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Abstract. In this paper we assume that the customers arrive at a single
server queueing system according to Markovian Arrival process. When
the system is empty, the server goes for vacation and produces inventory
for future use during this period. The maximum processed inventory at
a stretch is L. The inventory processing time follows phase type dis-
tribution. These are required for the service of customers-one for each
customer. The server returns from vacation when there are N customers
in the system. The service time follows two distinct phase type distribu-
tions depending on whether there is processed items or no processed item
available at service commencement epoch. We analyse the distributions
of time till the number of customers hit N or the inventory level reaches
L, idle time, the distribution of time until the number of customers hit
N and also the distribution of the number of inventory processed before
the arrival of first customer. Also we provide the distribution of a busy
cycle, LSTs of busy cycles in which no item is left in the inventory and
at least one item is left in the inventory. We perform some numerical
experiments to evaluate the expected idle time, standard deviation and
coefficient of variation of idle time of the server.
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1 Introduction

In a vacation queueing system, the server may not be available for a period of
time due to several reasons like server working on some supplementary jobs or
doing some maintenance work, server’s failure that interrupt customer service
or simply taking a break. Levy and Yechiali [5] introduced the concept of server
vacation. A considerable number of work in this area were surveyed by Doshi in
[2]. More studies on vacation models could be found in Takagi [8] and in Tian
and Zhang [9]. Kazimirsky [4] studied BMAP/G/1 queue with infinite buffer
and service time distribution depending on number of processed items: When
customers are absent in the system, the server begins to produce items that
are put to the storehouse until the storehouse capacity is reached or a group
of customers arrives. When a group of customers arrives, the item processing
stopped and the service of the customers begins. Service time of a customer
depends on the amount of items at the storehouse at the beginning of the service.
After the service of the customer is completed, it departs from the systems and,
if its service is begun with nonempty storehouse, the number of items at the
storehouse decreases by one unit at a service completion epoch. In this queueing
model, he considered the systems with the possibility of preliminary service. An
efficient algorithm for calculating the stationary queue length distribution was
proposed, and Laplace-Stieltjes transform of the sojourn time was derived. Also
he proved Little’s law and an associated optimization problem was analyzed.

The motivation for our work is a paper by Hanukov et al. [3]. In their model,
they studied a single server queue in which the service consists of two indepen-
dent stages. The first stage can be performed even in the absence of customers,
whereas the second stage requires the customer to be present. When the sys-
tem is devoid of customers, the server produces an inventory of first stage called
‘preliminary’ services, which is used to reduce customer’s overall sojourn times.
Hence in this model customer will not have to wait for the entire service to be
carried out from the beginning, provided processed item is available at the time
the customer is taken for service. Such customers have a shorter service time
in comparison to those who encounter the system with no processed item when
taken for service. Yadin and Naor [10] introduced the concept of N-policy in
which the server turns on with the accumulation of N or more customers and
turns off when the system is empty. This has the advantage that the length of
a busy period becomes larger when server is activated on accumulation of N
or more customers, thereby bringing down the expected cost incurred per unit
time.

In this paper we consider a single server queueing system in which customers
arrive according to Markovian Arrival process. When the system is empty, the
server goes for vacation and produces inventory for future use during this period.
The maximum inventory level is L. The inventory processing time follows phase
type distribution. The server returns from vacation when there are N customers
in the system. The service time follows two distinct phase type distributions
according to whether there is no processed item or there are processed items
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at the beginning of service. Each customer requires an item from inventory for
service which is exclusively used for the service of that particular customer only.

The rest of the paper is arranged as follows. The mathematical formulation
is given in Sect. 2. Section 3 provides steady state analysis of the model and also
contain some important distributions. Some numerical results are discussed in
Sect. 4.

Notations and abbreviations used in the sequel:

– e(a): Column vector of 1′s of order a.
– e: Column vector of 1′s of appropriate order.
– CTMC: Continuous time Markov chain.
– Ia: identity matrix of order a.
– ea(b): column vector of order b with 1 in the ath position and the remaining

entries zero.
– MAP : Markovian Arrival Process.
– LST : Laplace-Steiltges Transform.
– LIQBD: Level Independent Quasi-Birth and-Death.

