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Foreword

Conformance checking is an important—but also challenging—topic in process
mining. Most people who see process mining for the first time are dazzled by
the process discovery capabilities of today’s process mining tools. However, when
people really start to use process mining, more detailed questions emerge, and it
is no longer sufficient to look at fancy process diagrams composed of boxes and
arrows. Initially, only academic tools like ProM supported conformance checking.
However, in the last two years, also commercial tools started to support conformance
checking, and this is a great development. Moreover, it is wonderful that there is now
this book dedicated to conformance checking written by my dear colleagues Josep
Carmona, Boudewijn van Dongen, Andreas Solti, and Matthias Weidlich. The book
nicely complements my earlier Springer book “Process Mining: Data Science in
Action” by diving deep into the topic of conformance checking and giving it the
attention it needs.

Process mining relates event data and process models and bridges the gap
between data science and process science. It is a very natural, and seemingly
obvious, combination of forces. Most organizations have a continuous desire to
improve their processes and with the availability of data it makes sense to do this
in an evidence-based manner. On the one hand, it aligns well with the current
excitement about Big data, machine learning, and artificial intelligence. On the
other hand, the techniques used are very different as demonstrated in this book.
We already had two “AI Winters” (1974–1980 and 1987–1993), and I’m sure the
third one is not far away. Therefore, it is important to see that process mining is
very different and also very concrete (as opposed to some of the hyped AI topics).
When people see process mining for the first time, they wonder why they did not
hear about this before. This book will hopefully contribute to a better positioning of
the topic.

Process mining research at Eindhoven University of Technology started in 1999.
The focus in the first year was on process discovery, and algorithms like the α-
miner and the heuristic miner were developed. We started to systematically work
on conformance checking in 2004 in the context of Anne Rozinat’s PhD thesis.
Before this, we only compared “footprint matrices” and implemented ad hoc fitness
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vi Foreword

functions in the context of genetic algorithms. Anne’s seminal work resulted in
the token-based replay techniques also described in this book. Conformance was
expressed in terms of missing and remaining tokens. Several other notions were
developed in this period (e.g., variants of what is today called precision) and token-
based replay became the standard, not only for conformance checking, but also for
decision mining and performance analysis. However, as already pointed out in Anne
Rozinat’s PhD thesis, token-based replay has several limitations. The next major
breakthrough was realized in the context of Arya Adriansyah’s PhD work (2009–
2013). He developed the seminal notion of alignments which is one of the main
topics in this book. Alignments provide a “closest path” through the process model.
It can be turned into a shortest-path problem by creating a kind of synchronous
product between the event log and the process model.

Part II of this book uses alignments as a central notion and takes a “deep dive”
into the world of conformance checking (including linear algebraic techniques,
heuristic search, and decompositions). The different chapters demonstrate that
conformance checking is very different from traditional model-based process
analysis (e.g., simulation and other business process management techniques) and
data-centric analysis techniques such as machine learning and data mining. The
confrontation between event data (i.e., recorded behaviour) and process models
(hand-made or discovered automatically) triggers many interesting and highly
relevant questions.

Part III of the book zooms in on the applications of process mining and
corresponding tools. Aligning recorded behaviour and modelled behaviour is
relevant in any domain where event data are collected, including logistics, manu-
facturing, finance, healthcare, customer relationship management, e-learning, and
e-government. Moreover, decision mining and bottleneck analysis depend on it.
For example, the profession of auditors will dramatically change because of
conformance checking. Undoubtedly, conformance checking will be in the toolbox
of future generations of analysts, consultants, managers, process owners, software
engineers, etc.

How about the future of conformance checking? What lies ahead? There is
broad consensus among process mining experts that conformance checking will
become more important. This provides two main challenges: (1) How to improve
the performance of conformance checking when models and logs get bigger?
(2) How to balance between precision and deliberate vagueness? Compared to
state-of-the-art discovery techniques, conformance checking techniques tend to
be time-consuming. It is not always required to compute optimal alignments and
there is room for approximations or alternative conformance notions. Existing
conformance approaches also require formal models. However, this is in stark
contrast with the informal models generated by commercials tools. When there
is not enough evidence in the data, one should not show very strict and “binary”
process-model constructs. However, if there is enough evidence in the data, one
should not use process-model constructs without clear semantics. Some of the tools
resolve this by having two types of process models: one for discovery and one
for conformance checking. Obviously, this is only a temporary solution. Process
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mining tools need to support hybrid process models that are precise when possible
and vague when needed. Such models should also take into account probabilities
of process paths. These challenges show that conformance checking continues to
provide wonderful opportunities for researchers.

I would like to congratulate Josep, Boudewijn, Andreas, and Matthias with doing
an excellent job in joining the state-of-the-art approaches in a single book. The book
will be a reference for people interested in the intricate relationship between models
and reality. Enjoy reading!

RWTH Aachen University Prof. Dr. Ir. Wil van der Aalst
Aachen, Germany
March 2018



Preface

A model is an artefact to represent a specific concept. It maps properties of the
concept into some abstract representation, driven by the purpose of the model. As
such, models represent a universal means to capture concepts in a wide range of
domains: In architecture, a model may represent the outline of a building structure;
in engineering, a model may capture the mechanics of a pump; and in computer
science, a model of a processor may correspond to the hardware supporting a
particular system infrastructure. Regardless of the specific concept that is captured,
a model always has a pragmatic feature. It is created for a specific purpose, it may
be the design or construction of the concept or its analysis and exploration.

In this book, we consider models of processes. A process is a set of activities that
are executed in a coordinated manner to achieve a certain goal. It is very hard to not
encounter a process in most of the things we do in our daily life: taking the car to
go to work, extracting money from an ATM, ordering goods using an online shop, or
visiting the doctor—all are examples of processes. Each of them involves activities,
whereas the ability to reach a specific goal depends on their effective coordination.

Process models are a valuable source of information. They may be the result of a
significant effort in formalising a complex process. This formalisation encompasses
the decision which properties of a process should be mapped into the model. For
processes, this decision primarily relates to the choice of the activities to consider
and the possible ways in which they can be executed. However, further information
may be considered, such as the involved actors, the data used or generated, or
the timing of the activities. Modelling a real process can only be done if some
abstraction is applied. To escape from unnecessary details and retain the essence
of the process, only some process properties are mapped to a model. Hence, by
definition, modelling incurs some loss of information.

Yet, the fact that not all information about a process can be captured in a model
is not the only reason that adds to the uncertainty in the relation between a process
model and the process itself. A model may also have been formalised incorrectly,
simply became outdated with respect to the process, or describe behaviour that
deviates from the actual process. In the past, this uncertainty in the relation between
a process and a model thereof has been a critical problem, which was hard to detect.

ix



x Preface

The massive availability of data, however, has changed this situation dramatically.
Nowadays, systems record the footprints left by executions of the process, which
enable data-driven analysis. Therefore, the recorded behaviour of a process, as
manifested in so-called event logs, is now available as an important source of
information.

Conformance checking relates modelled and recorded behaviour of a process to
each other. It provides techniques and methods to compare and analyse observed
instances of a process in the presence of a model, independent of the origin of that
model. Conformance checking therefore aims at answering questions, such as:

• Is the process being executed as it is documented in a model?
• Is the model of a process still up-to-date?
• Have there been violations of rules in the recorded instances of a process?
• How much flexibility is allowed in the execution of a process?

The aim of this book is to introduce readers to the field of conformance checking as
a whole and outline the foundations of the relation between modelled and recorded
behaviour. The book strives for an overview of the essential techniques and methods
in this field on the intuitive level as well as an understanding through a precise
formalisation of fundamental notions of conformance checking.

Structure of This Book

This book is structured in three parts, each being guided by a different question and
therefore a different approach to the field of conformance checking:

Part I: What are the main ideas behind conformance checking? Readers shall
benefit from the first part of the book as a concise and comprehensive overview of
the essential ideas to relate modelled and recorded behaviour to each other. This part
serves as a reference to assess how conformance checking efforts could be applied
in particular domains. Outlining these ideas on the intuitive level, this first part
is of interest to students, academics, and practitioners alike, who have a technical
background, but are new to the field of conformance checking.

Part II: What are the state-of-the-art methods for conformance checking? The
second part of the book aims at providing readers with detailed insights into
algorithms for conformance checking. This includes the most commonly used
formal notions for conformance checking and their instantiation for specific analysis
questions. This part aims at enabling readers to initiate research in conformance
checking. While all basic definitions are given explicitly, readers benefit from prior
knowledge in formalisms for process modelling, such as Petri nets.

Part III: What are the applications that build on top of conformance checking?
The third part of the book presents applications that help to make sense of
conformance checking results, thereby providing a necessary next step to increase
the value of a process model. Specifically, such applications help to interpret the
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results of conformance checking and incorporate them through enhancement and
repair techniques. This includes remarks on conformance checking software.

Teaching Using This Book

In the light of the above structure, three itineraries are suggested when using the
book as a reference for teaching:

• Chapters 1–4 and 12: These chapters give a general description of conformance
checking, including remarks on tool support, from a practical perspective.

• Chapters 5–9: This part gives an algorithmic view on how to relate modelled and
recorded behaviour, focusing on formal foundations of conformance checking.

• Chapters 1–6 and 10–12: An end-to-end view on conformance checking and its
applications, covering formal foundations on the basic level.

The chapters of the book incorporate material in the following form:

• Each chapter contains teaching material in the form of exercises to allow for
effective learning of the theoretical concepts introduced.

• For those chapters amenable for tool practising, a section named In the Lab is
included, which introduces tools and/or datasets for exploring the contents of the
chapter on real data.

Website of the book

Check out the website for teaching
materials for the book. Throughout
the book, you find links to support lab
sessions for specific chapters.

http://www.conformancechecking.com/CC_book

Barcelona, Spain Josep Carmona
Eindhoven, The Netherlands Boudewijn van Dongen
Vienna, Austria Andreas Solti
Berlin, Germany Matthias Weidlich

http://www.conformancechecking.com/CC_book
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Part I
Basics of Conformance Checking

Preface to the First Part

The first part of this book, Chapters 1–4, presents an informal overview of the
field of conformance checking. In the first chapter, the book defines the context of
conformance checking, outlines the drivers for conformance analysis, and reflects
on the relevance of conformance checking in practice.

Chapter 2 then moves to basic notions of process modelling and event logs.
Again, the focus is to provide an intuitive overview rather than a comprehensive
formalisation. Based thereon, Chapter 3 describes two main dimensions along which
modelled and recorded behaviour are related: Fitness relates to the share of recorded
behaviour that is captured in a model, whereas precision quantifies the share of
modelled behaviour that is covered by the instances of a process as recorded in an
event log.

The first part of the book closes with three main algorithmic perspectives for
grounding conformance checking in Chapter 4. We discuss the main ideas of
relating modelled and recorded behaviour based on rule checking, token replay, and
alignments.



Chapter 1
Introduction to Conformance Checking

Conformance checking refers to the analysis of the relation between the intended
behaviour of a process as described in a process model and event logs that have
been recorded during the execution of the process. In this context, a process refers
to a generic behavioural concept, i.e. the coordinated execution of a set of activities
to reach a specific goal or outcome. These activities and their coordination is exactly
what is captured by a model of the process. However, as soon as data signalling how
a process is actually executed becomes available, typically in the form of event logs,
the question of conformance emerges: how do the modelled behaviour of a process
and its recorded behaviour relate to each other?

This chapter outlines the background of conformance checking. In Section 1.1 we
first discuss the big picture of digital transformations of organizations and then in
Section 1.2 review essential notions, such as processes, process models, and systems
supporting the execution of processes. Reflecting on these notions, we derive drivers
for conformance checking in Section 1.3. Next, in Section 1.4 we discuss a spectrum
of conformance checking techniques, which puts the question of conformance into
perspective, relating it to other questions on the interplay of processes, models, and
event logs. Finally, in Section 1.5 we turn to the relevance of conformance checking
and elaborate on common use cases and application domains.

1.1 The Big Picture: The Renewed Value of Process Models

Historically, process models have played an important role in organizations. They
proved to be a key element for describing, analysing and monitoring the execution
of the processes that structure the operations of organizations.

As part of digital transformation initiatives, the demand emerged to expose
process models to the event data signalling the executions of the actual processes.
Relating event data and process models enables unprecedented types of analysis,

© Springer Nature Switzerland AG 2018
J. Carmona et al., Conformance Checking,
https://doi.org/10.1007/978-3-319-99414-7_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99414-7_1&domain=pdf
https://doi.org/10.1007/978-3-319-99414-7_1


4 1 Introduction to Conformance Checking

providing insights that are often beyond expectations. In this section, we show how
this link provides a renewed value of process models in organizations, from three
different perspectives.

Agile Compliance Management Exposing data to models represents an agile way
to show compliance of operations to legal requirements. For example, the European
Union recently approved the General Data Protection Regulation (GDPR), a
regulation that establishes how data of EU citizens should be used by organizations.
The GPDR applies to all organizations processing and holding the personal data of
subjects residing in the European Union, regardless of the organization’s location.
Once the regulation starts to be enforced in practice, it will have a clear impact
in organizations, and in the extreme case, may cause heavy fines in case of non-
compliance. Organizations that store personal data of EU citizens will need to prove
that their operations, as structured by processes, adhere to the GPDR.

Proving process compliance to the applicable regulations is a task that can be
costly, slow and cumbersome, especially if it is done manually. Moreover, since
processes evolve continuously in an organization, and laws change over time,
compliance to regulations needs to be continuously assessed. Organizations that do
not have an agile approach to face this issue will be penalised from several angles:
adherence to law, competitiveness, adaptability to changes, etc.

Figure 1.1 depicts the added value of relating modelled and process behaviour,
from the perspective of agility. If on the one hand, process models are shown to
satisfy the regulations, and on the other hand, they are aligned to the process data
and no deviations are detected, one can conclude on the absence of violations of
the regulations for the underlying processes. This way, auditing of processes and
regulations can be supported.

If instead of regulations, other aspects are enforced on top of process models,
such as quality levels or an organization’s policies, and process models are aligned
to the corresponding event data, similar outcomes can be obtained: The quality of
a certain service or the implementation of a particular policy can be ensured in the
organization.

Process
Models

Regulations
Event Data

conform align

Figure 1.1 Process models as the key link between regulations and event data
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Accurate Process Prediction Among the manifold use cases of process models
within an organization, a technique that received significant attention recently is
predictive monitoring: the prediction of quantifiable metrics of a running process
instance. For example, using predictive monitoring, one can predict whether the
current session of a client will end up with the purchase of an item or not, or if the
remaining time of processing a loan application is expected to stay below a certain
bound.

Process models can be obtained through manual design or by automated process
discovery. The latter aims at the construction of a process model from an event
log and respective techniques have received a lot of attention in recent years.
Independent of the origin of the process model, its accuracy in reflecting the reality
of the process execution cannot be assessed by inspecting only the respective model.
If a model has been designed manually, which is often a tedious and error-prone task
that may involve several persons across an organization, it may fail to capture all the
possible variants, or may be defined at the wrong level of granularity. Likewise,
process models learned from event data through discovery techniques, may be
inaccurate for many reasons, among them noise or incompleteness in the data and
the inability of a discovery algorithm to recognise particular relations between
activities.

If models are inaccurate, however, the value of predictive monitoring is sig-
nificantly hampered, as one cannot trust the estimations if the process model is
disconnected from the reality of process execution. As such, it may happen that
insights from predictive monitoring based on inaccurate process models may lead
to misleading analysis results. Decisions made on the basis of such wrong insights
may, in turn, have severe consequences for an organization. Relating the modelled
and recorded behaviour of a process to each other, therefore, helps to improve the
quality of predictive monitoring.

Intelligent Automation and Human Augmentation It is anticipated that Artificial
Intelligence (AI) will have a considerable effect on jobs and business automation in
the next few years. The main contributor to the net job growth resulting from this
trend is expected to be AI augmentation. It refers to the combination of human and
artificial intelligence, such that both complement each other to achieve elaborated
reasoning. This way, it lays the foundations for advanced control and enactment of
processes.

The augmentation of humans for decision support is therefore a tendency that
will grow in the coming years. In order to exploit AI for this task, an understanding
of regularities and general procedures, as well as of the handling of exceptional
situations in processes is needed. Reliable, up-to-date process models may serve
this purpose, as the explicit representation of a process used in augmentation. Based
thereon, support of a process may move from predictive analysis as outlined above,
to prescriptive analysis that supports humans in the enactment of a process. To
realize this vision, process models need to be linked to data about current executions
as well as to contextual information.



6 1 Introduction to Conformance Checking

1.2 Setting of Conformance Checking

Conformance checking is about the relation between a model and an event log
of a process. A process describes the behaviour of a system by specifying a
set of activities, elementary units of work, along with causal dependencies that
govern their execution. As such, a process is executed by instantiating activities,
whereas the resulting activity executions are coordinated. Activities are conducted
sequentially or concurrently to each other; their execution is dependent on explicit
decisions; and parts of a process may even be repeated multiple times. Yet, execution
of activities is coordinated within a specific scope, referred to as a case. A case
represents an instance of the process and is defined by all activity executions that
relate to one specific trigger or input to the system whose behaviour is described by
the process. This terminology is summarized in the middle part in Figure 1.2.

Adopting this view, a process is a rather abstract concept that is used to
describe phenomena in diverse domains. In finance, a process describes how a loan
application is processed; in logistics, a process represents a transportation chain
used to ship a good; and in healthcare, a process outlines how a patient is treated.

Considering the example of a bank offering loans in some more detail, a process
defines how a loan application is handled once it has been submitted, with the
outcome being its positive or negative assessment. Each loan application then
represents a case, as part of which the activities of the process are executed. A first
activity is a check for eligibility of the respective applicant. Subsequently, a decision
is taken, which determines whether an application is declined or accepted. If
accepted, the application is finalised and an order is selected for further processing.

System: A Process

Case

Activity
Execution

Process
Model

Event Log

Trace Execution 
Sequence

Task
ExecutionEvent

Is Part Of Is Instance Of

TaskActivity

Is Recorded As Is Modelled By

Figure 1.2 Terminology of processes, event logs, and models
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The notion of a process per se does not postulate a specific degree of automation.
The activities of a process can relate to units of work that are conducted manually,
or correspond to functionality that is directly available as part of some software
infrastructure. The same holds true for the coordination of activity executions as part
of a case. There may be a manual assignment of workers to activities (or activity
executions, respectively) that is driven by the causal and temporal dependencies
of a process. The other extreme are dedicated software systems that handle this
coordination, based on a formal specification of a process.

For the above loan application process, as we encountered it in a large European
bank, the initial eligibility check is an example for an automated activity—a set of
predefined plausibility rules is checked for the applicant’s data. While the activities
of declining or accepting the application are also conducted automatically, a worker
needs to manually finalise the application in case of acceptance.

Process Modelling A process model captures the activities and execution depen-
dencies of a process in a conceptual model. As such, a process model is always
an abstraction of a process. It defines a projection and aggregation of a process’
properties, dropping information that is considered irrelevant and aggregating
information to obtain a general understanding of a process. These abstractions
necessarily imply a loss of information, which is intended and motivated by the
purpose of the model.

In the above example of a loan application, information on storing the applicant’s
personal data may be deemed irrelevant for the purpose of defining how the
application is processed. In contrast, the creation of an offer in reference to the
application is essential to understand which artefacts are created as part of the
process.

A process models consists of tasks, each task representing an activity of the
process, and their respective execution dependencies. A process model, therefore,
aims at an overarching view on a process and generalizes individual cases. As
outlined in the right-hand part of Figure 1.2, however, a process model may also
be instantiated. That is, an execution sequence of a process model is built of task
executions, thereby providing a conceptual representation of cases and activity
executions of the process.

The aforementioned abstractions are realized by means of process modelling
languages that provide a vocabulary for the definition of process models. In essence,
such a language comprises concepts to capture tasks and execution dependencies,
whereas the concepts may differ drastically from one language to another. The
spectrum of concepts for the definition of tasks reaches from a simple identifiers
for some unit of work to its full-fledged definition that can be run automatically
in an IT infrastructure. Similarly, there is a wide range of approaches to specify
execution dependencies, including procedural and declarative characterizations of
the process.

A process model that describes how a loan application is handled is illustrated
in Figure 1.3. This model, captured in the Business Process Model and Notation
(BPMN), serves for illustration in the remainder of this book. In BPMN, tasks
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Figure 1.3 Example process model of a loan application process in BPMN

are represented by rectangles; instantaneous events are visualized by circles (in
Figure 1.3 they start or end the process); and execution dependencies are modelled
by control flow arcs and diamond-shaped nodes, called gateways. The semantics of
such a gateway determines the exact behaviour of a process, e.g., whether incoming
arcs are synchronised (AND-gateway with a ‘plus’ symbol) or not (XOR-gateway
with a ‘cross’ symbol); or whether outgoing arcs are enabled concurrently (AND-
gateway) or mutually exclusive to each other (XOR-gateway).

According to this model, a submitted application is either accepted or rejected,
based on the aforementioned rules to check plausibility of the applicant’s data. An
accepted application is finalised by a worker, in parallel with the offer process. For
each application, an offer is selected and sent to the customer. The customer reviews
the offer and sends it back. If the offer is accepted, the process continues with the
approval of the application and the activation of the loan. If the customer declines the
offer, the application is also declined and the process ends. However, the customer
can also request a new offer, in which case the offer is cancelled and a new offer is
sent to the customer.

A process model provides an abstraction of a process to serve a specific purpose.
Only properties of the process that are relevant with respect to this purpose—
also known as the goal of modelling—are mapped to the model. The purpose
of a process model is commonly rooted directly in the application domain. It
spans business purposes such as process documentation for staff training, resource
planning, or organizational redesign. However, process models are also employed
in the automation of various processes. They serve as a requirements specification
that guides software development or system selection, or may even represent
implementation artefacts that serve as a blueprint of how a system shall execute
a process.

Independent of the specific purpose of a process model, there are a few aspects
that differentiate drivers for process modelling on the general level. First and
foremost, models deviate in the perspectives of a process that are captured. While
task and control flow routing are the most prominent building blocks of a process
model, further perspectives may be considered. Examples include concepts to
specify time-outs, the handling of exceptional behaviour, or the messages a process
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exchanges with its environment; data input and output, not only of single activities,
but of the process altogether; and resources that are needed for the execution of a
process, reaching from organizational entities (staff roles, departments) to technical
infrastructure (machines, information systems).

Beyond the question of what properties to capture in the model, it is important
to identify when the process is mapped to a model. The point in time to which
the process model shall relate is important as it acknowledges that processes tend
to change frequently in many domains. In particular, an as-is model models the
present, or near past of a process, whereas a to-be model describes a hypothetical
process, e.g., one that shall be realized in the future.

Process Execution The execution of a process is often supported by various types
of information systems. Even if the execution of a process is done completely
manually, information that is created or consumed during process execution (e.g.,
loan applications and corresponding offers) is often kept in some database or
document management system. Consequently, the conduct of a process may be
reflected in information systems, even if activities and their coordination are not
automated.

Beyond such indirect support of a process, dedicated types of information sys-
tems exist to foster process automation. A process-aware information system (PAIS)
aims at supporting the coordination of activity executions based on an explicit
formalisation of the respective causal and temporal dependencies, commonly given
as a process model. The use of a PAIS thereby represents a common purpose of
process modelling, which, as detailed above, determines what to capture in the
process model and how to select the appropriate point in time to which the model
shall relate. Again, we note that the use of a PAIS does not necessarily mean that
activities are automated—they may still be subject to manual execution, whereas
a PAIS supports the coordination of the execution, e.g., by selecting activities that
could be executed next. That way, the conduct of a process is directly reflected in an
information systems.

Unlike traditional workflow management systems (WfMS), process-aware infor-
mation systems do not necessarily enforce the coordination of activities as defined
by the tasks of a process model. A WfMS directly implements the causal and
temporal dependencies defined by the model, creating cases according to the
provided blueprint. Process-aware information systems, in turn, support the conduct
of a process based on these causal and temporal dependencies, but commonly leave
control on which activity to execute to process workers. As a consequence, they
enable workers to deviate from the process specification given by the underlying
process model, thereby providing a degree of flexibility that is crucial in many
application domains. For instance, in the above loan application process, see
Figure 1.3, a worker may decide to cancel an offer before the respective customer
has sent back the offer. Although this would not be in line with the process as defined
in the model, such a deviation may be well-motivated based on contextual factors
that are not captured in the process model.
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Once a process is supported by information systems, details on how the process
is executed are commonly available in the form of event data. Ideally, this data
assumes the form of an event log, i.e., a collection of events that indicates (1) at
what point in time, (2) which activity was executed, (3) for which case. As such, an
event log represents the recorded behaviour of a process. Events can be separated
based on the cases as part of which the respective activities have been executed. This
results in event sequences, called traces, which represent the behaviour recorded
for particular cases of the process. As indicated in Figure 1.2, a trace therefore is
a recorded representation of a case of the process, very much like an execution
sequence of a process model is a modelled representation of a case. Consequently,
the behaviour recorded in an event log can be related to the behaviour captured in a
process model.

For illustration, we consider the loan application process as detailed before. Once
this process is supported by a PAIS, event data on the execution of this process is
collected and may comprise information on the time a particular activity has been
executed for a case, the latter being related to a client, the requested amount, and
prospective duration of the loan. An example of such an event is given as follows:

Timestamp Activity Case Client Amount Duration

9:17, May 2, 2017 Accept Application (Aa) 926 Marta Smith e15,000 2 years

Implementations of such a loan application process produce event logs of
considerable size in practice. For instance, taking the data of a large European
bank as an example, for the respective scenario and a time frame of 6 months,
around 10,000 submitted applications have been recorded. The resulting event log
comprises more than 200,000 events, which precludes any manual analysis of the
respective data.

While PAIS can be expected to create event logs explicitly, other types of
information systems may record data that can be transformed into an event log.
For example, functional calls in enterprise systems or transactional logs of database
management systems may be the starting point for the construction of an event
log. The respective transformations may be non-trivial, though, and potentially have
to cope with complex and ambiguous relations between the recorded data and the
executions of activities for a particular case.

1.3 Motivation for Conformance Checking

The availability of footprints of a process in terms of an event log, opens the door for
relating the actual process, from the perspective of the traces in the event log, and the
process model, which describes and abstracts the underlying process. Although both
representations, the event log and model, talk about the same thing, the real process,
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establishing a relation between them is crucial for understanding how processes are
executed, and how far apart the recorded reality and a describing model of a process
are from each other. Conformance checking techniques are devoted to automatically
compute this relation.

At its core, conformance checking needs to assess the relation between a trace
and a process model. For instance, for the model of Figure 1.3, and the trace
〈As,Da,Af 〉, which describes a loan application that has been rejected, an execution
sequence of the model exists that completely reproduces the observed trace. This
information, which certifies that the model and the trace agree, is of great value: It
acknowledges that the trace satisfies the control flow dependencies established in
the process model. The consequences for this agreement are diverse:

• It enforces the validity of the process model in describing the recorded reality.
• It classifies the recorded trace as compliant.
• It enables usage of the model to make predictions about the future for running

cases, e.g., remaining time or cost.

These consequences denote new knowledge that is available to organizations.
Symmetrically, deviations may exist between a trace and a process model.
For instance, using again the process model of Figure 1.3, consider the trace
〈As,Aa,Sso,Ro, Do,Da,Af 〉, which represents a declined loan application that has
not been finalised. There exists a deviation between the process model and the
trace, since the model requires to execute the activity to finalise the application (Fa)
sometime before the offer is declined (Do). Although important, this deviation is
somehow mild in the sense that a formality (finalising the application) has not been
performed for a rejected loan application.

However, deviations can also incur a serious problem for an organization;
consider now the trace 〈As,Aa,Sso,Ro,Fa,Do,Aaa,Af 〉. This trace represents an
application that, in spite of taking the decision of declining the offer, has been finally
approved and activated. One can see that the process model of Figure 1.3 cannot
reproduce this trace: On the one hand, it requires that the application is declined
(Da), and on the other hand, it cannot reproduce that the application is approved and
activated (Aaa). Clearly, a root cause analysis of this deviation may be crucial for an
organization to detect serious inconsistencies in the way a process is performed. This
analysis often goes beyond control flow, i.e., analysing the additional information
available in the event log to determine a meaningful explanation for the deviation
encountered. There may be different explanations for a particular deviation, such as:

• A lack of coordination between different departments or involved persons.
• Wrong recording of activity executions.
• Corruption in the recorded event data.
• Decisions taken that violate a company’s rules.

In fact, these explanations need not to be mutually exclusive, e.g., data corruption
(e.g., adding a digit to the salary of applicant when processing loan requests) may
cause a wrong decision that violates the company’s rules. It is clear that situations
like the one illustrated above can incur very high costs for an organization.
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In summary, detecting deviations such as the previous one is of paramount
importance. The consequences of detecting deviations are:

• The validity of the process model in describing the recorded reality is weakened.
• An alarm is raised for the behaviour observed for a case.

Likewise, this new information may be fundamental for an organization. For
instance, deviations may hint at situations for which the system controlling the
process is not operating as expected. Yet, there may also be an issue with the way the
progress of the process is recorded. Finally, the model may not correctly describe
the reality, e.g., due to an evolution of the process that has not been yet incorporated
into the process model.

Excursion 1
Deviations: the good, the bad (and the ugly)
From the previous example, one may think that detecting deviations is always
a bad sign, either in the recorded behaviour or in the modelled behaviour. This
is often the case: deviations imply that something has not been performed as
expected, pinpointing a situation that must be resolved (either in the model or
in the system). However, deviations can also be positive, representing a sign
of flexibility that may be crucial in some contexts. For instance, the steps
to follow in a surgery may need to be significantly modified in case of a
sudden deterioration of the patient health. These breaking-the-glass situations
are common in several contexts, and need not to be penalised.

Hence, by analysing deviations that denote weaknesses in the process, its
recording, or the process model, an organization can continuously improve its
operations. This ambitious goal cannot be achieved without automation; think of
a large company having several units across the globe, each one having several
departments that need to be coordinated to operate the company’s processes. Or
think of a popular sales company over the Internet, which stores terabytes of process
information daily. Or even think of a hospital that stores the patients’ historical
processes, and which needs to satisfy strict rules on privacy of the data. For obvious
reasons, these organizations cannot relegate conformance checking to a manual task,
due to the following features, that resemble the properties that define Big Data:

• Volume: The size of industrial data representing a set of processes may be huge.
For instance, retailers such as Walmart store more than a million customer
transactions per hour.

• Variety: Event logs often are obtained from several, heterogeneous data sources.
This includes databases, sensor data, or phone conversations.

• Velocity: Not only process-oriented data may become available at high rates,
but also the actions to take for detected deviations typically need to be fast.
One cannot rely on the manual analysis of large volumes of event data, while
striving for fast response times.
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• Veracity: Traces in an event log may contain errors that potentially affect
conformance checking. For instance, event logs may contain errors due to manual
input by process stakeholders.

Conformance checking techniques need to keep up with the trends towards
massive availability of event data. Therefore, apart from describing the core
algorithmic approaches for conformance checking, an emphazis is put on distributed
and online techniques in the last chapters of this book.

Furthermore, novel models for the conduct of process in organizations emerge as
drivers of conformance checking. For instance, areas like collaborative business
process management acknowledge the paramount importance of conformance
checking to support the execution of collaborative processes [130].

1.4 Spectrum of Conformance Checking

As detailed above, conformance checking relates event logs and process models,
i.e., different representations of a process, to each other. This general setting is
illustrated in Figure 1.4, which also outlines a whole spectrum of techniques that
can be summarized under the umbrella of conformance checking.

Starting with a broad range of application domains —from finance through logis-
tics to healthcare— conformance checking aims at understanding and improvement
of a system, whose behaviour is represented by a process, based on recorded and

System: A Process
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Figure 1.4 Illustration of the spectrum of conformance checking
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modelled behaviour. The respective representations, logs and models, do not only
describe the process, but are also linked by two complementary sets of techniques:

Discovery aims at the construction of a model of a process based on its recorded
behaviour. Common discovery techniques strive for fitness and precision, i.e., the
resulting model shall capture the recorded behaviour, but be limited in how far
additional behaviour is allowed. The latter is of importance since an event log per
se contains exemplary behaviour of the process, so that some generalization of
the recorded behaviour is desirable. We later show how conformance checking
enables the quantification of fitness and precision measures that are used to guide
and evaluate discovery techniques.

Simulation refers to the generation of an event log from a given model of a
process, thereby exemplifying the behaviour that could be observed for the
process. An event log that is constructed by simulation techniques is subject to
the evaluation dimensions mentioned above for discovery techniques: Simulation
that introduces noisy events compromises the fitness of the resulting event log.
Completeness of the simulation in terms of coverage of the behaviour of the
process model, in turn, translates into the precision of the model with respect to
the event log.

Given an event log and a process model, conformance checking techniques yield
some explicit description of their consistent and deviating parts, here referred to as
a conformance artefact. Examples of such artefacts include information on:

• Behavioural rules such as ordering constraints for activities imposed by the
model that are violated by some traces of the event log;

• Events of traces that could correctly be replayed by task executions in the process
model, or for which the replay failed;

• An alignment between the events of a trace of the event log and the task
executions of an execution sequence of the model.

A conformance artefact then enables conclusions on the relation between the
event log and the process model. By interpreting the conformance artefact, for
instance, the fitness and precision of the model regarding the given log is quantified.
Such an interpretation may further involve decisions on how to weight and how
to attribute any encountered deviation. Since the log and the model are solely
representations of the process, both of them may differ in how they abstract the
process.

Differences in the representations of a process may, of course, be due to
inaccuracies. For example, an event log may be recorded by an erroneous logging
mechanism, whereas a process model may be outdated. Yet, differences may also
be due to different purposes and constraints that guide how the process is abstracted
and therefore originate from the pragmatics of the respective representation of the
process. Think of a logging mechanism that does not track the execution of a specific
activity due to privacy considerations or a model that outlines only the main flow of
the process to clarify its high-level phases. Either way, the respective representations
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are not wrong, but differ because of their purpose and the constraints under which
they have been derived.

By linking an event log and a process model through a conformance artefact, the
understanding of the underlying process can be improved. That includes techniques
for performance analysis. For instance, traces of an event log can be replayed
in the process model, while taking into account the deviations between the log
and model as materialized in the conformance artefact. Another example includes
the inspection of the conditions that govern the decision points in a process. The
conformance artefact can be used to derive a classification problem per decision
point, which enables discovery of the respective branching conditions. Assuming
that the model represents the desired behaviour of the process, the conformance
artefact further enables conclusions on how the current realization of the process
needs to be adapted.

Improvement of a process based on the result of conformance analysis may
also involve changes of the representations of a process. In particular, if deviations
between an event log and a process model are considered to stem from inaccuracies
and errors in the representation of the process, they may be adapted to achieve
conformance. Depending on which representation is considered to be trustworthy,
either the log or the model serve as a reference point for the respective changes.
Log repair considers deviations between the log and model to originate from errors
in the log. Therefore, the event log is adapted to make it consistent with the model,
thereby realizing some cleansing of the recorded behaviour.Model repair represents
the mirrored case, where the deviations are deemed to stem from the model. That is,
the model is adapted to achieve consistency of the process representations. It should
be noted, though, that in many application scenarios, a balanced approach may be
needed. Some deviations may indeed be attributed to errors in the log, calling for log
repair, whereas others may stem from errors in the model, calling for model repair.

Beyond resolving inconsistency by repairing the representations of a process, the
log or the model, improvement may relate to the extension of the representations
based on the conformance artefact. Log enhancement enriches the events of a log
with additional information, which is then exploited by further techniques for an
log-driven analysis of the respective process. The added information may stem
directly from a process model (e.g., annotations of activities with responsible roles)
or some analysis conducted based on a process model (e.g., the probability of
ending in a particular state). By establishing a link between an event log and a
process model, a conformance artefact guides how such information propagates
from one representation to the other one. Model enhancement, in turn, refers to the
enrichment of the model based on the log, through the conformance artefact. Again,
this enhancement enables further types of analysis based on the model. A common
example would be the enrichment of a process model with durations of activity
execution. To this end, a distribution is fitted to the execution times recorded in the
log per activity. These distributions enhance the process model and, for instance,
enable performance simulation and prediction.
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All of the above techniques are commonly supported by software tools. In order
to scale conformance checking to Big Data settings and the complexity of real-world
processes, automated conformance checking is of crucial importance. In this book,
we therefore include In the Lab sections that refer to tasks that can be performed
with publicly available conformance checking tools.

1.5 Relevance of Conformance Checking

Conformance checking turned out to be beneficial in a variety of domains. As has
been described in the sections before, the two necessary inputs for a conformance
checking project are: on the one hand, an event log, a set of recorded traces of
a process; and on the other hand, a process model that formally describes the
underlying process. Whether this process model was obtained through automated
techniques (e.g., process discovery) or through manual modelling efforts is irrele-
vant for conformance checking. However, it is essential to know the type of model
dealt with, e.g., whether it is an as-is or to-be model, in order to interpret the results
obtained through conformance checking.

Through conformance checking various questions can be answered, such as:

• Is the process being executed as it is documented in a model?
• Is the model of a process still up-to-date?
• Have there been violations of rules in the recorded instances of a process?
• How much flexibility is allowed for in the execution of a process?
• Is the flexibility offered by a process model actually used during the execution of

a process?

In a particular context, the interpretation of the answers to all these questions
depends enormously on the type of model considered. For instance, deviations
detected for an as-is process are only a sign of low quality of the process model
at hand; in contrast, deviations detected for a to-be model may require a careful
inspection, often disclosing real problems in the way the process is operated (see
for instance the examples illustrated in Section 1.3).

In the remainder of this section, we report on some application domains of
conformance checking, to illustrate its great value in helping organizations to exploit
event data for analysis and improvement of their operations.

Healthcare In the context of healthcare, several process-oriented initiatives have
appeared in the last years where conformance checking plays an important role.
The reader can find a summary in a recent publication [67], focused on the wider
area of process mining. Processes in the healthcare domain can be of several types,
e.g., the admission process, the surgery process, the treatment process, etc. A
healthcare information system (HIS) of a hospital may contain hundreds of these
processes, and terabytes of information corresponding to their executions. Devia-
tions corresponding to the processes involved in a hospital can reveal important
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inefficiencies or errors, that may have drastic consequences. For instance, prior to
a surgery for treating a serious disease, all necessary tests regarding the patient
resistance and suitability should have been performed. Likewise, processes that
regard a treatment should be performed without excessive delays so that important
causally related actions are not intertwined at will. Finally, a hospital is a special
case of an organization where administrative processes need to be safely executed
to guarantee fairness in the way patients are managed. All these requirements have,
at their core, the necessity to use conformance checking techniques, so that process
models and the reality agree.

Finance Turning to a different domain, the finance sector has seen large interest in
conformance checking initiatives in recent years. Again, there is a plethora of pro-
cesses conducted in this domain, reaching from the aforementioned loan application
process, through transaction processing, to risk management and audit processes.
A driver for this trend are the comprehensive legal frameworks that apply in the
finance sector. For instance, the Basel Accords regulate the banking industry in
terms of risk-weighting of their assets, minimum capital requirements, and liquidity
requirements. Another example are anti-money laundering directives enforced in
the European Union or the US. They feature requirements on the identification
and verification of a client’s identity (aka KYC, Know Your Customer). These
legal frameworks impose requirements on the conduct of processes, which, at least
partially, can be translated into models of the normative behaviour. Since execution
of processes in the finance sector is heavily supported by information systems,
conformance to these normative models can be assessed by means of conformance
checking. For instance, when opening a correspondent (nostro or vostro) account
to act on behalf of another financial institution, the respective process shall satisfy
various compliance requirements, such as ensuring an evaluation and black-listing
institutions upon a negative evaluation result; conducting a due diligence study if
this is the first bilateral agreement between the institutions; and ensuring that no
account is opened if the study fails or the provided bank certificates are not valid.
In the past, the assessment of conforming process execution was primarily done
manually, by investigating a small sample of the respective process instances in a
labour-intensive manner. Automated conformance checking based on event logs, in
turn, promises to automate this procedure. As a consequence, audits and compliance
assessments become not only more efficient, but also more effective as the analysis
is no longer limited to a small fraction of the process instances.

Transportation Well-coordinated logistic processes are a key factor to successful
supply chain management. Optimization of material flow and effective management
of inventories relies on well-orchestrated logistic processes. This is challenging
since such processes may span multiple countries (leading to import/export approval
and customs declaration) and diverse transportation modalities, and come with
complex service-level agreements and, therefore, risk and penalty structures. Con-
sequently, to enable effective management of various interlinked logistics processes
typically relies on conceptual models. These models are the basis of simulation
or analytical approaches, e.g., when minimizing the ripple effects incurred by
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transportation delays due to missed connections. In this context, conformance
checking helps to establish a link between these models and the recorded execution
of logistics processes. An assessment of conformance relies on event data from
information systems such as Supply Chain Management (SCM) systems, but may
also integrate context information, e.g., on delays at customs clearance centres. Con-
formance checking thereby helps to obtain realistic models of logistics processes
and increases the trustworthiness of decision supports that are grounded in these
models.

Manufacturing In manufacturing, processes, often referred to as production work-
flows, coordinate the activities needed to build and assemble a product, which
may be as simple as a bike lock or as complex as a full-fledged car. Many such
workflows are partially automated in the sense that some of the activities involve
human intervention. Yet, as part of digitalisation initiatives, even such manual fitting
or assembly activities leave digital traces. For instance, sensor-based pick systems
record how many parts of a particular type have been retrieved for an activity, while
dynamometric screwdrivers record the actual force applied to a screw. Again, the
conduct of these workflows is specified by models in order to optimize staff planning
and resource utilisation. Against this context, the benefit of conformance checking
is twofold. On the one hand, it helps to detect deviations in the recorded behaviour
from the specified workflow. This information can be used locally (e.g., notifying a
worker to adapt the handling of an individual process instance) as well as globally
(e.g., identifying hot-spots of conformance issues and reacting by redesigning the
workflow environment or providing targeted worker training). On the other hand, it
also helps to increase the trust in the plan and predictions derived from the workflow
models.

Bibliographic Notes

The field of conformance checking is relatively new. The definition of the area
and a proposal of initial algorithms was presented in the scope of Anne Rozinat’s
PhD thesis at the TU/e [93] and corresponding publications [95, 97, 116, 117].
Important notions arise from this work, like fitness or appropriateness between a
process model and log. Also, important algorithms, including the techniques to
evaluate fitness based on the replay of the traces and the missing/remaining/pro-
duced/consumed tokens. Moreover, structural/behavioural techniques to evaluate
appropriateness are proposed, that represent the first step towards evaluating
precision of a process model with respect to a log.
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Also in the scope of the TU/e, the seminal work under the PhD thesis of Arya
Adriansyah [1] is crucial for formalizing the notion of alignments, one of the main
concepts explored in this book. It provides an algorithm for the computation of
alignments between an event log and a process model, and it shows preliminary
techniques to be used on top of alignments so that further information can be
extracted or visualized. Several applications of alignments are explored in the
related publications, like performance analysis [2, 115], high-level deviations [7],
privacy analysis of user behaviour [8], and alignment-based precision metrics [4].

Another work that has been important for conformance checking is the log con-
formance analysis presented in the scope of Matthias Weidlich’s PhD thesis [131].
The thesis introduces the concept of behavioural profiles, as a tailored abstraction
for processes that allows comparing recorded and modelled behaviour.

Finally, several books have considered to some extent the area of conformance
checking. We include a detailed comparison of these books with the current book.
Overall, we believe that the current book, being the first in-depth monograph on
conformance checking, complements the books listed below.

The book by Wil van der Aalst [114] is a general book that introduces the
field of process mining. It describes the three main dimensions of process mining:
discovery, conformance and extension. In the second edition, conformance checking
is described more thoroughly with respect to the first edition of the book. In
particular, the notion of alignment is now briefly introduced in the book, and a clear
emphazis on its importance for the whole field of process mining is acknowledged.
In our book, where conformance checking is positioned as a discipline on its
own, we aim to complement the book by Van der Aalst so that techniques for
the alignment of process models and recorded behaviour can be learned and
applied in practice. Due to having a narrower focus, the current book deepens into
algorithmic perspectives and multidimensional views, and provides an up-to-date
take on applications and software support for conformance checking.

The PhD thesis by Jorge Munoz-Gama (published as a book by Springer
LNBIP [71]) contains two main contributions: on the one hand, a technique is
proposed to estimate the precision of process models with respect to recorded
behaviour; on the other hand, methods are presented to distribute the decisional
problem of assessing the fitness of a process model with respect to recorded
behaviour. We describe these techniques in this book.

The book by Beheshti et al. [13] gives an overview of basic techniques for process
analysis, covering a broad spectrum from methods for process model matching
and querying, to infrastructures for data analysis in a process context. The book
mentions process mining as a related area, but focuses on the broader field of data-
driven techniques for process analysis.
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1.6 Exercises

1.A) Processes in your daily life

Give examples of processes that occur in your daily life.

1.B) Deviations

For the processes described before, provide examples of deviations.

1.C) Cases and traces and execution sequences

Explain the difference between a case, a trace and an execution sequence.

1.D) As-is vs. to-be

What differentiates an as-is model from a to-be model?



Chapter 2
The Basics of Processes and Models

Processes play an important role in everyday life and structure organizations in
various domains. From the yearly filing of taxes to the daily routine of paying
your bills, our lives are governed by (administrative) processes. At the same time,
domains such as finance, logistics, and healthcare are structured around processes.
In any case, processes form a complex system in which actors, like ourselves,
perform activities in order to achieve certain goals. Commonly, this is done within
a case that comprises the executions of activities for a specific trigger, such as the
due date for tax returns or the receipt of a bill to pay.

When describing a process, a process model provides an abstraction, capturing
some of the process’ activities by means of tasks. A specific instance of a
process, i.e., a case, then corresponds to an execution sequence, a sequence of task
executions.

