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Abstract. This paper discusses the application of stochastic Runge-
Kutta-like numerical methods with weak and strong convergences for
systems of stochastic differential equations in Itô form. At the begin-
ning a brief overview of available publications about stochastic numerical
methods and information from the theory of stochastic differential equa-
tions are given. Then the difficulties that arise when trying to implement
stochastic numerical methods and motivate to use source code generation
are described. We discuss some implementation details, such as program
languages (Python, Julia) and libraries (Jinja2, Numpy). Also the link
to the repository with source code is provided in the article.
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1 Introduction

The article [16] describes the Python [30] implementation of stochastic numerical
Runge-Kutta type methods. This implementations heavily relies on NumPy and
SciPy [18] libraries. We chose Pyhon language because of it’s simplicity and
development speed. NumPy’s capability to work with multidimensional arrays as
tensors (functions tensor_dot and einsum) was also very helpful. However, the
performance was low, and not so much because of Python slowness, as because
we used the large number of nested loops (up to seven). In this paper, we consider
an alternative approach of stochastic numerical methods implementation, based
on automatic code generation.

This article is divided into three sections. The first section provides the
overview of the main sources and presents information from the theory of
stochastic differential equations (SDE) and methods for their numerical solu-
tion. The second section presents stochastic numerical schemes for scalar SDE
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with strong convergence and for SDE systems with strong and weak conver-
gence. In addition to the general schemes, several coefficient tables are pro-
vided. This allows to implement a specific numerical method. Finally, the third
section explains the use of code generation for stochastic numerical methods and
describes some details of the generator we have implemented (we use Jinja2 [1]
template engine).

2 Background Overview

In this section, we give a brief overview of the available publications on stochastic
Runge-Kutta methods. We study multistage numerical schemes without partial
derivatives from the drift vector f(t,X) and the diffusion matrix G(t,X), so we
don’t consider Milstein methods [25–27]).

First, who used a stochastic Brownian process for mathematical modeling was
a French mathematician, a student of Henri Poincare—Bachelier (1870–1946) in
1900 in the work [3].

The book by Kloeden and Platen [19] is classical work on numerical methods
for SDE. The book provides a brief introduction to the theory of stochastic
Ito and Stratonovich differential equations and their applications. The last two
thirds of the book are devoted to the presentation of numerical methods in the
sense of strict and weak approximations, including a number of Runge-Kutta
methods.

The dissertation by Rößler [32] is a consistent report of stochastic numerical
Runge-Kutta-like methods. The author considers the approximation of Ito and
Stratonovich SDE systems in a weak sense for the scalar and multidimensional
Wiener process. After a brief review of the previous works, the author develops
the stochastic equivalent of labelled trees theory (labelled trees are used to derive
the order conditions in the case of deterministic Runge-Kutta methods, see, for
example, [13,17]).

Rossler considers weakly convergent stochastic Runge-Kutta-like methods for
Ito and Stratonovich SDE systems for both the scalar and the multidimensional
Wiener process. In the third and the fifth part of the dissertation the specific
implementation of the explicit stochastic numerical methods for weak conver-
gence was described.

Further results of Rosler studies were described in articles [14,15] in col-
laboration with Debrabant. In the preprint [15] authors continued classification
of stochastic methods, Runge-Kutta method with a weak convergence. Several
concrete realizations and results of numerical experiments were obtained. In the
another preprint [31], they gave tables for fourth stage and strong order conver-
gence methods p = 3.0.

Euler–Maruyama method described by Maruyama in the paper [23] may be
considered as the first stochastic Runge-Kutta-like method. The first system-
atic study of stochastic numerical Runge–Kutta-like methods of strong order of
convergence p = 1.0 is given by Rümelin [33] and Platen in his thesis [29].
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Great contribution was made by Burrage and Burrage in a series of arti-
cles [7–10,12]. In these papers, they not only studied methods of strong order
p = 1.5, but also extended the theory of labeled trees to the stochastic case.

The article of Soheili and Namjoo [34] presented the three methods with
strong convergence p = 1.0 and the numerical comparison with the method from
the book [19].

