbasis Modeling of Uninteresting
Data (DEMUD) algorithm, due toWagstaff et al. [7], is essentially based on PCA and
is meant not just to prioritize data for investigation but also provide domain-specific
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explanations for why a given item is potentially interesting. The reader will notice the
fact that novel discovery algorithms could be developed using other dimensionality
reduction techniques that can be updated and with direct out-of-sample extension in
place of PCA, for example using autoencoders.

The basic idea of DEMUD is to use a notion of uninterestingness to judge what
to select next. Data that has already been seen, data that is not of interest due to its
category, or prior knowledge of uninterestingness are all used to iteratively model
what should be ignored in selecting a new itemof high interest. The specific technique
used is to first compute a low-dimensional eigenbasis of uninteresting items using
a singular value decomposition UΣV T of the original dataset X and retaining the
top k singular vectors (ranked by magnitude of the corresponding singular value).
Data items are then ranked according to the reconstruction error in representing in
this basis: items with largest error are said to have the most potential to be novel,
as they are largely in an unmodeled dimension of the space. In order to initialize,
we use the whole dataset, but then proceed iteratively in building up the eigenbasis.
Specifically, the DEMUD algorithm takes the following three inputs: X ∈ R

n×d as
the input data, XU = ∅ as the initial set of uninteresting items, and k as the number
of principal components to be used in XU. Then it proceeds as follows.

Algorithm 1 DEMUD [7]
1: Let U = SV D(X, k) be the initial model of XU and let μ be the mean of the data
2: while discovery is to continue and X �= ∅ do
3: Compute reconstructions x̂ = UUT (x − μ) + μ for all x ∈ X
4: Compute error in reconstructions R(x) = ‖x − x̂‖2 = ‖x − (UUT (x − μ) + μ)‖2 for all

x ∈ X
5: Choose x ′ = argmaxx∈X R(x) to investigate next
6: Remove this data item from the data set and add it to the model, i.e. X = X\{x ′} and XU =

XU ∪ {x ′}.
7: Update U and μ by using the incremental SVD algorithm [53] with inputs (U, x ′, k).
8: end while

The ordering of data to investigate that emerges from the DEMUD algorithm is
meant to quickly identify rare items of scientific value, maintain diversity in its selec-
tions, and also provide explanations (in terms of dimensions/subspaces to explore)
to aid in human understanding. The algorithm has been demonstrated using hyper-
spectral data for exploring rare minerals in planetary science [7].

1.4 Infotaxis

Having discussed how the pursuit of novel dimensions in the space of data may
accelerate scientific discovery, we now discuss how pursuit of information may do
likewise. In Shannon information theory, themutual information functional emerges
from the noisy channel coding theorem in characterizing the limits of reliable
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communication in the presence of noise [54] and from the rate-distortion theorem
in characterizing the limits of data compression [55]. In particular, the notion of
information rate (e.g. measured in bits) emerges as a universal interface for commu-
nication systems. For two continuous-valued random variables, X ∈ X and Y ∈ Y
with corresponding joint density fXY (x, y) and marginals fX (x) and fY (y), the
mutual information is given as

I (X; Y ) =
∫

Y

∫

X

fXY (x, y) log
fXY (x, y)

fX (x) fY (y)
dxdy.

If the base of the logarithm is chosen as 2, then the units of mutual information are
bits. The mutual information can also be expressed as the difference between an
unconditional entropy and a conditional one.

There are several methods for estimating mutual information from data, ranging
from plug-in estimators for discrete-valued data to much more involved minimax
estimators [56] and ensemble methods [57]. For continuous-valued data, there are a
variety of geometric and statistical techniques that can also be used [58, 59].

Mutual information is often used to measure informativeness even outside the
communication settings where the theorems are proven, since it is a useful mea-
sure of mutual dependence that indicates how much knowing one variable reduces
uncertainty about the other. Indeed, there is an axiomatic derivation of the mutual
informationmeasure, where it is shown that it is the unique (up to choice of logarithm
base) function that satisfies certain properties such as continuity, strong additivity,
and an increasing-in-alphabet-size property. In fact, there are several derivations with
differing small sets of axioms [60].

Of particular interest here is the pursuit of information as a method of discov-
ery, in an algorithm that is called infotaxis [9–13]. The infotaxis algorithm was first
explicitly discussed in [9] who described it as a model for animal foraging behav-
ior. The basic insight of the algorithm is that it is a principled way to essentially
encode exploration-exploitation trade-offs in search/discovery within an uncertain
environment, and therefore has strong connections to reinforcement learning. There
is a given but unknown (to the algorithm) probability distribution for the location of
the source being searched for and the rate of information acquisition is also the rate
of entropy reduction. The basic issue in discovering the source is that the underlying
probability distribution is not known to the algorithm but must be estimated from
available data. Accumulation of information allows a tighter estimate of the source
distribution. As such, the searcher must choose either to move to the most likely
source location or to pause and gather more information to make a better estimate of
the source. Infotaxis allows a balancing of these two concerns by choosing to move
(or stay still) in the direction that maximizes the expected reduction in entropy.

As noted, this algorithmic idea has been used to explain a variety of human/animal
curiosity behaviors and also been used in several engineering settings.



8 L. R. Varshney

1.5 Pursuit of Bayesian Surprise

Rather than moving within a space to maximize expected gain of information (max-
imize expected reduction of entropy), would it ever make sense to consider maxi-
mizing surprise instead. In the common use of the term, pursuit of surprise seems to
indicate a kind of curiosity that would be beneficial for accelerating discovery, but
is there a formal view of surprise as there is for information? How can we compute
whether something is likely to be perceived as surprising?

A particularly interesting definition is based on a psychological and information-
theoretic measure termed Bayesian surprise, due originally to Itti and Baldi [38, 40].
The surprise of each location on a feature map is computed by comparing beliefs
about what is likely to be in that location before and after seeing the information.
Indeed, novel and surprising stimuli spontaneously attract attention [61].

An artifact that is surprising is novel, has a wow factor, and changes the observer’s
world view. This can be quantified by considering a prior probability distribution of
existing ideas or artifacts and the change in that distribution after the new artifact
is observed, i.e. the posterior probability distribution. The difference between these
distributions reflects howmuch the observer’sworld viewhas changed. It is important
to note that surprise and saliency depend heavily on the observer’s existing world
view, and thus the same artifactmay be novel to one observer and not novel to another.
That is why Bayesian surprise is measured as a change in the observer’s specific prior
probability distribution of known artifacts.

Mathematically, the cognitively-inspired Bayesian surprise measure is defined as
follows. LetM be the set of artifacts known to the observer, with each artifact in this
repository being M ∈ M . Furthermore, a new artifact that is observed is denoted D.
The probability of an existing artifact is denoted p(M), the conditional probability
of the new artifact given the existing artifacts is p(D|M), and via Bayes’ theorem
the conditional probability of the existing artifacts given the new artifact is p(M |D).
The Bayesian surprise is defined as the following relative entropy (Kullback-Leibler
divergence):

s = D(p(M |D)||p(M)) =
∫

M

p(M |D) log
p(M |D)

p(M)
dM

One might wonder if Bayesian surprise, s(D), has anything to do with measures
of information such as Shannon’s mutual information given in the previous section.
In fact, if there is a definable distribution on new artifacts q(D), the expected value
of Bayesian surprise is the Shannon mutual information.

E[s(D)] =
∫

q(D)D(p(M |D)||p(M))dD =
∫ ∫

M

p(M, D) log
p(M |D)

p(M)
dMdD,
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which by definition is the Shannon mutual information I (M; D). The fact that the
average of the Bayesian surprise equals the mutual information points to the notion
that surprise is essentially the derivative of information.

Let us define the weak derivative, which arises in the weak-* topology [62], as
follows.

DefinitionLetA be a vector space, and f a real-valued functional defined on domain
Ω ⊂ A , where Ω is a convex set. Fix an a0 ∈ Ω and let θ ∈ [0, 1]. If there exists a
map f ′

a0 : Ω → R such that

f ′
a0(a) = lim

θ↓0
f [(1 − θ)a0 + θa] − f (a0)

θ

for all a ∈ Ω , then f is said to be weakly differentiable in Ω at a0 and f ′
a0 is the

weak derivative in Ω at a0.
If f is weakly differentiable in Ω at a0 for all a0 in Ω , then f is said to be weakly

differentiable.
The precise relationship can be formalized as follows. For a fixed reference dis-

tribution F0 = q(D), the weak derivative of mutual information is:

I ′
F0(F) = lim

θ↓0
(I ((1 − θ)F0 + θF0) − I (F0))

θ
=

∫
s(x)q(x)dx − I (F0)

Indeed, even the Shannon capacity C of communication over a stochastic kernel
p(M |D) can be expressed in terms of the Bayesian surprise [63]:

C = max
q(D)

I (M; D) = min
p(M)

max
d∈M

s(d),

therefore all communicated signals should be equally surprising when trying to max-
imize information rate of communication.

These formalisms are all well and good, but it is also important to have operational
meaning for Bayesian surprise to go alongside. In fact, there are several kinds of
operational meanings that have been established in a variety of fields.

• In defining Bayesian surprise, Itti and Baldi also performed several psychology
experiments that demonstrated its connection to attraction of human attention
across different spatiotemporal scales, modalities, and levels of abstraction [39,
40]. As a typical example of a such an experiment, human subjects were tasked
with looking at a video of a soccer game while being measured using eye-tracking.
The Bayesian surprise for the video was also computed. The places where the
Bayesian surprise was large was also where the human subjects were looking.
These classes of experiments have been further studied by several other research
groups in psychology, e.g. [64–67].

• Bayesian surprise has not just been observed at a behavioral level, but also at
a neurobiological level [68–70], where various brain processes concerned with
attention have been related to Bayesian surprise.
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• In the engineering of computational creativity systems, it has empirically been
found that Bayesian surprise is a useful optimization criterion for ideas or artifacts
to be rated as highly creative [27–29, 71]. Likewise in marketing [72], Bayesian
surprise has been found to be an effective criterion for designing promotion cam-
paigns [73].

• In the Bayesian model comparison literature, Bayesian surprise is also called
complexity [74] and in thermodynamic formulations of Bayesian inference [75],
an increase in Bayesian surprise is necessarily associated with a decrease in free-
energy due to a reduction in prediction error. It should ne noted, however, that
Bayes-optimal inference schemes do not optimize for Bayesian surprise in itself
[74].

• In information theory, Bayesian surprise is sometimes called the marginal infor-
mation density [76]. When communicating in information overload regimes, it is
necessary for messages to not only provide information but also to attract attention
in the first place. In many communication settings, the flood of messages is not
only immense but also monotonously similar. Some have argued that “it would
be far more effective to send one very unusual message than a thousand typical
ones” [77]. The Bayesian surprise therefore arises in information-theoretic studies
of optimal communication systems. One example is in highly-asynchronous com-
munication, where the receiver must monitor the channel for long stretches of time
before a transmitted signal appears [78]. Moreover, we have shown that Bayesian
surprise is the natural cost function for communication just like log-loss [79] is the
natural fidelity criterion for compression [14] (as follows from KKT conditions
[80]). One can further note that there is a basic tradeoff between messages being
informative and being surprising [14].

Given that Bayesian surprise has operational significance in a variety of psychol-
ogy, neurobiology, statistics, creativity, and communication settings, aswell as formal
derivative relationships to mutual information, one might wonder if an accelerated
discovery algorithm that aims to maximize Bayesian surprise might be effective. In
particular, could surprise-taxis be a kind of second-order version of infotaxis? This
direction may be promising since recent algorithms in accelerated materials discov-
ery [81] imitate the human discovery process, e.g. by using an adaptive scheme based
on Support Vector Regression (SVR) and Efficient Global Optimization (EGO) [82]
and demonstrating on a certain family of alloys, M2AX phases [83].

In developing a surprise-taxis algorithm for materials discovery, however, one
may need to explicitly take notions of quality into account, rather than just pure
novelty concerns, since there may be large parts of the discovery space that have low-
quality possibilities: a Lagrangian balance between differing objectives of surprise
and quality.
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1.6 Conclusion

Althoughmathematically distinct, various problems inmachine learning and artificial
intelligence such as computational creativity, concept learning [84], invention, and
accelerated discovery are all quite closely related philosophically. In this chapter,
we have suggested that there may be value in bringing algorithmic ideas from these
other related problems into acceleratedmaterials discovery, especially the conceptual
ideas of using dimensions, information, and surprise as key metrics for algorithmic
pursuit.

It is an open question whether any of these ideas will be effective, as they have
been in their original domains that include exploring minerals on distant planets [7],
modeling the exploratory behavior of organisms such as moths and worms [9, 11],
and creating novel and flavorful culinary recipes [27–29]. The data and informat-
ics resources that are emerging in materials science, however, provide a wonderful
opportunity to test this algorithmic hypothesis.

Acknowledgements Discussions with Daewon Seo, Turab Lookman, and Prasanna V. Balachan-
dran are appreciated. Further encouragement from Turab Lookman in preparing this book chapter,
despite the preliminary status of the work itself, is acknowledged.
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Chapter 2
Is Automated Materials Design
and Discovery Possible?

Michael McKerns

Abstract In materials design, we typically want to answer questions such as “Can
we optimize the probability that a structure will produce the desired properties within
some tolerance?” or “Can we optimize the probability that a transition will occur
between the desired initial and final states?” In the vast majority of cases, these prob-
lems are addressed indirectly, and with a reduced-dimensional model that approxi-
mates the actual system. Why? The tools and techniques traditionally used are not
sufficient to provide a general rigorous algorithmic approach to determining and/or
validating models of the system. Solving for the structure that maximizes some prop-
erty very likely will be a global optimization over a nonlinear surface with several
local minima and nonlinear constraints, while the tools generally used are linear (or
at best quadratic) solvers. This approximation is made to handle the large dimen-
sionality of the problem and be able to apply some basic constraints on the space of
possible solutions. Unfortunately, constraints from data, measurements, theory, and
other physical information are often only applied post-optimization as a binary form
of model validation. Additionally, sampling techniques like Monte Carlo, as well as
machine learning and Bayesian inference (which strongly rely on existing observed
data to infer the form of the solution), will not perform well when, in terms of struc-
tural configurations, discovering the materials in the state that produces the desired
property is a rare-event. This is unfortunately the rule, rather than the exception—
and thus most searches either require the solution to already have been observed,
or at least to be in the locality of the optimum. Fortunately, recent developments in
applied mathematics and numerical optimization provide a new suite of tools that
should overcome the existing limitations, and make rigorous automated materials
discovery and design possible.
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2.1 Model Determination in Materials Science

2.1.1 The Status Quo

One of the ultimate goals of the physical material sciences is the development of
detailed models that allow us to understand the properties of matter. While models
may be developed from ab initio theory or from empirical rules, often models are fit
directly to experimental results. Crystallographic structural analysis has pioneered
model fitting; direct fitting of crystal structure models to diffraction datasets has been
used routinely since the middle of the last century. In the past two decades, direct
model fitting has been applied to other scattering techniques such as PDF analysis
and X-ray spectroscopies. Combinations of experiments and theory to derive a single
physical model is a broad frontier for materials science.

Models that use physically meaningful parameters may not be well-conditioned
(meaning that the minimum is narrow and easily missed). Likewise, using parame-
ters that are physically meaningful may result in problems that are not well-posed—
meaning that there may not be a unique solution, since the effect of changing one
parameter may be offset by adjustment to another. Despite this, models with physical
parameters are most valuable for interpreting experimental measurements. In some
cases there may be many model descriptions that provide equivalent fits, within
experimental uncertainty. It is then not sufficient to identify a single minimum, since
this leads to the misapprehension that this single answer has been proven. Identifi-
cation of all such minima allows for the design of new experiments, or calculations
to differentiate between them.

2.1.2 The Goal

The fundamental scientific limitation that has prevented more widespread deploy-
ment of model fitting has been that, until recently, relatively few types of measure-
ments could be simulated at the level where quantitative agreement with experiments
can be obtained. When simulations can directly reproduce experimental results, then
parameters in the model can be optimized to improve the fit. However, to obtain
unique solutions that are not overly affected by statistical noise, one needs to have
many more observations than varied parameters (the crystallographic rule-of-thumb
is 10:1). While accurate simulation of many types of experiments is now possible,
the experimental data may not offer a sufficient number of observations to allow
fitting of a very complex model. This changes when different types of experiments
are combined, since each experiment may be sensitive to different aspects of the
model. In addition to the advances in computation, modern user facilities now offer
a wide assortment of experimental probes. Theory too can be added to the mix. It is
clear that the frontier over the next decade will be to develop codes that optimize a
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single model to fit all types of data for a material—rather than to develop a different
model from each experiment.

The task of model determination from pair distribution function (PDF) data has
gained considerable interest because it is one of few techniques giving detailed short-,
medium-, and long- range structural information for materials without long-range
order. However, the task of automated model derivation is exceedingly more difficult
without the assumption of a periodic lattice [40]. One approach is to use a greater
range of experimental techniques in modeling, combining measurements from dif-
ferent instruments to reduce the ratio of observations to degrees of freedom. The
challenge is that a computational framework is needed that can handle the complex-
ity in the constraining information in a nonlinear global optimization, that is both
generally applicable to structure solution and extensible to the (most-likely) requisite
large-scale parallel computing.

For example, in powder diffraction crystallography, indexing the lattice from an
unknown material, potentially in the presence of peaks from multiple phases, is an
ill-conditioned problem where a large volume of parameter space must be searched
for solutions with extremely sharp minima. Additionally, structure solution often
is an ill-posed problem; however, crystallographic methodology assumes that if a
well-behaved and plausible solution is identified, this solution is unique. An unusual
counter example is [84], where molecular modeling was used to identify all possible
physical models to fit the neutron and X-ray diffraction and neutron spectrometry
data. Such studies should be routine rather than heroic.

2.2 Identification of the Research and Issues

2.2.1 Reducing the Degrees of Freedom in Model
Determination

X-ray diffraction enables us to pinpoint the coordinates of atoms in a crystal, with a
precision of around 10–4nm. Determining the structure and arrangement of atoms in
a solid is fundamental to understanding its properties, and this has become common
practice for X-ray crystallographers over the past many years. However, with the
emergence of nanotechnology, it has become abundantly clear that diffraction data
alone may not be enough to uniquely solve the structure of nanomaterials. As part
of a growing effort to incorporate the results of other techniques to constrain X-
ray refinements, it has recently been proposed that combining information from
spectroscopy with diffraction data can enable the unique solution for the structure of
amorphous and nanostructured materials [14].

The forward problem of predicting the diffraction intensity given a particular den-
sity distribution is trivial, but the inverse, unraveling from the intensity distribution
the density that gives rise to it, is a highly nontrivial problem in global optimiza-
tion. In crystallography, the diffraction pattern is a wave-interference pattern, but we
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measure only the intensities (the squares of the waves) not the wave amplitudes. To
get the amplitude, you take the square root of the intensity; however, in so doing you
lose any knowledge of the phase of the wave, and thus half the information needed
to reconstruct the density is also lost. When solving such inverse problems, you hope
you can start with a uniqueness theorem that reassures you that, under ideal con-
ditions, there is only one solution: one density distribution that corresponds to the
measured intensity. Then you have to establish that your data set contains sufficient
information to constrain that unique solution. This is a problem from information
theory that originated with Reverend Thomas Bayes’ work in the 18th century, and
the work of Nyquist and Shannon in the 20th century [59, 72], and describes the fact
that the degrees of freedom in the model must not exceed the number of pieces of
independent information in the data.

In crystallography, the information is in the form of Bragg peak intensities and the
degrees of freedom are the atomic coordinates. We use crystal symmetry to connect
themodel to the contents of a unit cell, and thus greatly reduce the degrees of freedom
needed to describe the problem. A single diffraction measurement yields a multitude
of Bragg peak intensities, providing ample redundant intensity information to make
up for the lost phases. Highly efficient search algorithms, such as the conjugate
gradient method, typically can readily accept parameter constraints, and in many
cases, can find a solution quickly even in a very large search space. The problem is
often so overconstrained that we can disregard a lot of directional information—in
particular, even though Bragg peaks are orientationally averaged to a 1D function in
a powder diffraction measurement, we still can get a 3D structural solution [16].

Moving from solving crystal structures to solving nanostructures will require a
new set of tools, with vastly increased capabilities. For nanostructures, the informa-
tion content in the data is degradedwhile the complexity of themodel ismuch greater.
At the nanoscale, finite size effects broaden the sharp Bragg peaks to the point where
the broadening is sufficient enough that the peaks begin to overlap. We also can no
longer describe the structure with the coordinates of a few atoms in a unit cell—we
need the arrangement of hundreds or thousands of atoms in a nanoparticle. There
also can be complicated effects, like finite-size induced relaxations in the core and
the surface. Moreover, the measured scattering intensity asymptotically approaches
zero as the nanoparticle gets smaller and the weak scattering of X-rays becomes hard
to discern from the noise. In general, we measure the intensity from a multitude of
nanoparticles or nanoclusters, and then struggle with how to deal with the averaged
data.

The use of total scattering and atomic-pair distribution function (PDF) measure-
ments for nanostructure studies is a promising approach [22]. In these experiments,
powders of identical particles are studied using X-ray powder diffraction, result-
ing in good signals, but highly averaged data. Short wavelength X-rays or neutrons
are used for the experiments giving data with good real-space resolution, and the
resulting data are fit with models of the nanoparticle structures. Uniqueness is a real
issue, as is the availability of good nanostructure solution algorithms. Attempts to fit
amorphous structures, which have local order on the subnanometer scale and lots of
disorder, yield highly degenerate results: many structure models, some completely
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physically nonsensical, give equivalent fits to the data within errors [28]. Degenerate
solutions imply that there is insufficient information in the data set to constrain a
unique solution. At this point we would like to seek additional constraints coming
from prior knowledge about the system, or additional data sets, such that these differ-
ent information sources can be combined to constrain a unique solution. This can be
done either by adding constraints on how model parameters can vary (for example,
crystal symmetries), or by adding terms to the target (or cost) function that is being
minimized in the global optimization process.

In crystallography, it is considered a major challenge to be able to incorporate
disparate information sources into the global optimization scheme, and to figure
out how to weight their contributions to the cost function. There have been a few
advances, such as Cliffe et al., where the authors introduced a variance term into
the cost function that adds a cost when atomic environments of equivalent atoms in
the model deviate too much from one other [14]. In the systems they studied, this
simple term was the difference between successful and unsuccessful nanostructure
solutions.We see that a relatively simple but well-chosen constraint added to the cost
function can make a big difference in determining the unique structure solution. The
impact of the constraints chosen by Cliffe et al. was to vastly reduce the volume of
the search space for the global optimization algorithm, thus enabling the optimizer to
converge within the limitations imposed by the simulated annealing algorithm itself.
A similar effect has been seen in the work of Juhas et al., where adding ionic radii to
a structure solution enabled the solution of structures from total scattering data [40].
Again, applying a simple constraint, which at first sight contained a rather limited
amount of information, was all that was needed for success. The constraints applied
in both of the above studies, however common sense, placed enormous restrictions
on the solution space and the efficiency and uniqueness of solutions, and ultimately
enabled the structure to be determined.

2.2.2 OUQ and mystic

The desire to combine information from different measurements, legacy data, mod-
els, assumptions, or other pieces of information into a global optimization problem
is not unique to the field of crystallography, but has numerical and applied mathe-
matical underpinnings that transcend any particular field of science. For example,
recent advances in mechanical and materials engineering use a paradigm of apply-
ing different models, measurements, datasets, and other sources of information as
constraints in global optimization problems posed to quantify the uncertainty in
engineering systems of interest [66, 82]. In general, these studies have focused on
the rigorous certification of the safety of engineering structures under duress, such
as the probability of failure of a metal panel under ballistic impact [3, 44, 66, 82,
83] or the probability of elastoplastic failure of a tower under seismic stimulation
[66]. Owhadi et al. has developed a mathematical framework called “optimal uncer-
tainty quantification” (or OUQ), for solving these types of certification and other
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engineering design problems [66]. OUQ should also be directly leverageable in the
inverse modeling of nanostructured materials.

The potential application of OUQ in the modeling of nanostructures is both broad
and also unexplored. For example, when degenerate solutions are found in nanostruc-
ture refinement problems, it implies that there is insufficient information to constrain
a unique solution for the nanostructure; however with OUQwe can rigorously estab-
lish whether or not there actually is sufficient information available to determine a
unique solution. Further, we could leverage OUQ to discover what critical pieces
of information would enable a unique solution to be found, or give us the likeli-
hood that each of the degenerate solutions found is the true unique solution. OUQ
could be used to rigorously identify the number of pieces of independent informa-
tion in the data. We could also utilize uncertainty quantification to discover which
design parameters or other information encapsulated in the constraints has the largest
impact on the nanostrucuture, to determine which regions of parameter space have
the largest impact on the outcome of the inverse problem, or to help us target the next
best experiments to perform so we can obtain a unique solution. We can use OUQ
to identify the impact of parameters within a hierarchical set of models; to deter-
mine, for example, whether finite-size induced relaxations in the nanostrucure core
or on the surface have critical impact on the bulk properties of the material. Since
engineering design problems, with similar objectives as the examples given above,
have already been solved using uncertainty quantification—it would appear that the
blocker to solving the nanostructure problem may only be one of implementation.

A practical implementation issue for OUQ is that many OUQ problems are one to
two orders of magnitude larger than the standard inverse problem (say to find a local
minima on some design surface). OUQ problems are often highly-constrained and
high-dimensional global optimizations, since all of the available information about
the problem is encapsulated in the constraints. In an OUQ problem, there are often
numerous nonlinear and statistical constraints. The largest OUQ problem solved to
date had over one thousand input parameters and over one thousand constraints [66];
however, nanostructure simulations where an optimizer is managing the arrangement
of hundreds or thousands of atoms may quickly exceed that size. Nanostructure
inverse problems may also seek to use OUQ to refine model potentials, or other
aspects of a molecular dynamics simulation used in modeling the structure. The
computational infrastructure for problems of this size can easily require distributed
or massively parallel resources, andmay potentially require a level of robust resource
management that is on the forefront of computational science.

McKerns et al. has developed a software framework for high-dimensional con-
strained global optimization (called “mystic”) that is designed to utilize large-
scale parallelism on heterogeneous resources [51, 52, 54]. The mystic software
provides many of the uncertainty quantification functionalities mentioned above, a
suite of highly configurable global optimizers, and a robust toolkit for applying con-
straints and dynamically reducing dimensionality. mystic is built so the user can
apply restraints on the solution set and penalties on the cost function in a robust
manner—in mystic, all constraints are applied in functional form, and are there-
fore also independent of the optimization algorithm. Since mystic’s constraints
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solvers are functional (i.e. x’ = c(x), where c is a coordinate transformation
to the valid solution set), any piece of information can be directly encoded in the
constraints, including trust radii on surrogate models, measurement uncertainty in
data, and statistical constraints on measured or derived quantities [66, 82]. Adap-
tive constraints solvers can be formulated that seek to reduce the volume of search
space, applying and removing constraints dynamically during an optimization with
the goal of, for example, reducing the dimensionality of the optimization as con-
straints are discovered to be redundant or irrelevant [82, 83]. Direct optimization
algorithms, such as conjugate gradient, have had a long history of use in structural
refinement, primarily due to efficiency of the algorithm; however, with mystic,
nanostrucure refinements can leverage massively parallel global optimizations with
the same convergence dynamics as the fastest of available direct methods [3, 44].

We can extrapolate from the lesson learned from the studies of Cliffe et al. [14] and
Juhas et al. [40]. If applying a simple penalty constraint to reduce outliers in atomic
environments of equivalent atoms can vastly reduce search space so that select nanos-
tructures can be uniquely solved—we can begin to imagine what is possible when
we add all available information to the refinement problem as constraints. We will
be able to pose problems that not only yield us the answer of “which” nanostructure,
but with mystic and OUQ, we should be able to directly and rigorously address
the deeper questions that ask “why”.

2.3 Introduction to Uncertainty Quantification

2.3.1 The UQ Problem

We present here a rigorous and unified framework for the statement and solution
of uncertainty quantification (UQ) problems centered on the notion of available
information. In general, UQ refers to any attempt to quantitatively understand the
relationships among uncertain parameters and processes in physical processes, or
in mathematical and computational models for them; such understanding may be
deterministic or probabilistic in nature. However, to make the discussion specific, we
start the description of the OUQ framework as it applies to the certification problem;
Sect. 2.4 gives a broader description of the purpose, motivation and applications of
UQ in the OUQ framework and a comparison with current methods.

By certification we mean the problem of showing that, with probability at least
1 − ε, the real-valued response functionG of a given physical systemwill not exceed
a given safety threshold a. That is, we wish to show that

P[G(X) ≥ a] ≤ ε. (2.1)

In practice, the event [G(X) ≥ a]may represent the crash of an aircraft, the failure of
aweapons system, or the average surface temperature on theEarth being too high. The
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symbol P denotes the probability measure associated with the randomness of (some
of) the input variables X of G (commonly referred to as “aleatoric uncertainty”).

Specific examples of values of ε used in practice are: 10−9 in the aviation
industry (for the maximum probability of a catastrophic event per flight hour, see
[77, p. 581] and [12]), 0 in the seismic design of nuclear power plants [21, 26] and
0.05 for the collapse of soil embankments in surfacemining [36, p. 358]. In structural
engineering [31], the maximum permissible probability of failure (due to any cause)
is 10−4Ksnd/nr (this is an example of ε) where nd is the design life (in years), nr is
the number of people at risk in the event of failure and Ks is given by the following
values (with 1/year units): 0.005 for places of public safety (including dams); 0.05
for domestic, office or trade and industry structures; 0.5 for bridges; and 5 for tow-
ers, masts and offshore structures. In US environmental legislation, the maximum
acceptable increased lifetime chance of developing cancer due to lifetime exposure
to a substance is 10−6 [48] ([43] draws attention to the fact that “there is no sound
scientific, social, economic, or other basis for the selection of the threshold 10−6 as
a cleanup goal for hazardous waste sites”).

One of the most challenging aspects of UQ lies in the fact that in practical applica-
tions, the measure P and the response function G are not known a priori. This lack of
information, commonly referred to as “epistemic uncertainty”, can be described pre-
cisely by introducingA , the set of all admissible scenarios ( f, μ) for the unknown—
or partially known—reality (G,P). More precisely, in those applications, the avail-
able information does not determine (G,P) uniquely but instead determines a setA
such that any ( f, μ) ∈ A could a priori be (G,P). Hence,A is a (possibly infinite-
dimensional) set of measures and functions defining explicitly information on and
assumptions about G and P. In practice, this set is obtained from physical laws,
experimental data and expert judgment. It then follows from (G,P) ∈ A that

inf
( f,μ)∈A

μ[ f (X) ≥ a] ≤ P[G(X) ≥ a] ≤ sup
( f,μ)∈A

μ[ f (X) ≥ a]. (2.2)

Moreover, it is elementary to observe that

• The quantities on the right-hand and left-hand of (2.2) are extreme values of
optimization problems and elements of [0, 1].

• Both the right-hand and left-hand inequalities are optimal in the sense that they
are the sharpest bounds for P[G(X) ≥ a] that are consistent with the information
and assumptions A .

More importantly, in Proposition 2.5.1, we show that these two inequalities provide
sufficient information to produce an optimal solution to the certification problem.

Example 2.3.1 To give a very simple example of the effect of information and opti-
mal bounds over a classA , consider the certification problem (2.1) when Y := G(X)

is a real-valued random variable taking values in the interval [0, 1] and a ∈ (0, 1); to
further simplify the exposition, we consider only the upper bound problem, suppress
dependence upon G and X and focus solely on the question of which probability
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Fig. 2.1 You are given one pound of play-dough and a seesaw balanced aroundm. Howmuchmass
can you put on right hand side of a while keeping the seesaw balanced around m? The solution of
this optimization problem can be achieved by placing any mass on the right hand side of a, exactly
at a (to place mass on [a, 1] with minimum leverage towards the right hand side of the seesaw) and
any mass on the left hand side of a, exactly at 0 (for maximum leverage towards the left hand side
of the seesaw)

measures ν on R are admissible scenarios for the probability distribution of Y . So
far, any probability measure on [0, 1] is admissible:

A = {ν | ν is a probability measure on [0, 1]}.

and so the optimal upper bound in (2.2) is simply

P[Y ≥ a] ≤ sup
ν∈A

ν[Y ≥ a] = 1.

Now suppose that we are given an additional piece of information: the expected
value of Y equals m ∈ (0, a). These are, in fact, the assumptions corresponding to
an elementary Markov inequality, and the corresponding admissible set is

AMrkv =
{
ν

∣∣∣∣ ν is a probability measure on [0, 1],
eν[Y ] = m

}
.

The least upper bound on P[Y ≥ a] corresponding to the admissible setAMrkv is the
solution of the infinite dimensional optimization problem

sup
ν∈AMrkv

ν[Y ≥ a] (2.3)

Formulating (2.3) as a mechanical optimization problem (see Fig. 2.1), it is easy to
observe that the extremum of (2.3) can be achieved only considering the situation
where ν is the weighted sum of a Dirac delta mass at 0 (with weight 1 − p) and a
Dirac delta mass at a (with weight p). It follows that (2.3) can be reduced to the
simple (one-dimensional) optimization problem: Maximize p subject to ap = m. It
follows that Markov’s inequality is the optimal bound for the admissible set AMrkv.

P[Y ≥ a] ≤ sup
ν∈AMrkv

ν[Y ≥ a] = m
a . (2.4)

In some sense, the OUQ framework that we present here is the extension of this
procedure to situations in which the admissible class A is complicated enough that
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a closed-form inequality such as Markov’s inequality is unavailable, but optimal
bounds can nevertheless be computed using reduction properties analogous to the
one illustrated in Fig. 2.1.

2.4 Generalizations and Comparisons

2.4.1 Prediction, Extrapolation, Verification and Validation

In the previous section, the OUQ framework was described as it applies to the certifi-
cation problem (2.1). We will now show that many important UQ problems, such as
prediction, verification and validation, can be formulated as certification problems.
This is similar to the point of view of [5], in which formulations of many problem
objectives in reliability are shown to be representable in a unified framework.

A prediction problem can be formulated as, given ε and (possibly incomplete)
information on P and G, finding a smallest b − a such that

P[a ≤ G(X) ≤ b] ≥ 1 − ε, (2.5)

which, given the admissible set A , is equivalent to solving

inf

{
b − a

∣∣∣∣ inf
( f,μ)∈A

μ[a ≤ f (X) ≤ b] ≥ 1 − ε

}
. (2.6)

Observe that [a, b] can be interpreted as an optimal interval of confidence for G(X)

(although b − a is minimal, [a, b]may not be unique), in particular, with probability
at least 1 − ε, G(X) ∈ [a, b].

In many applications the regime where experimental data can be taken is different
than the deployment regime where prediction or certification is sought, and this
is commonly referred to as the extrapolation problem. For example, in materials
modeling, experimental tests are performed on materials, and the model run for
comparison, but the desire is that these results tell us something where experimental
tests are impossible, or extremely expensive to obtain.

In most applications, the response function G may be approximated via a
(possibly numerical) model F . Information on the relation between the model F
and the response function G that it is designed to represent (i.e. information on
(x, F(x),G(x))) can be used to restrict (constrain) the set A of admissible scenar-
ios (G,P). This information may take the form of a bound on some distance between
F and G or a bound on some complex functional of F and G [47, 71]. Observe that,
in the context of the certification problem (2.1), the value of the model can be mea-
sured by changes induced on the optimal bounds L (A ) and U (A ). The problem
of quantifying the relation (possibly the distance) between F and G is commonly
referred to as the validation problem. In some situations F may be a numerical
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model involving millions of lines of code and (possibly) space-time discretization.
The quantification of the uncertainty associated with the possible presence of bugs
and discretization approximations is commonly referred to as the verification prob-
lem. Both, the validation and the verification problem, can be addressed in the OUQ
framework by introducing information sets describing relations between G, F and
the code.

2.4.2 Comparisons with Other UQ Methods

We will now compare OUQ with other widely used UQ methods and consider the
certification problem (2.1) to be specific.

• Assume that n independent samples Y1, . . . ,Yn of the random variable G(X)

are available (i.e. n independent observations of the random variable G(X), all
distributed according to the measure of probability P). If 1[Yi ≥ a] denotes the
random variable equal to one if Yi ≥ a and equal to zero otherwise, then

pn :=
∑n

i=1 1[Yi ≥ a]
n

(2.7)

is an unbiased estimator of P[G(X) ≥ a]. Furthermore, as a result of Hoeffding’s
concentration inequality [34], the probability that pn deviates from P[G(X) ≥ n]
(itsmean) by at least ε/2 is bounded fromabove by exp(− n

2 ε
2). It follows that if the

number of samples n is large enough (of the order of 1
ε2
log 1

ε
), then the certification

of (2.1) can be obtained through a Monte Carlo estimate (using pn). As this
example shows,Monte Carlo strategies [46] are simple to implement and do not
necessitate prior information on the response function G and the measure P (other
than the i.i.d. samples). However, they require a large number of (independent)
samples ofG(X)which is a severe limitation for the certification of rare events (the
ε = 10−9 of the aviation industry would [12, 77] necessitate O(1018) samples).
Additional information on G and P can, in principle, be included (in a limited
fashion) in Monte Carlo strategies via importance and weighted sampling [46] to
reduce the number of required samples.

• The number of required samples can also be reduced to 1
ε
(ln 1

ε
)d using Quasi-

Monte Carlo Methods. We refer in particular to the Koksma–Hlawka inequality
[58], to [75] for multiple integration based on lattice rules and to [74] for a recent
review. We observe that these methods require some regularity (differentiability)
condition on the response function G and the possibility of sampling G at pre-
determined points X . Furthermore, the number of required samples blows-up at
an exponential rate with the dimension d of the input vector X .

• If G is regular enough and can be sampled at pre-determined points, and if X
has a known distribution, then stochastic expansion methods [4, 20, 24, 29, 30,
91] can reduce the number of required samples even further (depending on the
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regularity of G) provided that the dimension of X is not too high [11, 85]. How-
ever, inmost applications, only incomplete information onP andG is available and
the number of available samples on G is small or zero. X may be of high dimen-
sion, and may include uncontrollable variables and unknown unknowns (unknown
input parameters of the response function G). G may not be the solution of a PDE,
and may involve interactions between singular and complex processes such as
(for instance) dislocation, fragmentation, phase transitions, physical phenomena
in untested regimes, and even human decisions. We observe that in many appli-
cations of Stochastic Expansion methods, G and P are assumed to be perfectly
known, and UQ reduces to computing the push forward of the measure P via the
response (transfer) function I≥a ◦ G (to ameasure on two points, in those situations
L (A ) = P[G ≥ a] = U (A )).

• The investigation of variations of the response function G under variations of the
input parameters Xi , commonly referred to as sensitivity analysis [69, 70], allows
for the identification of critical input parameters.Althoughhelpful in estimating the
robustness of conclusionsmadebasedon specific assumptions on input parameters,
sensitivity analysis, in its most general form, has not been targeted at obtaining
rigorous upper bounds on probabilities of failures associated with certification
problems (2.1). However, single parameter oscillations of the function G can be
seen as a form of non-linear sensitivity analysis leading to bounds onP[G ≥ a] via
McDiarmid’s concentration inequality [49, 50]. These bounds can be made sharp
by partitioning the input parameter space along maximum oscillation directions
and computing sub-diameters on sub-domains [83].

• If A is expressed probabilistically through a prior (an a priori measure of proba-
bility) on the set possible scenarios ( f, μ) then Bayesian inference [7, 45] could
in principle be used to estimate P[G ≥ a] using the posterior measure of proba-
bility on ( f, μ). This combination between OUQ and Bayesian methods avoids
the necessity to solve the possibly large optimization problems (2.11) and it also
greatly simplifies the incorporation of sampled data thanks to the Bayes rule. How-
ever, oftentimes, priors are not available or their choice involves some degree of
arbitrariness that is incompatible with the certification of rare events. Priors may
become asymptotically irrelevant (in the limit of large data sets) but, for small ε,
the number of required samples can be of the same order as the number required
by Monte-Carlo methods [73].
When unknown parameters are estimated using priors and sampled data, it is
important to observe that the convergence of the Bayesian method may fail if the
underlying probability mechanism allows an infinite number of possible outcomes
(e.g., estimation of an unknown probability on N, the set of all natural numbers)
[18]. In fact, in these infinite-dimensional situations, this lack of convergence
(commonly referred to as inconsistency) is the rule rather than the exception [19].
As emphasized in [18], as more data comes in, some Bayesian statisticians will
become more and more convinced of the wrong answer.
We also observe that, for complex systems, the computation of posterior probabil-
ities has been made possible thanks to advances in computer science. We refer to
[81] for a (recent) general (Gaussian) framework for Bayesian inverse problems
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and [6] for a rigorous UQ framework based on probability logic with Bayesian
updating. Just as Bayesian methods would have been considered computationally
infeasible 50years ago but are now common practice, OUQ methods are now
becoming feasible and will only increase in feasibility with the passage of time
and advances in computing.

The certification problem (2.1) exhibits one of the main difficulties that face UQ
practitioners: many theoretical methods are available, but they require assumptions
or conditions that, oftentimes, are not satisfied by the application.More precisely, the
characteristic elements distinguishing these different methods are the assumptions
upon which they are based, and some methods will be more efficient than others
depending on the validity of those assumptions. UQ applications are also character-
ized by a set of assumptions/information on the response function G and measure P,
which varies from application to application. Hence, on the one hand, we have a list
of theoretical methods that are applicable or efficient under very specific assump-
tions; on the other hand, most applications are characterized by an information set
or assumptions that, in general, do not match those required by these theoretical
methods. It is hence natural to pursue the development of a rigorous framework that
does not add inappropriate assumptions or discard information.

We also observe that the effectiveness of different UQ methods cannot be com-
pared without reference to the available information (some methods will be more
efficient thanothers dependingon those assumptions).Generally, noneof themethods
mentioned above can be used without adding (arbitrary) assumptions on probability
densities or discarding information on the moments or independence of the input
parameters. We also observe that it is by placing information at the center of UQ that
the OUQ framework allows for the identification of best experiments. Without focus
on the available information, UQmethods are facedwith the risk of propagating inap-
propriate assumptions and producing a sophisticated answer to the wrong question.
These distortions of the information set may be of limited impact on certification of
common events but they are also of critical importance for the certification of rare
events.

2.5 Optimal Uncertainty Quantification

In this section, we describe more formally the Optimal Uncertainty Quantification
framework. In particular, we describe what it means to give optimal bounds on the
probability of failure in (2.1) given information/assumptions about the system of
interest, and hence how to rigorously certify or de-certify that system.

For the sake of clarity, we will start the description of OUQ with determinis-
tic information and assumptions (when A is a deterministic set of functions and
probability measures).
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2.5.1 First Description

In the OUQ paradigm, information and assumptions lie at the core of UQ: the avail-
able information and assumptions describe sets of admissible scenarios over which
optimizations will be performed. As noted by Hoeffding [35], assumptions about the
system of interest play a central and sensitive role in any statistical decision problem,
even though the assumptions are often only approximations of reality.

A simple example of an information/assumptions set is given by constraining
the mean and range of the response function. For example, let M (X ) be the set
of probability measures on the set X , and let A1 be the set of pairs of probability
measures μ ∈ M (X ) and real-valued measurable functions f on X such that the
mean value of f with respect to μ is b and the diameter of the range of f is at most
D;

A1 :=

⎧⎪⎪⎨
⎪⎪⎩

( f, μ)

∣∣∣∣∣∣∣∣

f : X → R,

μ ∈ M (X ),

Eμ[ f ] = b,
(sup f − inf f ) ≤ D

⎫⎪⎪⎬
⎪⎪⎭

. (2.8)

Let us assume that all that we know about the “reality” (G,P) is that (G,P) ∈ A1.
Then any other pair ( f, μ) ∈ A1 constitutes an admissible scenario representing a
valid possibility for the “reality” (G,P). If asked to bound P[G(X) ≥ a], should we
apply different methods and obtain different bounds on P[G(X) ≥ a]? Since some
methods will distort this information set and others are only using part of it, we
instead view set A1 as a feasible set for an optimization problem.

The General OUQ Framework

In the general case, we regard the response function G as an unknown measurable
function, with some possibly known characteristics, from one measurable space
X of inputs to a second measurable space Y of values. The input variables are
generated randomly according to an unknown random variable X with values in
X according to a law P ∈ M (X ), also with some possibly known characteristics.
We let a measurable subset Y0 ⊆ Y define the failure region; in the example given
above, Y = R and Y0 = [a,+∞). When there is no danger of confusion, we shall
simply write [G fails] for the event [G(X) ∈ Y0].

Let ε ∈ [0, 1] denote the greatest acceptable probability of failure. We say that
the system is safe if P[G fails] ≤ ε and the system is unsafe if P[G fails] > ε. By
information, or a set of assumptions, we mean a subset

A ⊆
{
( f, μ)

∣∣∣∣ f : X → Y is measurable,
μ ∈ M (X )

}
(2.9)
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that contains, at the least, (G,P). The set A encodes all the information that we
have about the real system (G,P), information that may come from known physical
laws, past experimental data, and expert opinion. In the exampleA1 above, the only
information that we have is that the mean response of the system is b and that the
diameter of its range is at most D; any pair ( f, μ) that satisfies these two criteria
is an admissible scenario for the unknown reality (G,P). Since some admissible
scenarios may be safe (i.e. have μ[ f fails] ≤ ε) whereas other admissible scenarios
may be unsafe (i.e. have μ[ f fails] > ε), we decompose A into the disjoint union
A = Asafe,ε 	 Aunsafe,ε, where

Asafe,ε := {( f, μ) ∈ A | μ[ f fails] ≤ ε}, (2.10a)

Aunsafe,ε := {( f, μ) ∈ A | μ[ f fails] > ε}. (2.10b)

Now observe that, given such an information/assumptions setA , there exist upper
and lower bounds on P[G(X) ≥ a] corresponding to the scenarios compatible with
assumptions, i.e. the values L (A ) and U (A ) of the optimization problems:

L (A ) := inf
( f,μ)∈A

μ[ f fails] (2.11a)

U (A ) := sup
( f,μ)∈A

μ[ f fails]. (2.11b)

SinceL (A ) andU (A ) are well-defined in [0, 1], and approximations are sufficient
for most purposes and are necessary in general, the difference between sup and max
should not bemuch of an issue. Of course, some of the work that follows is concerned
with the attainment of maximizers, and whether those maximizers have any simple
structure that can be exploited for the sake of computational efficiency. For the
moment, however, simply assume that L (A ) and U (A ) can indeed be computed
on demand. Now, since (G,P) ∈ A , it follows that

L (A ) ≤ P[G fails] ≤ U (A ).

Moreover, the upper bound U (A ) is optimal in the sense that

μ[ f fails] ≤ U (A ) for all ( f, μ) ∈ A

and, if U ′ < U (A ), then there is an admissible scenario ( f, μ) ∈ A such that

U ′ < μ[ f fails] ≤ U (A ).

That is, although P[G fails] may be much smaller thanU (A ), there is a pair ( f, μ)

which satisfies the same assumptions as (G,P) such thatμ[ f fails] is approximately
equal to U (A ). Similar remarks apply for the lower bound L (A ).

Moreover, the valuesL (A ) andU (A ), defined in (2.11) can be used to construct
a solution to the certification problem. Let the certification problem be defined by
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an error function that gives an error whenever (1) the certification process produces
“safe” and there exists an admissible scenario that is unsafe, (2) the certification
process produces “unsafe” and there exists an admissible scenario that is safe, or (3)
the certification process produces “cannot decide” and all admissible scenarios are
safe or all admissible points are unsafe; otherwise, the certification process produces
no error. The following proposition demonstrates that, except in the special case
L (A ) = ε, that these values determine an optimal solution to this certification
problem.

Proposition 2.5.1 If (G,P) ∈ A and

• U (A ) ≤ ε then P[G fails] ≤ ε.
• ε < L (A ) then P[G fails] > ε.
• L (A ) < ε < U (A ) the there exists ( f1, μ1) ∈ A and ( f2, μ2) ∈ A such that

μ1[ f1 fails] < ε < μ2[ f2 fails].
In other words, provided that the information set A is valid (in the sense that

(G,P) ∈ A ) then if U (A ) ≤ ε, then, the system is provably safe; if ε < L (A ),
then the system is provably unsafe; and if L (A ) < ε < U (A ), then the safety
of the system cannot be decided due to lack of information. The corresponding
certification process and its optimality are represented in Table2.1. Hence, solving
the optimization problems (2.11) determines an optimal solution to the certification
problem, under the condition thatL (A ) �= ε.WhenL (A ) = εwecan still produce
an optimal solution if we obtain further information. That is, when L (A ) = ε =
U (A ), then the optimal process produces “safe”. On the other hand, whenL (A ) =
ε < U (A ), the optimal solution depends on whether or not there exists a minimizer
( f, μ) ∈ A such that μ[ f fails] = L (A ); if so, the optimal process should declare
“cannot decide”, otherwise, the optimal process should declare “unsafe”. Observe
that, in Table2.1, we have classifiedL (A ) = ε < U (A ) as “cannot decide”. This
“nearly optimal” solution appears natural and conservative without the knowledge
of the existence or non-existence of optimizers.

Example 2.5.1 The bounds L (A ) and U (A ) can be computed exactly—and are
non-trivial—in the case of the simple example A1 given in (2.8). Indeed, writing
x+ := max(x, 0), the optimal upper bound is given by

Table 2.1 TheOUQcertification process provides a rigorous certification criterionwhose outcomes
are of three types: “Certify”, “De-certify” and “Cannot decide”

L (A ) := inf
( f,μ)∈A μ

[
f (X) ≥ a

]
U (A ) := sup

( f,μ)∈A
μ

[
f (X) ≥ a

]

≤ ε
Cannot decide

Insufficient Information

Certify
Safe even in the Worst Case

> ε
De-certify

Unsafe even in the Best Case

Cannot decide
Insufficient Information
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U (A1) = pmax :=
(
1 − (a − b)+

D

)
+

, (2.12)

where the maximum is achieved by taking the measure of probability of the random
variable f (X) to be the weighted sum of two weighted Dirac delta masses1

pmaxδa + (1 − pmax)δa−D.

This simple example demonstrates an extremely important point: even if the function
G is extremely expensive to evaluate, certification can be accomplished without
recourse to the expensive evaluations of G.

2.6 The Optimal UQ Problem

2.6.1 From Theory to Computation

Rigorous quantification of the effects of epistemic and aleatoric uncertainty is an
increasingly important component of research studies and policy decisions in sci-
ence, engineering, and finance. In the presence of imperfect knowledge (sometimes
called epistemic uncertainty) about the objects involved, and especially in a high-
consequence decision-making context, it makes sense to adopt a posture of healthy
conservatism, i.e. to determine the best and worst outcomes consistent with the
available knowledge. This posture naturally leads to uncertainty quantification (UQ)
being posed as an optimization problem. Such optimization problems are typically
high-dimensional, and hence can be slow and expensive to solve computationally
(depending on the nature of the constraining information).

In previous sections and [82], we outlined the theoretical framework for optimal
uncertainty quantification (OUQ), namely the calculation of optimal lower and upper
bounds on probabilistic output quantities of interest, given quantitative information
about (underdetermined) input probability distributions and response functions. In
their computational formulation [53, 54], OUQ problems require optimization over
discrete (finite support) probability distributions of the form

μ =
M∑
i=0

wiδxi ,

1δx is the Dirac delta mass on x , i.e. the measure of probability on Borel subsets A ⊂ R such
that δx (A) = 1 if x ∈ A and δx (A) = 0 otherwise. The first Dirac delta mass is located at the
minimum of the interval [a,∞] (since we are interested in maximizing the probability of the event
μ[ f (X) ≥ a]). The second Dirac delta mass is located at x = a − D because we seek to maximize
pmax under the constraints pmaxa + (1 − pmax)x ≤ b and a − x ≤ D.
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where i = 0, . . . , M is a finite range of indices, the wi are non-negative weights that
sum to 1, and the xi are points in some input parameter space X ; δa denotes the
Dirac measure (unit point mass) located at a point a ∈ X , i.e., for E ⊆ X ,

δa(E) :=
{
1, if a ∈ E,

0, if a /∈ E .

Many UQ problems such as certification, prediction, reliability estimation, risk
analysis, etc. can be posed as the calculation or estimation of an expected value, i.e.
an integral, although this expectation (integral) may depend in intricate ways upon
various probability measures, parameters, and models. This point of view on UQ is
similar to that of [5], in which formulations of many problem objectives in reliability
are represented in a unified framework, and the decision-theoretic point of view of
[76]. In the presentation below, an important distinction is made between the “real”
values of objects of interest, which are decorated with daggers (e.g. g† and μ†),
versus possible models or other representatives for those objects, which are not so
decorated.