Whether and when an activity is executed is often recorded by information
systems. For instance, when filing your taxes, this is recorded by the tax office,
whereas payment of a bill is recorded by both the bank and the receiving party. Such
recordings of activity executions are called events. Events that capture progress of
a single case are grouped together in a trace, while a collection of such traces is
referred to as an event log.

Against this background, we note that both process models and event logs
represent different conceptualisations of processes. In this chapter, we therefore
review in Section 2.1 essential building blocks of a process. Their representation
in process models is described in Section 2.2. We then turn to the notion of an event
log in Section 2.3. In Section 2.4 we discuss languages as the common ground of
different process representations.
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2.1 Building Blocks of Processes

Next, we cover basic building blocks of processes, commonly known as workflow
patterns, and discuss how they can be captured in process models.

2.1.1 Tasks

When describing a process and the activities involved in it, we need to start with
the basic element: one activity. One activity is a logical unit of action, a piece of
work, that we do not want to further split (see Excursion 2 below). In a process, we
represent activities with a placeholder in the model. We call this placeholder task
and draw it in a BPMN model with a rounded rectangle. We also assign a textual
label to the task that reflects the activity that is being done at the point when the task
is activated. Typically, the convention of labelling is “Verb object” (e.g. “Accept
application”, “Receive offer”).

Excursion 2
Avoid getting lost in details: abstraction as a modelling principle
How much detail we reflect in a process determines the granularity of the
activities to consider and, thus, the tasks in a model of the process. In general,
it is always possible to split an activity into a number of pieces of work.
Instead of saying “Finalise application” in our running example, we could
zoom into this activity and find sub-activities. For example, we can replace
“Finalise application” with: “Select application”, “Open application”, “Proof-
read application”, “Fill in necessary categories”, “Assign responsibilities”,
“Save application”, and “Close application”. And even that would still be an
abstraction of what really happens, as we can further zoom into, e.g., “Select
application” and see that this activity consists of: “Read the contents in the
inbox”, “Decide which item to select”, “Choose how to select it” (e.g., mouse
or keyboard), “Select the item with the chosen means”. In most cases, such
fine-grained activities are of interest neither to those who created a process
model, nor to those who intend to improve a process. Keeping a reasonable
abstraction level when referring to a process allows us to choose suitable
means of achieving improvement goals. To sum up, activities in processes
and thus tasks in process models should be on a reasonable abstraction layer
to maintain economic feasibility of both modelling and analysis.

It is important that we are aware of the difference between an activity and one
execution of the activity (activity execution). While an activity refers to the general
concept, an activity execution reflects one particular instantiation of the activity



2.1 Building Blocks of Processes 23

inside a particular case, an instance of the process. In fact, the same activity can
be executed multiple times in one case and it can also be represented in different
contexts in the process as different tasks that have the same label. For example, we
have two tasks in our running example that refer to the activity “Decline application”
in Figure 1.3.

Excursion 3
BPMN—The business process model and notation
The modelling notation we use in our examples is the Business Process Model
and Notation (BPMN). BPMN is a feature rich language to describe processes
in great detail. It can be considered the de-facto standard for business process
modelling. This is not a book about BPMN, so we refrain from an in-depth
introduction to the language. A step-by step introduction to the concepts of
BPMN can be found for example, in the book “The Process: Business Process
Modelling using BPMN” by Grosskopf et al. [51]. More technical details
can be found in the specification of the language by the Object Management
Group.1

1http://www.omg.org/spec/BPMN/

2.1.2 Sequence Pattern

When we perform activities to reach a certain goal in a process, we often cannot start
an activity before finishing another one. Sometimes, the reason for this phenomenon
may simply be that an object needs to be received or created before it can be
processed. To illustrate such causal dependencies between activities, let us consider
how a sequential process of our running example would look like. Figure 2.1 shows
an optimistic version of the loan application. In this model, after the application has
been submitted (As), it is accepted (Aa). After that, an offer is selected and sent (Sso)
and then received (Ro). Consequently, the application is finalised (Fa) and accepted
(Ao). Finally, the application is approved and activated (Aaa), leading to it being
finished (Af ). All activities represented by these tasks are performed in sequence,
and the arrows indicate the direction of the process control flow. Following the
control flow, we can read the possible execution sequences of a process model. Each
of these sequences describes a potential case of the process. We can imagine that
such an execution sequence is derived by handing over a token from task to task
along the control flow.

In imperative modelling languages, where the model tells us what we should
do next, the sequence pattern forms a strong relation between the connected tasks.
It limits the execution of the captured process to only execute the activities in the
sequential order specified for the respective tasks. The model in Figure 2.1 permits

http://www.omg.org/spec/BPMN/
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Figure 2.1 Sequential model for a simplified version of the loan application process

Application
submitted

(As)

Application
finished

(Af)

Accept
application

(Aa)

Finalise
application

(Fa)

Select and 
send offer

(Sso)

Receive
offer
(Ro)

Approve and 
activate 

application
(Aaa)

Accept 
offer
(Ao)

Decline
offer
(Do)

Decline
application

(Da)

Decline
application

(Da)

ac
ce

pt
de

cl
in

e

de
cl

in
e

Figure 2.2 Model for a simplified version of the loan application process containing two exclusive
choices and one merge

therefore only a single execution sequence to reach the goal of having finished the
application (Af ). That is, the activities of the process captured by this model can
only be executed in the depicted sequential order.

2.1.3 Exclusive Choice

The previous example model did not leave us much choice in the execution of
the process. In fact, a financial institution implementing the sequential model
in Figure 2.1 would end up accepting every loan application—no matter how
unrealistic the application is!

To represent a choice in a process, we can use the exclusive choice pattern. Two
modelling constructs help to design models that contain choices: i) the exclusive
or (XOR) split that indicates mutually exclusive alternatives of continuation at a
point, and ii) the XOR join that merges alternative branches in the model to continue
from there onwards on a shared path. Figure 2.2 shows an extended version of
our running example, where we have a choice how to continue immediately after
the application has been submitted (As). The exclusive choice is represented in the
figure as a gateway (a diamond shape) marked with an “X” (for exclusive). It allows
us to continue with accepting the application (Aa), which is the default choice, or
declining the application (Da). When the application is accepted in the beginning,
we see that the model at a later point allows us to further decide whether to accept
the offer (Ao) or decline it (Do) and continue accordingly. Finally, the process is
merged with the XOR join gateway that shows that all three exclusive branches in
the model lead to a finished application (Af ).
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2.1.4 Parallel Execution

Sometimes we have activities in a process that all need to be done, but there are no
dependencies between them. This means that the activities can be done in parallel in
any order. In our example, a manager might see that the application can already be
finalised (Fa) independently from the offer that is being selected and sent (Sso) and
later received (Ro). With this observation, the model in Figure 2.1 can be redesigned
to allow this additional flexibility in the process. A simple process model with this
parallel execution pattern is depicted in Figure 2.3. The parallel execution starts
at the parallel (AND) gateway that models this particular relation and is denoted
with the “+” sign. It shows that all outgoing branches are executed independently
from one another. We also call this gateway a parallel split or AND split. Inside the
branches that leave the AND split, we are still allowed to rely on other workflow
patterns. In the model in Figure 2.3 we see that select and send offer (Sso) is in a
sequence with receive offer (Ro).

When execution of parallel branches comes to an end, and the next activity in
the process sequentially depends on these branches, we need to wait for all these
branches to finish before we can continue. To capture this synchronization in a
process model, we use again the AND gateway. At the AND join gateway, we have
multiple incoming branches and one outgoing branch. The AND join ensures that
the process can only continue once all incoming branches are finished.

2.1.5 Loop

In our running example process of the loan application, it can happen that a customer
is not satisfied with an offer and requests a change. In this situation, another offer
is selected and sent. When the offer is received, there might still be open questions
left, resulting in another change requested. This leads to a second cancellation of the
offer and another selection and sending of the offer. When we realize that we cannot
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Figure 2.3 Model for a simplified version of the loan application process containing two parallel
branches between accept application and accept offer
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Figure 2.4 Model for a simplified version of the loan application process that allows us to
repeatedly send and receive offers upon change requests

anticipate how often certain activities are repeated in a process, we rely on the loop
pattern (sometimes also iteration, or cycle).

The loop pattern in our model can be realized through a combination of the
exclusive gateway. In contrast to the normal exclusive pattern, we can decide to go
back to an earlier point in the process to indicate that we want to repeat the activities
represented by the respective tasks from that point forward. This way, the control
flow forms a loop that can be traversed an arbitrary number of times (iterations).
Each time we reach the same decision point, we can decide whether to go back
and perform another iteration, or we can leave the loop and continue the process.
Figure 2.4 shows the model that allows us to repeat the tasks Sso and Ro. Note that
the loop begins with a XOR join that merges the current control flow and a branch
that is potentially visited in the future.

Excursion 4
Events and activities
In this book, we are mostly interested in events that are recorded in event
logs. These recorded events mostly represent progress in a process in terms
of activity executions. The term event is ambiguous, however. We can also
distinguish between events and activities in a process and also distinctly
capture them in a process model. Activities are the building blocks of a
process and constitute active behaviour in a process, where customer value
is generated and certain manual or (semi-)automated actions are performed.
Things happening beyond the control of an organization represent passive
behaviour that can be captured as events. Following the BPMN standard,
such events are represented explicitly as circles, in contrast to the rounded
rectangles of tasks that denote activities.

Typically, events in a process model do not take time, but are instantaneous
(e.g., “Customer arrived”, “Form received”) and signal that the process
can continue after their occurrence. The activities represented by tasks are
performed by resources and their execution typically takes time and incurs a
certain cost.
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2.2 Process Models

We can compose more complex process models by hierarchically nesting models
that capture workflow patterns, i.e., the basic process building blocks as discussed
above. Using these patterns and hierarchical composition, we can describe a large
share of the actual processes that are performed in organizations. Yet, to also capture
more exotic behaviour, we can abandon the clear structure of these blocks and
consider processes that are built of an arbitrary control flow between activities. Such
processes are represented by unstructured models.

2.2.1 Structured Models

Processes built of basic workflow patterns can be described with a process model
by simply nesting their respective representations. In fact, our running example
in Figure 1.3 contains all introduced patterns. It comprises the sequence, choice,
parallel, and loop patterns, which are highlighted in Figure 2.5. We see that through
various arrangements of these patterns, we are able to express a large diversity of
behaviour.

The models we have looked at so far had a certain structure. That is, there
are always pairs of the same gateway type that encapsulate the branches of the
respective process. For example, all branches between an XOR split and an XOR
join are exclusive to one another. Furthermore, these blocks are entered at one
single point and left at another single point, that is, before and after there is only
one branch going in and out. These blocks are also called single-entry single-
exit (SESE) regions. If a model consists only of SESE regions, we call the model
block-structured (or well-structured). Our example process model in Figure 2.5 is
block-structured and the blocks are nested and form a hierarchy. Models that do not
have this property are called unstructured.

2.2.2 Unstructured Models

An example unstructured model is depicted in Figure 2.6. Here, it is possible to exit
the loop at two positions: (1) when no change is requested, one continues with the
activity to finalise application, and (2) there is a new option that becomes available
after a timeout of 1 week, if no response to the offer came from the applicant. The
new gateway type with two circles enclosing a pentagon is a so called event-based
gateway that indicates that external events dictate the continuation of the process.
The two events that can happen here, are a timer event (indicated by the little clock
symbol) and the receive task (envelope symbol in corner). Simply put, the process
waits for these two events and continues with whichever arrives first. In this regard,
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Figure 2.6 Unstructured model for a simplified version of the loan application process that allows
us to repeatedly send and receive offers upon change requests

this gateway is to be treated as an XOR split as far as the control flow is concerned.
The point is that the loop, which was previously a SESE region (see Figure 2.4),
is now no longer a SESE loop. It has one entry and two exit points, rendering this
model unstructured.

2.2.3 Semantics of Process Models

The execution dependencies imposed by a process for the activities induce a set
of states and state transitions, jointly referred to as the state space of the process.
Intuitively, a state of a process can be thought of a specific situation during the
execution of a process. It is reached via the execution of activities starting in a well-
defined initial state and induces activities that may further be executed to advance
to a next state.

The notion of a state space carries over directly from processes to process models.
That is, state also represents a specific situation reached during the execution of
tasks of a process model. Inspired by the formalism of Petri nets that are introduced
in the second part of this book, procedural process modelling languages such as
BPMN describe the execution semantics of their language constructs as a token-flow
game. A state of a BPMN model is then a distribution of tokens over the control flow
arcs of the model.

For illustration, we assume that all tasks in a process model have exactly one
incoming and one outgoing control flow arc, which is also considered to be good
modelling practice. Then, a task is enabled in a state, i.e., can be executed in a
particular state, if its incoming control flow arc is assigned a token by the respective
distribution. If it executes, this token is consumed, i.e., no longer assigned to the arc.
Moreover, a token is produced on the outgoing control flow arc of the task, i.e., the
number of tokens of this arc in the current state is increased by one. Following this
line, execution semantics of language constructs other than tasks are defined in the
same vein: An exclusive gateway is enabled in a state if at least one of its incoming
arcs is assigned a token and a token is produced on solely one of its outgoing arcs (as
determined by the branching conditions of these arcs). A parallel gateway, in turn,
is enabled only once all incoming arcs carry at least one token and its execution
produces a token on all outgoing arcs.
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Using the above notions, a model induces a set of possible sequences of task
executions, also referred to as execution sequences of the model. They are implied
by the sequences of state transitions that are reachable from a given initial state,
i.e., an initial distribution of tokens to arcs. In a BPMN model, however, this initial
state is commonly derived from explicit start events that do not have any incoming
control flow arcs and are denoted by a circle with a regular border. Upon enabling,
typically through an external trigger such as a received message or the expiration
of a timer, such a start event produces a token on its outgoing control flow arc,
thereby starting an execution sequence that represents a new case of the process.
Then, the behaviour of this case is represented by the token flow through the model,
where each execution of a task represents a state transition. In addition, a process
model may define a final state, i.e., a distribution of tokens to arcs that represents a
valid end of an execution sequence and, thus, a case of a process. In BPMN, again,
such final states are modelled explicitly by means of end events that have only an
incoming control flow arc, but no outgoing control flow arc, and are denoted by a
circle with a bold border. An end event that is enabled consumes a token from its
incoming arc upon execution. Consequently, the final state of a process model in
BPMN is assumed to be the empty state that is reached after all tokens have been
consumed by some end event.

Excursion 5
Let’s get the process started (and ended)
As discussed in Excursion 4, we are primarily concerned with events that rep-
resent the recorded executions of activities of a process. However, modelling
languages such as BPMN (see Excursion 3) also include event concepts to
distinguish how activities and instantaneous signals that impact a process are
captured. This is of particular relevance for the start and end of a process.

Tasks that have no incoming control flow arc can be seen as being
enabled immediately, so that their execution indicates the start of an execution
sequence representing a new case of the process. However, it is typically better
to model the trigger that instantiates a process explicitly. For this purpose,
BPMN defines various types of start events, some of which are depicted in
Figure 2.7

Plain Message Timer Condition Error

Figure 2.7 Different types of start events as defined by BPMN

Here, a plain start event represents models for which the trigger to
instantiate a new case is not defined, which may correspond to manual

(continued)
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instantiation by a user. The other events, in turn, define explicitly that a case
is started upon receiving a message, observing the expiration of a timer,
satisfying specific data conditions, or being notified about an error (e.g.,
thrown by a different process). Note that instantiation semantics quickly
become complex and potentially ill-defined when using multiple start events
within a single process model.

Similarly, BPMN defines different types of end events shown in Figure 2.8.
While the plain end event only consumes a token from the incoming control
flow arc upon execution, end events may involve further actions. For instance,
a message may be sent or an error may be thrown. A terminate end event
has even non-local semantics: upon execution it consumes all tokens from
all arcs in the process model, thereby modelling an immediate and complete
termination of the case, e.g., due to an error that precludes any recovery.

Plain Message Error Terminate

Figure 2.8 Different types of end events as defined by BPMN
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Figure 2.9 Loan application process model with two tokens that represent the state reached after
executing the sequence of activities 〈As, Aa, Sso, Fa〉

As an example, Figure 2.9 illustrates a specific state reached during the execution
of the aforementioned loan application process. Once an application has been
submitted (As) and accepted (Aa), the offer has been selected and sent (Sso), and
the application has been finalised, the process is in a state that is represented by two
tokens assigned to the arcs originating from tasks Sso and Fa, respectively. Note
that the same state would have been reached, if for a submitted (As) and accepted
application (Aa), the application would have been first finalised (Fa) before the order
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had been selected and sent (Sso). The reason being that tasks Sso and Fa can be
executed in parallel.

In the state visualized in Figure 2.9, only the task to receive an offer (Ro) can be
executed. Once this is done, the token from the incoming arc of this task is consumed
and a token is produced on its outgoing arc. Then, the decision on whether a change
is requested is taken. If so, the offer is cancelled (Co). If not, the AND gateway
has both of its incoming arcs assigned a token, which are consumed subsequently
to synchronise the parallel branches of execution. Figure 2.10 illustrates these two
possible execution alternatives.

2.3 Event Logs

In the previous section, we introduced activities as the primary element of processes
and tasks as modelling constructs to represent activities that should be executed.
When processes then are executed in an organization, these executions are typically
registered by means of information systems that support the conduct of the process.
To stay with the loan application process, the execution of the task referring to
the “Accept application” activity is recorded in a database in which all information
relevant for the application is stored, as well as data about who (i.e. which employee)
accepted the application and when this happened.

The recording of a single execution of an activity is called an event. An event
refers to an atomic execution of a specific activity. And typically, events are
performed in a certain context, such as for example a specific loan application. This
context is commonly given by the case as part of which an activity was executed.
The notion of a case, therefore, binds together events, thereby allowing us to track
the evolution of a case over time. The events related to a single case are called a
trace. Very much as each activity execution is part of a case, each event representing
a recorded activity execution is part of a trace.

The notion of a trace is fundamental for event logs. In essence, an event log
is a collection of traces, each trace comprising events that can be sorted by their
occurrence time. However, event logs can also be represented as a collection of
events, where all events carry information about the respective trace as part of
their payload. Consider for example our loan application process of Figure 1.3.
Table 2.1 shows a number of events that correspond to a single loan application.
The application with id A5634 is accepted by the system on January 1st at 12:32
and the customer asks for a e2000 loan. On January 3rd the application is finalised
and two days later, an offer is made to the customer for a e1500 loan. The offer
is received back on January 10th and the customers did not sign it, nor did they
indicate they want any changes. Therefore, a few minutes later, the offer is declined,
which is also done for the application as a whole.

This simple example shows the richness of data available in a single application.
Now imagine the data available for the entire process, i.e., data about multiple



2.3 Event Logs 33

Ap
pl

ic
at

io
n

su
bm

itt
ed

(A
s)

Ac
ce

pt
ap

pl
ic

at
io

n
(A

a)

Fi
na

liz
e

ap
pl

ic
at

io
n

(F
a)

Ap
pr

ov
e 

an
d 

ac
tiv

at
e 

ap
pl

ic
at

io
n

(A
aa

)

Ac
ce

pt
 

off
er

(A
o)

Se
le

ct
 a

nd
 

se
nd

 o
ffe

r
(S

so
)

Re
ce

iv
e

off
er

(R
o)

Ca
nc

el
off

er
(C

o)

De
cl

in
e

off
er

(D
o)

De
cl

in
e

ap
pl

ic
at

io
n

(D
a)

Ap
pl

ic
at

io
n

fin
is

he
d

(A
f)

De
cl

in
e

ap
pl

ic
at

io
n

(D
a)

Ap
pl

ic
at

io
n

su
bm

itt
ed

(A
s)

Ac
ce

pt
ap

pl
ic

at
io

n
(A

a)

Fi
na

liz
e

ap
pl

ic
at

io
n

(F
a)

Ap
pr

ov
e 

an
d 

ac
tiv

at
e 

ap
pl

ic
at

io
n

(A
aa

)

Ac
ce

pt
 

off
er

(A
o)

Se
le

ct
 a

nd
 

se
nd

 o
ffe

r
(S

so
)

Re
ce

iv
e

off
er

(R
o)

Ca
nc

el
off

er
(C

o)

De
cl

in
e

off
er

(D
o)

De
cl

in
e

ap
pl

ic
at

io
n

(D
a)

Ap
pl

ic
at

io
n

fin
is

he
d

(A
f)

De
cl

in
e

ap
pl

ic
at

io
n

(D
a)

Ap
pl

ic
at

io
n

su
bm

itt
ed

(A
s)

Ac
ce

pt
ap

pl
ic

at
io

n
(A

a)

Fi
na

liz
e

ap
pl

ic
at

io
n

(F
a)

Ap
pr

ov
e 

an
d 

ac
tiv

at
e 

ap
pl

ic
at

io
n

(A
aa

)

Ac
ce

pt
 

off
er

(A
o)

Se
le

ct
 a

nd
 

se
nd

 o
ffe

r
(S

so
)

Re
ce

iv
e

off
er

(R
o)

Ca
nc

el
off

er
(C

o)

De
cl

in
e

off
er

(D
o)

De
cl

in
e

ap
pl

ic
at

io
n

(D
a)

Ap
pl

ic
at

io
n

fin
is

he
d

(A
f)

De
cl

in
e

ap
pl

ic
at

io
n

(D
a)

ch
an

ge
 re

qu
es

te
d

accept decline

decline

ch
an

ge
 re

qu
es

te
d

accept decline

decline

ch
an

ge
 re

qu
es

te
d

accept decline

decline

F
ig

ur
e

2.
10

L
oa

n
ap

pl
ic

at
io

n
pr

oc
es

s
m

od
el

w
it

h
th

e
st

at
e

re
ac

he
d

af
te

r
ex

ec
ut

in
g

th
e

se
qu

en
ce

of
ta

sk
〈A
s,
A
a,
Ss
o,

Fa
,R

o〉
(l

ef
t)

,a
nd

th
e

tw
o

po
ss

ib
le

ne
xt

st
at

es



34 2 The Basics of Processes and Models

Table 2.1 Example of a trace in the loan application process

Event Application Offer Activity Amount Signed Timestamp

e13 A5634 Application submitted e2000 Jan 01, 12:31

e14 A5634 Accept application e2000 Jan 01, 12:32

e22 A5634 Finalise application Jan 03, 09:00

e37 A5634 O3541 Select and send offer e1500 Jan 05, 12:32

e42 A5634 O3541 Receive offer NO Jan 10, 10:00

e54 A5634 O3541 Decline offer Jan 10, 10:04

e64 A5634 Decline application Jan 10, 10:05

e65 A5634 Application finished Jan 10, 10:06

applications, offers, etc. Such an event log would grow considerably and Table 2.2
shows an excerpt of such a log.

Table 2.2 shows what is commonly called an event log. Each row in this table is
an event and each event refers to a trace (in this example the loan application) and to
an activity. Furthermore, events are assumed to be totally ordered (in this case by the
timestamp) and there may be other data relevant to the process, such as the amount
requested, the offer ID, the amount offered and whether the offer was signed or not.

In practice, one can look at these event logs from various perspectives. So far,
we considered the application to be the leading perspective, or the trace. However,
we could also look at the same data and select the offer as the trace identifier. If so,
many events would not be included and events that currently belong to a single trace
become separate traces. This is shown in Table 2.3, where the offer perspective was
chosen for the same data as shown in Table 2.2.

Whenever processes in organizations are executed precisely as captured by a
respective process model, any case of a process should be represented by an
execution sequence in the model and a trace in the event log. In fact, traditional
workflow systems are available to control the execution of a process: They take a
process model as input and do not allow deviations from it during the execution,
meaning that the modelled behaviour is always in line with the recorded behaviour.
However, in many cases, organizations do not strictly enforce their processes to be
executed according to models. Instead, they enable a certain degree of flexibility,
so that there may be deviations between the modelled and recorded behaviour in
general, and execution sequences and traces in particular.

Consider again the loan application process of Figure 2.6 which specifies that,
if an offer is not received back within one week, the process ends. Now suppose
the applicant calls the company after this week and explains that they have been
on holiday, but they send back the signed offer as soon as possible. According to
the model, this is not allowed. However, in most cases, the company still accepts
the signed offer and approves the application. In an event log, the acceptance of the
offer would be recorded and it is up to the company to identify these deviations.

In the next section, we establish a common ground for event logs and process
models in such a way that such deviations can indeed be identified.
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Table 2.2 Example of a log of the loan application process

Event Application Offer Activity Amount Signed Timestamp

. . . . . . . . . . . . . . . . . . . . .

e13 A5634 Application submitted e2000 Jan 01, 12:31

e14 A5634 Accept application e2000 Jan 01, 12:32

e15 A5635 Application submitted e5000 Jan 02, 04:31

e16 A5635 Accept application e5000 Jan 02, 04:32

e17 A5636 Application submitted e200 Jan 03, 06:59

e18 A5636 Accept application e200 Jan 03, 07:00

. . . . . . . . . . . . . . . . . . . . .

e22 A5634 Finalise application Jan 03, 09:00

e23 A5636 Finalise application Jan 03, 09:01

e24 A5635 Decline application Jan 03, 09:02

e25 A5635 Decline application Jan 03, 09:03

. . . . . . . . . . . . . . . . . . . . .

e30 A5636 O3521 Select and send offer e500 Jan 04, 16:32

. . . . . . . . . . . . . . . . . . . . .

e37 A5634 O3541 Select and send offer e1500 Jan 05, 12:32

e38 A5636 O3521 Receive offer NO Jan 05, 12:33

e38 A5636 O3521 Cancel offer Jan 05, 12:34

e39 A5636 O3542 Select and send offer e500 Jan 05, 13:29

e40 A5636 O3542 Receive offer YES Jan 08, 08:33

e41 A5636 O3542 Accept offer Jan 08, 16:34

e42 A5634 O3541 Receive offer NO Jan 10, 10:00

. . . . . . . . . . . . . . . . . . . . .

e54 A5634 O3541 Decline offer Jan 10, 10:04

. . . . . . . . . . . . . . . . . . . . .

e64 A5634 Decline application Jan 10, 10:05

e65 A5634 Application finished Jan 10, 10:06

e66 A5636 Approve and activate application Jan 10, 10:07

e67 A5636 Application finished Jan 10, 10:08

. . . . . . . . . . . . . . . . . . . . .

Excursion 6
Deviations: Who’s right, the model or the log?
Conformance checking aims at relating modelled behaviour and recorded
behaviour of a process to each other, whereas reality in the sense of the
actual process, the behaviour of the system under consideration, is typically
unknown. Whenever deviations between a process model and an event log
are detected, therefore, the question of the source of this deviation pops up.

(continued)
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This question, simply put as “who is right?”, is delicate, since the relation
between the process and the process model, as well as between the process
and the event log, is uncertain. As such, deviations between a model and a
log may have two origins, since either representation of the process may not
be accurate.

In practice, it is hard to tell whether a certain deviation between a model
and a log is due to a modelling error (i.e., the log is right) or anomalies in
how the events have been recorded (i.e., the model is right). In the end, this
issue can only be resolved by explicitly reflecting on the trust that can be
put into either process representation. For instance, a process model created
very recently by analysts interviewing process stakeholders may be more
trustworthy than a model that has been designed for staff training a few years
back. On the other hand, event logs generated by a single enterprise system
may be more trustworthy than those derived by fusing data from multiple
sources, which may partially be inserted manually by users.

Table 2.3 Example of log of the loan application process, from the perspective of the offers

Event Application Offer Activity Amount Signed Timestamp

. . . . . . . . . . . . . . . . . . . . .

e30 O3521 A5636 Select and send offer e500 Jan 04, 16:32

. . . . . . . . . . . . . . . . . . . . .

e37 O3541 A5634 Select and send offer e1500 Jan 05, 12:32

e38 O3521 A5636 Receive offer NO Jan 05, 12:33

e38 O3521 A5636 Cancel offer Jan 05, 12:34

e39 O3542 A5636 Select and send offer e500 Jan 05, 13:29

e40 O3542 A5636 Receive offer YES Jan 08, 08:33

e41 O3542 A5636 Accept offer Jan 08, 16:34

e42 O3541 A5634 Receive offer NO Jan 10, 10:00

. . . . . . . . . . . . . . . . . . . . .

e54 O3541 A5634 Decline offer Jan 10, 10:04

. . . . . . . . . . . . . . . . . . . . .

2.4 Languages: The Common Grounding of Process Models
and Event Logs

Above, we explained that process models capture the behaviour of a process by
means of execution sequences, i.e., sequences of task executions, each representing
a potential case of a process. There are various ways to specify the behaviour of a
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process model in terms of its execution sequences. In this part of the book, we look
into more detail of the language of a process model.

The language of a process model is a (possibly infinite) set of possible execution
sequences. If a model, for example, contains a loop, then the language of the model
is infinite and contains all sequences where the loop is executed once, twice, three
times, but also 10,042 times. If a model contains parallel paths, then all interleavings
of these parallel paths are part of the language of a model.

Consider the model in Figure 2.3. This model allows for three different sequences
of task executions, i.e., its language comprises: 〈Aa, Fa, Sso, Ro, Ao, Aaa〉, 〈Aa, Sso,
Fa, Ro, Ao, Aaa〉 and 〈Aa, Sso,Ro,Fa,Ao,Aaa〉. These three sequences together
form the language of that model.

To reason about a process model’s expressiveness, in this book , we use a compact
representation of a language, called regular expressions.

The basic concept in a regular expression are atoms, that correspond to one or
more letters that form a string. These atoms form words according to a set of rules. In
this book, one should consider atoms to correspond to activity executions and words
to cases of a model. Based thereon, we use these regular expressions to compactly
represent a model.

Given four atoms a, b, c, and d , a regular expression denoting a sequence of
these atoms is simply the concatenation of these atoms. For example a.b.c.d is one
expression that represents the sequence of a followed by b followed by c, and then
d . Another example is b.a.d.c.c, where after the sequence of b, a, and d , c occurs
twice. Also a.a is a valid sequence that denotes that a is occurring exactly twice,
i.e. the execution of a is represented twice.

Turning to process models, atoms denote task executions, while words represent
execution sequences. The language of the model shown in Figure 2.1 can be
described as the following regular expression: As.Aa.Sso.Ro.Fa.Ao.Aaa.Af, i.e. this
model has a language consisting of a single execution sequence.

To denote choices, regular expressions use the | operator. Using this operator,
we can write the language of the model in Figure 2.2 as the regular expression
As.(Da|(Aa.Sso.Ro.Fa.((Ao.Aaa)|(Do.Da))).Af to represent the choices that we
have introduced in our running example. Note that we use parentheses to group
elements and treat them as one element. This allows us to hierarchically compose
regular expressions. The language of this model contains three execution sequences,
namely: {〈As,Da,Af〉, 〈As,Aa, Sso,Ro,Fa,Ao,Aaa,Af〉, 〈As,Aa, Sso,Ro,Fa,Do,
Da,Af〉}.

We denote parallel execution, which leads to all possible interleavings of atoms,
with the double pipe || symbol. Referring to Figure 2.3, the language of this model
can be written as As.Aa.((Sso.Ro)||Fa).Ao.Aaa.Af. Again, this language has three
sequences, namely: {〈As,Aa, Sso,Ro,Fa,Ao,Aaa,Af〉, 〈As,Aa, Sso,Fa,Ro,Ao,
Aaa,Af〉, 〈As,Aa,Fa, Sso,Ro,Ao,Aaa,Af〉}.

Loops are included in regular expressions using the + and ∗ operators. The
language of the model in Figure 2.4 is given as As.Aa.(Sso.Ro)+.Fa.Ao.Aaa.Af.
Since the subsequence 〈Sso,Ro〉 can be repeated multiple times, the language
described by this regular expression is infinite. The + operator indicates that a
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Figure 2.11 Example of a loop that can be skipped

subsequence must be repeated one or more times. The ∗ operator is used when it
can be repeated zero or more times, as indicated by the example in Figure 2.11. The
infinite language of this model is As.Aa.Sso.Ro.Uo∗.Fa.Ao.Aaa.Af.

Using composition of regular expression operators, the language of the model
of our running example in Figure 1.3 is given by the following regular expression:
As.(Da|(Aa.(Fa||(Sso.Ro.(Co.Sso.Ro)∗)).((Ao.Aaa)|(Do.Da)))).Af.

Next, we turn the focus from the behaviour described by models to the behaviour
recorded in an event log. Event logs can also be seen as languages. While
technically, an event refers to an execution of an activity, it is not uncommon
to represent an event simply by the identifier of the executed activity. An event
log can therefore be seen as a finite set of sequences of activities. For example,
the trace in Table 2.1 can be described as the language As.Aa.Fa.Sso.Ro.Do.Da.Af.
Table 2.2 on the other hand contains three traces, i.e. the corresponding language
is (As.Aa.Fa.Sso.Ro.Do.Da.Af)|(As.Aa.Da.Af)|(As.Aa.Fa.Sso.Ro.Co.Sso.Ro.Ao.
Aaa.Af).

So far, the traces we have seen all correspond to the model, i.e., each trace
corresponds to an execution sequence of the model. However, we already elaborated
on possible deviations between modelled and recorded behaviour. Consider for
example the following trace 〈As,Da,Aaa,Af〉, i.e. an application is submitted, sub-
sequently declined, then approved and activated and finally finished. This behaviour
does not correspond to the model of our running example. Clearly, approval and
activation of the application (Aaa) should not have happened. Similarly, consider
a trace 〈As,Aa, Sso,Ro,Do,Da,Af〉. In this sequence, the application was not
finalised (Fa), which is not in line with the model. Adopting the view of languages,
both example traces lead to a situation where the sequence of activities given by the
events of a trace is not part of the language of the process model.

It is important to realize that our language-based view on event logs is somewhat
limited. We can, for example, no longer refer to the most frequent trace, since
the respective language contains each sequence only once. However this language-
based view on models and logs suffices for Part I of this book to outline the main
ideas behind conformance checking.

Bibliographic Notes

There exist several monographs that introduce modelling notations similar to the one
used in this book. A good reference for the interested reader is the book by Mathias
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Weske [135], where not only the modelling of processes but also their execution is
considered. A more technical reference to dive into the semantics of BPMN 2.0, the
reference language used in this book for describing processes, can be found in [57]
or [36].

Event logs are the principal input for process mining algorithms. For a detailed
definition, we refer to the seminal book about process mining [114]. There exists
now an approved XML-based IEEE Standard for event logs, which was developed
in the scope of the IEEE Task Force of Process Mining2.

2.5 Exercises

2.A) Define a process model from a textual description

Given the following textual description of a process, provide the correspond-
ing process model using the constructs explained in this chapter.

The examination process can be summarized as follows. The process
starts when the female patient is examined by an outpatient physician,
who decides whether she is healthy or needs to undertake an additional
examination. In the former case, the physician fills out the examination form
and the patient can leave. In the latter case, an examination and follow-up
treatment order is placed by the physician who additionally fills out a request
form.
Beyond information about the patient, the request form includes details
about the examination requested and refers to a suitable lab. Furthermore,
the outpatient physician informs the patient about potential risks. If the
patient signs an informed consent and agrees to continue with the procedure,
a delegate of the physician arranges an appointment of the patient with
one of the wards. The latter is then responsible for taking a sample to be
analysed in the lab later. Before the appointment, the required examination
and sampling is prepared by a nurse of the ward based on the information
provided by the outpatient section. Then, a ward physician takes the sample
requested. They further send it to the lab indicated in the request form and
conduct the follow-up treatment of the patient.

After receiving the sample, a physician of the lab validates its state
and decides whether the sample can be used for analysis or whether it is
contaminated and a new sample is required. After the analysis is performed
by a medical technical assistant of the lab, a lab physician validates the
results. Finally, a physician from the outpatient department makes the
diagnosis and prescribes the therapy for the patient.

2http://www.win.tue.nl/ieeetfpm

http://www.win.tue.nl/ieeetfpm
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2.B) Where did the process go wrong?

Bug 
reported

(Br)

Check bug
description 

(Cbd)

description 
complete?

Assign bug 
to developer

(Abd)

1 week passed

Wait for  
bug fix

Developer 
fixed bug

(Dfb)

Mark bug 
resolved

(Mbr)

Write 
test program

(Wtp) test 
passed?

Send 
reminder

(Sr)

Bug 
resolved

(Bs)

Complete
description

(Cd)

yes

ye
s

nono

Figure 2.12 Example bug fix process

Given the process model in Figure 2.12 and the traces:

a) 〈Br, Cbd, Cd, Cbd, Adb, Sr, Dfb, Wtp, Mbr, Bs〉
b) 〈Br, Cbd, Adb, Sr, Sr, Adb, Dfb, Wtp, Mbr, Bs〉
Decide whether the traces are correct according to the model. If not, where
is the error? Can the model be changed such that the two traces fit?

2.C) How to make the log match the model?

Given again the process model in Figure 2.12, the following two traces were
recorded, i.e. they are the observed behaviour:

i) 〈Br, Cbd, Sr, Abd, Dfb, Wtp, Abd, Dfb, Mbr, Bs〉
ii) 〈Br, Cd, Cbd, Adb, Sr, Dfb, Mbr, Bs〉
What went wrong here? Correct the traces such that they fit the process
model. Is there only one correct solution?

2.D) Regular expressions vs. process models

Find a regular expression that captures the traces that are allowed by the
process model in Figure 2.13.

Hint: The sequential operator “.” can be omitted in this exercise.

(continued)
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2.D) (continued)
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Figure 2.13 Shorter bug fix process



Chapter 3
Quality Dimensions for Relating
Processes and Models

In the previous chapter, two important perspectives have been reported: First,
process models were introduced as conceptual descriptions of the underlying
process. Second, event logs were presented as the footprints recorded by information
systems during the executing of a process. The behaviour represented by a process
model may be either descriptive (the goal of the model is to show the reality),
or prescriptive (the model defines how the reality should be). In any of these
two possibilities, it is of paramount importance to relate the two perspectives of
modelled behaviour versus recorded behaviour to obtain insights on the capability
of the model to describe what is observed in the information systems supporting a
process.

In this chapter, we focus on the two main high-level dimensions to assess the
relation between process models and event logs. These dimensions are inspired
by the well-known notions of recall and precision from classification, where they
measure the cost of different mistakes that can be made in relating observations
with a model. Although the underlying motivation is the same, in this chapter we
show that in the context of conformance checking, we need a tailored definition to
accommodate the particularities of process models and event logs.

Overall, the intuition between the two quality dimensions that is presented in
this chapter is depicted in Figure 3.1. The fitness dimension focuses in assessing
the capability of a process model in reproducing the recorded behaviour, thus
the direction of the arc from the event log to the process model: for each trace
in the event log, the process model is queried to identify the model’s capability
to reproduce it. Symmetrically, the precision dimension targets the amount of
behaviour that exists in the process model that has actually been recorded, thus
the direction of the arc from the process model to the event log. One can see the
similarity between the intuitive idea of fitness/precision introduced here and the
established notions of recall/precision in classification or information retrieval.

© Springer Nature Switzerland AG 2018
J. Carmona et al., Conformance Checking,
https://doi.org/10.1007/978-3-319-99414-7_3
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Process 
ModelEvent Log

Fitness
Has the recorded behaviour been modelled?

Has the modelled behaviour been recorded?
Precision

Figure 3.1 General view on the two quality metrics considered: fitness and precision

ML              L MU

Figure 3.2 Visualization of recorded (L) and modelled (M) behaviour and their overlap (L ∩ M)

In Section 3.1 we reflect on the conceptualization necessary to relate recorded
and modelled behaviour. Then in Section 3.2 we focus on the fitness dimension,
while in Section 3.3 we overview the precision dimension. Then we turn the
attention to explain deviations in Section 3.4. Finally, a method to estimate precision
is presented in Section 3.5.

3.1 Behaviour of Processes

When trying to confront event logs and process models, an important consideration
should be taken into account: The size of the behaviour described. An event log
describes finite behaviour, that corresponds to the set of traces recorded throughout
the execution of a process. For instance, for the running example of a loan
application process, as implemented in a large European bank, we obtain a log com-
prising 9629 traces. In contrast, a process model may describe infinite behaviour,
in case the process model contains iterative constructs. For instance, the process
model of Figure 1.3 defines, among others, any execution sequence that satisfies
the following regular expression: As.Aa.Sso.Ro.(Co.Sso.Ro)∗.Fa.Ao.Aaa.Af. Thus,
although having a compact representation, it represents an infinite behaviour.

The rest of this chapter presents metrics to evaluate the quality of a process model
with respect to an event log. The Venn diagram of Figure 3.2 shows the conceptual
picture. Process models and logs can be seen as sets of behaviours, and by analysing
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their commonalities and differences, one can inspect the two quality dimensions
considered in this chapter: fitness (Section 3.2) and precision (Section 3.3).

Excursion 7
The underspecified process
Sometimes, it is not desired to specify the control flow in a model rigidly. The
BPMN language has a construct to express that at some point the process can
arbitrarily continue with a set of activities. The so called ad hoc subprocess
allows us to execute any task in the given set in any order arbitrarily often. It
is denoted with the tilde “~” sign at the bottom.

This way, a model that allows us to execute any task within our running
example would look as in Figure 3.3.

Ad hoc subprocess

Application
submitted

(As) Accept
application

(Aa)

Finalise
application

(Fa)

Approve and 
activate 

application
(Aaa)

Accept 
offer
(Ao)

Select and 
send offer

(Sso)

Receive
offer
(Ro)

Cancel
offer
(Co)

Decline
offer
(Do)

Decline
application

(Da)
Application

finished
(Af)

Figure 3.3 The underspecified version of the running example using the ad hoc construct

Note that such underspecified processes can always reproduce any
behaviour. If you think of the model as a form that captures the behaviour
of the process, the ad hoc subprocess is indeed a very flexible form, into
which you can fit any recorded behaviour of the given activities. On the one
hand, this provides us with the sometimes required flexibility in a process. On
the other hand, however, the model does not really assist in specifying what
should be done in what order. All control is in the hands of the (hopefully
experienced) process participant.

The language produced by the model in Figure 3.3 can be expressed as
As.(Ro|Ao|Do|Sso|Co|Da|Aa|Fa|Aaa)∗.Af.
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3.2 Fitness

Fitness measures the ability of a model to explain the execution of a process as
recorded in an event log. It is the main measure to assess whether a model is well-
suited to explain the recorded behaviour. To explain a certain trace, the process
model is queried to assess its ability to replay the trace, taking into account the
control flow logic expressed in the model.

In general, fitness is the fraction of the behaviour of the log that is also allowed
by the model. With Figure 3.2, fitness can be expressed as follows.

fitness = |L ∩ M|
|L| (3.1)

Let us have a look at this fraction in more detail by examining the extreme cases
first. Fitness is 1, if the entire behaviour that we see in the log L is covered by the
model M . Conversely, fitness is 0, if no behaviour in the log L is captured by the
model M . Figure 3.4 conceptually shows these extreme cases side by side.

For the following discussion, we define a trace to be either fitting (it corresponds
to an execution sequence of the model) or non-fitting (there is some deviation with
respect to all execution sequences of the model). This simplification is made to
illustrate the problem, and refinements of the measure to be more sensitive to smaller
or larger deviations are discussed in Part II of this book.

With this basic definition of fitness, let us next illustrate fitting and non-fitting
behaviour with particular traces and our running example model in Figure 1.3. This
helps to separate the behaviour that we see in log L and that is represented in the
model (i.e., in L ∩ M) from the behaviour that is outside the model (i.e., in L \ M).
With this distinction, computing the fitness according to Equation 3.1 is reduced to
simply counting the number of traces that fit the model and dividing that number by
the number of all the traces in the log.

(a) (b)

L 
M

M
L

Figure 3.4 Conceptual depiction of extreme fitness levels. (a) Visualization of recorded (L) and
modelled (M) behaviour with fitness 1 (L ⊆ M). (b) Visualization of recorded (L) and modelled
(M) behaviour with fitness 0 (L ∩ M = ∅)
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3.2.1 Fitting Behaviour

Let us first look at a short and simple trace. Given the trace 〈As,Da,Af〉, we can
track the path in the model in Figure 3.5 and identify a corresponding execution
sequence. First, the application is submitted (As), then the (exclusive) choice leads to
the application being declined (Da). Eventually, through an exclusive join gateway,
we reach the final step in which the application is finished (Af ). Since this path
denotes an execution sequence, the trace of the log is considered fitting, i.e., it is
part of the intersection of the log’s and the model’s language L ∩ M .

Let us consider trace 〈As,Aa, Sso,Fa,Ro,Do,Da,Af〉, for which the respective
path is highlighted in Figure 3.6. This trace is also fitting, and leads to the application
being declined in the end. After submission (As), the decision is made to accept the
application (Aa). Then, the process is split into two parallel branches: finalising
the application and the potential iterative refinement of the offer. Here, the offer
is selected and sent (Sso), before the application is finalised in parallel (Fa).
After that, the offer is received without requested changes. This closes the parallel
part. However, at this point the offer is declined (Do) leading to the application
being declined (Da) and finally, the application being finished (Af ). Again, this
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Figure 3.5 Loan application process model with highlighted path corresponding to one trace
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Figure 3.6 Loan application process model with highlighted path corresponding to another trace
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corresponds to an execution sequence of the model, which renders the trace a fitting
one. Finding many such traces that fit the model increases the value of fitness of the
model. Next, we shall have a look at traces that are not reproducible in the model.

3.2.2 Non-fitting Behaviour

Let us assume that our log L also contains the following trace 〈As,Aa, Sso,Ro,Do,
Da,Af〉, which is similar to the previous one. Looking more closely, we can see
that in comparison to the previous trace, it does not contain any event that signals
that the application has been finalised (Fa). Figure 3.7 highlights the part where the
model does not fit to the trace. In fact, the model prescribes that the application
must be finalised (Fa) after it has been accepted (Aa) and before either accepting
the offer (Ao) or declining the offer (Do). Thus, when we try to replay this trace in
the model, we eventually see that the model requires to first finalise the application
before declining the offer. This mismatch between the trace and the model means
that the there is no corresponding execution sequence for the trace, i.e., the trace is
non-fitting. In the Venn diagram, this trace belongs to the part of the log L that is
outside of the model M . The more of these non-fitting behaviour we encounter in
an event log, the smaller is the intersection of log and model and the less fitting is
the corresponding model.