Some of the first methods with weak convergence are given in the book [19].
Further development they received in article by Komori and Mitsui [20] and
in [22]. In the article [35] two three-stage methods, the weak convergence of the
p = 2.0, as well as numerical experiments were introduced.

In view of the extreme complexity of further improving the order of accuracy
of stochastic numerical schemes, the modern studies are devoted to obtaining
numerical schemes for special SDE cases. It is possible to point out some of such
studies about stochastic symplectic Runge–Kutta-like methods [11,21,37] and
stochastic analogues of the Rosenbrock method [2].

3 Stochastic Wiener Process and Software Generation
of Its Trajectories

The stochastic process W (t), t � 0 is called scalar Wiener process if the following
conditions are true [19,28]:

– P{W (0) = 0} = 1, or in other words, W (0) = 0 is almost certain;
– W (t) is process with independent increments, i.e. {ΔWi}N−1

0 are independent
random variables: ΔWI = W (tI+1) − W (tI) and 0 � t0 < t1 < t2 < . . . <
tN � T ;

– ΔWi = W (tI+1) − W (tI) ∼ N (0, tI+1 − tI) where 0 � tI+1 < tI < t,
I = 0, 1, . . . , N − 1.

The symbol ΔWi ∼ N (0,Δti) denotes that ΔWi is normally distributed
random variable with expected value E[ΔWi] = μ = 0 and variance D[ΔWi] =
σ2 = Δti.

The Wiener process is a model of Brownian motion (random walk). If we
consider the process W (t) in time points 0 = t0 < t1 < t2 < . . . < tN−1 < tN
when it experiences random additive changes, then directly from the definition
of Wiener process follows:

W (t1) = W (t0)+ΔW0,W (t2) = W (t1)+ΔW1, . . . ,W (tN ) = W (tN−1)+ΔWN−1,

where ΔWi ∼ N (0,Δti), ∀i = 0, . . . , N − 1.
The multidimensional Wiener process W(t) : Ω × [t0, T ] → R

m is defined as
a random process composed of jointly independent one-dimensional Wiener pro-
cesses W 1(t), . . . ,Wm(t). Increments of ΔWα

I , ∀α = 1, . . . , m are jointly inde-
pendent normally distributed random variables. On the other hand, the vector
ΔWα

I can be represented as a multidimensional normally distributed random
variable with the expectation vector μ = 0 and the diagonal covariance matrix.

In the case of a multidimensional stochastic process one has to generate m
sequences of n normally distributed random variables should be generated.
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3.1 Program Generation of Wiener Process

To simulate a one-dimensional Wiener process, it is necessary to generate N
normally distributed random numbers ε1, . . . , εN and to construct their cumu-
lative sums. The result will be the simulated sample path of the Wiener process
W (t) or—using a different terminology—concrete implementation of the Wiener
process.

In the case of a multidimensional random process, n sequences of m normally
distributed random variables should be generated (that is, n arrays, each of m
elements).

We implemented Wiener process generator in Python [30] and Julia [5]. To
generate an array of numbers distributed according to the standard normal dis-
tribution in the case of Python, we used the function random.normal from the
NumPy [18] library and, in the case of Julia, the built-in randn function. Both
functions give qualitative pseudorandom sequences, since their work uses gen-
erators of uniformly distributed pseudorandom numbers based on an algorithm
called Mersenne’s vortex [24] (Mersenne Twister), and generators of pseudoran-
dom normally distributed numbers use the Box–Mueller transformation [4,6].

To generate the Wiener process in Python one should use the WienerProcess
class. The following code gives an example of this class usage.

import stochastic

N = 100
T = (0.0, 10.0)
W = stochastic.WienerProcess(N=N, time_interval=T)

print("Step size: ", W.dt)
print("Time points: ", W.t)
print("Process iterations: ", W.dx)
print("Wiener Process trajectory: ", W.x)
print("Intervals numbers: ", len(W.dx))
print("Points number: ", len(W.x))

The class constructor does not have any required arguments. By default, a
process is generated on a time interval [0, 1], which is divided into 1000 parts
(N=1000). Thus, by default, a path consisting of 1001 points with step dt equal
to 0.001.