The system of interest is a measurable response function g† : X → Y that maps
a measurable space X of inputs into a measurable space Y of outputs. The inputs
of this response function are distributed according to a probability measure μ† on
X ; P(X ) denotes the set of all probability measures on X . The UQ objective is
to determine or estimate the expected value under μ† of some measurable quantity
of interest q : X × Y → R, i.e.

eX∼μ† [q(X, g†(X))]. (2.13)

The probability measure μ† can be interpreted in either a frequentist or subjectivist
(Bayesian)manner, or even just as an abstract probabilitymeasure. A typical example
is that the event [g†(X) ∈ E], for some measurable set E ⊆ Y , constitutes some
undesirable “failure” outcome, and it is desired to know theμ† probability of failure,
in which case q is the indicator function

q(x, y) :=
{
1, if y ∈ E,

0, if y /∈ E .

In practice, the real response function and input distribution pair (g†, μ†) are
not known precisely. In such a situation, it is not possible to calculate (2.13) even
by approximate methods such as Monte Carlo or other sampling techniques for
the simple reason that one does not know which probability distribution to sample,
and it may be inappropriate to simply assume that a chosen model pair (gm, μm)

is (g†, μ†). However, it may be known (perhaps with some degree of statistical
confidence) that (g†, μ†) ∈ A for some collectionA of pairs of functions g : X →
Y and probability measures μ ∈ P(X ). If knowledge about which pairs (g, μ) ∈
A are more likely than others to be (g†, μ†) can be encapsulated in a probability
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measureπ ∈ P(A )—what a Bayesian probabilist would call a prior—then, instead
of (2.13), it makes sense to calculate or estimate

e(g,μ)∼π

[
eX∼μ[q(X, g(X))]

]
. (2.14)

(A Bayesian probabilist would also incorporate additional data by conditioning to
obtain the posterior expected value of q.)

However, in many situations, either due to lack of knowledge or being in a high-
consequence regime, it may be either impossible or undesirable to specify such a
π . In such situations, it makes sense to adopt a posture of healthy conservatism, i.e.
to determine the best and worst outcomes consistent with the available knowledge.
Hence, instead of (2.13) or (2.14), it makes sense to calculate or estimate

Q(A ) := inf
(g,μ)∈A

eX∼μ[q(X, g(X))] and (2.15a)

Q(A ) := sup
(g,μ)∈A

eX∼μ[q(X, g(X))]. (2.15b)

If the probability distributions μ are interpreted in a Bayesian sense, then this point
of view is essentially that of the robust Bayesian paradigm [9] with the addition
of uncertainty about the forward model(s) g. Within the operations research and
decision theory communities, similar questions have been considered under the name
of distributionally robust optimization [17, 32, 76]. Distributional robustness for
polynomial chaos methods has been considered in [55]. Our interest lies in providing
a UQ analysis for (2.13) by the efficient calculation of the extreme values (2.15).

An important first question iswhether the extreme values of the optimization prob-
lems (2.15) can be computed at all; since the setA is generally infinite-dimensional,
an essential step is finding finite-dimensional problems that are equivalent to (i.e.
have the same extreme values as) the problems (2.15). A strong analogy can be made
here with finite-dimensional linear programming: to find the extreme value of a lin-
ear functional on a polytope, it is sufficient to search over the extreme points of the
polytope; the extremal scenarios of A turn out to consist of discrete functions and
probability measures that are themselves far more singular than would “typically” be
encountered “in reality” but nonetheless encode the full range of possible outcomes
in much the same way as a polytope is the convex hull of its “atypical” extreme
points.

One general setting in which a finite-dimensional reduction can be effected is that
in which, for each candidate response function g : X → Y , the set of input prob-
ability distributions μ ∈ P(X ) that are admissible in the sense that (g, μ) ∈ A
is a (possibly empty) generalized moment class. More precisely, assume that it is
known that the μ†-distributed input random variable X has K independent compo-
nents (X0, . . . , XK−1), with each Xk taking values in a Radon space2 Xk ; this is the

2This technical requirement is not a serious restriction in practice, since it is satisfied by most
common parameter and function spaces. A Radon space is a topological space on which every
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same as saying thatμ† is a product of marginal probability measuresμ
†
k on eachXk .

By a “generalized moment class”, we mean that interval bounds are given for the
expected values of finitely many3 test functions ϕ against either the joint distribution
μ or the marginal distributions μk . This setting encompasses a wide spectrum of
possible dependence structures for the components of X , all the way from indepen-
dence, through partial correlation (an inequality constraint on eμ[Xi X j ]), to complete
dependence (Xi and X j are treated as a single random variable (Xi , X j ) with arbi-
trary joint distribution). This setting also allows for coupling of the constraints on g
and those on μ (e.g. by a constraint on eμ[g]).

To express the previous paragraph more mathematically, we assume that our
information about reality (g†, μ†) is that it lies in the set A defined by

A :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(g, μ)

∣∣∣∣∣∣∣∣∣∣

g : X = X0 × · · · × XK−1 → Y is measurable,
μ = μ0 ⊗ · · · ⊗ μK−1is a product measure onX ,

〈conditions that constrain g pointwise〉
eμ[ϕ j ] ≤ 0 for j = 1, . . . , N ,

eμk [ϕk, jk ] ≤ 0 for k = 0, . . . , K − 1, jk = 1, . . . , Nk

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.16)

for some known measurable functions ϕ j : X → R and ϕk, jk : Xk → R. In this
case, the following reduction theorem holds:

Theorem 2.6.1 ([66, §4]) Suppose that A is of the form (2.16). Then

Q(A ) = Q(A�) and Q(A ) = Q(A�), (2.17)

where

A� :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(g, μ) ∈ A

∣∣∣∣∣∣∣∣∣∣

for k = 0, . . . , K − 1,
μk = ∑N+Nk

ik=0 wk,ik δxk,ik
for some xk,1, xk,2, . . . , xkN+Nk

∈ Xk

and wk,1,wk,2, . . . ,wkN+Nk
≥ 0

with wk,1 + wk,2 + · · · + wkN+Nk
= 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.18)

Informally, Theorem 2.6.1 says that if all one knows about the random variable
X = (X0, . . . , XK−1) is that its components are independent, together with inequali-
ties on N generalizedmoments of X and Nk generalizedmoments of each Xk , then for
the purposes of solving (2.15) it is legitimate to consider each Xk to be a discrete ran-
dom variable that takes at most N + Nk + 1 distinct values xk,0, xk,1, . . . , xk,N+Nk ;

Borel probability measure μ is inner regular in the sense that, for every measurable set E , μ(E) =
sup{μ(K ) | K ⊆ E is compact}. A simple example of a non-Radon space is the unit interval [0, 1]
with the lower limit topology [78, Example 51]: this topology generates the same σ -algebra as does
the usual Euclidean topology, and admits the uniform (Lebesgue) probability measure, yet the only
compact subsets are countable sets, which necessarily have measure zero.
3This is a “philosophically reasonable” position to take, since one can verify finitely many such
inequalities in finite time.
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those values xk,ik ∈ Xk and their corresponding probabilities wk,ik ≥ 0 are the opti-
mization variables.

For the sake of concision and to reduce the number of subscripts required, multi-
index notation will be used in what follows to express the product probability mea-
sures μ of the form

μ =
K−1⊗
k=0

N+Nk∑
ik=0

wk,ik δxk,ik

that arise in the finite-dimensional reduced feasible set A� of (2.18). Write i :=
(i0, . . . , iK−1) ∈ N

K
0 for a multi-index, let 0 := (0, . . . , 0), and let

M := (M0, . . . , MK−1) := (N + N0, . . . , N + NK−1).

Let #M := ∏K
k=1(Mk + 1). With this notation, the #M support points of the measure

μ, indexed by i = 0, . . . , M , will be written as

xi := (x1,i1 , x2,i2 , . . . , xK ,iK ) ∈ X

and the corresponding weights as

wi := w1,i1w2,i2 . . .wK ,iK ≥ 0,

so that

μ =
K−1⊗
k=0

N+Nk∑
jk=0

wk, jk δxk, jk =
M∑
i=0

wiδxi . (2.19)

It follows from (2.19) that, for any integrand f : X → R, the expected value of f
under such a discrete measure μ is the finite sum

eμ[ f ] =
M∑
i=0

wi f (xi ) (2.20)

(It is worth noting in passing that conversion from product to sum representation and
back as in (2.19) is an essential task in the numerical implementation of these UQ
problems, because the product representation captures the independence structure of
the problem,whereas the sum representation is best suited to integration (expectation)
as in (2.20).)

Furthermore, not only is the search over μ effectively finite-dimensional, as guar-
anteed by Theorem 2.6.1, but so too is the search over g: since integration against a
measure requires knowledge of the integrand only at the support points of the mea-
sure, only the #M values yi := g(xi ) of g at the support points {xi | i = 0, . . . , M}
of μ need to be known. So, for example, if g† is known, then it is only necessary
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to evaluate it on the finite support of μ. Another interesting situation of this type is
considered in [82], in which g† is not known exactly, but is known via legacy data
at some points of X and is also known to satisfy a Lipschitz condition—in which
case the space of admissible g is infinite-dimensional before reduction to the support
of μ, but the finite-dimensional collection of admissible values (y0, . . . , yM) has a
polytope-like structure.

Theorem 2.6.1, formulae (2.19)–(2.20), and the remarks of the previous paragraph
imply that Q(A ) is found by solving the following finite-dimensional maximization
problem (and Q(A ) by the corresponding minimization problem):

maximize:
M∑
i=0

wiq(xi , yi );

among: yi ∈ Y for i = 0, . . . , M,

wk,ik ∈ [0, 1] for k = 0, . . . , K − 1 and ik = 0, . . . , Mk,

xk,ik ∈ Xk for k = 0, . . . , K − 1 and ik = 0, . . . , Mk;
subject to: yi = g(xi ) for some A -admissible g : X → Y ,

M∑
i=0

wiϕ j (xi ) ≤ 0 for j = 1, . . . , N ,

Mk∑
ik=0

wk,ikϕk, jk (xk,ik ) ≤ 0 for k = 0, . . . , K − 1 and jk = 1, . . . , Nk,

Mk∑
ik=0

wk,ik = 1 for k = 0, . . . , K − 1.

(2.21)

Generically, the reduced OUQ problem (2.21) is non-convex, although there are
special cases that can be treated using the tools of convex optimization and duality
[10, 17, 76, 86]. Therefore, numerical methods for global optimization must be
employed to solve (2.21). Unsurprisingly, the numerical solution of (2.21) is much
more computationally intensivewhen #M is large—the so-called curse of dimension.

2.7 Optimal Design

2.7.1 The Optimal UQ Loop

Earlier, we discussed how the basic inequality

L (A ) ≤ P[G ≥ a] ≤ U (A )
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provides rigorous optimal certification criteria. The certification process should not
be confused with its three possible outcomes (see Table2.1) which we call “certify”
(we assert that the system is safe), “de-certify” (we assert that the system is unsafe)
and “cannot decide” (the safety or un-safety of the system is undecidable given the
information/assumption set A ). Indeed, in the case

L (A ) ≤ ε < U (A )

there exist admissible scenarios under which the system is safe, and other admissi-
ble scenarios under which it is unsafe. Consequently, it follows that we can make
no definite certification statement for (G,P) without introducing further informa-
tion/assumptions. If no further information can be obtained, we conclude that we
“cannot decide” (this state could also be called “do not decide”, because we could
(arbitrarily) decide that the system is unsafe due to lack of information, for instance,
but do not). However, if sufficient resources exist to gather additional information,
then we enter what may be called the optimal uncertainty quantification loop.

Experimental Design and Selection of the Most Decisive Experiment

An important aspect of the OUQ loop is the selection of new experiments. Suppose
that a number of possible experiments Ei are proposed, each of which will determine
some functional Φi (G,P) of G and P. For example, Φ1(G,P) could be eP[G],
Φ2(G,P) could be P[X ∈ A] for some subset A ⊆ X of the input parameter space,
and so on. Suppose that there are insufficient experimental resources to run all of
these proposed experiments. Let us now consider which experiment should be run
for the certification problem. Recall that the admissible setA is partitioned into safe
and unsafe subsets as in (2.10). Define Jsafe,ε(Φi ) to be the closed interval spanned
by the possible values for the functional Φi over the safe admissible scenarios (i.e.
the closed convex hull of the range of Φi on Asafe,ε): that is, let

Jsafe,ε(Φi ) :=
[

inf
( f,μ)∈A safe,ε

Φi ( f, μ), sup
( f,μ)∈A safe,ε

Φi ( f, μ)

]
(2.22a)

Junsafe,ε(Φi ) :=
[

inf
( f,μ)∈A unsafe,ε

Φi ( f, μ), sup
( f,μ)∈A unsafe,ε

Φi ( f, μ)

]
. (2.22b)

Note that, in general, these two intervals may be disjoint or may have non-empty
intersection; the size of their intersection provides a measure of usefulness of the
proposed experiment Ei . Observe that if experiment Ei were run, yielding the value
Φi (G,P), then the following conclusions could be drawn:
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Φi (G,P) ∈ Jsafe,ε(Φi ) ∩ Junsafe,ε(Φi ) =⇒ no conclusion,

Φi (G,P) ∈ Jsafe,ε(Φi ) \ Junsafe,ε(Φi ) =⇒ the system is safe,

Φi (G,P) ∈ Junsafe,ε(Φi ) \ Jsafe,ε(Φi ) =⇒ the system is unsafe,

Φi (G,P) /∈ Jsafe,ε(Φi ) ∪ Junsafe,ε(Φi ) =⇒ faulty assumptions,

where the last assertion (faulty assumptions) means that (G,P) /∈ A and follows
from the fact thatΦi (G,P) /∈ Jsafe,ε(Φi ) ∪ Junsafe,ε(Φi ) is a contradiction. The valid-
ity of the first three assertions is based on the supposition that (G,P) ∈ A .

In this way, the computational optimization exercise of finding Jsafe,ε(Φi ) and
Junsafe,ε(Φi ) for each proposed experiment Ei provides an objective assessment of
which experiments areworth performing: those forwhich Jsafe,ε(Φi ) and Junsafe,ε(Φi )

are nearly disjoint intervals are worth performing since they are likely to yield con-
clusive results vis-à-vis (de-)certification and conversely, if the intervals Jsafe,ε(Φi )

and Junsafe,ε(Φi ) have a large overlap, then experiment Ei is not worth performing
since it is unlikely to yield conclusive results. Furthermore, the fourth possibility
above shows how experiments can rigorously establish that one’s assumptions A
are incorrect. See Fig. 2.2 for an illustration.

Fig. 2.2 A schematic representation of the intervals Junsafe,ε(Φi ) (in red) and Jsafe,ε(Φi ) (in blue)
as defined by (2.22) for four functionals Φi that might be the subject of an experiment. Φ1 is a
good candidate for experiment effort, since the intervals do not overlap and hence experimental
determination ofΦ1(G,P)will certify or de-certify the system;Φ4 is not worth investigating, since
it cannot distinguish safe scenarios from unsafe ones; Φ2 and Φ3 are intermediate cases, and Φ2 is
a better prospect than Φ3
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Remark 2.7.1 For the sake of clarity, we have started this description by defining
experiments as functionals Φi of P and G. In practice, some experiments may not
be functionals of P and G but of related objects. Consider, for instance, the situation
where (X1, X2) is a two-dimensional Gaussian vector with zeromean and covariance
matrix C , P is the probability distribution of X1, the experiment E2 determines the
variance of X2 and the information set A is C ∈ B, where B is a subset of sym-
metric positive definite 2 × 2 matrices. The outcome of the experiment E2 is not a
function of the probability distribution P; however, the knowledge of P restricts the
range of possible outcomes of E2. Hence, for some experiments Ei , the knowledge
of (G,P) does not determine the outcome of the experiment, but only the set of
possible outcomes. For those experiments, the description given above can be gen-
eralized to situations where Φi is a multivalued functional of (G,P) determining
the set of possible outcomes of the experiment Ei . This picture can be generalized
further by introducing measurement noise, in which case (G,P) may not determine
a deterministic set of possible outcomes, but instead a measure of probability on a
set of possible outcomes.

Selection of the Most Predictive Experiment

The computation of safe and unsafe intervals described in the previous paragraph
allows of the selection of the most selective experiment. If our objective is to have an
“accurate” prediction of P[G(X) ≥ a], in the sense that U (A ) − L (A ) is small,
then one can proceed as follows. Let AE,c denote those scenarios in A that are
compatible with obtaining outcome c from experiment E . An experiment E∗ that is
most predictive, even in the worst case, is defined by a minmax criterion: we seek
(see Fig. 2.3)

E∗ ∈ argmin
experiments E

(
sup

outcomes c

(
U (AE,c) − L (AE,c)

))
(2.23)

The idea is that, although we can not predict the precise outcome c of an experiment
E , we can compute a worst-case scenario with respect to c, and obtain an optimal
bound for the minimum decrease in our prediction interval for P[G(X) ≥ a] based

Fig. 2.3 A schematic representation of the size of the prediction intervals supoutcomes c
(
U (AE,c) −

L (AE,c)
)
in the worst case with respect to outcome c. E4 is the most predictive experiment
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on the (yet unknown) information gained from experiment E . Again, the theorems
given in this paper can be applied to reduce this kind of problem. Finding E∗ is a
bigger problem than just calculatingL (A ) andU (A ), but the presumption is that
computer time is cheaper than experimental effort.

2.8 Model-Form Uncertainty

2.8.1 Optimal UQ and Model Error

A traditional way to deal with the missing information to model error has been to
generate (possibly probabilistic) models that are compatible with the aspects that
are known about the system. A key problem with this approach is that the space
of such models typically has infinite dimensions while individual predictions are
limited to a single element in that space. Our approach will be based on the Optimal
Uncertainty Quantification (OUQ) framework [3, 33, 41, 44, 54, 66, 82] detailed in
previous sections. In the context of OUQ, model errors can be computing by solving
optimization problems (worst case scenarios) with respect to what the true response
function and probability distributions could be. Note that models by themselves
to not provide information (or hard constraints) on the set of admissible response
functions (they are only elements of that set). However the computation of (possibly
optimal) bounds on model errors enables the integration of such models with data by
constraining the admissible space of underlying response functions and measures as
illustrated in [82].

A Reminder of OUQ

LetX be a measurable space. LetM (X ) be the set of Borel probability measures
on X . Let B(X ;R) be the space of real-valued Borel-measurable functions on
X , and let G ⊆ B(X ;R). Let A be an arbitrary subset of G × M (X ), and let
Φ : G × M (X ) → R. In the context of the OUQ framework as described in [66]
one is interested in estimating Φ(G,P), where (G,P) ∈ G × M (X ) corresponds
to an unknown reality. If A represents all that is known on (G,P) (in the sense that
(G,P) ∈ A and that any ( f, μ) ∈ A could, a priori, be (G,P) given the available
information) then [66] shows that the following quantities (2.24) and (2.25) are the
optimal (with respect to the available information) upper and lower bounds on the
quantity of interest Φ(G,P):

U (A ) := sup
( f,μ)∈A

Φ( f, μ), (2.24)

L (A ) := inf
( f,μ)∈A

Φ( f, μ). (2.25)
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2.8.2 Game-Theoretic Formulation and Model Error

Since the pioneering work of Von Neumann and Goldstine [88], the prime objective
of Scientific Computing has been focused on the efficient numerical evaluation of
scientific models and underlying challenges have been defined in terms of the size
and complexity of such models. The purpose of such work is to enable computers to
developmodels of reality based on imperfect and limited information (rather than just
run numbers through models developed by humans after a laborious process of sci-
entific investigation). Although the importance of the algorithmic aspects of decision
making has been recognized in the emerging field of Algorithmic Decision Theory
[68], part of this work amounts to its incorporation in a generalization of Wald’s
Decision Theory framework [90]. Owhadi et al. has recently laid down the founda-
tions for the scientific computation of optimal statistical estimators (SCOSE) [25,
33, 60, 62–65, 67]. SCOSE constitutes a generalization of the Optimal Uncertainty
Quantification (OUQ) framework [3, 41, 44, 54, 66, 82] (to information coming in
the form of sample data). This generalization is built upon Von Neumann’s Game
Theory [89], Nash’s non-cooperative games [56, 57], and Wald’s Decision Theory
[90].

In the presence of data, the notion of optimality is (in this framework) that of the
optimal strategy for a non-cooperative game where (1) Player A chooses a (probabil-
ity) measureμ† and a (response) function f † in an admissible setA (that is typically
infinite dimensional and finite co-dimensional) (2) Player B chooses a function θ of
the data d (sampled according to the data generating distribution D( f, μ), which
depends on ( f, μ)) (3) Player A tries to maximize the statistical error E of the quan-
tity of interest while Player B tries to minimize it. Therefore optimal estimators are
obtained as solutions of

min
θ

max
( f,μ)∈A

ed∼D( f,μ)

[
E (θ(d),Φ( f, u))

]
(2.26)

The particular choice of the cost function E determines the specific quantification
of uncertainties (e.g., the derivation of optimal intervals of confidence, bounds on
the probability or detection of rare events, etc.). If θ∗ is an arbitrary model (not
necessarily optimal) then

max
( f,μ)∈A

ed∼D( f,μ)

[
E (θ∗(d),Φ( f, u))

]
(2.27)

provides a rigorous and optimal bound on its statistical error.
By minimizing this optimal bound over θ (as formulated in (2.26)) one obtains an

optimal (statistical) model, which could be used to facilitate the extraction of asmuch
information as possible from the available data. This is specially important when the
amount of sample data is limited and each new set of data requires an expensive
experiment. Once an optimal estimator has been computed, it can be turned into
a digital statistical table accessible to the larger scientific, medical, financial and
engineering communities.
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Although the min max optimization problem (2.26) requires searching the space
of all functions of the data, since it is a zero sum game [89], under mild condi-
tions (compactness of the decision space [90]) it can be approximated by a finite
game where optimal solutions are mixed strategies [56, 57] and live in the Bayesian
class of estimators, i.e. the optimal strategy for player A (the adversary) is to
place a prior distribution π ′ over A and select ( f, μ) at random, while the opti-
mal strategy for player B (the model/estimator builder) is to assume that player A
has selected such a strategy, and place a prior distribution π over A and derive
θ as the Bayesian estimator θπ(d) = e( f,μ)∼π,d ′∼D( f,μ)[Φ( f, μ)|d ′ = d]. Therefore
optimal strategies can be obtained by reducing (2.26) to a min max optimiza-
tion over prior distributions on A . Furthermore, under the same mild conditions
[56, 57, 90], duality holds, and allows us to show that the optimal strategy for
player B corresponds to the worst Bayesian prior, i.e. the solution of the max prob-
lem: maxπ∈A e( f,μ)∼π,d∼D( f,μ)

[
E (θπ (d),Φ( f, u))

]
. Although this is an optimiza-

tion problem over measures and functions, it has been shown in [64] that analogous
problems can be reduced to a nesting of optimization problems of measures (and
functions) amenable to finite-dimensional reduction by the techniques developed by
Owhadi et al. in the context of stochastic optimization [33, 65, 66, 82]. Therefore,
although the computation of optimal (statistical) models (estimators) requires, at
an abstract level, the manipulation of measures on infinite dimensional spaces of
measures and functions, they can be reduced to the manipulation of discrete finite-
dimensional objects through a form of calculus manipulating the codimension of
the information set (what is known). Observe also that an essential difference with
Bayesian Inference is that the game (2.26) is non cooperative (players A and B may
have different prior distributions) and an optimization problem has to be solved to
find the prior leading to the optimal estimator/model.

2.9 Design and Decision-Making Under Uncertainty

2.9.1 Optimal UQ for Vulnerability Identification

The extremizers of OUQoptimization problems are singular probability distributions
with support points on the key players, i.e. weak points of the system. Therefore
by solving optimization problems corresponding to worst case scenarios these key
characteristic descriptors will naturally be identified. This analysis can sometimes
give surprising and non-intuitive insights into what are the critical variables and
critical missing information to regularize and improve a model, guiding us towards
determining which missing experiments or information are on the critical path for
reducing uncertainties in themodel and risk in the system.Note that the same analysis
can also be performed in the game theoretic formulation (2.26) where the extremizers
of (2.27) identify (in presence of sample data) admissible response functions and
probability distributions maximizing risk.
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Fig. 2.4 Because OUQ is a
sharp information
propagation scheme, the
results of sensitivity analysis
(inverse OUQ) give
non-trivial insights into the
roles of the various pieces of
input information. Some
inputs may even be
irrelevant!

In presence of sample data, the safety or vulnerability of a system can be assessed
as an (optimal) classification problem (safe vs. unsafe). The Standard Classification
Problem of Machine Learning was heavily researched for several decades, but it was
Vapnik’s introduction of the Support Vector Machine, see e.g. Cortes and Vapnik
[15], that promised the simultaneous achievement of good performance and efficient
computation. See Christmann and Steinwart [79] for both the history and a com-
prehensive treatment. However, to our knowledge, a complete formulation of the
Classification Problem in Wald’s theory of Optimal Statistical Decisions has yet to
be accomplished.

2.9.2 Data Collection for Design Optimization

The OUQ framework allows the development of an OUQ loop that can be used for
experimental design and design optimization [66]. The problem of predicting opti-
mal bounds on the results of experiments under the assumption that the system is safe
(or unsafe) is well-posed and benefits from similar reduction properties. Best exper-
iments are then naturally identified as those whose predicted ranges have minimal
overlap between safe and unsafe systems.

Another component of SCOSE is the application of the game theoretic framework
to data collection and design optimization. Note that if the model is exact (and if the
underlying probability distributions are known) then the design problem is, given a
loss function (such as probability of failure), a straightforward optimization problem
that can potentially be handled via mystic. The difficulty of this design problem
lies in the facts that the model is not perfect and the true response function and data
generating distribution are imperfectly known. If safety is to be privileged, then this
design under incomplete formulation can be formulated as a non-cooperative game
when player A chooses the true response function and data generating distribution
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and player B chooses themodel and a resulting design (derived from the combination
of the model of the data). In this adversarial game player A tries to maximize the loss
function (e.g. probability of failure)while playerB tries tominimize, and the resulting
design is optimal given available information. Since the resulting optimization can
(even after reduction) be highly non-linear and highly constrained our approach is
hierarchical and based on non-cooperative information games played at different
levels of complexity (i.e. the idea is to solve the design problem at different levels of
complexity (Fig. 2.4). Recent work has shown this facilitation of the design process is
not only possible but could also automate the process of scientific discovery [60, 63].
In particular, we refer to [61] for an illustration of an application of this framework to
the automation of the design and discovery of interpolation operators for multigrid
methods (for PDEs with rough coefficients, a notoriously difficult open problem in
the CSE community) and to the automation of orthogonal multi-resolution operator
decomposition.

2.10 A Software Framework for Optimization and UQ
in Reduced Search Space

2.10.1 Optimization and UQ

Arigorous quantification of uncertainty can easily require several thousands ofmodel
evaluations f (x). For all but the smallest of models, this requires significant clock
time—amodel requiring 1min of clock time evaluated 10,000 times in a global opti-
mization will take 10,000min (∼7 days) with a standard optimizer. Furthermore,
realistic models are often high-dimensional, highly-constrained, and may require
several hours to days even when run on a parallel computer cluster. For studies of
this size or larger to be feasible, a fundamental shift in how we build optimization
algorithms is required. The need to provide support for parallel and distributed com-
puting at the lowest level—within the optimization algorithm—is clear. Standard
optimization algorithms must be extended to parallel. The need for new massively-
parallel optimization algorithms is also clear. If these parallel optimizers are not also
seamlessly extensible to distributed and heterogeneous computing, then the scope of
problems that can be addressed will be severely limited.

While several robust optimization packages exist [27, 39], there are very few
that provide massively-parallel optimization [8, 23, 37]—the most notable effort
being DAKOTA [2], which also includes methods for uncertainty quantification. A
rethinking of optimization algorithms, from the ground up, is required to dramatically
lower the barrier to massively-parallel optimization and rigorous uncertainty quan-
tification. The construction and tight integration of a framework for heterogeneous
parallel computing is required to support such optimizations on realistic models.
The goal should be to enable widespread availability of these tools to scientists and
engineers in all fields.
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2.10.2 A Highly-Configurable Optimization Framework

We have built a robust optimization framework (mystic) [52] that incorporates the
mathematical framework described in [66], and have provided an interface to predic-
tion, certification, and validation as a framework service. The mystic framework
provides a collection of optimization algorithms and tools that lowers the barrier to
solving complex optimization problems. mystic provides a selection of optimiz-
ers, both global and local, including several gradient solvers. A unique and powerful
feature of the framework is the ability to apply and configure solver-independent
termination conditions—a capability that greatly increases the flexibility for numer-
ically solving problems with non-standard convergence profiles. All of mystic’s
solvers conform to a solver API, thus also have common method calls to configure
and launch an optimization job. This allows any of mystic’s solvers to be easily
swapped without the user having to write any new code.

The minimal solver interface:

# the function to be minimized and the initial values

from mystic.models import rosen as my_model

x0 = [0.8, 1.2, 0.7]

# configure the solver and obtain the solution

from mystic.solvers import fmin

solution = fmin(my_model, x0)

The criteria for when and how an optimization terminates are of paramount impor-
tance in traversing a function’s potential well. Standard optimization packages pro-
vide a single convergence condition for each optimizer. mystic provides a set of
fully customizable termination conditions, allowing the user to discover how to better
navigate the optimizer through difficult terrain.

The expanded solver interface:

# the function to be minimized and initial values

from mystic.models import rosen as my_model

x0 = [0.8, 1.2, 0.7]

# get monitor and termination condition objects

from mystic.monitors import Monitor, VerboseMonitor

stepmon = VerboseMonitor(5)

evalmon = Monitor()

from mystic.termination import ChangeOverGeneration

terminate = ChangeOverGeneration()

# instantiate and configure the solver

from mystic.solvers import NelderMeadSimplexSolver
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solver = NelderMeadSimplexSolver(len(x0))

solver.SetInitialPoints(x0)

solver.SetGenerationMonitor(stepmon)

solver.SetEvaluationMonitor(evalmon)

solver.Solve(my_model, terminate)

# obtain the solution

solution = solver.bestSolution

# obtain diagnostic information

function_evals = solver.evaluations

iterations = solver.generations

cost = solver.bestEnergy

# modify the solver configuration, then restart

from mystic.termination import VTR, Or

terminate = ChangeOverGeneration(tolerance=1e-8)

solver.Solve(my_model, Or(VTR(), terminate))

# obtain the new solution

solution = solver.bestSolution

2.10.3 Reduction of Search Space

mystic provides a method to constrain optimization to be within an N -dimensional
box on input space, and also a method to impose user-defined parameter constraint
functions on any cost function. Thus, both bounds constraints and parameter con-
straints can be generically applied to any of mystic’s unconstrained optimiza-
tion algorithms. Traditionally, constrained optimization problems tend to be solved
iteratively, where a penalty is applied to candidate solutions that violate the con-
straints. Decoupling the solving of constraints from the optimization problem can
greatly increase the efficiency in solving highly-constrained nonlinear problems—
effectively, the optimization algorithm only selects points that satisfy the constraints.
Constraints can be solved numerically or algebraically, where the solving of con-
straints can itself be cast as an optimization problem. Constraints can also be dynam-
ically applied, thus altering an optimization in progress.

Penalty methods apply an energy barrier�E = k · p(x) to the unconstrained cost
function f (x)when the constraints are violated. The modified cost function φ is thus
written as:

φ(x) = f (x) + k · p(x) (2.28)
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Alternately, kernel methods apply a transform c that maps or reduces the search
space so that the optimizer will only search over the set of candidates that satisfy the
constraints. The transform has an interface x ′ = c(x), and the cost function becomes:

φ(x) = f (c(x)) (2.29)

Adding penalties or constraints to a solver is done with the penalty or
constraint keyword (or with the SetConstraints and SetPenaltymeth-
ods in the expanded interface).

from mystic.math.measures import mean, spread

from mystic.constraints import with_penalty, with_mean

from mystic.constraints import quadratic_equality

# build a penalty function

@with_penalty(quadratic_equality, kwds={’target’:5.0})

def penalty(x, target):

return mean(x) - target

# define an objective

def cost(x):

return abs(sum(x) - 5.0)

# solve using a penalty

from mystic.solvers import fmin

x = array([1,2,3,4,5])

y = fmin(cost, x, penalty=penalty)

# build a kernel transform

@with_mean(5.0)

def constraint(x):

return x

# solve using constraints

y = fmin(cost, x, constraint=constraint)

mystic provides a simple interface to a lot of underlying complexity—enabling a
non-specialist user to easily access optimizer configurability and high-performance
computing without a steep learning curve. mystic also provides a simple interface
to the application of constraints on a function or measure. The natural syntax for a
constraint is one of symbolicmath, hencemystic leverages SymPy [13] to construct
a symbolic math parser for the translation of symbolic text input into functioning
constraint code objects:
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"""
Minimize: f = 2*x[0] + 1*x[1]

Subject to: -1*x[0] + 1*x[1] <= 1
1*x[0] + 1*x[1] >= 2

1*x[1] >= 0
1*x[0] - 2*x[1] <= 4

where: -inf <= x[0] <= inf
"""

def objective(x):
x0,x1 = x
return 2*x0 + x1

equations = """
-x0 + x1 - 1.0 <= 0.0
-x0 - x1 + 2.0 <= 0.0
x0 - 2*x1 - 4.0 <= 0.0
"""
bounds = [(None, None),(0.0, None)]

# parse the equations into penalties and/or constraints
from mystic.symbolic import generate_conditions, simplify,

generate_penalty, generate_constraint, generate_solvers
pf = generate_penalty(generate_conditions(equations), k=1e3)
cf = generate_constraint(generate_solvers(simplify(equations)))

from mystic.solvers import fmin_powell
result = fmin_powell(objective, x0=[0.0,0.0], bounds=bounds,

constraint=cf, penalty=pf, disp=True, gtol=3)

The constraints parser can parse multiple and nonlinear constraints, and equality or
inequality constraints. Similarly for the penalty parser. Available penalty methods
include the exterior penalty function method [87], the augmented Lagrange mul-
tiplier method [42], and the logarithmic barrier method [38]. Available transforms
include range constraints, uniqueness and set-membership constraints, probabilis-
tic and statistical constraints, constraints imposing sampling statistics, inputs from
sampling distributions, constraints from legacy data, constraints from models and
distance metrics, constraints on measures, constraints on support vectors, and so on.

It is worth noting that the use of a transform c does not require the constraints
be bound to the cost function. The evaluation of the constraints are decoupled
from the evaluation of the cost function—hence, with mystic, highly-constrained
optimization decomposes to the solving of K independent constraints, followed by
an unconstrained optimization over only the set of valid points. This method has
been shown effective for solving optimization problems where K ≈ 200 [66].
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2.10.4 New Massively-Parallel Optimization Algorithms

In mystic, optimizers have been extended to parallel whenever possible. To have an
optimizer execute in parallel, the user only needs to provide the solver with a parallel
map. For example, extending the Differential Evolution [80] solver to parallel is
involves passing a Map to theSetEvaluationMapmethod. In the example below,
each generation has 20 candidates, and will execute in parallel with 4 workers:

# the function to be minimized and the bounds

from mystic.models import rosen as my_model

lb = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]

# get termination condition object

from mystic.termination import ChangeOverGeneration

terminate = ChangeOverGeneration()

# select the parallel launch configuration

from pathos.pools import ProcessPool

my_map = ProcessPool(4).map

# instantiate and configure the solver

from mystic.solvers import DifferentialEvolutionSolver

solver = DifferentialEvolutionSolver(len(lb), 20)

solver.SetRandomInitialPoints(lb, ub)

solver.SetStrictRanges(lb, ub)

solver.SetEvaluationMap(my_map)

solver.Solve(my_model, terminate)

# obtain the solution

solution = solver.bestSolution

Another type of new parallel solver utilizes the SetNestedSolver method
to stage a parallel launch of N optimizers, each with different initial conditions
(Fig. 2.5). The following code shows the BuckshotSolver scheduling a launch
of N = 20 optimizers in parallel to the default queue, where 5 nodes each with 4
processors have been requested:

# the function to be minimized and the bounds

from mystic.models import rosen as my_model

lb = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]

# get monitor and termination condition objects

from mystic.monitors import LoggingMonitor

stepmon = LoggingMonitor(1, ’log.txt’)
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from mystic.termination import ChangeOverGeneration

terminate = ChangeOverGeneration()

# select the parallel launch configuration

from pyina.launchers import TorqueMpi

my_map = TorqueMpi(’5:ppn=4’).map

# instantiate and configure the nested solver

from mystic.solvers import PowellDirectionalSolver

my_solver = PowellDirectionalSolver(len(lb))

my_solver.SetStrictRanges(lb, ub)

my_solver.SetEvaluationLimits(1000)

# instantiate and configure the outer solver

from mystic.solvers import BuckshotSolver

solver = BuckshotSolver(len(lb), 20)

solver.SetRandomInitialPoints(lb, ub)

solver.SetGenerationMonitor(stepmon)

solver.SetNestedSolver(my_solver)

solver.SetSolverMap(my_map)

solver.Solve(my_model, terminate)

# obtain the solution

solution = solver.bestSolution

Instead of using ensemble optimizers to search for the globalminimum, an ensem-
ble of optimizers can just as easily be configured to search for all critical points of
an unknown surface. In this mode, batches of ensemble solvers are launched until
no more critical points are found—afterward, an accurate surrogate for the unknown
surface can be interpolated from the critical points and other points the optimizers
have visited. In materials science, the typical approach for calculating a unknown
potential energy surface is to find the global minimum and then perform random
walks in hope to discover the unknown energy surface. The ensemble optimizer
approach discussed here provides several advantages, as it is embarrassingly paral-
lel, and also does not have the single point of failure (solving for the globalminimum)
that traditional methods have.

2.10.5 Probability and Uncertainty Tooklit

OUQ problems can be thought of optimization problems where the goal is to find the
global maximum of a probability functionμ[H ≤ 0], where H ≤ 0 is a failure crite-
rion for the model response function H . Additional conditions in an OUQ problem
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Buckshot Powell: 
68s for batch of 
100 solvers on 
512 cores 
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Fig. 2.5 Solutions (white dots) of a model nanostructure problem (top), using a Differential Evo-
lution solver (left) and a Buckshot-Powell ensemble solver (right). The color scale indicates the
number of degenerate local minima near in the neighborhood of the global minimum. Note that
the ensemble optimizer solutions are more accurate and converge much more quickly than the
traditional global optimizer

are provided as constraints on the information set. For example, a condition such as
a mean constraint on H , m1 ≤ Eμ[H ] ≤ m2, will be imposed on the maximization.
After casting the OUQ problem in terms of optimization and constraints, we can
plug these terms into the infrastructure provided by mystic.

Optimal uncertainty quantification (OUQ) typically involves a maximization over
a probability distribution, thus the objective is not a simple metric on the user-
provided model function, but is instead a statistical quantity operating on a con-
strained probability measure. For example, a discrete measure is represented by a
collection of support points, each with an accompanying weight. Measures have
methods for calculating the mass, range, mean, and other moments of the measure,
and also for imposing a mass, range, mean, and other moments on the measure.
Discrete measures also provide basic operations, including point addition and sub-
traction, and the formation of product measures and data sets.

Global optimizations used in solving OUQ problems are composed in the same
manner as shown above for the DifferentialEvolutionSolver. The cost
function, however, is not formulated as in the examples above—OUQ is an optimiza-
tion over product measures, and thus uses mystic’s product_measure class
as the target of the optimization. Also as shown above, the bounds constraints are
imposed with the SetStrictRangesmethod, while parameter constraints (com-
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posed as below) are imposed with the SetConstraints method. The union set
of these constraints defines the set A .

So for example, let us define the feasable set

A =
⎧⎨
⎩( f, μ)

∣∣∣∣∣∣
f = my_model : ∏3

i=1[lbi,ubi] → R,

μ = ⊗3
i=1 μi ∈ ⊗3

i=1 M ([lbi,ubi]),
mlb ≤ Eμ[f] ≤ mub

⎫⎬
⎭ (2.30)

which reduces to the finite-dimensional subset

A� =
⎧⎨
⎩( f, μ) ∈ A

∣∣∣∣∣∣
for x and y ∈ ∏3

i=1[lbi,ubi],
and w ∈ [0, 1],

μi = wiδxi + (1 − wi )δyi

⎫⎬
⎭ (2.31)

where x = some (x1, x2, x3), y = some (y1, y2, y3), and w = some (w1,w2,w3).
The constraints function and the cost function are built using measure mathemat-

ics, and can be passed to any of mystic’s optimizers. For, say, three Dirac delta
masses in each direction, we would define npts = (3, 3, 3). The lb would then
be defined as a sequence (of length 9) of lower bounds for each Dirac delta mass,
and similarly for upper bounds in ub. The optimization parameters param would
correspondingly be a sequence of length 9.

The first block of constraints below check if measure.mass ≈ 1.0; and if not,
the measure’s mass is normalized to 1.0. The second block of constraints below
check if mlb ≤ Eμ[H ] ≤ mub, where mlb = target_mean − error and mub =
target_mean + error; and if not, an optimization is performed to satisfy this
mean constraint. The product_measure is built (with load) from the optimiza-
tion parameters param, and after all the constraints are applied, flatten is used
to extract the updated param:

from mystic.math.measures import split_param

from mystic.math.discrete import product_measure

from mystic.math import almostEqual

# split bounds into weight-only & sample-only

w_lb, m_lb = split_param(lb, npts)

w_ub, m_ub = split_param(ub, npts)

# generate constraints function

def constraints(param):

c = product_measure().load(param, npts)

# impose norm on measures

for measure in c:

if not almostEqual(float(measure.mass), 1.0):

measure.normalize()

# impose expectation on product measure

E = float(c.expect(my_model))
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if not (E <= float(target_mean + error)) \

or not (float(target_mean - error) <= E):

c.set_expect((target_mean, error), my_model, (m_lb,m_ub))

# extract weights and positions

return c.flatten()

The cost function calculates probability of failure, using the pof method:

# generate maximizing function

def cost(param):

return MINMAX * product_measure().load(param, npts).pof(my_model)

When MINMAX=-1, we are seeking the supremum, and upon solution, the
function maximum is -solver.bestEnergy. Alternatively, with MINMAX=1,
we are seeking the infimum, and upon solution, the function minimum is
solver.bestEnergy.

To solve this OUQ problem, we first write the code for the bounds, cost function,
and constraints—then we plug this code into a global optimization script, as noted
above.

2.11 Scalability

2.11.1 Scalability Through Asynchronous Parallel
Computing

Global optimizations with dynamically spawned constraints solvers are possible
because mystic provides a functional abstract programming interface (API) for
constraints solvers and optimization algorithms. The optimizer working against the
objective function drives the execution logic, and through the functional API, can
dynamically stage and launch several thousand nested optimizer and/or constraints
solver instances. A full suite of blocking, iterative non-blocking, and asynchronous
maps and pipes have been developed for multiprocessing, MPI, and IPC-based dis-
tributed computing. The mystic framework provides optimization algorithms that
can leverage parallel computing at several levels–for example, population-based
solvers [80] that can launch function evaluations in parallel [54, 66], and ensemble
solvers that can launch multiple optimizers in parallel [3, 44, 54]. All of mystic’s
optimizers have been adapted for asynchronous computing, where each optimizer is
capable of saving its full state at each iteration in the optimization. While most opti-
mization frameworks implement optimization algorithms that block until complete,
mystic’s asynchronous solvers enable optimizations to proceed step-by-step, with
full restart capabilities at each iteration. Because mystic’s solvers are also serial-
izable, an optimizer state can be shipped off to a database by logging the optimizer
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itself into the database. Additionally, this serialization enables an optimizer to be
stopped, saved, shipped to another resource, and then restarted without any loss of
information, accuracy, or progress.

The complexity required by hierarchical optimizations ismanaged by the underly-
ing graph execution andmanagement framework, pathos [51]. The pathos framework
provides an abstraction layer on programmingmodels for heterogeneous parallel and
distributed computing. Currently, pathos has multi-core, multi-node, multi-thread,
and multi-cluster launching capabilities.

mystic and pathos originate in the DANSE project ($15M, NSF), and were first
integrated in the PSAAP project ($17M, NNSA) in support of PSAAP’s uncertainty
quantification objective. Development of the mystic and pathos frameworks con-
tinued under the ExMatEx project (0.6M$ subk, DOE/BES), the ComplexModelling
Initiative (0.1M$ subk, DOE-BES), and with funding from the AFOSR (0.9M$).
With an eye on the exascale, pathos was redesigned to provide heterogeneous asyn-
chronous parallel and distributed computing that is robust against failure. pathoswas
extended to seamlessly utilize local memory cache and common archival storage
(e.g. on-disk or in-database), thus providing efficient storage and retrieval of results
while minimizing recomputation across a computational campaign (i.e. related runs
potentially separated by several hours to years). mystic’s optimizers were partly
extended to asynchronous parallel computing, where optimizers can be controlled
and configured at each solver iteration.With this, optimizers are fully state-preserving
and restartable, and thus optimizations can run as daemons (long lived processes)
reacting dynamically to evolving constraints. Essentially, whenever new information
is provided, the optimizer can halt, add the relevant constraints, and then proceed
from exactly where it was halted. If there is no new information, and the optimizer
reaches a termination condition, the optimization daemon can go to sleep until new
information is provided.

Both mystic and pathos have demonstrated capabilities for hierarchical and
heterogeneous asynchronous parallel and distributed computing; however, many of
these capabilities have not been battle-tested in large-scale hierarchical UQ opti-
mizations, and definitely not in the context of materials discovery and design.

mystic and pathos are distributed as several standalone software packages, each
representing a portion of the full framework’s capacity. The latest stable releases and
development branches of all packages in the mystic and pathos framework are
available on github [1], and are BSD licensed.
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Chapter 3
Importance of Feature Selection
in Machine Learning and Adaptive
Design for Materials

Prasanna V. Balachandran, Dezhen Xue, James Theiler,
John Hogden, James E. Gubernatis and Turab Lookman

Abstract In materials informatics, features (or descriptors) that capture trends in
the structure, chemistry and/or bonding for a given chemical composition are crucial.
Here, we explore their role in the accelerated search for newmaterials using machine
learning adaptive design. We focus on a specific class of materials referred to as
apatites [A10(BO4)6X2] and our objective is to identify an apatite compound with the
largest band gap (Eg) without performing density functional theory calculations over
the entire composition space.Weconstruct three datasets that use three sets of features
of the A, B, and X-ions (ionic radii, electronegativities, and the combination of both)
and independently track which of these sets finds most rapidly the composition with
the largest Eg . We find that the combined feature set performs best, followed by the
ionic radii feature set. The reason for this ranking is the B-site ionic radius, which
is the key Eg-governing feature and appears in both the ionic radii and combined
feature sets. Our results show that a relatively poor ML model with large error but
one that contains key features can be more efficient in accelerating the search than a
low-error model that lack such features.

P. V. Balachandran (B) · J. Theiler · J. Hogden · J. E. Gubernatis · T. Lookman
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
e-mail: pvb5e@virginia.edu

T. Lookman
e-mail: txl@lanl.gov

D. Xue
State Key Laboratory for Mechanical Behavior of Materials,
Xi’an Jiaotong University, X’ian 710049, China

P. V. Balachandran
Department of Materials Science and Engineering, Department of Mechanical
and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA

© Springer Nature Switzerland AG 2018
T. Lookman et al. (eds.), Materials Discovery and Design, Springer Series
in Materials Science 280, https://doi.org/10.1007/978-3-319-99465-9_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99465-9_3&domain=pdf


60 P. V. Balachandran et al.

3.1 Introduction

Many critical technologies, including energy, electronics, security, and environment,
rely on the design and discovery of advanced materials. Typically, these materials
are multicomponent by design and have enormous complexities at the atomic and
mesoscale levels. It is not practical for intuition or trial-and-errormethods to navigate
the vast search space in an effort to find newmaterials with targeted properties. Thus,
predictive computational strategies that identify promising candidates with desired
response for experimental synthesis and characterization are pivotal to accelerate the
discovery and realization of novel advanced materials. Traditionally, computational
methods based on density functional theory [1], molecular dynamics [2] and phase
field modeling [3] (to name a few) have enabled rational design. More recently,
machine learning methods have also gained importance in guiding computations
and experiments [4].

In the application of machine learning methods for accelerated materials design
and discovery, an emerging theme is adaptive design [4–10]. In this approach,we start
by constructing adatabaseof knownmaterialswith features that are expected to affect
the desired property. The source for data can be experiments or computer simulations.
Once the dataset is ready, we build machine learning (ML) models that capture the
relationship between the features and desired property. In adaptive design, the ML
models must also be able to quantify uncertainties associated with each data sample.
The performance of the trainedmodels are evaluated using standard practices such as
k-fold cross validation, independent test sets or re-substitution error. After evaluation,
these ML models are applied to predict the response, with associated uncertainties,
of a vast library of unknown, missing, or yet-to-be synthesized materials. The next
step is design, which allows us to choose the “promising” material(s) from this vast
space and recommend it (them) for experimental or computational validation. The
final step is feedback, where the new data is then augmented to the database and the
process repeats until the optimal material with the desired response is found. We
recently demonstrated the efficacy of this strategy by rationally guiding experiments
that have led to the discovery of novel shape memory alloys [5, 11] and lead-free
piezoelectric perovskites [12].

In contrast to previous studies [9] that have focused on the choice of ML and
experimental design methods, we explore here the influence of features on the accel-
erated search in the course of adaptive design. It is through the features that we can
build the materials understanding into the database to inform the ML to establish
the chemistry-structure-property relationships. As a result, there is a concerted effort
within the community towards representation learning [13–18], where the goal is to
engineer representations of features that makes it easier to extract useful, yet phys-
ically meaningful, information for building robust ML models [19]. Our objective
here is to evaluate adaptive design from the viewpoint of three different datasets. The
datasets we consider contain the same set of chemical compositions and response
(or target) variable, but they differ in the choice of features that represent these com-
positions. Since the performance of ML methods hinges critically on the features



3 Importance of Feature Selection in Machine Learning … 61

Na

H

Li

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra Ac

Sc

Y

La

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

Rn

Ce

Th

Pr

Pa

Nd

U

Pm

Np

Sm

Pu

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ho

Es

Er

Fm

Tm

Md

Yb

No

Lu

Lr

AII

AI
B

O X BA X

(a) (b)

Fig. 3.1 a Crystal structure of apatites with chemical formula A10(BO4)6X2 in the aristotype
hexagonal P63/m (# 176) space group. There are two crystallographically distinct A-sites (labeled
AI andAII) in the aristotype structure.bThe chemical space of apatite crystal chemistries considered
in this work with three degrees of chemical freedom: A, B and X. In this paper, we have constrained
our chemical space such that same chemical element occupies both the AI and AII sites in the lattice.
Our overall chemical space span 96 unique stoichiometric compositions

used, we anticipate the three sets of features to have varied impact on the accelerated
search process.

We demonstrate our approach on a computational dataset generated from den-
sity functional theory (DFT) calculations (cf. Computational Details). We focus on
a particular class of compounds referred to as “apatites” with chemical formula
A10(BO4)6X2, where A and B are divalent and pentavalent cations, respectively, and
X is an anion. The aristotype structure of a typicalA10(BO4)6X2 apatite belongs to the
space group P63/m (# 176) as shown in Fig. 3.1a, and there are two crystallographi-
cally distinct A-sites associated with the structure (shown as AI and AII in Fig. 3.1a).
The complex structure can be further decomposed into three basic building (or struc-
tural) units based on the principles of coordination polyhedra: AIO6 metaprism, BO4

tetrahedra and AIIO6X1,2 polyhedron [20–22]. The unit cell of a prototypical fluora-
patite [e.g. Ca10(PO4)6F2], where X = F anion, consists of 42 atoms, whereas in the
ground state monoclinic structure of hydroxyapatites (where X =OH anion) there are
88 atoms per unit cell. These materials are typically wide band gap (Eg) insulators
and possess properties important for many applications as biomaterials, luminescent
materials, and host lattices for immobilizing heavy and toxic elements and radiation
tolerant materials [23].