2 Model Description and Mathematical Formulation

We assume that customers arrive at a single server queueing system according
to MAP with representation (D0,D1) of order n. When the system is empty,
the server goes for vacation and produces inventory for future use during this
period. The maximum inventory level permitted is L. The inventory processing
time follows phase type distribution PH(α, T ) of order m1. These are required for
the service of customers-one for each customer.The server returns from vacation
when N customers accumulate in the system. The service time follows PH(β, S)
of order m2 when there is no processed item and it follows PH(γ, U) of order m3

when there are processed items.
Let Q∗ = D0 + D1 be the generator matrix of the type II arrival process

and π∗ be its stationary probability vector. Hence π∗ is the unique (positive)
probability vector satisfying

π∗Q∗ = 0, π∗e = 1.

The constant β∗ = π∗D1e, referred to as fundemental rate, gives the
expected number of arrivals per unit of time in the stationary version of the
MAP. It is assumed that the arrival process is independent of the inventory
processing and service process.

2.1 The QBD Process

The model described in Sect. 1 can be studied as a LIQBD process. First we
introduce the following notations:

At time t:

N(t): the number of customers in the system at time t,
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I(t): the number of processed inventory

J(t) =
{

0, when the server is on vacation
1, when the server is busy serving a customer

K(t): the phase of the inventory processing/service process
M(t): the phase of arrival of the customer.

It is easy to verify that {(N(t), I(t), J(t),K(t),M(t)) : t ≥ 0} is a LIQBD
with state space: (i) no customer in the system
l(0) = {(0, i, 0, k1, l) : 0 ≤ i ≤ L − 1, 1 ≤ k1 ≤ m1, 1 ≤ l ≤ n} ∪ {(0, L, 0, l) : 1 ≤
l ≤ n}.
(ii) when there are h customers in the system, for 1 ≤ h ≤ N − 1:
l(h) = {(h, i, 0, k1, l) : 0 ≤ i ≤ L − 1, 1 ≤ k1 ≤ m1, 1 ≤ l ≤ n} ∪ {(h,L, 0, l) :
1 ≤ l ≤ n} ∪ {(h, 0, 1, k2, l) : 1 ≤ k2 ≤ m2, 1 ≤ l ≤ n} ∪ {(h, i, 1, k3, l) : 1 ≤ i ≤
L − N + h, 1 ≤ k3 ≤ m3, 1 ≤ l ≤ n} (last part only whenL − N + h > 0)
and for h ≥ N :
l(h) = {(h, 0, 1, k2, l) : 1 ≤ k2 ≤ m2, 1 ≤ l ≤ n} ∪ {(h, i, 1, k3, l) : 1 ≤ i ≤ L, 1 ≤
k3 ≤ m3, 1 ≤ l ≤ n}.

The infinitesimal generator of this CTMC is

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 C0

B1 E1 F1

B2 E2 F2

. . . . . . . . .
BN−2 EN−2 FN−2

BN−1 EN−1 F ′
N−1

B′
N A1 A0

A2 A1 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The boundary blocks B0, C0, B1, F
′
N−1, B

′
N are of orders (Lm1+1)n×(Lm1+

1)n, (Lm1+1)n×(
(Lm1+1)n+m2n+(L−N+1)m3n

)
,
(
(Lm1+1)n+m2n+(L−

N +1)m3n
)×(Lm1+1)n,

(
(m1+m2)n+(L−1)(m1+m3)n+n

)×(m2+Lm3)n,
(m2 +Lm3)n×(

(m1 +m2)n+(L−1)(m1 +m3)n+n
)

respectively. For 2 ≤ h ≤
N−1, Bh is of order

(
(m1+m2)n+(L−N+h)(m1+m3)n+(N−h−1)m1n+n

)×(
m1+m2)n+(L−N+h−1)(m1+m3)n+(N−h)m1n+n

)
. For 1 ≤ h ≤ N−1, Eh

is of order
(
(m1+m2)n+(L−N +h)(m1+m3)n+(N −h−1)m1n+n

)×(
(m1+

m2)n+(L−N +h)(m1 +m3)n+(N −h−1)m1n+n
)
. For 1 ≤ h ≤ N −2, Fh is

of order
(
(m1 +m2)n+(L−N +h)(m1 +m3)n+(N −h−1)m1n+n

)× (
(m1 +

m2)n+(L−N +h+1)(m1 +m3)n+(N −h−2)m1n+n
)
. A0, A1, A2 are square

matrices of order (m2 + Lm3)n. Define the entries B
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