In the case of Julia, the Wiener process generator is implemented as the
composite data type struct

"""Stochastic Wiener process"""
struct WienerProcess <: AbstractStochasticProcess

"Number of process steps"
N::Int64
"Time interval starting point"
t_0::Float64
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"Time interval end point"
t_N::Float64
"Step size"
dt::Float64
"Time points"
T::Vector{Float64}
"Winer process values"
X::Vector{Float64}
"Winer process increments dX ~ N(0, dt)"
dX::Vector{Float64}

end

With following contractors

WienerProcess(N::Int64, t_0::Float64, t_N::Float64)
WienerProcess(N::Int64, dt::Float64)
WienerProcess(N::Int64)
WienerProcess()

3.2 Calculation and Approximation of Multiple Ito Integrals
of Special Form

Here we will not go into the general theory of multiple stochastic Ito integrals,
a reader can refer to the book [19] for additional information. Here we con-
sider multiple special integrals, which are included in the stochastic numerical
schemes.

In General, for the construction of numerical schemes with order of conver-
gence greater than p = 1

2 , it is necessary to calculate single, double and triple
Ito integrals of the following form:

Iα(tn, tn+1) = Iα(hn) =

tn+1∫

tn

dWα(τ),

Iαβ(tn, tn+1) = Iαβ(hn) =

tn+1∫

tn

τ1∫

tn

dWα(τ2)dW β(τ1),

Iαβγ(tn, tn+1) = Iαβγ(hn) =

tn+1∫

tn

τ1∫

tn

τ2∫

tn

dWα(τ3)dW β(τ2)dW γ(τ1),

where α, β, γ = 0 . . . ,m and Wα, α = 1, . . . ,m are components of multidimen-
sional Wiener process. In the case of α, β, γ = 0, the increment of dW 0(τ) is
assumed to be dτ .

The problem is to get analytical formulas for these integrals with ΔW I
n =

W I(tn+1)−W I(tn) in them. Despite its apparent simplicity, this is not achievable
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for all possible combinations of indices. Let us consider in the beginning those
cases when it is possible to obtain an analytical expression, and then turn to
those cases when it is necessary to use an approximating formulas.

In the case of a single integral, the problem is trivial and the analytic expres-
sion can be obtained for any index α:

I0(hn) = Δtn = hn, Iα(hn) = ΔWα
n , α = 1, . . . , m.

In the case of a double integral Iαβ(hn), the exact formula takes place only
at α = β:

I00(hn) =
1
2
Δtn =

1
2
h2

n, Iαα(hn) =
1
2

(
(ΔWα

n )2 − Δtn
)
, α = 1, . . . ,m,

in other cases, when α �= β Express Iαβ(hn) by increments of ΔWα
n and Δtn in

the final form is not possible, so we can only use numerical approximation.
For the mixed case I0α and Iα0 in [32], simple formulas of the following form

are given:

I0α(hn) =
1
2
hn

(
Iα(hn) − 1√

3
ζα(hn)

)
,

Iα0(hn) =
1
2
hn

(
Iα(hn) +

1√
3
ζα(hn)

)
,

where ζα
n ∼ N (0, hn) are multidimensional normal distributed random variables.

For the General case α, β = 1, . . . ,m, the book [19] provides the following
formulas for approximating the double Ito integral Iαβ :

Iαβ(hn) =
ΔWα

n ΔW β
n − hnδαβ

2
+ Aαβ(hn),

Aαβ(hn) =
h

2π

∞∑
k=1

1
k

[
V α

k

(
Uβ

k +
√

2
hn

ΔW β
n

)
− V β

k

(
Uα

k +
√

2
hn

ΔWα
n

)]
,

where V α
k ∼ N (0, 1), Uα

k ∼ N (0, 1), α = 1, . . . , m; k = 1, . . . ,∞; n = 1, . . . , N
is numerical schema number. From the formulas it is seen that in the case α =
β, we get the final expression for the Iαβ , which we mentioned above. In the
case of α �= β, one has to sum the infinite series aαβ . This algorithm gives an
approximation error of order O(h2/n), where n is number of left terms of an
infinite series aij .