One of the intriguing characteristics of an apatite host lattice is its chemical flexi-
bility and structural diversity. In Fig. 3.1b,we showapartial collection of the chemical
elements that can occupy various atomic sites in the apatite lattice as considered in
this work. We have A = {Mg, Ca, Sr, Ba, Zn, Cd, Hg or Pb}, B = {P, As or V}, and
X = {F, Cl, Br or OH}. Overall, there are 96 unique A10(BO4)6X2 chemical com-
positions that span the chemical space. Our materials design objective is to find an
apatite composition with the largest Eg in the above considered composition space.
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We calculated the Eg for 13 randomly chosen apatites at the DFT-GGA level
(cf. Computational Details) in their lowest energy structures. We treat this as a small
data problem to mimic a scenario that is common when performing ML studies
with experimental data [5, 24, 25] and use our adaptive ML strategy to discover the
composition (among the remaining 83 compositions) with the largest Eg in as few
iterations as possible. DFT calculations serve as the oracle to validate our predic-
tions and provide feedback. We utilize Shannon’s ionic radii (r) and Pauling elec-
tronegativity (EN) differences as features sets for building the ML models [26, 27].
More specifically, we considered the following seven features: (i) rA, (ii) rB , (iii) rX ,
(iv) AEN-OEN, (v) BEN-OEN, (vi) AEN-XEN and (vii) AEN-BEN. Balachandran and
Rajan [22] have shown that these features correlate strongly with various bond geo-
metrical characteristics of the apatite lattice. However, the correlations between these
features and Eg are not known. We further divided these seven features into two sets:
(i) ionic radii set (rA, rB , and rX ) and (ii) electronegativity set (AEN-OEN, BEN-OEN,
AEN-XEN, and AEN-BEN). The key question is the following—Which amongst the
two feature sets would efficiently guide the DFT to find the optimal composition with
the largest Eg in as few iterations as possible? Addressing this question then allows
us to glean important insights into the adaptive design strategy that are crucial to
understand the accelerated search process. We also considered a third feature set, the
“combined set”, where all seven features are used for adaptive design.

Our findings indicate a subtle interplay between essential features and ML model
quality in impacting the accelerated search. Although the quality of the ML models
trained on the electronegativity feature set had lower average error compared to the
ionic radii feature set, the electronegativity-based models required more iterations to
find the optimal composition with the largest Eg . The reason is attributed to the B-site
ionic radius (rB), which is identified from DFT calculations as the key Eg-governing
feature (discussed in detail in the Sect. 3.3 Results) in our chemical space and this
feature is found in both ionic radii and combined feature sets. Also, a relatively poor
ML model (with large error) that contains essential features is more efficient than a
goodmodel (with small error) that does not have those features. The optimal scenario
is the one where we have both key features and a good ML model (with small error),
as exemplified with the combined feature set. The broader validity of these findings,
beyond the results reported in this work, is still not fully resolved and we hope our
study will motivate further research in this area.

3.2 Computational Details

3.2.1 Density Functional Theory

Density functional theory (DFT) calculations for the apatites were performed
within the generalized gradient approximation (GGA) as implemented in Quan-
tum ESPRESSO [28]. The PBEsol exchange-correlation functional [29] was used
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and the core and valence electrons were treated with ultrasoft pseudopotentials [30].
The Brillouin zone integration was performed using a 2 × 2 × 4 Monkhorst-Pack
k-point mesh [31] centered at Γ and 60 Ry plane-wave cutoff for wavefunctions
(600 Ry kinetic energy cutoff for charge density and potential). Non self-consistent
field (NSCF) calculations were performed using a 4 × 4 × 6 Monkhorst-Pack k-
point mesh (unshifted). The scalar relativistic pseudopotentials were taken from the
PSLibrary [32]. The atomic positions and the cell volume were allowed to relax
until an energy convergence threshold of 10−8 eV and Hellmann-Feynman forces
less than 2 meV/Å, respectively, were achieved. We also considered the following
crystal symmetries or space groups to determine the ground state: (i) in the case of
fluorapatites (X = F), calculations were done for the hexagonal (P63/m) and tri-
clinic (P 1̄) structures, (ii) in the case of chlorapatites (X = Cl) and bromapatites (X
= Br), calculations were done for the hexagonal (P63/m) and monoclinic (P21/b)
structures, and (iii) in the case of hydroxyapatites (X = OH), DFT calculations were
performed for the monoclinic (P21/b and P21) and hexagonal (P63) crystal sym-
metries. The choice of these symmetries was motivated by the earlier work in the
literature [23, 33]. Only the Eg associated with the lowest energy structure is consid-
ered for ML. The space groups of the optimized structures were determined using
FINDSYM [34] and the resulting crystal structures were visualized in VESTA [35].

3.2.2 Machine Learning

We use ε-support vector regression with non-linear Gaussian radial basis function
kernel (SVRRBF) as implemented in the e1071 package [36] within the RSTUDIO
environment [37]. The SVRRBF ML method establishes the relationship between the
features and Eg . The hyperparameters for the SVRRBF were optimized using leave-
one-out cross-validation method. Error bars for each prediction were estimated using
the bootstrap resampling method [38]. We then use those SVRRBF models to predict
the Eg of compositions in the dataset. From 100 SVRRBF models, we have 100
predicted Eg values for each composition. The mean (μ) and standard deviations
(error bar, σ ) are estimated from the 100 SVRRBF models.

3.2.3 Design

We utilize the efficient global optimization (EGO) method [39] for design. In this
approach, we estimate the “expected improvement, E(I)” for each composition in the
dataset (whose Eg is not known) from the trainedMLmodels.We calculate E(I) using
the formula, σ [φ(z) + zΦ(z)], where z = (μ − μ∗)/σ andμ∗ is themaximum value
observed so far in the current training set, φ(z) and Φ(z) are the standard normal
density and cumulative distribution functions, respectively. Here, E(I) balances the
tradeoff between “exploitation” and“exploration” of the ML model. At the end of
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each iteration, our design returns a score for E(I) for each unmeasured composition,
whose relative magnitude depends on the ML predicted (μ, σ ) pair for those com-
positions and the value of μ∗ in the training set. We then pick the composition with
the maximum E(I) [max E(I)] and recommend it for validation and feedback. Here,
we also track max E(I) as a function of number of iterations for both feature sets to
further understand the evolution of the adaptive design process.

3.3 Results

We begin our analysis with the ionic radii and electronegativity feature sets. In
Fig. 3.2, we show the performance of SVRRBF ML models on the initial training set
for the ionic radii and electronegativity feature sets. Note that the initial training set
has a total of 13 compositions for which the Eg’s are known and we have a list of 83
compositions for which the Eg’s are not known a priori. The largest Eg in the training
set is 5.35 eV and this belongs to Sr10(PO4)6F2 (SrPF)with P63/m crystal symmetry.
In the case of ionic radii feature set (Fig. 3.2a), we find that the ML models overesti-
mate and underestimate the Eg for the small and large Eg compositions, respectively.
As a result, we have relatively large error bars at both extremities of the ML model
in the training set. The mean squared error is estimated to be 0.54 eV/composition.
In contrast, the ML predicted Eg values were relatively closer to the Eg data when
these models were trained on the electronegativity feature set (Fig. 3.2b). However,
the error bars were found to be large for compositions whose Eg fall in the range
3–4 eV for the electronegativity feature set. The mean squared error is estimated
to be 0.19 eV/composition. Thus, the electronegativity-based ML models achieve
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Fig. 3.2 Performance of the SVRRBF ML models on the apatite data trained using a Ionic radii
feature set (black circles) and b Electronegativity feature set (blue triangles). In the x- and y-
axis we plot the DFT-PBEsol band gap (in eV) and machine learning (ML) predicted band gap
(in eV), respectively. The uncertainties (error bars) correspond to the standard deviation from the
100 bootstrap models. Red dashed line indicate the x = y line, where the predictions from ML and
DFT Eg data exactly coincide
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(a) (b)

Fig. 3.3 Adaptive design strategy in search of apatite compositions with the largest Eg . aMachine
learning model trained using ionic radii feature sets (rA, rB , and rX ) and bMachine learning (ML)
model trained using electronegativity feature sets (AEN-OEN, BEN-OEN, AEN-XEN, and AEN-BEN).
The only difference between a and b is in the choice of features. EGO stands for efficient global
optimization, which evaluates the tradeoff between “exploration” and “exploitation” to recommend
the next composition for DFT validation. We ran this loop for a total of 25 times to gain insights
into the strategy

lower error compared to the ionic radii-based ML models. Now, with the help of
these two MLmodels, we independently explore the adaptive design strategy for the
two feature sets with the objective of finding an apatite composition with the largest
Eg in our chemical space.

Our adaptive design strategy is schematically shown in Fig. 3.3.We independently
run our iterative design loop for both feature sets. At the end of each iteration, we
evaluate the Eg usingDFT-PBEsol calculations for the composition recommended by
design [max E(I)] and augment our training set with this new composition. We then
retrain our ML model with (now) 14 data points and pick the next composition from
a pool of 82 compositions. We continue iterating this loop 25 times. In Fig. 3.4, we
show the DFT-PBEsol calculated Eg data for the compositions recommended by our
adaptive design at the end of each iteration until we reached our 25 iterations limit.
With the ionic radii feature set (Fig. 3.4a), it can be seen that our approach found the
optimal composition [Ca10(PO4)6F2 (CaPF) in the P63/m crystal symmetry] with
the largest Eg of 5.67 eV in the 9th iteration. We confirm that CaPF is the optimal
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Fig. 3.4 DFT-PBEsol calculated Eg (in eV) as a function of number of iterations for the composi-
tions recommended by adaptive design using a ionic radii and b electronegativity feature sets. The
horizontal red dashed line represent the maximum value of Eg found in the original training set
(iteration #0)

composition with the largest Eg (5.67 eV) in our search space, because the remaining
58 compositions had either V- or As-atom occupying the B-site. Both V- and As-
containing apatites have smaller Eg compared to their P-containing counterparts [40].
In contrast, with the electronegativity feature set (Fig. 3.4b) we found the optimal
composition only in the 17th iteration. Furthermore, we find that the ionic radii
feature set has resulted in a far greater exploration of the Eg space relative to that of
the electronegativity feature set, where no new compositions (other than those that are
already present in the initial training set) were found with DFT-PBEsol Eg < 2.5 eV
using our design. Although both feature sets identified the optimal composition in
relatively few iterations (and not requiring a total of 83 iterations), our results clearly
demonstrate that the choice of the feature sets have an important role in determining
not only the efficacy but also the trajectory in which the accelerated search process
has evolved. We now take a closer look at the evolution of the search process to
further understand the adaptive design.

In Table3.1, we provide the list of chemical compositions as recommended by
max μ-ML (i.e. composition with the largest predicted Eg by ML) and max E(I) at
the end of each iteration (until the optimal composition is found) for both feature
sets. We observe two scenarios in Table3.1: (i) Both max μ-ML and max E(I)
recommend the same composition, and (ii) max μ-ML and max E(I) recommend
different compositions. As indicated in the Methods section, E(I) is calculated using
the formula, σ [φ(z) + zΦ(z)], where z = (μ − μ∗)/σ andμ∗ is themaximum value
observed so far in the current training set, φ(z) and Φ(z) are the standard normal
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Table 3.1 List of chemical compositions recommended by max μ-ML and max E(I) at the end of
each iteration in our adaptive feedback loop for the two feature sets (ionic radii and electronegativity).
For DFT-PBEsol validation and feedback, we chose the recommended compositions from max
E(I). For simplicity, we follow the ABX notation to label each composition [e.g. ZnPOH stands
for Zn10(PO4)6(OH)2 and CaPF stands for Ca10(PO4)6F2]. The composition CaPF is highlighted
in bold font to indicate that it has the largest DFT-PBEsol Eg in the composition space explored in
this work

Iteration number Ionic radii Electronegativity

max μ-ML max E(I) max μ-ML max E(I)

1 ZnPOH ZnPOH SrPOH CaPBr

2 HgPOH BaPCl SrPOH BaPF

3 MgPCl HgPOH SrPOH CaPCl

4 MgPBr MgPCl SrPCl PbAsBr

5 BaPF BaPF SrPCl SrPCl

6 BaPBr BaPBr SrPOH CaAsOH

7 MgPF SrPOH BaPCl SrPOH

8 MgVBr MgPBr BaPCl PbVBr

9 MgPF CaPF SrPBr CaAsCl

10 – – BaPCl BaPCl

11 – – BaPBr BaVBr

12 – – BaPBr BaPBr

13 – – SrPBr BaVCl

14 – – SrPBr BaAsF

15 – – SrPBr SrPF

16 – – CaPF MgPF

17 – – CaPF CaPF

density and cumulative distribution functions, respectively. In scenario (i), μ from
the ML models dominate in the calculation of E(I), which leads to both max μ-ML
andmax E(I) recommending the same composition.Whereas in scenario (ii), σ from
the ML models dominate in the calculation of E(I) and thus, both max μ-ML and
max E(I) recommend different compositions. Note that, in this work, we only select
the compositions recommended bymax E(I) for DFT-PBEsol validation. In the case
of ionic radii feature set, it is clear that the max E(I) in Table3.1 recommended only
those compositions that contain P-atom (phosphorus atom) in the B-site of the apatite
lattice. In contrast, the electronegativity feature set had to explore compositions that
involve all three chemical sites (A, B and X in the apatite lattice) before it found the
optimal composition in the 17th iteration.

Note that our chemical space allows for three different atoms (namely P, V, or As)
to occupy the B-site of the apatite lattice (also see Fig. 3.1b). To further understand
the role of these B-atoms on the electronic structure, we calculated the density of
states (DOS) and partial DOS for Sr10(BO4)6F2, where B = P, V, or As, in the
P63/m crystal symmetry, which is also the lowest energy crystal structure for these
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Fig. 3.5 Density of states (DOS) and atom-projected partial DOS data for Sr10(BO4)6F2, where
B = P (green, top panel), V (red, middle panel), or As (blue, bottom panel), in the P63/m space
group. a Sr-states, b F-states, c B-states, where B = P, V or As, and d O-states. The total DOS is
given as dashed black line and the area under the curve is shaded in color grey. EF is the Fermi
level (in eV). SrPF, SrVF, and SrAsF stands for Sr10(PO4)6F2, Sr10(VO4)6F2, and Sr10(AsO4)6F2,
respectively

compositions. The electronic configurations for P, V and As atoms can be written as
[Ne]3s23p3, [Ar]3d34s2 and [Ar]3d104s24p3, respectively. In Fig. 3.5a–d, we show
the total DOS and atom projected partial DOS for the three compositions. The overall
Eg trend can be described as follows: EP

g >EAs
g ≈ EV

g . The Shannon’s ionic radius for

P5+, V5+, and As5+ cations in the four-fold coordination is 0.17, 0.335, and 0.355 Å,
respectively. The Pauling electronegativity for P, V, and As atoms is 2.19, 1.63, and
2.18, respectively. Thus, apatites with smaller B-ionic radii (i.e. P-atoms) have larger
Eg , when the A- and X-sites are fixed and within the constraints of the composition
space explored in this work. In another independent DFT study, Zheng et al. showed
that the Eg of Ca10(PO4)6(OH)2 (5.25 eV) is greater than that of Ca10(AsO4)6(OH)2
(3.95 eV)[40]. In addition, from our own DFT calculations of ≈40 apatites, we find
that Ba10(AsO4)6F2 has the largest Eg of 4.1 eV among V- or As-containing apatites.
Thus, we infer that the ionic radii of the B-site (rB) is a key feature for distinguishing
large Eg (P-apatite) from small Eg (V- or As-apatite) compositions.

The DOS and partial DOS data also provides us with insights for explaining
the EP

g >EAs
g ≈ EV

g trend in Sr10(BO4)6F2 compounds. In SrPF and Sr10(AsO4)6F2
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(SrAsF), we find that the bottom of the conduction bands are occupied by Sr-states
(Fig. 3.5a). The center of mass for the F-states can be found at about 2 eV below
the Fermi level (EF) in the energy window shown in Fig. 3.5b. In SrAsF, in addition
to Sr-states we also find some contributions from the As s-states (Fig. 3.5c, bottom
panel) on the bottom of the conduction bands. In the case of Sr10(VO4)6F2 (SrVF),
there is a strong contribution from the V d-states (Fig. 3.5c, middle panel) to the
bottom of the conduction bands. In all three compositions, the top of the valence
band is occupied by the O p-states (Fig. 3.5d).

In Fig. 3.6a–c, we compare the performance of our ML models that were trained
on the ionic radii feature set with respect to the “ground truth” DFT-PBEsol Eg data
for the first 23 iterations of our adaptive design. The filledmagenta square data points
(that are shown from iteration 1 onwards) represent the compositions recommended
by our design [max E(I)] for DFT-PBEsol validation based on the ML models from
the previous iteration. During the initial few iterations (especially, see iterations
1, 3, and 4 in Fig. 3.6a), we observe that the recommendations from design did not
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Fig. 3.6 a–C Evolution of our ML models that were trained on the ionic radii feature sets at the
end of first 23 iterations of our design feedback loop. The calculated Eg from DFT-PBEsol is given
in the x-axis and the predicted Eg from machine learning (ML) is shown in the y-axis. Error bars
represent the standard deviation of the predicted Eg from 100 MLmodels. Red dashed line indicate
the x = y line, where the predictions from ML and DFT Eg data exactly coincide. d Comparison
between the ML predicted Eg and DFT-PBEsol calculated Eg at the end of the 25th iteration



70 P. V. Balachandran et al.

consistently sample compositions at or near the large Eg regime (Eg > 5 eV). Rather,
the algorithm suggested data points in the feature-Eg landscape that has the greatest
potential to improve the ML models (i.e. reduce ML uncertainties). This can also be
seen from surveying the chemical compositions listed in Table3.1, where only three
out of nine times the recommendations from both max μ-ML and max E(I) agree
with respect to one another (before the algorithm found the optimal composition with
the largest Eg in the 9th iteration). In Fig. 3.6d, we also show the performance of our
final ML model at the end of the 25th iteration, where we have now trained the ML
models using 38 data points. We identify two important characteristics in Fig. 3.6d,
relative to Fig. 3.2a: (i) we have surveyed a substantial range of DFT-PBEsol Eg

values and (ii) the uncertainties are still large.
In Fig. 3.7a–c, we also show the performance of ourMLmodels that used the elec-

tronegativity feature set for the first 23 iterations. The quality of these ML models
have lower error than theMLmodels trained on the ionic radii feature set. In Fig. 3.7d,
we also show the performance of the ML models at the end of the 25th iteration.
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Fig. 3.7 a–c Evolution of our ML models that were trained on the electronegativity feature sets
at the end of first 23 iterations of our design feedback loop. The calculated Eg from DFT-PBEsol
is given in the x-axis and the predicted Eg from machine learning (ML) is shown in the y-axis.
Error bars represent the standard deviation of the predicted Eg from 100 ML models. Red dashed
line indicate the x = y line, where the predictions from ML and DFT Eg data exactly coincide.
d Comparison between the ML predicted Eg and DFT-PBEsol calculated Eg at the end of the 25th
iteration
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Fig. 3.8 The variation of the maximum expected improvement, max E(I), as a function of number
of iterations for the a Ionic radii and bElectronegativity feature sets. Themax E(I) corresponding to
the optimal composition with the largest Eg is highlighted with a red star. Iteration 0 is the training
set

In sharp contrast to Fig. 3.6d, the search trajectory associated with the electronega-
tivity feature set has focussed on compositions with Eg ≥ 2.5 eV. Furthermore, the
uncertainties are also smaller. Although the electronegativity feature set appears to
have possessed all desired characteristics in terms of superior model quality relative
to the ionic radii feature set, intriguingly the optimal composition was found only
at the end of the 17th iteration (requiring approximately twice the total number of
iterations than that needed by the ionic radii feature set). This happens because the
electronegativity feature was not able to clearly distinguish between P-apatites and
As-apatites, due to the similarity in the electronegativity values between P and As
atoms. This consequently led the design to explore relatively more compositions,
before it found the optimal one.

We also follow the search process by systematically tracking the max E(I) at the
end of each iteration (c.f. Computational Details). Ideally, we anticipate max E(I) to
monotonically decrease as the number of iterations increases. However, as shown in
Fig. 3.8, we find that the max E(I) fluctuates and do not decrease smoothly. One of
the unanswered questions in adaptive design for accelerated materials design is the
stopping criterion and we note that tracking max E(I) is a natural step in addressing
this question. With the ionic radii feature set (Fig. 3.8a), we find that the max E(I)
decreased towards zero from the 16th iteration onwards. In contrast, for the ML



72 P. V. Balachandran et al.

DFT-PBEsol Eg (eV)

0

1

2

3

4

5

6

7

M
L 

pr
ed

ic
te

d 
E

g (
eV

)

Ionic radii
Combined

DFT-PBEsol Eg (eV)

0

1

2

3

4

5

6

7
Electronegativity

Combined

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
DFT-PBEsol Eg (eV)

0

1

2

3

4

5

6

M
L 

pr
ed

ic
te

d 
E

g (
eV

)
Combined

(a)

(b) (c)

Fig. 3.9 aDFT-PBEsol Eg (x-axis) versusML predicted Eg (y-axis) for a third feature set (referred
to as “Combined”, filled green diamonds), wherewe combined both ionic radii and electronegativity
feature sets into one super set. In the x- and y-axis we plot the DFT-PBEsol band gap (in eV) and
machine learning (ML) predicted band gap (in eV), respectively. The uncertainties (error bars)
correspond to the standard deviation from the 100 bootstrap models. Red dashed line indicate the x
= y line, where the predictions from ML and DFT Eg data exactly coincide. In b and c we directly
compare the performance of Combined versus Ionic radii, and Combined versus Electronegativity
feature sets, respectively, in reproducing the DFT-PBEsol Eg data

model that was trained using the electronegativity feature set it took 24 iterations
(Fig. 3.8b) for the max E(I) to approach zero. Thus, with respect to the stopping
criterion, we do not recommend stopping the feedback cycle immediately after max
E(I) has reached a value of zero. Instead, we suggest running the iterative feedback
loop a couple of additional iterations to confirm that themax E(I) is consistently zero
and does not increase. An alternative criterion would be to stop the iterative cycles
when a material with the desired response is found, even when the max E(I) did not
reach zero.

Finally, we also considered a third feature set where we combined both ionic
radii and electronegativity. In Fig. 3.9a, we show the DFT-PBEsol Eg versus ML
predicted Eg for the combined feature set on the initial training set that contains 13
compositions (same as that used in Fig. 3.2). The performance of the MLmodel with
seven features is comparable to the electronegativity feature set (Fig. 3.2b), but is
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superior to the ionic radii feature set (Fig. 3.2a). We estimate a mean squared error
value of 0.21 eV/composition. We show this in Fig. 3.9b and c, where we overlay
the results from combined-ionic radii and combined-electronegativity feature sets,
respectively. Intriguingly, the combined feature set has more similarity with the
electronegativity feature set compared to the ionic radii set. In terms of uncertainties,
the major differences (between combined and electronegativity feature sets) appear
for Pb10(PO4)6F2 (PbPF) and Pb10(PO4)6OH2 (PbPOH) compositions, whose DFT-
PBEsol Eg is 3.7 and 3.51 eV, respectively. The ML predicted Eg with uncertainties
for PbPF and PbPOH compositions using combined feature set is 2.87 ± 1.1 and
3.37 ± 0.65 eV, respectively, whereas for the electronegativity feature set it is 2.95 ±
1.32 and 3.29 ± 1.47 eV, respectively. Thus, the combined feature set has relatively
smaller uncertainties compared to the electronegativity or ionic radii feature set. In
addition, the top three compositions with the largest Eg of 5.35, 5.33, and 5.22 eV
in the training set were SrPF, Ca10(PO4)6(OH)2 (CaPOH), and Mg10(PO4)6(OH)2
(MgPOH), respectively. The mean (μ) value of the ML predicted Eg trend for the
three compositions from the three feature sets can be described as follows:

• Ionic radii: ECaPOH
g > EMgPOH

g ≈ ESrPF
g

• Electronegativity: ECaPOH
g > ESrPF

g > EMgPOH
g

• Combined: ECaPOH
g ≈ ESrPF

g > EMgPOH
g

Thus, the combined feature set performs better than the ionic radii and electroneg-
ativity feature sets in reproducing the DFT-PBEsol Eg trend. We then used these ML
models for adaptive design. Both max μ-ML and max E(I) recommended CaPF in
the first iteration, which (as noted earlier) also has the largest Eg in our chemical
space. Thus, the combined feature set has remarkably found the optimal composition
in the first iteration itself. Our naive intuition informs that the combined feature set
had more information about the apatites, which enabled us to fit a good ML model
to the data.

3.4 Discussion

We showed that the choice of feature sets has an important role in the search for new
materials and in the trajectory along which they guide the new computations. Our
MLmodels built on ionic radii feature set, despite their relatively large uncertainties,
succeeded in efficiently guiding the DFT towards promising regions (P-containing
apatites) in the composition space. They also found the optimal composition [CaPF
with DFT-PBEsol Eg = 5.67 eV] in 8 fewer iterations compared to the electronega-
tivity feature set. After running a total of 25 iterations with feedback, the ionic radii
feature set has sampled a fairly significant span of Eg space, whereas the electroneg-
ativity feature set sampled mainly Eg > 2.5 eV (Fig. 3.4). The best performance,
however, came from the combined feature set, which gave the optimal composition
in merely one iteration.
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Thus, one of the insights that we uncovered is that the quality of the ML models
(in terms of mean squared error) is not a sufficient indicator for achieving accelerated
search. It is also important to incorporate essential features that capture the physical
and/or chemical trend associated with the target property. This is reflected in our
results for the combined feature set ML model: Despite a relatively poor ML model
fit to the ionic radii feature set, it was efficient in finding the optimal composition
in fewer iterations mainly because it carried the essential feature (i.e., B-site ionic
radius). From Table3.1, we infer that the ionic radii feature set only recommended
P-containing apatites for validation and feedback. Our electronic structure calcula-
tions (DOS and partial DOSdata) revealed that P-containing apatites, in general, have
large Eg compared to the V- or As-containing apatites. As a consequence, the key
challenge for the ionic radii feature set was to identify the optimal A- and X-atoms
(only two degrees of freedom) and it took 9 iterations to find the optimal composi-
tion. In sharp contrast, the electronegativity feature set did not contain the essential
feature for capturing the Eg trends of the B-site atoms. From Table3.1, we also infer
that it had to explore all three chemical degrees of freedom (A-, B-, and X-atoms),
which eventually took 17 iterations to find the optimal composition. To further con-
firm the importance of rB (B-site ionic radius) feature to our problem, we performed
two additional tests. We augmented the electronegativity feature set in two ways,
(i) added rB as a new feature vector and (ii) added rA and rX as two new feature vec-
tors, and repeated our iterative feedback look. The electronegativity plus rB feature
set found CaPF in its second iteration. On the other hand, the electronegativity plus
rA and rX feature set did not find CaPF even after five iterations.

In the context of the cheminformatics and drug discovery literature, it is com-
mon to discuss the feature-activity (property) relationships from the viewpoint of the
activity (property) landscape [41]. One of the common approaches is to visualize
or analyze the relationship using similarity maps to uncover trends underlying the
feature-property data [42, 43]. We borrow some of these ideas and adapt them to
interpret the results reported in this work. Especially, we are interested in under-
standing how the ML model outcome changes as we progress from one iteration
to the next. To this end, we calculate the pairwise similarity between the 96 apatite
compositions using the following equation,

EML
g Closenessi, j = dist (Eg,i ,Eg, j )

dist (i, j)
(3.1)

where dist (Eg,i ,Eg, j ) is the Euclidean distance between ML predicted Eg’s for
compositions i and j , and dist (i, j) is the Euclidean distance between the same
two compositions in the feature space (ionic radii or electronegativity). The result-
ing outcome is a 96 × 96 matrix, which we refer to as EML

g Closeness matrix. We
calculated a total of 25 such matrices (one for each iteration) for both ionic radii and
electronegativity feature sets. Our interest is in estimating the correlation between
these matrices for the nth and (n + 1)th iteration. In (3.1), we note that the denomi-
nator is the same for the nth or (n + 1)th iteration, because the feature space entries
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remain fixed from one iteration to the next. Only the numerator changes, due to the
iterative nature of our adaptive design and ML model update.

An important detail about the numerator of (3.1) between the nth and (n + 1)th
iteration is the following: At the end of the nth iteration, we have a ML model that
was then used to predict the Eg’s for 96 compositions. From the model, we calculate
the EML

g Closeness matrix for the nth iteration. We then used the model for design,
which recommends a new composition that we subsequently validate using our DFT-
PBEsol calculation. We augment our dataset with this new composition and retrain
our ML models. We now use the retrained ML models to predict the Eg for all 96
compositions. These updated predictions are used to calculate the EML

g Closeness
matrix for the (n + 1)th iteration.

Our hypothesis is that if the correlation between theEML
g Closenessmatrices for the

nth and (n + 1)th iteration is high, then the ML model has not undergone significant
change between the nth and (n + 1)th iteration as a result of our design. On the
other hand, if the correlation between the two matrices is low, then we infer that
the addition of (n + 1)th composition has affected the outcome of the ML model
predictions. We utilize the Mantel test [44, 45], which is a well-known statistical
method, to quantify the strength of the linear relationship between the two matrices.
The standardized Mantel correlation statistic (MCS) is calculated using (3.2) given
below,

MCS = 1

r − 1

r∑

p=1

r∑

q=1

xpq − x̄

sx
· ypq − ȳ

sy
(3.2)

where, r is the number of elements in the matrix, p and q are indices of the matrix
elements, x and y are the variables associatedwithmatrix 1 andmatrix 2, respectively,
x̄ and ȳ are the mean values for variables x and y, respectively, and sx and sy are the
standard deviations for variables x and y, respectively.

InFig. 3.10,we show theMantel test results for the ionic radii and electronegativity
feature sets. We find that the MCS value fluctuated substantially in the first few
iterations for the ML model that was built using ionic radii feature set. In contrast,
the ML model that used electronegativity did not show large variation in the MCS
value during those initial iterations. After about 10 iterations and until the end of 23
iterations, we find very little change in theMCS value for both feature sets. However,
the MCS value changed substantially between the EML

g Closeness matrices that
represented iterations 23 and 24 for the ionic radii feature set. We can understand the
reason for this behavior from Fig. 3.4a. Notice that at the end of the 23rd iteration,
we found a composition with a very low DFT-PBEsol Eg (0.07 eV). When this
composition was augmented to our training set and after retraining the ML models,
the matrices for the 23rd and 24th iteration were affected, which is reflected in
the MCS analysis. In contrast, the electronegativity ML model appears to have
converged.
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Fig. 3.10 Variation of the Mantel correlation statistic (MCS) with respect to the changes in the
feature-Eg landscape between two Eg Closeness matrices estimated at the end of the nth and
(n + 1)th iteration of our adaptive design. The x-axis indicates the pair of iteration numbers for
the Eg Closeness matrices that were calculated from (3.1). The results for ionic radii and elec-
tronegativity feature sets are depicted in black circles and blue triangles, respectively. Each data
point indicates the strength or correlation (linear model) between two Eg Closeness matrices at the
nth and (n + 1)th iteration. Red dashed line represents MCS = 1, indicating perfect correlation
between the two matrices

3.5 Summary

We have uncovered insights into the role of feature-property relationships within the
adaptive design strategy for accelerated search using computational data. We have
shown that the feature-property landscape has an intriguing and non-trivial role. The
average error of the ML model in itself is not sufficient for achieving accelerated
search, and we have shown that it is also important to incorporate key features that
capture the underlying physical and/or chemical trends of the associated property.
More studies using diverse datasets are required to validate the generality of these
findings.

What are the implications of our results for the adaptive design of materials in
practice?First, the adaptive design approachpresented ismost suitable to caseswhere
high-throughput theory or experiment is not feasible; that is, for cases where the
object of interest, here itwas the band gap, is a quantity expensive to obtain accurately,
if at all, from theoretical calculations or is available only from time-consuming or
expensive experimental measurements. Our results illustrate that feature selection
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can affect the convergence of the process more strongly than the quality of the ML
model. Typically, in executing the process, it is easy to start with a large list of
features, and a good fit to the data will result. Reducing the size of the list generally
unveils which features are key in enhancing the merit of the property of interest but
can reduce fit quality.

How does then one perform feature reduction and selection? For the present
study, we had prior knowledge about good choices of features. For the size of the
feature sets considered, the cost of building the support vector machine regression
models was insignificant. Consequently, exploring the consequences of different sets
of features on the adaptive design performance was relatively computationally less
demanding. In cases where such prior knowledge is absent, we could have more
mechanically used regression models based on decision trees that return estimates
of the relative importance of each feature in producing the fit. Hence, these methods
provide a means for selecting the important features and subsequently a basis for
set reduction. ML also offers other techniques. For example, principal component
analysis is popular, but it often obscures which specific feature is the most important.

The dependency of the rate of the convergence of the adaptive design on the
features chosen is likely our most significant observation. Its significance is not about
reducing the cost of building theMLmodels but about reducing the cost of validating
the model by subsequent theoretical calculations or experimental measurements. In
this part of the process, we illustrated the fidelity of the model can be less important
than its attempted validation as the validation adds to the dataset a new entry that
refines the new ML model for the next prediction. The distinctive feature of the
adaptive design approach is the construction of a larger dataset from a smaller one
in a consistent and controlled manner.
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Chapter 4
Bayesian Approaches to Uncertainty
Quantification and Structure Refinement
from X-Ray Diffraction

Alisa R. Paterson, Brian J. Reich, Ralph C. Smith, Alyson G. Wilson
and Jacob L. Jones

Abstract This chapter introduces classical frequentist and Bayesian inference
applied to analyzing diffraction profiles, and the methods are compared and con-
trasted. The methods are applied to both the modelling of single diffraction pro-
files and the full profile refinement of crystallographic structures. In the Bayesian
method, Markov chainMonte Carlo algorithms are used to sample the distribution of
model parameters, allowing for the construction of posterior probability distributions,
which provide both parameter estimates and quantifiable uncertainties. We present
the application of this method to single peak fitting in lead zirconate titanate, and
the crystal structure refinement of a National Institute of Standards and Technology
silicon standard reference material.

4.1 Introduction

Researchers and engineers are continually working to design new materials with
enhanced or desired properties. Understanding the structure of materials is key in
order to do this successfully. Diffraction, and more specifically X-ray diffraction
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(XRD) is a powerful tool that is commonly used by materials scientists to determine
atomic structure. Simply stated, XRD relies on the constructive interference of X-
rays scattered from planes of atoms. The scattered intensity I as a function of the
scattering angle 2θ can be represented by

I (θ ) � f (2θ |α), (4.1)

where f is a profile shape function and α is a set of parameters that determine the
intensity. The X-ray scattering results in Bragg peaks, as shown in Fig. 4.1. More
precisely, these are referred to as reflections; however, many reflections can overlap
in one experimentallymeasured peak sowe choose peak as the term thatmore reflects
the experimental data.

Bragg’s law describes the conditions necessary for constructive interference of
the scattered X-rays, and is given by

2dhkl sin θ � nλ, (4.2)

where dhkl is the interplanar spacing between crystal planes (hkl) (the d-spacing),
θ is the Bragg angle or angle of incidence, n is the order, and λ is the wavelength
of the X-rays. There are many solutions to Bragg’s law for a given set of planes at
different values of n, but it is customary to set n to 1 [1]. For example, when n �2,
the d-spacing is instead halved to keep n �1.

Statistical inference deduces structural parameters of materials through analysis
of the data. Inference tell us about parameters that we cannot directly observe. Crys-
tallographers refer to this as the “inverse problem”: we start with the results (the
XRD pattern) and then calculate the cause (the underlying structural parameters).
For example, structural details such as the dhkl can be extracted from XRD patterns
of intensity versus 2θ by using Bragg’s law, and full profile structure refinement
provides even more detailed information about the crystal structure and instrumental
contributions to the profile. Uncertainty quantification, or the science of quantifying
and reducing uncertainties in both computational and real-world systems [2], is also
very important in structure determination. Researchers need to know how precisely
the mathematical model describes the true atomic structure.

There are several different paradigms of statistical inference [4]. In this chapter,we
briefly introduce classical, frequentist inference and classical methods of peak fitting
and structure refinement. This is followed by an introduction to Bayesian inference
and a detailed discussion of Bayesian inference applied to modelling diffraction
profiles and crystallographic structure refinement. We demonstrate that Bayesian
inference has several advantages over the classical methods, due to its ability to
provide quantifiable uncertainty.
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Fig. 4.1 Example of peaks observed at angles 2θ in an X-ray diffraction pattern. Peaks arise from
the constructive interference of X-rays scattered from planes of atoms. The inset shows a schematic
illustration of X-rays scattering from a periodic array of atoms, with X-rays incident at an angle
θ , and the resulting constructive interference at an angle θ from the plane of atoms. (Reproduced
from [3]). This figure is licensed under a Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/

4.2 Classical Methods of Structure Refinement

In this section,we briefly introduce frequentist inference and discuss the predominant
classical method of structure refinement, the Rietveld method. The limitations of
these approaches are also outlined.

4.2.1 Classical Single Peak Fitting

Fitting of XRD data can be accomplished by fitting a single diffraction peak or
multiple peaks, up to the entire pattern. An entire pattern may contain on the order of
100 single diffraction peaks. To fit a single peak, a model is first selected to describe
the profile shape. Common profile shape functions include the Gaussian, Lorentzian,
and pseudo-Voigt. Classical single peak fitting uses a least-squares fitting method to
minimize the difference between the intensity of the experimental diffraction peak

https://creativecommons.org/licenses/by/4.0/
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and the model diffraction peak. Specific values for the model parameters are an
output of this process and, together with the profile function, can be used to simulate
the peak.

Let’s consider the Gaussian model as an example. The Gaussian is a function with
the form

f (x) � ae− (x−b)2

2c2 , (4.3)

where a is the peak height, b is the centremost point of the curve, and c controls
the peak width. Collectively, we will refer to these parameters as α. Changing α

will produce different Gaussian curves. The goal of peak fitting is to determine the
α values for the data set of interest that will minimize the sum S of the squared
residuals ri, given in (4.4) and (4.5). For a diffraction peak, the residual is defined as
the difference between the observed experimental intensity (Idata) and the intensity
predicted by the model (Imodel), as in (4.5).

S �
n∑

i�1

r2i , (4.4)

ri � Idata − Imodel. (4.5)

By minimizing S, the “best fit curve” is produced. An example of a Gaussian fit
is given in Fig. 4.2. In a plot of intensity as a function of 2θ , the centre of the fitting
curve can be used to calculate the interplanar lattice spacing dhkl, using Bragg’s law
(4.2). This parameter can help us understand the properties of the material of interest.
For example, single peak fitting of the 222 peak from bismuth zinc niobate (BZN)
was used by Nino et al. to examine the lattice strain in BZN cubic pyrochlore thin
films deposited on Si, sapphire, MgO, and Vycor glass substrates [5]. This work
demonstrates one of many applications of single peak fitting.

4.2.2 The Rietveld Method

Fitting of thewhole diffraction pattern provides rich information aboutmaterials. The
Rietveld method is a popular crystal structure refinement method that was developed
by H. Rietveld in 1967 [6, 7]. It is a frequentist method that uses a least-squares
approach to minimize the difference between a theoretical, calculated XRD pattern
and an experimental XRD pattern that contains many reflections. Given a model for
the crystal structure, the theoretical pattern is calculated, and model parameters such
as the lattice parameters and atomic positions are adjusted to minimize the difference
until a satisfactory solution is obtained. This method yields a set of specific values for
all model parameters (α). An example of a Rietveld refinement is shown in Fig. 4.3
(left) for the silicon crystal structure (right). The experimental data (x) is fit with the
calculated pattern (solid line), and the difference is plotted below. At least several



4 Bayesian Approaches to Uncertainty Quantification … 85

Fig. 4.2 A representative Gaussian fit of a single diffraction peak, showing the measured data, the
fit, and the difference. Note that this is an imperfect fit near the peak and shoulders because the
Gaussian model function cannot model these features

hundred papers a year reference this refinement method, evidencing its status as
a powerful tool in crystallography [8]. Many software packages, such as General
Structure Analysis Software-II (GSAS-II) [9] and TOPAS, have been developed to
implement Rietveld analysis.

The parameters from Rietveld analysis have an associated uncertainty. The pre-
cision in the Rietveld refinement method is reported as the standard uncertainty
(standard error). The standard uncertainty is the standard deviation of the estimator’s
sampling for each parameter. For example, the lattice parameter a may be reported
as 3.998(5) Å. The (5) indicates the precision in the last digit of 3.998. A 95% confi-
dence interval for this lattice parameter is 3.998± (2 × 0.005). Confidence intervals
are discussed further in Sect. 4.2.3.

Unfortunately, studies have shown that the standard uncertainty is often incorrect
or unreliable [10–13]. Moreover, the least squares method is susceptible to false
minima solutions [14, 15]. False minima trap these methods and cause them to fail
to find the best solution. The convergence of the refinement to a global minimum is
necessary for estimated uncertainties to reflect the real uncertainty, so false minima
are problematic [13]. In addition, the correct standard deviations cannot be calculated
if the model does not sufficiently reproduce all the features in the diffraction pattern
[16].

Another limitation of the uncertainty quantification of a standard Rietveld analy-
sis is that the sampling distribution of the α estimator is assumed to be approximately
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Fig. 4.3 Left: a representative Rietveld refinement of silicon X-ray diffraction data [3]. The calcu-
lated fit (solid line) is plotted with the experimental data (x) and the difference curve is shown below.
The insets show the fit for specific peaks. Right: silicon crystal structure. (Left figure reproduced
from [3]). This figure is licensed under a Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/

Gaussian with covariance derived from the Fisher information matrix. This assump-
tion is tenuous for such a highly non-linear problem. Violation of this assumption
could lead to poor statistical inference including under-coverage of confidence inter-
vals.

4.2.3 Frequentist Inference and Its Limitations

The methods discussed above fall under the category of frequentist statistics. Fre-
quentist inference is based on a frequency view of probability, where a given experi-
ment is considered to be a random sample of an infinite number of possible repetitions
of the same experiment [17]. While useful for characterizing quality of a continuous
manufacturing process, this description is not well-suited to characterize uncertainty
of a single experiment. For example, crystallographers often only have one set of
XRDdata that is used for crystal structure determination, and the frequentist perspec-
tive does not readily apply. The repeated experiments considered by the frequentist
are merely hypothetical.

It is important to report the uncertainty associated with the materials parame-
ter values obtained by frequentist inference. Uncertainty in these point estimates
is often summarized using confidence intervals. However, confidence intervals are
complicated, and one recent study suggests that researchers do not understand how

https://creativecommons.org/licenses/by/4.0/
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to correctly interpret them [18]. A confidence interval is a range of values that is
believed (with a particular percentage) to contain the “true” parameter value [17].
Many researchers misinterpret a 95% confidence interval to mean that there is a 95%
probability that the interval includes the true value. In reality, a 95% confidence inter-
val implies that 95% of the calculated confidence intervals from subsequent repeat
experiments are expected to contain the “true” parameter value. Thus, the confidence
interval does not provide any probability for the current measurement of interest, but
only for future measurements, and each future measurement would lead to a different
confidence interval.

Once parameter values and corresponding confidence intervals are obtained for
a set of experimental data, the results are used for model selection. With frequentist
approaches, the decision is often sharp. For example, a Rietveld refinement may
be performed using two different space groups, Cc and R3c. The frequentist would
accept as truth only one of these solutions, likely based on a quality of fit calculation
such as a weighted residual. A Bayesian perspective, however, may be constructed
such that different solutions have associated probabilities.

4.3 Bayesian Inference

Bayesian inference methods use subjective probability to quantify uncertainty [19].
These methods are based on Bayes’ theorem, which describes the probability of an
event, using prior knowledge of potentially related conditions. Bayes’ theorem is
given by

P(A|B) � P(B|A) × P(A)

P(B)
, (4.6)

where P(A) and P(B) are the probabilities of observing A and B, respectively, and
P(A|B) is the probability of observing A given that B is true, and P(B|A) is the
probability of observing B given that A is true.

If we rewrite Bayes’ theorem for the application to X-ray diffraction data, it is
given by

P(α|data) � P(data|α) × P(α)

P(data)
(4.7)

whereα is the parameter of interest,P(α|data) is the posterior probability distribution,
P(data|α) is the likelihood (the probability of the data given the parameter values),
P(α) is the prior distribution, and P(data) is the marginal likelihood (the probability
of the data without assuming parameter values) [20]. Posterior distributions represent
the probability after new evidence has been considered, whereas the prior distribution
gives the probability of the parameters before considering the data.
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Fig. 4.4 A posterior
probability distribution from
Bayesian inference
compared to a point estimate
(vertical line) and standard
uncertainty from the Rietveld
method. (Reproduced from
[3]). This figure is licensed
under a Creative Commons
Attribution 4.0 International
License https://creativecom
mons.org/licenses/by/4.0/

Unlike classical frequentist methods, which treat data as a repeatable, random
sample from an infinitely large population of data, data are fixed and known in
Bayesian methods. Based on the data, Bayesian analysis asks the question “which
values of α are the most plausible?” Instead of a single value for each parameter,
Bayesian inference provides a probability distribution such as that shown in Fig. 4.4.
This approach provides an output that has quantifiable certainty in terms of prob-
ability. For example, in a polycrystalline sample, one would not expect all crystals
to have the same value for crystal size, so a distribution is more realistic. Bayesian
inference also yields more quantifiable uncertainties than the frequentist approach,
providing credible intervals instead of confidence intervals. A 95% credible interval
means that there is a 95% probability that this interval contains the true value; this
is a simply interpreted probability on whether the credible interval covers the true
value. The posterior probability distribution obtained from Bayesian inference is an
entirely different way of quantifying uncertainty than that available in frequentist
approaches.

Selecting appropriate prior probability distributions, or priors, for Bayesian anal-
ysis is very important because the priors influence the results. If the priors selected
do not contain the true value, the analysis cannot find the correct solution. Moreover,
knowledge about the parameters that is known before the experiment may be used to
select the priors. For instance, it is known thatX-ray intensitywill be positive.Knowl-
edge for the prior may also be obtained from previous experiments. For example,
electronmicroscopy analysis could provide information about the range of crystallite
size in the sample, which can be used to select an appropriate prior distribution. The
incorporation of prior knowledge is an advantage of Bayesian inference.

https://creativecommons.org/licenses/by/4.0/
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4.3.1 Sampling Algorithms

Many approximate inference algorithms have been proposed for Bayesian infer-
ence [21]. The studies we present in this chapter utilize Markov chain Monte Carlo
(MCMC) algorithms, which are a subclass of stochastic sampling methods. Unlike
least-squares minimization, which can become trapped in a region of parameter
space due to false minima, the MCMC algorithm has the ability to escape from local
minima due to its stochastic aspect [3].

MCMC is an iterative, general-purpose algorithm to indirectly simulate ran-
dom observations from complex, high-dimensional probability distributions [17].
MCMC explores the parameter space by sampling multiple combinations of model
parameters [22]. Random-walkMetropolis sampling is a versatileMCMCalgorithm.
Figure 4.5 shows a flowchart of this algorithm. First, a set of parameters are chosen,
which can be based on prior knowledge of the material of interest if it is available. To
begin, one parameter is selected, while the other parameters are fixed. The starting
parameter, αst, is compared with a new value of the parameter, αnew, obtained by ran-
domly drawing from a proposed Gaussian distribution with mean αst. The intensity
is calculated based on the starting and new parameter values, and then the likelihood
of these parameters is calculated to give P(data|αst) and P(data|αnew). Based on these
likelihoods, an acceptance criteria r, given by

r � min

(
P(data|αnew)P(αnew)

P(data|αst)P(αst)
, 1

)
, (4.8)

is used to decide whether to accept or reject the new parameter value αnew. αnew

is accepted if r ≥1. If αnew is accepted, it is used for the next iteration, but if it is
rejected, the next iteration continues to use αst. Acceptable answers are stored in a
set. This process is repeated for thousands of iterations for one parameter at a time.
For example, if we are applying this sampling process to a structure refinement, this
process may be repeated for one model parameter at a time for 105 iterations to refine
the crystallographic structure.

To further clarifyMCMC sampling, let’s consider a simple example. Suppose that
we have two parameters α1 and α2 and have observed a set of data. Assume that α1

and α2 can only take on two values, 0 and 1. We have specified the model for how
our data occurs given we know the values of the parameters (as in (4.1)), and also our
prior distributions for α1 and α2, which means in this case the probability they equal
0 or 1 before observing the data. The MCMC algorithm iteratively chooses values
for the parameters, with the ith values denoted as α

(i)
1 and α

(i)
2 . The value for α

(i)
1 is

chosen randomly using P(α1 � 1|α(i−1)
2 , data), where the probability is specified by

the choices of model for the data, the prior distributions, and the most recent value
for α2. One can think of this value selection process as a coin toss that is weighted
by the data’s likelihood and prior probabilities.

The sampling algorithms described can also be applied to single peak fitting.
The parameters that describe a Gaussian distribution, discussed in Sect. 4.2.1, can
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Fig. 4.5 A flowchart of a
random-walk Metropolis
sampling algorithm.
Reproduced with permission
of the International Union of
Crystallography [20]

Ist Inew

P(data| st) P(data| new)

Current value ( st) New value ( new)

Calculated intensity
I = f (2 )

Calculate the likelihood of st and new

Evaluate acceptance criteria

be sampled and a posterior probability distribution obtained for each parameter.
A YouTube video about “Statistical Methods for Peak Fitting” was produced by
the Data-Enabled Science and Engineering of Atomic Structure program at North
Carolina State University, and provides a video introduction to both least-squares
and Bayesian approaches to peak fitting [23].

4.4 Application of Bayesian Inference to Single Peak
Fitting: A Case Study in Ferroelectric Materials

Bayesian inference has been applied to several areas of crystallography [24–34]. For
example, Gagin and Levin developed a Bayesian approach to describe the systematic
errors that affect Rietveld refinements, and obtained more accurate estimates of
structural parameters and corresponding uncertainties than those determined from the
existing Rietveld software packages [35]. Moreover, Mikhalychev and Ulyanenkov
used a Bayesian approach to calculate the posterior probability distributions for the
presence of each phase in a sample, allowing for phase identification comparable to
existing methods [31]. This section focuses on the application of Bayesian inference
to single peak fitting in a ferroelectric material.

Recently, Iamsasri et al. utilized Bayesian inference and an MCMC sampling
algorithm to model single peaks [20]. The peak width may be associated with crys-
tallite size and/or microstrain, the intensity may be affected by preferred orientation
and/or the scattering factors of the crystals, and the peak position may be associated
with the interatomic spacing [20]. Thus, single peak fitting can provide a great deal of
information about these ferroelectric materials. Two different ferroelectric materials
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Fig. 4.6 Top: a schematic
diagram of different
crystalline orientations
(domains) in a ferroelectric
material. Bottom: a
representative X-ray
diffraction profile for a
tetragonal ferroelectric
material. The peak
intensities are proportional to
the fraction of each domain.
Reproduced with permission
of the International Union of
Crystallography [20]

were studied: thin-film lead zirconate titanate (PZT) of composition PbZr0.3Ti0.7O3

and a bulk commercial PZT polycrystalline sample.
Ferroelectric materials are materials that possess a spontaneous polarization that

can be switched in direction through the application of an external electric field.
The least-squares methods described above have been used extensively for peak
fitting in ferroelectric materials, as shown in many reviews and studies, for example
[36–41]. Peak intensities have been used to determine preferred crystallographic or
ferroelectric domain orientations. Analysis is typically done on diffraction peaks that
split from single peaks as a function of temperature and/or composition. For example,
the 00h and h00 peaks are fit for a tetragonal perovskite, where h represents an integer.
These reflections are particularly interesting because they represent crystal directions
that are parallel and perpendicular to the ferroelectric polarization direction in a
tetragonal perovskite. The intensities of these peaks can therefore reflect the volume
fraction of different domains in a particular direction in the sample. Representative
X-ray diffraction peaks for a tetragonal perovskite are shown in Fig. 4.6 (bottom).
By tracking the change in intensities of these peaks as a function of applied electric
field, researchers can characterize the domain wall motion (Fig. 4.6 (top)), which is
a characteristic phenomenon in these materials.
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Fig. 4.7 A schematic diagram of the experimental set up on the APS beamline 11-ID-C. HV is
high voltage. Reproduced with permission of the International Union of Crystallography [20]

Iamsasri et al. demonstrate in their work that Bayesian approaches can be applied
to the fitting of peaks to calculate the degree of domain reorientation in the ferro-
electric PZT samples under applied electric field [20]. When subjected to an external
electric field, PZT exhibits a large degree of domain reorientation, which has been
studied extensively [36–42]. This work is reviewed here in order to demonstrate the
value of the Bayesian inference methods.

4.4.1 Methods

X-ray diffraction peaks were measured at the Advanced Photon Source (APS) at
Argonne National Laboratory in Illinois, USA. A schematic of the experimental set-
up for the bulk sample is shown in Fig. 4.7, and details of the set-up and experimental
method for both samples can be found in [20]. The vertical direction of the two-
dimensional XRD image was integrated over a 15° azimuthal range, as shown in
Fig. 4.7, to select diffraction data with scattering vectors that are approximately
parallel to the applied electric field and obtain intensity versus 2θ diffraction patterns.
In this Chapter, we review the results on the ferroelectric PZT thin films.