Here, we saw non-fitting log behaviour where modelled behaviour is not in the
trace. In general, however, there can be also excess behaviour in a trace, which
means that at some point during replay, we find (at least) one event in the trace that
signals an execution of an activity, whereas the corresponding task is not enabled in
the current state of the model. To this end, let us assume that the log also contains
the non-fitting trace 〈As,Da,Aaa,Af〉. After the application was declined, it was
approved and activated afterwards. The path in the model is shown in Figure 3.8.
There is a deviation, as an event signalled an execution of an activity (after decline
application) that is not in line with what is captured in the model.
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Figure 3.7 Loan application process model with highlighted path corresponding to one trace,
which does not include an event to signal that the application has been finalised (Fa)
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Figure 3.8 Loan application process model with highlighted path corresponding to one trace,
where an event that signals the approval and activation of the application (Aaa) is present after the
application has been declined (Da), which is not in line with any execution sequence of the model

A trace can have more than one deviation, and the deviations can be of either
missing or excess types. The decision about which part of a trace is non-fitting
can be less obvious than in the examples we have seen here. Alignments provide a
solution to this decision, which we discuss in detail in the next chapter.

To sum up, the notion of fitness measures how well the behaviour in the log is
captured by the model. When the model is prescriptive, that is, it contains guidelines
that should not be violated, a high value of fitness is an indicator that, based on the
recordings in an event log, the process is correctly executed (i.e. according to plan).
Conversely, a low fitness value indicates that there is a problem, and the behaviour
recorded in the log cannot be correctly mapped to the prescribed behaviour. If so,
however, we cannot immediately conclude that the process is not executed according
to the guidelines or regulations. It is also possible that there are other deviations
between model and log which do not violate the guidelines. Therefore, we need to
carefully analyse the deviations and their causes.

Next, we look at the behaviour in the model and ask the conformance question
from the model’s viewpoint.

3.3 Precision

In the previous section, we discussed the fitness metric that measures how much
of the recorded behaviour is captured by the model—and how much of it deviates.
Now, we turn this question around and ask how much of the modelled behaviour is
actually recorded in an event log. We already saw one example model—the under-
specified model in Figure 3.3—that is perfectly fitting for all the traces in the event
log L, but does not explain how the process shall actually be conducted. The ad hoc
model allows for any behaviour between the respective start and end of the process.
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Precision helps us to quantify the behaviour of the model with respect to the log.
Thus, an underspecified model that allows us to do anything scores low on precision.

In Figure 3.2, precision is the counterpart of fitness. It can be calculated by
looking at the fraction of the model behaviour that is covered in the log.

precision = |L ∩ M|
|M| (3.2)

We see that precision shares the numerator in the fraction with fitness from
Equation 3.1. This implies that if we have a log and a model with no shared
behaviour (cf. Figure 3.4b), fitness is zero, and by definition also precision is zero.
However, the denominator is replaced with the amount of modelled behaviour.

3.3.1 Precise Behaviour

Precise behaviour in the model is given by execution sequences of the model for
which a corresponding trace is part of the event log. This coincides with the fitting
behaviour that we illustrated in Section 3.2.1. Therefore, when we compute fitness,
we can keep track of the fitting traces for future reference in order to compute
precision.

3.3.2 Imprecise Behaviour

Let us recall the underspecified model in Figure 3.3. This model has the following
execution sequences, among others:

S1 : 〈As,Aa,Af〉
S2 : 〈As, Sso, Sso, Sso, Sso,Af〉

The first sequence S1 is simply finishing the application (Af ), even though it was
not finalised (Fa), no offer was sent to the customer (Sso), and the application is
neither approved (Aaa), nor declined (Da). The second sequence S2 is spamming
the customer with offers without waiting for any response. These examples exhibit
undesired behaviour, and do not represent valid behaviour of the loan application
process. Also any other permutation of the tasks in the ad hoc subprocess are
encoded in the model. This is an extreme example of very low precision. If we
think about it, this model does not contain any meaningful information except the
list of possible activities of the process. Their number and order of execution is not
constrained by the model. Specifically, the allowed behaviour is much more than
what we observe, i.e., |M| >> |L|. In the spectrum of precision shown conceptually
in Figure 3.9, this corresponds to the latter case, illustrated in Figure 3.9c.
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Figure 3.9 Spectrum of (a) precise, but not fitting, (b) precise and fitting (L = M), and (c)
imprecise and fitting

In fact, the behaviour in models that allow recurrence is infinite. The reason is
that we can repeat the iterative part once, or twice, or any number of times. How can
we compute precision then? If the behaviour of M is infinite (i.e., |M| = ∞), the
fraction of precision reduces to 0 by definition. This is a problem, because models
with iterations are valid models, as there can be repetitive tasks, which we do not
want to spell out by making each iteration explicit.

To have a meaningful comparison of precision between event logs and models
with iterative constructs, precision is approximated. The approximation can be done
in different ways; at the end of this chapter we informally explain the simplest (yet
the most widely used) technique to approximate precision. We refer the interested
reader to the second part of this book (in particular, Section 8.5.1), for a detailed and
formal explanation on techniques to approximate precision. Bibliographical notes
on this particular topic are reported at the end of this chapter.

Excursion 8
Filling the precision spectrum
Let us have a look at three additional process models in comparison to the
example process model shown in Figure 1.3.
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Figure 3.10 Simple model M1

(continued)
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Figure 3.11 Enumerated model M2
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Figure 3.12 “Flower” model M3

First, let us have a look at model M1 in Figure 3.10. This
is a simple model that defines a single execution sequence
〈As,As,Aa, Sso,Ro,Fa,Ao,Aaa,Af〉, which denotes a successful loan
application. Although M1 can represent an important case of the process
model, it is unable to describe other cases, like the execution sequence
〈As,Da,Af〉, which denotes immediate rejection of a loan application. The
latter situation often happens in reality, as recorded in the event log of this
running example. Hence, model M1 is not fitting event log L.

(continued)
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Now, consider the model M2 on Figure 3.11: it contains correspond-
ing execution sequences for all traces of the event log (we only show
four of them in the figure). According to the precision direction, Fig-
ure 3.1, that requires that traces of the log be matched by execution
sequences of the model, M2 is perfectly precise. Moreover, all execution
sequences of model M2 correspond to traces recorded in the event log,
and therefore M2 is fitting. Let us have a look at a potential execution
sequence 〈As,Aa, Sso,Ro,Co, Sso,Ro,Fa,Do,Da,Af〉, which represents a
failed application that required us to modify the offer twice. Clearly, this
option should be possible, but M2 does not allow for it, since the task to
finalise an application (Fa) can only be executed before the tasks to select
and send an offer (Sso), receive an offer (Ro), and cancel an offer (Co); see
the bottom branch of the model in Figure 3.11. By capturing only execution
sequences that correspond to traces that appear in the event log, and not more,
M2 is overfitting the event log L.

Consider now the model M3 in Figure 3.12, that we informally call the
flower model. This model has the same language as the model in Figure 3.3.
In this model, every execution sequence starting with the application being
submitted (As) and ending with the application being finished (Af ) is possible.
Thus, for every trace in the log L, there is a corresponding execution sequence
in the model, making the model M3 fitting for L. However, the precision of
M3 with respect to L is poor, since many execution sequences of this model,
like 〈As,Do,Ao,Fa,Af 〉, are allowed for by M3, but corresponding traces are
never observed in the log. Hence, although being fitting, M3 is not able to
explain the recorded behaviour, but, instead, denotes an underfitting model.

In terms of the spectrum depicted in Figure 3.9, model M1 in Figure 3.10
belongs to the category (a) precise, but not fitting; M2 is (b) fitting and precise;
whereas model M3 is (c) imprecise and fitting.

3.4 Reasons for Deviations

To reason about causes of deviation between modelled and recorded behaviour,
we can classify the non-fitting behaviour that is outside the model into possible
explanations. There are two obvious explanations. On the one hand, we can assume
that for an event that is missing, even though a corresponding task would have to
be executed according to the model, the respective activity was actually executed
in the particular case of the process. If so, this is an issue of recording the activity
execution, leading to the absence of the event from the log. On the other hand, we
can assume that the activity execution did not happen in the case.
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Figure 3.13 Visualization of recorded (L), modelled (M), and real behaviour (S) and their
overlaps; cf. [18]

The same reasoning can be applied to explain excess behaviour in the event log
with respect to the model. We can assume that there was an activity executed, which
is simply not modelled, or we can assume that the event is erroneous. For example,
when recording is done manually or based on sensed data that is not trustworthy,
these false positives can occur.

We lean on the view, as introduced by Buijs and colleagues [18], that includes the
system S, for which the behaviour is defined by the process, in addition to the dual
perspective of modelled behaviour and recorded behaviour, as introduced before.
We depict this view with a Venn diagram in Figure 3.13. In the figure, the four
arrows point to the respective behaviours.

3.4.1 Interpreting Non-fitting Behaviour

Conceptually, we can separate the non-fitting behaviour that is recorded but not
captured in the model, L \ M , from the behaviour that really occurred, L \ M ∩ S,
and the behaviour that was recorded but did not occur in reality, L \ M \ S.1 We see
this on the left-hand side of Figure 3.13.

The non-fitting behaviour that occurred in the system represents the situation that
the log is correct, but the model is wrong, as it does not capture the true behaviour.
Such a situation is best treated by refining the model at the position of deviation,
if our goal is to have models that correctly represent the behaviour. There exists a
trade-off, however, as “repairing” the model at many of these deviations can lead to
overly complex models that become no longer usable.

1In the set expressions, we assume operator \ has higher precedence than ∩, i.e., L \ M ∩ S is
equivalent to (L \ M) ∩ S. Also, we assume operators to be left-associative, i.e., L \ M \ S is
equivalent to (L \ M) \ S.
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The non-fitting behaviour that did not occur in the system represents the situation
that the log is incorrect or noisy. These anomalies in the log indicate that the
generation of the log contains erroneous sources. This may stem from manual
logging of events (possibly even scanned with optical character recognition), or
when we try to make sense of the process through noisy sensed data.

3.4.2 Interpreting Imprecise Behaviour

On the right-hand side of this figure, we can distinguish the imprecise behaviour that
is only modelled and not recorded (M \ L) into modelled behaviour that actually
occurs in the system, M \ L ∩ S, and modelled behaviour that does not occur, M \
L \ S. The former denotes a situation in which we truthfully capture behaviour in
the model, which is not recorded—it is done and modelled, but not recorded. The
latter represents excess behaviour that is either just wrong (imprecise model), or is
caused by the modelling language that can allow infinite repetitions, even though in
reality the process is bounded to a given number of repetitions.

Imprecise behaviour that occurs in the system hints at a documentation issue
in the process, as the log does not capture this part. Possibly, one could decide
to implement additional logging/monitoring for these parts in the process, to also
be able to monitor and control it. But economic feasibility should always be kept
in mind, as the gain in transparency might not justify the additional overhead to
capture these parts in the event log of the process.

Imprecise behaviour that is allowed and represented in the model, but occurs nei-
ther in the log, nor in reality is a candidate for removal from the model. Sometimes
this excess behaviour is due to well-justified generalization. For example, the model
might allow us to execute two tasks in parallel at a point (thus allowing any order),
because there is no dependency between the respective activities. If, however, this
process is performed by a single person, who always executes these activities in the
same order, the log does not contain corresponding traces for all possible execution
sequences allowed by the model. The imprecision in the model is then a justified
generalization of the process, even though in reality, the flexibility of the process is
not fully exploited. A similar situation is obtained with a loop in a process model
that indicates arbitrary repetition of a part of the model. In reality, we might always
only see a handful of repetitions, although the model in theory allows us to do a
hundred, a thousand, or infinite iterations. Nevertheless, we would rather choose a
simple model that contains one loop, instead of a model that explicitly captures one,
two, three, four, or five iterations of a part of the model.
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3.4.3 Completing the Picture

For the sake of completeness, we briefly mention the other parts in Figure 3.13.
The top white part, S \ L \ M , is the behaviour that occurs in reality, but is neither
recorded, nor modelled. In general, there is usually a lot of behaviour in that region,
as models capture only a specific perspective and an abstraction of the process that
describes the behaviour of a system. The central area in the figure, L ∩ M ∩ S,
represents the behaviour that is recorded, modelled, and actually occurred in reality.
In conformance checking, this is the part that we can try to maximize by correcting
the model, or reducing causes of errors in documentation and logging.

Directly below the centre is the behaviour that is both modelled and logged,
but did not happen in reality, L ∩ M \ S. This is a rather theoretical construct, as
the coincidence of falsely recording some behaviour which did not occur, while
at the same time also modelling it, is expected to be low. There is one exception
to this, though. When the model is automatically created from the log by process
discovery techniques in process mining, noisy behaviour that affects the log but did
not actually happen could be represented in the model as well.

Excursion 9
The overfitting problem
This additional perspective of the system helps us to better understand the
problem of overfitting. The problem occurs when our model fits the recorded
behaviour, but the recorded behaviour is only representing a fraction of the
real process of the system. Figure 3.14 depicts this situation. We see that the
model and the log are perfectly aligned in their behaviour (L = M), but they
are only representing a part of the actual behaviour of S. The problem occurs
in practice when we know only little of the process, because we only observed
a part of it in our log L, or we are novice process modellers, and try to create
a model that exclusively represents the recorded part. In this case, we do not
generalize at all.

Figure 3.14 Visualization of an overfitting model that only captures behaviour recorded
in the log

(continued)
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For example, the model M2 in Figure 3.11 suffers from the problem of
overfitting. It defines only execution sequences that represent exactly all traces
recorded in the log. However, if we assume that the real process is the one
depicted in Figure 1.3, many plausible cases of the process are not represented
in M2.

3.5 Precision Approximation

The reader may have noticed that we left some issue open in Section 3.3, when
presenting the formula (Equation 3.2) for computing precision. In this section,
we provide an intuitive explanation on how precision can be approximated. The
second part of this book completes the picture, providing a detailed description of
algorithms for the computation of this important metric.

Precision can be approximated by exploring the behaviour of the model using as
a reference the traces of the log, and stopping the exploration each time modelled
behaviour deviates from recorded behaviour. Figure 3.15 illustrates the main idea.
To simplify the explanation, we focus on the fitting part of the model behaviour for
precision approximation. In the second part of this book the reader can find a general
description, where this restriction is dropped.

The core idea to approximate precision is to focus only on finite prefixes of the
execution sequences of a model. Specifically, by focusing on those finite prefixes
that match prefixes of traces in the log, a precision metric can be obtained. For each
possible prefix σ of a trace, for which there is a corresponding execution sequence

Log

Model

Escaping Edges

Figure 3.15 Idea on approximating precision (figure taken from [72])
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in the process model, the model can be queried to determine those tasks a for which
σ followed by a is not a prefix of a trace. These tasks, called escaping arcs, denote
states in the model that start to deviate from the behaviour seen in the event log.
Importantly, since both the event log L and the set of tasks of a model A are assumed
to be finite sets, the set of escaping arcs is finite, as illustrated in Figure 3.15.

If Pref(X) denotes the set of prefixes of the words in language X, examples of
elements in Pref(L ∩ M) for the model of Figure 3.12 are:

〈〉
〈As〉
〈As,Aa〉.

An example of an element in Pref(M \ L), in turn, is:

〈As,Aa,Af〉

Here, the last entry of the sequence (Af ) corresponds to the escaping arc.
The more sequences exist in Pref(M \ L), the less precise is the model with

respect to the log. Hence, by computing all the escaping arcs leading to sequences
in Pref(M \ L), a simple metric for approximating precision can be obtained:

precisiona = 1 − |Pref(M \ L)|
|Pref(M \ L)| + |Pref(L ∩ M)| (3.3)

Extreme cases of the formula above correspond to corner cases of precision; for
instance, if no escaping arcs exist, then the set Pref(L \ M) is empty, and so is the
fraction, which yields a precision of 1. Conversely, if Pref(L\M) >> Pref(L∩M),
then the fraction tends to evaluate to a number near 1, and therefore the metric tends
to zero.

Bibliographic Notes

Metrics for the evaluation of fitness have appeared in the last decade. In [93], the
notion of token replay-based fitness is introduced, where traces in the event log are
replayed and deviations are estimated over the missing or remaining tokens that arise
during the replay. In presence of non-deterministic process models, replay cannot
guarantee the most similar model trace that can replay the recorded behaviour, and
therefore the methods in [93] present heuristics to look ahead in the replay so that
non-deterministic choices are decided with more information about next possible
steps of the process. As we detail in the next chapter, wrong choices in the replay
may affect the accuracy of the diagnosis extracted from replay-based fitness.
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The work in [1] overcomes the aforementioned limitations by incorporating
the notion of alignment, and grounding the computation of fitness on top of the
alignments. Since an alignment provides a best execution sequence of the model
that can reproduce the recorded trace, alignment-based fitness is an accurate metric.
Fitting or unfitting traces, as has been shown in this chapter, are aligned to a
process model so that an explanation of the recorded behaviour in reference to the
model (like the ones in Figure 3.5, Figure 3.6, Figure 3.7 or Figure 3.8) can be
extracted. The approach can easily incorporate costs assigned to deviations, so that
unimportant or less-likely deviations are avoided by assigning suitable costs.

The first metric for precision was presented also in the scope of [93], denoted
behavioural appropriateness. This metric is based in comparing the ordering
relations between events (sometimes/always/never follows and precedes relations)
in the model with the ones from the log. Since an exhaustive exploration of the
model state space is required to compute the relations corresponding to the process
model, this approach suffers from the well-known state space explosion problem.

The metrics for precision described in this chapter are based on the PhD thesis
of Jorge Munoz-Gama, where the notion of escaping arcs first appeared [71]. By
bounding the exploration of the model state space to those parts that are visited
by the traces in the log, this precision metric represents an efficient technique to
estimate precision. As it was done with fitness, the escaping arcs technique can be
defined on top of alignments, so that an alignment-based precision metric can be
provided [4]. Also, further information can be incorporated so that confidence and
stability analysis is provided on top of the precision metric [73].

The Venn diagram view of a system (process) vs. process model vs. event log
in Figure 3.13 was first introduced by Joos Buijs et al. in [18], to show that it is
possible to use multiple dimensions to quantify the quality of process models with
respect to event logs.

3.6 Exercises

3.A) Report a fitting trace from a model

Given the model of Figure 1.3, define a fitting trace.

3.B) Report an unfitting trace from a model

Given the model of Figure 1.3, define an unfitting trace.

3.C) Which model is more fitting?

In the following figures, there are three examples of process models, namely
M1, M2 and M3 (Figures 3.16, 3.17, and 3.18).

(continued)
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3.C) (continued)
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Figure 3.16 M1
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Figure 3.17 M2
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Figure 3.18 M3

Given the trace 〈A, E, B, C, B, D, H 〉, choose which model fits best to
the trace.
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3.D) Analysing fitness

Given the models M1, M2 and M3, evaluate their corresponding fitness
(using Equation 3.1) on the following event log: {〈A, E, B, C, B, D, H〉,
〈A, E, F, G, H〉, 〈A, B, C, B, C, H〉, 〈A, E, F, G, B, C, B, D, H〉}.

3.E) Analysing precision

Given the model M3, evaluate its corresponding precision (using Equa-
tion 3.3) regarding the following event log: {〈A, E, B, C, B, D, H〉, 〈A, E,
F, G, H〉, 〈A, B, C, B, C, H〉, 〈A, E, F, G, B, C, B, D, H〉}.



Chapter 4
A First Take on Conformance Checking

In the previous chapter, we discussed fitness and precision as two important
dimensions when relating process models and event logs. By referring to the
behaviour of a model and a log in abstract terms, these notions are independent
of any specific operationalisation. That is, conformance checking in general, and
any assessment of fitness and precision in particular, is based on a choice of a
specific formalism for the behavioural comparison of models and logs. This chapter
reviews three such formalisms, thereby outlining different avenues on how to ground
conformance checking. As illustrated in Figure 4.1, conformance checking can be
approached by means of rule checking, token replay, or alignments.

In Section 4.1 we begin with conformance checking based on rules that capture
the behaviour of a model by means of binary relations over the activities represented
by the tasks of the model. In that case, conformance checking is interpreted as the
verification of consistency of the rules derived from the model with the traces of the
event log. While this approach can be instantiated for different sets of rules, of which
many can be computed efficiently, there is a general issue in terms of completeness
of the conformance checking result.

A second approach, therefore, based on a replay of the traces of an event log
in the process model, is described in Section 4.2. In essence, this approach verifies
to what extent a trace qualifies as an execution sequence of the model. The trace
is replayed in the model event by event, checking in each replay step whether the
conditions for the execution of the corresponding task are satisfied by the current
state of the model. As we discuss in the remainder of this chapter, this approach
overcomes some of the completeness issues of rule checking. Yet, in the general
case, replay may still suffer from incompleteness that is due to a lack of a systematic
exploration of non-deterministic choices in the replay procedure.

Against this background, in Section 4.3 we then turn to conformance checking
based on alignments. The main idea of alignments is to link each event of a trace
to at most a single task execution of an execution sequence of the model, and vice
versa. This takes into account that both, events and task executions, may be without
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Check rules derived from model for traces in log

Satisfied and 
Violated Rules

Event Log
Process
Model

Rule Checking

Replay trace of log in model

Missing and 
Remaining Tokens

Token Replay

Align trace of log with execution sequence of model

Alignment

Alignments

Figure 4.1 General approaches to conformance checking and resulting conformance artefacts

counterpart. As such, alignments can be seen as an evolution of the aforementioned
approaches to conformance checking that overcome their asymmetric view on
conformance. Instead of verifying rules induced by a supposedly correct process
model or replaying a supposedly correct trace in the model, alignments follow a
symmetric approach of balancing deviations between an event log and a process
model.

When considering their application in reality, the three methods described in
this chapter are complementary. Rule checking provides a simple yet effective way
of analysing the fulfilment of a desired set of control flow rules, enabling us to
focus only in certain parts of the process. Likewise, token replay may be applicable
when the interest is on evaluating early deviations, or just to have an intuition of
the replayability of traces. Alignments are applied when a detailed, fine-grained
and complete analysis is necessary, or when further enhancement of the model is
performed.

In the spirit of a first take on conformance checking, this chapter explains
the above techniques for conformance checking from an intuitive point of view,
focusing on the ideas behind rather than comprehensive formalisation. To this end,
we rely on the running example of a loan application process, which was discussed
already in the previous sections. For the sake of easy reference, the respective
process model is repeated in Figure 4.2.

The following overview of conformance checking techniques concludes the
first part of this book. Alignments as discussed towards the end of this chapter,
however, provide a generic formalism for all kinds of further conformance checking
techniques. The second part of this book, therefore, is devoted to an in-depth
discussion of alignments.
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Figure 4.2 Recap of the process model of a loan application process, illustrated already in
Figure 1.3 on page 8

4.1 A Gentle Introduction to Rule Checking

Rule checking is a simple, first approach to conformance checking. Below, we
reflect on the basic idea behind this approach and discuss common formalisms
for rule checking. Then, we illustrate rule checking with our running example and
discuss the provided feedback on non-conformance.

4.1.1 Foundations of Rule Checking

A process model defines a set of tasks along with causal dependencies for their
execution. As such, a process model constrains the possible behaviour of a process
in terms of its execution sequences. Instead of considering the set of possible
execution sequences of a process model, however, the basic idea of rule-based
conformance checking is to exploit rules that are satisfied by all these sequences
as the basis for analysis. Such rules define a set of constraints that are imposed by
the process model. Verification of these constraints with respect to the traces of an
event log, therefore, enables the identification of conformance issues.

Considering the running example of our loan application process as depicted in
Figure 4.2, rules derived from the process model include:

R1: An application can be accepted (Aa) at most once.
R2: An accepted application (Aa), that must have been submitted (As) earlier, and

eventually an offer needs to be selected and sent (Sso) for it.
R3: An application must never be finalised (Fa), if the respective offer has been

declined (Do) already.
R4: An offer is either accepted (Ao) or declined (Do), but cannot be both accepted

and declined.

By assessing to what extent the traces of a log satisfy the rules derived from a
process model, rule-based conformance checking focuses on the fitness dimension,



66 4 A First Take on Conformance Checking

i.e., the ability of the model to explain the recorded behaviour. Traces are fitting,
if they satisfy the rules, or non-fitting if rules are violated. The dimension of
precision—how much of the modelled behaviour is actually recorded—is not
targeted by rule-checking. That is, specificity of rules is neglected; there could be
many more traces, not contained in the log, that would also satisfy the rules.

A specific operationalisation of this idea first requires the choice of a formalism
for the rules. A common approach is to rely on unary or binary rules over activities.
A rule thereby specifies how a single activity is executed or how the executions of a
pair of activities relate to each other. Note that either type of rule may still be related
to the executions of multiple tasks, since a process model may comprise multiple
tasks that represent the same activity. An example for that is given in Figure 4.2,
where two tasks represent the activity to decline an application (Da). The reason
being that this activity may happen in different contexts, either immediately after
the submission of an application (As) or after it has been finalised (Fa) and an offer
has been received (Ro).

The restriction to unary and binary rules is a pragmatic one, as the number of n-
ary rules that could be considered is exponential in the number of activities that are
captured in the process model. However, even when limiting conformance checking
to unary and binary rules, various different types of rules could be considered, such
as:

• Cardinality rules: A rule defines an upper and lower bound for the number of
executions of an activity. Any complete execution sequence of the model adheres
to this rule in terms of containing at least the minimal number of executions and
at most the maximal number of executions of tasks representing this activity,
respectively. Rule R1 as defined above is an example of such a rule, defining an
upper bound of 1 for the execution of activity Aa.

• Precedence and response rules: A precedence rule is derived for two activities, if
in any complete execution sequence of the process model, an execution of a task
representing the second activity is preceded by at least one execution of a task
representing the first activity. A response rule is the counterpart of a precedence
rule. Defined for two activities, it requires that any execution of a task modelling
the first activity be eventually followed by an execution of a task representing the
second activity in any complete execution sequence. Rule R2 is a combination
of a precedence rule, requesting that applications are submitted (As) before they
can be accepted (Aa), and a response rule, enforcing that an offer is selected and
sent (Sso) afterwards.

• Ordering rules: Two activities may be executed independently of each other, but
if they are executed for a single case, their executions are always ordered. In a
process model, executions of the tasks representing these activities always occur
in a particular order in any execution sequence. Rule R3 gives an example for
such a rule that essentially prohibits the finalisation of an application (Fa) after
the respective offer has been declined (Do).

• Exclusiveness rules: There may also be pairs of activities that are never jointly
executed in any case, i.e., a process model does not contain an execution sequence
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with tasks execution related to both activities. For those pairs of activities, an
exclusiveness rule is derived. Rule R4 is an example for such an exclusiveness
rule.

Once particular types of rules have been chosen, rules are instantiated for
activities based on the tasks and their execution dependencies, as captured by a
given process model. Aiming at a comprehensive assessment of conformance, rules
are instantiated for all activities or pairs thereof, respectively, which are modelled
by tasks. These rules are then used to check conformance of each individual trace
of an event log: a specific rule may be satisfied or violated by the events of a trace.

Excursion 10
Processes as a set of rules
So far, we discussed rules as a means to extract some behavioural information
from a process model. However, rules may also be used as a first class citizen
in process modelling.

It has been argued that procedural models, as discussed in this book,
are not well-suited to capture processes that are loosely structured and
not entirely standardized. Examples for such processes can be found in
domains where process control is done by people rather than systems, as it
requires insights regarding the physical context of process execution and a
balanced consideration of conflicting goals. Consider the clinical pathways of
patients in a hospital: While there is a general ordering of examination and
treatment activities, there is typically also some flexibility (e.g., whether to
do a blood draw before or after an MRT screening), which enables medical
staff members to react to clinical emergencies or the non-availability of
particular resources. Yet, capturing all examination and treatment activities
as an ad hoc subprocess, as discussed in Excursion 7, would not yield a
truthful representation either, as certain general constraints on the execution
of activities would be neglected.

Against this background, declarative process models have been suggested
as an alternative modelling paradigm. Unlike procedural models that realize
an inside-out approach of specifying all valid execution sequences explicitly,
declarative models follow an outside-in approach: any sequence of task
executions that is not explicitly forbidden is valid. A process model is then
given as a set of rules, or constraints. Instead of explicitly modelling all valid
cases of a process, any case that obeys these rules is considered to be valid.

DECLARE [79] is an example for a declarative process modelling lan-
guage. It defines a set of templates for unary and binary rules for the execution
of activities that are based on Linear Temporal Logic (LTL). Examples for
such rules are: an activity may be executed at most n times, two activities
must never be executed as part of a single case, or for each execution of one

(continued)
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activity another activity needs to be executed at a later stage. To illustrate
these rules, a simplified version of our loan application process is given as a
DECLARE model in Figure 4.3.
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Figure 4.3 Adapted loan application process as a DECLARE model

Excursion 11
Computation of rules
Rules that constrain the execution of activities are derived from the execution
dependencies defined between the respective tasks in a process model. A
naive approach to compute these rules, therefore, is to explore all execution
sequences of a process model and verify whether a particular rule holds true.

Taking up our example from Figure 4.2, for instance, to assess whether to
use the rule that applications are declined (Da) at most once for conformance
checking, all execution sequences of the process model are checked for more
than one execution of the tasks that represent this activity. As discussed
earlier, process models may have an infinite number of execution sequences,
e.g., due to repetitive behaviour. However, even if so, they may only show
a finite number of states that are reached by execution sequences. Then,
conclusions on a particular rule can be drawn based on a representation of
the states and state transitions of a process model, i.e., its state space. In fact,
any execution sequence is a path in this state space. Checking whether an
execution sequence can contain more than one task execution related to the
activity of declining the application (Da), thus, becomes the check for the
existence of a corresponding path in the state space. The latter is illustrated

(continued)
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below for the process model of Figure 4.2. While there are two corresponding
state transitions (referring to different tasks representing the activity), there is
no path starting in the initial state that contains both transitions.

Aa
Fa Sso

Ro

Co

Sso Fa

Ro Fa
Co

Ao
As

Do Da

Aaa

Da

Af

Figure 4.4 State space of the process model in Figure 4.2, with transitions that denote task
executions related to activity Da being highlighted

Deriving rules from a state space of a process model, however, has to cope
with the issue that the size of the state space may be exponential in the size of
the process model—a phenomenon known as the state explosion problem. As
visible already in Figure 4.4 for the part where an application is finalised (Fa)
in parallel to selecting, sending, receiving, and potentially cancelling an order
(Sso, Ro, Co), this blow-up of the number of states is caused by concurrent
enabling of tasks.

Against this background, techniques have been developed to derive rules
directly from the structure of a process model, without exploring its behaviour
in terms of execution sequences (or states and state transitions). This is possi-
ble in particular for structured process models as discussed in Section 2.2. To
give the intuition of such a derivation, consider the exclusiveness rule stating
that an offer is either accepted (Ao) or declined (Do), but cannot be both
accepted and declined. Exploring the model in Figure 4.2, we see that the
two tasks capturing these activities are part of a model fragment representing
an exclusive choice pattern, i.e., their nearest common predecessor in terms of
the control flow arcs is an XOR split, whereas their nearest common successor
is an XOR join (see Figure 2.5 for a visualization of this pattern). In such
a situation, assuming that the exclusive choice pattern is not part of a loop
pattern and that the XOR split can be enabled solely once, we can immediately
conclude that the process model indeed induces an exclusiveness rule for
the activities of accepting and declining an order. Such structural analysis is
typically much more efficient than an exploration of all execution sequences
of the process model.
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4.1.2 Rule Checking by Example

Taking up the running example and some of the types of rules outlined above, rule-
based conformance checking proceeds as follows. First, focusing on the number of
possible activity executions, the cardinality rules derived for the example are given
in Table 4.1. Here, we observe that the initial and final activities are required to be
executed exactly once. The majority of activities, however, is not mandatory, but can
optionally be executed in a case of the process. Except for three activities (Sso, Ro,
Co) for which the corresponding tasks are part of a control flow loop in the process
model, the activities of the process can be executed at most once, though.

The table further illustrates which of these rules are satisfied or violated for three
exemplary traces of an event log. For trace T1 = 〈As, Aa, Sso, Ro, Ao, Aaa, Aaa〉,
two cardinality rules are violated: approval and activation of the application (Aaa) is
done twice in the trace, whereas the model defines that this activity shall be executed
at most once. Also, the last step defined by the process model indicating that the
application has been finished (Af ) is required to be recorded at least once in the
trace, which does not hold true for trace T1.

The remaining two traces, in turn, do not show any violation of a cardinality rule.
In particular, the events signalling the repeated execution of the activity to receive
an offer (Ro) in trace T2 = 〈As, Sso, Fa, Ro, Co, Ro, Aaa, Af 〉 are in line with
the cardinality rules. It is interesting to note that, according to the process model
in Figure 4.2, the number of executions of the activities to select and send an offer
(Sso) and to receive an offer (Ro) shall be equivalent in any case of the process. Even
though this does not hold true for trace T2, this deviation is not detected as it is not
reflected in the chosen formalism that captures cardinality rules solely in terms of a
minimal and a maximal number of executions per activity.

Turning to the next type of rule, Table 4.2 illustrates the precedence rules
derived for the running example and the result of verifying trace T2 =
〈As, Sso,Fa,Ro,Co,Ro,Aaa,Af〉 against these rules. As defined by the model
in Figure 4.2, for instance, there is a precedence rule that requires that, when an
application is declined (Da), it must have been submitted (As) before. This rule is
vacuously satisfied by trace T2 as it does not contain any event related to declining

Table 4.1 Cardinality rules derived for the process model of the running example and their
satisfaction (✓) and violation (✗) by exemplary log traces

Activity As Da Aa Fa Sso Ro Co Ao Aaa Do Af

Cardinality: [1, 1] [0, 1] [0, 1] [0, 1] [0, n] [0, n] [0, n] [0, 1] [0, 1] [0, 1] [1, 1]
T1 = 〈As,Aa,Sso,Ro,Ao,Aaa,Aaa〉

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

T2 = 〈As,Sso,Fa,Ro,Co,Ro,Aaa,Af 〉
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T3 = 〈As,Aa,Sso,Ro,Fa,Ao,Do,Da,Af 〉
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 4.2 Precedence rules derived for the process model of the running example and their satis-
faction (✓) and violation (✗) by the exemplary log trace T2 = 〈As, Sso,Fa,Ro,Co,Ro,Aaa,Af〉

As Da Aa Fa Sso Ro Co Ao Aaa Do Af

As

Da ✓

Aa ✓

Fa ✓ ✗

Sso ✓ ✗

Ro ✓ ✗ ✓

Co ✓ ✗ ✓ ✓

Ao ✓ ✓ ✓ ✓ ✓

Aaa ✓ ✗ ✓ ✓ ✓ ✗

Do ✓ ✓ ✓ ✓ ✓

Af ✓

an application (Da). The rule which enforces that approving and activating an
application (Aaa) is preceded by the one to finalise an application (Fa) is an
example of a non-vacuously satisfied rule. Yet, there are also several precedence
rules that are violated. In particular, several rules require that the application was
accepted (Aa) before the execution of another activity, such as receiving an offer
(Ro) or cancelling an offer (Co). In addition, the lack of an acceptance of an offer
(Ao) is highlighted by a violation of a precedence rule.

Even though it is not illustrated here, one can verify that traces T1 and T3 given
in Table 4.1 satisfy all precedence rules derived for our running example.

In the same vein, response and ordering rules can be derived and verified for a
given trace of a log. In the remainder, we limit the discussion to the exclusiveness
rule as another example. The respective rules and their satisfaction or violation by
trace T3 = 〈As, Aa, Sso, Ro, Fa, Ao, Do, Da, Af 〉 is illustrated in Table 4.3, which
also highlights that the exclusiveness rules are symmetric. Note that most activities
are exclusive with themselves, meaning that they cannot be executed more than once
as part of a single case. An exception are the three activities that are part of a control
flow loop (Sso, Ro, Co).

Most of the exclusiveness rules are satisfied by trace T3. For instance, while the
offer is declined (Do), the application is not approved and activated (Aaa). However,
we observe also a few violations that stem from the acceptance of the offer (Ao),
which is not in line with the exclusiveness rules related to the activities of declining
the offer (Do) and the application (Da), for both of which the trace T3 comprises
corresponding events.

Finally, we note that traces T1 and T2 of Table 4.1 satisfy all exclusiveness rules
derived for our running example.
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Table 4.3 Exclusiveness rules derived for the process model of the running example and their
satisfaction (✓) and violation (✗) by the exemplary log trace T3 = 〈As, Aa, Sso, Ro, Fa, Ao, Do,
Da, Af 〉

As Da Aa Fa Sso Ro Co Ao Aaa Do Af

As ✓

Da ✓ ✗ ✓

Aa ✓

Fa ✓

Sso

Ro

Co

Ao ✗ ✓ ✗

Aaa ✓ ✓ ✓

Do ✗ ✓ ✓

Af ✓

4.1.3 Conformance Feedback from Rule Checking

Rule checking focuses on the fitness dimension of conformance: By verifying
whether the traces of a log satisfy the rules derived from a process model, it
is assessed whether the model is well-suited to explain the recorded behaviour.
Feedback on non-fitting behaviour then assumes the form of violations of rules by
the traces.

First and foremost, the violation of rules can be interpreted locally, i.e., solely
in the context of a particular trace. The set of violated rules identifies all activities,
or pairs thereof for which the behaviour of the trace is not line with the process
model. As such, rule checking provides fine-granular feedback that highlights which
individual activities are involved in non-fitting behaviour. Referring to the three
exemplary traces listed in Table 4.1 and the rule checking results in Tables 4.2
and 4.3, for instance, at most three of the 11 activities that are represented by tasks
in the process model are identified as being involved in behavioural deviations for
each of the three traces. For instance, for trace T1, non-fitness is primarily related
to the activity of approving and activating an application (Aaa) and the final step
of having the application finished (Af ), whereas for trace T3, deviations involve the
activities of accepting an offer (Ao), declining an application (Da), and declining an
offer (Do).

Lifting the scope of conformance analysis from the level of individual traces
to the event log as a whole, a global interpretation of the set of violated rules
may provide further insights into ‘hot-spots’ of non-fitting behaviour. Activities that
occur frequently in rules violated by a large number of different traces may point
to systematic issues in how the process is conducted. For the running example, we
note that the activity of accepting an offer (Ao) is identified as a source of non-
fitness for both traces T2 (violated precedence rule, see Table 4.2) and T3 (violated
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exclusiveness rule, see Table 4.3). As a consequence, one may wish to perform an
audit and review the responsibility for this activity as well as the respective support
by information systems.

Beyond feedback on individual activities that are involved in conformance
violations, rule checking also enables a quantification of non-fitness for both
aforementioned scopes: for an individual trace and a complete event log. Given
a model M and an event log L, assume that RM are the rules derived from M

according to a formalism as detailed above. Then, for a single trace σ ∈ L as well
as the entire log L, a straightforward approach to quantify fitness is to compute the
ratio of violated rules and all rules derived from the model:

fitness(σ,M) = |{r ∈ RM | r is satisfied by σ }|
|RM | (4.1)

fitness(L,M) = |{r ∈ RM | r is satisfied by all σ ∈ L}|
|RM | (4.2)

The above ratios seem to provide a reasonable means to quantify the extent to which
a trace or an entire event log are explained by the model. The respective measures
are normalised to the unit interval, while a fitness value of 1 means that all rules
derived from the process model are satisfied. The opposite end of the respective
fitness scale is more delicate, though. A fitness value of zero is obtained if all rules
are violated. Depending on the formalism to specify rules and the specific set of
rules instantiated for a model, this may be impossible. For instance, in our running
example, any trace that violates the exclusiveness rule between the activities for
accepting an offer (Ao) and declining an offer (Do) by their joint occurrence may
implicitly satisfy rules on the cardinality on the minimal and maximal number of
their execution (assuming the model and thus Table 4.1 would define a lower bound
of zero and an upper bound of infinity for activities Ao and Do).

Reflecting on the above, it becomes apparent that the values obtained by the
above measures depend on the chosen formalism to define rules. This is problematic
as it assumes that the rules derived from a process model are complete and
orthogonal. The former would ensure that any deviation between traces and a
process model is taken into account. The latter would ensure that small behavioural
deviations between traces and a process model affect a few rules, whereas large
deviations impact a large number of rules. In the next section, we detail why the
assumption of a formalism that is complete and comprises orthogonal rules is
commonly violated.

4.1.4 Limitations of Rule Checking

Different types of rules detect different kinds of conformance issues or, more
specifically, non-fitting behaviour. This was illustrated by means of examples in
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Section 4.1.2. Taking the three traces T1 − T 3 given in Table 4.1, we observe that
each of the three traces violates some rules of a particular type, while it satisfies all
rules of other types.

The above observation hints at the major limitation of conformance checking
based on rules: The analysis remains incomplete. Even if the full set of cardinal-
ity, precedence, response, ordering, and exclusiveness rules introduced above is
exploited, there may be traces that satisfy all rules imposed by the process model,
but are not fitting, i.e., they do not represent valid execution sequences of the model.
An example for such a trace is T4 = 〈As, Aa, Sso, Ro, Ro, Co, Fa, Ao, Aaa, Af 〉. It
is not valid according to the model in Figure 4.2, since an offer is received (Ro) two
times in a row, whereas an offer is selected and sent (Sso) only once and not after
an offer has been cancelled (Co). Yet, all of the rules introduced above are satisfied,
so that the deviation from the model cannot be detected.

Clearly, the issue of incompleteness observed in the verification of the particular
trace T4 can be fixed by defining additional types of rules to be checked. However,
in general, an exponential number of types of rules, in the number of activities, is
needed to fully characterize the behaviour of process models captured in common
modelling languages.

Extending the number of considered rule types further hinders reasonable
quantification of non-fitness. By adding more expressive rules, redundancies are
introduced by means of implication dependencies between rules. Already in the
above formalism, rules are not fully orthogonal. For instance, defining a rule that
requires the execution of two activities at least once implies that an exclusiveness
rule cannot be defined for the activities at the same time. As a consequence,
deviations in a trace may sometimes be reflected in a few, and sometimes in a large
number of violated rules. Trying to overcome the issue of incompleteness by adding
more expressive rules, therefore, introduces a bias into any assessment of the extent
of non-conformance.

To conclude, conformance analysis based on rule checking may quickly become
inefficient—an exponential number of rules need to be checked—and ineffective—
the result of conformance checking is overwhelming to users due to its exponential
size, whereas any quantification is biased by the chosen formalisms to specify rules.

4.2 A Gentle Introduction to Token Replay

Unlike rule checking that is grounded in information derived from the process
model, token replay takes the event log as the starting point for conformance
analysis. As indicated already by its name, this technique replays each trace of the
event log in the process model by executing tasks according to the order of the
respective events. By observing the states of the process model during the replay,
it can be determined whether, and to what extent, the trace indeed corresponds to a
valid execution sequence of the model.
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4.2.1 Foundations of Token Replay

A process model defines states and state transitions, which encode the dependencies
for the execution of tasks, such as a sequential ordering or repetitive behaviour.
As sketched in Section 2.2.3, state transitions correspond to executions of tasks, so
that, given an initial state of a process model, a representation of the set of all valid
execution sequences can be constructed.

In essence, token replay postulates that each trace in the event log corresponds to
a valid execution sequence of the process model. Whether, and to what extent, this is
indeed true is verified by step-wise executing tasks of the process model according
to the order of the respective events in the trace. During this replay, we may observe
two cases that hint at non-conformance:

(i) the execution of a task requires the consumption of a token on the incoming arc,
but the arc is not assigned any token in the current state, i.e., a token is missing
during replay;

(ii) the execution of a task produces a token at an outgoing arc, but this token is not
consumed eventually, i.e., a token is remaining after replay.

By exploring whether the replay of a trace yields missing or remaining tokens,
replay-based conformance checking mainly focuses on the fitness dimension. That
is, the ability of the model to explain the recorded behaviour is the primary concern.
Traces are fitting if their replay does not yield any missing or remaining tokens,
and non-fitting otherwise. In contrast to rule checking, precision can be estimated
using token replay [72], but unfortunately, the corresponding technique strongly
relies on the assumption that traces are fitting; if they are not, then the estimation
of precision through token replay can be significantly degraded. Therefore, we
refrain from introducing techniques for precision based on token replay due to the
aforementioned weakness.

In order to check conformance of a single trace, it is replayed event by event in
the process model. During replay, the state of the process model is adapted according
to the execution semantics of the model. This idea of token replay is described in
more detail as follows:

(1) Initialise the replay procedure by setting the first event of the trace as the current
event of the replay.

(2) Locate the task of the activity for which execution is signalled by the current
event of the trace in the process model.

(3) Replay the current event of the trace by executing the identified task in the
current state of the process model by:

• Consuming a token on the incoming arc of the respective task, even if there
is none. If the arc was not assigned a token in the current state, record that a
token was missing on the respective arc.

• Producing a token on the outgoing arc of the respective task (if there is any).

(4) Set the state reached as the current state of the process model.
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(5) If the current event is not the last in the trace, consider the next event in the
trace as the current event and continue the replay from step 2 onwards.

Despite its simplicity, the above replay procedure is based on a subtle assump-
tion. That is, in step 2, it is assumed that a task can unambiguously be located in
the process model for the activity for which the execution is signalled by the current
event of the trace. Intuitively, this means that there is no uncertainty on how to replay
a single event of the trace in the process model. Towards the end of this section, we
discuss the fact that this assumption is problematic in practice, since an event of
the log may relate to multiple tasks in the model, or none at all. As a consequence,
locating the task in the model for an event of the trace may be ambiguous or even
impossible.

4.2.2 Token Replay by Example

We illustrate token replay with our running example and the trace T1 = 〈As,
Aa, Sso, Ro, Ao, Aaa, Aaa〉, used in Table 4.1 already to exemplify rule-based
conformance checking. For this trace, the first event denotes that the application
has been submitted (As). The respective task can indeed be executed in the initial
state of the process model, as it is represented by the start event without incoming
control flow arcs. The state reached afterwards assigns a token to the arc between
the start event and the XOR-gateway; see Figure 4.5.