In the article [36] a matrix form of approximating formulas is introduced.
Let 1m×m, 0m×m be the unit and zero matrices m × m, then

I(hn) =
ΔWnΔWT

n − hn1m×m

2
+ A(hn),

A(hn) =
h

2π

∞∑
k=1

1
k

(
Vk(Uk +

√
2/hnΔWn)T − (Uk +

√
2/hnΔWn)VT

k

)
,

where ΔWn,Vk,Uk are independent normally distributed multidimensional
random variables:

ΔWn = (ΔW 1
n ,ΔW 2

n , . . . ,ΔWm
n )T ∼ N (0m×m, hn1m×m),

Vk = (V 1
k , V 2

k , . . . , V m
k )T ∼ N (0m×m,1m×m),

Uk = (U1
k , U2

k , . . . , Um
k )T ∼ N (0m×m,1m×m).



538 M. N. Gevorkyan et al.

If the programming language supports vectored operations with multidimen-
sional arrays, these formulas can provide a benefit to the performance of the
program.

Finally, consider a triple integral. In the only numerical scheme in which it
occurs, it is necessary to be able to calculate only the case of identical indexes
α = β = γ. For this case, [32] gives the following formula:

Iααα(hn) =
1
6

(
(Iα(hn))3 − 3I0(hn)Iα(hn)

)
=

1
6

(
(ΔWα

n )3 − 3hnΔWα
n

)
.

3.3 Strong and Weak Convergence of the Approximating Function

Before proceeding to the formulation of numerical schemes, it is necessary to
determine the criterion of accuracy of approximation of the simulated process
x(t) by the grid function xn. Two criteria are used: weak and strong convergence.

The sequence of approximating functions {xn}N
1 converges with order p to

the exact solution x(t) of SDE in moment T in strong sense if constant C > 0
exists and δ0 > 0 such as ∀h ∈ (0, δ0 and following condition is fulfilled:

(‖x(T ) − xN‖) � Chp.

The sequence of approximating functions {xn}N
1 converges with order p to

the exact solution x(t) of SDE in moment T in weak sense if constant CF > 0
exists and δ0 > 0 such as ∀h ∈ (0, δ0] and the following condition is fulfilled:

|E [F (x(T ))] − E [F (xN )]| � CF hp.

Here F ∈ C
2(p+1)
P (R,Rd) is a continuous differentiable functional with poly-

nomial growth.
If the G matrix is zero, then the strong convergence condition is equivalent

to the deterministic case, but the order of strong convergence is not necessarily
a natural number and can take fractional-rational values.

It is important to note that the choice of the convergence type depends on
the problem one has to solve. Increasing the order of strict convergence leads to
more accurate approximation of the trajectories of x(t). If one wants to calculate,
for example, the moment of a random process x(t) or a generalized functional
of the form E[F (x(t))], one should increase the order of weak convergence.

4 Stochastic Runge–Kutta-like Numerical Methods

4.1 Euler–Maruyama Numerical Method

The simplest numerical method for solving scalar equations and systems of
SDEs is the Euler–Maruyama method, named in honor of Gisiro Maruyama,
who extended the classical Euler method for ODEs to the case of equation [23].
The method is easily The each step requires only corresponding to this step
increment ΔW β

n . The method has a strong order (pd, ps) = (1.0, 0.5). The value
pd denotes the deterministic accuracy order, when the method is used for the
equation with G(t, xα(t)) ≡ 0. The value ps denotes the order of the stochastic
part approximation.
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4.2 Weak Stochastic Runge–Kutta-like Method with Order 1.5 for
a Scalar Wiener Process

In the case of a scalar SDE, the drift vector fα(t, xγ) and the diffusion matrix
Gα

β(t, xγ) become f(t, x) and g(t, x) scalar functions, and the driving Wiener
process W β

t is the scalar Wt. For scalar SDE it is possible to construct a numerical
scheme with strong convergence p = 1.5. In the above numerical scheme, the
Wiener stochastic process is present in implicit way. It is “hidden” inside the
stochastic Ito integrals: I10(hn), I1(hn), I11(hn), I111(hn).

