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Boolean networks (BNs), introduced by Kauffman [3], is a popular and well-

established framework for modelling gene regulatory networks and their asso-
ciated signalling pathways. The main advantage of this framework is that it is
relatively simple and yet able to capture the important dynamical properties
of the system under study, thus facilitating the modelling and analysis of large
biological networks as a whole.

A Boolean network B is a pair B = (x, f), where x is a tuple of n variables x =
(x1, x2, . . . , xn) and f is a tuple of n Boolean update functions f = (f1, f2, . . . , fn),
where for every i, the function fi, which depends on a subset of the variables in
x, governs the dynamics of xi in time. BN is called linear when the functions f
are linear. It is non-linear otherwise. For a BN B with n variables, its dependency
graph is a directed graph GB = (V,E) with a set V of n vertices (or nodes) for the
n variables, ordered such that vertex vi corresponds to the variable xi. There is
a directed edge from vertex vi to vj if and only if the function fj depends on xi.
The structure of a BN B refers to the structure of its dependency graph GB. The
variables of x take Boolean values. Each such tuple of values gives rise to a state
of the BN, typically denoted as s or t. For a BN with n variables, there can be a
total of 2n possible states, the elements in {0, 1}n. The asynchronous dynamics
of a BN B is assumed to evolve in discrete time steps as follows. Suppose B is in
state s in time t. A possible next state to s, i.e., a state in time (t+1), is given by
non-deterministically choosing exactly one i and updating the ith component of
s by applying the function fi and leaving the other components unchanged. This
operation results in a directed graph, called the (state) transition system (TS)
of B, denoted TSB, whose elements are the states of B and there is a directed
edge from a state s to a state t if and only if t is a possible next state to s.

An attractor A of B is a subset of states of B that forms a bottom maximal
strongly connected component (SCC) of TSB. Attractors represent the eventual
behaviour or the steady states of the system modelled by the BN. In biological
context, attractors are hypothesised to characterise cellular phenotypes [3] and
also correspond to functional cellular states such as proliferation, apoptosis dif-
ferentiation etc. [1]. The identification and analysis of the attractors of a BN
thus forms an integral part of the study of the corresponding biological network.
Controlling the network means driving its dynamics from one steady state to
another by modifying the parameters of the network which amounts to being
able to move it between the different attractors. The strong basin of attraction
of an attractor A of B, denoted bas(A), is the subset of states of B such that
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Fig. 1. Running example: the dependency graph of a B and its transition system.

there is a (possibly empty) sequence of edges from every state s in bas(A) to a
state t ∈ A and moreover there is no such sequence from s to any state t′ ∈ A′

for any other attractor A′ �= A of B. If the current state of B is in bas(A) for
some attractor A, then its dynamics is guaranteed to eventually reach A.

The full control of linear networks is a well-understood problem [2] and a
number of control strategies have been developed in the literature. Recent work
on network controllability has shown that full controllability and reprogram-
ming of intercellular networks can be achieved by a minimal number of control
targets [5]. However, the full control of non-linear networks is apparently more
challenging predominantly due to the explosion of the potential search space
with the increase in the network size. There has not been a lot of work in the
study of the full control of non-linear networks. Recently, Kim et al. [4] devel-
oped a method to identify the so-called ‘control kernel’ which is a minimal set of
nodes for fully controlling a biological network. However, their method requires
the construction of the full state transition graph of the studied network and as
such does not scale well for large networks.

In this work, we aim to develop a method for the full control of non-linear
BNs with asynchronous dynamics, based both on their structural and dynamic
properties. The problem is formally defined as: Given a BN B, find a minimal
subset C of indices of the variables of B such that for any pair of attractors As and
At of B, there exists a state s ∈ As such that a subset of the variables with indices
in C needs to be toggled (controlled) in s, in a single step, so that the system
eventually reaches At. The problem can be shown to be PSPACE-hard and hence
efficient algorithms for dealing with large BNs are highly unlikely. Our method is
based on a decomposition-based approach for solving the corresponding minimal
target control problem [7] which yields efficient results for many large real-life
BNs having modular structures. In brief, the method analyses the structure of
the BN to identify its maximal strongly connected components and uses them
to decompose the vertices of the dependency graph into (possibly overlapping)
subsets called blocks (see details in [6,7]). The blocks are sorted topologically
and the full control problem is solved locally for each block in the sorted order.
The local results are then combined to derive the minimal full control set for the
entire network. Due to space-restriction, we describe our method in details on a
running example without going into formal notations and proofs.