The next event to replay is the acceptance of the application (Aa). We note that
in the BPMN model, the XOR-gateway representing the choice of declining or
accepting an application may consume the token on its incoming arc and produce
a token on one of its outgoing arcs. This transition between states of the process
model is assumed to be implicit as the act of taking the decision is not reflected
in the event log. Replay, therefore, has to take into account all possible implicit
transitions from a particular state of the process model. As we discuss later, this
requirement constitutes a major limitation of replay-based conformance checking.
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Figure 4.5 State reached in the loan application process model after replaying the first event of
the trace
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Figure 4.6 State reached after replaying the trace prefix 〈As,Aa, Sso,Ro〉
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Figure 4.7 State reached after replaying the trace prefix 〈As,Aa, Sso,Ro,Ao〉

Assuming that the implicit transitions are taken as required to replay the trace,
the event of accepting the application (Aa) can be replayed without any issue. The
same holds true for the events of selecting and sending an offer (Sso) and receiving
an offer (Ro). The state reached after replaying the prefix 〈As, Aa, Sso, Ro〉 of the
considered trace is illustrated in Figure 4.6.

In the trace T1 = 〈As,Aa, Sso, Ro, Ao, Aaa, Aaa〉, the next event to replay is the
one of accepting the offer (Ao). However, in the state visualized in Figure 4.6, the
incoming arc of the respective task is not assigned a token. Note that this is not a
matter of implicit transitions. While the token on the outgoing arc of task Ro may
pass the XOR-gateway (cross sign), it cannot pass the AND-gateway (plus sign),
which requires both of its incoming arcs to carry a token.

Following the outlined replay procedure, however, the task modelling acceptance
of an offer (Ao) is executed, which produces a token on its outgoing arc. Since the
incoming arc is not assigned a token, a missing token is recorded, as illustrated in
Figure 4.7.

When executing the next event to replay, i.e., approving and activating the
application (Aaa), no issue is identified. As illustrated in Figure 4.7, the incoming
arc of the corresponding task is assigned a token. Consuming this token and
producing a token on the outgoing arc leads to the state visualized in Figure 4.8.

Finally, the last event of trace T1 = 〈As, Aa, Sso, Ro, Ao, Aaa, Aaa〉 needs to
be replayed, which, again, is the approval and activation of the application (Aaa).
In the current state of replay, the incoming arc of the task is no longer assigned a
token, so that another missing token is recorded. In addition, a token is produced, so
that the outgoing arc is now assigned two tokens. With that, the replay of trace T1
completes, yielding the state that is illustrated in Figure 4.9.



78 4 A First Take on Conformance Checking

As

Aa

Fa AaaAo

Sso Ro

Co

Do Da

Af

Da

Figure 4.8 State reached after replaying the trace prefix 〈As,Aa, Sso,Ro,Ao,Aaa〉
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Figure 4.9 State reached after replaying the full trace T1 = 〈As,Aa, Sso,Ro,Ao,Aaa,Aaa〉

From Figure 4.9, we conclude that the trace T1 does not conform to the given
process model. A trace that conforms to the process model should yield a state
that does not assign any tokens to arcs. In the loan application process, the last
activity should have been the one to finish the application (Af ). In the process
model, execution of the corresponding task (or rather BPMN end event) would
solely consume, but not produce any tokens, thereby indicating that the final
state of processing is reached. Yet, the replay of T1 yields several remaining and
missing tokens, which provide further hints on the type of conformance issues. The
remaining token on the incoming arc of the task to finalise the application (Fa), for
instance, hints at the lack of a necessary execution of this activity. Missing tokens,
in turn, hint at executions of activities that were unexpected in the current state of
the process, such as activities Ao and Aaa in the example.

We note that missing and remaining tokens often occur together. A non-
conforming execution of an activity, such as the second execution of Aaa, may be
unexpected in the current state of replay (missing token) and also unnecessary with
respect to the completion of the process instance (remaining token).

4.2.3 Conformance Feedback from Token Replay

Token replay checks the fitness of an event log with respect to a given model. If a
trace can be replayed without any missing or remaining tokens, it fits, i.e., the trace



4.2 A Gentle Introduction to Token Replay 79

Application
submitted

(As)

Accept
application

(Aa)

Finalize
application

(Fa)

Approve and 
activate 

application
(Aaa)

Accept 
offer
(Ao)

Select and 
send offer

(Sso)

Receive
offer
(Ro)

Cancel
offer
(Co)

Decline
offer
(Do)

Decline
application

(Da)

Application
finished

(Af)

Decline
application

(Da)

change requested

ac
ce

pt
de

cl
in

e

de
cl

in
e

Figure 4.10 Missing and remaining tokens after replaying traces T1 to T3 of Table 4.1

corresponds to a valid execution sequence of the model. If all traces of an event log
fit, the model is well-suited to explain the observed behaviour.

Feedback on non-conformance derived by token replay can be given on the
level of an individual trace. Such local feedback comes in the form of the missing
and remaining tokens after replaying the trace in the model, as illustrated for the
example trace T1 = 〈As, Aa, Sso, Ro, Ao, Aaa, Aaa〉 in Figure 4.9. Here, the tasks
representing activities to finalise an application (Fa), to accept the offer (Aa), and
to approve and activate the application (Aaa) are highlighted as the root cause of
non-fitness.

Similarly to the approach illustrated for rule checking in Section 4.1.3, feedback
on non-conformance can also be derived on a global level, taking into account all
traces of an event log. For traces T1 to T3 given in Table 4.1, the aggregated result in
terms of missing and remaining token is shown in Figure 4.10. Here, some activities
appear to be more frequently involved than others in conformance violations. For
example, the approval and activation of the application (Aaa) is clearly a ‘hot-
spot’ of non-fitting behaviour in the event log. This insight helps to interpret the
conformance checking results and may also trigger respective actions to avoid non-
conformance in the future.

Feedback on conformance issues related to particular activities can be comple-
mented by a quantification of non-fitness, on the level of an individual trace or the
event log as a whole. However, simply using the counts of missing and remaining
tokens recorded during replay may be misleading as the resulting measure would
not be normalised and independent of the length of the replayed trace. Therefore, a
common approach to quantify fitness based on token replay is to set the number of
missing and remaining tokens into relation to the overall number of consumed and
produced tokens during the replay. This yields two ratios that denote the relative
share of non-fitness in the replay of a trace or an event log, respectively.

Specifically, we assume that a model is given as M , while L is an event
log. Replaying a trace σ ∈ L in M yields four token counts: consumed(σ,M),
produced(σ,M), missing(σ,M), remaining(σ,M), denoting the overall numbers
of tokens consumed and produced during the replay, and the numbers of missing
and remaining tokens, respectively. Based thereon, fitness based on token replay is



80 4 A First Take on Conformance Checking

quantified for a trace or an event log:

fitness(σ,M) = 1

2

(
1 − missing(σ,M)

consumed(σ,M)

)
+ 1

2

(
1 − remaining(σ,M)

produced(σ,M)

)

(4.3)

fitness(L,M) = 1

2

(
1 −

∑
σ∈L missing(σ,M)∑

σ∈L consumed(σ,M)

)
+1

2

(
1 −

∑
σ∈L remaining(σ,M)∑
σ∈L produced(σ,M)

)

(4.4)

The above measures yield a fitness value of 1, if a trace (or all traces of an event log)
can be replayed without missing or remaining tokens, i.e., if they correspond to valid
execution sequences of the process model. A fitness value of zero, in turn, means
that all tokens consumed and produced during the replay have also been missing
and remaining, respectively. If that is possible at all depends on the assumptions
imposed on the structure of the process model and the traces in the event log.

In any case, we note that feedback on non-fitness is provided by token replay
solely for events of a trace that relate to activities that are represented by tasks
in the process model. As detailed in Section 4.2.1, when introducing a general
procedure for token replay, there is the fundamental assumption that tasks for the
activities of events to replay can be located unambiguously in the process model.
As a consequence, events of a trace that represent activities that are not captured
in a process model are not considered in the above fitness measures. Below, we
discuss that the assumed ability to, given an event, locate a corresponding task in
the process model constitutes the major limitation of conformance checking based
on token replay.

4.2.4 Limitations of Token Replay

Token replay is based on an assessment of the states of the process model when
replaying the events of a trace. This involves locating the tasks in the process
model that correspond to the activities for which the events of a trace signal
an execution; see Section 4.2.1. As such, events related to activities that are not
captured in a process model cannot be considered during replay. Technically, such
an event may simply be skipped, so that replay continues with the next event of the
trace. Practically, however, this means that the process model does not explain the
behaviour recorded in the event log—the log does not fit the model.

Beyond this obvious issue, locating a task in the process model for an activity
imposes also more subtle challenges that limit the utility of replay-based con-
formance checking. In particular, replay may become non-deterministic for two
reasons: (1) it may be impossible to unambiguously locate the task to execute when
replaying an event; and (2) it may be impossible to unambiguously characterize the
state reached after replaying an event.
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The first situation may occur when a process model defines several tasks that
represent the same activity. Considering the process model of our running example,
e.g., in Figure 4.5, two tasks refer to the application being declined (Da), either
immediately after the application has been submitted (As) or once an offer has
been processed, but eventually declined (Do). Replaying a trace that contains an
event representing that the application has been declined, it is unclear which of the
tasks in the process model shall be executed—one of them may be chosen in a
non-deterministic manner. As a consequence, the result of conformance checking
becomes non-deterministic, leading to different numbers and locations of missing
and remaining tokens.

Any heuristic to pick among multiple tasks representing the same activities based
on the current state of the process model does not solve this problem. Consider the
trace T5 = 〈As, Da, Fa, Sso, Ro, Do, Af 〉 that shall be replayed in the model of
our running example (e.g., Figure 4.5). In this trace, after the application has been
submitted (As), the application is declined (Da). Choosing the upper one of the two
respective tasks in the process model may seem preferred for the replay, as it does
not immediately yield any missing token. In that case, however, replaying the next
event in the trace by executing the task to accept the application (Aa), would yield
a missing token. For this particular trace, choosing either of the two tasks in the
process model during replay yields the same total number of missing tokens. In
general, this is not true, though, and a heuristic choice among multiple options to
replay an event does not necessarily lead to the smallest number of missing and
remaining tokens for the complete trace.

Another issue is related to the encoding of the control flow in a process model.
Replay may require several state transitions in the model that are not visible in a
trace of an event log, because they only relate to control flow dependencies. Taking
BPMN as an example, the state of a process model is an assignment of tokens to
arcs and gateways represent state transitions that do not involve the execution of
any activity. This is problematic for token replay. After an event has been replayed,
there may actually be multiple states that qualify as the current state of replay,
each potentially leading to different conformance results in terms of missing and
remaining tokens.

Consider the state, visualized in Figure 4.5, reached in the loan application
process model after replaying the event that the application has been submitted (As).
In this state, a token is assigned to the arc between activity As and the XOR-gateway.
However, the current state of replay could also be one of the states assumed after
the first decision on the application, as represented by the XOR-gateway, has been
taken. That is, the two states that assign a token to either of the outgoing arcs of the
XOR-gateway would also be viable states, as the act of taking this decision is not
expected to be visible in the recorded trace.

Again, one may decide to chose non-deterministically between the possible
states. Yet, this decision has implications for the replay of a trace. Starting in the
state that assigns a token to the arc between the XOR-gateway and task Da would
mean that subsequent replay of an event related to task Aa yields a missing token
(and potentially a remaining token, if there is no event related to task Da in the
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trace). A non-deterministic choice between the different possible states, therefore
introduces a strong bias in conformance checking and precludes any reasonable
interpretation of the obtained results.

Both issues, selecting among tasks representing the same activity during replay
and considering different possible states in the model, give rise to a search problem.
That is, one could explore all possible options, striving for the best way to replay
a trace, e.g., in terms of the smallest sum of missing and remaining tokens. As we
outline in the remainder, generalizing this idea leads to the concept of alignments,
which provide a comprehensive basis for conformance checking.

4.3 A Gentle Introduction to Alignments

As a third approach to conformance checking, this section gives an overview of
alignments. Unlike the aforementioned approaches, alignments take a symmetric
view on the relation between modelled and recorded behaviour. Specifically, they
can be seen as an evolution of token replay. Instead of establishing a link between
a trace and sequences of task executions in the model through replay, alignments
directly connect a trace with a valid execution sequence. Alignments are the core
of many further techniques for conformance checking, which is why the overview
of alignments in this section is complemented by an in-depth discussion and
formalisation of alignments in the second part of this book.

4.3.1 Foundations of Alignments

An alignment connects a trace of the event log with an execution sequence of
the model. It is represented by a two-row matrix, where the first row consists of
activities as their execution is signalled by the events of the trace and a special
symbol 
 (jointly denoted by ei below). The second row consists of the activities
that are captured by task executions of an execution sequence of the model and a
special symbol 
 (jointly denoted by ai):

log trace e1 e2 . . . en

execution sequence a1 a2 . . . an

Each column in this matrix, a pair (ei, ai), is a move of the alignment, meaning
that an alignment can also be understood as a sequence of moves. There are different
types of such moves, each encoding a different situation that can be encountered
when comparing modelled and recorded behaviour. We consider three types of
moves, as follows:

• Synchronous move: A step in which the event of the trace and the task in the
execution sequence correspond to each other, i.e., both the event and the executed
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task refer to the same activity. Synchronous moves denote the expected situation
that the recorded events in the trace are in line with the tasks of an execution
sequence of the process model. In the above model, a synchronous move means
that it holds ei = ai and ei �=
 (and thus ai �=
).

• Model move: When a task and thus an activity should have been executed
according to the model, but there is no related event in the trace, we refer to
this situation as a model move. As such, the move represents a deviation between
the trace and the execution sequence of the model in the sense that the execution
of an activity has been skipped. In the above model, a model move is denoted by
a pair (ei, ai) with ei =
 and ai �=
.

• Log move: When an event in the trace indicates that an activity has been executed,
even though it should not have been executed according to the model, the
alignment contains a log move. Being the counterpart of a model move, a log
move also represents a deviation in the sense of a superfluous execution of an
activity. A log move is denoted by a pair (ei, ai) with ei �=
 and ai =
.

The above model allows for the definition of further types of moves, i.e., those
pairs (ei, ai) with either ei = ai = 
 or ei �=
, ai �=
, and ei �= ai . The
former, however, is not meaningful from a conformance checking point of view,
as neither the trace nor the execution sequence advances. The latter, in turn, could
represent a situation where the event indicates the execution of an activity, whereas a
task capturing another, similar activity was executed in the process model. Striving
for an intuitive overview of alignments in this section, however, we exclude such
considerations here and refer to the second part of the book for further details.

For illustration, we take up our running example (see Figure 4.2) and the traces
used in the discussion of rule checking and token replay. Consider trace T1 = 〈As,
Aa, Sso, Ro, Ao, Aaa, Aaa〉 and the execution sequence E1 = 〈As, Aa, Sso, Ro, Fa,
Ao, Aaa, Af 〉. Then, a possible alignment is given as follows:

log trace T1 As Aa Sso Ro 
 Ao Aaa Aaa 

execution sequence E1 As Aa Sso Ro Fa Ao Aaa 
 Af

This alignment comprises six synchronous moves, one log move, (Aaa,
), and
two model moves, (
,Fa) and (
,Af). The log move (Aaa,
) indicates that the
application had been approved and activated, even though this was not expected in
the current state of processing (as this had just been done). The model move (
,Fa)
is the situation of the process model requiring that the application shall be finalised,
which has not been done according to the trace. Furthermore, one can easily extract
the original trace by projecting away the special symbol for skipping from the top
row. Applying the projection to the bottom row yields the execution sequence of the
model.

The above alignment is only one possible alignment, though. Even for the same
trace and execution sequence, there are many more possible alignments, e.g., the
following one:
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log trace T1 As 
 Aa Sso Ro 
 Ao Aaa Aaa 

execution sequence E1 As Aa 
 Sso Ro Fa Ao Aaa 
 Af

This alignment contains five synchronous moves, two log moves, and three model
moves. While it is a viable alignment for trace T1 and execution sequence E1, the log
move (Aa,
) and the model move (
,Aa) are unnecessary and can be avoided.
Therefore, conformance checking is based on so-called optimal alignments, i.e.,
alignments that link a trace with an execution sequence with as few deviations as
possible.

Optimality of an alignment may simply be defined based on the number of model
moves and log moves. However, in many applications, deviations are not equally
severe among the activities of a process. In our example scenario, declining an
application twice is not as severe as erroneously accepting an application. Therefore,
in alignments, model moves and log moves are given a certain penalty through a cost
function, assigning a cost to each move. Then, an optimal alignment minimizes the
total cost of moves. In the remainder of this book, we commonly use solely the
alignment, implicitly assuming that the alignment is optimal.

Regardless of how costs are assigned to model moves and log moves, there
can be multiple alignments that are optimal, i.e., have the same minimal cost. For
instance, in the first alignment of T1 and E1 shown above, there is a synchronous
move (Aaa,Aaa) that is followed by a log move (Aaa,
). However, one can also
construct an alignment in which this log move is followed by the synchronous move.
This alignment would have a different sequence of moves compared to the first one,
yet the assigned cost would be the same. We reflect on the consequences of this
phenomenon when discussing feedback based on alignments and, in more detail, in
the second part of this book.

We conclude that alignments provide a fine-granular approach to conformance
checking—detecting deviations on the level of individual events and task execu-
tions. In contrast to the aforementioned approaches based on rules and replay, they
also avoid the respective completeness issues. If a trace in the event log perfectly
fits the model, any (optimal) alignment does not show any deviations, i.e., contains
only synchronous moves. This provides guarantees to the user that if no deviation is
detected, the trace indeed corresponds to a valid execution sequence of the process
model. If so, a process analyst can focus their attention on the actual deviations
detected.

4.3.2 Alignment Computation by Example

Having introduced the notion of alignments in the previous section, we now turn
to the computation of an (optimal) alignment for a given trace of an event log.
This is far from trivial given that a trace can be aligned with any execution sequence
of the process model, while for each of them, there is a large number of possible
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moves that can be considered. In this section, we provide an intuitive idea behind the
computation of alignments, based on a special type of model called a synchronous
product.

A synchronous product model is a combination of the original process model and
the trace. To this end, the trace is expressed as a sequential process model, such that
each event is translated into an appropriate task. We refer to this representation of
the trace as the trace model. In addition to the original process model and the trace
model, the synchronous product further contains synchronous tasks. For each pair
of tasks in the process model and trace model that refer to the same activity (i.e.,
that are equally labelled), a synchronous task is created.

Intuitively, the execution of a synchronous task represents the situation that the
event in the trace indeed relates to the task execution in the execution sequence
of the model. In other words, the execution of a synchronous task corresponds to
a synchronous move in the construction of an alignment. Executing a task that
originates from the original process model, in turn, represents a model move. As
the mirrored situation, the execution of a task from the trace model corresponds to
a log move.

For our running example and trace T1 = 〈As, Aa, Sso, Ro, Ao, Aaa, Aaa〉, the
synchronous product is shown in Figure 4.11. On the top, the original process model
is depicted, here representing the possibility of model moves. The bottom is the
sequential trace model that encodes possible log moves. The synchronous tasks are
visualized in the middle and highlighted in grey colour. Their execution corresponds
to simultaneous progress in the top and the bottom model.

Execution semantics of the synchronous product follow directly from the
semantics of the original process model and the trace model. That is, tasks can
be executed if their incoming control flow arc is assigned at least one token in the
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Figure 4.11 The synchronous product model for the running example and trace T1 = 〈As, Aa,
Sso, Ro, Ao, Aaa, Aaa〉
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Figure 4.12 Synchronous product in its initial state

current state, while, upon execution, the state is changed by adding a token on the
outgoing arc. Synchronous tasks represent the joint occurrence of a pair of tasks
related to the same activity, one task originating from the original process model
and one being part of the trace model. Following this line, a synchronous task can
be executed if both these tasks have their incoming arc assigned at least one token,
while its execution adds a token to outgoing arcs of both tasks.

For our example, the initial state of the synchronous product is shown in
Figure 4.12. Here, the two tasks indicating that the application has been submitted
(As) in the original process model as well as the trace model may be executed,
separately of each other or jointly through the synchronous task.

The above definition of semantics induces the sets of all states and state
transitions of the synchronous product, i.e., its state space. Here, the initial state
is given by the union of the initial states of the original process model and the trace
model. Similarly, the final state of the synchronous product is derived from the final
states of the original process model and the trace model.

An optimal alignment is then constructed by traversing the state space of the
synchronous product, until a shortest path is found from the initial state to the
final state. Since each task in this model corresponds to a particular move, the
aforementioned cost function for moves is used to define the distance between
states in this space. Based on this distance, a shortest path is computed using well-
established algorithms. When this path is found, it is translated into a alignment
by simply considering each execution of a task as a model move, log move, or
synchronous move, respectively.

Consider again the running example. From the initial state shown in Figure 4.12,
we can reach the state visualized in Figure 4.13 by executing the synchronous
tasks 〈As, Aa, Sso, Ro〉, highlighted in green colour in the figure. As discussed for
BPMN process models in general, reaching that state involves several implicit state
transitions due to the gateways stemming from the original process model.

In the state reached, however, we cannot execute a synchronous task. While
the task representing the activity to accept an offer (Ao) could be executed in the
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Figure 4.13 State of the synchronous product reached after executing the synchronous activities
〈As, Aa, Sso, Ro〉
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Figure 4.14 State of the synchronous product reached after executing the synchronous activities
〈As, Aa, Sso, Ro〉, followed by a model move related to activity Fa and the execution of two more
synchronous activities 〈Ao, Aaa〉

trace model, it cannot be executed in the part representing the original process
model. Rather, the task of finalising the application (Fa) can be executed in the
original process model. This execution corresponds to a model move, a conformance
deviation as the execution of the respective activity has not been recorded in the
trace. Subsequently, two more synchronous tasks can be executed, Ao and Aaa, to
reach the state shown in Figure 4.14.

In this state, again, there is no synchronous task that can be executed, while there
are two options to proceed. Either the task (or rather BPMN end event) indicating
that the application has been finished (Af ) is executed in the part of the original
process model, which would correspond to a model move; or the task to approve
and activate the application is executed a second time, only in the trace model,
thereby corresponding to a log move. Executing both, Figure 4.15 illustrates the
final state that is reached. The execution sequence involving the coloured activities
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Figure 4.15 An optimal alignment, represented as an execution sequence of the synchronous
product

in the synchronous product model corresponds to the alignment introduced earlier
for the exemplary trace. In fact, it represents two alignments with equal cost, due to
the different possible ordering of the last two task executions.

Evaluating all possible paths in the state space of the synchronous product model
reveals that these alignments are indeed optimal. In addition, there are more optimal
alignments of the same cost. As mentioned earlier the order of the synchronous
move (Aaa,Aaa) and the log move (Aaa,
) can also be swapped without changing
the cost. Likewise, the model move (
,Fa) can be moved forward in the alignment.

The method described here for finding an optimal alignment relies on the
computation of the complete state space of the synchronous product. In practice,
however, this state space may be huge or even infinite. In the second part of the
book, we therefore revisit the computation of alignments. Based on a formalisation
of the problem, we discuss methods for efficient alignment computation.

4.3.3 Conformance Feedback from Alignments

Alignments link a trace of an event log with an execution sequence of the process
model, so that the accumulated cost of log moves and model moves is minimal. If the
trace fits the model, it represents an execution sequence and the alignment contains
solely synchronous moves. If all traces of the log can be aligned by synchronous
moves only, the log as a whole fits the model, i.e. the model explains the recorded
behaviour well.

If a trace is not fitting, the deviations are given by the model moves and log moves
of the alignment. For illustration, we consider the traces T1 to T3 of our running
example; see Table 4.1. While we discussed feedback on non-fitness already for
trace T1, also for traces T2 and T3 the optimal alignments have a cost larger than
zero, i.e., they contain log moves or model moves:
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log trace T2 As 
 Sso Fa Ro Co 
 Ro 
 Aaa Af
execution sequence E2 As Aa Sso Fa Ro Co Sso Ro Ao Aaa Af

The above alignment for trace T2 highlights non-fitness that is related to the absence
of recordings of expected executions of activities, e.g., to accept the application
(Aa), select and send an offer (Sso), and accept an offer (Ao). However, as explained
above, there may be a large number of optimal alignments for a given trace and
process model. The presence of model moves and absence of log moves in the
above alignment, therefore, needs to be interpreted with caution. Another optimal
alignment for trace T2 (assuming equal costs of all log moves and model moves) is
the following, which also comprises a log move:

log trace T2 As 
 Sso Fa Ro Co Ro 
 Aaa Af
execution sequence E4 As Aa Sso Fa Ro 
 Ro Ao Aaa Af

A comprehensive way to give feedback on potential root causes of non-
conformance, therefore, could consider all optimal alignments and assess which
activities are often part of log moves and model moves. Intuitively, in the above
example, the alignments differ with respect to the number of iterations of handling
an offer (Sso, Ro, and Co). Yet, the alignments agree on the model moves related
to activities Aa and Ao, providing evidence that the execution of these activities is
indeed a major issue for this trace.

For trace T3, however, such considerations are not needed, as there is a unique
optimal alignment (assuming equal costs for all log moves and model moves):

log trace T3 As Aa Sso Ro Fa Ao Do Da Af
execution sequence E3 As Aa Sso Ro Fa 
 Do Da Af

As discussed for conformance checking based on rules and token replay, feedback
on non-fitness can also be aggregated over all traces. That is, exploring all optimal
alignments of all traces of a log reveals which activities are frequently part of log
moves and model moves, so that actions to follow up on these deviations can
be guided. Considering the three alignments illustrated above, for instance, the
acceptance of an offer (Ao) appears to be major source of non-conformance.

Furthermore, alignments provide a straightforward means to quantify the
observed deviation. Again, this may be done based on the level of an individual trace
or the event log as a whole. In line with the fitness discussed above based on token
replay, the aggregated cost of log moves and model moves may be a misleading
measure, though, as it is not normalised. A common approach, therefore, is to
normalise this cost by dividing it by the worst-case cost of a aligning the trace with
the given model. Under a uniform assignment of costs to log and model moves,
such a worst-case cost originates from an alignment in which each event of the trace
relates to a log move, whereas all task executions of an execution sequence of the
model relate to a model move and the execution sequence is as short as possible.
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Put differently, the alignment does not contain any synchronous move:

log trace e1 e2 . . . en 
 
 . . . 

execution sequence 
 
 . . . 
 a1 a2 . . . am

Since the cost induced by the model moves of an execution sequence depends on its
length, the shortest (and thus cheapest) possible execution sequence leading from
the initial state to a final state in the model is considered for this purpose.

Realizing the above idea, we obtain two ratios that denote the relative share of
non-fitness in the alignments of a trace or an event log, respectively. Let M be a
model and L an event log. Then, we denote by cost(σ,M) the cost of an optimal
alignment of a trace σ ∈ L with respect to the model. Furthermore, let cost(σ, 〈〉)
and cost(〈〉, x) be the costs of aligning a trace σ with an empty execution sequence,
or some execution sequence x ∈ M of the model with an empty trace, respectively.
Then, fitness based on alignments is quantified for a trace or an event log:

fitness(σ,M) = 1 −
(

cost(σ,M)

cost(σ, 〈〉) + minx∈M cost(〈〉, x)

)
(4.5)

fitness(L,M) = 1 −
( ∑

σ∈L cost(σ,M)∑
σ∈L (cost(σ, 〈〉)) + |L| × minx∈M cost(〈〉, x)

)
(4.6)

Interpretation of these measures is similar to those introduced for the other
approaches to conformance checking: A fitness value of 1 is obtained if a trace
(or all traces of an event log) can be aligned by synchronous moves only, i.e., if
they correspond to execution sequences of the process model. A fitness value of
zero, in turn, means that any event of the trace is aligned by a log move, whereas
any task execution of the shortest execution sequence of the model is aligned by a
model move. This is only a theoretical edge case, though. For any trace that contains
an event related to a task that can be executed in some execution sequence of the
process model, an optimal alignment would contain at least one synchronous move
and have a fitness score larger than zero.

Due to their symmetric view on traces and execution sequences, alignments
enable an assessment not only of fitness, but also of the precision of a process model
with respect to an event log. Execution sequences in the model that are never part
of an alignment represent behaviour that goes beyond what has been recorded in the
event log. Below, we summarize the main idea behind a simple operationalisation
of precision measures based on alignments.

Precision measurement based on alignments is grounded in the general idea
of escaping edges as outlined already in Section 3.5. To give the intuition of the
operationalisation of this approach based on alignments, we assume that (1) the
event log fits the model; and (2) that the model is deterministic. The former means
that we simply exclude non-fitting traces, for which the optimal alignment contains
log moves or model moves, from the assessment of the precision of the model. The
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latter refers to a process model not being able to reach a state, in which two tasks
that capture the same activity of the process are enabled. The model of our running
example (see Figure 4.2) is deterministic.

For the activity of each event of a trace of the event log, we can determine
a state of the process model right before the respective task would be executed.
Under the above assumptions, this state is uniquely characterized. What is relevant
when assessing precision, is the number of tasks enabled in this state of the process
model. Let M be a process model and L an event log, with σ ∈ L as a trace and,
overloading notation, e ∈ σ as one of the events of the trace. Then, by enabledM(e),
we denote the number of tasks and, due to determinism of the model also the
number of activities, that can be executed in the state right before executing the
task corresponding to e.

Similarly, we consider all traces of the log that also contain events related to
the activity of event e, say a, and have the same prefix, i.e., events that indicate
that the same sequence of activities has been executed before an event signalling
the execution of activity a. Then, we determine the number of activities for which
events signal the execution directly after this prefix, i.e., the set of activities that
have been executed in the same context as the activity a as indicated by event e.
Let this number of activities be denoted by enabledL(e), which, under the above
assumptions, is necessarily less than or equal to enabledM(e). Then, the ratio of both
numbers captures the amount of escaping edges that represent modelled behaviour
that has not been recorded. As such, precision of log L and model M is quantified
as follows:

precision(L,M) =
∑

σ∈L,e∈σ enabledL(e)∑
σ∈L,e∈σ enabledM(e)

(4.7)

The above notions provide only the intuition of how to conduct conformance
checking based on alignments. However, such alignments are fundamental to many
more aspects of conformance checking, which are reviewed in the second part of
the book.
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4.4 Exercises

4.A) Derivation of rules

Consider the model of a bug fix process in Figure 4.16 (partially known
already from Chapter 2). Derive the cardinality rules, precedence rules, and
exclusiveness rules for this model.
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Figure 4.16 A simple bug fix process

4.B) Rule checking

Given the rules derived in Exercise 4.A, assess the conformance of the
following traces based on rule checking.

• 〈r, d, c, p, a, t〉
• 〈r, d, c, d, a, p, f, t〉
• 〈r, d, d, p, f, n〉
Which rules are violated, which of them are satisfied?

4.C) Fitness and feedback based on rule checking

Using the results of rule checking as done in Exercise 4.B, compute the
fitness values of the three respective traces. Also, do the traces correspond
to an execution sequence of the model in Figure 4.16? If not, what is the
feedback given on non-conformance?
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4.D) Token replay

Consider again the process model of a bug fix process in Figure 4.16. Replay
the following trace: 〈r, d, c, p, a, t〉. Why is this replay challenging, e.g., once
the prefix 〈r, d〉 has been replayed? Also, how many missing and remaining
tokens are recorded during replay of this trace, and where ?

4.E) Fitness and feedback based on token replay

Using the process model of Figure 4.16, replay the following traces (known
from Exercise 4.B):

• 〈r, d, c, p, a, t〉
• 〈r, d, c, d, a, p, f, t〉
• 〈r, d, d, p, f, n〉
Compute the fitness values of the three traces. What is the feedback given on
non-conformance, if a trace does not fit the model?

4.F) Alignment computation

Consider again the process model in Figure 4.16 and the following three
alignments for the trace 〈r, d, c, p, a, t〉:

Alignment 1:
log trace r d c p a 
 t
execution sequence r d 
 p a n t

Alignment 2:
log trace r d c 
 p a 
 t
execution sequence r d 
 a p 
 f t

Alignment 3:
log trace r d c 
 p a 
 t
execution sequence r d c d p a f t

Assuming a unit cost of one for log moves and model moves: Which of
the alignments is optimal? Are there further optimal alignments for the given
model and traces?

4.G) Fitness and feedback based on alignments

Consider again the process model in Figure 4.16 and the three traces from
Exercise 4.B. Compute the fitness of each trace using alignments. Also, what
is the feedback given on non-conformance, if a trace does not fit the model?
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4) In the lab: tool support for fitness analysis

Check out the lab session to practise
with tools that allow analysing fitness
of a process model with respect to an
event log.

http://www.conformancechecking.com/CC_book_Chapter_4

http://www.conformancechecking.com/CC_book_Chapter_4


Part II
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Lifecycle of conformance checking projects

This second part of the book provides a detailed picture of all the necessary ele-
ments for applying conformance checking in real-life projects for which Chapter 5
provides the mathematical foundation. The figure above shows the necessary steps
in a conformance checking project. First, the preparation phase is started, which we
cover in Chapter 6. For conformance checking, a formal representation of the model
is required, so we often need to translate a process model that might only exist
in an informal diagram or flow chart, to a model formalism with clear execution
semantics (e.g., Petri nets). Simultaneously, we need to project the data that we are
given to the notion of an event log, which records distinguishable traces of unique
cases. Events from different granularities need to be collected and extracted from
potentially multiple sources. Once we have formalised the model and projected the
data, we need to link these two artefacts. The link is necessary to relate the two
representations of activity executions to each other: It establishes which events in
the data record which executions of tasks of the model. This linking can be trivial,
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if the model is already on the same level of granularity as the data, and even the
labels match (i.e., there is a 1:1 relation of events and task executions). However, it
can also be difficult, when the relation between events and task executions is 1:n, or
even n:m.

The action phase captures the algorithmic details of getting an optimal alignment
between traces of an event log and a process model. We cover a basic cost-based
approach to derive an alignment in Chapter 7, while more advanced techniques are
covered in Chapter 9.

The reflection phase targets interpretation of alignment results. Chapter 8 covers
this aspect and exemplifies the kind of insights that we can extract from alignments.
As the flow indicates, there is a link back to the start of the conformance checking
cycle. The results of one iteration might be not be in line with the expectations,
so that, in the reflection phase, potential errors in the projection, formalisation or
linking of model and data can be detected.



Chapter 5
Preliminaries to Conformance Checking

Next, we formally describe notations that help us to unambiguously define the
concepts and methods of conformance checking. We start with simple mathematical
notions and visit relevant graph-theoretic concepts. At the end of this chapter, we
describe linear programming problems.

Sets, Multisets and Operations A set X is a collection of distinct objects, called
elements or members. We use x ∈ X to express that x is a member of the set X. Two
ways of describing a set X are introduced:

• Exhaustive list of its elements: X = {a, b, c}, X = {x1, . . . , xn}.
• Members of the set must satisfy some condition. The format is X = {x | x

satisfies condition �} where the condition can be expressed either in natural
language or as some predicate in first-order logic.

Moreover, some symbols are used to denote universal sets:

• the set of real numbers, R
• the set of integers, Z
• the set of non-negative integers, N
• the set of binary numbers, B = {0, 1}
Given two sets X and Y , X = Y and X �= Y denote equality and inequality of the
sets X and Y , respectively. We write X ⊆ Y to denote that X is a subset of Y , i.e.,

X ⊆ Y ⇐⇒ ∀x ∈ X : x ∈ Y

and X ⊂ Y to denote that X is a proper subset of Y , i.e., X ⊆ Y and X �= Y . X \ Y

denotes the set of members of X that are not members of Y .
The powerset of a set X is the set of all its subsets, i.e., ℘(X) = {Y | Y ⊆ X}.

The Cartesian product of X and Y , denoted by X × Y , is defined by

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }
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and the operator can be defined for any given (finite) arity. The Cartesian product of
X1, . . . , Xn is defined by

X1 × . . . × Xn = {(x1, . . . , xn) | x1 ∈ X1 ∧ . . . ∧ xn ∈ Xn}.

When all the sets are the same, the Cartesian product can be abbreviated as Xn. For
instance, X × X × X is X3. Moreover, in this situation, more than one dimension
can be defined in the Cartesian product:

Xn×m = {((x1,1, . . . , x1,m), . . . , (xn,1, . . . , xn,m)) | xi,j ∈ X}.

An element (x1, . . . , xn) ∈ X1 × . . . × Xn of an n-ary Cartesian product is a tuple
of n elements of the respective sets. We write πi((x1, . . . , xn)) = xi for 1 ≤ i ≤ n

to denote the projection on the i-th component of such a tuple. For instance for
(x1, x2, x3) ∈ X1 × X2 × X3, π1((x1, x2, x3)) = x1, and π3((x1, x2, x3)) = x3.

Given a set X, a multiset M of X is a mapping M : X → N. B(X) denotes the set
of all multisets over X. Multisets can be represented in vector format, i.e., [x3, y, z2]
is the multiset that has three occurrences of x, one of y and two occurrences of z. We
write M1 ≤ M2, if M1(x) ≤ M2(x) for all x ∈ X. For example, [y, z] ≤ [x3, y, z2]
and [y2] �≤ [x3, y, z2]. The difference (M1 − M2) and union (M1 + M2) are defined
as usual. For example, [x3, y, z2] − [y, z] = [x3, z].

In the remainder, with a slight abuse of notation, we adopt some concepts
defined only for sets and interpret them in the context of multisets. This includes, in
particular, containment and summation: Given a multiset M of X, we write x ∈ M ,
if M(x) > 0. In addition, given some function f : X → R, we write

∑
x∈M f (x)

as a short-hand for
∑

x∈{y∈X|M(x)>0} M(x)f (x).
In a similar manner, we also adopt the operators, ≤, +, and − defined for

multisets and use them for pairs of sets and multisets: Given a multiset M of X and
a set Y = {y1, . . . , yn}, the operations M ≤ Y , M + Y , and M − Y are interpreted
as M ≤ MY , M + MY , and M − MY with MY being a multiset of Y defined as
MY = [y1, . . . , yn].
Vectors and Matrices A column vector −⇀v of dimension n over one of the universal

sets X ∈ {R,Z,N,B} is an element from Xn, i.e., −⇀v ∈ Xn. It is denoted by

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦.

For instance, −⇀w =
⎡
⎣ 3

0.5
5.2

⎤
⎦ is a column vector of dimension three overR, i.e. −⇀w ∈ R3.

With −⇀v ᵀ we denote the transpose of a vector, i.e. −⇀wᵀ = [3, 0.5, 5.2] is the transpose
of −⇀w. Given two vectors −⇀x and −⇀y of dimension n, −⇀x ᵀ · −⇀y denotes the product of the
two vectors, defined by

−⇀
x ᵀ · −⇀

y = x1y1 + x2y2 + · · · + xnyn.
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A matrix C of dimension n×m over a universal set X is an element from Xn×m.
The operations −⇀w · C and C · −⇀w denote the left and right products of matrix C and
the vectors −⇀w ∈ Xn and −⇀w ∈ Xm, only defined if the dimensions agree. The symbol−⇀
0 denotes a vector such that every component is 0. When a vector is defined over
a set X, the set X is implicitly assumed to be totally ordered and for all x ∈ X,

−⇀
1 x

denotes the vector with all elements 0, except the element at the index corresponding
to x, which equals 1. If a function f : X → Y is defined on X, then f can be applied
to a vector or matrix over X by applying it to all elements of X individually.

Sequences and Their Parikh Representation Let 	 be a set, called alphabet.
	∗ is the set of all sequences over 	. A finite sequence (of length n) over 	 is
a mapping {1, . . . , n} → 	. We represent a finite sequence σ : {1, . . . , n} → 	

as 〈x1, x2, . . . , xn〉, where xi = σ(i), for 1 ≤ i ≤ n. The length of a sequence is
denoted by |σ | and we write σ ∈ 	∗. The empty sequence with length 0 is defined
as 〈〉. For instance, if 	 = {a, b, c, d}, a possible sequence of length 5 over 	 is
σ = 〈a, a, a, c, d〉.

If σ = 〈x1, x2, . . . , xn〉 and γ = 〈y1, y2, . . . , ym〉 are finite sequences
then the concatenation of σ and γ , denoted by σ · γ , is the sequence
〈x1, x2, . . . , xn, y1, y2, . . . , ym〉 of length n + m. For any sequence σ , the
concatenation with the empty sequence 〈〉 does not change it, that is, σ · 〈〉 = σ .

The operator |σ |x denotes the number of occurrences of x in σ . For instance, if
σ = 〈a, d, a, c, a〉, |σ |a = 3, |σ |c = 1, and |σ |b = 0.

The projection of sequence σ into set X, denoted by σ |X, is a new sequence
obtained by removing from σ those elements not belonging to X. For instance, for
σ = 〈a, d, c, a, c〉, we have σ |{d,c} = 〈d, c, c〉.

A sequence σ is said to be a (finite) prefix of a sequence γ if there exists a
sequence θ such that γ = σ · θ .

Given an alphabet 	 = {a1, . . . , an}, the Parikh vector of a sequence over this
alphabet is a function −⇀· : 	∗ → N|	| resulting in a column vector, such that
−⇀σ ᵀ = [|σ |a1, . . . , |σ |an].1

If a function f : 	 → Y is defined over 	, then f can be applied to a sequence
over 	 by applying it to all elements of the sequence individually.

Graphs and Their Representations A graph is a pair (V ,E) where V is the set of
nodes or vertices, and E is a set of edges between nodes. If the edges are undirected,
then the graph itself is called undirected. Otherwise, the graph is directed. In this
book we focus on directed graphs that have labels on the edges. A labelled directed
graph is a tuple DG = (V ,E,L) where V is the set of nodes, L is the set of labels,
and E ⊆ V × L × V is the set of labelled edges.

Given a labelled directed graph DG = (V ,E,L) and two nodes v, v′ ∈ V , a
path from v to v′ is a sequence of edges σ = 〈e1 . . . e|σ |〉 ∈ E∗, where σ = 〈〉 if

1Please note that, when using Parikh vectors, we assume the alphabet to be totally ordered and the
vector to respect that ordering.
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v = v′, and σ �= 〈〉 �⇒ π1(σ (1)) = v, π3(σ (|σ |)) = v′, and for all 1 ≤ i < |σ | :
π3(σ (i)) = π1(σ (i + 1)).

Linear Programming A linear inequality or constraint is given by a vector −⇀
a ∈

Rn, a vector of variables −⇀
a , and a real value b. It is represented by

−⇀
a ᵀ · −⇀

x ≤ b

and it is feasible if there exists some assignment
−⇀
k ∈ Rn to −⇀

x satisfying −⇀
a ᵀ ·−⇀k ≤ b.

A system of linear inequalities is a set of linear inequalities. It is feasible if there
exists a vector that satisfies all inequalities of the set. If it is finite then it has a
matrix-based representation

A · −⇀
x ≤ −⇀

b

where the vectors −⇀a of the linear inequalities are the rows of the matrix A and the
numbers b are the components of the vector

−⇀
b .

A linear programming problem (LP) is a system A ·−⇀x ≤ −⇀
b of linear inequalities,

and optionally a linear function −⇀
c ᵀ · −⇀

x called the objective function. A solution of
the problem is a vector of rational numbers that satisfies the constraints. A solution
is optimal if it minimizes the value of the objective function (over the set of all
solutions). An LP is feasible if it has a solution.

An integer linear programming problem (ILP) is an LP where the set of solutions
is given by vectors of integers only, i.e. it is feasible only if there exists some
assignment

−⇀
k ∈ Zn to −⇀

x satisfying A · −⇀
k ≤ −⇀

b .
The complexity of solving a linear problem depends on the domain under

consideration. Specifically, it is known [98] that:

(1) Each linear programming problem (LP) over R can be solved in polynomial
time.

(2) The solubility of integer linear programming problems (ILP) is NP-complete.



Chapter 6
Preparation

To prepare the artefacts needed by conformance checking algorithms, we first are
required to clarify the different representations of a process: its recorded behaviour
in terms of an event log and its modelled behaviour as captured by a process
model. Figure 6.1 revisits the terminology of conformance checking and also points
to the subsections, in which we discuss the respective concepts. In Section 6.1,
we consider the notions of events, traces, and event logs. In Section 6.2, in turn,
we formally describe models that are used in conformance checking. Finally, in
Section 6.3, we discuss that recorded behaviour in terms of events may not directly
be of the form required for conformance checking. Rather, events need to be related
to traces (and thus cases and execution sequences) and activity executions (and thus
task executions) explicitly.

6.1 Processes in Action: Event Data

Processes of an organization are often complex by nature. Their complexity is
assessed along various dimensions: The processes can comprise a large number
of activities. They can have many decision points. There can be many participants
working collaboratively on a case. Also, there can be many work streams running in
parallel, possibly with the support of multiple information systems and also external
suppliers. But regardless of the particular complexities of a process, many processes
have one thing in common: They generate data. We call the data generated by a
process event data.

Collecting the data that is generated by a process opens various opportunities for
improving the process. It enables conclusions on whether we do the right things,
whether we do them in the correct order, and also whether we do them timely. Yet,
to quantify process improvements, we need to be able to measure how the recorded
behaviour of a process relates to its modelled representation. To this end, event data
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Figure 6.1 Preparation for conformance checking relates to different representations of a process,
event logs and process models, and how they are linked

and a process model need to be linked. Before turning to this relation, however, we
need a clear definition of what we understand as event data. Below, we first provide
a basic model of events, traces, and event logs. We then turn to organizational and
technical aspects of obtaining event logs in practice.

6.1.1 Essential Notions of Event Data

Definition 1 (Events and Attributes) Let E be the universe of events. An event
e ∈ E denotes that something has happened. Events are annotated with attributes
from some domain N . That is, for all events e ∈ E and attribute n ∈ N , #n(e) is the
value of attribute n for event e. Each event has at least two attributes, ID and Time,
which capture its identity and its time of occurrence, respectively.