, C
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

,

B
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

, E
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

, B
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

, F
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

, F ′
N−1

(i2,j2,k2,l2)
(i1,j1,k1,l1)

and

B′
N

(i2,j2,k2,l2)
(i1,j1,k1,l1)

as transition submatrices which contains transitions of the
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form (0, i1, j1, k1, l1) → (0, i2, j2, k2, l2), (0, i1, j1, k1, l1) → (1, i2, j2, k2, l2),
(1, i1, j1, k1, l1) → (0, i2, j2, k2, l2), (h, i1, j1, k1, l1) → (h, i2, j2, k2, l2), where
1 ≤ h ≤ N − 1, (h, i1, j1, k1, l1) → (h − 1, i2, j2, k2, l2), where 2 ≤ h ≤
N − 1, (h, i1, j1, k1, l1) → (h + 1, i2, j2, k2, l2), where 1 ≤ h ≤ N − 2, (N −
1, i1, j1, k1, l1) → (N, i2, j2, k2, l2) and (N, i1, j1, k1, l1) → (N − 1, i2, j2, k2, l2)
respectively. Define the entries A

(i2,j2,k2,l2)
2(i1,j1,k1,l1)

, A
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

and A
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

as
transition submatrices which contains transitions of the form (h, i1, j1, k1, l1) →
(h − 1, i2, j2, k2, l2), where h ≥ N + 1, (h, i1, j1, k1, l1) → (h, i2, j2, k2, l2), where
h ≥ N and (h, i1, j1, k1, l1) → (h + 1, i2, j2, k2, l2), where h ≥ N respectively.
Since none or one event alone could take place in a short interval of time
with positive probability, in general, a transition such as (h1, i1, j1, k1, l1) →
(h2, i2, j2, k2, l2) has positive rate only for exactly one of h1, i1, j1, k1, l1 different
from h2, i2, j2, k2, l2.

B
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T oα ⊗ In i2 = i1 + 1, 0 ≤ i1 ≤ L − 2; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n

T o ⊗ In i1 = L − 1, i2 = L; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n

T ⊕ D0 i1 = i2, 0 ≤ i1 ≤ L − 1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n

D0 i1 = i2 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

C
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=

⎧⎨
⎩

Im1 ⊗ D1 0 ≤ i1 ≤ L − 1, i1 = i2; j1 = j2 = 0; 1 ≤ k1, k2,≤ m1;
1 ≤ l1, l2 ≤ n

D1 i1 = i2 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

B
(i2,j2,k2,l2)
1(i1,j1,k1,l1)

=

⎧
⎪⎪⎨

⎪⎪⎩

S0α ⊗ In i1 = i2 = 0; j1 = 1, j2 = 0; 1 ≤ k1 ≤ m2,

1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n

U0α ⊗ In 1 ≤ i1 ≤ L − N + 1; i2 = i1 − 1; j1 = 1, j2 = 0; ; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m1; 1 ≤ l1, l2 ≤ n

For 1 ≤ h ≤ N − 1,

E
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 0α ⊗ In 0 ≤ i1 ≤ L − 2, i2 = i1 + 1; j1 = j2 = 0;

1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n

T 0 ⊗ In i1 = L − 1, i2 = L; j1 = j2 = 0;

1 ≤ k1 ≤ m1; 1 ≤ l1, l2 ≤ n

T ⊕ D0 i1 = i2, 0 ≤ i1 ≤ L − 1; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n

S ⊕ D0 i1 = i2 = 0, j1 = j2 = 1, 1 ≤ k1, k2 ≤ m2, 1 ≤ l1, l2 ≤ n

U ⊕ D0 i1 = i2, 1 ≤ i1 ≤ L − N + h; j1 = j2 = 1,

1 ≤ k1, k2 ≤ m3, 1 ≤ l1, l2 ≤ n

D0 i1 = i2 = L; j1 = j2 = 0; 1 ≤ l1, l2 ≤ n

For 2 ≤ h ≤ N − 1,

B
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S0β ⊗ In i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2; 1 ≤ l1, l2 ≤ n

U0β ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n

U0γ ⊗ In 2 ≤ i1 ≤ L − N + h, i2 = i1 − 1; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n
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For 1 ≤ h ≤ N − 2,

F
(i2,j2,k2,l2)
h(i1,j1,k1,l1)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Im1 ⊗ D1 0 ≤ i1 ≤ L − 1, i1 = i2; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1;

1 ≤ l1, l2 ≤ n

Im2 ⊗ D1 i2 = i1 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2, 1 ≤ l1, l2 ≤ n

Im3 ⊗ D1 i2 = i1, 1 ≤ i1 ≤ L − N + h; j1 = j2 = 1;