4.3 Stochastic Runge–Kutta Method with Strong Order p = 1.0
for Vector Wiener Process

For SDE system with a multidimensional Wiener process, one can construct a
stochastic numerical Runge-Kutta scheme of strong order ps = 1.0 by using
single and double Ito integrals [31].

Methods SRK1Wm and SRK2Wm have strong order (pd, ps) = (1.0, 1.0) and
(pd, ps) = (2.0, 1.0).

4.4 Stochastic Runge–Kutta Method with Weak Order p = 2.0
for the Vector Wiener Process

Numerical methods with weak convergence are good for approximation of the dis-
tribution characteristics of stochastic process xα(t). The weak numerical method
does not need information about the trajectory of driving Wiener process Wα

n

and random increments for these methods can be generated on another proba-
bility space. From the paper [15] we get two Butcher tables.

5 Analysis of Implementation Difficulties of Stochastic
Runge–Kutta Numerical Methods

As can be seen from the formulas, stochastic Runge-Kutta methods are much
more complicated than their classical analogues. In addition to the cumbersome
formulas, we can highlight the following factors that complicate the implemen-
tation of stochastic methods in software, as well as their application to the
numerical solution of SDEs.

– When choosing a particular method, it is necessary to consider what type
of convergence is necessary to provide for this problem, as well as which of
the stochastic equations should be solved—in Ito or Stratonovich form. This
increases the number of algorithms one has to implement.

– For methods with strong convergence greater than one at each step it is nec-
essary to solve the resource-intensive problem of stochastic integrals approx-
imation.
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– In the numerical scheme, there are not only matrices and vectors, but also
tensors (four-dimensional arrays), it is necessary to perform a convolution
operation on several indexes. The implementation of convolution via summa-
tion by using normal cycles results in a significant performance drop.

– Weak methods requires the Monte Carlo simulation and, therefore, a large
number of repeated computations for the numerical solution. Since the Monte
Carlo method converges approximately as 1/

√
N , where N—number of cal-

culations, to achieve an accuracy of at least 10−3, it is necessary to perform
minimum 106 tests.

The most significant performance drop occurs when implementing a universal
algorithm, that is, a program that can make a calculation using an arbitrary
coefficient table. In this case, we have to use a large number of nested loops in
order to organize the summation. The presence of double sums in the schemes
as well as complex combination of indices in the multipliers under the sign of
these sums complicates the implementation even more and the number of nested
cycles increases to six. In addition to these specific features, we mention a few
reasons for the performance drop, which also take place in case of deterministic
numerical methods. The obvious way to store the coefficients of the methods
is to use arrays. However, in explicit methods, that we consider, the matrix is
lower-diagonal and storing it as a two-dimensional array results in more than
half of the allocated memory being spent on storing zeros.

While examine the source codes of popular routines that implement classical
explicit embedded Runge–Kutta methods, one may find that these programs
use a set of named constants rather than arrays to store the coefficients of the
method. It is also caused by the fact that the operations with scalar variables in
most programming languages are faster than operations on arrays.

We wish to preserve the requirement of code flexibility and at the same time
to increase the speed of calculations and reduce the memory consumption. That
led us to automatic code generation from one template.

In addition to performance gains, automatic code generation allows you to
add or modify all functions at once by editing only one template. This allows both
to reduce the number of errors and to generate different variants of functions for
different purposes.

6 Automatic Code Generation

For code generation we use Python 3 language. The program is open
source and available on bitbucket repository by URL bitbucket.org/mngev
/sde num generation. The repository contains module stochastic. This module
implements Wiener stochastic process and the numerical methods we considered
in this paper. Most part of the module’s code are generated by scripts from
generator directory.

For the code generation, we used Jinja2 [1] template engine. This library was
originally developed to generate HTML pages, but it has a very flexible syntax
and can be used as a universal tool for generating text files of any kind, including

https://bitbucket.org/mngev/sde_num_generation
https://bitbucket.org/mngev/sde_num_generation
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source codes in any programming languages. In addition to Jinja2, we also used
NumPy library to work with arrays and speed-up some calculations.