While attributes may relate to various aspects, a few attributes are commonly
observed in practice in addition to the event’s identity and time of occurrence. For
instance, events are often annotated with a type that indicates what has happened.
In the example of the loan application process (see Table 2.2) the event e13 has
an identity denoted by the subscript, #ID(e13) = 13, and a time of occurrence,
#T ime(e13) = January 1, 12:31. In addition, it is assigned the value ‘A5634’ for the
attribute ‘Application’, i.e., #Applicat ion(e13) = ‘A5634’.

The main task of conformance checking is to see whether the recorded event data
matches the behaviour described by a process model. The link between the two is
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established by the activities and the cases of the process that is modelled or recorded,
respectively. We capture these concepts as follows:

Definition 2 (Activities and Cases) Let A be the universe of activities and C
be the universe of cases. Then, an event e ∈ E is assumed to have attributes
Activity,Case ∈ N , such that #Activity(e) ∈ A is the activity for which the execution
is signalled by the event as part of the case #Case(e) ∈ C.

For the aforementioned event e13 in Table 2.2, for instance, it holds that
#Activity(e13) = ‘Application submitted’. That is, the event denotes that the execution
of the activity of submitting the application has been recorded, for one specific
case. The latter may be characterized in this example by the identifier of the loan
application, i.e., #Case(e13) = ‘A5634’.

Excursion 12
What is our case?
Let us come back to the question of what constitutes a case. Raw event data
can be viewed from different angles, depending on the perspective assumed
by some analytics question. For example, there is an inherent duality between
resources that execute the process (e.g., people, machines, software services),
and the elements that would constitute a process instance (e.g., customer
order, patient in a hospital, complaint). Typically, when looking at process
models, we are interested in the latter. We can, however, also ask the question
of how the resources move through the process from activity to activity.

The notion of a case determines how we package the events and it impacts
the analysis results that we obtain in a conformance checking project. Note
that as long as we keep the information about the resources in the events as
attributes, we can later regroup the events according to the resources, if we are
interested in that perspective. Thus, good practice is to start with the process
perspective that matches the models at hand.

Events that denote activity executions as part of the same case are grouped
together to form a trace. A trace thereby represents the behaviour recorded for
one specific case of the process. When referring to event data in general, a trace
may simply be considered as a set of events, each having the same value for the
Case attribute. Yet, adopting a language-based view for conformance checking (see
Section 2.4) it is sometimes convenient to think of a trace simply as a sequence
of activities. Given a set of events with equal values for the Case attribute, this
sequence is obtained by ordering the events according to their timestamps (assuming
that this order is total) and then interpreting each event solely by means of its Activity
attribute. We capture either view on traces as follows:

Definition 3 (Trace) A set of events E ⊆ E is a trace if #Case(e) = #Case(e′)
for all e, e′ ∈ E. A trace E is also represented as a sequence of activities σ =
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〈a1, a2, . . . , a|E|〉 ∈ A∗, such that 〈e1, e2, . . . , e|E|〉 ∈ E∗ is the sequence obtained
when ordering all events by their timestamps, #Time(ei) < #Time(ej ) for 1 ≤ i <

j ≤ |E|, and it holds that #Activity(ei) = ai for 1 ≤ i ≤ |E|.
Referring to the example in Tables 2.1 and 2.2, we see that the events
e13, e14, e22, e37, e42, e54, e64, e65 form a trace when cases are defined by the
identifier of the loan application. As discussed earlier, this trace may be represented
as a sequence of activities, i.e., 〈As,Aa,Fa, Sso,Ro,Do,Da,Af〉.

An event log captures the information of several traces, thereby representing the
behaviour recorded for the process as a whole. However, the two aforementioned
views on how to capture a trace, i.e., a set of events or a sequence of activities, also
yield two different views on an event log. It may be considered as a set of distinct
traces, or a multiset of sequences of activities.

Definition 4 (Event Log) A set of traces L ⊆ ℘(E) is an event log, if for all
distinct E,E′ ∈ L it holds that E ∩ E′ = ∅, and e ∈ E and e′ ∈ E′ implies that
#Case(e) �= #Case(e′). An event log L is also represented as a multiset of sequences
of activities, i.e., the event log is a multiset of A∗.

Note that, when representing an event log as a multiset of A∗, we adopt set notation
when talking about containment and summation. As detailed in Chapter 5, by σ ∈ L,
we refer to the fact that the activity sequence σ representing a trace is part of the
event log. Also, when summing up the value of a function f : A∗ → R, we write∑

σ∈L f (σ) to denote the sum of applying the function to each occurrence of the
trace in the event log.

6.1.2 Sources of Event Data

Many different sources of event data exist. Potentially any information system
that supports the conduct of a process can be a source of event data. In the best
case, we have specific process-aware information systems (PAIS) [38] that log
event data during the execution of activities as part of a case, along the causal
and temporal dependencies defined by a process model. At the other end of the
spectrum, processes are documented or tracked by sensors, or in the worst case,
only manual documentation in unstructured text exists. All these scenarios require
different and tailored handling to extract the information into the format we require
for conformance checking: event logs.

Preparing event data for conformance checking can pose a significant challenge.
This becomes apparent when reflecting on the assumptions on event data as imposed
by the model introduced above:

• The scope of the process, its start and its end, must be well-defined.
• Information on the time (or at least the order) of occurrence needs to be available,

so that events can be interpreted in terms of temporal and causal relations.
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• The notion of a case needs to be well-defined and reflected in the data assigned
to each event.

• Events shall assume an appropriate level of abstraction, i.e., they shall indicate a
single execution of one particular activity of the process.

In order to satisfy these assumptions and obtain an event log as put forward in
Definition 4, several organizational techniques and hurdles have to be overcome
in common conformance checking projects.

Organizational Aspects to Getting Event Logs Let us consider the following sit-
uation. As a process analyst (or a team of analysts), we need to check conformance
of a particular process in an organization. First, the stakeholders in the conformance
checking project need to agree on the process to be analysed, and the goal of the
project should be clearly communicated. A standard information system can easily
contain more than 10,000 relational tables storing an organization’s data, meta data,
and internal system data [114]. Simply starting to dig into these amounts of data,
any analyst would risk getting lost. Therefore, we need to make sure that the right
people are involved with the project. Ideally, organizations have process owners that
have a good overview over the end-to-end process and can refer the process analyst
to technical developers for detailed questions about the stored data.

The primary goal of the project could be that the organization wants to achieve
a degree of conformance to a given process model. To be able to achieve this goal,
the boundaries and milestones in the process need to be known. Typical questions
include: What are the entry points into the process? Is there more than one end state?
Where are the decision points? What are the activities performed in the process?
Who is performing those activities?

When the process is sufficiently understood, the analyst needs to identify the
objects that carry the data handled during process execution. In case of our running
example of the loan application process, such objects are the applications, the offers,
and the applicants. Typically, an object has at least one table in a relational data
schema, and these tables are connected with foreign key relations. Foreign keys are
links that potentially tie one instance of an object to another object instance. For
example, it may link an offer to the respective loan application.

Relevant objects can best be identified by asking the people involved. In such a
meeting, the goal should be to acquire a picture of the relational data schema, as
well as the most relevant attributes of the important objects. For a loan application,
for example, we would be looking for attributes like the amount, interest rate,
applicant status, timestamp, etc. However, it is not always clear how these values
are represented in the relational data schema.

Also, legal and privacy aspects of the analysis project must be documented
and be conducted in line with company ethics and the legislation. For instance,
the European Union’s General Data Protection Regulation (GDPR) states that
organizations failing to comply to the regulation can face fines of up to e20,000,000
or four percent of their global annual gross turnover (whichever is higher) [78].
Therefore, event data gathered must not only be secured and protected against
attacks, but additional rules on personal data of people involved in the process
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need to be considered. As such, in many conformance checking projects, legal
departments of an organization must be involved in order to ensure that the project
is conducted in line with the existing regulations.

Technical Challenges of Getting Event Logs Collecting data from different
information systems requires a basic understanding of the process and the way
the data is stored in the systems. As relevant event data can be scattered in
information systems in different forms, there is a need for data normalisation. For
instance, the order of events from various systems is important for conformance
checking. Hence, we need to be able to compare timestamps across all event
sources. As a normalisation step, it is good practice to convert all timestamps to one
common format and incorporate normalisation factors, if needed. In general, such
normalisation is facilitated by a standardized target format to hold the event data
for conformance checking, which also serves as a unified interface to conformance
checking tools.

The IEEE Standard for eXtensible Event Stream (XES) [136] was developed as
such a format for event data. It helps process mining and conformance checking
researchers and practitioners to exchange event logs and to use different algorithms
on the same event data. The schema of the XES format is shown in Figure 6.2.

name

prefix

URI

Extension

Attribute

list

xs:string

xs:dateTime

xs:long

xs:double

xs:boolean

ID

value

Classifier
key

Log

Event

Trace

<defines>            
0..n

0..n
<orders>

1..n
<defines>

0..n
<event-classifier>

<trace-classifier>
0..n

<declares>                      0..n

0..n
<trace or event-global>

0..n
<contains>

<contains>

0..n
0..n

<contains>

<contains>

0..n

<contains>
0..n

0..n
<contains>

Figure 6.2 Schema of event data according to the XES-specification; cf. [136]. Every element
can be extended to cater for various domain-specific needs. On the left, there is the hierarchy of
logs, traces, and events. They are in a containment relation. They all can have attributes, which can
be of different data types (e.g., numeric, date, textual) or even be composed (self-contains). Events
and Traces can be classified with a classifier
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We note that the XES model resembles the formal model introduced above: A
log contains traces, which contain events. All these objects have attributes, which
can be of different types. An event log also specifies classifiers that classify events
or traces. This allows us to flexibly control the mechanism to group events and also
to specify the amount of information encoded in a class. More concretely, a coarse-
grained classifier could only consider the attribute ‘name’ of events to determine the
event class. A more fine-grained classifier could also consider lifecycle transitions,
as detailed below, and thus distinguish between start and end events of the same
‘name’. This flexibility helps to tune the classification of events to the required
abstraction level. Finally, the XES standard explicitly declares extensions that allow
organisations to capture additional data in the XES format.

Next, we revisit our event log in Table 6.1 and translate it into the XES format
which results in the representation shown in Table 6.2. After the Extensible Markup
Language (XML) declaration at the top, the main entity is the log itself. It is the root
of the event log that groups the traces. Therefore, before we can produce an XES
document, we need to collect all events belonging to the traces. Depending on the
data sources, this can pose a significant challenge.

We see immediately that the XES version is more verbose than the table in
Table 6.1, as all event attributes are stored as elements instead of columns. The
<log> element is the outermost entity and contains all traces as children. Within
one trace, some trace attributes can be given. Subsequently, the events of the trace
are ordered by their timestamp.

Sometimes, logging happens in a fine-grained manner, such that there is not
just one event per activity execution, but several. If so, an event log contains
records about the different states of activity execution, or more precisely, for
the state transitions passed during the execution of an activity. Such states and

Table 6.1 Example of log of the loan application process, from the perspective of the offers

Event Application Offer Activity Amount Signed Timestamp

. . . . . . . . . . . . . . . . . . . . .

e30 O3521 A5636 Select and send offer e500 Jan 04, 16:32

. . . . . . . . . . . . . . . . . . . . .

e37 O3541 A5634 Select and send offer e1500 Jan 05, 12:32

e38 O3521 A5636 Receive offer NO Jan 05, 12:33

e38 O3521 A5636 Cancel offer Jan 05, 12:34

e39 O3542 A5636 Select and send offer e500 Jan 05, 13:29

e40 O3542 A5636 Receive offer YES Jan 08, 08:33

e41 O3542 A5636 Accept offer Jan 08, 16:34

e42 O3541 A5634 Receive offer NO Jan 10, 10:00

. . . . . . . . . . . . . . . . . . . . .

e54 O3541 A5634 Decline offer Jan 10, 10:04

. . . . . . . . . . . . . . . . . . . . .

Repeated from Table 2.3
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Table 6.2 XES representation of the event log in Table 6.1

<?xml version="1.0" encoding="utf−8"?>
<log xes.version="1.0">
...
<trace> <!−− Trace of application A5634 −−>
...
<string key="concept:name" value="A5634"/>
<event>
<string key="concept:name" value="Select and send offer"/>
<string key="offer" value="O3541"/>
<float key="amount" value="1500.00"/>
<date key="time:timestamp" value="2018−01−05T12:32:04.000+02:00"/>

</event>
<event>
<string key="concept:name" value="Receive offer"/>
<string key="offer" value="O3541"/>
<boolean key="signed" value="False"/>
<date key="time:timestamp" value="2018−01−10T10:00:00.000+02:00"/>

</event>
<event>
<string key="concept:name" value="Decline offer"/>
<string key="offer" value="O3541"/>
<date key="time:timestamp" value="2018−01−10T10:04:00.000+02:00"/>

</event>
...

</trace>
<trace> <!−− Trace of application A5636 −−>
<string key="concept:name" value="A5636"/>
<event>
<string key="concept:name" value="Select and send offer"/>
<string key="offer" value="O3521"/>
<float key="amount" value="500.00"/>
<date key="time:timestamp" value="2018−01−04T16:32:00.000+02:00"/>

</event>
...

</trace>
</log>

state transitions are known as the activity lifecycle [135]. Examples of common
lifecycles, with increasing complexity, are illustrated in Figure 6.3. A simple
lifecycle may comprise only a single transition, i.e., an event corresponds to an
atomic signal that a particular activity has been executed. A slightly more complex
lifecycle contains two transitions, so that the respective events signal the start and
the end of activity execution. However, lifecycles may even be more complex and
contain transitions that denote, for instance, that activity execution has been paused
and later resumed.

In general, activity lifecycles can be arbitrarily complex, notably, when the states
in the lifecycle also distinguish resource allocations and hand-overs within one
activity execution. In principle, conformance checking could also be done on this
refined level: Each transition in the lifecycle would be considered as an individual
execution of a more fine-granular activity. Assuming that the tasks in a process
model also reflect these fine-grained activities, the techniques discussed in the
remainder of this book can be applied in a straightforward manner. Whether we
shall consider this level of granularity depends on the scope of the conformance



6.2 Formalising Process Models as Petri Nets 109

com
plete

(a)

start

complete

(b)

ready

start

cancel

complete

pa
us

e

resum
e

(c)

Figure 6.3 Activity lifecycles from simple, (a) and (b), to more complex, (c). Edges mark
transitions, and nodes represent states. (a) Single event. (b) Start and complete. (c) More complex
lifecycle

checking project and the questions that are asked. If the question, whether a process’
activities are executed according to the given activity lifecycles, is not prioritized,
the overhead of conducting conformance checking on such a fine-grained level could
outweigh the gained knowledge.

6.2 Formalising Process Models as Petri Nets

In Part I of this book, we used a simplified version of BPMN to model processes.
While BPMN provides a standardized language, widely adopted in industry, for this
purpose, it lacks a mathematical foundation of its execution semantics. While the
BPMN specification contains a description of these semantics based on states, it
covers only a subset of the language. Yet, this description is inspired by Petri nets,
a formalism that does not only provide a comprehensive mathematical foundation,
but also comes with plethora of formal results and analysis techniques. Therefore,
in the remainder of this book, we use Petri nets as a formal foundation for process
models.

6.2.1 Essential Notions of Petri Nets

Petri nets are particular types of graphs that consist of places, transitions, and arcs
between them. A major advantage of the Petri net formalism is that its mathematical
definition is equivalent to its visual representation. That is, the places of a Petri net
are depicted as circles and transitions as squares, which are connected by directed
arcs. An example Petri net is shown in Figure 6.4. This Petri net contains 12 places,
and 13 transitions. Each transition captures a task of the process model, for which
the label indicates the respective activity. In the example, there is one transition,
i.e., As, which represents the activity ‘Application submitted’. The activity ‘Decline
application’, in turn, is captured with two tasks, i.e., there are two transitions,
identified as Da1 and Da2, that model the activity.
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As
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p2

p4

Fa

Sso
p5
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p6
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Da1

p0

Co
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p11

Figure 6.4 Petri net for the running example

The model also shows one τ -labelled transition, typically depicted by a solid,
black square. Such a transition does not represent any activity of the process. To
capture such transitions, given a set of activities A ⊆ A, we define Aτ = A ∪ {τ }
with τ /∈ A as the set of labels that may be used in a Petri net that models a process
with activities A.

Definition 5 (Labelled Petri Net) Let A ⊆ A be a set of activities. A labelled
Petri net is a tuple N = (P, T , F, λ), with P as the finite set of places, T as the
finite set of transitions, where P ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P) as the flow
relation, and λ : T → Aτ as the labelling function assigning to each transition an
activity or τ , indicating that it is not associated with an activity.

In this book, we always assume labelled Petri nets when referring to Petri nets.
Moreover, for a node n ∈ P ∪ T , a place or a transition of a Petri net, •n (n•) is
the predecessor (successor) set of n according to F . The predecessors (successors)
of a transition are also referred to as input (output) places, and vice versa, the terms
input (output) transitions are used for the predecessors (successors) of a place.

The structure of a Petri net in terms of the flow relation can be captured by its
incidence matrix. It is defined as a matrix of |P | rows and |T | columns, in which
values of −1 and +1 indicate the presence of a flow arc from a place to a transition,
or from a transition to a place, respectively, whereas a value of 0 denotes that a place
and a transition are not connected. The incidence matrix of our example Petri net is
given in Figure 6.5.

When using Petri nets to model a process, it is often convenient to assume some
notion of well-structuredness. This is captured by the concept of a workflow net.

Definition 6 (Workflow Net) A workflow net is a Petri net that has one distin-
guished source place start ∈ P , with •start = ∅, and one distinguished sink place
end ∈ P , with end• = ∅, and all other nodes n ∈ (P ∪ T ) \ {start, end} are on a
path from place start to place end.

We note that the Petri net in Figure 6.4 is a workflow net. There is a distinguished
source place, p0, a distinguished sink place, p11, whereas all other nodes are on a
path between them.

Execution semantics of a Petri net are defined as a token flow game. That is, the
state of a Petri net is defined as a distribution of tokens over places, which is called a
marking. As such, a state, or marking, corresponds to a multiset of places, in which
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As Aa Da1 Fa Sso Ro Co Ao Do Aaa Da2 Af
p0 1 0 0 0 0 0 0 0 0 0 0 0 0
p1 1 1 1 0 0 0 0 0 0 0 0 0 0
p2 0 1 0 1 0 0 0 0 0 0 0 0 0
p3 0 0 0 1 0 0 0 1 0 0 0 0 0
p4 0 1 0 0 1 0 1 0 0 0 0 0 0
p5 0 0 0 0 1 1 0 0 0 0 0 0 0
p6 0 0 0 0 0 1 1 1 0 0 0 0 0
p7 0 0 0 0 0 0 0 1 1 1 0 0 0
p8 0 0 0 0 0 0 0 0 1 0 1 0 0
p9 0 0 0 0 0 0 0 0 0 1 0 1 0
p10 0 0 1 0 0 0 0 0 0 0 1 1 1
p11 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 6.5 Incidence matrix of the example Petri net of Figure 6.4

the number of occurrences of a place denote the number of tokens assigned to it.
Again, there is a standard visualization of markings that is equivalent to their formal
definition. In our example, the visualized marking defines that a single token (small
solid black circle) is assigned to place p0. This corresponds to the multiset of places
given as [p0].

The execution of an activity is represented by the execution of a task, which
is called firing of a transition in Petri net terminology. A transition can fire in
a marking, if all its input places are assigned a token in this marking. Firing a
transition then yields a new marking that is obtained by consuming one token from
all input places of the respective transition, and producing one token on all of its
output places. Using this simple firing rule, the entire set of possible markings of the
Petri net, called its state space, is defined. Next, we define these concepts formally
(note the remarks in Chapter 5 on applying operators for multisets also in the context
of sets).

Definition 7 (Marking, Firability, Reachability, Boundedness) Let N =
(P, T , F, λ) be a Petri net. A marking m is a multiset of places, i.e., m ∈ B(P ).
A transition t ∈ T is enabled in a marking m iff •t ≤ m. Firing transition t in m

results in a new marking m′ = m − •t + t•, i.e., tokens are removed from •t and
added to t•. This firing is denoted by m[t〉m′. A marking m′ is reachable from m if
there is a sequence of firings σ = 〈t1, t2, . . . , tn〉 that transforms m into m′, denoted
by m[σ 〉m′.

Given an initial marking mi of Petri net N, the set of reachable markings of N
is denoted by RS(N). The Reachability Graph of N, denoted by RG(N), is a graph
in which the set of nodes is the set of markings RS(N) and the edges correspond
to firing transitions, i.e. the edge (m1, t,m2) ∈ RS(N) × T × RS(N) exists, if and
only if m1[t〉m2.

A Petri net is said to be k-bounded or simply bounded, given an initial marking,
if all reachable markings are bounded by k, i.e., no place in a marking contains more
than k tokens. When k is 1 the Petri net is called safe.
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From the above, it becomes apparent that the behaviour described by a Petri net
is fully determined by that net, an initial marking, and all markings reachable from
the initial marking. Figure 6.6 shows the reachability graph, or state space, of the
example Petri net from Figure 6.4. It clearly shows the initial marking [p0], which
corresponds to the state in which a process starts. Also, we note that there is a
distinguished marking [p11] that marks only the sink place, thereby indicating that
the process has finished execution. In this book, we assume that such a final marking
is given, which leads to the notion of a system net.

Definition 8 (System Net) A system net is a tuple SN = (N,mi,mf ), where N is
a Petri net and mi , mf define the initial and final marking of the net, respectively.

Apart from the state space, a system net also defines a set of firing sequences,
sequences of transitions that can be fired one after the other, starting in the initial
marking, and ending in the final marking. The set of these sequences is the language

[p1]

[p2,p 4]

[p3,p 4]

[p3,p 5]

[p3,p 6]

[p2,p 5]

[p2,p 6]

[p7]

[p8]

[p0]

[p9]

[p10]

[p11]

Aa

Fa

Sso

Ro

Co

Sso

Fa
Ro

Fa

Co

Ao

As

Do

Da2Aaa

Da1

Af

Figure 6.6 Reachability graph, or state space, of the Petri net for the running example
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of the system net. Using [p0] and [p11] as initial and final markings, respectively,
we see that, for our example, the language is infinite. The state space in Figure 6.6
contains two loops, i.e., the language can indefinitely often contain the transitions
Sso, Ro, and Co. Yet, all finite sequences eventually reaching marking [p11] are part
of the language of the system net.

Definition 9 (System Net Language) Let SN = (N,mi,mf ) be a system net. The
set LSN = {σ | (N,mi)[σ 〉(N,mf )} denotes the language of SN.

In the analysis of Petri nets, the Marking Equation [75] is an important tool.
It establishes a link between the structure of a Petri net and the reachability of
markings in this net. Specifically, the Marking Equation provides a necessary, yet
not sufficient condition for reachability of markings.

For illustration, let p be a place of a Petri net with •p = {x1, . . . , xn} and
p• = {y1, . . . , yl}. Then, given an initial marking mi for this Petri net, the following
equality holds for any firing sequence σ that starts in mi :

m(p) = mi(p) + −⇀σ (x1) + · · · + −⇀σ (xk) − −⇀σ (y1) − · · · − −⇀σ (yl).

The previous equation can be generalized:

m(p) = mi(p) +
∑

xi∈•p

−⇀σ (xi) −
∑

yi∈p•
−⇀σ (yi).

If we formulate the previous equation for all places in a Petri net, we can compress
it using a matrix notation, which yields the Marking Equation:

−⇀
m = −⇀

mi + C · −⇀σ

where −⇀
m and −⇀

mi are place vectors and C is the incidence matrix of the Petri net.
This equation enables conclusion on the reachability of markings, which, in

general, have to be non-negative. The set of markings m for which the following
inequality holds

−⇀
m = −⇀

mi + C · −⇀σ ≥ 0 (6.1)

is called the Potentially Reachable Set, denoted by PRS(N), from marking mi . All
reachable markings of a Petri net fulfil Equation 6.1. However, the opposite is not
always true. In general, there can be unreachable markings for which Equation 6.1
also holds, i.e., RS(N) ⊆ PRS(N). A detailed discussion on the relation between
RS(N) and PRS(N) can be found in [102].

Figure 6.7 illustrates the concept of the Potentially Reachable Set. Figure 6.7b
depicts the set of (potential) markings reachable from the Petri net shown
in Figure 6.7a. Looking at the figure, one can see that the sequence T1 =
〈t1, t2, t5, t1, t3〉 leads to a non-negative marking. However, looking at the set
of reachable states, one can see that T1 is not firable, since the non-negativity



114 6 Preparation

p1

t1

p2

p5

p3

p4

t5 t6

t3 t2 t4

[1,0,0,0,0]

[0,1,1,0,0]

[0,0,0,1,1]

[0,1,0,0,1] [0,0,1,0,1]

[1,0,0,0,0][0,2,0,0,0]

[0,1,0,1,0] [0,0,1,1,0]

[0,0,0,2,0]

[1,-1,0,1,0]

[0,0,0,0,2]

negative 
marking

(a) (b)

t1

t2
t3

t5

t4

t6

t4

t3

t3

t4

t3 t4

t5

t1

(c)

Figure 6.7 Potentially reachable set: states in PRS(N) \ RS(N) are highlighted

requirement is violated for one of the intermediate markings. However, this
sequence reaches the same marking as the firing sequence T1 = 〈t1〉.

6.2.2 Process Modelling Beyond Basic Petri Nets

While Petri nets form a mathematical basis for modelling processes, not all concepts
of processes found in practice can be expressed using the Petri nets described above.
In real-life process modelling, further concepts such as cancellation and multiple-
instances are required.

Cancellation refers to the idea that some activities, when executed, cancel
entire parts of a process. For example, cancelling a loan application before it has
been activated cancels activities related to processing of the corresponding offer,
regardless of which state that part of the process is in.

Another example is the modelling of multiple instances. Consider, for example,
the process of taking witness reports of a traffic accident by an insurance company.
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Beforehand, it is not known how many witness reports are going to be taken and
once the first witness report comes in, decisions may be made to ask for further
reports. These reports are generally not requested sequentially, one after the other,
but multiple reports are requested in parallel.

Behavioural concepts such as the above ones have been captured as so-called
workflow patterns. Today, there exists a large collection of such patterns along with
assessments about the extent to which they are supported by process modelling
tools. Translating all these patterns to basic Petri nets as introduced in this chapter
is not possible. However, extensions of the Petri net formalism may increase its
expressiveness, thereby making it possible to capture more advanced behavioural
patterns. Here, we reflect on two such extensions.

The first extension adds so-called ‘inhibitor arcs’ to Petri nets. These arcs can be
defined between a place and a transition to indicate that a transition can only fire
if the respective place is not marked, i.e., it is not assigned a token in the current
marking. Put differently, any token in the place inhibits the firing of the connected
transition.

The second extension considers the definition of so-called ‘reset arcs’. These
arcs are defined between a place and a transition to indicate that after the firing
of a transition, the respective place is no longer marked. That is, upon firing the
transition, all tokens are removed from the place, so that the place is not marked in
the reached state. As such, firing of the transition resets the respective place.

With these extensions, behavioural patterns such as cancellation and modelling
of multiple instances can be captured in a straightforward way. We illustrate this
with the example scenario of cancelling a loan application. Figure 6.8 shows a
fragment of our running example, which also includes an additional transition Ca
that represents an activity ‘Cancel application’. It enables the customer to cancel
the application, after the process continued from the offer selection part, but before
the application is activated. The leftmost τ transition enables the cancellation. Ca
can only fire if there is no token in the place after Aaa and Da, indicated by the
inhibitor arc with a circle. When fired, the transition Ca removes tokens from three
places, if there are any, as indicated by the reset arcs with double-headed arrows.

Ro

Ao

Do Da2

Aaa

Da1

Af

Ca

Figure 6.8 Reset-inhibitor example that allows for cancelling the application after an offer has
been sent back by the customer
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The transition Af to the right removes a token from the input place of transition Ca,
thereby cleaning up the state if cancellation did not occur.

In the remainder, we focus on basic Petri nets as defined formally in this chapter.
However, much of the presented work extends to more expressive Petri nets, such
as those with reset and/or inhibitor arcs.

6.3 Relating Event Logs and Process Models

Conformance checking requires that a link between the modelled and recorded
behaviour of a process is established. Revisiting the overview of the concepts
involved in conformance checking (see Figures 6.1 and 6.9) this link is established
by means of the activities of a process, as well as their executions as part of specific
cases. On the one hand, a task in a process model represents an activity, so that a
task execution indicates an activity execution. An execution sequence comprising
task executions thereby represents a case of the process. On the other hand, activity
executions are recorded as events and all events of a trace jointly presented the
information recorded about a specific case.

From the above, it becomes clear that relating event logs and process models
actually requires both, relating events and activity executions as well as relating
tasks and activities (and, thus, their executions). However, in this book, we focus
on the former relation and assume that the matching between activities and tasks is
given, or can trivially be established. Put differently, we assume that the models

Figure 6.9 Different representations of a process, event logs and process models, and how they
are linked, repeated from Figure 6.1



6.3 Relating Event Logs and Process Models 117

are captured at the right abstraction level, so that each task represents a single
activity. Note, however, that there may be multiple tasks that model an activity,
which is useful to capture that an activity may be executed in different contexts in
terms of process progress. In this book, the relation between tasks and activities is
always encoded directly by the task labels, which denote activities, with numerical
subscripts distinguishing different tasks that refer to the same activity.

The relation between events and activity executions is typically more problematic
in practice. This difference is apparent when reflecting on how the different
representations of a process, an event log and a process model, are commonly
derived. When capturing a process with a model, the definition of the tasks
representing activities is part of the construction of the model. Being done by
expert users in a careful manner, this definition of tasks can be expected to be
precise, unambiguous, and at the right level of abstraction. This is not true for event
data, though. Events used as the basis for conformance checking stem from diverse
sources, at predefined granularity, with little control over data quality aspects. As
a consequence, establishing a link between events and activity executions faces
various problems.

The fact that conformance checking has to rely on event data as it is recorded by
information systems, which not necessarily assumes the form required for analysis,
means that also the relation between events and traces may need to be handled
explicitly. That is, even if recorded events can be linked to activity executions, their
grouping into traces that represent individual cases may be far from trivial.

6.3.1 Relating Events and Activity Executions

Below, we provide an overview of common problems faced when trying to link
events and activity executions. While we point to solution strategies, an in-depth
description of the respective methods is beyond the scope of this book.

Different Sources Processes are often supported by a multitude of information
systems. The number and heterogeneity of sources from which data is integrated in
the event log must be taken into account when relating events and traces. Analysts
should be aware that the timestamps can be affected due to asynchronous clocks in
the respective systems. In addition, event sources may also differ in their adopted
temporal scale when recording data, e.g., timestamps only indicate the day of
activity executions, but do not order the executions throughout a single day.

Approaches Timestamp anomalies in event data can be approached with techniques
for outlier detection or based on time boundary constraints. As a starting point for
such techniques, we refer the reader to [89] and [104], respectively. Issues that
stem from the temporal scale employed by different event sources can be addressed
within one trace by exploiting information about related traces [60].



118 6 Preparation

Noisy Data Generally, before checking conformance, a data cleaning step can be
necessary. The process of recording events in processes can itself be subject to
errors. Erroneous event data potentially stems from manual recording of events or
noisy sensors. Stripping noisy and irrelevant event data is one of the most important
problems to be addressed in order to conduct meaningful analysis.

Approaches Filtering infrequent events with the assumption that infrequent events
are noise is one direction to approach this problem. Again, methods for outlier
detection provide an angle to identify noise, assuming that it is indeed infrequent.
An overview of noise patterns and strategies to identify them has been presented
in [105], while filtering strategies for event data have been proposed in [25, 128].

Process Change In many domains, processes are not static, but subject to con-
tinuous change. The evolution of the context in which a process is executed, e.g.,
the legal and regulatory context or the supporting technical infrastructures, lead to
frequent adaptations of a process. Yet, event data at hand does not always explicitly
state this context. As such, the event data may have recorded different variants of a
process, i.e., it may include so-called concept drift. Ignoring this drift would mean
that analysis is based on unified representation of multiple variants of a process,
thereby introducing a severe bias.

Approaches A first set of techniques relates to the identification of drift points in
the data. In the simplest case, a change happens suddenly, meaning that there is
a specific date at which the process has been adapted. Then, statistical methods
comparing two adjacent time windows before and after the change, can detect
the respective behavioural difference. Based thereon, the event data is partitioned
accordingly and the data before and after the change is analysed separately.
Following this general idea, various specific techniques for drift detection have been
presented in the literature [16, 22, 62]. Also, online learning techniques provide an
angle to achieve robustness of analysis models against concept drift [63].

Granularity The assumption of a 1:1 relation between events and activity exe-
cutions does not always hold true. Events can be recorded in a higher frequency
than required, meaning that, for instance, the joint occurrence of a set of events
indicates that an activity has been executed. Yet, the opposite may also be observed.
For example, an event may indicate that a milestone has been reached in a process,
thereby signalling that a set of activities has been executed successfully.

Approaches Grouping low-level events to higher-level events, thereby projecting
the data to a higher level of abstraction is one way to cope with such issues.
Specifically, this may be done with rule-based approaches based on boundary
conditions [11]. Assuming that low-level events follow certain patterns, which are
known, the technique in [66] enables the abstraction of event data. If event data
stems from location sensors, a relation to activity executions may be established by
exploiting background information on the process at hand [99].
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Ambiguity Sometimes, recorded event data is not precise, but ambiguous. For
example, two events may be of the same type, but relate to two different activities
of the process. In the worst case, there is solely a single type of event (e.g., events
from a real-time locating system all include a timestamp and spatial coordinates of
tracked objects), and each event could theoretically be linked to an execution of any
activity.

Approaches Semantic ambiguities are one of the most difficult problems in relating
events and activity executions. Only specialised solutions exist, as the problem tends
to be domain-specific. One direction to address this problem, if only few events are
ambiguous, is to exploit the context in which they have been observed in order to
identify an activity execution; see for example [35, 103].

6.3.2 Relating Events and Traces

In many application scenarios, events carry information on a case of the process. For
instance, in our running example of a loan application process, the identifier of the
application distinguishes between different cases (note that other notions of a case
may still be employed; see also Excursion 12). Based on such a key, also known as
case identifier, the events that relate to activity executions within the same case can
be grouped, which yields the traces of an event log.

However, if we are unable to identify, or simply lack a case identifier in the
event data, we face the problem of relating events and traces. This is often observed
if event data from different sources needs to be integrated. In such a context,
we consider two scenarios: (1) If it is possible to correlate the events within one
system by a case identifier, the problem is reduced to matching groups of events
to one another, which can reduce the original combinatorial problem by orders
of magnitudes. Auxiliary attributes that exist in several systems may be exploited
to correlate events, using techniques such as those presented in [76]. (2) If the
correlation of events even within one system is unclear, the problem becomes more
difficult, due to the number of possible groupings being exponential in the number
of events. Again, certain auxiliary attributes may serve as correlation anchors [76].
However, in general, complex optimization problems need to be solved in order to
find a partitioning of events into traces [84].

Bibliographic Notes

Getting event data from information systems is a common problem for which many
solutions have been proposed. Getting event data out of relational databases is
discussed in [114, Chapter 4] and in [33, 61]. A procedure to get event data is also
summarized in the report [55].

Petri nets are a well-known formalism for describing systems [75, 86]. Their
formal grounding and their ability to represent common control flow structures
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makes them particularly well-suited for process modelling. Moreover, Petri net-
based formalisations of high-level languages for process modelling have been
presented in the literature [36, 59]. Since Carl Adam Petri developed their
foundations in terms of a generalization of automata theory [80], there has been
considerable research in the field of Petri net theory. The class of Petri nets widely
used in this book, workflow nets, was first introduced in [111]. Structural techniques
for Petri net analysis play an important role in parts of this book. The reader can
find a comprehensive summary in [102].

Furthermore, we argued that conformance checking requires that event logs and
process models be related to each other. While this relation is established through the
notions of activities and cases, establishing the respective links is often non-trivial.
In Section 6.3, we discussed especially the problems faced when linking events and
activity executions, as well as events and traces, and gave pointers to related work
for each of the encountered problems.

6.4 Exercises

6.A) Petri net analysis

Given are the following system nets (N1, N2, N3, N4). By default, the initial
marking mi is defined as [pi ], and the final marking mf is [pf ].

N1

a
pi

b

d

c

pf

e

f

N2

a

d

pi

b

c

e

g
pf

f

N3

a

e

pi

b c

f

d

pf

g

(continued)
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6.A) (continued)

N4

a
pi

c

f

d
pf

g

h

Analyse the systems and decide for each, whether:

a) it is bounded, and if so, whether it is also safe.
b) the final marking mf can be reached from all reachable markings.
c) eventually a marking is reached that does not enable any transition.
e) for any transition, there exists a reachable marking that enables it.

6.B) Play out

Given is the following system net, with the initial marking mi being
visualized, while the final marking mf being defined by a single token
assigned to the rightmost place.

As

Aa

Da

Rc

Fa

Ao

τ

Af

Consider the language of the above system net. How many sequences
does it contain? Write down three of these sequences.
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6.C) Inspecting an event log

Given the following event log.

Event CaseID Label Lifecycle Resource Timestamp

e1 c01 inspect BEGIN Ed Eagle Apr 10, 15:11

e2 c02 accept BEGIN Lu Light Apr 10, 15:27

e3 c01 inspect COMPLETE Ed Eagle Apr 10, 15:41

e4 c02 accept COMPLETE Lu Light Apr 10, 15:27

e5 c02 inspect BEGIN Ed Eagle Apr 10, 15:30

e6 c01 repair BEGIN Lu Light Apr 10, 15:31

e7 c02 inspect COMPLETE Ed Eagle Apr 10, 15:40

e8 c01 repair COMPLETE Lu Light Apr 10, 16:19

e9 c02 repair BEGIN Lu Light Apr 10, 16:25

e10 c02 repair COMPLETE Lu Light Apr 10, 17:03

Extract the traces of this event log according to the following criteria:

1. A trace is determined by the ‘CaseID’ attribute. An event is specified by
the combination of ‘Label’ and ‘Lifecycle’.

2. A trace is determined by the ‘CaseID’ attribute. An event is specified by
the label only. Successive BEGIN and COMPLETE events are merged.

3. A trace is determined by the ‘Resource’ attribute. An event is specified
by the combination of ‘Label’ and ‘Lifecycle’.

6.D) Formalising BPMN with Petri nets

Consider the following process models specified in BPMN. While many
BPMN constructs can be translated directly in Petri nets, some also impose
challenges in terms of semantics that cannot be captured with basic Petri
nets. For each of the following BPMN models, come up with a Petri net that
has the same language or explain why this cannot be achieved.

M1 The following BPMN model contains solely basic constructs.

A

C

B

H

D

E

F

G

I

(continued)
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6.D) (continued)

M2 The following BPMN model contains a subprocess that contains the
BPMN start event D, tasks E and F , and the BPMN end event G. When
this subprocess is executed, an error H may occur at any time. Upon
occurrence of this error, the subprocess is terminated immediately and
the execution continues with task I .

A

B

H

C

D

E F

G

I

J

M3 The following BPMN model contains an event-based gateway (diamond
shape containing a pentagon) that is followed by two BPMN message
events E and F , and a BPMN timer event G. The semantics is that
once the control flow reaches the event-based gateway, process execution
continues with the BPMN event that is triggered first, i.e., with the first
message (E or F ) that arrives, or with the time-out G if no message
is received within a particular time frame. If execution continues with
the time-out G, the next element H is a BPMN terminate end event. Its
semantics is that the overall process execution terminates immediately,
meaning that also all concurrently executed tasks are stopped right away.
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6) In the lab: tool support for converting raw data and for Petri net
analysis

Check out the lab session to practise
with tools that allow projecting raw
data into event logs. Also, tutorials on
Petri net analysis can be followed.

http://www.conformancechecking.com/CC_book_Chapter_6

http://www.conformancechecking.com/CC_book_Chapter_6


Chapter 7
Aligning Event Data and Process Models

In Part I of this book, we reflected on the relation between event data and process
models, and we presented several ways to exploit this relation. We explained that,
to compute fitness, we need insights into the part of the event data that cannot be
explained by the model. We also discussed how, for computing precision, we need
to relate behaviour of the model that goes beyond what was recorded in the event
data. In Chapter 4 we informally described several ways to relate event data and
process models. We discussed rule checking, token flow replay and alignments on
an intuitive level.

This chapter focuses on how to compute optimal alignments. Since align-
ments represent the most informative conformance artefact, their computation is
a challenge. Still, the techniques described in this section, which are grounded in
casting the alignment computation as a form of reachability with costs using search
algorithms, can be often applied in real-life conformance projects.

Recall that alignments can be represented by combination of the trace on the one
hand and an execution sequence of the model on the other hand, as shown below.

log trace As Aa Sso Ro 
 
 Ao Aaa Aaa 

execution sequence As Aa Sso Ro Fa τ Ao Aaa 
 Af

The alignment above shows how a trace in the event log is aligned with an
execution sequence in the process model. In this case, the trace does not show the
activity “Finalise application” (Fa), nor the activity “Application finished” (Af ),
and the execution sequence cannot contain the transition “Accept and activate
application” (Aaa) twice. Hence, these are deviations.

However, the alignment also shows something we did not discuss before, namely:
the τ transition that fired in the model. To focus on process models with clear
execution semantics, we consider Petri nets as a formal language for describing
processes. In particular, we consider Petri nets in which transitions represent tasks,
i.e., they are labelled by the activities of the process under consideration that are also

© Springer Nature Switzerland AG 2018
J. Carmona et al., Conformance Checking,
https://doi.org/10.1007/978-3-319-99414-7_7
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p6

p3 τ
p7

Ao

Do
p9

p8

Da2

Aaa

p10

Da1

p0

Co

Af
p11

Figure 7.1 Petri net for the running example

referenced by the events in an event log. Yet, some transitions may not be labelled
with an activity, but with a special label τ (so-called τ -labelled transitions). Firing
such τ -labelled transitions in a Petri net might be required for correct execution, but
are not considered a deviation. They are also often referred to as routing transitions
or invisible transitions.

Figure 7.1 shows the Petri net translation of our running example again. Note
that the label “Application submitted” (As) is translated into a transition in the
beginning of the model, as it happens for the label “Application finished” (Af ) at
the end. Furthermore, we see that in the middle a transition labelled with τ is added
for routing purposes and there are two transitions Da1 and Da2 labelled with the
activity “Decline application”. The alignment above corresponds to this Petri net.

This chapter is organized as follows. First, we unambiguously define alignments
using a concept called a synchronous product (Section 7.1). Then, in Section 7.2
we describe a method to compute alignments based on the classical shortest paths
Dijkstra algorithm, which is then improved in Section 7.3 by turning it into an A�

search problem. Then, in Section 7.4 several heuristics and optimizations to the
base technique are reported, so that further improvements on the exploration can be
attained. Finally, we show another example of the A� evolution on a trace with a
swapped activity in Section 7.5 before reflecting on the complexity of computing
alignments in relation with similar problems in Section 7.6.

7.1 Alignments as Traces of the Synchronous Product

As discussed in Section 4.3 the basis for aligning a trace and a model is the notion
of synchronous product. In Figure 4.3 the synchronous product was informally
presented as a combination of a process model, a trace model and synchronised
activities in the middle. In this section, we formalise the notions of a process model,
a trace model and the synchronised product. Then, we show how an alignment
corresponds to an execution sequence of the synchronous product from its initial
marking to its final marking.1

1In this chapter we use the terms marking and state interchangeably.
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At the foundation of any process lie activities. These are the building blocks of
processes and represent atomic units of work that need to be performed by people
or other actors. Recall that we assume there is a known universe of all possible
activities denoted by A (see Section 6.1).

The basis for alignments are process models. We consider labelled Petri nets
as the formal representation of a process. Recall from Definition 5 that a labelled
Petri net is such that each transition is labelled with an activity or with τ indicating
that the transition has no corresponding activity, i.e. formally, process models are
system nets in which the designated final state is reachable from the initial state (see
Section 6.2).

Definition 10 (Process Model) Let A ⊆ A be a set of activities, N = (P, T , F, λ)

a Petri net and SN = (N,mi,mf ) a system net. We call SN a process model if and
only if LSN �= ∅.

In contrast to general Petri nets, process models have a distinguished final marking
which can be reached from the initial marking, i.e. there is a distinguished state
in the model that, once reached, indicates that execution of a process instance has
finished. Nearly all other process modelling languages have an explicit notion of
such a final state and we exploit this later for efficient computations of alignments.

It is important to realize that we assume the final marking to be reachable from
the initial marking. This assumption is very relaxed and in Petri net theory is often
referred to as easy soundness. In this book, we assume all models to be easy sound,
but in practice much stronger soundness notions hold for all models presented in
this book.

Definition 11 (Easy Soundness) Let A ⊆ A be a set of activities, N =
(P, T , F, λ) a Petri net and SN = (N,mi,mf ) a system net. SN is called easy sound
if and only if there exists a σ ∈ LSN , i.e. if there is at least one execution sequence
from the initial to the final marking.

Note that, in this book, all process models are easy sound according to Definition 10.
When aligning a trace to a model, the trace is translated into a so-called trace

model. This again is a labelled Petri net with an initial and a final marking, but
without any choices as the model represents a past execution in which every decision
was made.

Definition 12 (Trace Model) Let A ⊆ A be a set of activities, and σ ∈ A∗ a
sequence over these activities. A trace model TN = ((P, T , F, λ),mi ,mf ) is a
system net, such that

• P = {p0, . . . , p|σ |},
• T = {t1, . . . , t|σ |},
• F = {(pi, ti+1) | 0 ≤ i < |σ |} ∪ {(ti, pi) | 1 ≤ i ≤ |σ |},
• mi = [p0],
• mf = [p|σ |], and
• for all 1 ≤ i ≤ |σ | it holds λ(ti ) = σ(i).
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As
p13

Aa
p14

Sso
p15

Ro
p16

Ao
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p18p12

Aaa2
p19

Figure 7.2 Trace model for the running example

The trace model defined above is most commonly a simple sequence of the
transitions labelled with activities as they appeared in the trace (more precisely,
as they are assigned to the events of a trace). However, the theory presented in this
chapter does not rely on this fact. Instead, the requirement is that the trace model
is a Petri net without choices, or more specifically, that each place has at most one
incoming and at most one outgoing arc.