Consider the three-node asynchronous BN B = (x, f), where x = (x1, x2, x3)
and f = (f1, f2, f3), such that f1 = ¬x2 ∨ (x1 ∧ x2), f2 = x1 ∧ x2 and f3 =
x3 ∧ ¬(x1 ∧ x2). The dependency graph GB and the state transition system TSB
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Fig. 2. The local transition systems of the blocks B1 and B2.

are given in Figs. 1(a) and (b), respectively. TSB has three attractors A1 =
{(100)}, A2 = {(101)} and A3 = {(110)}, shown by dark grey rectangles. Their
corresponding strong basins of attractions are shown by enclosing grey regions
of a lighter shade.

By definition, we know that for the BN to surely end up in an attractor A
it is enough for it to be in any of the states in the strong basin of A. Thus,
for example, from attractor A2 to end up in A3 one has to control the nodes
with indices {2, 3} or just {2} to enter the strong basin of A2. Table 1 notes the
indices of the nodes to control for each pair of attractors of B.

To compute the minimal full control, one has to find a minimal subset C of
{1, 2, 3} such that C is a superset of at least one subset from every cell of Table 1.
In this example C = {2, 3}, but the general problem is NP-hard.

Table 1. Attractor pair control indices.

A1 A2 A3

A1 {2}, {2,3} {3}, {1,3}, {1,2,3}
A2 {1}, {2}, {1,2} {2}, {2,3}
A3 {1,3}, {2,3}, {1,2,3} {2}, {2,3}, {1,2,3}

We thus take advantage of our decomposition-based approach developed for
the efficient computation of minimal target control for well-structured BNs [7],
to compute the full control for pairs of attractors in local blocks and then merge
them to obtain the global full control.

In the above example GB has two maximal SCCs S1 = {v1, v2} and S2 = {v3}.
Each such component Sj generates a block by including all the vertices from
which there are incoming edges into Sj . Thus GB has two blocks B1 = {v1, v2}
and B2 = {v1, v2, v3} as shown in Fig. 2(a). The vertex in B2 depends on (has
incoming edges from) vertices in B1 whereas, B1 has no such dependency on
other blocks. Hence, they can be topologically sorted as {B1, B2}. In fact, the
dependency relation between the blocks will always be acyclic and hence the
blocks can be topologically sorted [7]. We compute the transition system TSB1

of B1 (Fig. 2(b)) and find that it has 2 attractors A1
1 = {(10)} and A2

1 = {(11)}.
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Table 2. Control indices for the blocks.

The two basins of attractions bas(A1
1) and bas(A2

1) are used to compute two
transition systems of B2 (Figs. 2(c) and (d), respetively). The first has two
attractors A1

2 = {(100)} and A2
2 = {(101)} and the second has one attractor

A3
2 = {(110)}.

It holds, as was shown in [7], that A1 = A1
1 ⊗ A1

2, A2 = A1
1 ⊗ A2

2 and
A3 = A2

1 ⊗ A3
2 are the only attractors of the global B (where ⊗ is a combination

operation on boolean tuples defined in [7]). Thus we can work with the transition
systems of B1 and B2 separately to compute the minimal full control of B. For
that, we construct Tables 2(a) and (b) similar to Table 1 listing the sets of indices
to be controlled to move between attractors of B1 and B2, respectively. Here an
entry of ∅ means that it is possible to move between the corresponding attractors
without controlling any index. For B2 we need only consider the indices of the
vertices in B2 \ B1. From Table 2(a), C1 = {2} and from Table 2(b), C2 = {3}.
Combining, C = C1 ∪ C2 = {2, 3}.

For the general case, suppose there are k blocks that are topologically sorted
as {B1, B2, . . . , Bk}. Then the matrix for every block Bi will involve indices of
the vertices in Bi \ (

⋃
j<i Bj). The rest of the procedure is similar to the 2-

block case as described here. We note that for certain BNs, the minimal global
control for moving to a target attractor At computed by combining the minimal
local control for the blocks might move the BN to a state which is not in the
strong basin of attraction of At. We deal with this issue by augmenting the
procedure to systematically rule out such problematic cases. Currently, we are
implementing our approach in software and evaluating it on real-life biological
networks modelled as BNs.
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