The diffraction peaks of interest were first fit using a least-squares method. The
h00 and 00h reflections in the diffraction pattern were fit using two pseudo-Voigt
profiles for the PZT thin film. Integrated intensities were extracted from the fit peak
profiles. The volume fractions were calculated using the following equation:

v00h � I00h/I ′
00h

I00h/I ′
00h + 2Ih00/I ′

h00

, (4.9)

where v00h is the volume fraction of the 00h-oriented domains in a particular direction
of the sample, I00h and Ih00 are the integrated intensities of the 00h andh00 reflections,
respectively, and I ′

00h and I ′
h00 are reference intensities of the 00h and h00 reflections,

respectively [20]. The reference intensities are obtained from the Powder Diffraction
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File (card No. 01-070-4261; International Centre for Diffraction Data, Newtown
Square, Pennsylvania, USA).

The domain switching fraction, η00h, can be determined by calculating the differ-
ence between the volume fraction of the 00h reflection at voltage V and the reference
value, as shown in the following equation

η00h � vV
00h − vref

00h, (4.10)

where vV
00h and vref

00h are the volume fractions of the 00h reflection at voltage V and
for the reference, respectively. A confidence interval was acquired using an adapted
variance equation (see supporting information for [20]).

In contrast, the Bayesian method employs an MCMC algorithm known as the
Metropolis-in-Gibbs algorithm. A sampling process similar to the flowchart in
Fig. 4.5 was followed and repeated for 105 iterations. A sequence of parameters
is drawn from a suitable proposal distribution, and the parameters are accepted or
rejected based on a probability specified by the algorithm. The parameters obtained
from the first 103 cycles (the burn-in period) were discarded because they may be
influenced by the starting parameters chosen. After convergence, histograms for each
parameter can be constructed by counting the frequency of the accepted parameters
in the specified ranges [20]. This fitting was repeated for all measured voltages.

The intensities from the iterations after the burn-in period are calculated from
the posterior distribution of parameter values and the average intensities are plot-
ted to obtain the peak fit typically used by crystallographers. The credible intervals
in the parameter values can be propagated into credible intervals for the calculated
intensities. A 95% credible interval was constructed from these calculated intensi-
ties. The domain switching fraction, η00h, can then be calculated from the posterior
distribution of intensities.

4.4.2 Prediction Intervals

Representative fits of the 00h and h00 reflections at 0 V for the PZT thin film are
shown in Fig. 4.8a and b for least-squares andBayesian approaches, respectively.One
interesting feature of the Bayesian fit is the ability to draw the 95% credible interval,
shown with a grey outline, which indicates that 95% of the calculated solutions are
in this range. This demonstrates confidence in the solution, because nearly all data
points fall in this 95% interval.

The domain reorientation parameter, η00h, can be calculated from the parameter
values of I , determined either from the least-squares or Bayesianmethods. Since η00h

is a calculated quantity, error propagation is necessary. For the least-squares method,
this involves an adapted variance equation. For the Bayesian method, subsequent
distributions with associated probability density functions, can be calculated from
the posterior distribution of parameters values obtained. For example, the parameters
obtained from the single peak fitting can be used to calculate distributions for the
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Fig. 4.8 Representative fits of the 00h and h00 reflections at 0 V for PZT as a thin film using
a the least-squares method, and b the Bayesian inference method. The asterisk (*) represents an
additional reflection due to a PbTiO3 seed layer that is used for orientation of the sample. This seed
layer was not modelled in this analysis. Reproduced with permission of the International Union of
Crystallography [20]

degree of ferroelectric domain reorientation η00h. For the Bayesian method, the value
of η00h was calculated for each iteration.

Figure 4.9 shows a comparison of the calculated η00h at various electric fields for
the thin film sample, with a confidence interval for the least-squares method, and
a posterior distribution for the Bayesian method. This plot illustrates that the least-
squares method yields a single value, while the Bayesian method gives a probability
distribution of the domain reorientation values. While the values obtained from each
method are similar, it is clear that the Bayesian method provides a richer descrip-
tion of the possible solutions. The calculated uncertainties from each method cover
approximately the same range; they are comparable in amplitude, but not equal.
These results suggest that uncertainty quantification from the Bayesian method is
a reliable alternative to the least-squares method, and that errors can be propagated
dependably from the initial results.

4.5 Application of Bayesian Inference to Full Pattern
Crystallographic Structure Refinement: A Case Study

Weuse the previous work of Fancher et al. [3] to illustrate the application of Bayesian
methods to full pattern refinement. Their work introduces a Bayesian statistical
approach to refining crystallographic structures, and compares the results obtained
to those determined by the classical method of Rietveld refinements [3]. An MCMC
algorithm [22] is used to explore the parameter space and sample combinations of
model parameters. Similar to Rietveld refinements, a theoretical model unit cell is
used to calculate a diffraction pattern, but instead of obtaining single point value



4 Bayesian Approaches to Uncertainty Quantification … 95

Fig. 4.9 The domain
switching fraction, η00h, for
the PZT thin film.
Reproduced with permission
of the International Union of
Crystallography [20]

estimates of model parameters, a posterior probability distribution of all modelled
parameters is obtained. This yields estimates of the parameters with quantifiable
uncertainty. The method described in this article is applied to a NIST silicon stan-
dard, and is readily adopted for use with other materials and data from other radiation
sources such as neutrons.

4.5.1 Data Collection and the Rietveld Analysis

The high-resolution synchrotron XRD pattern for the NIST silicon standard (SRM
640d) was measured at 22.5 °C at the 11-BM-B beamline at the APS at Argonne
National Laboratory. The Rietveld method was applied to the data first, to allow for
a comparison to the Bayesian inference results, and to provide a starting point for
model parameters for the MCMC algorithm. Rietveld refinements were performed
using the software package GSAS-II [9]. To reduce the risk of nonconvergence of the
least-squares approach, the sequence for parameter refinement suggested by Young
was followed [14].

The Rietveld refinement result was previously shown in Fig. 4.3, and the refined
parameters are presented inTable 4.1. The crystallite size (1.0006(6)μm)andmicros-
train (0.0298(2)%) for the NIST SRM640D standard differ from the values of 0.6μm
and 0, respectively, reported on the data sheet [43]. Fancher et al. suggest this may
be due to differences in resolution in the synchrotron versus X-ray diffractometers,
or the implementation of the method in GSAS-II versus TOPAS [44].
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Table 4.1 Summary of fixed and refined structural parameters, including atomic positions and
occupancies, and goodness of fit values for the Rietveld refinement of the Si standard. All refined
parameters are shown with their respective standard uncertainty; remaining values are fixed

a (Å) Crystal size (μm) Microstrain
(%*100)

λ (Å) Profile fit

Rp �5.85%

5.43123 1.0006(6) 2.98(2) 0.4138490(5) Rw �8.28%

χ2 �2.02

Site positions

x y z Uiso (Å2)

Si 0.125 0.125 0.125 0.00551(2)

Peak shape parameters

U V W

0.702(19) −0.242(6) 0.0322(5)

Reproduced from [3]. This table is licensed under a Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/

4.5.2 Importance of Modelling the Variance and Correlation
of Residuals

Fancher et al. performed a simulation study to show the importance of properly
modelling the variance and correlation of residuals [3]. Synthetic data was generated
from a model with known parameter values and was fit using Bayesian inference to
obtain estimates and credible intervals for the model parameters. These estimated
values were compared to the true model values. The process was repeated several
times to allow for the estimation of the accuracy and coverage of the credible intervals.

The results show that models that do not account for heteroskedastic and cor-
related residuals give poor estimates of the model parameters. Heteroskedasticity
refers to data where the variability of a variable is unequal across a set of second,
predictor variables. The poor estimates are evidenced in the 90% credible intervals.
Fewer samples contain the true parameter values in the 90% interval in simpler
models with independent residuals and constant variance. Therefore, it is necessary
to adequately model the residual distribution of the error to obtain valid statistical
inference. The Rietveld method uses independent residuals and variable variance,
while the Bayesian model proposed by Fancher et al. uses a more complex residual
structure which, is argued, improves the estimates and credible intervals.

https://creativecommons.org/licenses/by/4.0/
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4.5.3 Bayesian Analysis of the NIST Silicon Standard

To begin a Bayesian analysis, knowledge about the material or instrument param-
eters that we have preceding the experiment is used to specify a prior probability
distribution. This is another advantage this approach has over the Rietveld method:
there is no framework for incorporating prior knowledge into a Rietveld analysis.
Bayesian inference allows for incorporation of knowledge such as crystallite size
obtained by electron microscopy, or instrumental parameters such as wavelength.
Posterior distributions for instrumental parameters could even be obtained through
Bayesian analysis on a NIST standard reference material, and then utilized in sub-
sequent analysis of more complex materials.

The observed data is used to calculate posterior probability distributions that
reflect the uncertainty in the parameters. In their original analyses, Fancher et al.
found that the computational expense is a bottleneck for the MCMC analysis. The
reason is that GSAS-II calculates amodel diffraction pattern at eachMCMC iteration
for each of the model parameters. An Intel CoreTM i5-3750 took 900 s, on average,
to do 1000 iterations. The MCMC algorithm was run for 100,000 iterations, to be
conservative. The authors are presently implementing a solution to this challenge.

Figure 4.10 compares the posterior probability distributions obtained from the
Bayesian analysis to the point estimate and standard error obtained from the Rietveld
method for four different parameters. Similar posterior probability distributions were
obtained for all model parameters and show reasonable agreement with the point
estimates determined by the Rietveld method; additional distributions can be viewed
in the supplementary material for [3]. The uncertainties in the model parameters
for both methods are comparable, except in the case of the 2θ offset, which has a
much greater standard uncertainty in the model parameters from Rietveld than from
Bayesian inference.

4.5.4 Comparison of the Structure Refinement Approaches

A great advantage to the Bayesian inference approach to full profile refinement is
that the posterior probability distribution yields a much richer set of information
about the uncertainty in the model parameters than the standard uncertainty obtained
from least-squares minimization. For example, the posterior distributions can show
asymmetric distributions of values, such as that seen in Fig. 4.4 for microstrain. It is
important to note that other refinement approaches can be used to obtain distributions
of certain parameters. Distributions of crystallite size have also been modelled by the
Whole Powder Pattern Modelling (WPPM) method, assuming distributional forms
such as normal or lognormal [45]. The advantage of the Bayesian inference approach
is that these assumptions do not need to be made a priori.

The modelled diffraction pattern is typically plotted with the experimental pattern
for comparison to determine the quality of a fit. Since Bayesian inference does not
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Fig. 4.10 Posterior
probability distributions
from Bayesian inference and
point estimates (vertical
lines) with corresponding
standard uncertainty from
Rietveld refinements. λ is the
wavelength, U is an
instrument parameter related
to peak broadening, and Uiso
is the isotropic atomic
displacement parameter.
(Reproduced from [3]). This
figure is licensed under a
Creative Commons
Attribution 4.0 International
License https://creativecom
mons.org/licenses/by/4.0/

yield single values for model parameters, this comparison is not as straightforward.
A diffraction profile generated from MCMC data should be considered as a single
observation from a collection. A representative pattern can be selected by choosing
one single pattern, or by averaging many calculated patterns from MCMC samples.
In this work, Fancher et al. chose the latter method, and plot a single pattern resulting
from the average of the parameters obtained from the final 1000 MCMC samples,
shown in Fig. 4.11. The average considers correlations, asymmetries, and uncertain-
ties in the parameter distributions, but this representation overly simplifies the result.
It does, however, demonstrate that modelled patterns fit experimental data well.

Figures 4.3 and 4.11 show the fit of the calculated model pattern for the Rietveld
and Bayesian approaches, respectively, but it is difficult to see the subtle differences
in the fit quality in these figures. Figure 4.12 makes these differences clearer and
demonstrates that the Bayesian inference method better reproduces the experimen-
tal data. For the 111, 220, 422, and 911/953 reflections, the difference curves are
positive when the Rietveld method underestimates the peak intensity, and negative
when the observed intensity is overestimated. The improved estimate of peak posi-
tion through Bayesian inference is evidenced in the 911/953 reflection: the Rietveld
method underestimates the peak position, and while Bayesian inference estimates a
peak position closer to the observed peak position.

https://creativecommons.org/licenses/by/4.0/
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Fig. 4.11 The fitting results of the silicon powder diffraction data fromBayesian inference [3]. The
results are an average of the final 1000MCMC samples. The insets of characteristic reflections show
that similar fits to the observed diffraction data are obtained by both Bayesian and Rietveld (see
Fig. 4.3 insets) methods. (Reproduced from [3]). This figure is licensed under a Creative Commons
Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/

4.5.5 Programs

Lesniewski et al. [46] published further applications of the Bayesian method to full
pattern refinement. Most importantly, they presented a new software package, the
Bayesian library for analyzing neutron diffraction data (BLAND). They demonstrate
that evenwith limited knowledge of only the space group, composition, and site sym-
metries, adequate solutions can still be found through use of an automated Bayesian
algorithm.

Esteves, Ramos, Fancher, and Jones have made available a program that imple-
ments Bayesian inference for single profile fitting [47]. The software package, Line
Profile Analysis Software (LIPRAS), includes an option for Bayesian uncertainty
quantification using the methods outlined in this chapter.

https://creativecommons.org/licenses/by/4.0/
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Fig. 4.12 Experimental diffraction data (x) plotted with the Rietveld (dotted) and Bayesian
(solid line) analysis results for the 111, 220, 422, and 911/953 reflections in Si. The difference
(Bayesian–Rietveld) is shown at the bottom, and demonstrates that the Bayesian results bettermodel
the experimental data. (Reproduced from [3]). This figure is licensed under a Creative Commons
Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/

4.6 Conclusion

Both the least-squares frequentist approach and the Bayesian inference approach
to structure refinement yield useful information about the structure of materials.
Bayesian statistics were shown to provide many advantages over the current tech-
niques, such as the ability to escape from false minima, to incorporate prior knowl-
edge of the material into the analysis, and to provide quantifiable uncertainty through
credible intervals. The application of both methods was shown for single peak fit-
ting and full diffraction pattern fitting, and generally revealed that a better fit is
obtained when using Bayesian inference. These results show that this new method is

https://creativecommons.org/licenses/by/4.0/
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an attractive alternative to the classical least-squaresmethods applied to crystal struc-
ture determination and provides a richer description of the models and uncertainties
than that previously available.
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Chapter 5
Deep Data Analytics in Structural
and Functional Imaging of Nanoscale
Materials

Maxim Ziatdinov, Artem Maksov and Sergei V. Kalinin

Abstract Recent advances in scanning probemicroscopy and scanning transmission
electronmicroscopy have opened unprecedented opportunities in probing themateri-
als structural parameters and electronic properties in real space on a picometre-scale.
At the same time, the ability of modern day microscopes to quickly produce large,
high-resolution datasets has created a challenge for rapid physics-guided analysis of
data that typically contain several hundreds to several thousand atomic or molecular
units per image. Here it is demonstrated how the advanced statistical analysis and
machine learning techniques can be used for extracting relevant physical and chemi-
cal information from microscope data on multiple functional materials. Specifically,
the following three case studies are discussed (i) application of a combination of
convolutional neural network and Markov model for analyzing positional and ori-
entational order in molecular self-assembly; (ii) a combination of sliding window
fast Fourier transform, Pearson correlation matrix and canonical correlation analysis
methods to study the relationships between lattice distortions and electron scattering
patterns in graphene; (iii) application of a non-negative matrix factorization with
physics-based constraints and Moran’s analysis of spatial associations to extracting
electronic responses linked to different types of structural domains frommulti-modal
imaging datasets on iron-based superconductors. The approaches demonstrated here
are universal in nature and can be applied to a variety of microscopic measurements
on different materials.
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5.1 Introduction

According to the established paradigm of structure-property relationship, there is a
direct link between materials atomic structure and their optical, mechanical, elec-
tronic, and magnetic functionalities [1, 2]. This allows scenarios in which relatively
small changes in the material structural and chemical compositions may have a deci-
sive impact on the physical properties of the system. Examples include ultra-high
piezoelectric response of relaxor ferroelectrics due to interaction between nanopolar
domains and acouwestic phonon mode [3], filamentary superconductivity associated
with nonuniform distribution of Pr dopants in iron arsenides [4], high critical-current
density due to clustering of oxygen vacancies in cuprates [5–7], reduced mobility
of Dirac electrons in graphene transistor devices due to formation of charge nano-
puddles [8, 9], fluctuating superconducting state above a transition temperature (Tc)
in high-Tc cuprates associated with emergence of nanometre-sized electron pairing
regions [10], and emergence of glassy mixed-phases state in manganites linked to a
quenched chemical disorder [11].

The advances in scanning transmission electron and scanning probe microscopies
(STEM and SPM) have opened an unprecedented path towards simultaneously prob-
ing thematerial structural parameters (e.g. bond lengths) and its functional properties
(e.g. electronic polarization or superconducting gap) in real space with a nanometer
precision, making them the perfect tools for studying nanoscale inhomogeneities
and their role in bulk crystalline behavior [12, 13]. Examples in SPM include direct
imaging of chemical bonds in molecules [14], visualizing atomic collapse in artifi-
cial nuclei on graphene [15], and inferring mechanisms behind fundamental physical
phenomena, such as high-Tc superconductivity, fromsingle atomdefect induced scat-
tering patterns [6]. Meanwhile, STEM experiments can produce picometer-resolved
images of ferroelectric polarization [16, 17], octahedral tilts [18], and chemical
expansion strains [19]. Furthermore, combination of STEM and SPM with different
spectroscopic techniques, such as optical and Raman spectroscopy, electron energy
loss spectroscopy and mass spectroscopy have led to a rise of new multi-modal
imaging capabilities that now allow a simultaneous capturing of materials struc-
tural, electronic, chemical, and optical properties at the nano and meso-scales. Such
experimental capabilities allow, in principle, constructing combinatorial libraries of
lattice configurations and functionalities at the single-defect level. This, however,
requires first a development of methods for extracting all the experimentally acces-
sible (spatially-dependent) information on structure and function variables and for
cross-correlating the information fromdifferent “channels” in physically-meaningful
and statistically-meaningful ways.

We illustrate several frameworks based onmachine learning andmultivariate anal-
ysis that allow automated and highly accurate extraction and mapping of different
structural and functional descriptors from experimental datasets as well as study-
ing their local correlations. The approach for a two-channel microscopic imaging
experiment is schematically outlined in Fig. 5.1. It starts with recording ‘structure’
and ‘function’ information over the same sample area via two different acquisition
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Fig. 5.1 Schematic workflow for structure-property relationships analysis. a 2-channel (‘structure’
and ‘function’) data acquisition. b Processing data from both channels to extract relevant structure
and function descriptors. d Mining the combinatorial library of lattice configurations and func-
tionalities. For systems with multiple structural orders one can apply correlative analysis ‘toolbox’
directly to the processed structural data (c–d)

channels (Fig. 5.1a). In this case, the first channel corresponds to 2D images in which
Z is a ‘structural’ variable used to calculate lattice parameters, such as inter-atomic
(or atomic columns) distances and apparent heights. The second channel represents
3D dataset in which G is a ‘function’ variable, for example, differential conductance
or electron energy loss. After performing an image alignment such that, the data
from both channels is cleaned from spurious noise features and outliers in a way that
minimizes the information loss (e.g., using principal component analysis). The next
step is constructing structural and functional descriptors. For structure channel, one
may adapt various pattern recognition techniques from a field of computer vision,
such as sliding window Fast Fourier Transform, deep neural networks and Markov
random field. For function channel, blind source un-mixing/decomposition methods
such as Bayesian linear unmixing and non-negative matrix factorization performed
on hyperspectral “functional” data can generally provide a physically meaningful
separation of spectral information when multiple ‘phases’ are present in the dataset
(Fig. 5.1b, c). Once completed, one proceeds to performing direct data mining of
structure-property relationships from correlative analysis of the derived structural
and functional descriptors (Fig. 5.1d). The correlation analysis ‘toolbox’ typically
includes methods such as Pearson correlation matrix, global and local Moran’s cor-
relative analysis, and linear and kernel canonical correlation analysis. Note well that
for systems with multiple order parameters and/or systems where both structural and
electronic information can be effectively extracted from a single image, the corre-
lation analysis can be performed directly on variables extracted from the structure
channel.

In the following,we analyze structure-property relationship on differentmolecular
and solid state systems using data obtained from constant-current mode and spectro-
scopic mode of scanning tunneling microscope [20]. The STM topographic images
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obtained in a constant-current mode represent a 2-dimensional dataset where Z(R)
is a convolution of height variations and electronic density of states in each R(X,Y )
point (pixel) on the surface. The spectroscopic mode of STM (usually referred to as
STS) produces a 3-dimensional set of data where the value of differential conduc-
tance G(R′, V) is proportional to local density of states at specific energy E = eV at
each R(X ′,Y ′) point on the surface. For all cases studied here R(X ′,Y ′) = R(X,Y ).
The necessary mathematical frameworks will be introduced separately for each case
study.

5.2 Case Study 1. Interplay Between Different Structural
Order Parameters in Molecular Self-assembly

5.2.1 Model System and Problem Overview

To demonstrate an application of advanced data science tools to molecular resolved
STM images, a self-assembly of C21H12 molecules [21, 22] is chosen as a model
system (Fig. 5.2a). Each individual molecular unit in the self-assembly can be viewed
as a fragment bowl of buckminsterfullerene (hereafter, buckybowl). A buckybowl
in the self-assembly can reside in two different structural conformations (bowl-up
and bowl-down) as well as in multiple lateral orientations with respect to the sub-
strate. In the absence of external perturbation and/or substrate disorder the molecular
monolayer forms a long-range superperiodic pattern, in which each bowl-down state
is surrounded by six bowl-up states. In the following, this superstructure is referred
to as 2U1D, where U and D stand for bowl-up and bowl-down states, respectively.
At the low tip-sample separation distances in the constant current STM experiment
(typically achieved at sample bias Us � 0.1 V) it is usually possible to induce a
switching between different molecular degrees of freedom via mechanochemistry
effects, whereas at large separation distances (at Us � 1 V) the switching events,
particularly those involving structural changes, are minimized [22]. Thus one can
interpret the scans at low and high bias voltages as “writing” (albeit randomly)
and “reading” molecular patterns, respectively. The representative STM image of
buckybowl self-assembly is shown in Fig. 5.2c. The STM data used as an input in
the current analysis was acquired in the reading regime; prior to acquisition of the
image of interest, several STM scans were performed over the same area at the lower
tip-surface distances (switching regime) producing additional “excitations”, that is,
enhancing a disorder, in the initial molecular structure. A global 2-dimensional Fast
Fourier Transform (2D FFT) obtained from image in Fig. 5.2c shows a strong sup-
pression of peaks associated with 2U1D structure (compared to peaks in the outer
hexagon associated with positional order in molecular lattice) indicating a presence
of disorder in the molecular film. In the following, an approach based on a synergy of
ab-initio simulations, Markov random field model and convolutional neural network
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Fig. 5.2 Self-assembly of sumanene molecules (buckybowls) on gold substrate. a Chemical struc-
ture of sumanene. b Experimental STM image of individual buckybowl. Adapted with permission
from [22]. Copyright 2018 American Chemical Society.c Large-scale STM image over field of
view with approximately 1000 molecules. The inset shows FFT transform of data in (c). The yellow
circles denote FFT spots associated with a formation of 2U1D superlattice. Adapted from [23]

is introduced for “reading out” complex molecular patterns of buckybowls on gold
substrate from molecule-resolved STM images [23].

5.2.2 How to Find Positions of All Molecules in the Image?

The first crucial step in analyzing the STM data on complex surface molecular struc-
tures is the identification and extraction of positions of all molecules for each image.
Simple visual examination of STM image in Fig. 5.2c suggests that it contains up to
about 1000 individual molecules. The normalized cross-correlation is performed to
obtain correlation surfaces defined as

γ(u, v) =
∑

x,y[ f (x, y) − f u,v][t (x − u, y − v) − t]
{∑x,y[ f (x, y) − f u,v]2

∑
x,y[t (x − u, y − v) − t]2}0.5 (5.1)

where f is the original image, t is the template, f u,v is the mean of f (x, y) in
the region under the template, t is the mean of the template. The bowl-up DFT-
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simulated STM image is chosen as a template, which produced the highest accuracy
in determination the positions of molecular centers. The uniform threshold is applied
to the generated correlation surface γ, with cutoff set to 0.35, in order to maximize
the number of extracted molecules. This results in a binary image, for which the
connected components are identified and their centers are assigned as centers of the
correspondingmolecules. The apparent height Im of eachmolecule, which represents
a convolution of an actual geometric height and local density of electronic states,
is calculated as Im = ∑15

x=1

∑15
y=1 ix,y where ix,y is the intensity of pixel at position

x, y in the extracted image patch for molecule m. The summation is performed
for 15 × 15 pixel patches around the center of each molecule. To remove outliers
due to possible contaminations on a surface which may not directly associate with
molecules, a maximum intensity value defined as Imax = mean(I ) + 3 ∗ std(I ) is
introduced such that all intensities that exceed the maximum value are scaled back
set to Imax .

Once all positions and intensities are identified a principal component analysis is
performed on the stack of images of individual molecules. The aim of the principal
component analysis (PCA) can be interpreted as finding a lower dimensional rep-
resentation of data with a minimum loss of important (relevant) information [24].
Specifically, in PCA one performs an orthogonal linear transformation that maps the
data into a new coordinate system such that the greatest variance comes to lie on the
first coordinate called the first principal component, the second greatest variance on
the second coordinate, and so forth. Hence, the most relevant information (including
information on the orientation/rotation of molecules) can be represented by a small
number of principal components with the largest variance, whereas the rest of the
(low-variance) components correspond to ‘noise’. The PCA analysis suggests that
suggests that a likely number of rotational classes needed to be considered for this
dataset is four.

5.2.3 Identifying Molecular Structural Degrees of Freedom
via Computer Vision

Convolutional neural networks. The identification of molecular “shapes” (differ-
ent orientation with respect to substrate) is performed using a technique from a field
of computer vision known as convolutional neural networks. Convolutional neural
networks (cNN) represent one of the key examples of a successful application of
neuroscientific principles to the field of machine leaning. The cNNs are used for
processing data which is characterized by a known, grid-like topology such as 2-
dimensional grid of pixels obtained in the STM constant current experiments [25].
The architecture of the convolutional network used in the current work is shown in
Fig. 5.3a and it includes convolutional layers, pooling layers, as well as a fully con-
nected “dense” layer. The convolution layer is formed by running learnable kernels
(‘filters’) of the selected size over the input image (or image in the previous layer).
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Fig. 5.3 Deep learning of molecular features. a Schematic graph of convolutional neural network
(cNN) architecture for determining of molecular lateral degrees of freedom on the substrate. b
Role of dynamical averaging (admixture of a different rotational class) in probability of the correct
class assignment. c Error rate for cNN only and for cNN refined with Markov random field model.
Adapted from [23]

The pooling layers produce downsampled versions of the inputmaps. The i-th feature
map in layer l, denoted as V l

i can be expressed as [26]

V l
i =

∑

i∈Mi

V (l−1)
j ∗ Kl

i, j + Bl
i (5.2)

Here K is a kernel connecting the i-th feature map in layer l and the j-th feature map
layer (l − 1), Bl

i describes the bias, and Mi corresponds to a selection of input maps.
The output Zl

i is a fully connected (“dense”) layer that takes as input the “flattened”
feature maps of the layer below it:

Zl
i =

∑

i∈Mi

∑

m∈Mi

∑

n∈Mi

(V (l−1)
j )m,nW

l
i, j,m,n (5.3)

whereWl
i, j,m,n connects i-th unit at positionm, n in the feature map of layer (l − 1) to

the j-th unit in layer l. The cNN is trained on a set of synthetic STM images (25,000
samples) obtained from DFT simulations of different rotational classes.
Markov random field. The unique aspect of the present approach is that the cNN is
followed by Markov random field model [27] which takes into account probabilities
of neighboring molecules to be in the same lateral orientation on the substrate. This
allows us to “refine” the results learned by neural network in a fashion that takes into
account physics of the problem. The MRF model makes use of an undirected graph
G = (V, E), in which the nodes V are associated with random variables (Xv)v∈V ,
and E is a set of edges joining pairs of nodes. The underlying assumption of Markov
property is that each randomvariable depends on other randomvariables only through
its neighbors:

Xv ⊥ XV \v∪N (v)|XN (v), (5.4)

for N (v) = neighbors of v. Importantly, the explicit Markov structure implicitly
carries longer-range dependencies. These priors are directly linked to the underlying
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Fig. 5.4 Molecular self-assembly as Markov random field model (MRF). a Graphical Markov
model structure used for analysis of a molecular self-assembly. b Error rate as a function of standard
deviation of normalized STM intensity distributions and an optimization parameter (p-value). The
arrow shows the value of these parameters for the analysis of the synthetic data. Adapted from [23]

physics of the system, that is, the presence of short-range interactions in molecular
assembly which are now explicitly taken into account during image analysis. The
experimental STM data on buckybowls is mapped on to a graph such that each
molecule is represented as a node, and edges are connections to each molecule’s
nearest neighbors (Fig. 5.4a). The posterior distribution of an MRF can be factorized
over individual molecules such that

P(x |z) = 1

Z

∏

<i j>

Ψi j (xi , x j )
∏

i

Ψi (xi , zi ) (5.5)

where Z is the partition function, andΨi (xi , zi ) andΨi j (xi , x j ) are unary and pairwise
potentials, respectively. These potentials are defined based on the knowledge about
physical and chemical processes in the molecular system, such as a subtle interplay
between a difference in adsorption energy for U andDmolecules, molecular interac-
tions different molecular configurations, and imperfection of the substrate. Finding
an exact solution toMRFmodel is intractable in such a case as it would require exam-
ining all 2n combinations of state assignments, where n is the number of molecules,
that is, about 1000 for examined images. However, one can obtain a close approxi-
mate solution by using a max-product loopy belief propagation method [28], which
is a message-passing algorithm for performing inference onMRF graphs, with unary
and pairwise potentials as an input. Briefly, from initial configuration, nodes propa-
gate message containing their beliefs about state of the neighboring nodes given all
other neighboring nodes messages. This results in an iterative algorithm. All mes-
sages start at 1, and are further updated as max-product of potentials and incoming
messages:
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msg(x j )i→ j = maxl [
∑

xi

Ψi j (xi , x j )Ψi (xi , zi ) ∗
∏

k=neighbors of i �= j

msg(X)k→i ]
(5.6)

At each iteration belief is calculated for each node and the state with highest belief
is selected, until message update converges:

Belie f (xi ) = Ψi (xi , zi ) ∗
∏

j=neighbors of i

msg(xi ) j→i (5.7)

According to theoretical modeling, it is unlikely that two neighboring molecules
can have the same rotational state [29]. Therefore assign probability of each class to
have a neighbor of its own class is considered to be 1% and probabilities to have a
neighbor of other 3 rotational classes is considered to be 33%. Finally, the decoding
using loopy belief propagation is performed in order to acquire a more precise solu-
tion. Note well that by tuning a graph structure and/or form of the potentials one can
easily apply Markov random field approach to other molecular order parameters or
even different molecular architectures. Indeed, one can also apply MRF to decoding
different conformational states of molecules (note that an application of the cNN
to a problem of determining different conformational states typically returns rela-
tively poor results). For MRFmodelling of bowl-up and bowl-down states, the unary
potentials Ψi (xi , zi ) over molecular states are assigned based on the proximity of a
particular molecule’s intensity in the STM image to the threshold value between the
states T. The node probabilities are calculated as two logistic functions:

Ψi (xi = 1, zi = Ii ) = 1

1 + Exp[S ∗ (T − Ii )] (5.8a)

Ψi (xi = 2, zi = Ii ) = 1 − Ψi (xi = 1, zi = Ii ) (5.8b)

where Ii ∈ [0, 1] is the intensity of a given molecule i, and S is a parameter that
controls the growth rate of the logistic function. The logistic functions allow us to
assign molecular intensities sufficiently far from the threshold as belonging to their
corresponding class with probability of ∼1, while also providing more flexibility in
the region around the threshold value itself. Next, the pairwise potentials Ψi j (xi , x j )

for the molecular system are determined. The optimal 2U1D configuration proposed
above is characterized by six U molecules surrounding one D molecule, such that
D molecule is never allowed to have the nearest neighbor in the same bowl con-
formation. As we are interested in the distortion of an ideal 2U1D structure (six
bowl-up molecules surrounding one bowl-down molecule), a disorder parameter p
is introduced such that a probability of D and U molecules having their neighbor in
the same conformational state becomes p and 1 − p, respectively.

Testing on synthetic data. Prior to analyzing real experimental data, a validity of the
described approach is tested on synthetic dataset(s). Specifically, the DFT-based cal-
culations of the STM signal associated with an individual molecule for each config-
uration are combined with Markov Chain Monte Carlo sampler to generate synthetic
images of molecular self-assembly containing a large number (�1000) of molecules.



112 M. Ziatdinov et al.

Additionally, the synthesized data is “distorted” by addition of blurring associated
with a convolution with the STM tip probe function, Poisson noise associated with
tunnelling statistics, and dynamical averaging due to potential admixture of another
azimuthal rotational state to a given structural configuration. Since the exact distribu-
tion of molecular states in synthetic data is known for each sample, one can evaluate
an error rate for this method. It was found that the proposed approach results in a
remarkably accurate identification of different molecular conformational and rota-
tional states in scenarios where the distribution of the STM intensities in the synthetic
data closely resembles the typical experimental data. The MRF approach allowed
to identify accurately distributions of bowl-up and bowl-down configurations in the
large scale synthetic STM images, even when no estimations regarding the p-value is
available apriori (Fig. 5.4b), while its addition to cNN helped to improve the decod-
ing results by reducing number of misclassified states (Fig. 5.3c). It was also found
that the cNN framework allows to obtain a reliable classification of molecules rota-
tional states even in the presence of relatively strong dynamical averaging between
proximate rotational states of the molecule (Fig. 5.3b) which is relatively common
in the STM experiments [30, 31].

5.2.4 Application to Real Experimental Data: From Imaging
to Physics and Chemistry

Having confirmed that the introduced approach works on synthetic data we proceed
to analysis of real experimental data. The results if full decoding of rotational (via
cNN+MRF) and conformational (via MRF) states are presented in Fig. 5.5. Once
a full decoding is performed, it becomes possible to explore a nature of disorder
in the molecular self-assembly by searching for local correlations between different
molecular degrees of freedom.Of the specific interest is a potential interplay between
molecule bowl inversion and azimuthal rotation of the neighboring molecules. To
obtain such an insight,method based on calculation the so-calledMoran’s I is adopted
that can measure a spatial association between the distributions of two variables at
nearby locations on the lattice [32]. The ‘correlation coefficient’ for global Moran’s
I is given by

I = N
∑

i

∑
j wi j

∑
i

∑
j wi j (Xi − X)(Y j − Y )

∑
i (Yi − Y )2

(5.9)

where N is the number of spatial units, X and Y are variables, X and Y are corre-
spondingmeans, andw is theweightmatrix defining neighbor interactions. It is worth
noting that the presence of the spatial weight matrix in the definition of Moran’s I
allows us to impose constrains on the number of neighbors to be considered. For
highly inhomogeneous system, one may use the so-called local indicators of spatial
association which can evaluate the correlation between two orders at the neighboring
points on the lattice for each individual coordination sphere. This is achieved through
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Fig. 5.5 Application of the current method to experimental data of buckybowls on gold (111).
Decoding of rotational states (cNN+MRF) and bowl-up/down states (MRF, p=7) for the experi-
mental image from Fig. 5.1c. b Zoomed-in area from red rectangle in a where numbers denote an
accuracy of state determination. Adapted from [23]

calculating local bivariate Moran’s I for each spatial unit such as

Ixy =
∑

i

∑
j �=i wi j xiyi

W
(5.10)

where x and y are standardized to zero mean and variance of 1.
The results for spatial correlation between bowl-up/down configuration and dif-

ferent rotational classes for the first ‘coordination sphere’ is shown in Fig. 5.6a where

Fig. 5.6 From imaging to physics. a Local indicators of spatial associations based on the Moran’s
I calculated for the first coordination “sphere”. b Proposed reaction mechanism involving change
in molecular rotational state(s) after bowl inversion. Adapted from [23]
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a different size of circles reflects different values of the Moran’s I across a field of
view. Generally, the map in Fig. 5.6a implies a spatial variation in coupling between
the two associated order parameters, which could also be sensitive to presence of
defects. The average value of Moran’s I for the first ‘coordination sphere’ is 0.310,
whereas the average value for correlation of rotational classeswith bowl-up and bowl-
down molecular conformations are 0.246 and 0.426 respectively. This result can be
interpreted as that a bowl-up-to-bowl-down inversion of a molecule that creates an
‘additional’ molecule in theD state requires a larger change in a rotational state of the
neighboring molecules in order to compensate for a formation of energetically unfa-
vorable, “extra” bowl-down state (as compared to a reversed, bowl-down-to-bowl-up
inversion). Based on these findings, it is possible to propose a two-stage “reaction”
mechanism, where in the first stage an excitation of a new bowl-down state elevates
the energy of the system, which is then relaxed in the second stage of the proposed
reaction through adjustment of rotational states of the nearby molecule(s). The latter
is associated with the obtained values of Moran’s I. The crude value for energy dif-
ference between different rotational states induced by bowl inversion, and calculated
by estimating Boltzmann factor directly from the ratio of two different correlation
values, is ≈0.015 eV.

Unlike previous studies which only considered a bowl inversion process for an
isolated single molecule, the presented analysis based on synergy of convolutional
neural networks, Markov random field model and ab-initio simulations allowed to
obtain a deeper knowledge of local interactions that accompany a switching of con-
formational state of neighboring molecules in the self-assembled layer. This new
advanced understanding of local degrees of freedom in the molecular adlayer could
lead to a controllable formation of various molecular architectures on surfaces which
in turn could result in a realization of multi-level information storage molecular
device or systems for molecular level mechanical transduction. As far as future
directions of applying machine learning and pattern recognition towards molecular
structures are concerned, it should be noted that the physical priors used for input
in cNN and MRF could be also in principle extracted from state-of-the-art ab-initio
analysis and molecular dynamics (MD) simulations. This could potentially provide
more accurate decoding results. In addition, a choice of the optimization parameter
in MRF analysis could be optimized in future using a statistical distance approach
[33]. Finally, we envision an adaption of deep learning technique called domain-
adversarial neural networks [35] which allows to alter theoretically predicted classes
based on the observed data. The underlying idea of this approach is that the theoret-
ical and experimental datasets are similar yet different in such a way that traditional
neural networks may not capture correct features just from the labeled data.



5 Deep Data Analytics in Structural and Functional Imaging … 115

5.3 Case Study 2. Role of Lattice Strain in Formation
of Electron Scattering Patterns in Graphene

5.3.1 Model System and Problem Overview

Graphene, a two-dimensional honeycomb lattice of sp2-carbon atoms, has attracted
enormous research interest mostly due to its unique electronic properties, such as
anomalous quantum Hall effect and Klein tunneling, which are a consequence of
massless Dirac fermions with linear energy dispersion in the electronic band struc-
ture. Presence of a disorder in graphene lattice, such as substitutional dopants, vacan-
cies and adatoms, as well as nanoscale variations in bond lengths (due to in-plane
and out-of-plane surface deformations), can have a major impact on the material
electronic (and magnetic) structure. Below we describe the study on a relationship
between nanoscale modulations of lattice strain and parameters of electron scattering
induced by point defects in graphene [34]. This study was performed by applying
a combination of sliding window fast Fourier transform, Pearson correlation matrix
and canonical correlation analysis to low-bias atomically-resolved scanning probe
microscopy images of graphene.

Two graphenic systems on different substrates with different types of defects
were chosen. The first system is a topmost graphene layer of graphite peppered with
hydrogen-passivated single atomic vacancies (hereafter denoted as GH ) [36]. The
second system is a monolayer graphene of reduced graphene oxide on gold (111)
substrate (hereafter GO ) covered with oxygen-passivated atomic defects and oxygen
functional groups [37]. The representative scanning probe microscopy images for
GH and GO samples are shown in Fig. 5.7a and b, respectively. Both images were
obtained in a low-bias regime (Us ≤ 0.1 V) where the current is proportional to the
density of states at the Fermi level. The global 2D FFTs for data in Fig. 5.7 a, b shows
(see insets) similar reciprocal space patterns for both systems characterized by the two
hexagons rotated by 30◦ with respect to each other, with their lattice constants differ
by a factor of ≈ √

3. The outer and inner hexagon is associated with lattice structure
and electronic density of states, respectively. Specifically, a formation of the inner
hexagon in undistorted graphene is explained as due to the constructive interference
between incident and backscattered states from the electron valleys at opposite corner
points of the hexagonal Brillouin zone [38, 39]. Owing to the symmetry of graphene
lattice, there are three backscattering channels. For point defect that do not preserve
the symmetry of graphene lattice as well as in graphene with distorted lattice the
scattering probability may be different for each of the three channels. Indeed, it is
possible to observe experimentally (in a real space) a fine structure of the electronic
superlattice around the defects characterized by the alternation of intensities of the
FFT spots in the inner hexagon (see Fig. 5.7a, d and e). The precise origin of such a
modulation in graphene electronic superlattice is not yet well understood.
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Fig. 5.7 Imaging lattice and electronic structure in graphenic samples. a STM image of the
top graphene layer of graphite with hydrogen-passivated monoatomic vacancy. Us = 100 mV,
Isetpoint = 0.9 nA. The sliding window used for our analysis is overlaid with the image. b Low-bias
(2 mV) current-mapping c-AFM image of reduced graphene oxide on gold (111) substrate. The 2D
FFT data for both images is shown in the insets. c Schematics of graphene electron scattering in the
reciprocal space. d Hexagonal superperiodic lattice and its 2D FFT. e Staggered-dimer-like elec-
tronic superlattice and it 2D FFT. Both superlattices are also marked in (a). f Schematic depiction
of 3 different strain components in real space used in our analysis. © IOP Publishing. Reproduced
from Ziatdinov et al. [34] with permission. All rights reserved

5.3.2 How to Extract Structural and Electronic Degrees
of Freedom Directly from an Image?

Sliding FFT. The goal is to analyze a structure-property relationship in the two
graphene systems by studying the correlation between local lattice distortions asso-
ciated with kl peaks and electronic features associated with Ke peaks (see Fig. 5.7c).
First, a square window of size (wx , wy) is created and being shifted across the input
image (Tx , Ty) in series of steps xs and ys such that the entire image is scanned. At
each step, the 2D FFT is computed for the image portion that lies within the window
[40]. Hanning window is used to minimize edge effects, as well as a 2 zoom com-
bined and a 2× interpolation function for higher pixel density during the each step of
this sliding FFT procedure. The amplitudes and coordinates of the selected peaks are
extracted from each 2D FFT image by fitting them with 2D Gaussian distribution,
defined as
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G(qx , qy) = A exp[−(
(qx − q0

x )
2 + (qy − q0

y )
2

2σ2
)] (5.11)

Here A is the peak amplitude, (qx , qy) are the Cartesian coordinates of the peak
position, and σ is the standard deviation. The unique aspect of graphene is that charge
density oscillations are commensurate with the underlying atomic lattice. Therefore,
the sliding FFT maps can be used to extract information on both electronic and
structural properties of the material. Specifically, the values of intensity and coor-
dinates associated with inner hexagon peaks provide information about intensity of
electronic scattering and position of Dirac cone. For the outer hexagon, the coordi-
nates of the peaks from local FFT maps give information about the nanoscale strain
distribution in the sample.

The Dirac point drift and electron scattering intensities along the i-th channel are
computed as �K , �Ki = (Ki − K i )/K i and IKi = I (K+

i → K−
i ), respectively.

To derive a strain map, a strain εi is defined as a variation of the lattice vector ai
along the i-th direction, that is, εi = (ai − ai )/ai , where ai is the mean value of
the lattice vector in the full image (Fig. 5.7f). It is assumed that for the randomly
fluctuating strain fields the mean value of the lattice vector is close to the value of
lattice constant in the unperturbed lattice. The ai is calculated for each step of the
sliding FFT algorithm using a standard relation between real space and reciprocal
space lattices in graphene. The resolution of spatial maps of the derived structural
and electronic descriptors is determined by the size of sliding FFT window and the
size of step.

5.3.3 Direct Data Mining of Structure and Electronic
Degrees of Freedom in Graphene

Pearson and canonical correlation analysis. Once all the structural and electronic
variable of interest are extracted, it becomes possible to explore potential correla-
tions between the corresponding descriptors. Specifically, Pearson correlationmatrix
analysis and canonical correlation analysis are adopted to explore how formation of
various electron interference patterns can be affected by nanoscale variations in the
lattice strain. The correlation parameter for each pair of variables x and y is defined
as a linear Pearson correlation coefficient,

rxy =
∑N

i=1(xi − x)(yi − y)
√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)

(5.12)

where x is the mean of x, y is the mean of y, andN is a number of scalar observations.
While Pearson correlationmatrix analysis is a useful technique for studies of bivariate
correlations, it is useful to adopt amethod called canonical correlation analysis (CCA)
that allows grouping the variables in each multivariate dataset such that optimal
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Fig. 5.8 Canonical correlation analysis (CCA). Schematics of CCA workflow. © IOP Publishing.
Reproduced from Ziatdinov et al. [34] with permission. All rights reserved

correlation is achieved between two sets [41]. Specifically, CCA solves the problem
of finding basis vectors w and v for two multi-dimensional datasets X and Y such
that the correlation between their projections x → 〈w, x〉 and y → 〈v, y〉 onto these
basis vectors is maximized. The canonical correlation coefficient ρ is expressed as

ρ = maxw,v

w′Cxyv
√

w′Cxxwv′Cyyv
(5.13)

whereCxx,Cyy are auto-covariancematrices, andCxy,Cyx are cross-covariancematri-
ces of x and y. The projections a = w′x and b = v′y represent the first pair of
canonical variates (Fig. 5.8).

Application to experimental data. The results of correlation matrix and canonical
correlation analysis for GH sample are summarized are summarized in Fig. 5.9a
and b, respectively. The canonical correlation coefficient is 0.62 and the associated
canonical scores are given by
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Fig. 5.9 Correlative analysis of graphene structural and electronic degrees of freedom. a–bPairwise
Pearson correlation matrix (a) and plot of the canonical variable scores for the correlation between
strain components and scattering intensity for the GH sample. c–d Same for GO sample. © IOP
Publishing. Reproduced from Ziatdinov et al. [34] with permission. All rights reserved

astraini = 0.37(ε1)i + 0.50(ε2)i + 0.36(ε3)i (5.14a)

bampl
t = 0.39(Ik1)i − 0.33(IK2)i + 0.80(IK3)i (5.14b)

where the magnitudes of the coefficients before the variables give the optimal con-
tributions of the individual variables to the corresponding canonical variate. Here
the scattering intensities associated with two channel IK1 and IK2 show a non-
negligible positive correlation with strain components in both Pearson correlation
matrix and the canonical scores. A dependence of electron scattering intensity on
lattice strain for GH sample can be in principle understood within nearest-neighbor
tight-binding model. Specifically, the tight-binding Hamiltonian for graphene mono-
layer is expressed as [42]

H = −γ
∑

〈i, j〉
(a†i b j + h.c.) (5.15)
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where γ is the nearest neighbor hopping parameter, operators a†i (b
†
i ) and ai (bi ) create

and annihilate an electron, respectively, at two graphene sublattices, and h.c. stands
for the Hermitian conjugate. The density of states D(E) in monolayer graphene is
given by

D(E) = |E |
π
√
3γ2

(5.16)

Further, the dependence of the hopping parameter on the bond length can be
described in terms of the exponential decay model [43, 44],

γ ∼= γ0exp(−τε) (5.17)

where τ is typically assigned values between 3 and 4. It follows from (5.16) and
(5.17) that the positive correlation between the strain components and the scattering
amplitudes in channels IK1 and IK3 can be explained by enhancement of the density
of electronic states available for scattering with increasing the bond length. This also
agrees with the first-principles calculations that demonstrated an emergence of new
peaks in the density of states near the Fermi level with increasing the bond length
[45]. Interestingly, a response of channel IK2 to the variations in strain is clearly
different from that of channels IK1 and IK3. The altered behavior of structure-property
relationship for IK2 channel becomes even clearer by looking at canonical variates in
(5.14) that show a negative sign of a coefficient in front of IK2. Such altered behavior
in one of the scattering channels may lead to the formation of observed fine structure
of electronic superlattice, namely, coexistence of staggered dimer-like and hexagonal
superlattices.

Unlike the GH sample, the oxidized graphene layer GO shows a negative corre-
lation between lattice strain and scattering intensities for all the scattering channels
(Fig. 5.9c and d). The CCA canonical variates for GO sample are

astraini = 0.31(ε1)i + 0.73(ε2)i + 0.32(ε3)i (5.18a)

bampl
t = −0.37(Ik1)i − 0.41(IK2)i + 0.80(IK3)i (5.18b)

with CCA coefficient equal to 0.50. This indicates a presence of apparent lattice
contraction in the 2D-projected SPM images caused by out-of-plane “rippling” of
graphene lattice in the presence of oxygen functional groups on the surface. In addi-
tion to out-of-lane surface deformations [46, 47], the attached oxygen functional
groups also cause an expansion of the lattice constant in their vicinity [47, 48]
which, in this case, is hidden from our view “under” the rippled regions in the image.
Similar to the analysis for GH sample, the correlation between scattering intensity
and lattice stain can be explained based on the nearest neighbor tight binding model,
where an increased lattice constant under the curved regions leads to enhanced den-
sity of electronic states available for scattering. Interestingly, the ε2 strain component
and the scattering intensity in IK3 channel display the strongest contribution to their
respective canonical variates indicating non-uniform strain-scattering relation at the
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nanoscale and their potential connection to the variations in the electronic superlattice
patterns in GO sample.

We now comment on a character of Dirac point shift. It is worth recalling that
for the underformed graphene lattice the positions of electron scattering maxima
(“Dirac valleys”) are located at the corners of graphene Brillouin zone. Interestingly,
however, only relatively small correlation between positions ofDirac point and lattice
strain was found in both GO and GH systems. Since the position of the Brillouin
zone corners in both deformed and non-deformed graphene are given by a direct
linear transformation of the reciprocal lattice vectors, these results suggest that in
the deformed graphene lattice the locations of electron scattering maxima do not
necessarily coincide with the corners of the (new) Brillouin zone.

To summarize this section, we have demonstrated a successful approach for ana-
lyzing structure-property relationship at the nanoscale using a combination of sliding
window fast Fourier transform, Pearson correlation matrix and canonical correlation
analysis. A peculiar connection between variations in coupling between lattice strain
components and intensity of electron scattering was found that could explain an
emergence of the experimentally observed fine structure in the electronic super-
lattice. It is worth noting that the analysis demonstrated here was mainly limited to
linear structure-property-relationships.One potentialway to overcome this limitation
would be to use kernelized version ofCCA[49]with physics based kernels. For exam-
ple, onemay construct a certain function F(x, z), where z is a physical parameter that
determines a non-linearity, so that the resultant kernel K (x, y) = F ′(x, z) ∗ F(y, z)
will approximate a linear behavior in a limit of very small z, whereas for large values
of z it will approximate a non-linear behavior.

5.4 Case Study 3. Correlative Analysis in Multi-mode
Imaging of Strongly Correlated Electron Systems

5.4.1 Model System and Problem Overview

In our last case study, a structure-property relationship is analyzed for the case
where structural and electronic information are obtained through two separate chan-
nels of scanning tunneling microscopy experiment on iron-based strongly correlated
electronic system. This type of materials display a rich variety of complex physi-
cal phenomena including an unconventional superconductivity [6]. The Au-doped
BaFe2As2 compound was selected which, at the dopant level of ∼1%, presides in
the spin-density wave (SDW) regime below TN ≈ 110 K [50, 51]. At increased
concentration of Au-dopants, the magnetic interactions associated with SDW phase
become suppressed and the system turns into a superconductor (Tc ≈ 4 K) at ∼3%
[51]. The interactions present in SDW regime may thus provide important clues
about mechanisms behind emergence of superconductivity in FeAs-based systems.
Of specific interest is a region of cleaved Ba(FexAu1−x )2As2 surface (Fig. 5.10) that
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Fig. 5.10 Scanning tunneling microscopy data on Au-doped BaFe2As2. a STM topographic image
showing domain-like structure where two different (as seemingly appears from the topography)
domains are denoted as 1 and 2. b Topographic profile along yellow line in (a). c Smaller topo-
graphic area of a 2-domain-like structure that was used for scanning tunneling spectroscopy (STS
measurements)

seemingly shows a presence of two different domains-like structures (marked 1 and
2 in Fig. 5.10a) separated by a bright linear topographic feature. Manual inspection
of conductance maps at several different values of energy from such region demon-
strates a spatially inhomogeneous electronic structure across the FOV, as well as
potentially different dominant forms of electronic behavior in domain 1 and domain
2, but does not allow an accurate mapping of these electronic behaviors.