Figure 7.2 shows the trace model for our example trace 〈As,Aa, Sso,Ro,Ao,Aaa,
Aaa〉, where we chose new identifiers for the places, different from the places in
Figure 7.1. Note the two distinct transitions Aaa1 and Aaa2 corresponding to the two
events that indicate an execution of activity Aaa in the trace. Formally, both these
transitions are assigned the label Aaa denoting the respective activity. However, we
use the subscript to highlight that there are two distinguished transitions that carry
the same label.

Using the process and the trace model, we define the synchronous product model
as the combination of the two with an additional set of synchronous transitions based
on identical labels.

Definition 13 (Synchronous Product) Let A ⊆ A be a set of activities, SN =
((P SN, T SN, F SN, λSN),mSN

i , mSN
f ) a process model and σ ∈ A∗ a trace with its

corresponding trace model TN = ((P TN , T TN, F TN , λTN),mTN
i , mTN

f ).
The synchronous product SP = ((P, T , F, λ),mi ,mf ) is again a system net,

such that:

• P = P SN ∪ P TN is the set of places,
• T = (T MM ∪T LM ∪T SM) ⊆ (T SN∪{
})×(T TN ∪{
}) is the set of transitions

where 
 denotes a new element, i.e. 
�∈ T SN ∪ T TN , with

– T MM = T SN × {
} (model moves),
– T LM = {
} × T TN (log moves) and
– T SM = {(t1, t2) ∈ T SN × T TN | λSN(t1) = λTN(t2)} (synchronous moves),

• F = {(p, (t1, t2)) ∈ P × T | (p, t1) ∈ F SN ∨ (p, t2) ∈ F TN} ∪ {((t1, t2), p) ∈
T × P | (t1, p) ∈ F SN ∨ (t2, p) ∈ F TN},

• mi = mSN
i + mTN

i ,
• mf = mSN

f + mTN
f , and

• for all (t1, t2) ∈ T holds that λ((t1, t2)) = (l1, l2), where l1 = λSN, if t1 ∈ T SN,

and l1 =
 otherwise; and l2 = λT N, if t2 ∈ T T N, and l2 =
 otherwise.

The synchronous product is essentially a combination of the original process
model with the trace model, in such a way that each pair of transitions that are
labelled with the same activity are also represented by a special synchronous



7.1 Alignments as Traces of the Synchronous Product 129

(As,⟫)

p1

(Aa,⟫)
p2

p4

(Fa,⟫)

(Sso,⟫)

p5

(Ro,⟫)

p6

p3
p7

(Do,⟫)

(Ao,⟫)

p9

p8

(Aaa,⟫)

(Da 2,⟫)
p10

(Da 1,⟫)

p0

(Co,⟫)

(Af,⟫)

p11

(⟫,As)

p13

(⟫,Aa)

p14

(⟫,Sso)

p15

(⟫,Ro)

p16

(⟫,Ao)

p17

(⟫,
Aaa1)

p18p12

(⟫,
Aaa2)

p19

(As,
  As)

(Aa,
Aa)

(Sso,
  Sso)

(Ro,
 Ro)

(Ao,
 Ao)

(Aaa,
 Aaa1)

(Aaa,
 Aaa2)

Figure 7.3 Synchronous product for the running example

transition. The transitions of the original process and trace model are represented
by pairing them with the new symbol 
. Figure 7.3 shows the synchronous product
for our example process model and trace.

An alignment, as discussed earlier in Section 4.3, is an execution sequence of the
synchronous product starting in the initial marking and ending in the final marking.

Definition 14 (Alignments) Let A ⊆ A be a set of activities, σ ∈ A∗ a trace with
TN its corresponding trace net, SN a process model and SP = ((P, T , F, λ),mi ,mf )

the synchronous product of SN and TN.
Let γ ∈ LSP be a full execution sequence of the synchronous product. γ is called

an alignment between SN and σ .

An alignment is a sequence of transition firings in the synchronous product.
Firing a transition (t,
) ∈ T corresponds to a model move. Firing a transition
(
, t) ∈ T corresponds to a log move and firing a transition (t1, t2) ∈ T with
t1 �=
 and t2 �=
 corresponds to a synchronous move. For model moves, we
typically distinguish between model moves where the corresponding transition is
labelled with an activity and those where the transition is labelled with τ , as the
former indicates a deviation, whereas and the latter does not.

It is easy to see that there is always an alignment for any given trace and model,
since there is an execution sequence in the model that does not touch any tokens in
the trace model (this execution sequence exists because the model is easy sound) and
the trace model can be executed by definition. Therefore, the alignment consisting
of only model moves, followed by only log moves is a correct execution sequence
of the synchronous product.

Proposition 1 Let A ⊆ A be a set of activities, σ ∈ A∗ a trace with TN its
corresponding trace net, SN a process model and SP = ((P, T , F, λ),mi ,mf ) the
synchronous product of SN and TN. It holds thatLSP �= ∅, i.e. an alignment between
SN and σ exists.
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Proof Since SN is a process model, we know from Definition 10 that there exists
a σ SN ∈ LSN . Furthermore, we know that σ TN = 〈t1, . . . , t|σ |〉 ∈ LTN . Let γ =
〈(σ SN

1 ,
), . . . , (σ SN
|σ SN |,
), (
, σ TN

1 ), . . . , (
, σ TN
|σTN |)〉. It’s trivial to see that γ ∈

LSP.
��

The problem of finding an alignment for a given trace and model can therefore be
reformulated as finding an execution sequence from the initial to the final marking in
the synchronous product (reachability). This execution sequence should be minimal
with respect to a cost function c that penalises for deviations, i.e. for transitions
corresponding to model and log moves.

Definition 15 (Cost Function, Default Cost Function) Let SP = ((P, T , F, λ),

mi,mf ) be a synchronous product. A cost function c : T → R+ ∪ {0} is a
function associating a non-negative cost to each transition incurred when firing that
transition.

The cost function assigning cost 0 to synchronous moves and τ -labelled tran-
sitions and cost 1 to other model moves and log moves is called the default cost
function.

The cost function associates a non-negative cost to each transition of the
synchronous product to indicate the severity of that transition firing. Recall that
these transitions are partitioned into model moves, log moves and synchronous
moves. Typically, synchronous moves and τ -labelled model moves are assigned cost
0. Using the cost function we define optimal alignments.

Definition 16 (Optimal Alignment) Let A ⊆ A be a set of activities, σ ∈ A∗
a trace with TN its corresponding trace net, SN a process model and SP the
synchronous product of SN and TN. Furthermore, let c : T → R+ ∪ {0} be a
cost function. An optimal alignment γ opt ∈ LSP is a full execution sequence of the
synchronous product, such that for all γ ∈ LSP it holds that c(γ ) ≥ c(γ opt), where
c(γ ) = ∑

1≤i≤|γ | c(γ (i)).

Figure 7.4 illustrates an optimal alignment for our example, depicted on top of the
synchronous product shown earlier. It shows that there are three deviations between
the trace and the model, namely a model move on transition Fa, a log move on (here,
the first) event labelled Aaa and a model move on the transition Af.

Excursion 13
Notes on the cost function
When defining optimal alignments, the cost function plays an important
role. An alignment is defined as optimal with respect to a cost function c :
T → R+ ∪ {0}, which associates costs to each transition in the synchronous
product. By assigning non-zero costs to transitions representing log moves

(continued)
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and model moves labelled with activities, and zero costs to synchronous
moves and τ -labelled transitions, we guarantee that an optimal alignment
favours synchronous moves over others.

However, formally speaking, associating a cost of zero to τ -labelled
transitions can cause problems for the algorithms presented in this chapter,
since these algorithms are only guaranteed to terminate as long as there is no
marking m such that there is an infinite set of markings m′ reachable from m

with cost 0.
The class of models for which a cost of 0 could cause the algorithm to

run indefinitely is very unlikely to appear in real life. So far, we have seen
such models only as translations of so-called C-nets, the representation used
in [114].

However, to be on the safe side in any generic implementation, it is wise
to ensure that the cost function returns some negligible ε cost for τ -labelled
transitions.

(As,⟫) (Aa,⟫)
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(Sso,⟫) (Ro,⟫)

(τ, )
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Figure 7.4 Full run of the synchronous product corresponding to an optimal alignment, assuming
a default cost function

7.2 Computing Optimal Alignments

After we have formalised the problem of finding optimal alignments as identifying
the cheapest (i.e., cost minimal) execution sequence of a synchronous product
model according to some cost function, we present an algorithm for constructively
computing optimal alignments.

The easiest solution is to build the reachability graph of the synchronous product
model (see Definition 7), label each arc in that graph with the costs associated to
the transition it represents, and then find the shortest path from the initial to the
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final marking. However, this solution has an important drawback, namely that the
reachability graph of a Petri net is not necessarily finite, hence it cannot be computed
explicitly in general. Furthermore, even if it is finite, it is typically very large due to
the explicit representation of all possible interleavings of parallel task executions a
problem well-known as the state space explosion problem.

Figure 7.5 shows the full reachability graph of the synchronous product in
Figure 7.3. The structure of this graph is typical for the alignment problem. There
are several copies (laid out top-to-bottom, depicted in purple on the left and black
elsewhere) of the reachability graph of the original process model, which correspond
to model moves in an alignment. From left to right are the log moves, depicted in
yellow on the top row and grey elsewhere. They do not change the state of the
process model, but change the marking of the trace model and hence the state of the
synchronous product. The synchronous moves (depicted in green) change both the
state of the process model and the state of the trace model. The graph contains 104
states and 244 edges.

Rather than explicitly building the full reachability graph in memory, we use an
incremental shortest path algorithm to compute an optimal alignment. In essence,
we only build the relevant part of the reachability graph in memory. In this section,
we present several variations of this algorithm each having their own pros and cons
in terms of time and memory complexity.

One of the most fundamental algorithms for computing the shortest path in a
graph is Dijkstra’s shortest path algorithm [37]. Essentially, it considers two sets of
nodes, namely the closed set A and the open set X. Furthermore, it keeps a function
d : X → R+ ∪ {0} to keep track of the shortest distance known for each node and
a function p : X → (T ∪ {τ } × X ∪ {τ }) to keep track of the predecessors in the
shortest path. The closed set is the set of nodes for which the shortest path from the
source node is known and the open set is the set of nodes for which a path may be
known, but for which it is unknown whether this is the shortest path.

A specific version of the algorithm for computing alignments is detailed in
Algorithm 1. The main difference with the regular Dijkstra algorithm is the fact
that new markings are generated on the fly and that the predecessor function keeps
track of the transitions fired, not only the preceding marking.

To get a feeling for the workings of Dijkstra’s algorithm, consider Figure 7.6.
This is part of the reachability graph depicted in Figure 7.5 searched by Dijkstra’s
algorithm as soon as all states with distance d(m) = 0 have been expanded. So far,
17 markings were found and 16 edges were traversed. The set X now contains all
states with distance 1 (the distance of each state d(m) is written in the state). All
states with distance 0 are now in the closed set A.

For our running example, Dijkstra’s algorithm visits between 71 and 95 states
and traverses between 128 and 180 edges. The main reason for these differences is
the arbitrary way a marking is selected from the open set in line 8 of Algorithm 1.
In the best case, depicted in Figure 7.7, the final marking is selected as soon as it
is in the open set and it is one of the markings minimizing d(m). In the worst case,
depicted in Figure 7.8, it is the selected last. Still, this search space is considerably
smaller than the full reachability graph of the synchronous product.
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Procedure 1 Dijkstra’s algorithm for alignments
Let SP = ((P , T , F, λ),mi,mf ) be a synchronous product and let c : T → R+ ∪ {0} be a cost
function.
1: function DIJKSTRA(SP, c )
2: A ← ∅ � Initialise closed set
3: X ← {mi} � Initialise open set
4: p(mi) = (τ, τ ) � Initialise predecessor function
5: ∀m∈RS(SN) d(m) = ∞ � Initialise function d

6: d(mi ) = 0
7: while X �= ∅ do � While not all states visited
8: m ← m ∈ X minimizing d(m) � Get the marking m closest to mi

9: if m = mf then � final marking reached
10: break while
11: end if
12: A ← A ∪ {m} � Add m to the closed set
13: X ← X \ {m} � Remove m from the open set
14: for all t ∈ T with m[t〉m′ do � For each transition enabled in m

15: if m′ �∈ A then � Reaching a marking not yet visited
16: X ← X ∪ {m′} � Add m′ to the open set
17: a ← d(m) + c(t) � Compute the current cost of reaching m′
18: if a < d(m′) then � If this current cost is better than known cost
19: d(m′) ← a � Update distance function
20: p(m′) ← (t,m) � Update predecessor function
21: end if
22: end if
23: end for
24: end while
25: γ ← 〈t0, . . . , tn〉 such that tn = #1(p(mf )), tn−1 = #1(p(#2(p(mf )))) etc. until the initial

marking is reached recursively.
26: return d(mf ), γ � Return distance and alignment
27: end function

The alignment found is highlighted in both Figures 7.7 and 7.8 using bold lines
and this corresponds to:

log trace As Aa 
 Sso Ro 
 Ao Aaa Aaa 

execution sequence As Aa Fa Sso Ro τ Ao 
 Aaa Af

Dijkstra’s shortest path algorithm will terminate eventually if one of two
conditions is met, namely: (1) the number of reachable markings is finite, or (2) the
number of markings reachable from any marking with cost 0 is finite. The proof for
this claim is straightforward as we already have a known path to the target state (the
witness alignment of Proposition 1). Under the assumptions above, any (infinite)
path investigated will eventually become more costly than this witness alignment.

More advanced path-finding algorithms exist which can be used to find shortest
paths. In this book, we limit ourselves to A� which has become the de-facto standard
for computing alignments. Mainly because, as in the case of Dijkstra’s algorithm, it
does not require the graph to be built explicitly in memory.
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7.3 Efficiently Computing Optimal Alignments

The A� shortest path algorithm [53] is a generalization of Dijkstra’s algorithm.
In each iteration, the selection of the element from the set of open nodes is not
based on the distance travelled so far, but based on a combination of the distance
travelled so far and an underestimate of the remaining distance. If the remaining
distance to travel can be underestimated with some accuracy, the A� algorithm visits
considerably fewer vertices in the graph to find a shortest path as it will not explore
parts of the graph that inevitably lead to longer paths.

In short, the A� algorithm is derived from Dijkstra’s algorithm. However, rather
than selecting a marking m that minimizes d(m) in line 8 of Algorithm 1, we select
a marking m that minimizes f (m) in line 10 of Algorithm 2. The function f (m) =
g(m)+h(m) takes into consideration the estimated remaining cost of the alignment
h(m) on top of the known distance g(m).

The A� algorithm depends heavily on the function h. For A� to return an optimal
result, the function h needs to be admissible, i.e. for any reachable state m it holds
that h(m) ≤ h∗(m), where h∗(m) is the shortest distance from m to the final
marking mf . In other words, h underestimates the remaining costs to reach the target
marking. Furthermore, the better the quality of the underestimation, the fewer nodes
are expanded.

To get a feeling for the A� algorithm, consider Figure 7.9 which, like before
in Figure 7.6, shows the search space of the algorithm after all nodes at distance
0 have been expanded from the initial state of the running example. In contrast
to Dijkstra however, now all nodes also have an associated estimated remaining
distance, indicated by the h function. Since the nodes in the open set are prioritized
based on the sum of the distance so far and the estimated remaining distance, one
of the three highlighted nodes will be investigated next, while in Dijkstra’s case all
nodes at distance 1 would be equally likely to be investigated.

Algorithm 2 assumes that the underestimation function h is monotonic, i.e. for
any two markings m,m′ and transition t with m[t〉m′, it holds that h(m) ≤ c(t) +
h(m′). It is not too hard to see that in Figure 7.9 this is indeed the case. The trivial
function hd(x) = 0 satisfies this requirement, in which case A� essentially becomes
equal to Dijkstra’s algorithm.

In the remainder of this section, we discuss the use of the Petri net marking
equation as a heuristic functions as well as general techniques to reduce the search
space.

One of the most important features of the A� algorithm is that it uses an
underestimation function h to guide the search. This underestimation function
should return a cost “as close as possible” to the actual remaining costs. As our
input models are Petri nets, we can make use of the marking equation. As introduced
in Section 6.2.1, the later is a system of linear equations, such that each variable
represents the number of firings of a specific transition. Furthermore, given a
sequence of transition firings from marking m to marking m′, the Parikh vector
representation of this sequence is a solution to the marking equation. In other words,
any sequence of transition firings in the synchronous product yields an integer
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Procedure 2 A� algorithm for alignments
Let SP = ((P , T , F, λ),mi,mf ) be a synchronous product and let c : T → R+ be a cost function
and h : RS → R+ be an heuristic underestimating the cost of getting from any marking to the
final marking.
1: function ASTAR(SP,O, c )
2: A ← ∅ � Initialise closed set
3: X ← {mi} � Initialise open set
4: p(mi) = (τ, τ ) � Initialise predecessor function
5: ∀m∈RS(SN) g(m) = ∞ � Initialise cost so far function g

6: g(mi) = 0
7: ∀m∈RS(SN) f (m) = ∞ � Initialise estimated total cost function f

8: f (mi ) = h(mi) � Compute estimate for initial marking
9: while X �= ∅ do � While not all states visited

10: m ← m ∈ X minimizing f (m) � Get the most promising marking m

11: if m = mf then � final marking reached
12: break while
13: end if
14: A ← A ∪ {m} � Add m to the closed set
15: X ← X \ {m} � Remove m from the open set
16: for all t ∈ T with m[t〉m′ do � For each transition enabled in m

17: if m′ �∈ A then � Reaching a marking not yet visited
18: X ← X ∪ {m′} � Add m′ to the open set
19: a ← g(m) + c(t) � Compute the cost so far of reaching m′ via m

20: if a < g(m′) then � If this current cost is better than known cost so far
21: g(m′) ← a � Update cost so far function
22: f (m′) ← g(m′) + h(m′) � Update estimated total cost function
23: p(m′) ← (t,m) � Update predecessor function
24: end if
25: end if
26: end for
27: end while
28: γ ← 〈t0, . . . , tn〉 such that tn = #1(p(mf )), tn−1 = #1(p(#2(p(mf )))) etc. until the initial

marking is reached recursively.
29: return f (mf ), γ � Return distance and alignment
30: end function

solution to the marking equation and the cost function over this sequence is the
cost of the alignment. Now, if we simply solve the linear equation system while
minimizing our cost function as a target function, we also get a solution which
cannot have higher costs than the actual path. Hence, the marking equation provides
an underestimate.

Definition 17 (Underestimation Function h) Let SP = ((P, T , F, λ),mi ,mf ) be
a system net with incidence matrix C and let c : T → R+ ∪ {0} be a cost function.
We define the underestimation function h : RS(SP) → R+ underestimating the
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cost of reaching the final marking from any marking as follows:

h(m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ � ∃−⇀
x

−⇀
m + C · −⇀

x = −⇀
mf

c(
−⇀
x ) where −⇀

x is the solution to min c(
−⇀
x )

subject to −⇀m + C · −⇀x = −⇀mf
−⇀
x ≥ −⇀

0

We use hI to indicate that we solve the system of linear equations for integer
variables and hR to indicate that we solve the system with real variables. Whenever
we use h without superscript, both variants can be substituted.

It is easy to see that the function h indeed underestimates the cost of reaching the
final marking.

Proposition 2 (Underestimation Function h Is Admissible) Let SP =
((P, T , F, λ),mi ,mf ) be a system net with incidence matrix C and let c : T → R+
be a cost function and h : RS(SP) → R+ the underestimation function following
Definition 17. We prove that for any marking m ∈ RS(SP) and for all σ ∈ T ∗ with
m[σ 〉mf it holds that h(m) ≤ ∑

t∈σ c(t).

Proof Since m[σ 〉mf , we know that −⇀
m + C · −⇀σ = −⇀

mf . Hence for any −⇀
x minimizing

c(
−⇀
x ) such that −⇀

m + C · −⇀
x = −⇀

mf it holds that c(
−⇀
x ) ≤ c(−⇀σ ). Hence h(m) ≤ c(−⇀σ ) =∑

t∈σ c(t).
��

Not only does the marking equation provide an underestimate for the remaining
cost, it also provides a monotonic underestimation function.

Proposition 3 (Underestimation Function h Is Monotonic) Let SP =
((P, T , F, λ),mi ,mf ) be a system net with incidence matrix C and let c : T → R+
be a cost function and h : RS(SP) → R+ the underestimation function following
Definition 17. We prove that for any marking t ∈ T and m,m′ ∈ RS(SP) with
m[t〉m′ it holds that h(m) ≤ c(t) + h(m′).

Proof We prove this by contradiction. Let m,m′ and t be such that h(m) > c(t) +
h(m′). Let −⇀

x ′ be the solution to −⇀
m′ + C · −⇀

x ′ = −⇀
mf such that h(m′) = c(

−⇀
x ′). From

the definition of the firing rule, we know that −⇀
m + C · −⇀

1 t = −⇀
m′, hence we know

that −⇀
m + C · −⇀

1 t + C · −⇀
x ′ = −⇀

mf . Let −⇀
x = −⇀

x ′ + −⇀
1 t , then −⇀

m + C · −⇀
x = −⇀

mf and
c(

−⇀
x ) = c(

−⇀
x ′) + c(t) = c(t) + h(m′).

Since −⇀
x is a solution to −⇀

m + C · −⇀
x = −⇀

mf , we know that h(m) ≤ c(
−⇀
x ) =

c(t) + h(m′), which contradicts the assumption.
��

Combining Proposition 2 and Proposition 3, we have shown how the marking
equation can be instantiated to obtain an admissible, monotonic underestimation
function for the remaining costs of an alignment. Furthermore, since the only
requirement of the estimation function is that it is an underestimate, there is no need
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to solve the equation system for integer variables. Instead, we can use real variables
which also provide an underestimate. This might, however, worsen the quality of
the solution which causes the A� to investigate more states.

The heuristics depicted earlier in Figure 7.9 were computed using hR . The
matrix C has 20 rows and 27 columns, corresponding to the incidence matrix
of the Petri net in Figure 7.3, and the solution found corresponds to the vector
[(As,As), (Aa,Aa), (Sso, Sso), (Ro,Ro), (Fa,
), (τ,
), (Ao,Ao), 1

2 (Aaa, Aaa1),
1
2 (Aaa, Aaa2),

1
2 (
, Aaa1)

1
2 (
, Aaa2), (Af,
)]. Note that, in general, the solu-

tion found is not guaranteed to correspond to a realizable sequence. In our example
it even contains non-integer parts. Please note that this vector is highly unlikely
to be the result produced by any (I)LP solver. However, it is an optimal solution
which we use for illustrative purposes. It is much more likely that the LP solver
returns the vector [(As,As), (Aa,Aa), (Sso, Sso), (Ro,Ro), (Fa,
), (τ,
),

(Ao,Ao), (Aaa, Aaa1), (
, Aaa2), (Af,
)] or [(As,As), (Aa,Aa), (Sso, Sso), (Ro,
Ro), (Fa,
), (τ,
), (Ao,Ao), (
, Aaa1), (Aaa, Aaa2), (Af,
)], which both
have the same deviation cost 3.

Figure 7.8 shows the full search space expanded by A� in the worst case. For each
marking reached, the heuristic function is depicted. It is clear that A� explores far
fewer states than Dijkstra (37 instead of 95 in the worst case), and traverses fewer
edges (41 instead of 180 in the worst case). However, a total of 36 heuristics have
been computed for A�, each of which corresponds to a system of (integer) linear
equations (note that in the final marking no heuristic needs to be computed; it’s
trivially 0).

The alignment found in this case is different from the one found by Dijkstra as
the order in which certain moves are identified is different. The actual alignment
highlighted in Figure 7.8 is:

log trace As Aa Sso Ro 
 
 Ao Aaa Aaa 

execution sequence As Aa Sso Ro Fa τ Ao Aaa 
 Af

Solving a linear programming problem in each state of the search space is rather
computationally intensive (recall that the heuristic is used in line 22 of Algorithm 2,
hence for each visited marking and for each enabled transition). In the next section,
a number of optimizations are introduced that can be employed to (1) reduce the
number of linear equations solved and (2) reduce the number of states visited.

7.4 Optimizing A� for Alignments

Finding alignments is a complex and time-consuming task, especially since (1) due
to the parallelism of Petri nets, many possible sequences may exist with equal cost
and, (2) in each state of the search space an (integer) linear program needs to be
solved. In this section, we introduce a few optimizations to improve the performance
of A� in the context of alignments.
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7.4.1 Sorting Log and Model Moves

The A� algorithm presented is a graph-search algorithm that searches the shortest
path through the state space of the synchronous product. From the structure of
the synchronous product, it is clear that the model moves and log moves are
independent, i.e. if an optimal alignment contains a sequence of model moves and
log moves without any synchronous moves in between, these can be interleaved
arbitrarily. We can exploit this fact and force the A� algorithm to only consider
subsequences of model moves followed by log moves or vice versa in between any
two synchronous moves.

Proposition 4 (Log and Model Moves Can Be Sorted) Let SP = ((P, T , F, λ),

mi,mf ) be a synchronous product. Let γ ∈ T ∗ be a full execution sequence of SP.
We show that if γ = γ1 · 〈(
, tLM), (tMM,
), 〉 · γ2, then γ1 · 〈(tMM,
), (
,

tLM), 〉 · γ2 is also a full execution sequence of SP and vice versa.

Proof From the definition of a synchronous product, it is easy to see that •(
,

tLM) ∩ •(tMM,
) = ∅ and (
, tLM) • ∩(tMM,
)• = ∅, i.e. the transitions
corresponding to log and model moves do not share any input places or output
places. Hence, their firing order can be reversed without consequences.

��
Sorting model and log moves in an alignment can speed up the search, as fewer

edges have to be explored in the underlying search space. The change needed in the
algorithm is rather trivial, influencing only the selection of enabled transitions based
on the last transition fired on the shortest path to reach the current marking. If we
want to sort model moves first, we do not allow a model move to occur after a log
move. If we want to sort log moves first, we do not allow a log move after a model
move.

The sorting of log and model moves has the greatest effect if there are longer
sequences of log and model moves in the optimal alignment. In our example, the
only combination of a model move followed by a log move or vice versa in an
optimal alignment is at the end, where the model move (Af,
) and the log move
(
,Aaa2) can follow each other directly. For our example, this optimization would
reduce the search space by one state and a few edges at best.

7.4.2 Breaking Ties in the Priority Queue

The essential difference between Dijkstra’s algorithm and A� is the order in which
markings are investigated. In both cases however, markings are taken from an open
set X minimizing a specific function (function f in the case of A�). It is however
possible to increase the efficiency of A� by introducing second-order sorting criteria
in the set X, which is usually implemented as a priority queue.



144 7 Aligning Event Data and Process Models

Primarily, this queue is sorted based on the total cost function f , i.e. the sum of
the known cost so far, g, and the estimated remaining cost, h. If two nodes have the
same total cost, the sorting is arbitrary.

However, a second-order sorting criterion is the cost function g. By preferring
higher cost so far over lower costs, the A� first expands nodes that correspond to
longer prefixes of alignments, i.e. it essentially favours markings which have already
incurred the costs that are inevitable and hence it tries to get to the target state more
quickly. Especially when larger parallel sections of the model are not recorded in
the event log and therefore have to be considered as moves on model transitions,
this avoids the investigation of all possible interleavings of these transitions.

Interestingly, the alignment shown in Figure 7.11 is again the alignment found
by Dijkstra’s algorithm earlier, namely:

log trace As Aa 
 Sso Ro 
 Ao Aaa Aaa 

execution sequence As Aa Fa Sso Ro τ Ao 
 Aaa Af

Figure 7.11 shows the worst case evolution of the A� algorithm when the
selection of a marking from the open set X is not only based on minimizing function
f , but also considers as second-order criteria maximizing function g. Compared to
Figure 7.10, the number of states visited is reduced from 37 to 31 and the number
of edges from 41 to 31.

Sorting log and model moves and breaking ties in the priority queue reduces the
number of states and edges expanded by A�. However, for each state, we still need
to compute a heuristic, which is also time consuming. Therefore, we now look at
ways to reduce the number of (integer) linear programs solved.

7.4.3 Reusing Solutions to Linear Programs

On the one hand, the computational complexity of alignments is in the size of the
search space, as the state space of any Petri net is exponential in the size of the
model itself. A second element that makes alignment computations time consuming
is the linear programming problems needed for the heuristic function presented in
Definition 17.

The number of (integer) linear programs that need to be solved can be reduced
by storing not only the value of the estimated remaining cost h(m) for each marking
m, but also the solution −⇀

x that reaches this value. This stored solution can be used to
derive a new solution for each transition enabled at m in the search space for which
the corresponding element in −⇀

x is greater than or equal to 1.

Proposition 5 (Solutions to the Marking Equation Can Be Reused) Let SP =
((P, T , F, λ),mi ,mf ) be a system net with incidence matrix C and let c : T → R+
be a cost function, and h : RS(SP) → R+ the underestimation function following
Definition 17.
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We prove that for any transition t ∈ T and markings m,m′ ∈ RS(SP) with
m[t〉m′ and −⇀

x a solution corresponding to h(m) it holds that if −⇀
x (t) ≥ 1 then −⇀

x ′ =
−⇀x − −⇀

1 t is a solution corresponding to h(m′), i.e. h(m′) = c(−⇀x ′) = h(m) − c(t).

Proof Since m[t〉m′, we know that −⇀
m+C·−⇀1 t = −⇀

m′. Combining this with −⇀
m+C·−⇀x =

−⇀mf yields −⇀m′ + C · −⇀x − C · −⇀
1 t = −⇀mf . Since −⇀x (t) ≥ 1, we know −⇀x ′(t) ≥ 0, hence

−⇀x ′ = −⇀x − −⇀
1 t is a solution to the marking equation and h(m′) ≤ c(−⇀x ′).

Assume h(m′) < c(−⇀x ′) and let −⇀y ′ be the corresponding solution such that −⇀m′ +
C·−⇀y ′ = −⇀

mf and h(m′) = c(
−⇀
y ′). From before, we know that −⇀

m+C·−⇀1 t +C·−⇀y ′ = −⇀
mf .

Let −⇀
y = −⇀

1 t + −⇀
y ′. We know c(

−⇀
y ) = c(

−⇀
y ′) + c(t), hence c(

−⇀
y ) < c(

−⇀
x ′) + c(t) =

c(−⇀x ′ + −⇀
1 t ) = c(−⇀x ).

However, if c(−⇀y ) < c(−⇀x ), then x is not a solution corresponding to h(m), hence
h(m′) ≥ c(−⇀x ′)

Combining the two cases yields h(m′) = c(−⇀x ′), with −⇀x ′ = −⇀x − −⇀
1 t the

corresponding solution. ��
Consider again Figure 7.9. If the heuristic in the initial marking is based on the

vector [(As,As), (Aa,Aa), (Sso, Sso), (Ro,Ro), (Fa,
), (τ,
), (Ao,Ao), 1
2 (Aaa,

Aaa1),
1
2 (Aaa,Aaa2),

1
2 (
,Aaa1),

1
2 (
,Aaa2), (Af,
)], then the heuristics in

all states at distance 0 as well as the three highlighted states can be derived
from this solution, indicated by the h being in italics in the figure. Hence, rather
than solving all 17 (integer) linear programs, only 10 are actually solved and
seven are derived. If the initial solution is based on the integer vector [(As,As),
(Aa,Aa), (Sso, Sso), (Ro,Ro), (Fa,
), (τ,
), (Ao,Ao), (Aaa,Aaa1), (
,Aaa2),

(Af,
)] instead, no other solution has to be computed as this vector corresponds to
a realizable firing sequence in the synchronous product.

For the search spaces in Figure 7.10 and Figure 7.11, 10 to 11 solutions can
be derived rather than computed if we store the solution vectors (10 if the original
solution vector is non-integer, 11 if it is integer).

7.4.4 Estimating the Heuristic

Rather than computing heuristics for each state for which no solution can be derived
from the previous one, we can delay the computation of the heuristic even further
by using an estimated heuristic function.

Recall that in Proposition 5, we showed that any solution to the marking equation
can be reused to compute new solutions for other markings, as long as the variable
corresponding the transition executed was greater than or equal to 1. In this section,
we show how to handle the case when the corresponding variable is less than 1 (i.e.
0 in the integer setting).

Suppose from some marking m, by firing transition t , we reach marking m′.
We know that −⇀

x is the solution corresponding to h(m) and unfortunately −⇀
x t < 1.
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Rather than computing h(m′) immediately, we rely on the monotonicity of h and we
compute ĥ(m′) = h(m) − c(t) ≤ h(m′). We then replace line 22 of Algorithm 2 by
f (m′) ← g(m′)+ ĥ(m′) and keep track of the fact that for marking m′, the heuristic
is not known yet, but is only an estimate.

The fact whether h is known or only an estimate is then used as a second-order
sorting criterion in the priority queue, favouring markings for which the estimate is
actually known, and only if the head of the priority queue is a marking m with an
estimated heuristic, we compute the true heuristic, i.e. h(m), and we requeue the
marking m. The sorting based on function g becomes a third-order sort criterion in
this setting.

Consider Figure 7.12. This figure shows part of the graph expanded by the A�

algorithm until the first time that for none of the markings minimizing f in the
priority queue, the true heuristic h is known. The states currently minimizing f in
the priority queue are highlighted. They all are at distance 2 and have an estimated
heuristic ĥ = 1. All other states in the queue have the same f score (f = 3), but
they have a lower g score (g ≤ 1), hence they are not at the head of the priority
queue.

At this stage, since all highlighted states have an equal value for g, any of them
is equally likely to be selected for expansion. Since the heuristic is estimated, the
algorithm then computes the true heuristic h and requeues the state if h > ĥ. In the
worst case, this means that for all the highlighted states, an (integer) linear program
needs to be solved. If for any state m it holds that h(m) = ĥ(m), the A� algorithm
can continue with state m.

It is important to realize that in Figure 7.12, more states have been expanded than
before in Figure 7.9. However, as these are all states with derived solutions for h,
the overhead of this expansion is relatively small.

Figure 7.13 shows the worst case evolution of A� with estimated heuristics. For
all 11 highlighted nodes an (integer) linear program was solved and all states were
queued again, except for the rightmost marking labelled m in Figure 7.12. For this
marking it holds that h(m) = ĥ(m) and the solution vector for h(m) was used to
expand the search space to the final marking. If this node would have been selected
first coincidently, then only two linear programs needed to be computed to find an
optimal alignment, one in marking mi and one in marking m.

Interestingly, the use of estimated heuristics ensures that if the solution to the
first (integer) linear program computed in the search corresponds to a realizable
execution sequence of the model, then no other linear program is ever computed
for that trace as markings that are at the head of the priority queue are always true
solutions derived from this first linear program, i.e. if an integer solution would have
been obtained for the initial marking mi , then for this model solving only one linear
program would have been required.

The final algorithm for computing alignments, incorporating all the improve-
ments reported in this chapter, is described as Algorithm 3.

Table 7.1 shows an overview of the different algorithms presented in this section.
It shows how many states are expanded, how many edges are traversed and how
many estimates are computed, derived or estimated.
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Procedure 3 A� algorithm for alignments with estimated heuristics
Let SP = ((P , T , F, λ),mi,mf ) be a synchronous product and let c : T → R+ be a cost function
and h : RS → R+ ∪ {0} be a heuristic underestimating the cost of getting from any marking to
the final marking.
1: function ASTAR(SP,O, c )
2: A ← ∅ � Initialise closed set
3: X ← {mi} � Initialise open set
4: Y ← ∅ � Initialise estimated heuristics
5: p(mi) = (τ, τ ) � Initialise predecessor function
6: ∀m∈RS(SN) g(m) = ∞ � Initialise cost so far function g

7: g(mi) = 0
8: ∀m∈RS(SN) f (m) = ∞ � Initialise estimated total cost function f

9: f (mi ) = h(mi) � Compute estimate for initial marking
10: while X �= ∅ do � While not all states visited
11: m ← m ∈ X minimizing f (m) � Get the most promising marking m

12: if m = mf then � final marking reached
13: break while
14: end if
15: if m ∈ Y then � Heuristic of m is not exact
16: x ← h(m) � Compute the true estimate
17: Y ← Y \ {m} � Remove estimated heuristic
18: if x > ĥ(m) then � Heuristic increased
19: f (m) ← g(m) + h(m) � Update estimated total cost function
20: continue while � Note: m may not be minimizing f any more
21: end if � If heuristic did not chance, continue with m

22: end if
23: A ← A ∪ {m} � Add m to the closed set
24: X ← X \ {m} � Remove m from the open set
25: T ′ ← T

26: if #1(p(m)) ∈ T LM then � Marking m reached through a log move
27: T ′ ← T ′ \ T MM � Model moves not allowed after log moves
28: end if
29: for all t ∈ T ′ with m[t〉m′ do � For each relevant transition enabled in m

30: if m′ �∈ A then � Reaching a marking not yet visited
31: X ← X ∪ {m′} � Add m′ to the open set
32: a ← g(m) + c(t) � Compute the cost so far of reaching m′ via m

33: if a < g(m′) then � If this current cost is better than known cost so far
34: g(m′) ← a � Update cost so far function
35: if h(m′) can be derived from h(m) or h(m′) in cache then
36: f (m′) ← g(m′) + h(m′) � Update estimated total cost function
37: else
38: Y ← Y ∪ {m′} � Add m′ to the estimated heuristics set
39: f (m′) ← g(m′) + h(m) − c(t) � Update estimated total cost function
40: end if
41: p(m′) ← (t,m) � Update predecessor function
42: end if
43: end if
44: end for
45: end while
46: γ ← 〈t0, . . . , tn〉 such that tn = #1(p(mf )), tn−1 = #1(p(#2(p(mf )))) etc. until the initial

marking is reached recursively.
47: return f (mf ), γ � Return distance and alignment
48: end function
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Table 7.1 Overview of number of states and number of (I)LPs solved

Algorithm States Edges (I)LPs
computed derived estimated

min max min max min max min max min max

Full 104 244

Dijkstra 71 95 128 180

A� 31 37 31 41 31 36

A� with derived heuristics 31 37 31 41 21 25 10 11

A� with estimated heuristics 36 38 1 12 9 13 22 23

7.4.5 Caching Estimates

In this chapter, we focus on the problem of aligning a trace with a model, but in
practice, we are interested in aligning all traces in a log with a model. When aligning
an event log with a model, each trace can be considered separately. However, many
traces may actually reach the same marking in the original process and may have
the same activities in the trace.

In the heuristic function presented in Definition 17, the marking equation is used.
This implies that it abstracts from the order in which transitions are executed in the
synchronous product and therefore, we can build a cache of solutions that, for each
pair of a marking in the process model and the Parikh vector of remaining activities
in the trace, stores the solution to the linear program. This allows us to reuse these
solutions from one trace to the next, thereby speeding up the algorithm when applied
to logs at the cost of memory.

Excursion 14
Notes on implementing the open set X

In both Dijkstra’s algorithm and A�, elements are taken from an open set, such
that they minimize the value of a given function. To efficiently implement
such a set, a priority queue is a well-known data structure. A priority
queue (implemented using a balanced binary heap) keeps its elements sorted
based on the given cost function, and operations like insertion (line 18 of
Algorithm 2) and deletion (line 10 of Algorithm 2) are logarithmic in the size
of the queue.

In A�, the function f gets updated frequently (lines 16, 33 and 36 of
Algorithm 3) when new, shorter paths are found to an already scheduled, but
not yet visited marking. Sometimes, the marking needs to be moved up in the
queue if it was reached with lower cost g (see lines 33 and 36 of Algorithm 3).
Function f may also increase, when for a certain marking m, ĥ(m) is replaced
by h(m) ≥ ĥ(m) (line 16 of Algorithm 3).

(continued)
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The choice of data structure for X is therefore important. In current
publicly available implementations, an array-based binary heap backed by
a hash table is used. This implementation allows for most operations to be
logarithmic in the size of the queue (deletion, insertion, update).

7.5 Another Example

Before discussing the complexity of alignments in more detail, let us consider
another example trace 〈As,AaFa,Aaa,Ao,Af〉 for our running example. In this
trace, Aaa and Ao are clearly swapped and at least Sso and Ro are missing, i.e.
we expect the alignment to have cost 4. Figure 7.14 depicts the search space using
the techniques in this chapter at the point where none of the markings in the priority
queue have a known estimate h, i.e. they all have ĥ values. This expanded search
space is comparable to the one depicted earlier in Figure 7.12, with one important
difference. The highlighted states that currently have an estimated value for f of
2, i.e. g + ĥ = 2, get an exact value for f of 4 after computing a new estimate.
This means that they will be pushed down the priority queue one by one until for
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Figure 7.14 Evolution of A� with estimated heuristic ĥ, at the first point when no true h values
are known. Highlighted markings are in the priority queue, darker implies a higher f -score
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each highlighted node the exact h value is obtained. These exact values are shown
in Figure 7.15.

Only then the search continues, which leads to a worst-case expansion of the
search space depicted in Figure 7.16. For this A� search, a total of 18 linear problems
were solved to find the following optimal alignment:

log trace As Aa Fa 
 
 
 Aaa Ao 
 Af
execution sequence As Aa Fa Sso Ro τ 
 Ao Aaa Af

The reason that A� expands so many markings for the trace 〈As,AaFa,Aaa,Ao,
Af〉 lies in the fact that the marking equation is unable to detect the swapped activities
at the end of the trace, i.e. in the marking equation these events are both estimated
to correspond to synchronous moves, which is clearly not possible.

7.6 Complexity Results

In Petri net theory, the problem of reachability is the problem of answering the
question: Given a Petri net, an initial marking and a target marking, is the target
marking reachable from the initial marking by firing a sequence of transitions? And
if so, through which sequence? The problem of reachability can easily be translated
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into an alignment problem, i.e. find an optimal alignment of the empty trace and the
given model from the initial marking to the target marking, with a cost function that
assigns identical costs (> 0) to any transition.

If the target marking is reachable, then an optimal alignment can be found; if
the target marking is not reachable, then an optimal alignment does not exist. Any
algorithm that returns alignments is therefore guaranteed to be at least as complex
as reachability. Hence, the theoretical bounds of the optimal alignment problem are
in general higher than those of reachability.

However, as discussed earlier in this chapter, we explicitly assume easy sound-
ness, which implies reachability of the final marking from the initial one. Hence
the algorithm presented in this chapter does not cover the situation in which the
target marking (of the synchronous product) is not reachable, i.e. we assume that
the target marking is reachable. This assumption is needed to guarantee termination
of the A�-based technique.

More specifically, the A�-based techniques presented in this chapter require a
worst-case storage space linear in the number of reachable markings that are at a
distance less or equal to the optimal distance from the initial marking. Furthermore,
the worst-case time complexity is linear in the number of transitions between these
states. The size of this subgraph is, unfortunately, worst-case exponential in the
size of the Petri net (the well-known state space explosion problem in concurrent
systems).

Due to the aforementioned limitations, the A�-based technique may have prob-
lems in dealing medium or large instances. The reader is encouraged to wait
till Chapter 9, where alternative techniques to compute alignments are presented.
By decomposing the problem or by symbolically exploring the search space, the
problem of computing alignments is alleviated considerably, sometimes at the
expense of losing some of the guarantees provided by the technique explained in
this chapter.

To finish the content of this chapter, in the next excursion we informally discuss
an interesting extension of the alignment techniques presented so far: in general, not
one but several optimal alignments may exists for a given trace. How to compute
them all?

Excursion 15
Looking for all explanations
The alignment techniques presented in this chapter produce a single, optimal
alignment. However, for any given cost function, many alignments may be
optimal. Hence, the question arises if there is a way to obtain all optimal
alignments. This turns out to be a complex question.

Using Dijkstra’s algorithm (Algorithm 1), finding all optimal alignments
is possible by not stopping when the final marking is reached (line 10), but by
stopping when the final marking is reached with sub-optimal cost for the first

(continued)
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time (i.e. with cost higher than with which it was reached the first time). This,
however, does not guarantee that all optimal alignments are found, since only
a single path from the initial marking is stored. Post-processing is needed to
find all possible sequences.

Also A� can be changed to obtain all optimal alignments. In line 12
of Algorithm 2 the algorithm terminates the first time the final marking is
reached. However, to obtain all optimal alignments, the algorithm should
continue until the head of the priority queue has an f-score higher than that of
the optimal path identified. This ensures again that all states are reached that
are on a shortest path and the same post-processing is needed as before to find
all sequences.

Algorithm 3 cannot be changed to find all optimal alignments as certain
parts of the search space are not visited by definition.

Bibliographic Notes

The theory of this chapter is taken from the seminal work on alignments from
Arya Adriansyah’s PhD thesis [1]. The idea of alignments was first introduced by
Adriansyah et al. in [6], where it was presented as a technique to get conformance
insights into “flexible models”. Only later, the synchronous product was introduced
in [5] as a basis for formal alignment computations on Petri nets. In [120] further
improvements to the algorithm in Section 9.4 have been made using Petri net theory.

Over time, the fundamental algorithm for computing alignments did not change,
but many tweaks were added to the implementation which is available in the open
source framework ProM, which we discuss in detail in Chapter 12. In [124] a first-
ever empirical evaluation was performed on the effect of various of these tweaks on
runtime and memory use of the A� algorithm.

7.7 Exercises

7.A) Synchronous product

Draw the trace model for the trace 〈As,Da〉.
Next, draw the synchronous product for this trace and the process model
given in Figure 7.1.