1 ≤ k1, k2 ≤ m3, 1 ≤ l1, l2 ≤ n

D1 i1 = i2 = L; j1 = j2 = 0; 1 ≤ k1, k2 ≤ m1; 1 ≤ l1, l2 ≤ n

F
′
N−1

(i2,j2,k2,l2)
(i1,j1,k1,l1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(m1) ⊗ (β ⊗ D1) i1 = i2 = 0; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n

Im2 ⊗ D1 i2 = i1 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2,

1 ≤ l1, l2 ≤ n

Im3 ⊗ D1 i2 = i1, 0 ≤ i1 ≤ L − 1; j1 = j2 = 1; ,

1 ≤ k1, k2 ≤ m3, 1 ≤ l1, l2 ≤ n

e(m1) ⊗ (γ ⊗ D1) 1 ≤ i1 ≤ L − 1; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m3; 1 ≤ l1, l2 ≤ n

γ ⊗ D1 i1 = i2 = L; j1 = 0, j2 = 1; 1 ≤ k1 ≤ m1,

1 ≤ k2 ≤ m3; 1 ≤ l1, l2 ≤ n

B
′
N

(i2,j2,k2,l2)
(i1,j1,k1,l1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S0β ⊗ In i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2, ; 1 ≤ l1, l2 ≤ n

U0β ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3,

1 ≤ k2 ≤ m2; 1 ≤ l1, l2 ≤ n

U0γ ⊗ In 2 ≤ i1 ≤ L, i2 = i1 − 1; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3;

1 ≤ l1, l2 ≤ n

A
(i2,j2,k2,l2)
2(i1,j1,k1,l1)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S0β ⊗ In i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2;
1 ≤ l1, l2 ≤ n

U0β ⊗ In i1 = 1, i2 = 0; j1 = j2 = 1; 1 ≤ k1 ≤ m3, 1 ≤ k2 ≤ m2;
1 ≤ l1, l2 ≤ n

U0γ ⊗ In i2 = i1 − 1, 2 ≤ i2 ≤ L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3;
1 ≤ l1, l2 ≤ n

A
(h,i2,j2,k2,l2)
1(h,i1,j1,k1,l1)

=

{
S ⊕ D0 i1 = i2 = 0, j1 = j2 = 1, 1 ≤ k1, k2 ≤ m2, 1 ≤ l1, l2 ≤ n

U ⊕ D0 i1 = i2, 1 ≤ i1 ≤ L; j1 = j2 = 1, 1 ≤ k1, k2 ≤ m3, 1 ≤ l1, l2 ≤ n

A
(i2,j2,k2,l2)
0(i1,j1,k1,l1)

=

{
Im2 ⊗ D1 i1 = i2 = 0; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m2; 1 ≤ l1, l2 ≤ n

Im3 ⊗ D1 i1 = i2, 1 ≤ i1 ≤ L; j1 = j2 = 1; 1 ≤ k1, k2 ≤ m3; 1 ≤ l1, l2 ≤ n

3 Steady State Analysis

The stability condition for the system is given by

Lemma 1. The system is stable iff π∗D1e < (β(−S)−1e)−1.

Let xxx be the steady state probability vector of Q. We partition this vector as

xxx = (x0, x1, x2x0, x1, x2x0, x1, x2 . . .),
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where x0x0x0 is of dimension (Lm1 + 1)n, xhxhxh, 1 ≤ h ≤ N − 1 are of dimension
(m1 + m2)n + (L − N + h)(m1 + m3)n + (N − h − 1)m1n + n and xN , xN+1xN , xN+1xN , xN+1 . . .
are of dimension (m2 + Lm3)n. Under the stability condition, we have

xN+ixN+ixN+i = xxxNRi, i ≥ 1

where the matrix R is the minimal nonnegative solution to the matrix quadratic
equation

R2A2 + RA1 + A0 = 0

and the vectors x0, x1x0, x1x0, x1, · · · ,xNxNxN . . .are obtained by solving the equations

x0x0x0B0 + x1x1x1B1 = 0 (1)
x0x0x0C0 + x1x1x1E1 + x2x2x2B2 = 0 (2)

xi−1xi−1xi−1Fi−1 + xixixiEi + xi+1xi+1xi+1Bi+1 = 0, for 2 ≤ i ≤ N − 2 (3)
xN−2xN−2xN−2FN−2 + xN−1xN−1xN−1EN−1 + xNxNxNBN ′ = 0 (4)

xN−1xN−1xN−1F
′
N−1 + xNxNxN (A1 + RA2) = 0 (5)

subject to the normalizing condition
N−1∑
i=0

xixixieee + +xNxNxN (I − R)−1eee = 1 (6)