5.4.2 How to Obtain Physically Meaningful Endmembers
from Hyperspectral Tunneling Conductance Data?

To gain a deeper insight into the types and spatial distribution of different elec-
tronic behaviors in this 2-domain-like structure, the non-negative matrix factoriza-
tion (NMF) method is applied to a scanning tunneling spectroscopy (STS) dataset
of dimensions 100 × 100 × 400 pixels recorded over a portion of the structure
of interest (Fig. 5.10c). NMF solves the problem of decomposing the input data
represented by matrix X of size m × n, where m is the number of features (m =
512 for this dataset) and n is the number of samples (n = 10,000 for this dataset),
into two non-negative factors W and H such that X ≈ WH [52]. The k columns
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of W are interpreted as source signals (endmembers) whereas H defines the load-
ing maps (abundance). Due to the non-negativity constraint, NMF can be applied
to problems involving finding k � min(m, n) physically-meaningful source signals
(i.e. physically-defined phases) from the input data, such that all the data can be
explained as a mixture of the k basic phases. The NMF can be formally defined as a
constrained optimization problem, which can be written, according to Li and Ngom,
in a general form as [53]

minW,H f (W, H) = 1

2
‖X − WH‖2F +

+
k∑

i=1

(α1 ‖wi‖1 + α2

2
‖wi‖22) +

k∑

i=1

(λ1 ‖hi‖1 + λ2

2
‖hi‖22)
(5.19)

subject to W ≥ 0, H ≥ 0 and where ‖•‖F is the Frobenius norm, wi and hi are the
i-th columns of W and H, respectively, α1 and α2 are regularization parameter for
sparsity and smoothness, respectively, for the endmembers domain, while λ1 and λ2

control sparsity and smoothness, respectively, for the loading maps (abundancies)
domain.

The results on NMF based decomposition into 3 components are shown in
Fig. 5.11 (no new information was obtained by increasing a number of compo-

Fig. 5.11 Extraction of electronic descriptors from STS dataset on Au-doped BaFe2As2. a–cNMF
decomposed spectral endmembers. d–f corresponding loading maps (the same region as shown
Fig. 5.10c)
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nents). Spatial weight of endmember 1 is mainly concentrated within the domain
1 (Fig. 5.11a, d). The corresponding spectral curve shows a reduced density of states
at the negative energies that agrees with the theoretical and angle-resolved photoe-
mission spectroscopy evidence for partial gap opening just below the Fermi level in
the SDW regime. The endmember 2 spectral curve shows a well-defined asymmet-
ric double-peak structure (Fig. 5.11b). Analysis of loading maps for this component
(Fig. 5.11e) reveals that this type of electronic behavior is constrained to point-like
features on the surface. Furthermore, these features are predominantly located in
the domain 2. Therefore, they are associated with a presence of dopant states. Inter-
estingly, the asymmetric double peak structure observed in the endmember 2 is in
a good qualitative agreement with non-magnetic dopant-induced double resonance
peak model in SDW phase. Analysis of loading maps for the endmember 3 suggests
that it may also originate from some form of localized disorder (Fig. 5.11f). These
point-like defect states are located mainly in the domain 2 although there is a diluted
concentration of defect in the domain 1 as well. While there is no well-defined peak
in the density of states associated with this type of defect in the low energy range
of interest (Fig. 5.11c), an alternation of the local density of states around the Fermi
level was still observed as compared to SDW phase (endmember 1). It is there-
fore concluded that endmember 2 and endmember 3 describe two distinct types of
point defect/dopants that have different structural and/or chemical origin. Thus, the
characteristic difference between two domain-like structures 1 and 2 is that there is a
significant accumulation of point “impurities”/dopants in only one of those domains.
This effectively can be interpreted a peculiar transition between “heavily-doped” and
“lightly-doped” regions on the surface.

Correlative analysis of surface geometry and electronic structure. We next pro-
ceed to correlative analysis of STM topographic data and loading maps of NMF
electronic components. Since no atomic lattice was resolved for this surface region,
a correlative analysis is carried out in a pixel-by-pixel fashion. The global Moran’s
I analysis for the NMF components 1, 2, and 3 and topography returns the values of
−0.472, 0.351, and −0.282, respectively. In order to derive physics from such type
of structure-property cross-correlation analysis it is crucial to be able to visualize
directly those regions on the surface that show higher/lower correlation values. For
this purpose, the local indicators of spatial associations described earlier for analy-
sis of correlation between different molecular orders are employed. In addition the
results of local Moran’s analysis can be mapped on to quadrants resulting into what
is known as Moran’s Q maps. The local Moran’s I and Moran’s Q maps are shown in
Fig. 5.12. The analysis of Moran’s I correlation maps for the endmember 1 (SDW)
and endmember 2 (localized defect state) captures a well-defined point-like regions
of positive and negative correlation, respectively, which indicates a relatively large
number of impurities (characterized by localized states) residing in local dips of the
topographic map (Fig. 5.12a, b). The correlative analysis also offers a unique chance
to get an insight into ‘coupling’ of different electronic orders to the boundary between
domain 1 and domain 2 (linear bright topographic feature in Fig. 5.10a, c). Particu-
larly, a peculiar depletion of SDW phase along the domains boundary was found that
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Fig. 5.12 Local indicators of spatial association. Local bivariate Moran’s I and Moran’s Q (quad-
rants) calculated for relationship between topographic data (apparent height) and endmember 1 (a,
d); endmember 2 (b, e); endmember 3 (c, f). Quadrants legend: Q = 1—positive correlation between
high x and high neighboring y’s; Q = 2—negative, low x and high neighboring y’s; Q = 3—positive,
low x and low neighboring y’s; Q = 4—negative, high x and low neighboring y’s

is clearly evident from appearance of a well-defined linear Q = 2 feature in Moran’s
Q maps (Fig. 5.12d), that is, a region in which low local values of SDW component
correspond to high local values of apparent height (topography). Meanwhile, a pres-
ence of Q = 1 features in Fig. 5.12e, f indicates an aggregation of localized states
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associated with both types of structural/chemical disorder (i.e., NMF components 2
and 3) along the extended regions of domain boundary. These chain-like formations
of defects potentially suggest an existence of different conduction mechanism along
the quasi-1D domain boundary.

To summarize this last section, we have developed a framework for an automated
analysis of multimodal imaging data, and illustrated our approach on scanning tun-
neling microscopy/spectroscopy datasets from iron-based strongly correlated elec-
tronic systems. A peculiar domain-like structure characterized by presence/absence
of significant dopants accumulation in different domains and non-trivial depletion
of spin density wave state along the domain boundary were discovered. Further-
more, the analysis showed an interesting aggregation of impurities along the certain
extended regions of the boundary implying a potential for realizing a special type of
domain boundary conductivity under certain conditions. Going forward, we foresee
an application of the outlined approach to analysis of different modes of electron-
boson interaction in high-Tc superconductors as well in other strongly correlated
materials of interest. Finally, we emphasize that this approach is universal, and can
be easily applied to other forms of multimodal imaging techniques, such as STEM-
EELS [54] or multimodal X-ray imaging techniques [55].

5.5 Overall Conclusion and Outlook

Overall, the incorporation of the advanced data analytics and machine learning
approaches in functional and structural imaging coupled with computational-based
simulations could lead to breakthroughs in the rate and quality of materials dis-
coveries. The use of these approaches would enable full information retrieval and
exploration of structure-property relationship in structural and functional imaging
on atomic level in an automated fashion. This, in turn, would allow a creation of
libraries of atomic configurations and associated properties. This information can
be then directly linked to theoretical simulations to enable effective exploration of
material behaviors and properties. Furthermore, knowledge of extant defect config-
urations in solids can significantly narrow the range of atomic configurations to be
probed from the first-principles, thus potentially solving an issue with exponential
growth of number of possible configurations with system size. These approaches
can further be used to build experimental databases across imaging facilities nation-
wide (as well as worldwide), establish links to X-ray, neutron and other structural
databases, and enable immediate in-line interpretation of information flows from
microscopes, X-Ray and neutron facilities and simulations.
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Chapter 6
Data Challenges of In Situ X-Ray
Tomography for Materials Discovery
and Characterization

Brian M. Patterson, Nikolaus L. Cordes, Kevin Henderson,
Xianghui Xiao and Nikhilesh Chawla

Abstract Since its development in the 1970s (Hounsfield, Br J Radiol
46(552):1016–1022, 1973) [1], X-ray tomography has been used to study the three
dimensional (3D) structure of nearly every type of material of interest to science,
both in the laboratory (Elliott and Dover, J Microsc 126(2):211–213, 1982) [2]
and at synchrotron facilities (Thompson et al., Nucl Instrum Methods Phys Res
222(1):319–323, 1984) [3]. The ability to nondestructively image internal structures
is useful in the medical community for patient diagnosis. For this same reason, it
is critical for understanding material structural morphology. X-ray tomography of
static materials can generate a true 3D structure to map out content and distribution
within materials including voids, cracks, inclusions, microstructure, and interfacial
quality. This technology is even more useful when applying a time component and
studying the changes in materials as they are subjected to non-equilibrium stim-
ulations. For example, testing mechanical properties (e.g., compressive or tensile
loading), thermal properties (e.g., melting or solidification), corrosion, or electro-
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static responses, while simultaneously imaging the material in situ, can replicate real
world conditions leading to an increase in the fundamental understanding of how
materials react to these stimuli. Mechanical buckling in foams, migration of cracks
in composite materials, progression of a solidification front during metal solidifi-
cation, and the formation of sub-surface corrosion pits are just a few of the many
applications of this technology. This chapter will outline the challenges of taking
a series of radiographs while simultaneously stressing a material, and processing
it to answer questions about material properties. The path is complex, highly user
interactive, and the resulting quality of the processing at each step can greatly affect
the accuracy and usefulness of the derived information. Understanding the current
state-of-the-art is critical to informing the audience of what capabilities are available
for materials studies, what the challenges are in processing these large data sets, and
which developments can guide future experiments. For example, one particular chal-
lenge in this type of measurement is the need for a carefully designed experiment so
that the requirements of 3D imaging are also met. Additionally, the rapid collection
of many terabytes of data in just a few days leads to the required development of
automated reconstruction, filtering, segmentation, visualization, and animation tech-
niques. Finally, taking these qualitative images and acquiring quantitative metrics
(e.g., morphological statistics), converting the high quality 3D images to meshes
suitable for modeling, and coordinating the images to secondary measures (e.g.,
temperature, force response) has proven to be a significant challenge when a materi-
als scientist ‘simply’ needs an understanding of how material processing affects its
response to stimuli. This chapter will outline the types of in situ experiments and the
large data challenges in extracting materials properties information.

6.1 Introduction

The penetration of X-rays through materials and their subsequent use for imag-
ing dates back to the first radiograph in 1895 by Wilhelm Röntgen of his wife Anna
BerthaLudwig’s hand. Itwas quickly used formedical diagnosiswithin a fewmonths.
Since then, radiographic uses have expanded to include medical (e.g., dental, mam-
mography, skeletal imaging, and with dyes, soft tissue examination), engineering
(e.g., cracks and welds), security (e.g., airport and ports), and (the focus of this
chapter) materials science (e.g., polymers, metals, explosives, etc.). However, since
two dimensional (2D) radiographs convolute the three dimensional (3D) informa-
tion, further technique refinement led to the invention of nondestructive tomographic
imaging, which deconvolutes the 3D structure. Understanding the 3D structure of
newly manufactured, aged, refurbished, novel, or remanufactured materials is criti-
cal to understanding a material’s property-structure-function relationship. Few tech-
niques provide a better picture than 3D X-ray computed tomography (CT).

When the X-rays interact with matter, several processes may occur:

• the X-rays pass through with no interaction,
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• the X-rays are absorbed by the atom,
• the X-rays are absorbed and a fluorescent X-ray is emitted,
• or the X-rays are diffracted or scattered.

This chapter will primarily focus on the absorption of the X-rays by the mate-
rial and the processing of the resultant data. In addition to X-ray absorption radio-
graphic and CT imaging, other X-ray imaging techniques include Extended X-ray
Absorption Fine Structure (EXAFS) spectroscopy, X-ray Absorption Near Edge
Structure (XANES [4]) spectroscopy, Grazing-Incidence Small-Angle X-ray Scat-
tering (GISAXS [5]), X-ray fluorescence (XRF [6, 7]), and X-ray diffraction (XRD)
[8–10] techniques. EXAFS can measure the chemical state of materials, especially
low concentration elements in a bulk structure. XANES can measure the electronic
transitions within materials. The fluorescence (XRF) of X-rays by atoms allows sci-
entists to identify and quantify what elements are present and where they are located;
recent advances in XRF spectroscopy have led to nondestructive 3D elemental imag-
ing [11–13]. Scattering and high energy diffraction of X-rays by crystallographic
materials (HEDM) can be reconstructed into 3D maps of the crystals within the
materials. Both 3D XRF and HEDM have their own data challenges, but will not be
covered in this chapter; see Chap. 7 by Pokharel for more information on HEDM.

X-ray CT is simply the radiographic imaging of a sample as a function of sample
rotation. These radiographs are then mathematically reconstructed to yield a repre-
sentative 3D digital image of the material. To image, a sample is placed between
an X-ray source and detector. A beam of X-rays passes through the sample, where
they are absorbed by matter that scales with the electronic density of the material.
This photon-matter interaction typically scales with the atomic number and density
of the material. From this, an absorption-contrast radiograph is collected. A series of
radiographs can be collected as the sample is rotated, either ~180° or 360°, and are
then reconstructed into a series of 2D slices that can be rendered in a 3D image.Many
different laboratory-based X-ray tomographic systems are available to researchers.
Figure 6.1 diagrams several of the geometries used for CT imaging. The top graphic
shows the cone-beam geometry present in most laboratory-based X-ray CT systems.
Simple laboratory-based systems (Fig. 6.1a) without optics are capable of several
micrometers resolution, limited by the X-ray spot size of the source. The typical
time for acquiring a high contrast 3D image can vary between 2 and 24 h depending
upon the contrast of the material and the resolution needed. The field-of-view and
resolution of the image is based upon the location of the X-ray source and detector
(geometric magnification) as well as the pixel size of the detector, and the presence
of any additional focusing optics. The researcher can specify (from a limited list)
the X-ray anode used from a variety of manufacturers that offer different optics
geometries.

The addition of X-ray objective optics (Fig. 6.1b) makes it possible to build trans-
mission X-ray microscopy (X-ray microscopy, TXM) that are capable of imaging
materials with a resolution of ~25–40 nm and fields-of-view of ~10’s of micrometers
[14, 15]. With TXM-based X-ray CT, full 3D image time is typically 12–36 h. An
advantage of using laboratory-based systems is that flexibility is very high in that

https://doi.org/10.1007/978-3-319-99465-9_7
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Fig. 6.1 Three graphics showing the geometry of 3D X-ray imaging instruments. a a typical lab-
based microCT arrangement with a cone-beam X-ray source shining the X-rays through the sample
and onto the detector. Magnification is governed geometrically by the positions of the source and
detector as well as optics on the detector. b The geometry of an X-ray microscope XRM (nano-scale
tomography) in which a beam of X-rays illuminates a small volume of the sample and are focused
and collimated by Fresnel zone plate optics. Finally, c represents the geometry of a synchrotron-
based setup with the collimated beam shining through the sample. X-ray focusing optics may be
used to increase the flux at the sample andmicroscope opticsmay also be present after the scintillator
to increase the resolution of the measurement

the instrument (e.g., field-of-view and resolution) can be designed from the ground
up for the experiment; however, the relatively low photon flux in laboratory-based
instruments (compared to the high photon flux of synchrotrons), usually precludes
dynamic in situ measurements.

The use of a synchrotron light source opens up other areas of X-ray usage that
are not possible with laboratory-based sources (Fig. 6.1c). Synchrotrons do not offer
better spatial resolution than laboratory systems per se, rather, the high X-ray photon
brightness available can greatly improve the temporal resolution by several orders
of magnitude. Their flexibility typically means that new techniques are tested at
synchrotron beamlines to better understand the commercial potential of these new
techniques. Therefore, novel experimental techniques are available at synchrotrons
several years before they are available commercially in the laboratory. Because syn-
chrotrons use a parallel beam geometry, they offer more flexibility for unique, larger,
in situ equipment; due to the longer working distances, opportunities also exist for
phase contrast imaging and monochromatic absorption contrast radiography (due to
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the high photon flux). XRM in the synchrotron reduces the scan time from 12–36 h to
~15min for a 3D imagewith the resolutions down to 25–40 nm resolution [16].While
fast imaging times and increased temporal resolutions are advantages of synchrotron-
based imaging, the main disadvantages of these shared-user facilities are the lack of
quick and easy access and the high setup times for each measurement.

With laboratory-based and synchrotron-based X-ray CT techniques, it is possible
to collect a 3D image of a material, render it in 3D, extract visual information, and
conduct morphological measurements. The proper 3D analysis of materials requires
a multi-step process to reconstruct, process, segment, and extract statistical measures
(e.g., size, shape, distribution) that can provide a wealth of information which can
be correlated back to material processing and performance.

X-ray CT has impacted all areas of materials science, including cellular materials
[17] (metal [18] and polymer foams [19–23], wood [24], bone [25–27]), actinides
[28], fuel cells [29], high explosives [30], biologicalmaterials such as cells [31], addi-
tivemanufacturing (metals [32] andpolymers [33]), carbonfiber composites, geology
(fossils [34], minerals [35]), batteries [36–39], works of provenance [40], supercon-
ductor [41] and catalyst development [42, 43], and metals (corrosion [44–46] and
microstructure [47–51]). X-ray CT is used to image old and new formulations, aged
materials, material fatigue [52–54] and degradation, as well as damaged materials
[55, 56].

Beyond creating static 3D renderings of materials and extracting their morpho-
logical, dimensional, and distributional attributes, it is important to understand mate-
rial behavior when exposed to real-world conditions. During a typical life cycle, a
material experiences a variety of strains that it is required to respond to in order
to fulfill the requirements of its service life. Often the material experiences several
orthogonal strains at once. For example, bridge steels experience a dynamic, cyclical
load while slowly corroding, aluminum aircraft bodies stretch and compress with
changes in altitude, polymer foams present in running shoes compress with every
step of the athlete’s foot, metal alloys exhibit very different properties based upon the
microstructure (which is controlled by the solidification conditions), and explosives
hanging off an aircraft wing experience a temperature cycle that is very different in
Phoenix compared to Anchorage. While many of these materials challenges have
been explored with traditional 2D microscopy techniques, these example materials
experience 3D stressors and are met by 3D responses. To fully understand these
responses, in situ 3D X-ray imaging techniques, described below, are needed.

6.2 In Situ Techniques

To address these materials science challenges, a multitude of in situ techniques have
been and continue to be developed for X-ray computed tomography. The techniques
must be engineered in such a way as to allow for the collection of X-ray CT data
while replicating the real-world stimulus conditions as accurately as possible, with
the added caveat of not disturbing the experiment. The in situ apparatus, which
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supplies the external stimulus,must not block theX-ray beamduring the experimental
imaging. Therefore, in situ apparatus typically use either an open architecture so that
the sample may be rotated or the entire in situ apparatus is rotated with a ring of
uniform, X-ray transparent material to allow the X-rays to pass through. The in situ
techniques developed to date include:

• mechanical loading (compression, tension),
• thermal loading (heating, cooling),
• environmental stimuli (corrosion, humidity) and,
• electromechanical (current charging).

Additionally, in situ rigs have been developed that replicate several of these condi-
tions simultaneously (e.g., tension at elevated temperatures). Eachof these techniques
has its own set of special challenges in establishing, maintaining, and recording the
environment during imaging.

In situ uniaxial mechanical loading of materials is the application of a mechanical
stress to a material in a single direction, while measuring the load response and imag-
ing the resultant bending, buckling, densification, cracking or other damage within
the material as a result. A laboratory-based in situ loading apparatus must be small
and compact to fit within the small sample chamber as well as to accommodate min-
imal source-sample-detector distances for optimal image magnification. However,
the in situ loading apparatus must be able to cope with the large X-ray flux generated
by the beamline. An example of a synchrotron in situ loading apparatus is shown in
Fig. 6.2. In both cases, the apparatus must be interfaced to the instrument and remain
stable overmany hours. The simultaneous compressive loading and imaging ofmate-
rials using synchrotron X-ray CT goes back at least to 1998 [57] by Bart-Smith et al.
Al tensile specimens [58–60] are often imaged using X-ray CT for comparison to
processing. In the nearly 20 years since, this technique has expanded beyond metals
[61] and foams to include polymers and polymer foams [62–64], high explosives [30]
(including 3D printed high explosives), textiles [65], and composite materials [66,
67], down to the nanoscale [68]. Additionally, loading of the materials has moved
beyond ex situ compression due to the development of in situ load cells both in the
laboratory [69] as well as at the synchrotron [62]. Tension strain in materials is now
practiced both in the laboratory [69] and the synchrotron [33]. It is possible to collect
images up to 20 Hz [70], in situ. Crack initiation, propagation, delamination in com-
posite materials can be imaged at up to a demonstrated 10−2 s−1 strain rates. In situ
mechanical loading coupled with XRM to investigate biological materials, organic
crystal fracture, and metal microstructures has also begun to appear in the literature
[69].

In situ heating is often used to understand changes in microstructure within metal-
lic alloys. Some experiments are conducted to soften the interfacial adhesion strength
[71], while experiments to higher temperatures are conducted to examine the solid-
ification of the material upon cooling. Interfacial strength within carbon fiber [72]
and SiC [73] ceramic composites weakens their mechanical properties; therefore,
in situ apparatus that apply a tensile load at elevated temperatures (>1700 °C) have
been developed. The solidification conditions (e.g., cooling rate) of metal materials
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Fig. 6.2 Photograph of an in situ mechanical loading apparatus in a compression configuration at a
X-ray synchrotron. The X-rays enter from the right side of the image, pass through the poly(methyl
methacrylate) sleeve and the sample, illuminating the scintillator on the left (yellow). The now
visible wavelength photons are collected by the objective lens and the high speed camera. The
camera holds all of the radiographs in memory to be transferred to a hard drive at the completion
of the experiment

governs the microstructure and the resultant properties of the materials. In situ solidi-
fication imaging is widely practiced on a variety of metal alloy systems. Most typical
are high X-ray contrast Al-Cu [49, 50, 74], Al-In [75], and Al-Zn [48] bimetallic
alloys. Experiments have been performed using in situ heating cells (usually graphite
furnaces), laser heating [49], or high intensity lights [76]. Experiments can now be
conducted that freeze the solidification front for further post experimental analysis
[77]. The rate of morphological change within a material as it crosses the solid-
ification boundary is typically quite fast (front velocities of multiple micrometers
per second [78]) when compared to feature size and resolution requirements, and
therefore is often practiced at the synchrotron, not in the laboratory.

In situ corrosion of metal materials is used to study intergranular defects, pitting,
stress corrosion cracking [79], and hydrogen bubble formation [80]. Metals exam-
ined consist of Al [44, 81], Fe [82], and AlMgSi alloys [83]. These experiments
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typically are the simplest to perform in that the specimen is mounted directly into a
caustic solution and the resulting corrosion is typically quite slow (hours to days),
allowing for both laboratory-based and synchrotron-based experiments to be per-
formed. Often, experiments are conducted with cyclic testing, such as in Al [84] and
steels [85].

The observation of functional materials, such as catalysts [86] and batteries [39],
is also an active area of in situ tomographic imaging research, especially using
XRM techniques. During battery charge-discharge cycles, the morphology of the
microstructure [37] can change through expansion, contraction, cracking, delamina-
tion, void formation, and coating changes. Each of thesematerial responses can affect
the lifetime of the material. Measuring the statistics of these morphological changes
[38] is critical to locating fractures, especially changes that may occur on multiple
size scales [43]. In operando imaging of these responses can lead to understanding
how that 3D morphology changes as a function of charge-discharge rates, condi-
tions, and cycles. An important distinction exists between in situ and in operando:
the latter implies that the material is performing exactly as it would as if it were in
a real-world environment (e.g., product testing). Therefore, in operando imaging is
often the nomenclature when referring to the imaging of materials such as batteries
[36], double-layer capacitors, catalysts, and membranes.

In situ experiments are important to materials science in that they attempt to
replicate a real-world condition that a material will experience during use, and con-
currently, image the morphological changes within the material. X-rays are critical
to this understanding in that they usually do not affect the outcome of the experi-
ment; however, for some soft and polymeric materials, the X-ray intensity during
synchrotron experiments may affect the molecular structure. Performing preliminary
measurements and understanding how the data is collected can improve the success
during in situ imaging. For scientific success, the data collection must be thoroughly
thought out to ensure that the acquisition parameters are optimal for quality recon-
structions; the in situ processing conditions must be close to real-world conditions
so that the material’s response is scientifically meaningful.

6.3 Experimental Rates

Depending upon the rate at which the observed phenomena occurs (either by exper-
imentalist decision or by the laws of physics), several ‘styles’ of in situ observations
are practiced [87]. These include:

• ex situ tomography
• pre/post mortem in situ tomography,
• interval in situ tomography,
• interrupted in situ tomography,
• dynamic in situ tomography.
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Each of these styles is shown graphically in Fig. 6.3. These styles are listed by
the correlation between experimental rates to the in situ experiment. Each of the
vertical red bars represents the acquisition of a 3D image. The diagonal black line
represents the stimulus applied to the sample (e.g., mechanical load, heat, corrosion,
electrochemical). The choice of modality is dependent upon the imaging rate and
the experimental rate of progression. The critical aspect of in situ imaging is that the
tomographic imaging must be significantly faster than the change in the structure
of the material. Otherwise, the reconstructed 3D image will have significant image
blur and loss in image resolution. In reality, during a static CT acquisition, the only
motion of the sample permitted is the theta rotation. Therefore, the imaging rate
must be calculated based upon the experimental rate. However, there are techniques
to overcome this limitation, including iterative reconstructions [88] (but that adds
another layer of complexity to the reconstruction of the images). In ‘ex situ tomogra-
phy’ (Fig. 6.3a), a 3D image is acquired before the experiment and another 3D image
is acquired after the experiment. This technique is practicedwhen an in situ apparatus
has either not been developed or cannot be used in conjunction with the CT instru-
ment. The lack of imaging during the progression of the experiment causes a loss
of information in morphological changes that occurs between the two tomograms.
For ‘pre/post mortem tomography’, also represented by Fig. 6.3a, the experiment is
performedwithin the CT instrument but the imaging data is collected before and after
the experiment. The progression data is still lost but registering the two images (e.g.,
aligning for digital volume correlation, tracking morphological feature progression,
or formulating before and after comparisons) is much simpler. Figure 6.3b shows
the progression of an ‘interval in situ experiment’. The progression of the stimulus
is so slow that a 3D data can be collected without blurring of the tomographic image
[80]; therefore, the mismatch in experimental rate and imaging rate does not require
the removal or stopping of the external stimulus during imaging. Figure 6.3c depicts
an ‘interrupted in situ’ experiment [63, 64, 69, 89, 90]. The stimulus is applied and
held or removed while imaging, followed by continuation or reapplication of the
stimulus in an increasing pattern. A great deal of information can be collected on the
progression of the change in the material; however, this technique may not provide
a true picture of the behavior of the material. For example, consider an experiment
in which a hyperelastic material (e.g., a soft polymer foam or a marshmallow) is
subjected to an incremental compressive load. In order to image the material at 10%
strain, the compressive load must be held for the duration of the imaging time. How-
ever, a hyperelastic material may continue to flow for a duration of minutes to hours
and the material must relax before the image is collected. This relaxation may blur
the image. This requirement leads to the loss in high quality information on the
deformation of the material. This effect has been observed in the interrupted in situ
imaging of a silicone foam under uniaxial compressive load in a laboratory-based
X-ray microscope operating in CT mode. The stress versus time and displacement
versus time of the silicone foam is shown graphically in Fig. 6.4a [62]. To collect
seven CT images (i.e., tomograms), 1.5 days was required in instrument time. Due
to the material relaxation, structural information is lost. The reconstructed images of
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the material undergoing this static compressive load shows a uniform compression,
which may not be true [63].

Ideally, and especially, for fast-acting processes (e.g., high strain rate mechanical
loading or solidification), the ability to collect X-ray tomograms at very high rates
is critical to completely capturing the dynamic processes that occur, shown graph-
ically in Fig. 6.3d. This imaging technique can continue throughout the dynamic
process at a rate either high enough to not blur the image, or at a slightly lower
rate than the experimental stimulus which would cause a slight blur in the resulting
reconstructed tomograms (with advanced post processing, some of the blur can be
removed). Figure 6.4b shows the stress versus time and displacement versus time
curves of a silicone foam collected during a ‘dynamic in situ experiment’ (Fig. 6.3d).
Collecting a series of tomograms during this entire experimental cycle is critical to
understanding how materials deform and break. Similarly, temperature curves can
be correlated to tomographic images during metal alloy solidification. The dynamic
process (e.g., mechanical load, temperature, or corrosion) is being applied to the
sample continuously while the 3D images are simultaneously collected. With these
experimentalmeasurements, a true picture of the changes in thematerial are collected
[33, 70]. The advantage of this high rate imaging technique is that the experiment is
not paused or slowed for the data collection. Very fast tomograms are collected and
can even be parsed so that the moment of the critical event can be captured in 3D.

After collecting the in situ tomographic data (which can be gigabytes to terabytes,
depending on the experiment), the data must be processed and analyzed. Processing
multiple gigabytes of data in a meaningful way such that it is accurate, repeatable,
and scientificallymeaningful is the challenge for the experimenter. This book chapter
will focus on themulti-step, multi-software package, multi-decisionmaking process.
The initial in situ experimental data collection is often the simplest and least time-
consuming step. Reconstructing, processing, rendering, visualizing, and analyzing
the image data requires significant computational resources and several computer
programs, each requiring operator input.

Collecting the data, starting with the radiographs, then reconstructing, filtering,
rendering and visualizing the 3D data, segmenting for the phases of interest (e.g.,
voids, material 1, material 2, cracks, phase 1, phase 1, etc.), processing to collect
morphological statistics, interpreting these statistics, generating meshes of the 3D
data as a starting point for modeling the performance, correlating each of these mor-
phological measures, additionally correlating the in situ data (e.g., load, temperature,
etc.) to the images as well as to orthogonal measures (e.g., nanoindentation, XRD,
elemental composition, etc.) and finally drawing scientific conclusions are all much
more time consuming than the actual data collection. There are approximately eight
distinct steps in processing in situ tomographic data in materials science. The steps
are:

1. Experimental and Image Acquisition
2. Reconstruction
3. Visualization
4. Segmentation
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Fig. 6.3 The four types of
in situ experiments. The
increasing trend (black line)
represents the conducted
experiment. It may be
increasing mechanical load
(compression or tension),
changing temperature,
voltage, or concentration.
The red bars represent the
collection of the
tomographic data. Graph a
represents the collection of a
series of radiographs, then
some stressor applied to the
material followed by a series
of radiographs. Graph b
represents the collection of
CT images while the stressor
is slowly applied. The third
graph c represents the
interrupted in situ collection
of data with a paused
experiment. Finally the graph
d represents the dynamic
in situ experiment where the
CT images are rapidly
collected. The method used
depends upon the imaging
rate available as well as the
rate of change in the material
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Fig. 6.4 Displacement versus time curves (red) and stress versus time (blue) curves acquired using
an interrupted in situ modality (a) and dynamic in situ (b) experiments of a soft polymer foam. The
interrupted in situ experiment (see Fig. 6.3c) must be paused (i.e., the application of the stress),
as shown in the red circle in order to collect the 3D image (green circle). Therefore, information
regarding the deformation of the material is lost. In the dynamic in situ experiment (see Fig. 6.3d),
a true stress-strain curve can be collected and then correlated to each 3D image

5. Advanced Analysis and Data Processing
6. In situ and other Data
7. Modeling
8. Scientific Conclusions

Figure 6.5 graphically outlines the progression from data collection to the pro-
duction of answers to the materials science challenges. The complexity not only
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lies in the sheer number of steps, but also in the multiple decisions that need to be
made in every step of this schema. Additionally, passing the data through each of
these steps may require entirely different software packages for each step! Each of
these steps is an active area of research. They are active for simplifying the process
itself, improving its accuracy, and understanding the processing steps boundary con-
ditions. At the end of the chapter, future directions will be outlined in automated data
processing, leaving the reader with a strong understanding of what techniques are
available, which time and size scales are used, which areas of technique development
are active, and which areas are needed for future growth.

6.4 Experimental and Image Acquisition

X-ray tomography begins with simple 2D X-ray radiography. The radiograph pro-
vides a 2D image of the material. The geometry of the measurement is that an object
of interest is placed between a X-ray source and detector [91]. A digital radiograph
is collected, which may be several megabytes in size and is often viewable as a .tiff,
HDF5, or other image format. Interpretation is relatively straight forward and simple
measures of the object’s density and size may be obtained. However, the 3D informa-
tion is convoluted into the 2D image; therefore, structural information is lost in this
direction. In order to retrieve the third spatial dimension of information, a series of
digital 2D radiographs are collected as either the specimen or the imaging equipment
is rotated (the latter configuration is standard for medical CT). For 3D tomography,
a series of radiographs is collected by shining a beam or cone of X-rays through a
material while the sample is rotated. Just as in 2D imaging, the X-rays are absorbed
by the material, an amount proportional to the materials electron density. The rota-
tion angle may be anywhere between 180° to a full 360°. The number of radiographs
collected are typically between a couple hundred to a few thousand. Figure 6.2 shows
the geometry of an in situ loading experiment. An in situ rig, containing the sample
to be tested, must be placed at the location of the sample.

As mentioned previously, the integration time for each radiograph is proportional
to the brightness of the X-ray source. A variety of X-ray sources are available to
researchers including fixed anode, rotating anode, liquid metal jet, and synchrotron.
Fixed anode, rotating anode, liquid metal jet X-ray sources, and novel compact light
sources are all available in the laboratory, whereas synchrotron X-rays are only
available at national user facilities. Each of these laboratory sources produce a poly-
chromatic beam (or cone) of X-rays to shine on the sample. By coupling with optics,
it is possible to reduce the chromaticity of the beam; although, due to the brightness
limitations, this is typically only performed at the synchrotron. Synchrotron X-rays
offer more flexibility in the X-ray energy and flux and experimental design that may
not be possible with laboratory-based systems.

Each radiograph must have sufficient exposure time so that the signal-to-noise
level is high enough for proper reconstruction. This level may be governed by the
reconstruction software itself. The flux of the X-ray source governs the speed at
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which the individual radiographs may be collected. If the flux is high enough, then
the scintillator and detector governs the frame rate. For laboratory-based CT systems,
individual radiographic frame rates of ~0.1–0.01 s−1 are typical. To minimize the
reconstruction artifacts, the optimal number of radiographs per tomogram collected
should be ~π/2 times the number of horizontal pixels on the detector [92]. The num-
ber of radiographs times the integration time per radiograph plus some delay between
images determines the approximate total time for each tomogram to be collected.
This leads to full CT images collected in approximately 2–18 h. Synchrotron-based
tomography systems have frame rates from ~0.01 to ~20 Hz [70]. For clear recon-
structions of the 3D images, any motion by the sample must be significantly shorter
than a few voxels over the imaging time of each tomogram, or special compensation
techniques must be implemented to correct for this motion.

Experimentally, in situ experiments require a rig that applies the stress to the
material [93], that must not obfuscate the X-ray CT measurement, that must be
controllable remotely, thatmust operate on the timescale that is useful for the imaging
rate, and that must be coordinated with the imaging technique. Figure 6.2 shows
an in situ load rig or apparatus inside of a synchrotron beamline. The geometry for
laboratory-based systems and synchrotron-based systems for compression or tension
measurements are basically identical, although synchrotron systems havemore space
to build larger rigs. Common between them is the openX-ray path through the rig, the
sample, and onto the detector. A ring of uniform composition (e.g., Al, plastic, carbon
fiber composite) and thickness is present at the imaging plane. It must be uniform to
maintain a consistent flux of X-rays through the sample as it is rotated [94]. Cabling
is present to record readout signals and drive the motor. The cabling must either be
loose (for single rotations of the stage) or have a slip-ring for multiple sequential
rotations. In XRM-scale in situ studies (10’s of micrometer fields-of-view, ~10’s of
nm resolution), low keV X-rays are often used (e.g., ~5–10 keV); therefore, due to
low penetration energy, the rig support is often a counter arm [69]. This reduces the
angles to be used for reconstruction but removes the artifacts due to absorption of
the X-rays by the collar. Due to weight requirements, in many thermal solidification
experiments, the sample is mounted on a rotary stage, but a furnace is mounted
around and suspended above the sample, with a pair of holes for the X-rays to pass
through [95].

Data acquisition consists of radiographs that are typically 1k× 1k pixels and 16 or
32 bit dynamic range. Typically, several hundred radiographs are collected for each
tomographic data set. Six radiographs (Fig. 6.6a–f), out of the 10’s of thousands
that are collected for one in situ experiment, along with a bright (Fig. 6.6g) and
dark image (Fig. 6.6h), shows just a miniscule amount of data collected during
an experiment. The radiographs are the images as a polymer foam sample passes
through 0° rotation at increasing compressive strains. Therefore, each tomogram is
often several gigabytes in size. An in situ CT data set can be 10’s of gigabytes. At
an acquisition of one in situ data set per 30 min, it is possible to collect upwards
of ~2 million radiographs (translating to ~7 terabytes in size) at the synchrotron per
weekend. Unautomated, this may involve over 120 individual samples, subdivided
into groups that each have their own acquisition parameters. Robotic automation and
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Fig. 6.6 A series of radiographs collected using synchrotron X-ray tomography as the sample
passes the 0° rotation at increasing stress (a–f). A bright field (g) and dark field (h) image is shown
for comparison. Each of these radiographs are interspersed with thousands of other radiographs as
the sample is rotated. Depending upon the conditions and reconstruction software, every 180 or
360° of rotation are then used to reconstruct into a single 3D rendering

remote access for CT data collection allows for the changing of 100’s of samples,
albeit not in situ, per day [96]. Thanks to advances in hardware storage and data
transfer rates, collecting and saving this data is not currently a data challenge. The
challenge is the post processing.

Concurrently, during the in situ CT data collection, each experimental stimuli’s
data must be collected and saved in a format that can be later correlated back to the
radiographic or tomographic data. Load data can be directly read out, and from a
calibration equation, the stress can be directly measured. The strain can be encoded
within the drive motor or measured from the radiographic images. Thermal condi-
tions can be measured using embedded thermocouples, however, there may be some
error in this measurement since the sample must be rotated during imaging. Directly
placing the thermocouple on the sample is impossible.

Challenges in the data acquisition include using the appropriate in situ apparatus,
choosing the correct image acquisition parameters, identifying the X-ray energy and
flux for the needed imaging rate and contrast, as well as coordinating the in situ data
collection from the experimental apparatus. Optimally setting these conditions may
require months of preparation.
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6.5 Reconstruction

Reconstruction of the collected radiographs is the mathematical calculation and con-
version from the series of collected 2D radiographs into a stack of individual slices
through the material (i.e., tomogram). Types of reconstruction techniques include
filtered back-projection (the most common), cone beam, Fourier transform [97], fan
beam, iterative [98], Radon transform, and others. All commercial XRM and X-
ray CT instruments provide their own proprietary reconstruction software and at a
minimum, a simple 3D rendering package. The type of reconstruction process used
depends upon how the data is collected. Synchrotron facilities often use in-house
or open source software for the reconstruction. One of the most common ones is
Tomopy [99]. It is used at Argonne National Laboratory’s Advanced Photon Source
(APS) and Lawrence BerkeleyNational Laboratory’s Advanced Light Source (ALS).

A typical reconstruction must manage a wide variety of instrument, X-ray source,
sample, and in situ apparatus conditions. Therefore, several user decision-making
steps are required. These include: parsing the data (e.g., determining the number of
radiographs per reconstruction), image alignment, cropping, filtering, center shift,
pixel range (to set the brightness and contrast), and artifact corrections (e.g., beam
hardening [100], ring artifacts [101], edges [102], sample alignment (e.g., wobble)).
There may be a dozen or more different decisions that are made by the researcher
during the reconstruction process with regard to correcting for any issues.

Depending upon the reconstruction parameters chosen (e.g., whether or not the
data was cropped or binned), the data size at this point will approximately double in
storage requirements. Additionally, the data acquisition parameters must take into
account any potential for image blur. For example, compressing a sample more than
several voxels in the direction orthogonal to the rotational direction during a sin-
gle reconstructed image may lead to image blur. Mertens et al. (see Fig. 6.3) [33]
demonstrates this phenomena, in which an additively manufactured material ‘snaps’
back into place after tension-induced failure. The force of the recoil moves the sam-
ple faster than the imaging rate will allow for a clear reconstruction, resulting in
significant image blur. For most mechanical studies, the strain rate can be chosen to
minimize this; however, for some experiments, (e.g., metal solidification) the rate
of morphological change within the solidification front within the material cannot
be controlled. Some clever compensation methods have been developed, including
Time-interlaced model based iterative reconstruction (TIMBIR) [88], in which the
interlacing of frames from successive CT acquisitions are used. In general, model-
based reconstruction [103] techniques andmachine learning [104] can be used, espe-
cially in low dose situations. However, this adds a yet another layer of sophistication
to the experimental design, data acquisition, and reconstruction, further increasing
reconstruction decisions.
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6.6 Visualization

Upon reconstruction of the 2D radiographs into the reconstructed slices, the scien-
tist now has the opportunity to view the data in 3D for the first time. Ideally, this
step would be semi-automated and would be available as part of the experimental
time; however, due to the large data rate and the semi-manual development of the
reconstruction parameters in synchrotron experiments, this step is often not reached
for days or even months after data collection. It would be preferable to reach this
point quickly, especially when conducting experiments so that the experiment can
be assessed for data quality with a real-time feedback loop for an understanding of
the success of the experiment. To visualize the in situ 3D data sets, the researcher
must have access to computing systems that can load and render multiple multi-
gigabyte datasets; therefore, a multi-core workstation with many gigabytes of RAM
and a high-end graphics card is required (e.g., NVidia Quadro, AMD ATI, Intel HD
Graphics).

Many software packages are available for visualizing 3D X-ray tomography data
sets. Some of the more common open source software packages include: Chimera,
ImageJ, OsiriX [105], Paraview, and Tomoviz. Additionally, proprietary software
packages are available for rendering the 3D data including: Amira (Thermo Scien-
tific), Avizo (Thermo Scientific), DragonFly (ORS), EFX-CT (Northstar), Octopus
(XRE), and VGStudioMax (Volume Graphics). All instrumentation manufactures
provide, at minimum, a package to render their data. Many are now beginning to
include workflows for in situ data.

The challenge is in determining what types of visualization are most appropri-
ate for conveying the scientific answer. Visualizing reconstructed slices (Fig. 6.7)
gives the researcher the first clue to the data quality. Digitally cutting or ‘slicing’
through these reconstructed grayscale images can aid in visualizing void structures,
inclusion frequency, or crack locations and constructing animated movies of these
slice-throughs are useful for scientific presentations. However, this is a purely quali-
tative approach. Partial volume, full volume, or isosurface (Fig. 6.8) renderings of the
reconstructed grayscale images begin to show the researcher the results of the exper-
iment. Figures 6.7, 6.8, and 6.9 show the compression of a stochastically structured,
gas-blown silicone foam as orthoslices, isosurfaces, and full volume renderings,
respectively. The orthoslices are in the ‘xz’ direction, that is, the same orientation
as the radiographs shown in Fig. 6.6 (the mechanical loading upon the sample is
from the top of each rendering). This foam was imaged with 20 tomograms acquired
within 100 s during uniaxial compression. Visualizing the deformation of the foam,
whether on the bulk-scale or single ligament-scale, are possible [62].

The static 2D figures, presented in Fig. 6.7, of a dynamic process are an example
of the complexity of conveying to the reader the time-scale of the sample motion
during dynamic in situ 3D imaging. Fortunately, supplementary data on publisher
websites is becoming more commonplace and are a great method for sharing ani-
mations of the in situ images; it is recommended that the use of supplementary data
to publish animations of these processes should be used to the maximum extent
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Fig. 6.7 Series of a single reconstructed slice of a polymer foam at increasing strains. Each slice
represents one central slice out of approximately 1000 slices for the image. The eighteen 3D images
were collected in ~5 s at a 10−2 s−1 strain rate. Finding the portion or attribute of the structure that
has the largest affect upon the overall mechanical response is the challenge

possible. It is critical, when making these visualizations, to include as much infor-
mation as possible. Scale bars, stress/strain values, temperatures, time-stamps, etc.
can greatly improve the observers’ understanding of the context and morphological
change within the experiment [106]. Reporting the visualization of scientific data
must also include all parameters used to render the data. Researchers must espe-
cially report the filters applied during the visualization. Additionally, researchers
must keep a copy of the unprocessed data file, never adjust sub-regions of the image,
manipulate all images in the series identically to improve side-by-side comparisons,
and avoid the use of bad compression filters. Many of these requirements can be a
challenge for in situ data. Finally, resolution and voxel counts within objects should
be sufficient for accurate measurements (see the later section on analyzing 3D data).
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Fig. 6.8 Isosurface renderings of one half of the polymer foam shown in Fig. 6.7, at increasing
strains. Flow is noted in the void collapse. Some voids are inverted during the compression

6.7 Segmentation

In situ data is constantly balancing between imaging rate and experimental stimu-
lus rate, obtaining as many radiographs per tomogram as possible while providing
enough contrast for adequate segmentation [107]. Segmentation is the act of labeling
and separating the grayscale volume elements (i.e., voxels) of reconstructed image
data into discrete values, thus creating groups or subgroups of voxels that constitute
specific phases of the material. In order to process the data and make morphological
measurements or convert to mesh surfaces for modeling, the grayscale of the recon-
structed image must be segmented to reduce it down to only a few values. Typically,
the data is reconstructed into 16 or 32 bit grayscale, meaning that there may be 216

or 232 grayscale values in an image. Ideally, the segmented images are correlated to
the phases of the material, creating an image amenable for processing. Often, the
segmentation of polymer foams may only contain two phases, air (i.e., voids) and
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Fig. 6.9 The progression of a single image of an undeformed foam (silicone SX358) from an in situ
data set from the reconstructed image (single slice shown, a), after filtering with an edge preserving
smoothing (b), segmenting for the voids (c), rendering the voids (d), the voids rendered by each
voids equivalent diameter (e), and finally converted into a mesh for finite element modeling (f)

the bulk polymeric material. For Al-Cu solidification experiments, there are often
four phases: voids or cracks, aluminum, copper and liquid. For composite materials,
there may be even more phases: voids, cracks, fibers, filler, and inclusions. There is
a wide variety of techniques used to segment grayscale images. For the simplest seg-
mentations, the grayscale should already consist of many separately grouped values.
In practice, where the grayscale values may be convoluted, specialized techniques
have been developed to obtain adequate segmentations.

Figure 6.9 shows the progression of a grayscale image through a simple
grayscale value-based segmentation. Figure 6.9a shows one single reconstructed
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16-bit grayscale slice from one in situ tomogram of a polymer foam used in a lab-
basedmechanical loading experiment. Lowgrayscale values are regions of lowX-ray
absorption (e.g., voids, cracks, air) while higher grayscale values represent materials
of increasing X-ray absorption (e.g., bulk foam, metal inclusions). This section will
describe many of the challenges in adequately segmenting the data, reducing the
grayscale images, and identifying the phases present.

Often, images must be processed to optimize them before image segmentation.
Beyond the image filters required for optimal reconstruction (e.g., ring removal, cal-
culated center shifts, beam hardening), image noise reduction or image smoothing is
often needed for adequate segmentation, especially for data collected in high-speed
in situ X-ray CT imaging where the scintillator and detector are used at operational
limits. A plethora of image filters are available that can improve the segmentation by
improving the signal-to-noise ratio in the grayscale images as well as edge enhance-
ment. Just as in 2D imaging, these filters include: mean, median, sharpening, edge
preserving smoothing, Gaussian, interpolation (bilinear and bicubic), unsharpening,
and many others. These filters can be applied to the full 3D data set for each of the
tomograms. Figure 6.9b shows the results of an edge preserving smoothing filter
[108], which mimics the process of diffusion. The data challenge here lies in deter-
miningwhich filter is appropriate, andwhich filter parameters produce the best image
for segmentation. Because of the large number of options available, it is preferred
that a raw reconstructed slice (before any filtering) be included in any X-ray CT
manuscript in order to provide the reader an understanding of the data quality.

Once the data is appropriately smoothed, a variety of manual and automated
segmentation techniques have been developed [109]. These includemanual, adaptive
thresholding, region growing, and techniques based upon machine learning. In a
manual segmentation, the researcher may simply select an appropriate grayscale
range that appears to capture the phase within the image. A simple manual threshold
value was chosen for Fig. 6.9c and then rendered in 3D for Fig. 6.9d. With this
technique, the distribution of grayscale values for the polymeric material and voids
are separated sufficiently in grayscale and no overlap exists. For most materials,
and depending upon the signal-to-noise ratio of the image, this may not be true.
The segmentation conditions must be carefully chosen so that they are uniform
for all of the in situ tomograms as the density of the material phases may change
over the course of the experiment. Manual segmentation is only applicable for high
contrast reconstructions. Automated segmentation techniques are being developed
based upon the combination of several image processing steps as well as signal
detection [110]. Recently, machine learning has been employed to segment X-ray
tomograms [111, 112]. Training sets must be developed on separate phases within a
slice or several slices and the remainder of the tomogram is used as the testing set.
This technique has proven useful for both grayscale-based segmentation and texture-
based (e.g., edge detection) segmentation. Most of the same software packages listed
above for visualizing the data have some filtering and segmentation options available.

Upon successfully segmenting the data, it must also be prepared for modeling,
quantification, and correlation to the in situ data. Of critical importance for modeling
is preparing the data such that the number of facets adequately represent the 3D
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structure, while keeping the number of mesh faces as low as possible to reduce
computation time. Quantifying the data requires separating segmented objects (e.g.,
splitting voids that may be connected due to resolution issues), sieving out objects
that are a result of noise (e.g., single voxel objects), removing objects cut off by field
of view limitations, and removing objects due to sampling errors (e.g., star features).

6.8 Modeling

The modeling and simulation of material behavior under an external stimulus is crit-
ical to understanding its properties. The solid description of its behavior is needed
to make predictions, understand failure, develop improved synthesis and processing,
and create bettermaterials tomeet society’s needs.Modelingmaterials is amultiscale
challenge, beginning at the atomic level, continuing through themicrostructural scale,
and including the bulk and system scale. The exploration of the elasticity, plasticity,
fracture, thermal flow, and/or chemical changes within materials must be simulated
to be understood. As seen in this chapter, nothing is more useful in verifying a
model’s robustness more than in the direct observation of the phenomena. Using the
3D microstructure of the material as the starting point of the modeling provides the
opportunity for side-by-side, direct comparison [62] of the models’(Fig. 6.10) per-
formance, validation, and robustness, to the experimentally-observed performance of
thematerial. Directly visualizing the deformation in a foam, the solidification front in
a metal eutectic, or the pull out of a fiber in a composite material [113] can aid in the
refinement and the confirmation that the material scientist understands the physics of
the material’s behavior. Collecting tomographic in situ data adds a fourth dimension
to the data interpretation and analysis. Having this fourth dimension of data allows
the direct comparison between any processing based off the initial conditions and
the true measured result. For example, using the initial structure of a polymer foam
undergoing dynamic compression as a starting point for finite element analysismeans
that the structural changes in the material can be modeled and directly compared to
its actual compression. The effects of heating and cooling upon materials can also
be measured in situ. The in situ solidification of metals, metal alloys, and how the
processing conditions (e.g., temperature gradient) affect the properties is critical to
materials science. The challenge for the materials scientist is developing the experi-
ments that can directly feed information (especially the physical microstructure) into
the simulation code. This feed-forward process can then be used for code refinement.

3D image data are collected as isotropic voxels; each voxel has an x, y, and z coor-
dinate and a grayscale value which is then segmented to label the phases. For this
data to be used for modeling and simulation, the voxelized data must be converted
into a data format that can be imported into a modelling program. This process is
often referred to as ‘meshing’, in which the voxelized data are converted into tetra-
hedral elements that constitute the surface of material phases. Non-surface data are
omitted from the mesh and the resulting volumes that the surfaces constitute are then
considered as uniform bulk material. Once segmented and meshed, (depending upon
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Fig. 6.10 A series of 3D reconstructed foams at increasing strains are shown (a). The stress-
strain curve, change in percent void volume, and change in Poisson ratio are also shown (b). The
undisturbed image was used for FEMmodeling. The image had to be cropped and reduced in mesh
faces to ease in 3D modeling computation (c)

the surface area of the interfaces within the material), tens of millions of tetrahedral
elements can be created. To reduce the computational burden, the structure is often
down-sampled (by many orders of magnitude), cropped (to reduce the volume of the
sample), or reduced by removing small features that are less consequential to the
overall performance of the modeled result. Each of these decisions can vary from
researcher-to-researcher and can affect the quality of the model’s robustness.