In addition to the two external libraries listed above, the standard fraction
module was used. It allows to specify the coefficients of the method as rational
fractions, and then convert them to float type with the desired order of accuracy.
Also we use typing module to annotate the types of function arguments (Python
3.5 and above feature).

Templates are files with Python source code with insertions of Jinja2 specific
commands. Information about the coefficients of the methods is stored sepa-
rately, in a structured form of JSON format. This makes it easy to add new
methods and modify old ones by editing JSON files. Currently we use methods
with coefficients presented in [14,15,19].

Python itself is used as the language for already generated functions with
the active use of NumPy library, which allows to get acceptable performance.
However, the generated code can be easily reformatted to match the syntax of
any other programming language. We plan to modify the program to generate
code in Julia language (julialang.org). This language was introduced in 2012 and
initially focused on scientific computing. Currently, he is intensively developing
and gaining popularity. To date, the current version is 0.6.2. Julia provides per-
formance comparable to C++ and Fortran, but it is a dynamic language with
interactive command line (REPL) capability similar to IPython and can be inte-
grated into an interactive Jupyter environment.

The current version of the library exceeds the one described by the authors
in [16]. The use of auto-generation made it possible not to use nested loops,
which reduced the number of memory allocations, and greatly simplified the
code.

6.1 Realisation of Automatic Code Generation

To study the calculation errors and the efficiency of different stochastic numerical
methods, it is necessary to have a universal implementation of such methods.
The universality means the possibility to use any stochastic method with a
desired strong or weak error by setting its coefficient table. With direct transfer of
mathematical formulas to the program code, one need to use about five nested
cycles, which extremely reduces performance, since such code does not take
into account a large number of zeros in the coefficient tables and arithmetic
operations on zero components are still performed, although this is an extra
waste of processor time.

One way to achieve versatility and acceptable performance is to generate code
for a numerical method step. This approach minimizes the number of arithmetic
operations and saves memory, since the zero coefficients of the method do not
have to be stored.

We implemented a code generator for the three stochastic numerical methods
mentioned above:

– scalar method with strong convergence ps = 1.5,
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– vector method with strong convergence ps = 1.0,
– vector method with weak convergence of ps = 2.0.

We use Python to implement the code generator and Jinja2 [1] template engine.
This template engine was originally created to generate HTML code, but its
syntax is universal and allows you to generate text of any kind without reference
to any programming or markup language.

Information about the coefficients of each particular method is stored as a
JSON file of the following structure:

{
"name": "method’s name (the future name of the function)",
"description": "method’s short description",
"stage": 4,
"det_order": "2.0",
"stoch_order": "1.5",
"A0": [...],
"B0": [...],
"A1": [...],
"B1": [

["0", "0", "0", "0"],
["1/2", "0", "0", "0"],
["-1", "0", "0", "0"],
["-5", "3", "1/2", "0"]

],
"c0": ["0", "3/4", "0", "0"],
"c1": ["0", "1/4", "1", "1/4"],
"a": ["1/3", "2/3", "0", "0"],
"b1": ["-1", "4/3", "2/3", "0"],
"b2": ["-1", "4/3", "-1/3", "0"],
"b3": ["2", "-4/3", "-2/3", "0"],
"b4": ["-2", "5/3", "-2/3", "1"]

}

The parameter stage is the number of method’s stages, det order is the
error order of the deterministic part (pd), stoch order is the error order of the
stochastic part (ps), name is the name of the method, which will then be used
to create the name of the generated function, so it should be written in one
word without spaces. All other parameters are the coefficients of the method. In
this case, we give the coefficients of the scalar method with strong convergence
ps = 1.5, omitting the coefficients a0, a1 and B0 to save text space. It is necessary
to note that the values of the coefficients can be specified in the form of rational
fractions, for which they should be presented as JSON strings and enclosed in
double quotes.