3.1 Distribution of Time till the Number of Customers Hit N or
the Inventory Level Reaches L

We can study this by a phase type distribution PH(ψ1, V1) where the underlying
Markov process has state space {(h, i, j, k) : 0 ≤ h ≤ N − 1, 0 ≤ i ≤ L − 1, 1 ≤
j ≤ m1, 1 ≤ k ≤ n}∪{∗1}∪{∗2} where ∗1 denotes the absorbing state indicating
the inventory level hitting L and ∗2 denotes the absorbing state indicating the
number of customers reaching N . The infinitesimal generator is

V1 =
[

V1 V
(0)
1 V

(1)
1

000 0 0

]
where, V1 =

⎡
⎢⎢⎢⎣

E ILm1 ⊗ D1

. . . . . .
E ILm1 ⊗ D1

E

⎤
⎥⎥⎥⎦ ,

V
(0)
1 =

⎡
⎢⎣

eeeL(L) ⊗ (T 0 ⊗ e(n))
...

eeeL(L) ⊗ (T 0 ⊗ e(n))

⎤
⎥⎦ , V

(1)
1 =

⎡
⎢⎢⎢⎣

000
...
000

eee(Lm1) ⊗ δ

⎤
⎥⎥⎥⎦

with

E =

⎡
⎢⎢⎢⎣

T ⊕ D0 T 0α ⊗ In

. . . . . .
T ⊕ D0 T 0α ⊗ In

T ⊕ D0

⎤
⎥⎥⎥⎦ and δ =

⎡
⎢⎣

δ1
...

δn

⎤
⎥⎦ ,
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with δi representing the sum of ith row of the D1 matrix.
The initial probability vector is

ψ1 = (1/d1)(x0,0,0,1,1, · · · , x0,0,0,1,n, · · · , x0,0,0,m1,1, · · · , x0,0,0,m1,n,0)

where d1 =
∑n

l=1

∑m1
k=1 x0,0,0,k,l and 0 is a zero matrix of order 1 × (

(N −
1)Lm1n + (L − 1)m1n

)
.

Thus we have the following lemma.

Lemma 2. The expected duration of time till the inventory level reaches L before
the number of customers hit N is given by ψ1(−V1)−2V

(0)
1 and the expected

duration of time till the number of customers hit N before the inventory level
reaches L is given by ψ1(−V1)−2V

(1)
1 .

3.2 Distribution of Idle Time

Case (i)
Suppose that the number of customers become N only after the inventory
level hits L. The probability for this event is the probability for absorption
of PH(ψ1, V1) to ∗1. In this case, we can study this conditional distribution by
a phase type distribution PH(ψ2, V2) where the underlying Markov process has
state space {(h,L, 0, l) : 0 ≤ h ≤ N − 1, 1 ≤ l ≤ n} ∪ {∗} where ∗ denotes
the absorbing state indicating that the number of customers hitting N . The
infinitesimal generator is

V2 =
[

V2 V 0
2

000 0

]
, where, V2 =

⎡
⎢⎢⎢⎣

D0 D1

. . . . . .
D0 D1

D0

⎤
⎥⎥⎥⎦ , V 0

2 =

⎡
⎢⎢⎢⎣

000
...
000
δ

⎤
⎥⎥⎥⎦

where δ =

⎡
⎢⎣

δ1
...

δn

⎤
⎥⎦with δi representing the sum of ith row of the D1 matrix. The

initial probability vector is

ψ2 = (1/d2)(v0,L,0,1, · · · , v0,L,0,n, · · · , vN−1,L,0,1, · · · , vN−1,L,0,n)

where, for 0 ≤ h ≤ N − 2, 1 ≤ l ≤ n,

vh,L,0,l =
m1∑
k=1

ηk∑
l �=l′ d0ll′ + δl +

∑
k �=k′ Tkk′ + ηk

xh,L−1,0,k,l

and, for h = N − 1, 1 ≤ l ≤ n,

vN−1,L,0,l =
m1∑
k=1

ηk∑
l �=l′ d0ll′ +

∑
k �=k′ Tkk′ + ηk

xN−1,L−1,0,k,l,
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with, d2 =
∑N−1

h=0

∑n
l=1 vh,L,0,l.

Here, ηk represents the absorption rate from phase k in PH(α, T ), Tkk′′

represent the kk′th entry of T , d0ll′ represent the transition rates from the phase
l to the phase l′ without arrival and δl represent the lth row sum of D1 matrix.