There are many software packages available for modeling, whether it is finite ele-
ment modeling (FEM) (e.g., Aphelion [114], Abaqus [55, 115, 116], Python openCV
[30]), microstructural modeling, particle-in-cell (e.g., CartaBlanca [117]), or oth-
ers [118]. However, each program requires intensive computing resources and time
(especially if the modeling is carried out in 3D). To the authors’ knowledge, there is
no metric for the direct comparison of a model’s performance to the actual change
in structure. Developing the ability to overlay the modeled FEM result to the experi-
mental structure and obtaining a simple distance map could provide rigorous insight
into the quality of the experiments and the modeling efforts.

6.9 In Situ Data

Collecting in situ data (e.g., force-displacement curves, thermal cycling profiles, or
current-time curves) during the experiment and correlating the data to the images
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is critical for model development and making extrapolations to the causes of the
changes within the material. For example, in a simple compression experiment, the
compression motor can be calibrated and can compress to the sample at a time and
rate of the experimenter’s choosing. The true strain (in contrast to the engineering
strain) can then be measured from the radiographs or tomograms. The force mea-
sured by the loading apparatus can be converted to true stress by taking the area of
the sample from the reconstructed tomograms. These two simple conversions yield a
stress-strain curve of the material deformation and are relatively easy to collect. For
simple laboratory-based experiments, long signal cables are required; for dynamic
experiments, slip-rings are required for the theta stage to rotate continuously. How-
ever, some in situ measurements are not so straightforward. In an in situ heating
experiment, the true temperature of the sample may be difficult to measure. The
heating of the sample is often conducted by a furnace [94], laser [49, 119], or high
intensity lamps [76]. Calibrating andmeasuring this system can be a significant chal-
lenge as including thermocouples to the rotating sample is non-trivial. In operando
experiments during thermal runaway of batteries using a thermal camera [120] eases
the measurement of the temperature in that the stand-off camera can directly observe
the rotating specimen, but certainly dealing with the decomposing battery creates its
own unique challenge. Software is beginning to appear on the market for other in situ
techniques, such as electron microscopy (e.g., Clarity Echo), but it is not currently
automated in any tomography software package. Software will be needed to not only
render and analyze the data but also correlate it back to the other measures.

6.10 Analyze and Advanced Processing

Taking the 3D image data beyond a qualitative understanding and turning it into
a truly quantitative dataset requires the collection of measures and metrics of the
material. For example:

• Polymer foams with large voids exhibit different compressive properties than
foams with small voids [64]. Are voids that are ±10% in size enough to change
the Poisson ratio of the material?

• How does the cooling rate of a metal affect the thickness of the eutectic struc-
ture [59]? How does this processing affect the mechanical, corrosive, and elastic
properties?

• How far will a crack will travel through a metal during cyclical testing [46] and
can it vary with its exposure to a corrosive environment?

• Howmuch internal damagewithin a battery becomes catastrophic to cause thermal
runaway [120]? What level of electrode breakdown is too much for the material
to remain functional?

The ability to correlate quantitative numbers to morphological features within the
3D structure turns X-ray CT into a powerful analytical technique. As outlined by
Liu et al. [121], many options are available after reconstruction for data analysis,
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including direct observation, morphological quantification, or network extraction.
Other methods may include digital volume correlation, principal components analy-
sis [122], or machine learning to extract quantification information from in situ X-ray
CT data. Collecting multiple terabytes of X-ray radiographs, reconstructing them,
processing them, segmenting them, rendering them, and converting the resulting data
into movies can provide a great qualitative picture of what is occurring in a material
while it is in operation.

After the reconstructed X-ray CT data is processed and segmented, 3D metrics
of the phases of interest can be obtained. This is critical to obtaining quantitative
information. Without solid quantitative information, it is not possible to visually
compare samples and make determinations as to whether the material is different
as a result of formulation or processing. The quantitative information may include
thickness (e.g., thickness of the solidified eutectic), percent void volume, particle (or
void) morphology (e.g., size, shape, equivalent diameter, Feret shape, orientation,
center of mass, distance from other objects, and connectivity, just to list a few) can
be obtained for each sample and at each step within the in situ experiment. It is
possible to collect dozens of pieces of unique metrics on 10’s of thousands of objects
within the sample. Figure 6.11 shows the progression of some of the metrics from
an in situ experiment of a polymer foam as it is being compressed. The initial results
provide a tabulated list (Fig. 6.11b) of each object in the image and its metrics.
Simple histogram plots (Fig. 6.11c) is used to give an idea of the distribution of each
of themetrics (shown are the Feret shape, orientation theta, and equivalent diameter).
These metrics show the increase in the Feret shape (aspect ratio), the increase in the
randomness of the long axis of the void (orientation theta), and the decrease in the
size of the voids (equivalent diameter). Additionally, each of the objects (voids) are
individually labeled with each of the metrics and therefore a color scheme can be
applied such that the objects can be colored by their metric values. Figure 6.11d
shows the three images of the compressed foam with each of the voids colored by
equivalent diameter. Lighter colors represent larger objects, darker represents smaller
objects. Each of the metrics collected for each of the objects may be treated in this
way. Correlating these changes to the in situ metrics can provide interesting insights
into which metrics affect the changes in the material the most. For example, Fig. 6.11
in Patterson et al. [62], correlates the stress-strain curve with the change in percent
void volume. Inflection points in each metric show how the void-collapse correlates
to the bending, buckling, and densification of the ligaments within the structure to
understand the changes inmorphology upon the applied compressive strain and hyper
elastic response.

The caveat in using these metrics is that the 3D objects must be imaged with
sufficient resolution such that the voxel count within each object is high enough to
remove the quantized nature of the measurement. This must be taken into account
so that accurate metrics of the sample are obtained. For example, if an object is
segmented that is only one voxel, the accuracy and precision of the measure of
its surface area would not be believable. Filtering out objects below approximately
1000 voxels in size can reduce the absolute error of the measurement to below ~10%
[123]. Sieving the objects can reduce the noise and improve the robustness of the
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Fig. 6.11 Graphic showing the data challenge of in situ tomography. Dozens of 3D images may be
collected (a), each onemeasured for a plethora of metrics (e.g., % volume of each phase, object/void
size, shape, orientation, location, etc.) and put into tables (b), histogram graphics (c), and even color
coding by one of these metrics. In this case, the voids are colored by equivalent diameter (d)

measurement. Proper sampling of the objects is critical to accurate measurements
[124].

Some materials may contain 100’s of thousands of objects [63]. In order to effec-
tively collate and parse through this tremendous amount of information, higher order
processing is needed. Simple histogram plots can illustrate shifts in these metrics,
but discovering which metrics relate to material processing or which metrics ade-
quately describe the experimental results can be difficult.Measuring a dozen different
statistics will create too many values to provide a causal picture to relate the mor-
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phology to the results of the in situ experiments. Therefore, advanced processing
and analysis steps may be required. For example, principal components analysis
(PCA), a pattern recognition method, has been used to reduce the dimensionality
and differentiate several polymer foams based on their void microstructure [125].
This differentiation is difficult to do with only one metric and impossible to conduct
visually. Machine learning techniques have been used to relate a polymer foam’s
compressive performance to its microstructure; however, the use these techniques
for the development of 3D property-structure-function relationships is an emerging
sub-discipline and requires a significant research and development effort among 3D
materials scientists.

The segmentation of phases also allows for other advanced analysis, including
particle shape analysis [126, 127] and digital volume correlation (DVC).While statis-
tics such as void axis ratios [128] in damaged materials can give great information
regarding the growth mechanism, caution must be exhibited to assure that all of
the voids are rendered with enough voxels to yield meaningful data, as mentioned
previously. DVC is the 3D analogue to digital image correlation (DIC) and is used
to track features between multiple images. This technique can track the evolution
of strain, flow, crack propagation, or deformation in materials imaged while under-
going an external stimuli (Fig. 6.12). 3D studies of material damage by combined
X-ray tomography and digital volume correlation [129–131], that correlate to the
morphological statistics as well as to the modeled result can be used to measure the
robustness of the model.

6.11 Conclusions

From its launch in 1990 through 2013, the Hubble Space Telescope collected approx-
imately 45 terabytes of data on the universe [132], which is a rate of approximately
two terabytes per year. Processing this data takes years before they are viewable to
the public. At a synchrotron, it is possible to collect 3D X-ray CT data at a rate of
greater than a terabyte per day. Add to it the challenge of reconstruction, rendering,
segmenting, analyzing, modeling, and any advanced processing and correlation to
the in situ data means that without automation, a very large percentage of the data
may never even be examined. Additionally, the number of steps in each portion of
the process means that dozens, if not hundreds, of decisions are made that can affect
the quality and outcome of the analyzed data.

Ongoing work has focused on automating and batch processing many of the steps
used in processing the data. Many of the commercial software packages are now
including TCL and Python programming options for this batch processing. Once the
appropriate processing conditions can be determined, applying them to the in situ data
sets as well as multiple samples is possible. Future work needs to include removing
the decisions for optimal data processing from the user and using machine learning
to do this automatically.
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Fig. 6.12 Analysis of in situ tomographic images of a 3D printed tensile specimen using digital
volume correlation. The specimen must be small to fit within the X-ray beam of the synchrotron
(a). The stress-strain curves of three different formulations relating the elasticity of the material
to its processing (b). Three reconstructed slices at increasing stress and the corresponding digital
volume correlation maps (c) showing the propagation of the stress field from the notch. The glass
bead inclusions provide a handy fiducial for the DVC. This data shows many interesting data points
including the uniform distribution and size of the glass filler, the ultimate tensile strength of the
material, the delamination of the filler from the nylon polymer, and the strain field progression
during failure

Each of the steps in the process are often made in different software packages.
Tracking which decisions are made, understanding how they affect the final out-
come, saving the data at the appropriate processing steps, saving the software and
conditions used to process the data, and doing so in a repeatable format is a daunting
task. In addition to the challenge of data sharing, due to the multistep nature of this
challenge, a knowledge of error propagation is critical [133]. In practice, manual
segmentations may be practiced under various conditions to better understand how
small value changes can affect the morphological statistics; but this is one decision
out of a multitude of decisions. Some work has been published in which some of the
processing steps may be skipped in order to reduce the processing time, but things
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may be missed. Knowledge as to whether this was successful may not occur for
several months after the data is collected. Finally, linking the changes in morphol-
ogy of the structure, observed during the in situ experiment, to the formulation and
processing of the material is the holy grail of 3D materials science.

The combination of in situ experiments in real time with 3D imaging is an
extremely powerful analytical technique. Processing the tremendous amount of data
collected is a daunting and time consuming endeavor. With continued development,
image analysis cycle time will continue to be reduced, allowing materials scientists
to run multiple experiments for improved scientific integrity, and allowing a better
understanding of the structure-property relationships within materials.

Funding Funding for the work shown in this chapter are from a variety of LANL sources includ-
ing: the Enhanced Surveillance Campaign (Tom Zocco), the Engineering Campaign (Antranik
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Chapter 7
Overview of High-Energy X-Ray
Diffraction Microscopy (HEDM)
for Mesoscale Material Characterization
in Three-Dimensions

Reeju Pokharel

Abstract Over the past two decades, several non-destructive techniques have
been developed at various light sources for characterizing polycrystalline mate-
rials microstructure in three-dimensions (3D) and under various in-situ thermo-
mechanical conditions. High-energyX-ray diffractionmicroscopy (HEDM) is one of
the non-destructive techniques that facilitates 3Dmicrostructuremeasurements at the
mesoscale. Mainly, two variations of HEDM techniques are widely used: (1) Near-
field (nf) and (2) far-field (ff) which are employed for non-destructive measurements
of spatially resolved orientation (∼1.5 µm and 0.01◦), grain resolved orientation,
and elastic strain tensor (∼10−3–10−4) from representative volume elements (RVE)
with hundreds of bulk grains in the measured microstructure (mm3). To date HEDM
has been utilized to study variety of material systems under quasi-static conditions,
while trackingmicrostructure evolution. This has revealed new physical mechanisms
that were previously not observed through destructive testing and characterization.
Furthermore, measured 3D microstructural evolution data obtained from HEDM are
valuable for informing, developing, and validating microstructure aware models for
accurate material property predictions. A path forward entails utilizing HEDM for
initial material characterization for enabling microstructure evolution measurements
under dynamic conditions.

7.1 Introduction

The understanding of materials at the mesoscale (1–100µm) is of extreme impor-
tance to basic energy science because the properties of materials, critical to large-
scale behavior, are impacted by local-scale heterogeneities such as grain boundaries,
interfaces, and defects [1]. One challenge of mesoscale science is capturing a 3D
view inside of bulk materials, at sub-grain resolution (∼1 µm), while undergoing
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dynamic change. Techniques, such as electron microscopy, neutron scattering, or
micro-computed tomography (μ-CT) are limited in being either destructive, pro-
viding only average data, or providing only density data, respectively. High energy
X-ray diffraction microscopy (HEDM) is a novel, non-destructive method for cap-
turing 3D mesoscale structure and evolution inside of material samples of ∼1mm
size, with ∼1 µm spatial and ∼0.1◦ grain orientation resolution. In this chapter, we
give a brief overview of existing diffraction and imaging techniques for material
characterization. In particular, HEDM datasets are discussed and a few examples of
microstructure evolution under quasi-static conditions are presented to demonstrate
the unique advantages provided by HEDM. However, this chapter will not attempt
to summarize all the ongoing work on the subject. Additionally, future prospects of
utilizing HEDM for enabling dynamic measurements are briefly discussed.

7.1.1 The Mesoscale

Multi-scale materials modeling is extremely challenging because it must cover many
orders ofmagnitude of length scales ranging from the atomistic 10−10 m to the contin-
uum>10−3 m [1, 2]. Because of the difficulty of this task, there is a knowledge gap in
terms of our ability to accurately pass insight from atomistic calculations/simulations
to continuum scale predictions of engineering performance. At the lowest length
scales, completely general and extremely accurate atomistic and molecular dynam-
ics models exist that can simulate the behavior of many material systems based on
fundamental physics simulations. Unfortunately, such models are extremely compu-
tationally intensive and limited to systems of hundreds to thousands of atoms even
when using state of the art super computers. Therefore, while they can realistically
predict the behavior of groups of atoms, it is impossible to scale them to sizes useful
for manufacturing. At the other end of the spectrum, continuum mechanics models
are mainly empirical and can reasonably predict bulk behaviors for a large family
of materials. Extensive empirical tests have been carried out over many years to
build databases on material properties such as ductility, elastic modulus, Poisson’s
ratio, shear modulus, yield strength for variety of material systems. The measured
information are then incorporated into finite element models for predicting materials
properties as well as engineering performance. However, such extensive experimen-
tal testing is inefficient, expensive, and time consuming.

Between these two extreme ends lies themesoscale, a length scale at which current
models are the least predictive and various model predictions exhibit extremely large
variance. Structural materials are polycrystalline in nature with each individual grain
experiencing constraints from its local neighborhood inducing heterogeneities and
incompatibilities in adjacent grains. Complex properties and behaviors arise due to
interaction between large population of heterogeneities such as defects, grain bound-
aries, phase boundaries, and dislocations. For instance, the relationship between “hot
spots” in micro-mechanical fields and microstructural features such as grain bound-
aries and interfaces can be connected to material failure [3]. Therefore, the local
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variation in orientation and strain during plastic deformation are important in under-
standing damage nucleation in polycrystalline materials.

While constitutive relationships employed in most crystal plasticity simulations
show some reasonable agreement with observation in terms of average properties,
they are unable to reproduce local variations in orientation or strain [4]. This lack of
agreement at the local scale is a direct evidence of our lack of physical understanding
of the mesoscale regime. This missing link prevents material scientists from design-
ing new, exotic materials with desired properties such as stronger, more durable, and
lighter engineering components utilizing advanced manufacturing or accident toler-
ant nuclear fuels with higher thermal conductivity. As our understanding of a mate-
rial’s micro-mechanical properties relies heavily on the accurate knowledge of the
underlyingmicrostructure, spatially resolved information on evolution ofmicrostruc-
tural parameters is imperative for understanding a material’s internal response to
accommodating imposed external loads. Therefore, a major goal of mesoscale sci-
ence is capturing a 3D view inside of bulkmaterials, at sub-grain resolution (∼1µm),
while undergoing dynamic change.

7.1.2 Imaging Techniques

Various material characterization techniques exist, of which one of the most popular
is electron backscatter diffraction (EBSD), a standard technique for crystallographic
orientation mapping and is heavily utilized by the materials community for surface
characterization [5]. EBSD in concert with serial sectioning using focused ion beam
(FIB) provides three-dimensional microstructure data; however, this route is destruc-
tive and mostly limited to post-mortem characterizations. Because this method is
destructive, a single sample can only be fully characterized in 3D in one single state.

Non-destructive crystal structure determination techniques utilizingX-ray diffrac-
tion from a single crystal or powder diffraction for a large ensemble of crystals were
first demonstrated over a century ago. However, most samples of interest are poly-
crystalline in nature, and therefore cannot be studied with a single crystal diffraction
technique. In addition, powder diffraction is limited as it applies only to bulk samples
with extremely large numbers of grains and provides only averaged measurements.

Nearly two decades ago, an alternate approach, multi-grain crystallography was
successfully demonstrated [6], utilizing which 57 grains were mapped, for the first
time, in an α-Al2O3 material [7, 8]. Since then, utilizing the third and fourth gen-
eration light sources, high-energy X-rays (in the energy range of 20–90keV) based
experimental techniques have enabled non-destructive measurements of a range of
polycrystalline materials. These techniques have been transformational in advanc-
ing material microstructure characterization capability providing high-dimensional
experimental data for microstructures in three-dimensions (3D) and their evolution
under various in-situ conditions. Moreover, these datasets provide previously inac-
cessible information at the length scales (i.e. the mesoscale, 1–100µm) relevant for
informing and validating microstructure-aware models [2, 9–12] for linking mate-
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rials processing-structure/property/performance (PSPP) relationships for advanced
engineering applications [1, 13].

Since the first demonstration of 3D measurements, high-energy X-ray-based
experimental techniques have advanced considerably, and 3D microstructure mea-
surements are becoming routine. The multi-grain crystallography technique is now
commonly referred to as high-energy X-ray diffraction microscopy (HEDM) or 3D
X-ray diffraction (3DXRD) [14]. Various suites of HEDM techniques have been
developed over the years for probing material microstructure and micro-mechanical
field in polycrystals. Typically, the HEDM technique can probe 1mm diameter sam-
ples and provide information on crystallographic orientation and elastic strain tensor
averaged over a volume, commonly a grain. For example, near-field HEDM has been
employed to study spatially resolved microstructures (orientation field, grains struc-
ture and morphology, sub-structure) and their evolution under thermo-mechanical
conditions [15–22]. Far-field HEDM has been employed to study grain resolved
micro-mechanics and variation in inter- and intra-granular stress states [6, 7, 23–
32]. Utilizing both spatially resolved orientation and grain resolved elastic strains,
stress evolution in Ti alloys have been studied [33–35]. Recently the HEDM tech-
nique has been extended to study deformation in shape memory alloys [36] and
microstructure characterization of nuclear fuel materials [37, 38].

Apart from HEDM, other microstructure characterization techniques have been
developed in parallel, utilizing either high-energy X-rays or neutrons for diffraction
and imaging. Diffraction contrast tomography (DCT) is one such complementary
non-destructive method that combines diffraction and tomographic techniques for
mapping crystallographic orientation and grain morphology, in near pristine samples
[39–41]. Micro-tomography provides additional density evolution information, ideal
for imaging density contrast resulting from materials with high contrast in atomic
number (Z) or contrast due to the presence of pores and cracks in the materials.
Differential-aperture X-ray microscopy (DAXM) is another X-ray based technique
for near-surface measurement, which enables in-situ material microstructure evo-
lution measurements under various thermo-mechanical conditions [42]. Similarly,
neutron diffraction and imaging based techniques can also provide non-destructive
bulk measurements of structure and mechanical strains under in-situ conditions [43].
In this chapter, we will mainly focus on the HEDM technique and its application.

The remainder of the chapter is organized as follows. A brief background on
physics of diffraction is presented in Sect. 7.2. In Sect. 7.3, the basic principle of
HEDM technique and experimental geometry are presented. In addition, information
onvarious tools that have been developed in the past decade for analyzingHEDMdata
are also provided. In Sect. 7.4, application of HEDM is presented where examples
from literature on various experiments andmaterial systems are presented and results
are discussed. In Sect. 7.5, the current state is summarized and perspectives for future
applications of HEDM and its relevance for future light sources are discussed.
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7.2 Brief Background on Scattering Physics

In this section, basic concepts of the physics of elastic scattering are presented to
establish a relationship between diffracted light and crystal structure, our approach
is based on [44]. Diffraction is a result of constructive interference of the scattered
wave after incident X-rays are scattered by electrons. Elastic scattering assumes that
the incident and scattered X-ray photons have the same energy, that no energy is
absorbed by the material during the scattering process. Consider an incident beam
of X-rays as an electromagnetic plane wave:

E(t) = E0 cos(2πνt), (7.1)

with amplitude E0 and frequency ν. The interaction between the X-ray beam and
an isolated electron can be approximated by forced simple harmonic motion of the
form:

ẍ = −ω2
0x − bẋ + qe

me
E(t), (7.2)

where x is the displacement of the electron from equilibrium, ω0 is the natural fre-
quency of the system, qe and me are the mass and charge of the electron, b is a
damping term, and the third term on RHS is the force exerted on the electron by the
electric field. According to the approximation (7.2), the electron oscillates according
with the trajectory:

x(t) = A cos(2πνt + φ) + e− bt
2 f (t). (7.3)

The term e− bt
2 f (t) quickly decays and we are left with oscillations of the form

x(t) = A cos(2πνt + φ), (7.4)

where both the amplitude A = A(ν) and the phase φ = φ(ν) depend on ν. The most
important feature of (7.4) is that the electron oscillates at the same frequency as the
driving force, and thereby emits light which has the same wavelength as the incident
beam.

When a group of electrons (e1, . . . , en) within an atom are illuminated by a plane
wave of coherent light of the form (7.1), an observer at some location O will see,
from each electron, a phase shifted electric field of the form:

ε j (t) = A j cos

(
2πνt − 2πl j

λ

)

= A j cos(2πνt) cos

(
2πl j
λ

)
+ A j sin(2πνt) sin

(
2πl j
λ

)
, (7.5)

with λ being the light’s wavelength and the amplitudes A j and phase shifts 2πl j
λ

depend on the path lengths from the wave front to the observers, l j . The total electric
field observed at O is the sum of all of the individual electron contributions:
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ε(t) =
∑
j

ε j (t)

=
∑
j

A j cos(2πνt) cos

(
2πl j
λ

)
+

∑
j

A j sin(2πνt) sin

(
2πl j
λ

)

= cos(2πνt)
∑
j

A j cos

(
2πl j
λ

)

︸ ︷︷ ︸
A cos(φ)

+ sin(2πνt)
∑
j

A j sin

(
2πl j
λ

)

︸ ︷︷ ︸
A sin(φ)

= A cos(2πνt) cos(φ) + A sin(2πνt) sin(φ)

= A cos(2πνt − φ). (7.6)

The actual detected quantity is not the instantaneous diffracted electric field (7.6),
but rather the intensity I = cE2

8π , where

E2 =
(∑

n

En cos

(
2πln
λ

))2

+
(∑

n

En sin

(
2πln
λ

))2

. (7.7)

Or, using complex notation,

ε j = A je
i(2πνt−2πl j /λ) (7.8)

we can simply write εε� = A2.

7.2.1 Scattering by an Atom

When considering scattering by a group of electrons in an atom the convention is to
consider the center of the atom as the origin, O , the electrons located at positions
rn , and an observer at position P. We consider a plane wave of light incident on the
plane passing through the origin, from which there is a distance l1 to an electron at
position rn , as shown on the left side of Fig. 7.1. Relative to the wavefront at O , the
field acting on electron n is then given by

εn = An cos

(
2πνt − 2πl1

λ

)
(7.9)

and for an observer at position P , the field is

εn = Ane2

mc2l2
cos

(
2πνt − 2π

λ
(l1 + l2)

)
. (7.10)
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Assuming that both the source and observation distances are much larger than |rn|,
we make the simplifying assumptions

l2 → R, l1 + l2 → rn · s0 + R − rn · s = R − (s − s0) · rn. (7.11)

Summing over all instantaneous fields at P we are left with

ε = Ae2

mc2R
e2πi(νt−R/λ)

∑
n

e(2πi/λ)(s−s0)·rn . (7.12)

Rather than considering each electron individually the quantum mechanics
inspired approach is to consider a charge density ρ, such that ρdV is the ratio of
charge in the volume dV relative to the charge of one electron. The sum (7.12) is
then replaced with the integral

εe = Ae2

mc2R
e2πi(νt−R/λ)

∫
e(2πi/λ)(s−s0)·rnρdV, (7.13)

where

fe =
∫

e(2πi/λ)(s−s0)·rnρdV (7.14)

is typically referred to as the scattering factor per electron. The equation for fe is sim-
plified by assuming spherical symmetry for the charge distribution ρ = ρ(r). Then,
considering right side of Fig. 7.1, (s − s0) · r = 2 sin θ cosϕ, and after performing
integration with respect to ϕ we get

fe =
∫

4πr2ρ(r)
sin kr

kr
dr, (7.15)

where k = 4π sin θ
λ

.
For a collection of electrons in an atom we simply sum all of the contributions:

P
R

l2

l1

O
s0 s

rn
rφ

s0 s
2θ

s-s0

Fig. 7.1 Diffraction from the electrons in an atom with the approximation that R � |rn |
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f =
∑
n

fe,n =
∑
n

∞∫
0

4πr2ρn(r)
sin(kr)

kr
dr, (7.16)

this sum is known as the atomic scattering factor and gives the amplitude of scat-
tered radiation per atom. The scattering factor given by (7.16) is only accurate when
the X-ray wavelength is much smaller than any of the absorption edge wavelengths
in the atom and when the electron distribution has spherical symmetry. For wave-
lengths comparable to absorption edge wavelengths, dispersion correction factors
are necessary.

7.2.2 Crystallographic Planes

We consider a crystal with crystal axes {a1, a2, a3}, such that the position of an atom
of type n in a unit cell m1m2m3 is given by the vector Rn

m = m1a1 + m2a2 + m3 +
a3 + rn . In order to derive the Bragg’s law for such a crystal, we must consider
the crystallographic planes hkl as shown in Fig. 7.2, where the first plane passes
through the origin, O , and the next intercepts the crystal axes at locations a1/h,
a2/k, a3/ l. The Bragg law depends on the orientation and spacing of these hkl, both
properties are conveniently represented by the vector Hhkl which is normal to the
planes and whose magnitude is reciprocal to the spacing, where the values (h, k, l)
are commonly referred to as the Miller indices. In order to represent theHhkl vectors
for a given crystal, we introduce a reciprocal basis, {b1,b2,b3}, which is defined
based on the crystal axes, given by:

b1 = a2 × a3
a1 · a2 × a3

, b2 = a3 × a1
a1 · a2 × a3

, b3 = a1 × a2
a1 · a2 × a3

. (7.17)

These vectors are defined such that each reciprocal vector bi is perpendicular to the
plane defined by the two crystal axes of the other indices, a j �=i . Furthermore, the ai
and b j vectors satisfy the following scalar products:

ai · bi = 1, ai · b j = 0, =⇒ ai · b j =
{
1 i = j
0 i �= j.

(7.18)

Fig. 7.2 Definition of the
hkl planes relative to the
crystal axes a j

a3
a2

a1

n

O
φ

a3/l
a2/k

a1/h
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Fig. 7.3 Bragg law in terms
of Hhkl

s0/λ s/λ

θ

(s-s0)/λ

θ

Ηhkl

Any Hhkl vector can then be written as the linear combination

Hhkl = hb1 + kb2 + lb3, (7.19)

and it can be easily calculated that if the perpendicular spacing between hkl planes
is dhkl , then

dhkl = 1

|Hhkl | . (7.20)

The usefulness of theHhkl vector is that the Bragg condition can be concisely stated
as:

s − s0
λ

= Hhkl, (7.21)

where s and s0 are unit vectors in the direction of the incident and diffracted light,
as shown in Fig. 7.3. Equation7.21 simultaneously guarantees that the incident and
diffracted beam make equal angles with the diffracting planes and taking the mag-
nitude of either side gives us:

∣∣∣∣ s − s0
λ

∣∣∣∣ = 2 sin(θ)

λ
= |Hhkl | = 1

dhkl
, (7.22)

which is equivalent to the usual form of the Bragg law λ = 2dhkl sin(θ).

7.2.3 Diffraction by a Small Crystal

Consider a monochromatic beam of wavelength λ with direction of propagation s0
incident on an atom at position Rn

m = m1a1 + m2a2 + m3a3 + rn . The diffracted
light observed at point P, as shown in Fig. 7.4, is given by

εp = E0e2

mc2R
fn cos

[
2πνt − 2π

λ
(x1 + x2)

]
, (7.23)

where fn is the atomic scattering factor. We assume the crystal to be so small relative
to all distances involved that the scattered wave is also treated as a plane-wave and
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Fig. 7.4 Diffraction from
the electrons in an atom with
the approximation that
R � |rn |

P

R x2

x1

O
s0

s

rn
n
m

R

x2 `

approximate x2 ∼ x ′
2. The instantaneous field at position P due to atom (m, n) is

then given by

εp = E0e2

mc2R
fn exp {i [2πνt − (2π/λ) (R − (s − s0) · (m1a1 + m2a2 + m3a3 + rn))]} .

(7.24)

Ifwe sum (7.24) over all atoms in the crystal, we then get the total field atP. Assuming
a crystal with edges N1a1, N2a2, N3a3, and carrying out the sum, we can represent
the observable quantity εpε

∗
p which is proportional to the light intensity, as

εpε
∗
p = IeF

2 sin
2(π/λ)(s − s0) · N1a1

sin2(π/λ)(s − s0) · a1
sin2(π/λ)(s − s0) · N2a2
sin2(π/λ)(s − s0) · a2

sin2(π/λ)(s − s0) · N3a3
sin2(π/λ)(s − s0) · a3

,

(7.25)
where

F =
∑
n

fne
(2πi/λ)(s−s0)·rn (7.26)

is the structure factor which depends on the atomic positions rn and

Ie = I0
e4

m2c4R2

(
1 + cos2(2θ)

2

)
, (7.27)

where I0 is the intensity of the primary beam and (1 + cos2(2θ))/2 is a polarization
factor.

On the right hand side of (7.25) are terms of the form

sin2(Nx)

sin2(x)
, (7.28)

where xi = (π/λ)(s − s0) · ai . Such functions have large peaks ∼ N 2 at positions
x = nπ and quickly fall to zero elsewhere. Therefore, the observed intensity will
be zero almost everywhere except at those places satisfying the simultaneous Laue
equations:

(s − s0) · a1 = h′λ, (s − s0) · a2 = k ′λ, (s − s0) · a3 = l ′λ, (7.29)

where h′, k ′, and l ′ are integers, a condition which is equivalent to the Bragg law.
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Representing atomic positions relative to the crystal axes, we can write rn =
xna1 + yna2 + zna3 and consider the value of the structure factor when the Bragg
law is satisfied for a set of hkl planes, that is, when s − s0 = λHhkl . We then get

Fhkl =
∑
n

fn exp [2πi (hb1 + kb2 + lb3) · (xna1 + yna2 + zna3)] (7.30)

=
∑
n

fn exp [2πi (hxn + kyn + lzn)] ,

and if the structure factor for reflection hkl is zero, then so is the reflected intensity.

7.2.4 Electron Density

If we consider a small crystal relativewith sides of length a, b, and c, we can represent
the 3D electron density by its 3D Fourier transform

ρ(x, y, z) =
∑
p

∑
q

∑
r

Cpqr exp
[
−2πi

(
p
x

a
+ q

y

b
+ r

z

c

)]
, (7.31)

where the Fourier coefficients Cpqr can be found by integrating

a∫
0

b∫
0

c∫
0

ρ(x, y, z) exp
[
2πi

(
h
x

a
+ k

y

b
+ l

z

c

)]
= abcChkl . (7.32)

If we now replace the coordinates xn , yn , and zn in (7.30) by xn/a, yn/b, and zn/c,
we can rewrite the discrete structure factor as

Fhkl =
∑
n

fn exp
[
2πi

(
h
xn
a

+ k
yn
b

+ l
zn
c

)]
, (7.33)

which we can then rewrite in terms of a continuous electron density:

Fhkl =
a∫

0

b∫
0

c∫
0

ρ(x, y, z) exp
[
2πi

(
h
x

a
+ k

y

b
+ l

z

c

)]
dV, (7.34)

and so the electron density in electrons per unit volume is given by the Fourier
coefficients of the structure factors Fhkl according to

ρ(x, y, z) = 1

V

∑
h

∑
k

∑
l

Fhkl exp
[
−2πi

(
h
x

a
+ k

y

b
+ l

z

c

)]
. (7.35)
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Therefore, according to (7.35), the observed hkl reflections from a crystal correspond
to the Fourier series of the crystal’s electron density and therefore X-ray diffraction
of a crystal can be thought of as a Fourier transform of the crystal’s electron density.
Each coefficient in the series for ρ(x, y, z) corresponds to a point hkl in the reciprocal
lattice. Unfortunately, rather than observing the Fhkl values directly, which would
allow for the direct 3D calculation of the electron density according to (7.35), the
quantities that are actually observed are 2D projections of the intensities Fhkl F∗

hkl =
|Fhkl |2, in which all phase information is lost and must be recovered via iterative
phase retrieval techniques provided that additional boundary condition and support
information about the crystal structure are available.

7.3 High-Energy X-Ray Diffraction Microscopy (HEDM)

7.3.1 Experimental Setup

There are mainly two experimental setups utilized for performing HEDM measure-
ments: (1) Near-field (nf-) HEDM and (2) far-field (ff-) HEDM, where the main
difference between the two setups is the sample to detector distance. In the case of
nf-HEDM, the sample to detector distance range from3 to 10mmwhile the ff-HEDM
setup can range anywhere from 500 to 2500mm. The schematic of the experimental
setup is shown in Fig. 7.5. A planar focused monochromatic beam of X-rays is inci-
dent on a sample mounted on the rotation stage, where crystallites that satisfy the
Bragg condition give rise to diffracted beams that are imaged on a charge coupled
detector (CCD).

HEDM employs a scanning geometry, where the sample is rotated about the axis
perpendicular to the planar X-ray beam and diffraction images are acquired over
integration intervals δω = 1◦ and 180 diffraction images are collected. Note that the
integration interval can be decreased if the sample consist of small grains and large
orientationmosaicity.During sample rotation, it is important to ensure that the sample
is not precessing in and out of the beam, as some fraction of the Bragg scattering
would be lost from that portion that passes out of the beam. Mapping the full sample
requires rotating the sample about the vertical axis (ω-axis) aligned perpendicular to
the incident beam. Depending on the dimensions of the parallel beam, translation of
the sample along the z-direction might be required to map the full 3D volume.

The near-field detector at APS 1ID-E and CHESS comprise of an interline CCD
camera, which is optically coupled through 5× (or 10×) magnifying optics to image
fluorescent light from a 10 µm thick, single crystal, Lutecium aluminum garnet
scintillator. This results in a final pixel size that is approximately 1.5 µm (∼3 ×
3mm2 field of view). The far-field data is also recorded on an area detector with
an active area of ∼410 × 410mm2 (2K × 2K pixel array). The flat panel detector
has a layer of cesium iodide and a-silicon scintillator materials for converting X-ray
photons to visible light. The final pixel pitch of the detector is 200 µm. Research is
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Fig. 7.5 HEDM setup at APS beamline 1-ID E. a Far-field detector setup, b specimen mounted on
a rotation stage, and c near-field detector setup [33]

underway for developing in-situ and ex-situ environments as well as area detectors
with improved efficiency and data collection rates [45].

Toobtain spatially resolved informationon local orientationfield, near-fieldgeom-
etry is utilized where the diffraction image is collected at more than one sample to
detector distances per rotation angle, to aid in high-fidelity orientation reconstruc-
tions. Ff-HEDMprovides center of mass position of individual grains, average orien-
tations, relative grain sizes, and grain resolved elastic strain tensors. The ff- detector
can be translated farther back along the beam path (i.e. very far-field geometry), if
higher strain resolution is desirable and if permitted by the beam/beamline specifica-
tions. Therefore, HEDMmeasurements can be tailored to fit individual experimental
needs and as necessitated by the science case by tuning parameters such as beam
dimensions, setups, and data collection rates.

7.3.2 Data Analysis

In the case of nf-HEDM, the diffraction spots seen on the detector are randomly
positioned and the spot size and shape correlates directly with the grain size and
morphology. Since the grain shape is projected on the detector, spatially resolved
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orientation field reconstruction is possible using the near-field geometry. In contrast,
the diffraction spots in the far-field geometry sit on theDebye-Scherrer ring, similar to
what is observed during the powder diffraction measurements. The difference is that
in ff-HEDM measurements, the ring is discontinuous and individual spots are more
or less isolated, which is important for obtaining high-fidelity data reconstructions.

The diffraction images obtained in the HEDM measurements need to be pre-
processed in order to extract diffraction signals from the sample. First, as a clean-up
step, background and stray scattering are removed from the raw detector images
and hot pixels can be removed using median filtering, if required. One of the most
critical steps in the reconstruction process is identifying the instrument parameters.
A calibration sample is used for this purpose. Critical parameters include calibrated
beam energy, sample to detector distance, rotation axis and detector tilts with respect
to the incident beam plane.

Several orientation and strain indexing tools have been developed for analyzing
HEDM data. Fully automated beam line experiment (FABLE) software was initially
developed for analyzing far-field data. Recently, grain indexing tool has been added
that enables near-field data reduction for a box-beam geometry, where the incoming
beam is incident on themiddle of the detector, allowing Friedel pairs detection. Hexrd
software [46] was developed in parallel at Cornell University for reconstructing
grain orientations and strain tensors from ff-HEDM data. This software is currently
maintained and updated by Lawrence Livermore National Laboratory. Integrating
nf-HEDM data reconstruction capability in Hexrd in collaboration with CHESS is
underway.

IceNine software developed at Carnegie Mellon University [47] operates mainly
on the nf-HEDMdata collected using a planar focused beam. Therefore, both the data
collection and reconstruction take longer compared to the other two methods. How-
ever, forward model method utilized by the IceNine software enables high resolution
spatially resolved orientation field reconstructions and provides unique capability to
characterize heavily deformed materials.

Figure 7.6 shows a schematic demonstrating the nf-HEDM measurements using
planar beam and 3D orientation field reconstruction. The raw diffraction data is
background subtracted and the peaks are segmented. The image is then utilized
by the reconstruction software for 2D microstructure reconstructions. These steps
are repeated for all the 2D layers measured by translating the sample along the z-
direction. Finally, 3D microstructure map is obtained by stacking the 2D layers on
top of each other. Since the sample is not touched during the full volume mapping,
the stacking procedure does not require registration, which are otherwise needed in
EBSD+FIB type measurements.

Recently, Midas software [49] was developed at APS for simultaneous recon-
struction of nf-HEDM and ff-HEDM data. In this case, the average grain orienta-
tion information from the ff-HEDM reconstruction is given as guess orientations
for spatially resolved orientation reconstructions in nf-HEDM. Such seeding sig-
nificantly reduces the search space for both spatial and orientation reconstruction
and significantly speeds up the reconstruction process. However, the seeding results
in overestimating some grain sizes, while missing grains that were not indexed in
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Fig. 7.6 Reconstruction yields 2D orientation maps, which are stacked to obtain a 3D volume [48]

the far-field. Another drawback is that the technique does not work well for highly
deformed materials, as far-field accuracy drops with increasing peaks smearing and
overlap that occurs with increasing deformation level.

Continued improvement and development are underway.

7.4 Microstructure Representation

Figure7.7 schematically demonstrate the orientation and misorientation representa-
tions used in crystallography.

Crystallographic orientation or rotation required to bring a crystal in coincidence
with another (termed asmisorientation) can be represented as a proper rotationmatrix
R in basis Bx,y,z , which can be written in terms of the basic rotations matrices as:
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Fig. 7.7 Conventions used for microstructure representation

R = Rx (α)Ry(β)Rz(γ), (7.36)

where Rx , Ry , and Rz are 3D rotations about x, y, and z axes, respectively. It is
convenient to represent the final rotation matrix R as an axis/angle pair, where axis
is a rotation axis in some other basis Bu,v,w at some angle θ. Additionally, for any
proper rotation matrix, there exists Eigen value λ = 1, such that

Ru = λu = u. (7.37)

The vector u is the rotation axis of the rotation matrix R. We also want to find θ, the
rotation angle. We know that if we start with u and choose two other orthonormal
vectors v and w, then the rotation matrix can be written in the u, v,w basis, Bu,v,w,
as

Mu(θ) =
⎛
⎝ 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎞
⎠ (7.38)

Since the trace of a matrix is invariant to change of basis, we know

tr(R) = tr(M) = 1 + 2 cos(θ). (7.39)

This allows us to calculate the rotation angle, θ, without ever expressing Mu in
the form (7.38), we simply use the given form, R, and calculate
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Fig. 7.8 Synthetic microstructure resembling microstructure maps obtained from HEDM data.
a Ff-HEDM and b nf-HEDM [10]

θ = arccos

(
tr(R) − 1

2

)
, (7.40)

which is known as misorientation angle in crystallography.
Figure7.8 illustrates the type of microstructure data that HEDM technique pro-

vides. Figure7.8a represents the grain average information that ff-HEDM provides,
where the colors correspond to either orientation or components of elastic strain
tensor. Figure7.8b shows a spatially resolved 3D orientation field that could be
obtained from nf-HEDMmeasurements. From the spatially resolved microstructure
map, individual 3D grains are segmented as a post-processing step by clustering
points belonging to similar orientations within some specified threshold misorienta-
tion angle.

7.5 Example Applications

7.5.1 Tracking Plastic Deformation in Polycrystalline Copper
Using Nf-HEDM

Nf-HEDM is mainly suitable for structure determination of individual crystallites as
well as their local neighborhood in a polycrystalline material. Utilizing nf-HEDM,
Pokharel et al. [4, 17] demonstrated characterization of 3D microstructure evolu-
tion due to plastic deformation in a single specimen of polycrystalline material. A
99.995% pure oxygen free electrical (OFE) Cu was used for this study, where a
tensile specimen with a gage length of 1mm and a cylindrical cross section of 1mm
diameter was prepared. The tensile axis was parallel to the cylindrical axis of the
sample. The Cu specimen was deformed in-situ under tensile loading and nf-HEDM
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Fig. 7.9 Experimental stress-strain curve along with one of the 2D slices of orientation and confi-
dence maps from each of the five measured strain states. Nf-HEDM measurements were taken at
various strain levels ranging from 0 to 21% tensile strain. IceNine software was used for data recon-
struction. The 2D maps plotted outside the stress-strain curve represent the orientation fields from
each of the corresponding strain levels obtained using forward modeling method analysis software.
The 2Dmaps plotted inside the stress-strain curve are the confidence, C, maps for the reconstructed
orientation fields at different strain levels. Confidence values of the five plots range from 0.4 to 1,
where C = 1 means all the simulated scatterings coincide with the experimental diffraction data and
C = 0.4 corresponds to 40% overlap with the experimental diffraction peaks. For each strain level
a 3D volume was measured, where each strain state consists on average 100 layers [17]

data were collected at various strain levels. Figure7.9 [17] shows the stress-strain
curve along with the example 2D orientation field maps and corresponding confi-
dence maps for strain levels up to 21% tensile strain. Figure7.10 [17] shows the
corresponding 3D volumetric microstructure maps for 3 out of 5 measured strain
states, where ∼5000 3D grains were tracked through initial, 6, and 12% tensile
deformation. The measured microstructure evolution information was used to study
spatially resolved orientation change and grain fragmentation due to intra-granular
misorientation development during tensile deformation.

Figure7.11 [4, 17] shows the ability to track individual 3Dgrains at different strain
levels. Figure7.11a shows the kernel average misorientation (KAM) map indicating
local orientation change development due to plastic deformation. The higher KAM
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Fig. 7.10 Three 3D volumes of the measured microstructures a initial, b 6% strain, and c 12%
strain. Colors correspond to an RGBmapping of Rodrigues vector components specifying the local
crystal orientation [17]

Fig. 7.11 Tracking deformation in individual grains through deformation [4, 17]

value indicates that the intra-granular misorientation between adjacent crystallite
orientation is high. Figure7.11b shows the inverse pole figure (left) where average
grain reorientation of 100 largest grains in the material was tracked. The tail of
the arrow corresponds to the average orientation in the initial state and the arrow
head represents average orientation after subjecting the sample to 14% tensile strain.
Inverse pole figure (right) shows the trajectory of individual voxels in a grain tracked
at 4 different strain levels. The insets show the grain rotations for two grains near
<111>- and <001>-corners of the stereographic triangle. The black arrow shows
the grain averaged rotation from the initial to the final strain. It is observed that
the two grains, #2 and #15, show very different intra-granular orientation change,
where grain fragmentation is observed for grain #15. It is evident that spatially
resolved information is needed to capture the local details within a grain. These plots
further indicate that only grain averaged orientation information was insufficient
to capture the local heterogeneities that develop in individual grains due to plastic
deformation. Variation in the combinations of slip systems activated during plastic
deformation can lead to such heterogeneous internal structure development in a
polycrystalline material. In addition, a strong dependence was observed between
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orientation change and grain size, where larger grains developed higher average
local orientation change in comparison to smaller grains. This suggests that the type
of deformation structures formation is also dependent on the initial orientation and
grain size. Moreover, decrease in average grain size was observed with deformation
due to grain fragmentation and sub-grain formation.

7.5.2 Combined nf- and ff-HEDM for Tracking
Inter-granular Stress in Titanium Alloy

A proof-of-principle combined nf- and ff-HEDM measurements were reported by
Schuren et al. [33], where microstructure and micro-mechanical field evolution were
measured in a single sample undergoing creep deformation. In-situ measurements of
titanium alloy (Ti-7Al) were performed, where HEDM data were collected during
quasi-static loading. Experimental setup employed for this multi-modal diffraction
and tomography measurements is shown in Fig. 7.5. Nf- and ff- data were recon-
structed using IceNine and Hexrd software, respectively. Spatially resolved grain
maps and corresponding grain cross-section averaged stress fieldwere used for study-
ing local neighborhood effect on observed anisotropic elastic and plastic properties.

Figure7.12 shows the microstructure and micro-mechanical properties obtained
from theHEDMmeasurements. Figure7.12a shows the spatially resolved orientation
field map from nf-HEDM with corresponding COM positions for individual grains
obtained from ff-HEDM. Figure7.12b shows the spatial maps colored by hydrostatic
and the effective stresses. Figure7.12c plots the hydrostatic and effective stresses
versus the coaxiality angle defined as the angle between the grain scale stress vector
and applied macroscopic stress direction. In pre-creep state clear evidence of higher
hydrostatic stress was observed for grains with stress states aligned with the applied

Fig. 7.12 Combined nf- and ff-HEDM measurements of Ti microstructure. a ff-COM overlaid on
nf-orientation map. bHydrostatic and deviatoric stress evolution pre- and post-creep. c Hydrostatic
and deviatoric stresses versus coaxiality angle [33]
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macroscopic stress. In post-creep state, bifurcation of hydrostatic stresswas observed
where grain scale stress deviated away from the applied macroscopic stress.

The same experimental setup was utilized by Turner et al. [50] to perform in-situ
ff-HDEMmeasurements during tensile deformation of the Ti-7Al sample, previously
measured during the creep deformation [33]. 69 bulk grains in the initial state of the
nf-HEDM volume (200µm× 1mm× 1 mm) were matched with the ff-HEDM data
at various stages of tensile loading. Nf-HEDM data were not collected at the loaded
states as the measurements are highly time intensive (24 h/volume). Due to the com-
plexity of the experimental setup, the tensile specimen was subjected to axial load of
23 MPa during mounting the sample in the load frame. Therefore, the initial state of
the material was not in a fully unloaded state. The grain averaged elastic strain ten-
sor were tracked through deformation and distinct inter-granular heterogeneity was
observed, which seems to have resulted directly from the strain heterogeneity in the
unloaded state (23MPa). This indicated that the initial residual stresses present in the
material influenced the strain and corresponding stress evolution during deformation.

Combined nf- and ff-HEDM in-situ data enabled polycrystal model instantia-
tion and validation, where crystal plasticity simulation of tensile deformation of
Ti-7Al was performed using the Ti-7Al data [34]. Predicted strain and stress evo-
lution showed good qualitative agreement with measurements; however, grain scale
stress heterogeneity was not well captured by the crystal plasticity simulations. The
comparison could be improved by incorporating initial residual stresses present in
the material along with measured 3D microstructure as input to simulation.

7.5.3 Tracking Lattice Rotation Change in Interstitial-Free
(IF) Steel Using HEDM

Lattice rotation in polycrystalline material is a complex phenomenon influenced by
factors such as microstructure, grain orientation, interaction between neighboring
grains, which result in grain level heterogeneity. 3D X-ray diffraction microscopy
(3DXRD) was employed by Oddershede et al. and Winther et al. [29, 30] to study
lattice rotation evolution in 3D bulk grains of IF steel. Monochromatic X-ray beam
energy, E = 69.51 keV, and beam height of 10 µm were used for microstruc-
ture measurements. Initial microstructure of a tensile specimen with dimensions
0.7 × 0.7 × 30 mm3 were mapped via HEDM, then the sample was re-measured
after subjecting it to 9% tensile deformation. FABLE software was used for 3D
microstructure reconstruction.

Three bulk grains with similar initial orientations, close to <522> orientation
located between [001]–[-111] line in a stereographic triangle, were identified for
detailed study of intra-granular variation in lattice rotation. It was observed that the
tensile axes of all three deformed grains rotated towards the [001] direction, which
was also themacroscopic loading direction. To investigate the intra-granular variation
in rotation, raw diffraction spots were tracked before and after deformation. Three
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Fig. 7.13 Tracking deformation in individual grains through deformation [29, 30]

different reflections for each grain orientation were considered, where the observed
change in location and morphology of the diffraction spots were linked to intra-
granular orientation change in individual grains.

Crystal plasticity simulations were performed to identify slip systems activity that
led to orientation spread. The peak broadening effectwas quantified by integrating the
diffraction spots along theω (rotation about the tensile loading direction) and η (along
the Debye-Scherrer ring) directions. Figure7.13 shows the measured and predicted
reflections for one of the three grains after deformation. Predicted orientation spread
were in good agreement with measurements, where large spread in diffraction spots
were observed along both ω and η directions. Four slip systems were predicted to
be active based on both Schmid and Taylor models. However, large intra-granular
variation in the spread was attributed mostly to the activity of (0-1-1)[11-1] and‘
(-101)[11-1] slip systems, which also had the highest Schmid factors. Moreover, the
results indicated that the initial grain orientation played a key role in the development
of intra-granular orientation variation in individual grains.
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7.5.4 Grain-Scale Residual Strain (Stress) Determination
in Ti-7Al Using HEDM

HEDM technique was employed by Chatterjee et al. [35] to study deformation
induced inter-granular variation in orientation and micro-mechanical field in Ti-
7Al material. Tensile specimen of Ti-7Al material consisting of fully recrystallized
grains with 100 µm average grain size were prepared for grain scale orientation and
residual stress characterization. Planar-focused high-energy X-ray beam of 1.7 µm
height and 65.351 keV energy were used for probing 2D cross-section (layer) of
the 3D sample. 3D data were collected by translating the material along the vertical
axis of the tensile specimen, mapping volumetric region of 1.5 × 1.5 × 0.54mm3.
Total of 15 layers around the gage volume were measured with 40 µm vertical spac-
ing between layers. Diffraction data were collected at various load steps as well as
during loading and unloading of the material. FABLE software was used for diffrac-
tion data analysis for grain center of mass and grain cross-section averaged strain
determination.

Figure7.14 shows the grain scale stress states developed in three neighboring
grains in the sample. Upon unloading, grain scale residual stresses were observed in
the material. Although uniaxial load was applied to the tensile specimen, complex
multi-axial stress-states resembling combined ‘bending’ and tension were observed

Fig. 7.14 Stress jacks to demonstrate complex grain scale stress states development for three
neighboring grains in a sample subjected to uniaxial macroscopic load [35]
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in individual grains. Co-axiality angle was calculated as an angle between themacro-
scopic loading direction and the grain scale loading state. Spatial variation in the co-
axiality angle indicated variation in inter-granular stress states, which was mainly
attributed to the local interactions between neighboring grains irrespective of the
macroscopic loading conditions. Such local heterogeneity that develop at the grain
scale influences macroscopic behavior and failure mechanisms in polycrystalline
material.