158 7 Aligning Event Data and Process Models

7.B) Effect of the heuristic function

Consider the trace 〈As,Aa,Fa, Sso,Co,Da,Af〉 and an integer heuristic
function hI . If we solve the linear equation system for the initial marking
of the corresponding synchronous product, we get one of the two following
solution vectors, both with identical value for h = 4:

[(As,As), (
,Aa), (
,Fa), (
, Sso), (
,Co), (Da1,Da), (Af,Af)]
[(As,As), (Aa,Aa), (Fa,Fa), (Sso, Sso), (Ro,
), (Co,Co), (Sso,
),

(Ro,
), (τ,
), (Do,
), (Da2,Da), (Af,Af)]
Explain what the corresponding alignment looks like for both vectors

when using A� in Algorithm 3. What is the difference between the two
alignments and why are these differences there.

7.C) A� search

Illustrate the execution of the A� algorithm for the example of Exercise 7.A.

7) In the lab: tool support for aligning event logs and process models

Check out the lab session to practise
with tools that enable aligning event
logs and process models.

http://www.conformancechecking.com/CC_book_Chapter_7

http://www.conformancechecking.com/CC_book_Chapter_7


Chapter 8
Interpreting Alignments

The computation of optimal alignments is a challenging task, which demands
efficient techniques such as the ones seen in the previous chapter. For alternative
techniques, the reader can have a look at Chapter 9, where the challenge of
computing alignments is explored further, by considering different variations of the
problem and alternative representations.

But is it really worth the pain of computing alignments? This chapter is devoted
to reflecting on the principal role alignments have in the area of conformance check-
ing. We show that the notion of an optimal alignment poses some considerations
that need to be realized upfront, with the non-uniqueness being the most critical
(Section 8.1). Then, in Section 8.2 the importance of visualizing alignments is
reported, since human interpretation is often crucial in a conformance checking
project. Section 8.3 delves into the properties any quality metric should have. We
then dive into the interpretations that can be extracted when optimal alignments
are available, mainly for the two important conformance checking metrics: fitness
(Section 8.4) and precision (Section 8.5).

8.1 Types of Alignments

Non-synchronous moves in an alignment reflect deviations between modelled and
recorded behaviour. The different types of deviations are assigned a cost (cf.
Definition 15 in the previous chapter), which then enables to compare alignments
with respect to the sum of costs corresponding to the deviations of each of them.
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Excursion 16
What is the interpretation of costs in an alignment?
Given a deviation (e.g., a move on model), the cost assigned to it may have
alternative interpretations. This cost is often assumed to be assigned by a
domain expert, and clearly influences the final alignment obtained.

On the one hand, the penalty interpretation assigns a cost to deviations
with the aim at having an explanation of the recorded behaviour that is
less harmful with respect to the severity of the penalties. For instance,
a move on model representing a crucial activity for the process (i.e., an
activity that was required by the model but was not executed in reality)
may be assigned a high cost so that, if possible, the model explanation of
the recorded behaviour finds an alternative way which incurs a smaller cost
by avoiding incorporating that particular deviation. As an example, let us
assume that the trace 〈As,Aa,Fa, Sso,Ro,Af〉 is recorded for the model of
Figure 7.1, and all deviations have assigned a unit cost except for activities
“Decline Offer” and “Accept Offer”, whose deviation incurs a cost of 10
units. In the aforementioned trace, the cheapest explanation according to
the considered cost would be the execution sequence 〈(As,As), (
,Aa), (

,Fa), (
, Sso), (
,Ro), (Da,
), (Af,Af)〉, which has cost 5 and represents
an immediately declined application, in spite of the trace suggesting that the
process continued for a while.

On the other hand, the likelihood interpretation is centered around assign-
ing a cost associated to deviations in order to mimic the probability of the
deviations to happening in reality. For instance, one may regard model moves
as less likely than log moves, or even in a more granular perspective, to
consider a probability distribution over the set of activities that form the
alphabet of the synchronous product.

Finally, in the trust interpretation, costs would represent the trust we
have on each of the two objects confronted: process model and log [91].
For instance, if there is a high confidence in the log, then an alignment that
minimizes log moves is preferred since the model strives to explain as much
as possible the behaviour observed, even if several model moves are required.

For the rest of the chapter, let us assume the default cost function (cf. Defi-
nition 15) that assigns unitary costs to deviations and null costs to synchronous
moves. In the search for an optimal alignment, a crucial observation that needs to
be addressed is the existence of several solutions with the same optimal cost, i.e.,
optimal alignments are not unique. Let us now get back to the running example of
this book to highlight this fact; given the trace 〈As,Aa,Fa, Sso,Ro,Af〉 and the Petri
net of our running example shown in Figure 7.1, two possible alignments exist with
the same optimal cost of 2 units:
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log trace As Aa Fa Sso Ro 
 
 
 Af
execution sequence As Aa Fa Sso Ro τ Do Da Af

log trace As Aa Fa Sso Ro 
 
 
 Af
execution sequence As Aa Fa Sso Ro τ Ao Aaa Af

In the first alignment, the trace is regarded as a declined offer, while in the second,
the offer is considered accepted. Notice the importance of the previous observation
on the interpretation of costs, in order to guide the search for optimal alignments in
the most meaningful way for obtaining the desired interpretation. For instance, one
may simply assign a higher cost to model moves that consider the action “Decline
offer”, in order to untie the previous two optimal alignments, causing that the first
alignment is no longer optimal. Another possibility, as we illustrate in Section 9.1,
is to consider other perspectives as well (e.g., the amount offered) to determine the
most likely alignment.

The previous example illustrates an important situation that needs to be con-
sidered when using alignments as core elements to relate modelled and recorded
behaviour: there may be many optimal ways to relate these two views on the process
(in general, the number of optimal alignments is not known a priori). Clearly, the
selection of the optimal alignment among the set of possible options has an influence
on the analysis that is done afterwards, e.g., in the previous example, it is not the
same to regard the trace as an accepted or declined offer.

An alternative is to consider not one but all optimal alignments. This option,
although being more general, may blur the later analysis since there are not one
but several correspondences between modelled and recorded behaviour, and only
aggregated factors can be used in the analysis. For instance, for the previous
example, two optimal alignments exist for the given trace 〈As,Aa,Fa, Sso,Ro,Af〉
(assuming the default cost function). When analysing the likelihood of an unfinished
trace 〈As,Aa,Fa, Sso,Ro〉 being accepted (i.e., prediction, a well-known use case
of conformance checking we discuss in Chapter 10), we may conclude that one
of them is more likely than another, for example because the data shows that an
application for which an offer has already been sent to and received by the customer
is more likely to be accepted.

8.2 Visualization of Alignments

When using alignments in practice, we are often confronted with a considerable
number of traces and trace variants (traces that represent the same sequence
of activity executions are said to be of the same variant). It can be tedious to
look at long tabular representations of alignments. To assist users in reading and
interpreting one alignment, a visualization with colour coding was proposed to
enable analysts and researchers to spot and quantify the deviations quicker than
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by comparing tables. In this way, we can encode the following alignments

log trace As Aa Sso Ro 
 
 Do Da Af
execution sequence As Aa Sso Ro Fa τ Do Da Af

log trace As Aa Sso Ro 
 
 Ao Aaa Aaa 

execution sequence As Aa Sso Ro Fa τ Ao Aaa 
 Af

in a representative visualization shown in Figure 8.1. This visualization helps to
spot single deviations in a single trace (variant) of an event log. Most real life event
logs, however, consist of hundreds or thousands of variants. Thus, to evaluate the
conformance of an entire event log with respect to the model, the analyst still needs
to browse through a long list of single alignment visualizations.

Instead of projecting one alignment to one trace at a time, we can project all
the alignment results into the model through aggregation. Using this technique,
we can quickly locate deviations, if the misalignments are concentrated at certain
tasks in the process model. Different aggregations of the alignment components (log
move, model move, and synchronous move) are possible. Let us look at the simplest
aggregation: the ratios of synchronous-, model-, and log moves of an activity in the
model. Figure 8.2 depicts such an aggregation and we can easily locate the areas
of non-conformance by checking which activities are not completely green. This
overview visualization serves as indicator to see where in the process deviations

As Aa Sso Ro Fa Do Da Af

As Aa Sso Ro Fa Ao Aaa Aaa Af

τ

τ

Figure 8.1 Visualization of two alignments using chevrons and colours. Green indicates syn-
chronous moves, magenta is used for model moves (except for model moves on τ -labelled
transitions which are grey) and yellow indicates log moves

As Aa

Sso

τ

Ao

Do Da2

Da1

Co

Af

AaaFa

Ro

Figure 8.2 Visualization of all the alignments of a log on a model. Green indicates synchronous
moves and magenta is used for model moves. The colour ratio represents the relative occurrence of
deviations. Yellow-filled places indicate that log moves occurred while these places were marked
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Figure 8.3 Visualization of all the alignments of a log on a model. Green indicates synchronous
moves and magenta is used for model moves. The colour ratio represents the relative occurrence
of deviations

happen. Note that log moves are not easy to handle when projecting alignment
results to models as log moves occur in certain states and are not linked to transitions
in the Petri net. Figure 8.3 shows that such a visualization is not limited to Petri nets,
but can be used on other model types as well.

While measures like fitness and precision are computed on an aggregated level
on the complete log and the corresponding model, the projection of the alignment
results into the model allows us to get fine-grained information about the tasks,
where events are missing, or where events are in excess with respect to the model.
In Excursion 17, we look at a particular combination of log and model moves that
also allow a joint interpretation.

Excursion 17
Swapped behaviour
Looking at single alignment visualizations as depicted in Figure 8.1, some-
times we see patterns. One common pattern is that we encounter a log move of
an event and a model move of the corresponding task later on. Obviously, the
same pattern also works the other way around, meaning that the model move
comes first and the log move of the corresponding event follows. Consider the
following example:

As Aa Sso Ro Fa Do AfDa Daτ

(continued)
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Here, we can infer that the original trace is
〈As,Aa, Sso,Ro,Fa,Da,Do,Af〉. The two events Da and Do are swapped in
their execution order, which in turn produces an alignment with one model
move and a log move of Da. Assuming equal positive costs for model moves
and log moves of all activities in this example, would there be another equally
optimal alignment of the trace?

To conclude this section, visualizations like the ones discussed can help to easily
spot pain points in the process. These tasks in the model that show the highest ratio
of non-conforming behaviour are good candidates to start the investigations for the
root causes of misalignments.

8.3 Properties of Quality Metrics

Before digging into different metrics for fitness and precision, we discuss the
properties a metric should have. These properties have arisen as important features
in practice, but the list provided below is not meant to be complete. Also, it is
important to emphasize that current metrics often do not satisfy all the properties,
but only a subset. A deep discussion on metrics for precision can be found in [106].

First of all, a deterministic metric is often preferred, i.e., a metric computes the
same value given the same inputs. This is an important property, since it provides
certain reliability when using the metric on a regular basis. Instead, the use of
non-deterministic metrics may blur the analysis, since insights extracted from them
(e.g., a fitness problem) may be not meaningful. In general, alignment-based metrics
tend to be deterministic. In contrast, as the following example illustrates, heuristic
techniques to relate recorded and model behaviour like token replay, applied on
non-deterministic models, may provide different values depending on the non-
deterministic choices made.

For instance, consider the process model shown in Figure 8.4, and let us assume
the following trace: 〈As,Aa,Af〉. In case of token-based replay, when replaying the
event Aa, a decision has to be made about which one of the two paths to follow. If
the upper branch is selected, then no problem in replaying the trace is encountered.

As Aa FaSso Ro

Aa

Af

Figure 8.4 Process model with a non-deterministic decision
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If, however, the lower branch is followed, then some deviations (manifested as
missing/remaining tokens) are encountered, thus incorrectly assessing the trace
as non-fitting. Since the decision on going to the upper or lower branch is not
deterministic, token replay-based fitness is not a deterministic metric.

Second, a metric should be monotonic with respect to the addition or removal
of additional behaviour: adding (removing) behaviour to (from) a model should
only contribute to having at least the same fitness (same precision), or even higher
fitness (lower precision). Symmetrically, the addition (removal) of traces to the log
should only contribute to having at least the same fitness (same precision), or even
lower fitness (higher precision). For instance, let us now consider a variation of the
process model of Figure 8.4, where a new branch with additional checks from a
senior member has been added, namely “Senior check 1 (Sc1)” and “Senior check
2 (Sc2)”.

Clearly, the process model in Figure 8.5 is the result of adding behaviour to the
process model of Figure 8.4. However, if confronted with the trace 〈As,Aa,Af〉,
token-based replay on this trace for the process model in Figure 8.5 can take the
lower branch, providing the trace 〈As,Aa, Sso,Ro,Fa, Sc1, Sc2,Af〉, whose replay
incurs more violations, thus decreasing the fitness with respect to any of the two
other possible branches, and therefore, violating the monotonicity property. Instead,
alignment-based metrics tend to avoid this problem, since always the best (cost-
minimal) model trace is returned before of evaluating the metric.

Third, a metric should be behavioural, i.e., two models having the same
behaviour (but perhaps different structure) should be assigned the same value by
the metric. Behavioural metrics are invariant to the modelling notation or primitives
used, and focus on the underlying behaviour.

Finally, a metric is expected to be provided in R, in the [0 . . . 1] range, so it
can be understood easily. Moreover, it is expected that at least one input exists for
which the metric provides the extreme values (0 or 1). For instance, for the running
example of this book, one may expect that the flower model of Figure 3.12 should
have fitness 1 and precision 0 for any given log.

As Aa FaSso Ro

Aa

Af

Aa

FaSso Ro Sc1

Sc2

Figure 8.5 Process model with a non-deterministic decision
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8.4 Calculating Fitness

Section 3.2 introduced fitness as a crucial metric to asses the model’s capability in
reproducing recorded behaviour. In this section, a summary of the most important
variants to measure fitness is provided.

8.4.1 Token Replay Fitness

In Section 4.2 we described the token replay method as a light way of relating
modelled and recorded behaviour. Consequently, this method can be used to provide
a means to compute fitness.

Recall that in token replay the trace is used as a basis for executing activities in
the model and cases are considered one by one. If we translate this into Petri nets,
then for each event in a trace, a transition labelled with the corresponding activity
is fired. Let us consider our running example (Figure 8.6) and the non-fitting trace
〈As,Aa, Sso,Ro,Ao,Da,Af〉 .

We start by firing the transition labelled with As, since this is the only transition
enabled and it also corresponds to the first event in the trace. After executing the
subsequence 〈As,Aa, Sso,Ro〉, we reach a point where the model and the trace
deviate. The trace shows activity Ao, but the only enabled transitions in the model
are labelled with Fa and Co. The corresponding marking in the Petri net is depicted
in Figure 8.7.

As Aa

Fa

Sso Ro

τ

Ao

Do Da2

Aaa

Da1

Co

Af

Figure 8.6 Petri net for the running example

As Aa

Fa

Sso Ro

τ

Ao

Do Da2

Aaa

Da1

Co

Af

Figure 8.7 Petri net for the running example showing the marking at the point where the trace
starts deviating from the model
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As Aa

Fa

Sso Ro

τ

Ao

Do Da2

Aaa

Da1

Co

Af

Figure 8.8 Petri net for the running example showing the marking after token replay

At this point, the trace shows activity Ao and in the model, the corresponding
transition is fired. However, since it is not enabled, a missing token is recorded. The
last event in the trace is the activity Da and there are actually two equally labelled
transitions in the model. Since both are not enabled, a random decision is taken
to execute one of them. In this case, we select Da1 on the top and consequently,
after firing the enabled transition Af, we obtain the final state depicted in Figure 8.8,
where the dashed circles represent missing tokens and the closed tokens represent
the remaining tokens.

After replaying this trace, there are two missing tokens recorded and three
remaining tokens (note that the token in the output place does not count as we
expect this token to be there. If it wouldn’t be there, it would be counted as a
missing token). In total, eight tokens were consumed (seven by the transitions that
fired and one from the final place after completing the trace) and nine produced
(one for the initial marking and eight by the transitions that fired). The token-based

fitness for a trace is therefore f t
t = 1

2
· (1 − missing

consumed
) + 1

2
· (1 − remaining

produced
) =

1
2 · (1 − 2

8 ) + 1
2 · (1 − 3

9 ) ≈ 0.7083. For an entire log, the token-based fitness sums
all missing/consumed/remaining and produced tokens as shown in Equation 4.4.

From this small example, it is already clear that there are several issues with
token-based replay. First of all, in the example above, the choice of which of the
transitions labelled Da to fire is non-deterministic (see Section 8.3). Hence token-
based replay violates the first property: determinism. Especially when multiple
transitions with the same label have different numbers of incoming and outgoing
arcs, this may lead to different outcomes each time. There are ways to circumvent
this issue partially. For example, when firing Ao if it is not enabled (i.e. in
the marking depicted in Figure 8.7) we could identify a sequence of τ -labelled
transitions that enables Ao. However, in this example, such a τ -labelled transition is
not enabled. Furthermore, firing it would lead to a different fitness value, 0.8.

Second, token-based replay suffers from so-called “token flooding”. In the model
in Figure 8.8 transitions Fa, Co and Aaa are all enabled. Adding any one of them to
the trace would increase both the consumed and produced tokens by one, without
an effect on the remaining or missing tokens. Hence, the fitness of the trace would
increase, while adding a non-enabled transition to the trace would decrease the
fitness. Hence, the token-based replay metric is non-monotonous.



168 8 Interpreting Alignments

As Aa

Fa

Sso Ro

Ao

Do Da2

Aaa

Da1

Co

Af

Figure 8.9 Petri net for the running example without τ showing the marking after token replay

Third, the τ -labelled transition in the model is never fired since it does not appear
in the log, i.e. token-based replay cannot handle complex routing constructs that
appear in most real-life processes. Since there are many ways to express routing
in Petri nets using τ -labelled transitions, the token-based replay metric is non-
behavioural. It is for example possible to eliminate the τ transition in this model
by connecting both Do and Ao to the input places of τ as depicted in Figure 8.9,
thereby improving fitness without changing behaviour (fitness would be 0.7778 in
this case).

In conclusion, token-based fitness is in no way a fitness metric that satisfies the
properties outlined in Section 8.3. Therefore, by using alignments, a more robust
fitness metric can be devised. Sometimes, however, the computational challenge that
represents the derivation of alignments makes techniques like token-based fitness
the only choice when dealing with large instances.

8.4.2 Alignment-Based Fitness

To overcome the issues with token-based replay, alignment-based fitness has been
developed. As discussed in Chapter 7, alignments provide a way to compare event
logs and models by providing the most likely execution of a model for a given
trace. In token-based replay, the decision which transition to fire given the recorded
activity is made locally, while alignments are computed on the entire state space of
the synchronous product, i.e. decisions on which transition to fire are made globally.

The way alignments are constructed, i.e. by looking for a shortest path through
the state space of the synchronous product, is not necessarily deterministic. There
may be more than one shortest path. However, the final cost of the alignment is
minimal and therefore deterministic. On the basis of this cost, alignment-based
fitness is defined as:

fa = 1 − cost of the optimal alignment

cost of worst-case alignment
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Again, for any log L we have:

f l
a = 1 −

∑
σ∈L cost of the optimal alignment for σ∑
σ∈L cost of worst-case alignment for σ

For alignment-based fitness, two costs are of interest, namely the cost of the
optimal alignment and the cost of the worst-case alignment. The former is obtained
by the alignment algorithm defined in Chapter 7. The latter is simply defined as the
cost of aligning the empty trace in the model plus the cost of treating all events as
log moves.

As an example, let’s again consider Figure 8.6 and the trace 〈As,Aa, Sso,Ro,Ao,
Da,Fa〉 with the default cost function (assigning cost 1 to deviations and 0 to
synchronous moves and τ -labelled transitions). An optimal alignment for this trace
is:

log trace As Aa Sso Ro 
 
 Ao 
 Da Fa
execution sequence As Aa Sso Ro Fa τ 
 Do Da2 Fa

The cost of this alignment equals 3 (execution of the τ step as a move on model
has cost 0). The worst-case alignment for this trace is:

log trace 
 
 
 As Aa Sso Ro Ao Da Fa
execution sequence As Da1 Fa 
 
 
 
 
 
 


This worst-case alignment has a cost of 10, i.e. the cost of the 3 move on model
steps at the beginning and the 7 move on log steps at the end. The fitness of this

trace in this model is therefore fa = 1 − cost of the optimal alignment

cost of worst-case alignment
= 1 − 3

10 =
0.7000.

It is easy to see that this metric is deterministic since any other optimal alignment
of this trace would yield the same cost for the optimal alignment. Furthermore, the
metric is monotonous given the model. The alignment-based fitness metric is not
monotonous when the model is changed.

If two models allow for the same behaviour in different ways, the alignment-
based fitness metric also does not change. The actual alignment might contain more
moves on models with τ -labelled transitions, but these do not add to the cost of the
alignment and hence the cost does not change even if the optimal alignment does.
The model depicted in Figure 8.9 for example has the same behaviour as the one
with the τ transition. The alignment-based fitness is therefore the same. Finally, it is
easy to see that alignment-based fitness is indeed a metric, i.e. it has a value between
0 and 1 (fitness 0 can be reached by using a model and a log with two disjoint sets
of labels).
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8.4.3 Move-Based Fitness

The fact that alignment-based fitness is not monotonous when the model changes
makes this metric less useful when comparing models against a single log. For that
purpose, two other metrics can be based on alignments, namely move-model fitness
and move-log fitness.

Both move-model and move-log fitness are defined purely on the alignment, i.e.
they do not require a worst-case alignment in the model. They both relate the cost
of the model moves (or log moves) to the cost of the alignment assuming that all
synchronous moves are also model moves (or log moves).

Consider again the example trace 〈As,Aa, Sso,Ro,Ao,Da,Fa〉 and an optimal
alignment:

log trace As Aa Sso Ro 
 
 Ao 
 Da Fa
execution sequence As Aa Sso Ro Fa τ 
 Do Da2 Fa

The move-model fitness for this trace is defined as

f t
mm = 1 − model move cost

model move cost + cost of synchronous moves interpreted as model moves

which then for the example would be:

1 − 2

2 + 6
= 0.7500

The move-log fitness for this trace is defined as

f t
ml = 1 − log move cost

log move cost + cost of synchronous moves interpreted as log moves

which then for the example would be:

1 − 1

1 + 6
= 0.8571

Unfortunately, these two metrics are not deterministic since a different alignment
for the same trace might yield more model moves in favour of log moves or vice
versa. Consider for example the trace 〈As,Ro,Co, Sso,Da,Fa〉. There are at least
two optimal alignments, namely:

log trace As Aa 
 Ro Co Sso 
 
 
 
 Da Fa
execution sequence As Aa Sso Ro Co Sso Ro Fa τ Do Da2 Fa



8.4 Calculating Fitness 171

and

log trace As Aa Ro Co Sso Da Fa
execution sequence As 
 
 
 
 Da1 Fa

The move model fitness for the first alignment is f t
mm = 1 − 4

4 + 7
= 0.6364

and for the second is 1. The move log fitness is 1 for the first alignment and f t
ml =

1 − 4

4 + 3
= 0.4286 for the second.

Because of the non-determinism in these metrics, the generally accepted standard
for expressing fitness of a log with respect to a model is alignment-based fitness. In
the remainder of this chapter, when we mention fitness, we mean alignment-based
fitness.

8.4.4 The Role of Fitness

When comparing event logs and process models we prefer to look at the behaviour
in both. In Chapter 3, we presented behaviour in a relatively abstract way and we
introduced the intuition behind fitness and precision.

When looking at alignments, we see that they provide a natural interpretation
of fitness since alignments pinpoint the minimal changes needed to fit recorded
behaviour into a process model. In essence we accept the model as the ground truth
and we identify deviations in behaviour in terms of “behaviour that was recorded,
but was unexpected” (move on log) and behaviour that is “assumed to have taken
place, but was not recorded” (move on model). The more such deviations exist, the
less fitting a log is given the model.

For precision and other conformance metrics, we are interested in the behaviour
of a model that did not manifest yet (the more behaviour a model allows for, the less
precise it is) and hence we need to know what part of the model’s behaviour was in
fact observed. This is where alignments play an important role.

By computing fitness through alignments, we “fix the log”, i.e. the alignments
provide us with a reasonable assumption on the actual behaviour of the model that
occurred and was recorded in the log. In other words, by assuming that the move on
log events indeed were erroneously recorded and that the move on model events did
in fact happen and were not recorded, we allow for a clean separation of concerns
between fitness and other conformance metrics.

In the remainder of this chapter, the assumption is generally made that the
recorded behaviour fits the model. This should be read in such a way that when
an event log does not fit the model, the non-fitting traces are first aligned and then
the aligned traces are considered to be the behaviour against which other metrics are
computed.
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8.5 Calculating Precision

In Section 3.3 we already discussed the importance of having a metric to quantify
how precise a model is in describing recorded behaviour. This section focuses on the
operational problem of computing precision. In particular, we provide two possible
precision metrics, and reason on their adherence to the properties referred to in
Section 8.3. To explain the metrics in this section, we use the τ -reduced Petri net
for our running example, shown in Figure 8.10.

8.5.1 Precision Based on Escaping Arcs

As has been pointed out in Section 3.3, the need to explore the state space of
a process model in order to compute precision is a limiting factor in providing
an accurate metric. In spite of this, some techniques exist that try to limit this
exploration while capturing the underlying precision. The work in [72] and later
extended in [4] presented the simple idea of limiting the state space of the model to
the part that is visited by sequences in the log, and penalizing the escaping points,
i.e., arcs that are possible in the model and deviate from the log behaviour.

Let us denote by LMesc(L)
the language corresponding to escaping arcs of model

M over log L, that is,

LMesc(L)
= {σ · 〈a〉 | a ∈ A, σ ∈ Pref(L ∩ LM), σ · 〈a〉 ∈ Pref(LM \ L)}

where Pref(X) denotes the set of all prefixes of a language X. Clearly, when the
model is fitting, Pref(L) = Pref(L ∩ LM) ⊆ Pref(LM) holds. Remarkably, since
the event log and the alphabet of activities A are finite, so is LMesc(L)

. In this context,
the formula

precisionapprox = |Pref(L ∩ LM)|
|Pref(L ∩ LM)| + |LMesc(L)

| (8.1)

provides an approximation to the real precision of M with respect to L.

As Aa

Fa

Sso Ro

Ao

Do Da2

Aaa

Da1

Co

Af

Figure 8.10 Petri net for the running example without τ -labelled transitions
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As

Aa

Fa

Sso

Ro

Ao

Do

Da
Aaa

Co

Af

Figure 8.11 Escaping arcs (dashed activities) in the flower model for the prefix of the log trace
〈As,Aa〉

Let us consider the example of the flower model. We presented the BPMN
version of the flower model before in Figure 3.12 and we acknowledged that this
model is very imprecise in describing the event log of the running example.

Consider the following event log for the running example, containing only the
following three fitting traces:

T1 =〈As,Aa, Sso,Fa,Ro,Ao,Aaa,Af〉
T2 =〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Do,Da,Af〉
T3 =〈As,Da,Af〉

Figure 8.11 shows the Petri net version of the flower model.1 Using dashed
lines to indicate escaping arcs, Figure 8.11 highlights the imprecision for the prefix
〈As,Aa〉. In the state reached in the model, several escaping arcs exist, e.g.:

〈As,Aa〉 Af−→ 〈As,Aa,Af〉
〈As,Aa〉 Aaa−−→ 〈As,Aa,Aaa〉
〈As,Aa〉 Co−→ 〈As,Aa,Co〉
. . .

1The Petri net of Figure 8.11 illustrates where the name “flower model” comes from. The marked
place is the heart of the flower and the transitions form the leaves.
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Actually, only 〈As,Aa〉 Sso−→ 〈As,Aa, Sso〉 is not an escaping arc since
〈As,Aa, Sso〉 is a prefix of a log trace. By encountering several escaping arcs
in almost every reachable state of the flower model, Equation 8.1 clearly has a low
(close to 0) value.

For the Petri net of the running example, illustrated in Figure 8.10, very few
escaping arcs can be found with respect to a fitting event log (an event log for which
all traces correspond to execution sequences of the model). For our small example
log, this concerns only execution sequences that correspond to many iterations of
the loop and those execution sequences where Fa is executed before Sso or after Ro.
Hence, this model is expected to be fairly precise.

The only five escaping arcs for the traces above and the model of Figure 8.10 are:

e1 : 〈As,Aa, 〉 Fa−→ 〈As,Aa,Fa〉
e2 : 〈As,Aa, Sso〉 Ro−→ 〈As,Aa, Sso,Ro〉
e3 : 〈As,Aa, Sso,Fa,Ro〉 Do−→ 〈As,Aa, Sso,Fa,Ro,Do〉
e4 : 〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro〉 Co−→ 〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Co〉
e5 : 〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro〉 Ao−→ 〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Ao〉

The set Pref(L ∩ LM) for the previous log is:

〈〉
〈As〉
〈As,Aa〉
〈As,Da〉
〈As,Aa, Sso〉
〈As,Da,Af〉
〈As,Aa, Sso,Fa〉
〈As,Aa, Sso,Fa,Ro〉
〈As,Aa, Sso,Fa,Ro,Ao〉
〈As,Aa, Sso,Fa,Ro,Co〉
〈As,Aa, Sso,Fa,Ro,Ao,Aaa〉
〈As,Aa, Sso,Fa,Ro,Co, Sso〉
〈As,Aa, Sso,Fa,Ro,Ao,Aaa,Af〉
〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro〉
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〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Ao〉
〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Ao,Aaa〉
〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Ao,Aaa,Af〉

i.e., a total number of 17 prefixes of execution sequences. Hence, the precision
approximation according to Equation 8.1 would be:

precisionapprox = |Pref(L ∩ LM)|
|Pref(L ∩ LM)| + |LMesc(L)

| = 17

17 + 5
= 0.7727

As a final example, let us consider the same event log {T1, T2, T3} used in the
previous example, and a slight variation of the process model, shown in Figure 8.12,
where an additional branch has been added in the last stage of the process allowing
for activities “Cancel application (Ca)” and “Archive reason (Ar)” to be executed
in sequence. Apart from the escaping arcs mentioned before, this variation of the
running example has the following new escaping arcs:

e6 : 〈As,Aa, Sso,Fa,Ro〉 Ca−→ 〈As,Aa, Sso,Fa,Ro,Ca〉
e7 : 〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro〉 Ca−→ 〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Ca〉

Both escaping arcs correspond to the activity Ca only, since, in the event log
with three traces, this activity was not observed in the corresponding prefixes of
execution sequences of the model. Hence, the precision of this new model is slightly
worse than without the additional branch in Figure 1.3:

precisionapprox = |Pref(L ∩ LM)|
|Pref(L ∩ LM)| + |LMesc(L)

| = 17

17 + 7
= 0.7083

The attentive reader may already notice that considering fitting models is very
restrictive and perhaps not realistic. However, the metric mentioned above can be
extended if alignments are used. For a given trace σ , an optimal alignment �(M, σ)

to the model is computed. The execution sequence of the optimal alignment is then

As Aa

Fa

Sso Ro

Ao

Do Da2

Aaa

Da1

Co

Af

Ca Ar

Figure 8.12 Escaping arc for a variation of the running example
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used as a basis for computing escaping arcs precision, i.e. the language L ∩ LM in
Equation 8.1 is redefined in the following way:

LMa
L

= {γ | σ ∈ L, γ ∈ π2(�(M, σ))}

In other words, for an unfitting trace σ , one execution sequence �(M, σ) that
best resembles σ is used to build the joint language between model and log. For
instance, for the unfitting trace σ = 〈As,Af〉, the trace 〈As,Da,Af〉 that corresponds
to the optimal alignment of σ with the model in Figure 7.1 is used.

Notice that by relying on an alignment, and not the fitting prefix of a trace (as
done in Equation 8.1), potentially many more reachable states of the model are
explored, thus improving the accuracy of the metric with respect to the previous one
that only considers the fitting part of a trace. However, as optimal alignments are
non-deterministic, so is this metric.

This allows us to redefine, using alignments, the language corresponding to
escaping arcs of model M over log L, as:

LMa
esc(L)

= {γ · 〈a〉 | a ∈ A, γ ∈ Pref(π2(�(M, σ))), γ · 〈a〉 ∈ Pref(LMa
L

\ L)}

The precision metric considering alignments is:

precisiona
approx = |Pref(LMa

L
)|

|Pref(LMa
L
)| + |LMa

esc(L)
| (8.2)

What is important to realize is that the existence of τ -labelled transitions in
the model requires special care. Essentially, these transitions do appear in the
alignments, but are filtered out when computing the escaping edges.

In general, and due to the potential existence of not one but many optimal
alignments (cf. Section 8.1), the language corresponding to escaping arcs can
incorporate all the optimal alignments for every trace. Also, it can incorporate the
frequency of every prefix of a trace in the log, so that escaping arcs can be ranked
depending on the frequency of their source prefix.

Let us now reason about the adherence of the metric presented to the properties
enumerated in Section 8.3. We consider the alignment-based precision metric, since
it is more general. By associating an execution sequence with an optimal alignment
(which is not deterministic) when constructing the language corresponding to
escaping arcs, the metric is not deterministic (this may be changed if all optimal
alignments are considered instead of just one). The metric provides a real value in
the [0..1] range. The metric is however non-monotonic: A new trace in the log can
explore new imprecise parts of the model that where not explored before, so the
model’s precision can decrease.
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8.5.2 Precision Based on Anti-Alignments

In the previous section, the precision based on escaping arcs was presented. One
of the main strengths of the metric is its ability to cut the model exploration at
most one (or in general, k) steps away from log behaviour, thus bounding at will
the exploration of the model state space. In fact, this can be seen as a bounded
breath-first-search exploration of the model behaviour. Due to this, the metric may
be short-sighted in some situations: by only considering the model behaviour that
is one step ahead from log behaviour, one can regard as very precise models that
really have very deviating traces, since only a prefix of these traces is considered.

In this section we consider a metric for precision that, in contrast, considers the
exploration of the model behaviour in a depth-first-search way. We show that this
metric compensates the weakness of the previous metric, thus providing a more
accurate evaluation of precision. The metric is based on the notion of anti-alignment.

An anti-alignment is an execution sequence of a model which differs suffi-
ciently from all the traces in a log. In order to measure how much an execution
sequence differs from an trace, one needs a notion of distance; actually, a mapping
d : 	∗ × 	∗ → [0..1] is sufficient to define anti-alignments: the other axioms of
distance functions (symmetry, triangle inequality, . . . ) are not required for the
definition of anti-alignments. For a log L, we write d(σ,L) = minσ ′∈L d(σ, σ ′).
If L = ∅, then d(σ,L) = 1.

Definition 18 (Anti-Alignment) A (n, δ)-anti-alignment of a model M w.r.t. a log
L and a distance function d is an execution sequence σ ∈ LM such that |σ | = n

and d(σ,L) ≥ δ.

Notice that the distance function d is a parameter of the previous definition.
Typically, Levenshtein’s distance (or edit distance) is applied to count how many
replacements, deletions and insertions of symbols are needed to obtain σ ′ ∈ L,
projected to labelled transitions, starting from anti-alignment σ ∈ LM . This count
is finally divided by the length of the longest of the two sequences (to obtain a value
between 0 and 1).

Consider the Petri net shown in Figure 8.13, and the log of Table 8.1. The
trace 〈A,C,G,H,D,F,I〉 is a (7, 1

7 ) anti-alignment when considering edit-distance as
a distance metric: It can be obtained by inserting G in the trace 〈A,C,H,D,F,I〉;
and the length of the longest trace is 7. Notice that for δ > 1

7 there are no anti-
alignments for this example, because all other execution sequences of the model
have corresponding traces in the log.

The intuition behind the metric based on anti-alignments is as follows. A very
precise process model allows for exactly the traces to be executed and not more.
Hence, if one trace is removed from the log, this trace becomes the anti-alignment
for the remaining log as it is the only execution of the model that is not in the log.
This property is used to estimate precision.
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A
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τ

E

F

I
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Figure 8.13 An example model

Table 8.1 An event log

Trace Frequency

〈A,B,D,E,I〉 1207

〈A,C,D,G,H,F,I〉 145

〈A,C,G,D,H,F,I〉 56

〈A,C,H,D,F,I〉 23

〈A,C,D,H,F,I〉 28

Definition 19 (Trace-Based Precision) Let L be an event log and M a model,
such that L ⊆ LM . Trace-based precision can be defined as follows:

Pt (M,L) = 1 − 1

|L| ·
∑
σ∈L

d(σ, γ
d,mx
|σ | (M,L \ {σ }))

where γ
d,mx
n (M,L) is one complete anti-alignment, such that d(γ

d,mx
n (M,L),L)

is maximal and the length is less than or equal to n.

Informally, for each trace σ in the log, a maximal anti-alignment γ for the
model M and the log without that trace L \ {σ } is computed. This anti-alignment is
guaranteed to reach the final marking mf and hence represents an element of LM .
Then, the distance between σ and γ is computed, which is then averaged over the
log, not taking into account the relative frequencies of the traces in the log. If the
language of the model equals the log, then the anti-alignment γ is equal to σ for
every σ , hence the precision is 1. If for every trace σ , an anti-alignment can be
produced which has maximal distance from σ , the precision is 0.

A perfectly fitting log is assumed in Definition 19, i.e. σ ∈ L|σ |
M and hence

γ
d,mx
|σ | (M,L \ {σ }) exists. This can be ensured by obtaining an alignment between

the log and the model first and then taking the projection of the optimal alignment to
the model, rather than the trace itself. As for the escaping arcs precision presented
in the previous section, the same discussion on the use of alignments applies here.

Frequencies of traces are not considered as the comparison is between the
language of the model and the recorded traces. Observing one trace more frequently
than another should not influence the precision of the model as the amount of
unrecorded behaviour does not change.

In trace-based precision, the length of the anti-alignment considered is bounded
by the length of the removed trace σ . This guarantees that an anti-alignment exists in
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the log without trace σ , but also limits the possibility to see imprecise executions of
the model that are much longer than the lengths of the traces. Therefore, a log-based
precision metric can be defined, which uses an anti-alignment of the model with
respect to the entire log of a much greater length than the longest trace recorded in
the log.

Definition 20 (Log-Based Precision) Let L be an event log and M a model. Log-
based precision can be defined as follows:

Pn
l (M,L) = 1 − d(γ d,mx

n (M,L),L)

where n represents the maximal length of the anti-alignment, typically of the order
of several times the length of the longest trace in the log.

The log-based precision metric uses a single anti-alignment of considerable
maximum length to determine the amount of behaviour allowed by the model, but
not recorded in the event log. The final precision metric is a weighted sum of log-
and trace-based precision.

Definition 21 (Precision) Let L be an event log and M a model. Anti-alignment-
based precision can be defined as follows:

P(M,L) = αPt (M,L) + (1 − α)Pn
l (M,L)

The precision metric has two parameters, α, indicating the relative importance of
the trace-based vs. the log-based part, and, n, indicating the maximum length of the
log-based anti-alignment. Typically, one may choose α = 0.5 and n = 2 · max

σ∈L
|σ |.

Let’s consider the Petri net shown in Figure 8.13 again, with the log of Table 8.1.
Earlier, we identified the trace 〈A,C,G,H,D,F, I 〉 as a (7, 1

7 ) anti-alignment.
Furthermore, when leaving one trace out, we get the following anti-alignments2:

σ γ
d,mx

|σ | (M, L \ {σ }) γ projected d(γ, σ )

〈A,B,D,E,I〉 〈A,B,D,E,I〉 〈A,B,D,E,I〉 0

〈A,C,D,G,H,F,I〉 〈A,C,G,H,D,F,I〉 〈A,C,G,H,D,F,I〉 2
7

〈A,C,G,D,H,F,I〉 〈A,C,G,H,D,F,I〉 〈A,C,G,H,D,F,I〉 2
7

〈A,C,H,D,F,I〉 〈A,C, τ,H,D,F,I〉 〈A,C,H,D,F,I〉 0

〈A,C,D,H,F,I〉 〈A,C, τ,D,H,F,I〉 〈A,C,D,H,F,I〉 0

The trace-based precision is Pt(M,L) = 1 + 5
7 + 5

7 + 1 + 1

5
= 31

35 ≈ 0.886 and

the log-based precision is P 14
l (M,L) = 1− 1

7 = 6
7 ≈ 0.857, hence overall precision

2Note that for the edit distance between the anti-alignment and the removed trace, the trace is first
projected onto labelled elements, i.e. the τ transition is removed first.
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with α = 0.5 for this model and log is P(M,L) = 0.5 · 31
35 + 0.5 · 6

7 ≈ 0.871.
In contrast, the escaping arc precision metric introduced in the previous section
evaluates to 0.96 for this instance, since very few escaping arcs are detected.

The anti-alignment trace-based metric for precision satisfies the properties
enumerated in Section 8.3. It is deterministic whenever a deterministic choice is
made among the set of maximal complete anti-alignments queried. Also, the metric
provides a real value between 0 and 1. Finally the metric is monotonic: Adding
traces to the log (in the model) can only increase (decrease) or retain the precision
metric (for a sufficiently large value of n).
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The two metrics introduced in this chapter to estimate the precision of a process
model with respect to an event log were originally presented in [4] (escaping
arcs-based) and [121] (anti-alignment-based). There are other works related to the
evaluation of precision; the work in [126] uses the notion of artificial negative events
as a strategy to enrich every prefix of a trace in the event log with those events that
are not expected to occur, and query the process model in the corresponding state.
When event logs fall into the category of big data, a scalable but less accurate way
to estimate precision was presented in [58].

8.6 Exercises

8.A) Computing all optimal alignments

Given the process model shown below, and the trace 〈A, D, E〉 :

• What is the cost of an optimal alignment?
• Provide several optimal alignments.

A

C

E

D

B
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8.B) Fitness calculation metrics

Given the process model and trace of the previous exercise:

• Compute the fitness of the trace using token replay fitness. For that,
transform first the process model into a Petri net.

• Compute the alignment-based fitness.
• Compute the move-model fitness.
• Compute the move-log fitness.

8.C) Precision calculation based on escaping arcs

Given the process model of Figure 8.12 and the event log corresponding to
the following three fitting traces:

T1 =〈As,Aa, Sso,Fa,Ro,Do,Da,Af〉
T2 =〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Ao,Aaa,Af〉
T3 =〈As,Da,Af〉

Compute the precision based on escaping arcs.

8.D) Precision calculation based on anti-alignments

Given the process model of Figure 8.13 and the event log corresponding to
the following three fitting traces:

T1 =〈A,B,D,E,I〉
T2 =〈A,C,G,D,H,F,I〉
T3 =〈A,C,D,H,F,I〉

Compute the precision based on anti-alignments.

8) In the lab: tool support for metric computation and alignment
visualization

Check out the lab session to practise
with tools that compute metrics relat-
ing event logs and process models.
Also, tools for visualizing alignments
are used.

http://www.conformancechecking.com/CC_book_Chapter_8

http://www.conformancechecking.com/CC_book_Chapter_8


Chapter 9
Advanced Alignment Techniques

As already acknowledged in previous chapters, alignments became a pivotal element
for conformance checking. The techniques seen in Chapter 7 represent the basis for
alignment computation, but the attentive reader will realize that the aforementioned
techniques work on the basis of a particular algorithmic perspective. In this chapter,
we aim at describing several alternatives for computing alignments in order to
complement the algorithmic perspective assumed in Chapter 7.

In particular, the following variations of alignment computation are considered.
First, in Section 9.1 we show how alignments can be made multi-perspective, so
that not only control flow but also other perspectives are considered. Then, we show
in Section 9.2 how to compute alignments in an online scenario. The chapter then
turns the focus onto how the complexity of computing alignments can be alleviated:
in Section 9.3 a decomposition technique to divide and conquer the problem of
alignments is reported. Then, in Section 9.4 the computation of alignments using
structural theory is described. Finally, the computation of alignments from two
different process representations is presented in Section 9.5.

9.1 Incorporating Other Perspectives

In the discussed techniques in this book so far, we have focused on the control
flow aspect of processes. Besides the correct ordering of activities inside a process,
however, we can also capture additional information in the process model in the
form of business rules that further restrict the execution. In general, we distinguish
between the data, cost, resource, and time perspectives. Failing to take into account
these perspectives in conformance checking can be problematic, since violations

© Springer Nature Switzerland AG 2018
J. Carmona et al., Conformance Checking,
https://doi.org/10.1007/978-3-319-99414-7_9
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Figure 9.1 BPMN model of our running example with additional data, resource and temporal
dependencies

of rules considering these perspectives cannot be detected by only analysing the
control flow of a process.

Broadly speaking, process data of individual cases is one perspective. This
corresponds to the event attributes, as we defined them in Definition 1. In our
example, the requested loan amount might trigger certain business rules. Also, a
business rule may be that when a received document is not signed, we need to send
it back to collect the signature. The existence of a signature in a form can be stored
and processed by current technology, and fed back to event data. This way, process
data can play a decisive role in the execution of processes.

In the following, we look at an enriched process model to reflect additional data
constraints. We see a rule capturing data conditions annotated on the arc to the new
“Cross-check application” activity in Figure 9.1. Here, the optional activity “Cross-
check application” (Cca) should be always executed, when the amount is higher
than 10,000.

Additionally, there might be compliance regulations in place that impose certain
rules on the resource allocation inside a process. One well-known rule is the
four-eyes-principle specifying that two related activities should be performed by
different people. We see an example of the rule in our model in Figure 9.1. The
process participant who performs “Accept application” (Aa) is called personA. Later
in the process, “Cross-check application” (Cca) must be performed by someone
other than personA.

Besides data and resource rules, the temporal aspect of processes plays an
important role when facing time-critical processes. Checking conformance with
respect to temporal rules is required when we need to ensure that we reach a certain
state in a reasonable time frame. Many service-level agreements (SLAs) specify
time constraints. A common SLA could be that we want to guarantee a response
time of less than two weeks. To help achieve that SLA, we might specify that it is
not allowed to waste time after accepting an offer (Ao). Instead, we want to approve
and activate the application (Aaa) within 1 week after the acceptance; cf. Figure 9.1.