Case(ii)
Suppose that the number of customers become N before the inventory level hits
L. The probability for this event is the probability for absorption of PH(ψ1, V1)
to ∗2. In this case, the idle time = 0.

Thus we have the following theorem.

Theorem 1. The LST of the distribution of the idle time is given by

(
ψ2(sI − V2)−1V 0

2

) (∫ ∞

t=0

ψ1e
V1tV

(0)
1 dt

)

3.3 Distribution of Time Until the Number of Customers Hit N

We can study this by a phase type distribution PH(ψ3, V3) where the underlying
Markov process has state space {(h, i, j, k) : 0 ≤ h ≤ N − 1, 0 ≤ i ≤ L − 1, 1 ≤
j ≤ m1, 1 ≤ k ≤ n} ∪ {(h,L, k) : 0 ≤ h ≤ N − 1, 1 ≤ k ≤ n} ∪ {∗} where ∗
denotes the absorbing state indicating the number of customers reaching N . The
infinitesimal generator is

V3 =

[
V3 V 0

3
000 0

]

, whereV3 =

⎡

⎢
⎢
⎢
⎢
⎣

F ILm1+1 ⊗ D1

. . .
. . .

F ILm1+1 ⊗ D1

F

⎤

⎥
⎥
⎥
⎥
⎦

, V
0
3 =

⎡

⎢
⎢
⎢
⎢
⎣

000

.

.

.

000

eee(Lm1 + 1) ⊗ δ

⎤

⎥
⎥
⎥
⎥
⎦

with

F =

⎡
⎢⎢⎢⎢⎢⎣

T ⊕ D0 T 0α ⊗ In

. . . . . .
T ⊕ D0 T 0α ⊗ In

T ⊕ D0 T 0 ⊗ In

D0

⎤
⎥⎥⎥⎥⎥⎦

The initial probability vector is

ψ3 = (1/d1(x0,0,0,1,1, · · · , x0,0,0,1,n, · · · , x0,0,0,m1,1, · · · , x0,0,0,m1,n,0)

where d1 =
∑n

l=1

∑m1
k=1 x0,0,0,k,l, where 0 is a zero matrix of order 1 × (

(N −
1)(Lm1 + 1)n + ((L − 1)m1 + 1)n

)
.

Thus we have the following lemma.

Lemma 3. The distribution of time when the processing starts until the number
of customers hit N is a phase type distribution with representation PH(ψ3, V3).
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3.4 Distribution of Number of Inventory Processed Before the
Arrival of First Customer

To compute the above distribution, first we find the following:

Distribution of Processing Time till the Arrival of First Customer.
Consider the Markov process with state space {(i, j, k) : 0 ≤ i ≤ L − 1, 1 ≤ j ≤
m1, 1 ≤ k ≤ n} ∪ {(L, k) : 1 ≤ l ≤ n} ∪ {∗}, where i denote the number of
items in the inventory, j, the phase of inventory processing, k, the arrival phase
of customer, *, the absorbing state indicating the arrival of a customer. The
infinitesimal generator of the process is given by

V4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
e(m1) ⊗ δ T ⊕ D0 T 0α ⊗ In 0 0 0
e(m1) ⊗ δ 0 T ⊕ D0 T 0α ⊗ In 0 0

...
...

. . . . . . . . .
...

e(m1) ⊗ δ 0 0 T ⊕ D0 T 0α ⊗ In 0
e(m1) ⊗ δ 0 0 0 T ⊕ D0 T 0 ⊗ In

δ 0 0 0 0 D0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The initial probability is given by

ψ4 =
1
d1

(x0,0,0,1,1, . . . , x0,0,0,1,n, . . . , x0,0,0,m1,1, . . . x0,0,0,m1,n,000)

where 000 is a zero matrix of order 1 × ((L − 1)m1 + 1)n.
Let Y denote the number of items processed before the first arrival and yk be
the probability that k items are processed before an arrival. Then yk is the
probability that the absorption occurs from the level k for the process. Hence
yk are given by

y0 = −ψ4(T ⊕ D0)−1(e(m1) ⊗ δ)

For k = 1, 2, 3, . . . L − 1

yk = (−1)k+1ψ4

(
(T ⊕ D0)−1(T 0α ⊗ In)

)k
(T ⊕ D0)−1(e(m1) ⊗ δ)

and

yL = (−1)L+1ψ4

(
(T ⊕ D0)−1(T 0α ⊗ In)

)L−1
(T ⊕ D0)−1(T 0 ⊗ In)D−1

0 δ

Thus we have the following lemma.