7.5.5 In-Situ ff-HEDM Characterization of Stress-Induced
Phase Transformation in Nickel-Titanium Shape
Memory Alloys (SMA)

Paranjape et al. [36] studied the variation in super-elastic transformation strain in
shape memory alloys (SMA) materials utilizing ff-HEDM technique with 2mm
wide by 0.15mm tall beam of energy 71.676 keV. In-situ diffraction data were
collected during cyclic loading in tension (11 cycles of loading and unloading) of
Ti-50.9at.%Ni samples, exhibiting super-elasticity property at room temperature.
Two phases were present in the material: austenite and martensite, upon loading
and unloading, where 3D microstructure and micro-mechanical field were analyzed
only for the austenite phase. Martensitic grains were not resolved by the ff-HEDM
technique due to their large number resulting in a uniform powder pattern on the
detector. The ff-HEDM analyses were performed using MIDAS software and pow-
der diffraction patterns were analyzed using GSAS-II software.

HEDM data enabled capturing phase transformation during cyclic loading. Initial
state data were collected prior to loading and 10 more cycles were performed to
stabilize the macroscopic stress-strain response. Figure7.15 shows the macro stress-
strain curve and the corresponding grains from ffHEDMmeasurements from the 11th
cycle. In the 11th cycle, ff-HEDM data were collected at nine different strain levels
(five during loading and four during unloading). At peak load of 311MPa (state 4), a
fraction of the austenite grains was found to have transformed to martensitic phase.
After full unload, near complete reverse transformation was observed with some
hysteresis in the stress-strain response. Cyclic loading resulted in location dependent
axial strains in the material, where the interior grains were mostly in tension while
the surface grains exhibited combined tension and compression loading states.

Elasticity simulations were instantiated using the measured microstructure to
quantify grain scale deformation heterogeneity with respect to relative location in the
sample (surface versus interior). The origin of the heterogeneities was attributed to
the neighboring grain interaction, which also led to intra-granular variation in stress
states in similarly oriented grains. In addition, large grains with higher number of
neighbors exhibited large intra-granular stress variation. Difference in the family of
slip systems activated in the interior versus the surface grains were also suspected to
play a role in variation in intra-granular stress states. Resulting stress heterogeneity
influenced the strain induced phase transformation in SMA materials.
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Fig. 7.15 Inverse pole figure and a 3D view of the grain center of mass is shown at three key stages:
0 load (0), peak load (4) showing fewer B2 grains remaining due to phase transformation, and full
unload (8) showing near-complete reverse transformation to B2. The grains are colored according
to an inverse pole figure colormap [36]

7.5.6 HEDM Application to Nuclear Fuels

Properties of nuclear fuels strongly depend on microstructural parameters, where
residual porosity reduces thermal conductivity of the fuel and grain size and mor-
phology dictates fission gas release rates as well as dimensional change during oper-
ation. Both of these factors can greatly limit the performance and life-time of nuclear
fuel. HEDM technique is well-suited for characterizing microstructures of ceramics
and metallic nuclear fuels due to minimal amount of plastic deformation exhibited
by these materials. In addition, nuclear fuel sample preparation for conventional
metallography and microstructure characterization are both costly and hazardous. In
contrast, HEDM requires little to no sample preparation where a small parallelepiped
can be cut from the fuel pellet for 3D characterization. Recently, conventional, UO2,
and candidate accident tolerant fuels (ATF), UN-U3Si5, materials have been char-
acterized utilizing nf-HEDM technique. Brown et al. [37] employed the nf-HEDM
technique, for the first time, to non-destructively probe 3D microstructure of nuclear
fuel materials. High-energy X-ray beam of 1.3mm wide by 3 µm tall and 85.53
keV energy were used to measure 3D microstructure of ceramic UO2. Similarly, the
nf-HEDM technique was also utilized to characterized 3D microstructure of ATF
fuels [43]. The 3D microstructures were reconstructed using IceNine software.
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Fig. 7.16 Grain orientation maps for a UO2 at 25 µm intervals from near the top (left) of the
sample. Arrows indicate grains that span several layers are indicated [37], and bUN-USi ATF fuel,
where 3D microstructure is shown for the major phase (UN) and 2D projection of 10 layers are
shown for the minor phase (USi) [43]

Figure7.16a shows of 3D characterization of a UO2 materials, where 2D maps
from different region on the samples are plotted. Similarly, Fig. 7.16b shows the
orientation field maps of the two-phase ATF fuel, where the 3D microstructure of
the major phase, UN, is shown on the left and the 2D projection of 10 layers of the
U3Si5 phase is shown on the right. Note that in both case no intra-granular orientation
gradient were present in the grains, which suggest that minimal dislocation density
or plastic deformation is present in these materials.

Figure7.17 shows the orientation maps for UO2 material before and after heat
treatment. Visual inspection indicates significant grain growth after heat treatment,
where the initial residual porosity disappeared resulting in a near fully densematerial.
The measured microstructures were utilized for instantiating grain growth models
for nuclear fuels [51].

7.5.7 Utilizing HEDM to Characterize Additively
Manufactured 316L Stainless Steel

Additive manufacturing (AM) is a process of building 3D materials in a layer by
layer manner. Variety of AM processing techniques and AM process parameters
are employed for material fabrication, which lead to AM materials with large vari-
ation in materials properties and performance. AM materials could greatly benefit
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Fig. 7.17 Microstructure evolution in UO2. a As-sintered and b after heat-treatment to 2200 ◦C
for 2.5h [51]

fromHEDM technique, where in-situ or ex-situ measurements of microstructure and
residual stress could improve the current understanding of SPP relationships in AM
materials.

As a feasibility test, nf-HEDMmeasurements were performed onAM316L stain-
less steel (SS) materials before and after heat treatment. Figure7.18a, b show the
detector images for as-built and annealed 316L SS sample, respectively. In the case of
as-built material, the detector image is complex, resembling either diffraction from a
powder samplewith large number of small grains or diffraction fromhighly deformed
material. On the other hand, annealed material exhibited sharp isolated peaks com-
mon of recrystallized materials. IceNine software was employed for microstructure
reconstruction. Complimentary powder diffraction measurements revealed the pres-
ence of austenite and ferrite phase in the initial microstructure.

In the as-built state, the secondary ferrite phase with fine grain size was not
resolved by nf-HEDM measurements; therefore, only austenite phase was recon-
structed. Figure7.18c shows the first attempt at reconstructing the austenite phase
in the as-built microstructure. As the sample was >99.5% dense, the white spaces
shown in the microstructure map corresponds to either small/deformed austenite
grains or small ferrite grains. Upon annealing, complete ferrite to austenite phase
transformation was observed along with recovery of austenite grains. Figure7.18d
shows the austenite phase orientation maps resulting in equiaxed and recrystallized
austenite grains.
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Fig. 7.18 Near-field detector image for AM 304L SS steel for a as-built and b after heat treatment
to 1060 ◦C for 1 h. Before and after detector images show sharpening of diffraction signals after
annealing. Nf-HEDM orientation maps are shown for c as-built and d annealed material. Small
austenite and ferrite grains were not resolved in the reconstruction. After annealing the residual
ferrite phase in the initial state completely phase transformed to austenite phase, resulting in a fully
dense material

7.6 Conclusions and Perspectives

The following are some of the conclusions that can be drawn from the literature
employing theHEDM technique formicrostructure andmicro-mechanical fieldmea-
surements:

• HEDM provides previously inaccessible mesoscale data on a microstructure and
its evolution under operating conditions. Such data is unprecedented and provides
valuable insight for microstructure sensitive model development for predicting
material properties and performance.

• HEDM provides the flexibility to probe a range of material systems, from low-Z
to high-Z. One of the major limitations of HEDM technique in terms of probing
high-Z material is that the signal to noise ratio drastically decreases due to high
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absorption cross-section of high-Z materials. In addition, the quantum efficiency
of the scintillator deteriorates with increasing energy (>80 keV used for nuclear
materials). As a result, longer integration times per detector image are required for
high-quality data acquisition. This means that the data collection time can easily
increase by factor of 3–4 for uranium in comparison to low-Z materials such as
titanium and copper.

• Nf-HEDM is ideal for probing spatially resolved 3D microstructure and provides
information on sub-structure formation within a grain as well as evolution of its
local neighborhood under in-situ conditions. As defect accumulation and dam-
age nucleation are local phenomena, spatially resolved microstructure and inter-
nal structure evolution information from experiments are valuable for providing
insight into physical phenomena that affect materials properties and behavior.

• Ff-HEDM data provides center of mass of a grain and grain resolved elastic strain
for thousands of grains in a polycrystallinematerial. Employing a box beam geom-
etry, statistically significant numbers of grains can be mapped in a limited beam
time. In addition, due to faster data collection rates of ff-HEDM in comparison to
nf-HEDM, a large number of material states can be measured while the sample is
subjected to external loading conditions. This enables detailed view of microstruc-
ture and micro-mechanical field evolution in a single sample.

• Various HEDM studies elucidated development of mesoscale heterogeneities in
polycrystalline materials subjected to macroscopic loading conditions. Variations
in intra-granular stress states were observed in various material systems. This
variation was mainly attributed to the local interaction between neighboring grains
with minor effects from initial grain orientations and loading conditions.

• In the case of deformed materials or AM materials with large deformation and
complex grain size and morphology, the diffracted peaks smeared out and the
high order diffraction intensities dropped. Development of a robust method for
background subtraction and diffraction peak segmentation will be crucial for high-
fidelity microstructure reconstructions for highly deformed samples..

The main insight from various applications utilizing the HEDM techniques was
that macroscopic responses of polycrystalline materials were affected by the hetero-
geneities in microstructure and micro-mechanical fields at the local scale. All the
examples presented here demonstrated in-situ uniaxial loading of the polycrystalline
materials; however, experimental setups for more complex loading conditions such
as bi-axial loading are currently being explored [52]. Furthermore, major challenges
remain in terms of characterization of more complex materials such as additively
manufactured materials where large variations in initial grain orientation as well as
grain morphology are observed. The technique is still highly limited to polycrys-
tals with relatively large grains (>10 µm as pixel pitch of the near-field detector is
∼1.5 µm) and with low deformation level (e.g. <20% tensile strain). Advancement
in detector technology aswell as data reduction toolswill be required to applyHEDM
techniques for materials with small grains and large deformation. Note that in the
current data analysis framework uncertainty quantification is one of the areas that
is not fully explored. Therefore, how errors propagate from measurements to data
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reconstruction and when the experimental data is used for model instantiation how
that affects predicted material properties and behaviors are not yet understood.

7.6.1 Establishing Processing-Structure-
Property-Performance Relationships

The advent of 3rd and 4th generation light sources has enabled the development of
advancednon-destructivemicrostructure characterization techniques such asHEDM.
As a result, high-resolution and high-dimensional data acquisition have been made
possible. The goal is to utilize these techniques to obtain high-fidelity information
for establishing processing-structure-property-performance (PSPP) relationships in
materials. However, the ability to design material microstructures with desired prop-
erties and performance is still limited. Any advancement in material design requires
the development of multi-mechanism and multi-physics predictive models, which
can rely heavily on experimental testing and measurements. Because HEDM type
data collection is expensive, only a limited number of sample states can be exper-
imentally tested and the resulting data sets are extremely sparse in the vast PSPP
material space.

Currently, lengthy measurements (hours) severely limit the time scales at which
mesoscale 3D microstructure evolution data can be collected with high spatial (∼1
µm) and orientation, (∼0.01◦) resolution. Furthermore, extremely long reconstruc-
tion times (days) prevent sample evolution-based feedback during an experiment.
The reconstruction techniques currently used are brute force and the turnaround
time from data collection to reconstruction is very long. For example, the 2D spa-
tially resolved orientation field reconstruction shown in Fig. 7.9 took ∼20 mins per
sample cross-section on 512 processors, requiring ∼650 K core-seconds/layer on a
system rated at 9.2 Gflops/core. Typically, there are 50–100 such cross-sections in
a full 3D volume, which would require several minutes of reconstruction on a ∼6.5
Pflop machine. In addition, the first step of reconstruction requires lengthy, manual
calibration to find appropriate instrument parameters for a given experiment.

The Advanced Photon Source (APS), Linac Coherent Light Source (LCLS) and
CornellHighEnergySynchrotronSource (CHESS) are upgrading theirX-ray sources
and detector technologies over the next few years to obtain better temporal resolution
in imaging and diffraction, which means faster data collection rates. Therefore, it is
important that more focus is placed on meeting the data reduction and reconstruction
demands created by these increasing data collection rates. This will not only improve
the information extraction capability from high dimensional data but also provide
faster feedback to drive experiments.

For instance, the current Edisonian approach inmaterialsmeasurement and testing
needs to be replaced with more strategic approach to maximize information extrac-
tion capability from sparse datasets. Furthermore, the current norm in HEDM type
measurements is to collect large amounts of data (several hundred GBs to TBs) for a
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Fig. 7.19 Schematic to illustrate data analysis pipeline for physics based model development

given sample state, only to later discard or never analyze most of the acquired data.
The main reason for such an inefficient measurement protocol is due to the lack of
real-time analyses tools that can guide measurements during the limited available
beam time. Investment in the development of efficient, fast, and user-friendly data
reduction and reconstruction software has the potential to change how experiments
(analysis, throughput) are performed. This could improve the data quality as well as
enable multiple sample state measurements, lending to high-temporal resolution.

For dynamic conditions, both spatially and temporally resolved (∼1µm and ∼1
ps) microstructure information is desired to understand materials properties and
performance for engineering applications. Current literature demonstrates that non-
destructive techniques can be successfully utilized for studying 3D microstructure
evolution under quasi-static conditions. However, extending such studies to dynamic
loading conditions is still a challenge. Currently, the most common approach to
mapping 3Dmicrostructures is by rotating the sample and collecting multiple views.
However, to capture the dynamics during shock loading or during high strain-rate
loading conditions, data needs to be acquired at the same temporal scale as the
dynamic process. Waiting for a sample to be rotated and imaged from multiple
angles during such in-situ measurements is just too slow. In order to speed up the
HEDM measurement process, we must consider more sophisticated approaches to
measurement and reconstruction, including iterative techniques which utilize past
sample state data and dynamic models for subsequent reconstructions.

Figure7.19 demonstrates a possible work flow for enabling dynamic measure-
ments. HEDMand various other 3D characterization techniques discussed earlier can
be utilized to fully characterize the initial state of the material before dynamic load-
ing. This would provide information such as chemistry, composition, microstructure,
phase, and defect structures of the material of interest. Note that Fig. 7.19 is a vastly
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simplified vision, where this prior information about the sample would help develop
a data analysis framework in concert with available microstructure based models
and the forward modeling method for direct simulation of diffraction. The measured
initial 3D structure will be used as input to an existing model. The model will then
evolve the structure based on some governing equations and proper boundary condi-
tions. The forwardmodelingmethod can then be used to simulate diffraction from the
evolved structure. The simulated diffraction can then be compared with experiments.
Given the physics in the model is adequate, iteratively changing associated model
parameters could give us a reasonable match between the observation and simula-
tion, at least for the initial time steps. A feedback loop would be created for iterating
and updating each step. Note that there are uncertainties in the measured data (detec-
tor images in our case) that will propagate in the predicted features (reconstructed
microstructural properties), which are then used for predicting the corresponding
material properties. Therefore, measurement uncertainty needs to be accounted for
when adaptively tweaking the model parameters. Such an approach could provide
new insight into and understanding of the mechanisms driving dynamic processes in
polycrystallinematerials. However, it is highly unlikely that the existingmodels have
adequate physics to accurately capture the complex micro-mechanical field develop-
ment throughout the whole dynamic process. Given the possibility of acquiring data
with high temporal resolution, albeit sparse spatial views, an assumption can bemade
that the material change from one state to the next is relatively small. Therefore, uti-
lizing the initial characterization and linking the dynamic measurements, diffraction
simulations, data mining tools, and existing models could enable extraction of 3D
information from limited views and highly incomplete datasets.
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Chapter 8
Bragg Coherent Diffraction Imaging
Techniques at 3rd and 4th Generation
Light Sources

Edwin Fohtung, Dmitry Karpov and Tilo Baumbach

Abstract Although X-ray crystallography is established as a state of the art imag-
ing technique that has been revolutionary across materials sciences, physics, chem-
istry, biology and medicine, the imaging of non-crystalline objects is inaccessible
by this method. A promising approach that can overcome this challenge is coherent
diffractive imaging (CDI). CDI is a lensless microscopy technique that can provide
nanoscale images of both non-crystalline and crystalline objects. The morphology,
structure and evolution of an object of interest is probed using a coherent source of
photons (often X-rays, visible light) or electrons. Coherency is needed for the inter-
ference to produce a usable diffraction pattern. While the diffraction pattern contains
the magnitude information of the object in reciprocal space, the phase information
can be recovered using iterative feedback algorithms, allowing the reconstruction of
the image of an object. As no lenses are used, the image is free of aberrations and
hence the resolution is limited only by the wavelength of the probe, exposure, and
the robustness of the reconstruction algorithm. This technique has proven crucial
for imaging of variety of samples, from nanostructures to bio-tissues and individual
cells. The aim of this chapter is to provide a clear picture of recent state-of-the-art
developments in CDI techniques, and particularly in Bragg Coherent Diffraction
Imaging, applied to oxide nanostructures.
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8.1 Introduction

X-ray Bragg Coherent Diffractive Imaging (BCDI) method has been developed for
nondestructive imaging of three-dimensional (3D) displacement fields and strain
evolution within microscale and nanoscale crystals [1–3]. BCDI has been widely
utilized by researchers and scientists in academy, industry and governmental lab-
oratories resulting in a vast user community at photon factories or light sources
worldwide. BCDI relies on the fact that given a spatially coherent beam of X-rays
illuminating a specimen, so that scattering from all crystal extremities interfere, the
diffraction patterns contain enough information to be inverted to real space images.
The technique is based on general principles of coherent diffractive imaging and
iterative phase retrieval methodology which were first suggested by Sayre in 1953
[4] and first demonstrated by Miao in 1999 [5].

The diffraction pattern is measured in reciprocal space. The reciprocal space
in the BCDI experimental geometry is largely empty, allowing the investigation
of individual nanoparticles and grains. A polycrystalline sample will have closely-
packed grains with numerous different orientations. The Bragg diffraction from a
polycrystalline sample will resemble that of a powder but, given a small enough
beam and typical grain sizes close to a micron, individual grain diffraction can be
isolated by an area detector [6]. Even highly textured samples can still have enough
distribution of orientations so that the grains are usually distinguishable. Once a
Bragg peak is isolated and aligned, its 3D intensity distribution can be recorded
by means of an area detector placed on a long motorized arm. A rocking series
of images passing through the Bragg peak center provides 3D data, as shown in
Fig. 8.1c, consisting of characteristic rings resembling the Airy pattern of a compact
solid object and streaks attributed to its prominent facets.

Fig. 8.1 Bragg X-ray coherent diffraction experiment. a Isosurface of the magnitude of the Bragg
electron density of a BaTiO3 nanocrystal is reconstructed from the diffraction patterns measured
in reciprocal space. b A focused monochromatic beam illuminates the sample and a single peak
reflected from a nanocrystal is isolated in reciprocal space. c Evolution of the diffraction intensities
from the nanoparticle undergoing phase transitions induced by external electric field. White scale
bar corresponds to 0.1 Å−1. Illustration is taken from [9]
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The reconstruction (also known as “inversion”) of the data into the real space
images of an object is a critical step that uses a computer algorithm that takes advan-
tage of internal redundancies in the data, when the measurement points are spaced
close enough together and satisfy the oversampling requirement. The first step in the
reconstruction procedure is to postulate a 3D support volume in which all the sample
density will be constrained to physically exist. Arguably, the best method so far for
phase retrieval that allows to avoid stagnation of the reconstruction is the Fienup’s
Hybrid Input-Output (HIO) algorithm [7]. Thanks to continues improvements in algo-
rithms developments [8], we now consider the communitys phase retrieval inversion
routines to be a trustworthy black box tools for data evaluation, which soon will be
made available for real time reconstructions at the light sources and dedicated BCDI
beamlines.

We illustrate the capabilities of the BCDI method in Fig. 8.2 with the example
of a BaTiO3 nanocrystal, which is taken from the recent publication on topolog-
ical vortex dynamics [9]. The physical density of the crystal was almost uniform
except at the regions where topological defect was predicted by phase field simu-
lation (see Fig. 8.2b). However, there was a prominent imaginary part, the origin of
which is attributed to an internal ferroelectric displacement field. The figure shows
the reconstructed ferroelectric displacement fields and a comparison with a theo-
retically simulated model based on Landau theory [9]. The maximum displacement

Fig. 8.2 X-ray BCDI experiments and theoretical results. a Reconstructions of a single BaTiO3
nanocrystal showing the ferroelectric displacement field distributions at various 2D cut planes in
the nanocrystal. b Simulated model of BaTiO3 nanocrystal. The reconstructions show the evolution
of the displacement field under the influence of an external electric field E1 depicting the virgin
state of the nanocrystal at 0V, E2 maximum field state at 10V, and E3 the remnant field state at 0V.
Scale bars correspond to 60 nm. Illustration is taken from [9]
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component of the tetragonal structural phase as seen in the reconstructions of the
complex density of 0.03 nm, corresponding to a total displacement (relative to the
ideal crystal lattice) of about a half of a BaTiO3111 atomic spacing, or 0.06 nm.
BCDI has matured over the last decade and is now capable of playing a crucial role
in solving important problems in materials research and condensed matter physics.

Complex Ferroic Oxides can be driven far from equilibrium by external pertur-
bations such as heat, light, electric and magnetic fields. Four primary ferroic orders
namely toroidal, dipole, elastic and magnetic moments can be tuned at the micro-
scopic level and used in the design of novel devices and functional properties leading
to high-TC superconducting cuprates and colossal magnetoresistance.

Multiferroics have attracted enormous attention in the past decade, due to their fas-
cinating physics and applicable magnetoelectric functionalities. A variety of promis-
ing technological applications include energy transformation, signal generation and
processing, information storage, etc. X-ray scattering techniques couple directly to
these order parameters relevant to ferroelectricity andmagnetism, and are fully quan-
titative [10]. BCDI can resolve small strains with spatial resolution far better than
area-selective diffraction approaches. In addition, coherent scattering experiments
can have time resolutions limited only by the bunch length of the pulses from the
storage ring, which will be on the order of 30ps for NSLS-II and other 3rd and
4th generation light sources such as the LCLS, APS, XFEL, ESRF, SLAC, ANKA,
BESSY, PETRA-IV, ALS.

Phenomena accessible with the dramatic advance in spatial and temporal reso-
lution include domain dynamics, physics of magnetoelectric coupling, coupling of
soft modes to applied fields, coupling of domain walls and vortex structures in ferro-
electric nanocrystals as shown in recent work by the Fohtung group [9], coupling of
vortex-antivortex structure in ferroelectric nanowires [11], coupling of strain between
components of multilayers and multicomponent multifunctional ferroic materials.

BCDI from magnetic order (resonant or non-resonant) has the potential to probe
magnetic, and multifferoic dynamics in buried systems. Time-resolved coherence
techniques canbe extended to thedynamics of electronic andmagnetic systemsdriven
far from equilibrium with external perturbations. BCDI methods will be applied to
phase structures in electronically and magnetically ordered systems, ferroic oxides
showingTopoligical, Charge,Orbital, andSpin ordering, such as the domain structure
of the technologically important CMR manganites or vortex structures in multifer-
roics. The organization of charge and orbital domainswithin these strongly correlated
electron systems has interesting dynamic behavior near phase transitions [11].

Unlike micro/nano diffraction methods that examine only the Bragg reflection
intensity, coherent imaging is sensitive to the relative positions of ordered domains.
BCDI beamlines at 3rd and 4th generation sources could provide answers to ques-
tions such as: are the walls of a vortex-core in multiferroic nanostructure ferroelec-
tric, paraelectric or even semi-metallic, why is there substantial inhomogeneously
distributed distortion of the ChargeDensityWave (CDW)/SpinDensityWave (SDW)
wavevector in Cr and other incommensurate magnetic materials, for example.

Here we demonstrate that ferroic materials can be imaged under operando con-
ditions in a functional capacitor (as shown in Fig. 8.4) to study the formation and
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Fig. 8.3 3D reconstructions of ferroelectric polarization. Isosurfaces of the domain distribution
and the ferroelectric polarization within an individual nanocrystal under an applied electric field of
a E1 = 0 kV/cm, b E2 = 223 kV/cm, and c E3 = 0 kV/cm remnant state. d Phase field simulation
of the polarization maps depicting the structural phases within the nanocrystal. With M denoting
the monoclinic phase and T the tetragonal phase. e Simulated behavior of the toroidal moment
and axial polarization at different external electric fields. Note that experimental maximum of 223
kV/cm is confirmed by the phase field model. Scale bars correspond to 60 nm. Illustration is taken
from [9]

evolution of complex configurations of electric polarizations such as a vortex struc-
ture other structures shown in Fig. 8.3 associated with the electric filed structural
phase transitions.

Topological defects of spontaneous polarization are extensively studied as tem-
plates for unique physical phenomena and in the design of reconfigurable electronic
devices. Experimental investigations of the complex topologies of polarization have
been limited to surface phenomena, which has restricted the probing of the dynamic
volumetric domain morphology in operando. Here, we utilize X-ray BCDI of indi-
vidual BaTiO3 nanoparticle in a composite polymer/ferroelectric capacitor shown in
Fig. 8.4 to study the behavior of a three-dimensional vortex formed due to compet-
ing interactions involving ferroelectric domains. Our investigation of the structural
phase transitions under the influence of an external electric field shows a mobile vor-
tex core exhibiting a reversible hysteretic transformation path.We also study toroidal
moment of the vortex under the action of the field. Our results open avenues for the
study of the structure and evolution of polar vortices and other topological structures
in operando in functional materials under cross field configurations.

In a typical BCDI experiment performed ar 3rd and/or 4th generation light source,
a monochromator tunes into the required for such ferroic nanocrystals [9] X-ray
energy of 9 keV with 1 eV bandwidth. The beam is then focused by Fresnel Zone
plates or KB-mirrors as shown in Fig. 8.5. The focused monochromatic beam is then
scattered from the sample extremities (Fig. 8.1) and recorded by the detectormounted
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Fig. 8.4 Experimental scheme of BCDI and inoperando functional capacitor. Incident coherent
X-ray beam is scattered by a nanoparticle embedded in conducting non-polarizing polymer with
attached electrodes. Constructive interference patterns are recorded during application of an external
electric field on the particle. Recorded high-resolution Bragg-peak diffraction carries information
on the electron density and atomic displacement variations, allowing to reconstruct the complex
process of defect evolution and monitoring of vortex. Illustration is taken from [9]

Fig. 8.5 Principle schemes of the beamline at the station 34-ID-C up to the experimental table

on the motorized arm that can be positioned in a spherical coordinates around the
sample. The size of focused beam is usually chosen to fully illuminate the individual
nanocrystal.

To record the diffraction patterns we used a Medipix2 detector composed of 256
by 256 picture elements, with individual pixel size of 55µmby 55µm. Experimental
positioning system allows to translate the sample on 3 rectangular coordinate axes as
well as to adjust roll and pitch.When the desired Bragg peak is found, the nanocrystal
is rocked about the Bragg reflection by subtle rotationwith respect to theX-ray beam.
The rocking curve in the cited work [9] was collected in the vicinity of the (111)
Bragg peak with the scanning range of �θ = ±0.3◦.

Using iterative phase retrieval algorithms, we can reconstruct 3D distribution
of the displacement fields as shown in (Fig. 8.2a).Theoretical simulations based on
Landau Phase-field model was used to interpret the reconstructions as shown in
(Fig. 8.2b). The following relationship can be used to extract the stain tensor if mul-
tiple Bragg peaks can be measured from the same nanocrystal:

εi j = 1/2(∂ui111/∂x j + ∂u j
111/∂xi ). (8.1)
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From the reconstructed strainfield, ferroelectric polarizationmaps P canbe evaluated
using the relationship:

εoi j = Qi jkl Pk Pl , (8.2)

where Qi jkl is the electrostrictive tensor and εoi j is the spontaneous strain. This
approach allows to visualize three-dimensional shape, morphology and the evo-
lution of the observed ferroelectric vortex phase as predicted by phase field model
(Fig. 8.3d, e).

We observed that complex topologies of polarizations can be engineered and
controlled by external perturbations such as an applied electric, magnetic fields,
stresses, as well as by built-in interface effects at the mesoscale. Since the vortex
core can be displaced and erased through a reversible hysteretic transformation path,
it can be thought of as a conductive channel inside amonolith of nominally insulating
ferroelectric material. This could be exploited in the design of integrated electronic
devices based on polar vortices and the possibility of creating artificial states ofmatter
through the control of related phase transitions. Advances in the development of
bright coherent light sources allow greater temporal resolution in dynamical studies
of these phenomena. Our findings can help to pave the way for future studies of
shape and size dependence along with hysteretic behavior under temperature and
other external perturbations to unveil what is yet hidden in vortex dynamics.

Energy Storage Materials and Nanocatalysts can be imaged under operando
conditions to study dislocations and other phase defects associated with their func-
tion. These deeply buried systems present an opportunity where electron microscopy
can only be used under unrealistic conditions, while BCDI is amenable to a realistic
battery environment. Recent work by the Shpyrko group [12–15] has shown dislo-
cation motions in heavily-cycled cathode nanoparticles driven by charge/discharge
cycles in operando batteries. Their group showed BCDI visualization of defects in
the nanostructured disordered spinel material LiNi0.5Mn1.5O4 (LNMO), which is a
promising high-voltage cathode material.

Lithium diffusion, responsible for the charge storage, was found to drive disloca-
tion motions. Nanoparticles were also observed to exhibit phase separation during
initial charge and discharge cycles. Other critical imaging efforts include the trans-
port of oxygen vacancies in electrolytes for solid-oxide fuel cells, imaged by probing
the vacancy-induced lattice distortion. In addition, BCDI will enable imaging of cat-
alyst nanoparticles during reactions and the strain fields associated with intrinsic
and extrinsic defects in solar absorbers. It is envisaged there will be a large user
community interested in battery materials, for whom we will provide standardized
sample environments for in-operando studies, similar to coin-cells, in which struc-
tural changes in anode and cathode materials can be probed in the presence of an
electrolyte under moderate pressure. By using Bragg diffraction we can obtain steep
angles of the X-ray beam through the window materials and avoid most of the back-
ground signal. Individual grains in a polycrystallinematerial can be selected from the
population of grain orientations and imaged by BCDI to learn how the local crystal
distortions change during charge/discharge.
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Zeolite and perovskite oxide materials have both been proposed as alternatives
to Platinum-Group Metal (PGM) automotive emission catalysts with the advantage
of being substantially cheaper [16]. Perovskites are classical mixed-ion oxides with
composition ABO3.The oxygen coordination is cuboctahedral (12-fold) around the
A site and octahedral aroundB. The discovery in 2010 that La1−x SrxMnO3 (LSMO)
and La1−x SrxCoO3 (LSCO) perovskites were as effective as PGMs for removing
NOx from diesel exhaust was an important breakthrough [17].

This class of oxides had been found ineffective before and thought to become
active catalysts by virtue of having Sr++ active sites [17]. Zeolites are crystalline
aluminosilicate composites with a regular nano-porous lattice structure which allows
gases to reach active sites within their framework. The zeolites most relevant to auto-
motive catalysts are ZSM-5 and SAPO-34. We will provide gas handling sample
environments for in-operando experiments to observe the strains within these micro-
crystalline oxide catalysts while they perform their reactions. BCDI can obtain 3D
images of distortions of the internal “plumbing” of the nano-porous network which
provides their large surface area and selectivity during reactions. The expected res-
olution, in the 20–50 nm range, is insufficient to see the 0.5nm pores directly, but
the strain sensitivity is much better than a lattice constant; crystal distortions in the
picometer range can be detected when they extend over the resolution range. The
20–50nm length scale is well-matched to the expected scale of distortions due to
“coking” which results in catalyst lifetimes too short for commercial exploitation. A
potentially new area of laser-promoted ultrafast catalysis can be explored using time
domain BCDI experiments.

Laser-excited materials will be investigated by using stroboscopic pump-probe
techniques with a picosecond timing laser to overlap with the 30ps X-ray pulse
structure of NSLS-II. This can be used to measure optically driven phase transitions
and to explore coherent vibrational properties of nanocrystals, as achieved recently
at Stanfords Linac Coherent Light Source (LCLS) [18].

Robinson’s group showed that 3D cross sectional images of a snapshot of a shear-
wave vibration in a Au nanocrystal can be observed [19]. The vibration period in this
example is 100ps,whichwill be accessible atNSLS-II. Transientmelting phenomena
[19] and metastable “hidden” phases of matter can be systematically explored in
this way. New laser-driven phenomena are starting to be observed, like the hidden
magnetic state seen in Nd0.5Sr0.5MnO3 (NSMO) thin films [20] and “enhanced”
superconductivity in Y Ba2Cu3O6.5 [21].While the fastest, femtosecond phenomena
tend to be purely electronic in nature andwould only be accessible byXFELmethods,
time-resolved BCDI addresses structural changes involving atomic motions, on the
timescale of phonons, which are possible with 30 ps time resolution. The lifetimes
of these new transient states [20] were around 1ns. We note that timing options
are less interesting at new or upgraded Multibend-Acromat (MBA) sources because
of their longer pulse lengths.There is a large, unexplored opportunity to observe
materials in the ultrafast time domain close to phase transitions. Such experiments are
only possible using Bragg diffraction because only this offers sensitivity to the sub-
Angstrom distortions associated with displacive transitions. If these novel excited
states.can be observed and found to be useful or interesting, they can be stabilized
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by traditional doping methods. One example is the reported core-shell structure of
nanocrystalline Barium Titanate (BTO) [22], which shows a threefold enhancement
of its dielectric constant, important in the development of supercapacitors.

Earth Materials behavior at pressure and temperature governs a considerable
number of large scale processes in the Earth, such as plate tectonics, volcanism, and
mantle convection. Despite considerable experimental and theoretical progress in the
past decade, many of these processes are not fully understood. In Earth Sciences,
BCDI is a new experimental tool to study the stress and strain relationships and strain
fields in Earth Materials at pressure and temperature on the level of individual grains
[23]. For example, BCDI will be used to determine the strain field in individual
grains of porous rocks at relevant pressure and temperature conditions of water, oil,
gas and CO2 storage reservoirs. The detailed knowledge of the stress and strain
field in reservoir rocks will dramatically increase our abilities to model the complex
hydromechanical processes in the reservoirs, leading to more efficient gas and oil
extraction, and safer storage capabilities for CO2.

Semiconductor strains are important for mobility and band gap engineering tech-
niques used in the present generation of CMOS devices and in the emerging world
of silicon quantum electronics. BCDI has been used by Thomas et al. to examine
individual strained Silicon-on-Insulator (SOI) structures and by the Baumbach group
in GaMnAs nanowires [24–26]. Strain patterns can be created in model devices with
sizes more relevant to current technology (22nm), that penetrate partially into the
thickness of the SOI layer, as is relevant. As Thomas et al. found, BCDI is partic-
ularly valuable in devices fabricated using SOI because the active layer of Si has a
different orientation from the much thicker handle [27]. The challenge of manipu-
lating the structure of silicon includes creating interfaces with graphene and other
emerging two-dimensional electronic materials and integrating other functionalities
into silicon electronics. BCDI studies of nanowire structures have come out of ID01
at ESRF, which has become a major center for this activity [28]. The laser-excitation
of nanowire structures is a large untapped area for pump-probe BCDI.

8.2 BCDI Methods at Light Sources

User demand is best assessed by the citation rates of the key papers defining theBCDI
methods. References [1–3] have been cited 303, 171 and 145 times respectively.
These citations represent the level of interest in themethod. Informal inquiries suggest
thatmajor obstacles tomorewidespread uptake of themethod are (i) the small number
of suitable facilities and (ii) the lack of easy-to-use data analysis software packages
for generating and viewing the 3D image information that results. Both of these
issues will be solved by the dedicated BCDI beamlines at 3rd and 4th generation
light sources. Once the BCDI diffraction pattern is inverted (see below) the strain,
displacement field is mapped in the resulting complex real-space 3D image as the
phase of the complex number at each location. The phase sensitivity is good enough
that distortions can be mapped down to a level below 10pm, over regions as small
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as 20nm, limited by the spatial resolution. If needed, all components of u can be
measured by triangulation from three or more Bragg peaks [29]. The following
enlargements of the basic BCDI scopes are available at light sources.

Fresnel Coherent Diffraction Imaging (FCDI) is one example of modulation-
based imaging methods that can be accommodated, although not strictly as part of
the Bragg setup because they do not use the diffractometer. FCDI methods use a
coherently modulated incident beam, often with a spherical wavefront, and capture
part of the sample information holographically and part by diffraction [30]. FCDI
experiments requires additional detector system in the forward direction, extending
to about 8m from the sample, which can be accommodated with a hutch extension.
A worthwhile new direction would be modulation based detector/analyzer systems
that can be combined with Bragg to aid phasing. These are currently long-term future
directions that will be developed at light sources.

Bragg Ptychography using measurement of coherent diffraction in the forward
direction, is a strong interest of several BCDI team members. In ptychography, the
phasing of the coherent diffraction is achieved by an overlap constraint between pat-
terns recorded from overlapping adjacent regions of the sample, and is also capable
of recovering the full phase structure of the beam illuminating the sample [31].Bragg
ptychography is also currently available at some BCDI beamlines for extended sam-
ples such as thin films, which do not fit within the 1–7 µm crystal size range. Bragg
ptychography uses the same precise piezo scanning stage for the sample on the
diffractometer in addition to other components of the BCDI beamline to hold the
detector at the Bragg angle [32]. Bragg ptychography was recently demonstrated
[33] and even though it has still not reached its full potential, possibly because of its
extreme sensitivity to sample-optics vibrations, progress can bemade on thismethod.

Grazing incidence BCDI. By upgrading the detector system in the forward direc-
tion, it should also be possible to apply coherent imaging techniques in the grazing
incidence geometry, enhancing the science case by increasing the sensitivity to inter-
face phenomena. There is a specific interest in the grazing geometry for time-resolved
BCDI studies of thin film growth, where the grazing angle is varied to adjust the prob-
ing depth within the film [22].

Time-resolved BCDI. Pump-probe timing experiments are already a key part
of the science case using the dedicated laser hutch. Time-resolved BCDI is a major
interest of some scientists and researchers. These experimentswould use the so-called
“Co-GISAXS” formalism [34] and require the ability to mount UHV chambers to
the beamline to study the films during growth.

8.3 Big Data Challenges in BCDI

We already know that Big Data is a big deal, and its here to stay. In fact, 65% of com-
panies fear that they risk becoming irrelevant or uncompetitive if they don’t embrace
it. But despite the hype surrounding Big Data, companies struggle to make use of
the data they collate. With an increase in coherence at 3rd and 4th generation light
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sources, it is expected that more data will to be accumulated leading to similar Big
data challenges as that faced by social media and the tech industries. This challenge
provides new opportunities as about 61% of companies state that Big Data is driving
revenue because it is able to deliver deep insights into customer behavior. For most
businesses, this means gaining a 360◦ of their customers, by analyzing and integrat-
ing existing data. In BCDI experiments there is a huge gap between the theoretical
knowledge of material, big data and actually putting this theory into practice. So
what is the problem? (i) Finding the Signal in the Noise, (ii) Inaccurate Data and (iii)
Lack of Skilled Work force.

While to derive opportunities it is enough to look on common trends where the
availability of information (even unstructured) brings potential for clarification of
concepts and ideas. Indeed, it is hard to argue that when the phenomenon is captured
in the data it will soon be uncovered, explained and merged with the scientific frame-
work in the particular field. At the same time the challenges are not so straightforward
to foresee since their nature is different in that it arises from extreme quantity of the
data and the diversity of the data sources.

Inaccurate Data is simply the large amount of data. Assuming a state-of-the-
art Dectris PILATUS3 S 2M X-ray detector we can calculate its data throughput in
idealized experimental situation.With the dynamic range of 20 bits and 1475 by 1679
picture elements, single file 32-bit unsigned tiff file “weights” 9 MB. Assuming one
week of the beamtime which can result in around 500 datasets measured, with each
datasets containing 140 frames, we can estimate the outcome of the experiment to
be around 600 GB of data. For the high-end PILATUS3 S 6M this value will double.
This brings estimated output of the CDI station to the approximate level of 20–50
TB of data per year. With increase in brightness in coherence these values can be
expected to grow by at least one magnitude due to decreases in acquisition time.
Analyzing amount of data like this is a challenging task on its own, but taking the
nature of the data the complexity is only growing.

Another complication arises from the additional datasets being accumulated by
other methods. Often the sample is studied by such means as High Resolution Trans-
mission Electron Microscopy, Scanning Electron Microscopy, X-ray Laboratory
Diffraction, various spectroscopic techniques etc. Working with datasets obtained
with multiple methods not only increases the amount of data, but also the complex-
ity of the analysis. Taking into consideration the fabrication techniques only adds
up to the challenge of analysis and interpretation of the results since the end goal
of scientific research is not merely a production of a single graph but a new knowl-
edge acquired in deep systematic studies confirmed by multiple experimental and
theoretical groups.
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8.4 Conclusions

It is often claimed that once the source is coherent, any beamline can do coherent
scattering experiments. While this is partly true, the specialization of most beamline
for BCDI can allow to focus on key performance issues, such as vibrational stability
of the beam on the sample. It is expected that the BCDI performance of the beamline
will be significantly better than multipurpose beamlines and that the throughput of
user experiments will be better because reconfigurations will not be needed.

It is important to note that being inherently optimization based, CDI techniques
are suitable for integration with different information-theoretic tools covered in this
book. Availability of open-source packages for data analysis and packages that allow
cross-language use of different libraries makes the integration even more tempting.
Generation of structured and deep probed knowledge performed with Data Science
andOptimalLearning approacheswill benefit every area ofmodernmaterials science.
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Chapter 9
Automatic Tuning and Control
for Advanced Light Sources

Alexander Scheinker

Abstract The next generation of X-ray Free Electron Laser (FEL) advanced light
sources allow users to drastically change beam properties for various experiments.
The main advantage of FELs over synchrotron light sources is their ability to pro-
vide more coherent, brighter flashes of light by tens of orders of magnitude with
custom bunch lengths down to tens of femtoseconds. The wavelength of the brighter,
more coherent light produced by an FEL is extremely dependent on both the electron
beam energy, which must be adjusted between different experiments, and maintain-
ing minimal electron bunch emittance. A large change in beam energy and bunch
length usually requires a lengthy manual re-tuning of almost the entire accelerator.
Therefore, unlike traditional machines which can operate for months or years at fixed
energies, RF, and magnet settings FELs must have the ability to be completely re-
tuned very quickly. For example, the Linac Coherent Light Source (LCLS) FEL can
provide electrons at an energy range of 4–14 GeV and 1 nC pulses with 300 fs pulse
width down to 20 pC pulses with 2 fs pulse width. The next generation of X-ray
FELs will provide even bright, shorter wave-length (0.05 nm at EuXFEL, 0.01 nm
at MaRIE), more coherent light, and at higher repetition rates (2 MHz at LCLS-II
and 30,000 lasing bunches/second at EuXFEL, 2.3 ns bunch separation at MaRIE)
than currently possible, requiring smaller electron bunch emittances than achievable
today. Therefore, the next generation of light sources face two problems in terms
of tuning and control. In parallel with the difficulties of improving performance to
match tighter constraints on energy spreads and beam quality, existing and espe-
cially future accelerators face challenges in maintaining beam quality and quickly
tuning between various experiments. We begin this chapter with a brief overview of
some accelerator beam dynamics and a list of control problems important to particle
accelerators. In the second half of this chapter we introduce some recently developed
model-independent techniques for the control and tuning of accelerators with a focus
on a feedback based extremum seeking method for automatic tuning and optimiza-
tion which can tune multiple coupled parameters simultaneously and is incredibly
robust to time-variation of system components and noise.
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9.1 Introduction

Particle accelerators are large complex systems composed of many thousands of
coupled components which include radio frequency (RF) electromagnetic accelerat-
ing cavities, magnets, cooling systems, and detectors. For many decades accelerators
have been designedwith specific, static, operating conditions inmind, such as specific
beam energies, currents, repetition rates, and bunch separations. For example, the
Los Alamos Neutron Science Center accelerator is a ∼1 km long linear accelerator
that has two fixed design energies of 100 and 800MeV, and 8 fixed beam types which
vary in terms of bunch length, charge/bunch, and repetition rate. Once the accelerator
is tuned up following a maintenance outage, it is mostly continuously run with the
various beam types accommodated by a fixed magnet/RF system setup, with inter-
mediate tuning by operators to make up for small disturbances and fluctuations. The
advanced photon source (APS) is a ∼1 km circumference synchrotron with magnet
and RF systems tuned for a fixed 7 GeV electron beam which can be sent to various
user stations with unique magnet and optic systems including monochromators for
the production of specific light energy ranges from 3.5 to 100 keV. The Large Hadron
Collider at CERN is the world’s most powerful accelerator with a circumference of
27 km and beam energy of 6.5 TeV per beam for two counter circulating proton
beams. The machine is run at a fixed energy for years at a time while massive detec-
tors at four collision points collect data for fundamental particle physics research.
The three machines described above encompass a majority of existing accelerators,
which are designed for and operated at fixed settings, providing very specific beam
types and energies.

Unlike the static machines described above, the next generation of X-ray Free
Electron Laser (FEL) advanced light sources are being designed and operated with
the fundamentally different approach of allowing users to drastically change beam
properties for various experiments. The main advantage of FELs over synchrotron
light sources such as theAPS is their ability to providemore coherent, brighter flashes
of light by tens of orders of magnitude with custom bunch lengths down to tens of
femtoseconds. The wavelength of the brighter, more coherent light produced by an
FEL is extremely dependent on the electron beam energy, which must be adjusted
between different experiments. A large change in beam energy and bunch length
requires the re-tuning of almost the entire accelerator. For example, the shortest, few
femtosecond electron bunches require an adjustment of the source in lowering the
total electron bunch charge so that the space charge forces of such short pulses are
manageable. The bunch compressor system and RF energy settings and offsets must
then also be adjusted to provide the new, shorter bunch length. Finally, depending
on the required light and therefore electron beam energy of the given experiment,
the magnet focusing systems throughout the accelerator and the undulator must be
retuned. Therefore, unlike traditional machines which can operate for months or
years at fixed energies, RF, and magnet settings FELs must have the flexibility to be
completely re-tuned. For example, the Linac Coherent Light Source (LCLS) FEL
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can provide electrons at an energy range of 4–14 GeV and 1 nC pulses with 300 fs
pulse width down to 20 pC pulses with 2 fs pulse width.

The next generation of X-ray FELs will provide even bright, shorter wave-length
(0.05 nm at EuXFEL, 0.01 nm at MaRIE), more coherent light, and at higher rep-
etition rates (2 MHz at LCLS-II and 30000 lasing bunches/second at EuXFEL, 2.3
ns bunch separation at MaRIE) than currently possible, requiring smaller electron
bunch emittances than achievable today. Existing light sources are also exploring
new and exotic schemes such as two-color operation (LCLS, FLASH, SwissFEL).
To achieve their performance goals, the machines face extreme constraints on their
electron beams. TheLCLS-II requires<0.01% rms energy stability, a factor of>10×
more than the existing LCLS [1], while the EuXFEL requires <0.001 deg rms RF
amplitude and phase errors, respectively (current state of the art is ∼0.01) [2].

Therefore, the next generation of light sources face two problems in terms of
tuning and control. In parallelwith the difficulties of improving performance tomatch
tighter constraints on energy spreads and beam quality, existing and especially future
accelerators face challenges inmaintaining beam quality and quickly tuning between
various experiments. It can take up to 10 h to retune the low energy beam sections
(<500 MeV) and they still achieve sub-optimal results, wasting valuable beam time.
Future accelerators require an ability to quickly tune between experiments and to
compensate for extremely closely spaced electron bunches, such asmight be required
for MaRIE, requiring advanced controls and approaches such as droop correctors [3,
4].

While existing and planned FELs have automatic digital control systems, they are
not controlled precisely enough to quickly switch between different operating con-
ditions [5]. Existing controls maintain components at fixed set points, which are set
based on desired beam and light properties, such as, for example, the current settings
in a bunch compressor’s magnets. Analytic studies and simulations initially provide
these set points. However, models are not perfect and component characteristics drift
in noisy and time-varying environments; setting a magnet power supply to a certain
current today does not necessarily result in the same magnetic field as it would
have 3 weeks ago. Also, the sensors are themselves noisy, limited in resolution, and
introduce delays. Therefore, even when local controllers maintain desired set points
exactly, performance drifts. The result is that operators continuously tweak parame-
ters tomaintain steady state operation and spend hours tuningwhen large changes are
required, such as switching between experiments with significantly different current,
beam profile (2 color, double bunch setups), or wavelength requirements. Similarly,
traditional feed-forward RF beam loading compensation control systems are lim-
ited by model-based beam-RF interactions, which work extremely well for perfectly
known RF and beam properties, but in practice are limited by effects which include
un-modeled drifts and fluctuations and higher order modes excited by extremely
short pulses. These limitations have created an interest in model-independent beam-
based feedback techniques that can handle time-varying uncertain nonlinear systems
[6–13], as well as machine learning, and other optimization techniques [14–18].

We begin this chapter with a list of control problems important to particle accel-
erators and a brief overview of simple beam dynamics, including longitudinal and
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transverse effects and the coupling between them and an overview of RF systems.
The second half of this chapter introduces some recently developed techniques for
the control and tuning of accelerators with a focus on a feedback based extremum
seeking method for automatic tuning and optimization.

9.1.1 Beam Dynamics

The typical coordinate system for discussing particle accelerator beam dynamics is
shown in Fig. 9.1. The Lorentz force equation:

dP
dt

= e
(

E + v
c

× B
)

, (9.1)

describes charged particle dynamics. In (9.1) e is electron charge, v is velocity,

v = |v|, P = γmv the relativistic momentum, γ = 1/
√
1 − v2

c2 the Lorentz factor, c
the speed of light, E the electric field and B the magnetic field. In a particle accel-
erator E and B sources include electromagnetic accelerating fields, other charged
particles, and magnets used for steering and focusing of the beams. While electric
fields are used to accelerate particles, magnetic fields guide the particles along a
design trajectory and keep them from diverging transversely. We start by reviewing
betatron oscillations, a form of oscillatory motion which is common to all particle
accelerators [19–24].

Betatron oscillations are a general phenomenon occurring in all particle acceler-
ators and are of particular importance in circular machines. For a particle traveling
at the designed beam energy, p = p0, the transverse equations are given by Hill’s
equation

x ′′ = Kx (s)x, y′′ = Ky(s)y, (9.2)

with (x, y) being the transverse particle locations relative to the accelerator axis
(see Fig. 9.1), s (or z) is a parametrization of particle location along the axis of the
accelerator, and x ′(s) = dx(s)/ds. In a ring, the function Kx,y(s + L) = Kx,y(s) is
L-periodic, where L is the circumference of the accelerator, and depends onmagnetic
field strengths. Equation (9.2) resembles a simple harmonic oscillator with position-

x

y

s

ideal orbit

electron position (x,y,s)
^

^

^

Fig. 9.1 A coordinate system centered on the ideal particle orbit. Distance along the orbit is
parametrized by s. Transverse offset from the axis of the orbit is given by x and y
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dependent Kx,y(s). The solution of (9.2) is of the form

px,y(s) = A
√

βx,y(s) cos
(
ψx,y(s) + δ

)
, ψx,y(s) =

s∫

0

dσ

βx,y(σ )
, (9.3)

where βx,y(s) are the periodic solutions of the system of equations

β ′′′
x,y(s) + 4Kx,y(s)β

′
x,y(s) + 2K ′

x,y(s)β(s)x,y = 0, (9.4)

1

2
β(s)x,yβ

′′
x,y(s) − 1

4

(
β ′
x,y(s)

)2 + Kx,y(s)β
2
x,y(s) = 1. (9.5)

The solutions of (9.3) are known as betatron oscillations and are periodic functions
of s with varying amplitude and frequency [20].

In general, betatron motion is governed by equations of the form:

x ′′(s) = −Kx (x, y, s, P, t)x(s) + Fx (x, x
′, y, y′, s, P, t), (9.6)

y′′(s) = −Ky(x, y, s, P, t)y(s) + Fy(x, x
′, y, y′, s, P, t). (9.7)

The nonlinear coupling between x and y depends not only on particle position,
trajectory, energy deviation, and time.