For internal representation of stochastic numerical methods we created three
Python classes: ScalarMethod, StrongVectorMethod and WeakVectorMethod.
The implementation of these classes is contained in the file coefficients
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table.py. The constructors of these classes read the JSON file and, based on
them, create objects, which can later be used for code generation. The Fraction
class from the Python standard library is used to represent rational coefficients.
Each class has a method that generates a coefficient table in LATEX format.

The file stoch rk generator.py is a script which handles the jinja2 tem-
plates and, based on them, generates a code of python functions. For vector
stochastic methods, a code is generated for dimensions up to 6. Functions are
named based on the information specified in JSON files, such as strong srk1w2,
strong srk2w5, weak srk2w6, and so on.

In addition to the code in Python, LATEX formulas are generated. It allows
one to check the correctness of the generator. For example, we give below the
formula generated automatically based on the data from JSON file for Runge–
Kutta method strong srk1w2 with stages s = 3, and 2 dimensioned Wiener
process. Nonzero coefficients of the method are as follows:

A2
01 = 1, A2

11 = 1, A3
11 = 1, B2

11 = 1, B3
11 = −1,

a1 = 1/2, a2 = 1/2, c20 = 1, c21 = 1, c31 = 1, b11 = 1, b22 = 1/2, b23 = −1/2.

7 Parallel SDE Integration with Weak Numerical
Methods

Stochastic numerical methods with strong convergence are well suited for com-
puting a specific trajectory of SDE solution. If we are not interested in a specific
trajectory, but in some probabilistic characteristics (distribution of a random
process, mathematical expectation, variance, etc.), then we should use numeri-
cal methods with weak convergence.

In the case of numerical methods with weak convergence, we have to use
Monte Carlo method. It means that we should solve our SDE system multiple
times and each time with different trajectory. The error of the Monte Carlo
method depends on the number of trials N as

√
N , so to achieve the accuracy of

10−3 we need 106 trials. However, since the trajectories of the Wiener process are
independent, the SDE for each specific trajectory can be solved independently
in parallel mode.

We have implemented a script in Python, which allows to find solutions of
SDE for N different trajectories in parallel mode by spawning a given num-
ber of processes. For processes spawning we use multiprocessing module. The
following features of the Cpython interpreter should be noted.

– Because of the global interpreter lock (GIL), it is not possible to use threads
for the Monte Carlo method. The standard threading module is only suitable
for asynchronous tasks.

– When using processes, you should reinitialize the random number generator
with new seed for each process separately, because otherwise all generated
processes will generate the same sequence of random numbers.

The source code of the implemented script is located in the tests directory.
It is based on two functions.
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– Function calculation performs the necessary calculations for a given num-
ber of trajectories. As arguments, the function takes the drift vector, the
diffusion matrix, the required number of simulations, the initializing value
for the random generator, the initial value of the SDU solution, the number
of steps of the Wiener process, the time interval at which it is necessary to
carry out integration, the dimension of the Wiener process and optionally the
function for testing the obtained solution for adequacy.

– Function run parallel distributes the Monte Carlo tests equally between
processes, creates a pool of processes, and runs them. Each process performs
the function calculation.

When carrying out a large number of tests, the storage of all the resulting
trajectories requires a significant amount of RAM. Therefore, it is more rea-
sonable to immediately decide what probabilistic characteristics we need and
calculate them using on-line algorithms. For example, to calculate the average
trajectory, we use the following formula

x̄n = x̄n−1 +
xn − x̄n−1

n
.

This formula allows you to update the mean values of all path steps x̄n based
on the previous mean values x̄n−1 and the current value xn. As a result, each
process must store only one array of constant length, which saves memory.

8 Conclusion

Stochastic numerical schemes with convergence order higher than 0.5 are consid-
ered. It is shown that such methods are much more complicated than equivalent
numerical methods for systems of ordinary differential equations. Their specifics
makes efficient software implementation of such methods not a trivial task. We
discuss an approach based on automatic generation of code, which allows to
obtain an efficient implementation of the methods and gives the possibility to
use any table of coefficients. We also give a short description of our program and
provide the url link to the repository with the source code.
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