Lemma 4. The distribution of number of inventory processed before the arrival
of first customer is given by P (Y = k) = yk.

Definition 1. Starting up with the epoch of departure of a customer leaving
behind no customer in the system until the next epoch at which no customer is
left at a service completion epoch is called a busy cycle.
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3.5 Distribution of Busy Cycle

First we assume that L > N .
The distribution of duration of busy cycle in which no item is left in the

inventory can be studied by a continuous time Markov chain with state space
{(h, i, 0, k, l) : 0 ≤ h ≤ N−1, 0 ≤ i ≤ L−1, 1 ≤ k ≤ m1, 1 ≤ l ≤ n}∪{(h,L, 0, l) :
0 ≤ h ≤ N − 1, 1 ≤ l ≤ n} ∪ {(h, i, 1, k, l) : 1 ≤ h ≤ M, i = 0, 1 ≤ k ≤ m2, 1 ≤
l ≤ n} ∪ {(h, i, 1, k, l) : 1 ≤ h ≤ N − 1, 1 ≤ i ≤ L − N + h, 1 ≤ k ≤ m3, 1 ≤ l ≤
n} ∪ {(h, i, 1, k, l) : N ≤ h ≤ M, 1 ≤ i ≤ L, 1 ≤ k ≤ m3, 1 ≤ l ≤ n} ∪ {∗}, where
(h, i, 0, k, l) denote the states that correspond to the server being in vacation
with h customers in the system,i, items in the inventory, k, processing phase and
l,the arrival phase, (h,L, 0, l) denote the states that correspond to the server
being in vacation with h customers in the system, L, items in the inventory and
l,the arrival phase, (h, i, 1, k, l) denote the states that correspond to the server
being in normal mode with h customers in the system,i, items in the inventory,
k, service phase and l,the arrival phase, ∗ denote the absorbing state indicating
that the number of customers become zero by a service completion and M is
chosen in such a way that P

(∑M
h=0 xheee > 1 − ε

)
→ 0 for every ε > 0. Then

the distribution of a busy cycle can be studied by a phase type distribution
PH(φ,B), whose infinitesimal generator is given by

B =
[

B B0

000 0

]
where, B =

[
B11 B12

0 B22

]

Now,

B11 =

⎡

⎢
⎢
⎢
⎢
⎣

F ILm1+1 ⊗ D1

. . .
. . .

F ILm1+1 ⊗ D1

F

⎤

⎥
⎥
⎥
⎥
⎦

, withF =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T ⊕ D0 T 0α ⊗ In

. . .
. . .

T ⊕ D0 T 0α ⊗ In
T ⊕ D0 T 0 ⊗ In

D0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

B12 = eN (N)e′
N (M) ⊗ B′

12,

where,

B′
12 =

⎡
⎢⎢⎢⎣

e(m1) ⊗ (β ⊗ D1)
IL−1 ⊗ (e(m1) ⊗ (γ ⊗ D1)

. . .
γ ⊗ D1

⎤
⎥⎥⎥⎦
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B22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1 F1

G1 E2 F2

. . . . . . . . .
GN−2 EN−1 FN−1

GN−1 EN I ⊗ D1

. . . . . . . . .
GM−2 EM−1 I ⊗ D1

GM−1 E′
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For 1 ≤ h ≤ N − 1,

Gh =

⎡
⎣ S0β ⊗ In 0

U0β ⊗ In 0
0 IL−N+h ⊗ (U0γ ⊗ In)

⎤
⎦ , Eh =

[
S ⊕ D0

IL−N+h ⊗ (U ⊕ D0)

]

and
Fh =

[
Im2+(L−N+h)m3 ⊗ D1 0

]
.

ForN ≤ h ≤ M − 1, Eh =
[

S ⊕ D0

IL ⊗ (U ⊕ D0)

]

Forh ≥ N, Gh =

⎡
⎣ S0β ⊗ In 0 0

U0β ⊗ In 0 0
0 IL−1 ⊗ (U0γ ⊗ In) 0

⎤
⎦

E′
M =

[
EM0

IL ⊗ (EM1)

]
, where

EM0 = S ⊕D0 − Im2 ⊗Δ and EM1 = U ⊕D0 − Im3 ⊗Δ, with Δ =

⎡
⎢⎣

δ1
. . .