Typically, quadrupole magnets focus the beam transversally, maintaining a tight
bunch along the accelerator axis, and dipole magnets having only a non-zero y
component of magnetic field direct the particles in a circular orbit in the (x, s) plane.
The linear quadrupole and dipole magnetic field components give (9.6), (9.7) of the
form

x ′′ = − p0
p

(
1

ρ2
− K1(s)

)
x + p − p0

p

1

ρ
, (9.8)

y′′ = − p0K1(s)

p
y. (9.9)

K1(s) is periodic and proportional to quadrupole field strength. The value p =√
E2/c2 − m2c2 is the total kinetic momentum. p0 is the designed kinetic momen-

tum. The value ρ is the local radius of curvature [20].
Sources of nonlinearity and coupling in the functions Fx and Fy in (9.6), (9.7)

are nonlinear magnetic field components, misaligned magnets, solenoid fields, mag-
netic field errors, and skew components of magnetic field gradients. Furthermore,
all manufactured magnets are non-ideal and introduce nonlinear field components,
higher order coupling terms given by [23]:

ΔBy + jΔBx = B0

∞∑
n=0

(bn + jan)(x + jy)n. (9.10)
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Fig. 9.2 BPM readings of x and y beam displacement over 500 turns, before and during tuning

Sometimes nonlinear magnets are purposely introduced into the accelerator lattice.
For example, sextuple magnets are placed in regions of high dispersion to mitigate
the fact that particles with various momentums experience non-equal forces from
the same magnetic fields and their trajectories diverge (chromatic effects). Such
magnets result in nonlinear coupling terms such as (x2 − y2) and (1 − Δ)xy, where
Δ = (p − p0)/p [20].

Betatron motion occurs in all accelerators, magnetic lattices are designed to min-
imize betatron oscillations. However, some regions of accelerators require large
amplitude transverse particle motion. If this motion is not carefully, precisely con-
trolled, excessive betatron oscillations are generated. One such section is a group
of pulsed kicker magnets used to horizontally kick the beam out and then inject
back into a machine. During injection kicks an imperfect match of parameters of the
magnets results in the extremely large betatron oscillations, as shown in Fig. 9.2.

9.1.2 RF Acceleration

Particle acceleration in an RF field. For a particle passing through an RF cavity gap
of length L , the energy gain due to an electromagnetic standing wave along the axis
is given by

ΔW = q

L/2∫

−L/2

E(z) cos(ωt (z) + φ)dz, t (z) =
z∫

0

dz

v(z)
, (9.11)

where t (z) has been chosen such that the particle is at the center of the accelerating
gap at t = 0, φ = 0 if the particle arrives at the origin when the field is at a crest,
and v(z) is the velocity of the particle. This energy gain can be expanded as

ΔW = q

L/2∫

−L/2

E(z) [cos(ωt (z)) cos(φ) − sin(ωt (z)) sin(φ)] dz (9.12)
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and rewritten in the form

ΔW = qV0T cos(φ) = qE0T L cos(φ), E0 = V0

L
, (9.13)

where

V0 =
L/2∫

−L/2

E(Z)dz, T =
∫ L/2
−L/2 E(z) cos(ωt (z))dz

V0
− tan(φ)

∫ L/2
−L/2 E(z) sin(ωt (z))dz

V0
,

(9.14)

and T known as the transit-time factor. For typical RF accelerating cavities, the
electric field is symmetric relative to the center of the gap and the velocity change
within an accelerating gap for a relativistic particle is negligible so ωt (z) ≈ ωz/v =
2π z/βλ, where β = v/c and βλ is the distance a particle travels in one RF period.
We can then rewrite the transit-time factor as

T =
∫ L/2
−L/2 E(z) cos (2π z/βλ) dz

V0
. (9.15)

Assuming that the electric field is constant E(z) ≡ E0 within the gap, we get

T = sin(πL/βλ)

πL/βλ
, (9.16)

and plugging back into (9.13) we get

ΔW = qE0βλ

π
cos(φ) sin

(
πL

βλ

)
, (9.17)

which is, as expected, maximized for φ = 0 and L = βλ/2, that is for a particle
that spends the maximal half of an RF period being accelerated through the cavity.
This however would not be an efficient form of acceleration as most of the time the
particle would see a much smaller than maximal RF field. For a given voltage gain
V0, we get a maximum T = 1 with L = 0, which is not realizable. Actual design
values of T depend on individual cavity geometries and desired efficiency.

9.1.3 Bunch Compression

For maximal acceleration, we typically choose φ = 0, especially for highly rela-
tivistic electrons. However, sometimes a nonzero φ is chosen either for longitudinal
bunching or to purposely introduce an energy gradient along the electron bunch
which can then be utilized for bunch compression. We define φ as the relative phase
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between a particle and the zero crossing of the RF field, such that earlier particles,
with φ < 0 will receive a higher energy gain than later particles with φ > 0. The
energy offset of a particle at phase φ at the exit of the RF compressor cavity, relative
to the reference particle, is given by

ΔE1 = ΔE0 − qVrf

E
sin(φ), (9.18)

where Vrf is the compressor voltage, E is beam energy, ΔE0 is the initial energy
offset. Next the beam is transported through a dispersive section with non-zero R56,
where

R56(s) =
s∫

s0

R16(s ′)
ρ(s ′)

ds ′, (9.19)

where R16 is the transverse displacement resulting froman energy error in a dispersive
region of the accelerator. The energy offset is then translated to a longitudinal position
offset according to

Δz1 = Δz0 + R56ΔE1 = Δz0 + R56

(
ΔE0 − qVrf

E
sin(φ)

)
. (9.20)

For an RF field of frequency ωrf , the phase φ relative to the RF at position offsetΔz0
is given by φ = −ωrfΔz0/c. If this phase is small, we can expand sine and rewrite
both the energy and position change as

Δz1 ≈
(
1 + R56

ωrfVrf

cE

)
Δz0 + R56ΔE0, (9.21)

ΔE1 = ΔE0 − eVrfωrf

cE
Δz0. (9.22)

Therefore the final bunch length can be approximated as

σz f =
√(

1 + R56
eVrfωrf

Ec

)2

σ 2
z0 + R2

56σ
2
ΔE0

, (9.23)

where σz0 is the initial bunch length and σΔE0 is the initial beam energy spread [26],
with maximal compression for an RF system adjusted such that R56

eVrfωrf
Ec ≈ −1.

9.1.4 RF Systems

For a right-cylindrical conducting cavity of radius Rc, as shown in Fig. 9.3, the 010
transverse-magnetic resonant mode, referred to as TM010, is used for acceleration
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Fig. 9.3 Left: Electromagnetic field orientations forTM010 acceleratingmode of a right cylindrical
RF cavity. Center: RLC circuit approximation of the dynamics of a single RF mode. Right: The
axial electric field is maximal on axis and zero at the walls of the cavity and the opposite is true of
the azimuthal magnetic field

because along the axis this mode has a large oscillating electric field and nomagnetic
field, as shown in Fig. 9.3. The electromagnetic fields of the TM010 mode are:

E(r, t) = E0 J0

(
2.405r

Rc

)
eiω0t ẑ = Ez(r)e

iω0t ẑ, (9.24)

B(r, t) = −i E0

√
ε

μ
J1

(
2.405r

Rc

)
eiω0t ϕ̂ = Bϕ(r)eiω0t ϕ̂, (9.25)

where J0 and J1 are Bessel functions of the first kind with zero and first order,
respectively, and the resonant frequency is given by

ω0 = 2.405c

Rc
, c = speed of light. (9.26)

The dynamics of such a single mode of an RF cavity with resonant frequency f0
can be approximated as

V̈cav + ω0

QL
V̇cav + ω2

0Vcav = 1

C
İ , (9.27)

where V̇ = dV
dt , V̈ = d2V

dt2 , ω0 = 2π f0, QL is the loaded quality factor of the res-
onant cavity, L and C are the inductance and capacitance of the cavity structure,
respectively, such that

√
LC = 1

ω0
, and I = Ic + Ib is the input current driving the

RF fields, the sources of which are both the RF generator, Ic, and the beam itself Ib
[19, 27, 28].

For a driving current of the form

Iu(t) = I0 cos(ω0t), (9.28)

after the fast decay of some transient terms, the cavity response is of the form

Vcav(t) = RI0
(
1 − e−t/τ

)
cos(ω0t), τ = 2QL

ω0
. (9.29)
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Fig. 9.4 Amplitude of the cavity field and its phase relative to a reference signal

9.1.5 Need for Feedback Control

Although (9.29) implies that for a desired accelerating gradient one must simply
choose the correct input power level and drive the cavity, as shown in Fig. 9.4. How-
ever, in the real world simply choosing set points for an RF drive signal does not
work because of un-modeled time varying disturbances which perturb cavity fields
from their desired set points. These disturbances include:

1. Temperature variation-induced resonance frequency drifts on the time scales of
minutes to hours.

2. Mechanical vibrations which alter the cavity resonance frequency on the times
scale of milliseconds.

3. RF source voltage and current fluctuations on the time scale of microseconds.
4. RF source voltage droop on the time scale of microseconds.

Furthermore, even if a desired accelerating voltage could be reached within a
desired rise time, when the beam that is to be accelerated shows up, it itself perturbs
the fields both by interacting with the oscillating electrons in the cavity walls and by
drawing energy out of the cavity via the electric field which accelerates it, causing
both amplitude and phase changes on the time scales of nanoseconds which must
be compensated for in order to maintain proper acceleration of subsequent beam
bunches.

Therefore real time active feedback control is always necessary, both to bring
cavity voltage amplitudes and phases to their required set points before beam can be
properly accelerated and during beam acceleration in order to maintain tight bounds
on beam-induced cavity field errors, known as beam loading.

From the abovediscussions it is clear that all of the disturbances experiencedby the
RF systems immediately couple into the transverse and longitudinal beam dynamics.
Similarly, many of the beam dynamics, including the effects of space charge forces,
magnet misalignments, and energy deviations alter a particle’s position within a
bunch and therefore the phase of the RF system relative to the particle’s arrival time
and therefore the entire accelerator is a completely coupled system in terms of the
final beam phase space distribution relative to the RF systems, magnet systems, and
the forces due to the particles in the beam itself.
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9.1.6 Standart Proportional Integral (PI) Control for RF
Cavity

The vast majority of accelerator systems, such as RF feedback and power con-
verters are typically controlled at fixed set points with simple, classical, propor-
tional integral (PI) controllers. Therefore we start with a detailed overview of
RF cavity phase and amplitude PI control. To develop feedback controllers we
must consider the coupled beam-cavity-RF source system. We consider only the
ω0 frequency component of the beam, Ab(t) cos(ω0t + θb(t)), an RF driving cur-
rent of the form Ic(t) = Ac(t) cos(ωt + θc(t)), and a cavity field of the form
Vcav(t) = Acav(t) cos(ωt + θcav(t)). The single second order differential equations
describing the cavity dynamics, (9.27), can then be simplified to two coupled, linear,
first order differential equations:

İ = −ω 1
2
I − ΔωQ + βI,c Ic + βI,b Ib, (9.30)

Q̇ = ΔωI − ω 1
2
Q + βQ,cQc + βQ,bQb, (9.31)

where Δω = ω − ω0 is the difference between RF generator and cavity resonance
frequencies, ω 1

2
= ω0/2QL , and the I and Q quantities represent

I (t) = Acav(t) cos(θcav(t)), Ic(t) = Ac(t) cos(θc(t)), Ib(t) = Ab(t) cos(θb(t)), (9.32)
Q(t) = Acav(t) sin(θcav(t)), Qc(t) = Ac(t) sin(θc(t)), Qb(t) = Ab(t) sin(θb(t)), (9.33)

from which amplitudes and phases can be calculated according to

A•(t) =
√
I 2• (t) + Q2•(t), θ•(t) = arctan

(
Q•(t)
I•(t)

)
. (9.34)

Equations (9.30), (9.31) can be written in the compact linear form

ẋ = Ax + Bcu + Bbd, x =
[
I
Q

]
, A =

[−ω 1
2

−Δω

Δω −ω 1
2

]
, u =

[
Ic
Qc

]
, d =

[
Ib
Qb

]
,

(9.35)
where u refers to the control vector, and the beam itself, d, is thought of as a distur-
bance. The goal of RF feedback control is typically to maintain the cavity field as
given by x at a desired set point thereby ensuring proper acceleration of the beam. In
addition to providing a simple, linear approximation of the dynamics of the beam,
cavity, and RF generator system, (9.35) is very useful because a typical digital RF
system does not have access to the raw cavity voltage signal Vcav(t), but rather to
Icav(t) and Qcav(t), which are provided by down sampling the cavity field signal. For
example, at the Los Alamos Neutron Science Center (LANSCE) linear accelerator,
fRF = 201.25MHz RF signals of the form Vcav(t) = Acav(t) cos(2π fRF t + θcav(t))
are first mixed down via local oscillators to signals at an intermediate frequency
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f I F = 25MHz, of the form Acav(t) cos(2π f I F t + θcav(t)), which can be expanded
in the I, Q formalism as:

Acav(t) cos(2π f I F t + θcav(t))

= Acav(t) cos(θcav(t))︸ ︷︷ ︸
Icav(t)

cos(2π f I F t) − Acav(t) sin(θcav(t))︸ ︷︷ ︸
Qcav(t)

cos(2π f I F t)

= Icav(t) cos(2π f I F t) − Qcav(t) cos(2π f I F t) sin(2π f I F t). (9.36)

Then, by oversampling the signal (9.36) at the rate fs = 4 × f I F , the analog to digital
converter (ADC) collects samples at time steps nt = n

f s :

Vcav

(
n

4 f I F

)
= Icav

(
n

4 f I F

)
cos

(nπ

2

)
− Qcav

(
n

4 f I F

)
sin

(nπ

2

)
, (9.37)

directly receiving the samples:

{Icav(0),−Qcav(ts),−Icav(2ts), Qcav(3ts), . . . } . (9.38)

The job of the RF control system is to maintain the cavity fields at amplitude
and phase set points, As(t) and θs(t), respectively, which translate into I and Q set
points: Is(t) = As(t) cos(θs(t)), Qs(t) = As(t) sin(θs(t)). The most simple typical
RF feedback control system first compares the cavity I and Q signals to their set
points and calculates error signals Ie(t) = Icav(t) − Is(t), Qe(t) = Qcav(t) − Qs(t),
and then performs proportional-integral feedback control of the form

Ic(t) = −kp Ie(t) − ki

t∫

0

Ie(τ )dτ, Qc(t) = −kpQe(t) − ki

t∫

0

Qe(τ )dτ.

(9.39)

Typically particle accelerators are pulsed at rates of tens to hundreds of Hz. For
example, in the LANSCE accelerator, the RF drive power is turned on for 1ms at a
rate of 120Hz. Once RF is turned on, cavity fields build up and reach steady state
within a few hundred microseconds, after which the cavities are ready to accelerate
the beam, whose sudden arrival perturbs the cavity fields, as shown in Fig. 9.5.

Although the initial I and Q set points are in the forms of smooth ramps, as seen
from the shape of the cavity field amplitude in Fig. 9.5, once the field has reached
steady state and before the beam has arrived, the set points are fixed in order to
maintain a precise field amplitude and phase offset of the bunches relative to the RF
zero crossing. Therefore, in what follows we consider the cavity set points only after
steady state has been reached and they are therefore constants of the form:

Is(t ≥ Trise) ≡ Is(Trise) = Ir , Qs(t ≥ Trise) ≡ Qs(Trise) = Qr . (9.40)
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Fig. 9.5 The RF source, Ic(t), is turned on at a rate of 120 Hz, for ∼1 ms per pulse. The beam,
Ib(t), arrives around ∼350 µs into the pulse after the cavity field, Vcav(t), has had time to settle.
The beam’s arrival disrupts the cavity field’s steady state

Plugging the feedback (9.39) into the cavity dynamics (9.35) and rewriting the
dynamics in terms of the error variables, we are then left with the closed loop system

ẋe = Axe + Axr − kp Bcxe − ki Bc

t∫

0

xe(τ )dτ + Bbd, xe =
[

Ie
Qe

]
, xr =

[
Ir
Qr

]
.(9.41)

Taking the Laplace transform of both sides of (9.41), assuming that we are at steady
state so that xe(Trise) = 0, we get

sXe(s) = AXe(s) + 1

s
Axr − kpBcXe(s) − 1

s
ki BcXe(s) + BdD(s)

=⇒
Xe(s) = (

s2 I − s
(
kpBc − A

) + ki Bc
)−1

(Axr + sBdD(s)) . (9.42)

The gains, ki and kp of the simple PI feedback control loop are then tuned in order
to maintain minimal error despite the disturbances Axr and sBdD(s). The constant
term Axr is due to the natural damping of the RF cavity and is easily compensated
for. Themore important andmore difficult to deal with term is sBdD(s), which, in the
time domain is proportional to the derivative of the beam current Bd ḋ(t). Because the
beam is typically ramped up to an intense current very quickly (tens ofmicroseconds)
or consists of an extremely short pulse, the derivative term is extremely disruptive to
the cavity field phase and amplitude. Some typical beam current and bunch timing
profiles are shown in Fig. 9.6. Currently LCLS is able to accelerate 1 nC during
extremely powerful ∼3 µs RF pulses, with a separation of 8.3 ms between bunches.
The European XFEL is pushing orders of magnitude beyond the LCLS bunch timing
with 1 nC pulses separated by only 220 ns. This is extremely challenging for an
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Fig. 9.6 Beam current time profiles of several accelerators are shown

RF system which must maintain field amplitude and phase set points and recover
between bunches. The proposed MaRIE accelerator will push this problem another
order of magnitude in attempting to accelerate high charge pulses with only ∼2.5 ns
of separation.

Although the PI controller used in (9.41) can theoretically hold the error xe arbi-
trarily close to zero arbitrarily fast by choosing large enough gains ki and kp relative
to the magnitude of the beam disturbance

∥∥Bd ḋ(t)
∥∥, in practice all control gains

are limited by actuator saturation, response time, and most importantly, delay in the
feedback loop. A typical RF feedback loop is shown in Fig. 9.7 and may experience
as much as 5µs of round trip delay, which is an large delay relative to beam transient
times.

Consider for example the following scalar, delay system, where the goal is to
quickly drive x(t) to zero from an arbitrary initial condition, but only being able to
do so based on a controller which uses a delayed measurement of x(t), x(t − D).
Considering a simply proportional feedback control, u = −kx , for the system

ẋ(t) = u(x(t − D)) =⇒ ẋ(t) = −kx(t − D), (9.43)

taking Laplace transforms we get

sX (s) − x(0) = −ke−Ds X (s) =⇒ X (s) = x(0)

s + ke−Ds
. (9.44)

If we assume the delay is small, D 
 1, we can approximate e−Ds ≈ 1 − Ds, invert
the Laplace transform and get the solution
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Fig. 9.8 Cavity field errors with frequency shift, RF power droop, beam loading, and simple
proportional-integral feedback control

x(t) = x(0)eγ t , γ = −k

1 − kD
, (9.45)

which exponentially converges to 0 for γ < 0, requiring that k satisfy 1
D > k > 0, a

limit on possible stabilizing values of the feedback control gain. If our system (9.43)
had an external disturbance, d(t) the gain limit would be a major limitation in terms
of compensating for large or fast d(t).

Because of such limitations, a feedback only LLRF system’s response to beam
loading would typically look like the results shown in Fig. 9.8, where each intense
beam pulse causes a large deviation of the accelerating field’s voltage from the design
phase and amplitude, which must be restored before the next bunch can be properly
accelerated.
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9.2 Advanced Control and Tuning Topics

For problems which can be accurately modeled, such as systems that do not vary
with time and for which extensive, detailed diagnostics exist, there are many power-
ful optimization methods such as genetic algorithms (GA), which can be used during
the design of an accelerator by performing extremely large searches over parameter
space [29]. Such multi-objective genetic algorithms (MOGA) have been applied for
the design of radio frequency cavities [30], photoinjectors [31], damping rings [32],
storage ring dynamics [33], lattice design [34], neutrino factory design [35], simul-
taneous optimization of beam emittance and dynamic aperture [36], free electron
laser linac drivers [37] and various other accelerator physics applications [38]. One
extension of MOGA is multi-objective particle swarm optimization, has been used
for emittance reduction [39]. Brute force approaches such as GA and MOGA search
over the entire parameter space of interest and therefore result in global optimiza-
tion, however, such model-based approaches are only optimal relative to the specific
model which they are using, which in practice rarely exactly matches the actual
machine when it is built. Differences are due to imperfect models, uncertainty, and
finite precision of construction. Therefore, actual machines settings undergo exten-
sive tuning and tweaking in order to reach optimal performance. Recently efforts
have been made to implement a GA method on-line for the minimization of beam
size at SPEAR3 [40]. Robust conjugate direction search (RCDS) is another optimiza-
tion method. RCDS is model independent, but at the start of optimization in must
learn the conjugate directions of the given system, and therefore is not applicable
to quickly time-varying systems [41, 42]. Optimization of nonlinear storage ring
dynamics via RCDS and particle swarm has been performed online [43].

Although many modern, well behaved machines can possibly be optimized with
any of the methods mentioned above, and once at steady state, the operation may
not require the fast re-tuning future light sources will require algorithms with an
ability to quickly switch between various operating conditions and to handle quickly
time-varying systems, based only on scalar measurements, rather than a detailed
knowledge of the system dynamics, when compensating for complex collective
effects. If any of the methods above were used, they would have to be repeated
every time component settings were significantly changed and it is highly unlikely
that they would converge or be well behaved during un-modeled, fast time-variation
of components. Therefore, a model-independent feedback-based control and tuning
procedure is required which can function on nonlinear and time varying systemswith
many coupled components.

The type of tuning problems that we are interested in have recently been
approached with powerful machine learning methods [15, 44], which are show-
ing very promising results. However, these methods require large training sets in
order to learn how to reach specific machine set points, and interpolate in between.
For example, if a user requests a combination of beam energy, pulse charge, and
bunch length, which was not a member of a neural network-based controller’s learn-
ing set, the achieved machine performance is not predictable. Furthermore, machine



9 Automatic Tuning and Control for Advanced Light Sources 233

components slowly drift with time and un-modeled disturbances are present and limit
any learning-based algorithm’s abilities. Extremum seeking (ES) is a simple, local,
model-independent algorithm for accelerator tuning, whose speed of convergence
allows for the optimization and real-time tracking of many coupled parameters for
time-varying nonlinear systems. Because ES is model independent, robust to noise,
and has analytically guaranteed parameter bounds and update rates, it is useful for
real time feedback in actual machines. One of the limitations of ES is that it is a local
optimizer which can possible be trapped in local minima.

It is our belief that the combination of ES and machine learning methods will
be a powerful method for quickly tuning FELs between drastically different user
desired beam and light properties. For example, once a deep neural network (NN)
has learned a mapping of machine settings to light properties for a given accelerator
based on collected machine data, it can be used to quickly bring the machine within
a local proximity of the required settings for a given user experiment. However,
the performance will be limited by the fact that the machine changes with time,
that the desired experiment settings were not in the training data, and un-modeled
disturbances. Therefore, once brought within a small neighborhood of the required
settings via NN, ES can be used to achieve local optimal tuning, which can also
continuously re-tune to compensate for un-modeled disturbances and time variation
of components. In the remainder of this chapter we will focus on the ES method,
giving a general overview of the procedure and several simulation and in-hardware
demonstrations of applications of the method. Further details on machine learning
approaches can be found in [15, 44] and the references within.

9.3 Introduction to Extremum Seeking Control

The Extremum seeking method described in this chapter is a recently developed
general approach for the stabilization of noisy, uncertain, open-loop unstable, time-
varying systems [6, 7]. The main benefits of this approach are:

1. The method can tune many parameters of unknown, nonlinear, open-loop unsta-
ble systems, simultaneously.

2. The method is robust to measurement noise and external disturbances and can
track quickly time-varying parameters.

3. Although operating on noisy and analytically unknown systems, the parameter
updates have analytically guaranteed constraints, which make it safe for in-
hardware implementation.

This method has been implemented in simulation to automatically tune large sys-
tems of magnets and RF set points to optimize beam parameters [11], it has been
utilized in hardware at the proton linear accelerator at the Los Alamos Neutron
Science Center to automatically tune two RF buncher cavities to maximize the RF
system’s beam acceptance, based only on a noisy measurement of beam current [12],
it has been utilized at the Facility for Advanced Accelerator Experimental Tests, to



234 A. Scheinker

non-destructively predict electron bunch properties via a coupling of simulation and
machine data [13], it has been utilized for bunch compressor design [45], and has
been used for the automated tuning of magnets in a time-varying lattice to contin-
uously minimize betatron oscillations at SPEAR3 [8]. Furthermore, analytic proofs
of convergence for the method are available for constrained systems with general,
non-differentiable controllers [9, 10].

9.3.1 Physical Motivation

It has been shown that unexpected stability properties can be achieved in dynamic
systems by introducing fast, small oscillations. One example is the stabilization of
the vertical equilibrium point of an inverted pendulum by quickly oscillating the
pendulum’s pivot point. Kapitza first analyzed these dynamics in the 1950s [46].
The ES approach is in some ways related to such vibrational stabilization as high
frequency oscillations are used to stabilize desired points of a system’s state space
and to force trajectories to converge to these points. This is done by creating cost
functions whose minima correspond to the points of interest, allowing us to tune a
large family of systems without relying on any models or system knowledge. The
method even works for unknown functions, where we do not choose which point
of the state space to stabilize, but rather are minimizing an analytically unknown
function whose noisy measurements we are able to sample.

To give an intuitive 2D overview of thismethod, we consider finding theminimum
of an unknown function C(x, y). We propose the following scheme:

dx

dt
= √

αω cos (ωt + kC(x, y)) (9.46)

dy

dt
= √

αω sin (ωt + kC(x, y)) . (9.47)

Note that although C(x, y) enters the argument of the adaptive scheme, we do not
rely on any knowledge of the analytic form of C(x, y), we simply assume that it’s
value is available for measurement at different locations (x, y).

The velocity vector,

v =
(
dx

dt
,
dy

dt

)
= √

αω [cos (θ(t)) , sin (θ(t))] , (9.48)

θ(t) = ωt + kC(x(t), y(t)), (9.49)

has constant magnitude, ‖v‖ = √
αω, and therefore the trajectory (x(t), y(t))moves

at a constant speed. However, the rate at which the direction of the trajectories’
heading changes is a function of ω, k, and C(x(t), y(t)) expressed as:
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Fig. 9.9 The subfigure in the bottom left shows the rotation rate, ∂θ
∂t = ω + ∂C(x,y)

∂t , for the part of
the trajectory that is bold red, which takes place during the first 0.5 s of simulation. The rotation of
the parameters’ velocity vector v(t) slows down when heading towards the minimum of C(x, y) =
x2 + y2, at which time k ∂C

∂t < 0, and speeds up when heading away from the minimum, when

k ∂C
∂t > 0. The system ends up spending more time heading towards and approaches the minimum

of C(x, y)

dθ

dt
= ω + k

(
∂C

∂x

dx

dt
+ ∂C

∂y

dy

dt

)
. (9.50)

Therefore, when the trajectory is heading in the correct direction, towards a decreas-
ing value of C(x(t), y(t)), the term k ∂C

∂t is negative so the overall turning rate ∂θ
∂t

(9.50), is decreased. On the other hand, when the trajectory is heading in the wrong
direction, towards an increasing value of C(x(t), y(t)), the term k ∂C

∂t is positive,
and the turning rate is increased. On average, the system ends up approaching the
minimizing location of C(x(t), y(t)) because it spends more time moving towards
it than away.

The ability of this direction-dependent turning rate scheme is apparent in the
simulation of system (9.46), (9.47), in Fig. 9.9. The system, starting at initial location
x(0) = 1, y(0) = −1, is simulated for 5 swith update parametersω = 50, k = 5,α =
0.5, andC(x, y) = x2 + y2.We compare the actual system’s (9.46), (9.47) dynamics
with those of a system performing gradient descent:

dx̄

dt
≈ −kα

2

∂C(x̄, ȳ)

∂ x̄
= −kα x̄ (9.51)

d ȳ

dt
≈ −kα

2

∂C(x̄, ȳ)

∂ ȳ
= −kαȳ, (9.52)

whose behavior our system mimics on average, with the difference
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max
t∈[0,T ]

‖(x(t), y(t)) − (x̄(t), ȳ(t))‖ (9.53)

made arbitrarily small for any value of T , by choosing arbitrarily large values of ω.
Towards the end of the simulation, when the system’s trajectory is near the origin,

C(x, y) ≈ 0, and the dynamics of (9.46), (9.47) are approximately

∂x

∂t
≈ √

αω cos (ωt) =⇒ x(t) ≈
√

α

ω
sin (ωt) (9.54)

∂y

∂t
≈ √

αω sin (ωt) =⇒ y(t) ≈ −
√

α

ω
cos (ωt) , (9.55)

a circle of radius
√

α
ω
, which is made arbitrarily small by choosing arbitrarily large

values of ω. Convergence towards a maximum, rather than a minimum is achieved
by replacing k with −k.

9.3.2 General ES Scheme

For general tuning, we consider the problem of locating an extremum point of the
function C(p, t) : Rn × R

+ → R, for p = (p1, . . . , pn) ∈ R
n , when only a noise-

corrupted measurement y(t) = C(p, t) + n(t) is available, with the analytic form of
C unknown. For notational convenience, in what follows we sometimes write C(p)

or just C instead of C(p(t), t).
The explanation presented in the previous section used sin(·) and cos(·) functions

for the x and y dynamics to give circular trajectories. The actual requirement for
convergence is for an independence, in the frequency domain, of the functions used to
perturb different parameters. In what follows, replacing cos(·)with sin(·) throughout
makes no difference.

Theorem 1 Consider the setup shown in Fig.9.10 (for maximum seeking we replace
k with −k):

ṗi = √
αωi cos (ωi t + ky) , y = C(p, t) + n(t) (9.56)

C(p1,...,pn,t)
ui

pi(t)

cos(•)√αωi

ωit

C

k

1
s

n(t)

y(t)

Fig. 9.10 Tuning of the i th component pi of p = (p1, . . . , pn) ∈ R
n . The symbol 1

s denotes the

Laplace Transform of an integrator, so that in the above diagram pi (t) = pi (0) + ∫ t
0 ui (τ )dτ



9 Automatic Tuning and Control for Advanced Light Sources 237

where ωi = ω0ri such that ri �= r j ∀i �= j and n(t) is additive noise. The trajectory
of system (9.56) approaches the minimum of C(p, t), with its trajectory arbitrarily
close to that of

˙̄p = −kα

2
∇C, p̄(0) = p(0) (9.57)

with the distance between the two decreasing as a function of increasing ω0. Namely,
for any given T ∈ [0,∞), any compact set of allowable parameters p ∈ K ⊂ R

m,
and any desired accuracy δ, there exists ω�

0 such that for all ω0 > ω�
0, the distance

between the trajectory p(t) of (9.56) and p̄(t) of (9.57) satisfies the bound

max
p,p̄∈K ,t∈[0,T ]

‖p(t) − p̄(t)‖ < δ. (9.58)

Remark 1 One of the most important features of this scheme is that on average
the system performs a gradient descent of the actual, unknown function C despite
feedback being based only on its noise corrupted measurement y = C(p, t) + n(t).

Remark 2 The stability of this scheme is verified by the fact that an addition of an
un-modeled, possibly destabilizing perturbation of the form f(p, t) to the dynamics
of ṗ results in the averaged system:

˙̄p = f(p̄, t) − kα

2
∇C, (9.59)

which may be made to approach the minimum of C , by choosing kα large enough
relative to the values of

∥∥(∇C)T
∥∥ and ‖f(p̄, t)‖.

Remark 3 In the case of a time-varying max/min location p�(t) ofC(p, t), there will
be terms of the form:

1√
ω

∣∣∣∣
∂C(p, t)

∂t

∣∣∣∣ , (9.60)

which are made to approach zero by increasing ω. Furthermore, in the analysis of
the convergence of the error pe(t) = p(t) − p�(t) there will be terms of the form:

1

kα

∣∣∣∣
∂C(p, t)

∂t

∣∣∣∣ . (9.61)

Together, (9.60) and (9.61) imply the intuitively obvious fact that for systems whose
time-variation is fast, in which the minimum towards which we are descending is
quickly varying, both the value of ω and of the product kα must be larger than for
the time-invariant case.

Remark 4 In the case of different parameters having vastly different response char-
acteristics and sensitivities (such as when tuning both RF and magnet settings in the
same scheme), the choices of k andαmaybe specified differently for each component
pi , as ki and αi , without change to the above analysis.
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Fig. 9.11 ES for
simultaneous stabilization
and optimization of an
unknown, open-loop
unstable system based on a
noise corrupted scalar
measurement

Unknown, noise corrupted, 
and time-variyng

-k

Unknown and 
unstable

ES

C + n(t)

A more general form of the scheme for simultaneous stabilization and optimiza-
tion of an n-dimensional open-loop unstable systemwith analytically unknownnoise-
corrupted output function C(x, t) is shown in Fig. 9.11, but will not be discussed in
detail here.

9.3.3 ES for RF Beam Loading Compensation

The ES method described above has been used both in simulation and optimization
studies and has been implemented in hardware in accelerators. We now return to the
RF problem described in Sect. 9.1.6, where we discussed the fact that due to delay-
limited gains and power limitations, the sudden transient caused by beam loading
greatly disturbs the RF fields of accelerating cavities which must be re-settled to
within prescribed bounds before the next bunches can be brought in for acceleration.
ES has been applied to this beam loading problem in the LANSCE accelerator via
high speed field programmable gate array (FPGA).

In order to control the amplitude and phase of the RF cavity accelerating field, the
I (t) = A(t) cos(θ(t)) and Q(t) = A(t) sin(θ(t)) components of the cavity voltage
signal were sampled as described in Sect. 9.1.6, at a rate of 100 MS/s during a 1000
µs RF pulse. The detected RF signal was then broken down into 10 µs long sections
and feed forward Iff, j (n) and Qff, j (n) control outputs were generated for each 10 µs
long section, as shown in Fig. 9.12.

Remark 5 In the discussion and figures that follow, we refer to Icav(t) and Qcav(t)
simply as I (t) and Q(t).

The iterative extremumseekingwas performedvia finite difference approximation
of the ES dynamics:

x(t + dt) − x(t)

dt
≈ dx

dt
= √

αω cos(ωt + kC(x, t)), (9.62)

by updating the feedforward signals according to
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Fig. 9.12 Top: Iterative scheme for determining I and Q costs during 1–10µs intervals. Bottom:
ES-based feedforward outputs for beam loading transient compensation

Iff, j (n + 1) = Iff, j (n) + Δ
√

αω cos
(
ωnΔ + kCI, j (n)

)
, (9.63)

and
Qff, j (n + 1) = Qff, j (n) + Δ

√
αω sin

(
ωnΔ + kCQ, j (n)

)
, (9.64)

where the individual I and Q costs were calculated as

CI, j (n) =
t j+1∫

t j

|I (t) − Is(t)| dt, (9.65)

CQ, j (n) =
t j+1∫

t j

|Q(t) − Qs(t)| dt. (9.66)

Note that although the I j and Q j parameters were updated on separate costs, they
were still dithered with different functions, sin(·) and cos(·), to help maintain orthog-
onality in the frequency domain. The feed forward signals were then added to the
PI and static feed forward controller outputs. Running at a repetition rate of 120 Hz,
the feedback converges within several hundred iterations or a few seconds.

These preliminary experimental results are shown in Fig. 9.13 and summarized in
Table9.1. The maximum, rms, and average values are all calculated during a 150µs
windowwhich includes the beam turn on transient to capture the worst case scenario.
The ES-based scheme is a >2× improvement over static feed-forward in terms of
maximum errors and a >3× improvement in terms of rms error. With the currently
used FPGA, the ES window lengths can be further reduced from 10µs to 10 ns and
with the latest FPGAs down to 1 ns, which will greatly improve the ES performance.
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Fig. 9.13 Phase and amplitude errors shown before, during, and after beam turn-on transient. The
histogram data shown is collected during the dashed histogram window, and cleaned up via 100
point moving average after raw data was sampled at 100MS/s. Black: Beam OFF. Blue: Beam ON,
feedback, and static feed-forward only. Red: Beam ON, feedback, static feed-forward, and iterative
ES feed-forward

Table 9.1 ES performance during beam turn on transient

No Beam Beam, No ES Beam and ES

max A error (%) ±0.06 ±0.41 ±0.22

rms A error (%) 0.025 0.168 0.066

mean A error (%) −0.003 −0.114 −0.024

max θ error (%) ±0.09 ±0.57 ±0.21

rms θ error (%) 0.028 0.283 0.108

mean θ error (%) 0.016 −0.208 −0.034

9.3.4 ES for Magnet Tuning

ES has also been tested in hardware for magnet-based beam dynamics tuning, as
described in Sect. 9.1.1. At the SPEAR3 synchrotron at LCLS, ES was used for
continuous re-tuning of the eight parameter system shown in Fig. 9.14, in which
the delay, pulse width, and voltage of two injection kickers, K1 and K2, as well as
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Fig. 9.14 Kicker magnets and skew quadrupole magnets. When the beam is kicked in and out of
orbit, because of imperfect magnet matching, betatron oscillations occur, which are sampled at the
BPM every time the beam completes a turn around the machine

the current of two skew quadrupoles S1 and S2, were tuned in order to optimize
the injection kicker bump match, minimizing betatron oscillations. At SPEAR3, we
simultaneously tuned 8 parameters: (1). p1 = K1 delay. (2). p2 = K1 pulse width.
(3). p3 = K1 voltage. (4). p4 = K2 delay. (5). p5 = K2 pulse width. (6). p6 = K2

voltage. (7). p7 = S1 current. (8). p8 = S2 current. The parameters are illustrated in
Figs. 9.14, 9.15. While controlling the voltage for the kicker magnets K1, K2, and
the current for the skew quadrupole magnets S1, S2, in each case a change in the
setting resulted in a change in magnetic field strength.

The cost function used for tuning was a combination of the horizontal, σx ,
and vertical, σy , variance of beam position monitor readings over 256 turns, the

Δw

Δv/Δi

Δd

K
3
 voltage deviation (%)

-6 -4 -2 0 2 4 6

C
os

t a
nd

 V
ar

ia
nc

es
 (

A
rb

itr
ar

y 
U

ni
ts

)

0

50

100

150

200

250

300
Adaptation / No Adaptation

Cost - With Adaptation
Cost - Without Adaptation

Fig. 9.15 Left: Kicker magnet delay (d), pulse width (w), and voltage (v) were adaptively adjusted,
as well as the skew quadrupole magnet currents (i). Right: Comparison of beam quality with and
without adaptation
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minimization of which resulted in decreased betatron oscillations,

C =
√√√√ 1

256

256∑
i=1

(x(i) − x̄)2 +
√√√√ 9

256

256∑
i=1

(y(i) − ȳ)2

= σx + 3σy, (9.67)

where the factor of 3 was added to increase the weight of the vertical oscillations,
which require tighter control since the vertical beam size is much smaller and there-
fore users are more sensitive to vertical oscillations.

The cost was based on beam position monitor (BPM) measurements in the
SPEAR3 ring based on a centroid x and y position of the beam recorded at each
revolution, as shown in Fig. 9.14. Variances σx and σy were calculated based on
this data, as in (9.67). Feedback was implemented via the experimental physics and
industrial control system (EPICS) [47].

To demonstrate the scheme’s ability to compensate for an uncertain, time-varying
perturbation of the system, we purposely varied the voltage (and therefore resulting
magnetic field strength) of the third kicker magnet, K3(t). The kicker voltage was
varied sinusoidally over a range of ±6% over the course of 1.5 h, which is a very
dramatic and fast change relative to actual machine parameter drift rates and mag-
nitudes. The ES scheme was implemented by setting parameter values, kicking an
electron beam out and back into the ring, and recording beam position monitor data
for a few thousand turns. Based on this data the cost was calculated as in (9.67), based
on a measurement of the horizontal and vertical variance of beam position monitor
readings. The magnet settings were then adjusted, the beam was kicked again, and
a new cost was calculated. This process was repeated and the cost was iteratively,
continuously minimized.

Figure9.14 shows the cost, which is a function of betatron oscillation, versusmag-
net setting K3(t), with and without ES feedback. For large magnetic field deviations,
the improvement is roughly a factor of 2.5.

9.3.5 ES for Electron Bunch Longitudinal Phase Space
Prediction

The Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC
National Accelerator Laboratory produces high energy electron beams for plasma
wakefield acceleration [48]. For these experiments, precise control of the longitudinal
beam profile is very important. FACET uses an x-band transverse deflecting cavity
(TCAV) to streak the beam and measure the bunch profile (Fig. 9.16a). Although the
TCAV provides an accurate measure of the bunch profile, it is a destructive measure-
ment; the beam cannot be used for plasma wakefield acceleration (PWFA) once it
has been streaked. In addition, using the TCAV to measure the bunch profile requires
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Fig. 9.16 The energy spectrum is recorded as the electron bunch passes through a series of magnets
and radiates x-rays. The intensity distribution of the X-rays is correlated to the energy spectrum
of the electron beam (a). This non-destructive measurement is available at all times, and used as
the input to the ES scheme, which is then matched by adaptively tuning machine parameters in the
simulation. For the TCAVmeasurement, the electron bunch is passed through a high frequency (11.4
GHz) RF cavity with a transverse mode, in which it is streaked and passes through a metallic foil
(b). The intensity of the optical transition radiation (OTR) is proportional to the longitudinal charge
density distribution. This high accuracy longitudinal bunch profile measurement is a destructive
technique

adjusting the optics of the final focus system to optimize the resolution and accuracy
of measurement. This makes it a time consuming process and prevents on-the-fly
measurements of the bunch profile during plasma experiments.

There are two diagnostics that are used as an alternative to the TCAV that provide
information about the longitudinal phase space in a non-destructive manner. The
first is a pyrometer that captures optical diffraction radiation (ODR) produced by
the electron beam as it passes through a hole in a metal foil. The spectral content
of the ODR changes with bunch length. The pyrometer is sensitive to the spectral
content and the signal it collects is proportional to 1/σz , where σz is the bunch
length. The pyrometer is an excellent device for measuring variation in the shot-to-
shot bunch profile but provides no information about the shape of the bunch profile or
specific changes to shape. The seconddevice is a non-destructive energy spectrometer
consisting of a half-period vertical wiggler located in a region of large horizontal
dispersion. The wiggler produces a streak of X-rays with an intensity profile that
is correlated with the dispersed beam profile. There X-rays are intercepted by a
scintillating YAG crystal and imaged by a CCD camera (Fig. 9.16b). The horizontal
profile of the x-ray streak is interpreted as the energy spectrum of the beam [49].

The measured energy spectrum is observed to correlate with the longitudinal
bunch profile in a one-to-one manner if certain machine parameters, such as chi-
cane optics, are fixed. To calculate the beam properties based on an energy spectrum
measurement, the detected spectrum is compared to a simulated spectrum created
with the 2D longitudinal particle tracking code, LiTrack [50]. The energy spread of
short electron bunches desirable for plasma wakefield acceleration can be uniquely
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Fig. 9.17 ES scheme at FACET

correlated to the beam profile if all of the various accelerator parameters which
influence the bunch profile and energy spread are accounted for accurately. Unfortu-
nately, throughout the 2km facility, there exist systematic phase drifts of various high
frequency devices, mis-calibrations, and time-varying uncertainties due to thermal
drifts. Therefore, in order to effectively and accurately relate an energy spectrum to
a bunch profile, a very large parameter space must be searched and fit by LiTrack,
which effectively limits and prevents the use of the energy spectrum measurement
as a real time measurement of bunch profile.

Figures9.16 and 9.17 show the overall setup of the tuning procedure at FACET.
A simulation of the accelerator, LiTrack is run in parallel to the machines opera-
tion. The simulation was initialized with guesses and any available measurements of
actual machine settings, p = (p1, . . . , pn). We emphasize that these are only guesses
because even measured values are noisy and have arbitrary phase shift errors. The
electron beam in the actual machine was accelerated and then passed through a series
of deflectingmagnets, as shown in Figs. 9.16b and 9.17, which createdX-rays, whose
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intensity distribution can be correlated to the electron bunch density via LiTrack. This
non-destructive measurement is available at all times, and used as the input to the
ES scheme, which is then matched by adaptively tuning machine parameters in the
simulation. Once the simulated and actual spectrum were matched, certain beam
properties could be predicted by the simulation.

Each parameter setting has its own influence on electron beam dynamics, which in
turn influenced the separation, charge, length, etc, of the leading and trailing electron
bunches.

The cost that our adaptive scheme was attempting to minimize was then the
difference between the actual, detected spectrum, and that predicted by LiTrack:

C(x, x̂, p, p̂, t) =
∫ ∣∣∣ψ̃(x, p, t, ν) − ψ̂(x̂, p̂, t, ν)

∣∣∣
2
dν, (9.68)

in which ψ̃(x, p, t, ν) was a noisy measurement of the actual, time-varying (due
to phase drift, thermal cycling…) energy spectrum, and ψ̂(x̂, p̂, t, ν) was the
LiTrack, simulated spectrum, x(t) = (x1(t), . . . , xn(t)) represents various aspects
of the beam, such as bunch length, beam energy, bunch charge, etc. at certain loca-
tions throughout the accelerator, p(t) = (p1(t), . . . , pn(t)) represents various time-
varying uncertain parameters of the accelerator itself, such as RF system phase drifts
and RF field amplitudes throughout the machine, x(t) are approximated by their
simulated estimates x̂(t) = (

x̂1(t), . . . , x̂n(t)
)
and actual system parameters, p(t),

are approximated by virtual parameters p̂(t) = (
p̂1(t), . . . , p̂n(t)

)
.

The problem was then to minimize the measurable, but analytically unknown
function C , by adaptively tuning the simulation parameters p̂. The hope was that, by
finding simulation machine settings which resulted in matched spectrums, we would
also match other properties of the real and simulated beams, something we could not
simply do by setting the simulation parameters to the exact machine settings, due to
unknowns, such as time-varying, arbitrary phase shifts.

LiTrackES simulates large components of FACET as single elements. The critical
elements of the simulation are the North Damping Ring (NDR) which sets the initial
bunch parameters including the bunch length and energy spread, the North Ring to
Linac (NRTL) which is the first of three bunch compressors, Linac Sectors 2–10
where the beam is accelerated and chirped, the second bunch compressor in Sector
10 (LBCC), Linac Sectors 11–19 where the beam is again accelerated and chirped,
and finally the FACET W-chicane which is the third and final bunch compressor.

We calibrated the LiTrackES algorithm using simultaneous measurements of the
energy spectrum and bunch profile while allowing a set of unknown parameters to
converge. After convergence we left a subset of these calibrated parameters fixed,
as they are known to vary slowly or not at all and performed our tuning on a much
smaller subset of the parameters:

• p1: NDR bunch length
• p2: NRTL energy offset
• p3: NRTL compressor amplitude
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• p4: NRTL chicane T566
• p5: Phase Ramp

“Phase ramp” refers to a net phase of the NDR and NRTL RF systems with respect
to the main linac RF. Changing the phase ramp parameter results in a phase set offset
in the linac relative to some desired phase.

LiTrackES, the combination ofES andLiTrack, as demonstrated, is able to provide
a quasi real time estimate of many machine and electron beam properties which
are either inaccessible or require destructive measurements. We plan to improve the
convergence rate of LiTrackES by fine tuning the adaptive scheme’s parameters, such
as the gains ki , perturbing amplitudes αi and dithering frequencies ωi . Furthermore,
we plan on taking advantage of several simultaneously running LiTrackES schemes,
which can communicate with each other in an intelligent way, and each of which has
slightly different adaptive parameters/initial parameter guesses, which we believe
can greatly increase both the rate and accuracy of the convergence. Another major
goal is the extension of this algorithm from monitoring to tuning. We hope to one
day utilize LiTrackES as an actual feedback to the machine settings in order to tune
for desired electron beam properties.

9.3.6 ES for Phase Space Tuning

For the work described here, a measured XTCAV image was utilized and compared
to the simulated energy and position spread of an electron bunch at the end of the
LCLS as simulated by LiTrack. The electron bunch distribution is given by a function
ρ(ΔE,Δz) where ΔE = E − E0 is energy offset from the mean or design energy
of the bunch and Δz = z − z0 is position offset from the center of the bunch. We
worked with two distributions:

XTCAV measured : ρTCAV(ΔE,Δz),

LiTrack simulated : ρLiTrack(ΔE,Δz).

These distributions were then integrated along the E and z projections in order to
calculate 1D energy and charge distributions:

ρE,TCAV(ΔE), ρz,TCAV(Δz),

ρE,LiTrack(ΔE), ρz,LiTrack(Δz).

Finally, the energy and charge spread distributions were compared to create cost
values:
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Fig. 9.18 Components of the LCLS beamline

CE =
∫ [

ρE,TCAV(ΔE) − ρE,LiTrack(ΔE)
]2
dΔE, (9.69)

Cz =
∫ [

ρz,TCAV(Δz) − ρz,LiTrack(Δz)
]2
dΔz, (9.70)

whose weighted sum was combined into a single final cost:

C = wECE + wzCz . (9.71)

Iterative extremum seeking was then performed via finite difference approximation
of the ES dynamics (Fig. 9.18):

p(t + dt) − p(t)

dt
≈ dp

dt
= √

αω cos(ωt + kC(p, t)), (9.72)

by updating LiTrack model parameters, p = (p1, . . . , pm), according to

p j (n + 1) = p j (n) + Δ
√

αω j cos
(
ω j nΔ + kC(n)

)
, (9.73)

where the previous step’s cost is based on the previous simulation’s parameter set-
tings,

C(n) = C(p(n)). (9.74)

The parameters being tuned were:

1. L1S phase: typically drifts continuously and is repeatedly corrected via an inva-
sive phase scan. Within some limited range a correct bunch length can be main-
tained by the existing feedback system. This parameter is used for optimizing
machine settings and FEL pulse intensity. When the charge off the cathode is
changed, L1S phase must be adjusted manually.

2. L1X phase:must be changed if L1S phase is changed significantly. This linearizes
the curvature of the beam.

3. BC1 energy: control bunch length and provides feedback to L1S amplitude.
4. L2 phase: drifts continuously with temperature, is a set of multiple Klystrons,

all of which cycle in amplitude and phase. Feedback is required to introduce the
correct energy chirp required for BC2 peak current/bunch length set point. Tuned
to maximize FEL intensity and minimize jitter.
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Fig. 9.19 Parameter convergence and cost minimization for matching desired bunch length and
energy spread profiles

5. BC2 energy: drifts due to Klystron fluctuations, must be changed to optimize
FEL pulse intensity for exotic setups.

6. L3 phase: drifts continuously with temperature, based on a coupled system of
many Klystrons.

Machine tuningworkhas begunwith general analytic studies aswell as simulation-
based algorithm development focused on the LCLS beam line, using SLACs LiTrack
software, a code which captures most aspects of the electron beams phase space evo-
lution and incorporates noise representative of operating conditions. The initial effort
focused on developing ES-based auto tuning of the electron beam’s bunch length and
energy spread by varying LiTrack parameters in order to match LiTrack’s output to
an actual TCAV measurement taken from the accelerator by tuning bunch compres-
sor energies and RF phases. The results are shown in Figs. 9.19 and 9.20. Running
at a repetition rate of 120 Hz, the simulated feedback would have converged within
2 s on the actual LCLS machine.

Preliminary results have demonstrated that ES is a powerful tool with the potential
to automatically tune an FEL between various bunch properties such as energy spread
and bunch length requirements by simultaneously tuning multiple coupled parame-
ters, based only on a TCAV measurement at the end of the machine. Although the
simulation results are promising, It remains to be seen what the limitations of the
method are in the actual machine in terms of getting stuck in local minima and time of
convergence. We plan on exploring the extent of parameter and phase space through
which we can automatically move.
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Fig. 9.20 Measured XTCAV, original LiTrack and final, converged LiTrack energy versus position
phases space of the electron bunch shown

9.4 Conclusions

The intense bunch charges, extremely short bunch lengths, and extremely high ener-
gies of next generation FEL beams result in complex collective effects which couple
transverse and longitudinal dynamics and therefore all of the RF and magnet sys-
tems and their influence on the quality of the light being produced. These future light
sources, especially 4th generation FELs, face major challenges both in achieving
extremely tight constraints on beam quality and in quickly tuning between various,
exotic experimental setups. We have presented a very brief and simple introduction
to some of the beam dynamics important to accelerators and have introduced some
methods for achieving better beam quality and faster tuning. Based on preliminary
results it is our belief is that a combination of machine learning and advanced feed-
back methods such as ES have great potential towards meeting the requirements of
future light sources. Such a combination of ES and machine learning has recently
been demonstrated in a proof of principle experiment at the Linac-Coherent Light
Source FEL [51]. During this experiment we quickly trained a simple neural network
to obtain an estimate of a complex and time-varying parameter space, mapping lon-
gitudinal electron beam phase space (energy vs time) to machine parameter settings.
For a target longitudinal phase space, we used the neural network to give us an initial
guess of the required parameter settings which brought us to within a neighborhood
of the correct parameter settings, but did not give a perfect match. We then used ES-
based feedback to zoom in on and track the actual optimal time-varying parameters
settings.
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