δn

⎤
⎥⎦ .

and

B0 =

[
000

B00

]
, with, B00 =

⎡
⎢⎢⎢⎣
B000

000
...
000

⎤
⎥⎥⎥⎦ , where, B000 =

[
S0 ⊗ e(n)

e(L − N + 1) ⊗ (U0 ⊗ e(n))

]

The initial probability vector is

φ = (φ′,000)

where, φ′ = 1
d3

(w0,0,0,1,1, · · · , w0,0,0,m1,n, · · · , w0,L−1,0,1,1, · · · , w0,L−1,0,m1,n,0),

where d3 =
∑L−1

i=0

∑m1
k′=1

∑n
l=1 w0,i,0,k′,l.
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For 1 ≤ k′ ≤ m1, 1 ≤ l ≤ n,

w0,0,0,k′,l =
m2∑
k=1

σkαk′

δl +
∑

l �=l′ d0ll′ + σk +
∑

k �=k′′ Skk′′
x1,0,1,k,l +

m3∑
k=1

τkαk′

δl +
∑

l �=l′ d0ll′ + τk +
∑

k �=k′′ Ukk′′
x1,1,1,k,l, (7)

For 1 ≤ i ≤ L − 1, 1 ≤ k′ ≤ m1, 1 ≤ l ≤ n,

w0,i,0,k′,l =
m3∑
k=1

τkαk′

δl +
∑

l �=l′ d0ll′ + τk +
∑

k �=k′′ Ukk′′
x1,i+1,1,k,l,

where σk, τk represent the absorption rates from service phase k in PH(β, S)
and PH(γ, U) respectively, Skk′′ , Ukk′′ represent the kk′′th entry of S and U
respectively, αk′ represents the probability that the processing of item starts
in phase k′, d0ll′ represent the transition rates from the phase l to the phase l′

without arrival and δl represent the lth row sum of D1 matrix.
From the above discussions we have the following.

Theorem 2. The LST of the distribution of a busy cycle in which no item is
left in the inventory is given by

B̂C1(s) = φ(sI − B)−1I ′(B0)′

where, I ′ denote the columns of identity matrix corresponding to the 1 customer
level with number of items in the inventory 0 and 1 and

(B0)′ =
[

S0 ⊗ e(n)
U0 ⊗ e(n)

]

Theorem 3. The LST of the distribution of a busy cycle in which atleast one
item is left in the inventory is given by

B̂C2(s) = φ(sI − B)−1I ′′(B0)′′

where, I ′′ denote the columns of identity matrix corresponding to 1 customer
level with number of items in the inventory > 1 and

(B0)′′ = e(L − N) ⊗ (U0 ⊗ e(n))

Theorem 4. For stationary MAP, the expected number of busy cycles in which
at least one inventory left in an interval of length t is given by

(
t/(φ(−B)−1eee)

) (
B̂C2

′
(0)/

(
B̂C1

′
(0) + B̂C2

′
(0)

))
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4 Numerical Results

We fix α =
[
1 0

]
, β =

[
1 0

]
and γ =

[
0.8 0.2

]
, T =

[−3 3
0 −3

]
, S =

[−4 4
0 −4

]
,

U =
[−2 2

0 −2

]
and D0 = −1, D1 = 1

For these input parameters we get the system characteristics as given in
Table 1. The behaviour of the performance characteristics is on expected lines.
Let E denote Expected Idle time, SD, standard deviation of Idle time, CV,
Coefficient of Variation of Idle time.

Table 1. Mean/Standard deviation/Coefficient of variation of idle time of the server

L ↓ N → 2 3 4

E SD CV E SD CV E SD CV

2 0.90 1.20 1.33 1.47 1.52 1.03 2.00 1.79 0.90

3 0.63 1.07 1.71 1.15 1.43 1.25 1.78 1.77 1.00

4 0.42 0.92 2.19 0.86 1.31 1.52 1.44 1.68 1.17

5 0.27 0.76 2.80 0.63 1.16 1.86 1.12 1.56 1.39

5 Conclusion

In this paper, we considered a MAP/PH/1 queue with processing of service
items under Vacation and N-policy. We analysed the distribution of time till the
number of customers hit N or the inventory level reaches L, distribution of idle
time, the distribution of time until the number of customers hit N and also the
distribution of number of inventory processed before the arrival of first customer.
Also we provided the distribution of a busy cycle, LSTs of busy cycles in which
no item is left in the inventory and atleast one item is left in the inventory.
We performed some numerical experiments to evaluate the expected idle time,
standard deviation and coefficient of varaiation of idle time of the server. We
propose to extend the model to the case in which the customers are impatient.
Also we will find individual optimal strategy, server’s maximum revenue and
social optimal strategy by numerical experiments in a future study.
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