Following this line of reasoning, the work by Mannhardt et al. [64] addresses the
need to cater for multiple perspectives in conformance checking. Therefore, they
extended the A� algorithm to work on Petri nets with data (DPN-net). We omit
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the mathematical formalism here and focus on the motivation, the intuition of the
approach, complexity implications, and open research challenges in this area.

The extension of conformance checking to data, resource constraints, or time
constraints is natural, as these additional dimensions are also part of the process.
Why would a process model that precisely states that activity “Finalise application”
should be done after “Accept application” not be able to express who should be
doing it (maybe the same person that accepted it), when (maybe latest 1 week later),
or what the permissible data ranges are for a particular data entry?

In fact, there are language extensions that cover all these dimensions in models
to gain more expressiveness. The additional expressiveness comes at a price of
understandability. The question of how we can best enrich process models with
more information, without impacting their readability and understandability, is an
ongoing challenge for researchers and practitioners. Currently, much of the burden
to make these expressive models understandable rests on the shoulders of tool
vendors. Techniques like selecting only the desired part and applying filters to
different perspectives are helpful to divide and conquer the complexity.

Conformance checking with multiple perspectives is agnostic of the modelling
notation and the visual representation of the additional constraints. The algorithms
only need to have access to the rules as input to the search. The output is an
alignment that balances between violations of the different perspectives considered.
Control flow and data (also capturing time and resources) are typical examples to
consider in multi-perspective conformance checking. Exactly as it is possible to
penalise different log moves and model moves, we can also set the costs of violations
to data rules.

Let us consider again the model in Figure 9.1. We observe the trace described in
Table 9.1. Tracking the path along the model, we see that the recorded case reads
〈As,Aa,Fa, Sso,Ro,Ao,Aaa,Af〉. This trace if fully compliant to the control flow
of the model, if we disregard the additional perspectives. Taking into account the
other perspectives, however, deviations arise.

The model specifies that a cross-check of the application should be done if the
amount is higher than 10,000 and also that the person performing this additional
check should not be the person that performed the “accept application” activity. This
is not met in the trace of application “A0054”, as the cross-check is missing. Further,
consider the time constraint of a maximum 1 week delay in the model between
the “Accept offer” activity and the “Approve and activate application” activity. The
recordings in Table 9.1 show that it took almost 8 days to approve and activate the
application after acceptance.

These violations with regard to the model’s additional perspectives need to be
handled in the alignment. The question is, how can we best align the observations
with the rules that regard data, in combination with the alignment in the control flow
perspective? In comparison with the control flow alignment, when aligning the data
perspective, we reconsider the data values or application of rules so that the trace
is compliant with the enhanced model. It turns out that the machinery we have for
computing alignments on the control flow level can be adjusted to also take into
account the other perspectives.
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In the example trace for application “A0054” in Table 9.1, we can make the
case compliant to the cross-check rule by assuming that the offer selected and sent
(Sso) was actually about 10,000. Then, the data rule referring to the amount being
> 10,000 would be false. Therefore, the absence of the “Cross-check application”
activity would not be an issue.

Hence, saying that the data value is incorrectly recorded as 11,000 instead of the
true value of 10,000 is one possible explanation of the detected deviations. Another
explanation is that the value is correct, but the additional “Cross-check” activity was
omitted in the case, which results in a model move in the control flow alignment.
Thus, the alignment needs to balance between these explanations. We can again
use the concept of costs to capture the deviations and their relation to one another.
If the analyst has a good reason to believe that data values are correct, the costs
for changing data values can be set much higher than the cost of additional model
moves or log moves in the multi-perspective alignment.

Table 9.2 shows two possible explanations side by side in a multi-perspective
alignment of trace “A0054”. The deviations are highlighted with boldface font.
The cost function that evaluates the optimality of these alignments can be defined
to balance the perspectives. For example, we can specify that a cost function c

penalises a non-conformance in a data value with 1, and also an existence of a
log move or model move with a cost of 1. Let (sL, sM) denote an element of an

Table 9.2 Two possible alignments explaining the trace for application “A0054” in Table 9.1 with
the model Figure 9.1

Alignment a1

log trace execution sequence

As @Feb. 1, 12:31
(Res: <user>,
Amount: e12,000)

As @Feb. 1, 12:31
(Res: <user>,
Amount: e12,000)

Aa @Feb. 1, 12:32
(Res: John)

Aa @Feb. 1, 12:32
(Res: John)

Fa @Feb. 3, 09:00
(Res: John)

Fa @Feb. 3, 09:00
(Res: John)

Sso @Feb. 5, 12:32
(Amount: e11,000)

Sso @Feb. 5, 12:32
(Amount: e10,000)

Ro @Feb. 10, 10:00
(Signed: YES)

Ro @Feb. 10, 10:00
(Signed: YES)

Ao @Feb. 10, 10:04
(Res: John)

Ao @Feb. 10, 10:04
(Res: John)

Aaa @Feb. 11, 09:05
(Res: John)

Aaa @Feb. 10, 11:03
(Res: John)

Af @Feb. 11, 09:06 Af @Feb. 18, 09:06

Alignment a2

log trace execution sequence

As @Feb. 1, 12:31
(Res: <user>,
Amount: e12,000)

As @Feb. 1, 12:31
(Res: <user>,
Amount: e12,000)

Aa @Feb. 1, 12:32
(Res: John)

Aa @Feb. 1, 12:32
(Res: John)

Fa @Feb. 3, 09:00
(Res: John)

Fa @Feb. 3, 09:00
(Res: John)

Sso @Feb. 5, 12:32
(Amount: e11,000)

Sso @Feb. 5, 12:32
(Amount: e11,000)

Ro @Feb. 10, 10:00
(Signed: YES)

Ro @Feb. 10, 10:00
(Signed: YES)


 Cca @Feb. 10,
10:01
(Res: Carla)

Ao @Feb. 10, 10:04
(Res: John)

Ao @Feb. 10, 10:04
(Res: John)

Aaa @Feb. 11,
09:05
(Res: John)

Aaa @Feb. 10,
11:03
(Res: John)

Af @Feb. 11, 09:06 Af @Feb. 18, 09:06
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alignment. A possible cost function can be [64]:

c(sL, sM) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if(sL �=
 ∧sM =
) (move in log)

1 + |written variables| if(sL =
 ∧sM �=
) (move in model)

|unequal written variables| if(sL �=
 ∧sM �=
) (synch. move)

0 otherwise

That is, the cost function extends the standard cost function by penalizing:

• Model moves that write to variables, where the number of written values adds to
the cost, and

• Synchronous moves that refer to different variables, where the number of
different written variables adds to the cost.

If we apply this cost function, we get the costs for the two alignment alternatives
a1 and a2 as follows. Alignment a1 has two data variables changed in the alignment
to make it fit to the modelled constraints:

1. The amount was reduced to allow skipping the required cross-check activity. (+1)
2. The timestamp of the approve and activate application activity was adjusted to fit

to the time constraint of less than one week. (+1)

In contrast, the alignment a2 has the following deviations:

1. A model move for the mandatory activity to cross-check the application was
added, to reflect the four-eyes-principle before accepting the offer. (+1)

• A time value was added to the model move. (+1)
• A resource value was added to the model move. (+1)

2. The timestamp of the activity to approve and activate the application was adjusted
to fit to the time constraint of less than one week. (+1)

In total, we get cost 2 for alignment a1 and cost 4 with alignment a2 in this
example. We could, however, say that, for compliance reasons, the cost of changing
data values in this process would be significantly higher, e.g., 10. In that case, a1
would have cost 11, and alignment a2 would still have cost 4. As the cost function
is flexible, we can adjust it to balance corrections to time, resources, data (on a
variable-based granularity), and also to the costs of different log and model moves,
as in the cost-based alignment discussed in Chapter 7.

This extension of the control flow-based alignments to multiple perspectives is a
generalization of the concepts to find the cost-optimal alignment for a case. Indeed,
if we set the costs for data, resource, and time deviations to 0, we end up with the
original optimal control flow alignment. Let us next have a quick look into how we
can derive the values for data, time, and resource variables to fit the model.

We already know that the A�-algorithm can help us find the cost-optimal
path through the synchronous product of the trace model and the process model
(Chapter 7). In addition, we need to make sure that the data constraints in the
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model are fulfilled. Intuitively, we would prefer the values that are closer to the
original values, when we have an interval to pick from. This fits nicely with
known optimization frameworks such as ILP (see Chapter 5) or mixed integer linear
programming (MILP). Therefore, one solution for this problem is to solve an MILP
at every step of the A�-search to assign values to the variables that best fit the
constraints. The proposed solution by Mannhardt et al. [64] does exactly this and
furthermore treats time and resources the same way as it treats data variables. In
particular, the idea of the techniques is to only look at the written values, and ensure
that the constraints imposed by the model up to the current state are met during
the search. The solution to each MILP contains variable assignments that meet the
constraints.

Furthermore, computing alignments can be expensive, as the number of possible
paths through the synchronous product is exponential in the trace length. Intuitively,
it should be clear that when adding additional (orthogonal) dimensions to the
problem, the complexity increases. In fact, if no modification to the basic A�

search is done, a solution that is optimal in one dimension could be suboptimal in
other dimensions.1 Nevertheless, we can still apply the A�-algorithm in the multi-
perspective setting because the costs are non-decreasing (the cost function is not
allowed to be negative). In this way, the search can simply store the current cost at
a certain state and explore the most promising candidates first.

Conceptually, we can treat the time perspective similarly as ordinal data in
multi-perspective alignments. Yet, there are some subtle differences and challenges
remaining. Imagine a rule stating that a patient is only allowed to continue a
treatment after one hour has passed since the administration of a certain drug. In
this case, when the records show that some treatments were continued after only
15 min had passed, the simplistic assumption that we can fix one data value (the
timestamp) raises another problem. If we fixed the timestamp of the following event
and delay it by 45 min to meet the temporal rule, we can accidentally swap the order
of this event with the following events.

Iterative side effects such as the one illustrated before make the topic of multi-
perspective conformance checking a very challenging one, and therefore interesting
research needs to be carried out in the future in this regard.

9.2 Online Conformance Checking

The conformance checking techniques seen so far only allow for a posteriori anal-
ysis: The amount of (non-)conformant behaviour is computed after the completion
of the case. However, this a posteriori analysis may not be acceptable in several

1Recently, it has been shown how the technique can be extended so that an optimal balanced
alignment can be computed, at the expense of increasing the size of the search space with the
notions of control flow successors and augmentation with variable assignments [64].
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contexts, when deviations need to be repaired immediately, before the case finishes.
This opens the door to study the conformance checking problem from an online
perspective.

Most techniques available nowadays require a complete trace in order to calculate
their conformance. From a usability point of view, however, this represents an
important limitation: If the respective case is already finished, the counter-measures
needed to fix any deviation can be implemented only at a very late stage. Here, we
drop such a requirement and present the computation of conformance for running
cases. Therefore, if a deviation from the modelled behaviour is observed, the
problem is noticed immediately, which allows for an immediate response. When
these errors are accumulating, the “seriousness” of the case is raised, thus providing
stronger alerts for that case.

We assume to have an event stream which, basically, is a data stream of events.
According to [9, 14, 49], a data stream consists of an unbounded sequence of data
items which are generated at very high rate. To cope with such data streams, in the
literature, often the following assumptions are made: (1) each item is assumed to
contain just a small and fixed number of attributes; (2) algorithms processing data
streams should be able to process an infinite amount of data, without exceeding
memory limits; (3) the amount of memory available to an algorithm is considered
finite, and typically much smaller than the data observed in a reasonable span of
time; (4) there is a small upper bound on the time allowed to process an item,
e.g. algorithms have to scale linearly with the number of processed items: often
the algorithms work with one pass of the data; (5) stream sources are assumed to
be stationary or evolving. The literature reports several algorithms for the analysis
of data streams [9, 44, 45]. However, typically these works cope with different
problems, such as classification, frequency counting, time series analysis, and
change diagnosis (concept drift detection).

Let C denote the universe of case identifiers, and A denote the universe of
activities. An event stream S is an infinite sequence over C×A, i.e. S ∈ (C×A)∗.
A pair (c, a) ∈ C × A represents an event, i.e. activity a was executed in context
of case c. S(1) denotes the first event that we receive, whereas S(i) denotes the i-th
event.

Consider the Petri net in Figure 9.2, with transitions referring to six activities,
namely: “Register request (Rr)”, “Check ticket (Ct)”, “Examine claim (Ec)”, “Pay
compensation (Pc)”, “Reject claim (Rc)” and “Decide (D)”, which appears twice
in the model. For this model, we have the stream S1 shown in Figure 9.3, related
to the same activities. Observe that event (3,D) is emitted first (S1(1) = (3,D)),
event (4,Rr) is emitted second, etc. Our knowledge after receiving the third event,
i.e. S1(3) = (5,Rr), w.r.t. case 5 is different from our knowledge after receiving
the fifth event. After the third event, for case 5, we observed 〈Rr〉, whereas after the
fifth event this is 〈Rr,Ec,Ct〉.
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Rr
p1

Ct

p3
D2

p5p0

p2 p4

Ec

D1

τ

Rc

Pc

p6

Figure 9.2 Example Petri net (adopted from [114]) with initial marking [p0] and final marking
[p6]

(3 D ) (4 Rr) (5 Rr) (5 Ec) (5 Ct)(6 Rr) (4 D) (5 D) (5 Pc)

Figure 9.3 Example event stream S1

Assume that we have only seen the first three events, i.e. (3, d), (4, a) and (5, a),
of S1. The only activity seen for case 5 is activity a. An optimal alignment for
case 5 is2

event stream Rr 
 
 

execution sequence Rr Ct D1 Rc

After observing the fourth event, i.e. (5,Ec), an optimal alignment for case 5 is

event stream Rr Ec 
 
 

execution sequence Rr Ec Ct D2 Pc

In both situations, the costs of the alignments is 3. However, after observing the
first nine events on stream S1 we obtain activity sequence 〈Rr,Ec,Ct,D,Pc〉 for
case 5 with the corresponding optimal alignment:

event stream Rr Ec Ct D Pc
execution sequence Rr Ec Ct D2 Pc

Thus, since the knowledge we possess about cases changes over time, com-
puting conventional alignments prior to case completion is expected to lead to
an overestimation of the true alignment costs. Hence, the techniques presented
in Chapter 7 must be adapted for live (i.e., non-finished) cases, in order to avoid
underestimating the degree of conformance, and more importantly, to avoid false

2Remember that the model trace corresponding to an alignment must reach the final marking;
see Chapter 7.
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event stream Rr Ct D
execution sequence Rr Ct D1

event stream Rr Ct D
execution sequence Rr Ec Ct D2

Figure 9.4 Two prefix alignments for 〈Rr,Ct,D〉 and the Petri net of Figure 9.2. Note that the end
bar on the right is missing to indicate these are prefix alignments and not complete alignments

positives from a deviation perspective. The important idea is to drop the requirement
of reaching the final state of the model after executing the execution sequence
induced by the alignment. Instead, we require only that the final state is reachable
from the state assumed with the partial execution sequence. This way, we are moving
from traditional alignments to prefix alignments, which are specifically designed to
incorporate trace incompleteness.

Figure 9.4 shows two examples of prefix alignments. Notice that the notion of
optimality is still valid for prefix alignments: the left prefix alignment is preferred
over the right prefix alignment, but also preferred over any other prefix alignment
that has log moves, since it only has synchronous moves, i.e., it has minimal cost
for replaying the incomplete trace 〈Rr,Ct,D〉.

To compute prefix alignments based on the event stream, the following steps are
taken. If an event related to a certain trace is received, it is checked whether there is
a previously computed prefix alignment for that trace. If the event corresponds to a
log move, i.e. because the activity simply has no corresponding task in the process
model, such a log move is appended to the prefix alignment. If this is not the case,
the marking in the process model is fetched, corresponding to the previous prefix
alignment.

For example, given prefix alignment 〈(Rr,Rr)〉 based on the Petri net of
Figure 9.2, the corresponding marking is [p1, p2]. If the event is the first event
received for the trace, the marking [p0] is obtained. If it is possible to directly fire
a transition within the obtained marking with the same label as the activity that the
event refers to, a corresponding synchronous move is appended to the previously
computed prefix alignment. Otherwise a shortest-path algorithm is applied. In order
to be applied in the streaming context, the backtracking needed in the search to
guarantee optimality is limited.

More in detail, assume we receive the i-th event (c, a) and let m be the marking
obtained by executing the model part in the current prefix alignment. If there exist
transitions with label a, yet none of these transitions is enabled in m, the algorithm
simply tries to find the shortest path to explain a from m. In order to possibly
reconsider local decisions that may degrade the quality of the prefix alignment
obtained, the search can start from reverting the current alignment up to a maximal
revert distance k and start the shortest path search from the corresponding marking.

Consider Figure 9.5, where we depict a prefix alignment for 〈Rr,Ec,X,Ct,D〉
and the Petri net of Figure 9.2 (X is a new activity here that has not been observed
before and is not referenced by any transition of the model).
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event stream Rr Ec X Ct D
exec. sequence Rr Ec Ct D2

Receive  Ec event stream Rr Ec X Ct D Ec
exec. sequence Rr Ec Ct D2 Ec

Figure 9.5 Partially reverting (k = 2) the prefix alignment of 〈Rr,Ec,X,Ct,D〉 and the model of
Figure 9.2 when of receiving a new event related to activity Ec. The part before the thick rule is
not considered when computing the new prefix alignment

Assume a new event is received that states that activity Ec follows
〈Rr,Ec,X,Ct,D〉 and a revert window size of k = 2 is used. Note that the marking
reached by the left prefix alignment is [p5].

The alignment is allowed to be reconsidered for the last two moves, i.e. the moves
(D,D2) and (Ct,Ct) are reverted, reaching the marking [p2, p3], from which a
search for the shortest path to better explain Ec is computed. The result is of the
search is 〈(Ct,Ct), (D,D2), (
, τ ), (Ec,Ec)〉, depicted on the right-hand side of
Figure 9.5. Note that after this step, the window shifts, i.e. two moves have been
appended to the current prefix alignment and thus (D,D2) and (Ct,Ct) are no longer
considered upon receiving of new events.

By focusing on prefix alignments instead of alignments, the requirements for
an online approach stated at the beginning of this section are addressed. Still, the
approach is strongly influenced by the partially reverting window parameter and
cannot guarantee optimal prefix alignments unless k = ∞.

Excursion 18
Alignments in presence of Velocity: the second V of Big Data
Velocity in Big Data refers to the frequency of incoming data that needs to
be processed. In general, one important feature of techniques dealing with
a stream of events that arrive at high rates is the ability to store a bounded
representation of it, so that memory requirements are under a certain limit.
Unavoidably, this causes part of the information to be lost.

In this section, we have seen how the computation of alignments can be
adapted so that a stream of events containing the prefixes of several live cases
is considered. The aforementioned ability to bound memory requirements is
implemented by controlling the window parameter that allows us to revert
only part of the previously taken decisions.

9.3 Decomposition-Based Alignments

A well-known concept in computer science to tackle challenging problems is to
divide and conquer. The divide and conquer principle can be found in different
algorithms for example for sorting (e.g. quicksort [54]).
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(a) (b)

Figure 9.6 Different ways to decompose an event log. For illustration, a log is vertically
stacked of traces represented as discs. (a) Vertical decomposition of entire traces. (b) Horizontal
decomposition by slicing the traces by event groups

When we are looking at event logs that contain longer traces, the exponential
complexity of the alignment algorithm can make the problem of finding a cost-
optimal alignment impractical. Therefore, it is important to find ways of how we
can solve conformance questions also for bigger event logs and process models.
Obviously, one way to speed up computation is to parallelize the computation of an
event log by horizontally splitting the log into multiple pieces. That is, we can look
at the set of different trace variants and partition them into multiple groups. Provided
that we have a scalable infrastructure at hand, e.g., multiple computing nodes in a
cloud, we can distribute the event log and separately align each sub-log to the model
to detect conformance errors. This is shown in Figure 9.6a on the left-hand side.

In Figure 9.6b the more interesting scenario of decomposition is depicted that
splits the traces in the event log horizontally into partially overlapping pieces
that, when put together, cover the original traces. The decomposition is driven
by the model that can be decomposed into different sub-nets. These sub-nets are
constructed by partitioning arcs in the net in such a way that:

• arcs connected to the same place are in the same sub-net,
• arcs connected to the same τ -labelled transition are in the same sub-net, and
• arcs connected to transitions that have the same label, which is assigned to more

than one transition in the net, are in the same sub-net.

Each sub-net contains the arcs and their connected nodes.
We can think of sub-nets as puzzle pieces that can be connected at their

boundary transitions to reconstruct the original model. Figure 9.7 shows a maximal
decomposition of Figure 7.1 into sub-nets. Relying on these sub-nets, decomposing
the alignment of an event log to the model is straightforward. For each sub-
net, we collect the corresponding events of a trace by projection. For the trace
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pa0

pa5

pa4

pa3

pa6

pa2

pa1

Aa

Sso

Co

Fa

Ro

τ

Ao

Do

Co

Sso Ro

Ao Aaa

As Aa

Do Da2

Aaa

Da1

Af

Aa

Fa

pa7

Af

As

Figure 9.7 A maximally decomposed Petri net for the running example

pa0 As
pa1 As Aa Aaa Af
pa2 Aa Fa
pa3 Fa Ro Ao
pa4 Sso Ro
pa5 Ao Aaa
pa6 Aa Sso
pa7 Af
trace As Aa Fa Sso Ro Ao Aaa Af

Figure 9.8 Projected traces corresponding to the sub-nets shown in Figure 9.7

〈As,Aa,Fa, Sso,Ro,Ao,Aaa,Af 〉 and the sub-net shown in Figure 9.7, we get the
projections as shown in Figure 9.8.

We can now compare each projected sub-trace to the respective sub-net in
Figure 9.7. Let us look at sub-net pa6 and the part of the trace that corresponds
to the activities inside pa6 (i.e., {Aa,Co, Sso}). The resulting trace is 〈Aa, Sso〉 as
also shown in Figure 9.8. Aligning the projected trace to the sub-net is now an
easy exercise, as we decreased the model size and trace size considerably. In this
particular example, an alignment with only synchronous moves is possible. We can
see that by simply replaying the sub-trace 〈Aa, Sso〉 on the sub-net pa6 by using
only synchronous moves. After firing Aa, the place in pa6 is assigned a token and
the transition Sso becomes enabled and can be fired. Decomposed conformance
checking is now reduced to computing these piece-wise alignments of all sub-nets
with the corresponding projected traces.

Let us reflect here on this decomposition approach. Is it possible to decompose
the alignment problem in this way using sub-net and obtaining the same guarantees
on the optimality of the alignment result? If this would be true, then the complexity
of the problem could be considerably reduced. In the original work that introduces
sub-nets for decomposed conformance checking a proof is provided for the fact that
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decomposing the problem yields zero alignment cost (i.e., perfect fitness), if and
only if, the actual non-decomposed alignment cost of a trace is also zero. In the
other settings, when the cost is higher, the decomposition technique yields a lower
bound of the actual cost. That is, the cost is underestimated by the decomposition,
because the sub-nets do not include all dependencies if treated individually.

More recently, building on this idea of decomposed conformance checking, a
solution for getting optimal alignments was proposed by Verbeek et al. [127].
It turns out that the costs of the decomposed alignments can only deviate from
the optimal costs for the entire model when the asynchronous moves involve
the boundary transitions of the sub-nets. When only transitions within a sub-net
are causing non-conformance—that is, the log and model moves are framed by
synchronous moves—the sum of the costs on each sub-net equals the cost of the
optimal alignment of the entire model. In other words, the decomposition-based
results are equivalent to the non-decomposed results in this setting. With this insight,
it is possible to devise a method to run the fully decomposed alignment and only
repeat alignment computation for the parts of the trace, which have violations on
the sub-net boundaries. The affected sub-nets are then merged and the alignment
computation is repeated on the merged part. In the worst case, this approach falls
back to the non-decomposed method. On average, however, the number of traces
affected would be expected to become smaller and smaller, such that the fully-
merged step needs to be only repeated for a few traces (if at all).

Excursion 19
Alignments in presence of volume: the first V of Big Data
Volume in Big Data refers to the size of the input data source. Distributed
processing is enabled by dividing the problem into smaller subproblems that
can be treated individually. This expands the size of problems that can be dealt
with considerably.

In principle the decomposition technique described in this section allows,
under certain conditions, to divide and conquer the problem of computing
alignments. For instance, one can see how unprecedented data sets, i.e.,
process models containing several hundreds of nodes, can be handled by
decomposition-based alignment techniques [74].

9.4 Structural Theory to Compute Alignments

A summary of the techniques for computing alignments of Chapter 7 is that
alignment computation can be cast as a reachability problem in Petri nets: find the
shortest execution sequence leading to the final marking of the synchronous product.
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The reachability problem for Petri nets (is marking m′ reachable from m?) is a
well-known problem. It has been studied from several angles, but one important
branch is the linear characterization of the reachable markings provided by the
marking equation, as it has been described in Section 6.2.1. Clearly, the fact that
the set of states characterized by the marking equation is a superset of the real
set of states (RS(N) ⊆ PRS(N)), makes any approach that relies only on the
marking equation a semi-decision technique. Yet, the marking equation enables
useful techniques for conformance checking: We already have seen in Chapter 7 that
alignment computation can be accelerated with the help of the marking equation, by
computing lower bounds to the distance function at every node of the search space,
so that some parts can be discarded in the exploration.

In spite of the aforementioned problem, the marking equation can be adapted to
explore the search space of the synchronous product without passing through nega-
tive, unrealizable markings. We show that this requires making all the intermediate
markings passed by a solution of the marking equation explicit in the ILP problem,
i.e. by adding constraints to the ILP that require that all these markings be non-
negative. Unfortunately, this adaptation implies that the number of variables of the
ILP problem grows significantly (the number of transitions in the alignment times
the size of the solution vector), which then incurs a high penalty in memory and time
for the ILP solver. Furthermore, the length of the optimal alignment is not known in
advance. However, instead of computing the execution sequence from the initial to
the final marking in one shot, an incremental computation of the global execution
sequence can be applied.

The idea is illustrated in Figure 9.9: Starting in the initial marking, use the
marking equation to iteratively compute a prefix −⇀

x of limited size that avoids
passing through negative markings. The search is always towards the final marking
as the tail of the current prefix (dashed lines starting at m1,m2, . . . ,mk−1), again
using the marking equation but now only as an oracle to reach the final marking.
This way, the search for an alignment is done by skipping over states that would be
investigated in an A� search. With the help of a simple example, we illustrate this
sketched iterative algorithm based on the marking equation to compute alignments.

mi mfm1 m2 mkx x x

State Space between initial and final mariking

tail of x to reach the final marking, provided by the marking equation

tail of x to reach the final marking, provided by the marking equation

Figure 9.9 Overview of the iterative alignment computation through the marking equation. In the
figure, x denotes the solution of the marking equation computed in markings m1, m2, . . . , mk . For
each case, assignments to x are guaranteed to not contain more than a small number of non-null
entries, and denote an execution sequence that only passes through non-negative markings
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A
p1

C

p3
D

p5p0

p2 p4

B

Figure 9.10 Example process model

C D
p8p6 p7

Figure 9.11 Example trace model

(A,⟫)
p1

(C,⟫)

p3
(D,⟫)

p5

6 7 8

p2 p4

(B,⟫)

(⟫,C) (⟫,D)
pp p

(C,C) (D,D)

p0

Figure 9.12 Example synchronous product

Consider the example model in Figure 9.10. This model contains a simple
parallelism between transitions B and C after A and before D. Now, consider
the trace 〈C,D〉 translated into a trace net as shown in Figure 9.11. Obviously,
this trace does not fit the model, as transitions A and B are missing from it. The
corresponding synchronous product is shown in Figure 9.12. Here, the transitions
(C,C) and (D,D) denote the synchronous moves between model and log.

For this example, an optimal alignment would be:

log trace A C B D
execution sequence 
 C 
 D

For this alignment, the transitions (A,
) and (B,
) are the model moves, and the
transitions (C,C) and (D,D) are the synchronous moves.

The marking equation for the synchronous product is shown below. Here, the
columns corresponding to each transition in the incidence matrix are labelled with
the corresponding transition label and the rows in the marking are labelled with
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place labels:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mi

p0 1
p1 0
p2 0
p3 0
p4 0
p5 0
p6 1
p7 0
p8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(A,
) (B,
) (C,
) (D,
) (C,C) (D,D) (
,C) (
,C)

−1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 0 −1 0 −1 0 0 0
0 1 0 −1 0 −1 0 0
0 0 1 −1 1 −1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 −1 0 −1 0
0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· −⇀
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mf

0
0
0
0
0
1
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By associating a cost function to the firing of each transition (where transitions
corresponding to synchronous moves have less cost than the rest, and the cost is
minimized), and requiring a solution in N, an ILP (see Chapter 5) can be devised.
In this ILP, a solution (an assignment to vector −⇀

x ) represents a cheapest (in terms
of cost) multiset of transitions that take the synchronous product from the initial
marking to the final marking.

Yet, when using a symbolic exploration of the state space provided by the
marking equation, several problems arise:

1. The vector −⇀
x may be spurious, i.e., does not correspond to a real execution

sequence of the synchronous product, passing through markings in PRS(N) \
RS(N) (see Section 6.2.1).

2. The vector −⇀
x provides only a Parikh representation, but not the real execution

sequence. Therefore, one needs to find what execution sequence corresponds
to −⇀

x .

Excursion 20
The role of the marking equation when computing alignments through A�

These problems were the reason in Chapter 7 for using the marking equation
simply as a means to prune the search space of the A�, and not as the main
exploration aid as we plan to do in this section. In Chapter 7, at each state
reached in the exploration, the marking equation is solved to estimate the cost
of reaching the final marking. Hence, the risk of dealing with solutions that
are spurious is only transferred to underestimating the cost to reach a final
marking, i.e., the lower bound used can be simply not achievable, because
there is no real execution sequence supporting that cost. In these situations,
the exploration cannot stop and further successors of the current state need to
be explored (so pruning is not possible).

The marking equation can be refined to address the two problems above: By
replicating it to isolate the transition that is fired at each step, the two problems are
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solved. The drawbacks of this strategy are twofold: On the one hand, the number of
variables of the ILP formulation grows considerably, thus increasing the complexity
of the problem. On the other hand, the number of steps to reach the final marking
needs to be known in advance. In spite of these two drawbacks, the strategy is used
in the technique explained at the end of this section, and hence we formalise the
crucial idea: how to fire x transitions by computing the marking reached for the
transition fired at each step:

Property 1 (Marking Equation for Executing x Transitions) Let N = 〈P, T ,F 〉
be a Petri net, mi,mf two reachable markings of the net and σ = 〈t1, . . . , tx〉 a
trace such that (N,mi)[σ 〉(N,mf ). Furthermore, for 1 ≤ j ≤ x, let mj be such that
(N,mi)[〈t1, . . . , tj 〉〉(N,mj ). Using the marking equation and general properties of
transition firing, the following properties hold:

• The incidence matrix C can be projected into two matrices: the production matrix
C+, which contains the positive elements in C, and the consumption matrix C−,
which contains the negative elements in C. Clearly, C = C+ + C−.

• −⇀
mf = −⇀

mi + C · −⇀σ as the trace σ is executable,

• for 1 < j ≤ x it holds that −−⇀
mj = −−−−⇀

mj−1 + C · −⇀
1tj , i.e. the marking equation holds

for each individual transition in the execution sequence,
• for 1 < j ≤ x it holds that −⇀

mi + C+ · −−−−−⇀σ1..j−1 + C− · −−−⇀σ1..j ≥ −⇀
0 , i.e. before firing

of each transition there are sufficient tokens to fire that transition.

Using the aforementioned property, an algorithm for incrementally computing
alignments using the marking equation can be devised. The core idea of this
algorithm is to use an ILP that constructs an exact prefix of an alignment of
relatively short length, and estimates the remainder of the alignment in the same
way the A� techniques do. Then, the exact prefix of relatively small length x is
executed, computing the resulting marking and repeating the computation until the
final marking is reached.

Let us illustrate the idea over the example described at the beginning of this
section. We can use the marking equation for firing x = 2 transitions in the
synchronous product of the example, and then reach a solution in two steps. The
solution corresponding to the first step would be:

1. Vectors of variables −⇀
x1,

−⇀
x2,

−⇀
x3 ∈ N|T | are used, with the constraints∑

0<i≤|T |
−⇀
x1(ti ) = 1,

∑
0<i≤|T |

−⇀
x2(ti ) = 1 (so both vectors −⇀

x1,
−⇀
x2 are selectors

for exactly one transition to fire). The marking equation is required for the first
two transitions that are fired (corresponding to the first two vectors of variables),
i.e., −⇀

m1 = −⇀
m0 + C · −⇀

x1, and −⇀
m2 = −⇀

m1 + C · −⇀
x2. To guarantee non-negativity of

markings −⇀m1 and −⇀m2, the constraints −⇀m0 + C− · −⇀x1 ≥ −⇀
0 and −⇀m1 + C− · −⇀x2 ≥ −⇀

0
are required, respectively. The last vector of variables, which is not restricted
to have only one transition, is used to estimate the rest of the alignment, i.e.,
−⇀mf = −⇀m2 + C · −⇀x3.
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2. The following solution is provided by the ILP solver:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
mi

p0 1
p1 0
p2 0
p3 0
p4 0
p5 0
p6 1
p7 0
p8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ C ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
x1

Am 1
Bm 0
Cm 0
Dm 0
Cs 0
Ds 0
Cl 0
Dl 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
m1

p0 0
p1 1
p2 1
p3 0
p4 0
p5 0
p6 1
p7 0
p8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ C ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
x2

Am 0
Bm 0
Cm 0
Dm 0
Cs 1
Ds 0
Cl 0
Dl 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
m2

p0 0
p1 1
p2 0
p3 0
p4 1
p5 0
p6 0
p7 1
p8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and −⇀
x3 reaches the final marking:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2

p0 0
p1 1
p2 0
p3 0
p4 1
p5 0
p6 0
p7 1
p8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ C ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
x3

Am 0
Bm 1
Cm 0
Dm 0
Cs 0
Ds 1
Cl 0
Dl 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
mf

p0 0
p1 0
p2 0
p3 0
p4 0
p5 1
p6 0
p7 0
p8 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now at this point it is known that the prefix 〈A,C〉 corresponds to an execution
sequence in the model that reaches a marking m2, which corresponds to a model
move on A (transition Am) and a synchronous move on C (transition Cs ). From
m2, the marking equation, through vector −⇀

x3, suggests that there exists an execution
sequence that reaches the final marking.

Now we initiate the marking equation using m2 as initial marking and we repeat
the aforementioned step, with the corresponding set of constraints that adopt the
same philosophy as the ones used before. The following solution for vectors of
variables −⇀

x1,
−⇀
x2,

−⇀
x3 ∈ N|T | is found by the ILP solver (−⇀x3 = −⇀

0 ):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
m2

p0 0
p1 1
p2 0
p3 0
p4 1
p5 0
p6 0
p7 1
p8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ C ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
x1

Am 0
Bm 1
Cm 0
Dm 0
Cs 0
Ds 0
Cl 0
Dl 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
m3

p0 0
p1 0
p2 0
p3 1
p4 1
p5 0
p6 0
p7 1
p8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ C ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
x2

Am 0
Bm 0
Cm 0
Dm 0
Cs 0
Ds 1
Cl 0
Dl 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⇀
mf

p0 0
p1 0
p2 0
p3 0
p4 0
p5 1
p6 0
p7 0
p8 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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which completes the prefix previously computed up to the final marking, providing
the full execution sequence 〈A,C,B,D〉, corresponding to the alignment discussed
above.

In general, for large problem instances and because the length of the execution
sequence is not known in advance, the first x fireable transitions should be a low
number, and some type of progress should be required for these x transitions, so that
at least some of them explain some event, by performing a synchronous or log move.
This way, the state space of the synchronous product is explored by jumps of x

transitions in a depth-first manner until the final marking is reached (see Figure 9.9).
These x firings are locally optimal with respect to the cost function that minimizes
the number of asynchronous moves, but in general the method cannot guarantee that
the global solution found is optimal: for instance, there may be a path from mi to
mf in Figure 9.9 that globally has less cost than the concatenation of locally optimal
paths x shown in the figure.

In conclusion, the method described in this section can serve as an alternative
to the alignment technique provided in Chapter 7, especially when the state space
of the synchronous product is very large, and thus the complexity of exploring it
explicitly is high. In an extreme setting, when it is not possible to fully explore the
state space, methods like the one described in this section can at least provide an
alignment (although not guaranteed to be optimal).

9.5 Alignments Beyond Petri Nets

In this last section, we provide two alternative representations that can be used
to compute alignments. The first one is event structures, a well-known model for
concurrency which facilitates the uniform representation of event logs and process
models. The second is mixed-paradigm models, which can be fully declarative, or
instead a combination of declarative and procedural constraints.

9.5.1 Event Structures

Process models and event logs are different representations of a process. The
computation of an alignment between these two representations may reveal incon-
sistencies, that sometimes originate from the different perspectives these two
representations have: For instance, while process modelling languages like Petri nets
or BPMN show the concurrency between activities explicitly, this does not happen
for event logs.

A possible alternative is to map both representations into a unified representation,
so that the comparison is facilitated. Prime Event Structures (PES) is a well-known
model for concurrency [77]. In particular, PES can be a unifying language for
process models and logs, embedding the particularities of each representation. In
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this short summary, we do not provide the details on how to transform a process
model or a log into a PES, and refer the interested reader to [46].

A PES is a graph of events, where an event represents an activity execution in the
process. Using a PES to define a process model, for a task that occurs multiple times
in an execution sequence, each occurrence is represented by a different event. The
order of events is defined via three binary relations: (1) Causality (a < b) indicates
that event a is a prerequisite for b ; (2) Conflict (a#b) implies that a and b cannot
occur in the same execution sequence; (3) Concurrency (a||b) indicates that no order
can be established between a and b.

Let us consider a different, simple BPMN process, depicted in Figure 9.13. We
show the corresponding PES in Figure 9.14. The directed arcs represent direct
causality, while dashed (undirected) arcs denote conflict. Concurrency can be
derived from causality and conflict relations [77]. A possible execution sequence
of the PES shown in Figure 9.14 starts with event e0 (A), then e1 (B), then e3 (D),
and finally e5 (E) and e9 (H ). Notice that by including event e3, which is in conflict
with event e2, the latter (and the events caused by e2) cannot be included in this
execution sequence.

A

C D

E

F

H

B

Figure 9.13 Simple process, taken from [46]

e5:E e7:E

e9:H 

e8:F

e10:H 

e4:De3:D

e1:B e2:C 

e0:A

e6:F

e11:H e12:H 

Figure 9.14 PES for the process model of Figure 9.13, taken from [46]
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Table 9.3 Event log from which the PES shown in Figure 9.14
can be generated

Trace Frequency

〈A, B, C, D, E, H〉 1

〈A, B, C, D, F, H〉 1

〈A, C, B, D, E, H〉 1

〈A, C, B, D, F, H 〉 1

〈A, B, D, E, H〉 1

〈A, B, D, F, H 〉 1

Likewise, traces in a log can also be converted into a PES. In Table 9.3 we show
an event log from which the PES of Figure 9.14 can be obtained.

Once both process model and event log are mapped into a PES, their confor-
mance can be assessed. The intuition behind this approach is to compute a partially
synchronised product of the two PESs. This is a state machine in which the states
denote pairs of configurations (each being a set of events) visited during an error-
correcting synchronised traversal of the two input event structures (see Figure 9.15).
The arcs are labelled with the possible operations between the two event structures:
matching an activity provided that both PESs can execute the corresponding events
labelled with it, or hiding an event on the left (lhide) or right (rhide) PES.

The process starts from the empty configurations of each PES, and ends with
all pairs of maximal configurations of the two input PESs. Figure 9.15b shows a
simple example of the computation of the partially synchronised product from two
PESs, shown in Figure 9.15a. Every state is annotated with the configuration of each
one of the PESs (collection of causality-closed events executed until the state), and
the sequence of matched activities so far. The goal is to find the set of optimal
event matchings, i.e., the set of states corresponding to maximal configurations
for which the number of matched activities is maximal. For that, similarly to the
procedure in Chapter 7 for optimal alignments, the A� heuristic search technique can
be used. Notice that, once these optimal event matchings are computed, alignments
in the form reported in this book can be generated. For instance, the alignment
corresponding to the maximal configuration on the left branch of Figure 9.15b is:

El A B 
 C
Er A 
 B C

Interestingly, the approach based on PESs allows for assessing behavioural
conformance, so that not only the fine-grained deviations (as the ones arising from
alignments) can be extracted, but also new mismatch patterns can be obtained from
a tailored partially synchronised product. For instance, the existence of additional
behaviour like unmatched repetitions, either in the event log or in the process model,
can be computed using this approach. The reader is referred to [46] for an in-depth
presentation of this approach.
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b1:B 

b2:C aa:C 

a1:B b0:A 

a0:A

(a)

Cl , Cr

Cl a0 , Cr b0
(a0 b0)A

Cl a0 , Cr

Cl a0 a1 , Cr b0
(a0 b0)A

Cl a0 a1 , Cr b1
(a1 b1)B

Cl a0 a1 , Cr b0 b1
(a0 b0)A

Cl a0 a1 , Cr b0 b1
(a1 b1)B

Cl a0 a1 a2 , Cr b0 b1 b2
(a0 b0)A (a2 b2)C

Cl a0 a1 a2 , Cr b0 b1 b2
(a1 b1)B (a2 b2)C

match (A)

lhide (a1:B)

rhide (b1:B)

match (C)

lhide (a0:A)

match (B)

rhide (b0:A)

match (C)

rhide (b0:A)

rhide (b1:B)

(b)

Figure 9.15 (a) Two example PESs El and Er , respectively. (b) Fragment of the partially
synchronised product of El and Er . Example taken from [46]

9.5.2 Mixed-Paradigm Model Alignments

So far, in this book, we considered so-called procedural process models, i.e. process
models that describe which activities should be performed in which order. An
alternative modelling paradigm is offered by declarative models, see also Excursion
10. Such models capture activities and rules which each case of the process should
obey. However, as long as all rules are obeyed, anything is possible.

An example of such a rule is a response constraint, as discussed already in
Section 4.1 in the context of rule-based approaches to conformance checking. The
response constraint between activity A and activity B essentially states that “once
activity A has been executed, activity B must be executed afterwards, at least once,
before completing the case”. However, it does not specify how often B should occur,
or when, only that it should be afterwards. The trace 〈A,A,A,B〉 satisfies this
constraint.
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As Aa Fa

Sso Ro Ao

Do

Aaa

Da2

Da1

Af

[0..1]

Figure 9.16 Mixed paradigm representation of the running example

Declarative models have been explained in detail in [79] and conformance
checking of declarative models has also been discussed in [20]. Furthermore, the
same technique can be used as outlined in Chapter 7; however, no heuristic function
is available to efficiently search the entire state space of the model.

To overcome this issue, mixed-paradigm models can be considered. Mixed
paradigm models combine Petri nets on the one hand and declarative models on the
other hand. Figure 9.16 shows a mixed paradigm model for our running example.
The top part is the same as before, i.e. a Petri net explaining the control flow for the
application. However, the transitions referring to the offer have been separated to
allow for multiple offers to be selected and sent to the customer in parallel to each
other.

There are four declarative constraints in the model expressing the following:

• “Select and send offer (Sso)” cannot be executed unless “Accept application
(Aa)” was executed at least once before. This is a so-called precedence con-
straint. Note that once Aa has fired, Sso can occur an arbitrary number of times,
or not at all.

• “Accept offer (Ao)” can be executed at most once. This is a unary constraint on
that transition.

• The rightmost “Decline application (Da)” and “Accept offer (Ao)” cannot co-
exist in the same case, i.e. if the customer accepts an offer, the application will
not be declined and if the application is declined, the customer cannot accept an
offer.

• “Accept offer (Ao)” is succeeded by “Approve and activate application (Aaa)”
which is expressed by the succession constraint. In other words Aaa cannot occur
before Ao occurred, and after Ao occurs, Aaa must occur.

Clearly, the mixed paradigm model allows for more behaviour than the original
procedural model. For example, multiple offers can be selected and sent to the
customer in parallel, without the need to wait for the customer. Furthermore, the
“Cancel offer” activity is no longer needed, since every offer needs to be either
accepted or declined. Due to the nature of the model, the company can decline
the application before a response was given to all outstanding offers. The “not
co-existence” constraint then ensures that all remaining offers will eventually be
registered as declined.
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Consider the trace 〈As,Aa,Fa, Sso, Sso,Ro,Ro,Ao,Aaa,Do,Af〉. In the Petri
net model of Figure 7.1, this trace would lead to the following alignment:

log trace As Aa Fa Sso Sso Ro Ro 
 Ao Aaa Do Af
execution sequence As Aa Fa Sso 
 Ro 
 τ Ao Aaa 
 Af

In the model of Figure 9.16 however, this would be a fitting trace in which, after
accepting the application, two offers were selected and sent to the customer, of
which one was accepted and the other one declined due to a timeout.

Computing alignments on mixed paradigm models is essentially not different
than computing alignments for regular Petri nets. The additional constraints only
limit the possible firing of transitions, i.e. the state space of the mixed paradigm
model is strictly smaller than the state space of the Petri net without the constraints.
Hence, in conformance checking, the heuristic based on the marking equation can
still be used. During the computation, the decision about whether a transition is
enabled or not needs to be made based on a combination of the marking in the Petri
net and the state of each constraint.

Aligning event logs and mixed paradigm models becomes more interesting once
costs are assigned to violating a constraint, i.e. rather than guaranteeing that at the
end of the alignment all constraints are satisfied, we allow for constraints to be
violated at a certain cost. For example, we could say that accepting more than one
offer is allowed at a certain cost.

Consider the trace 〈As,Aa,Fa, Sso, Sso,Ro,Ro,Ao,Aaa,Ao,Af〉. In the Petri
net model of Figure 7.1, this trace would lead to the following alignment:

log trace As Aa Fa Sso Sso Ro Ro 
 Ao Aaa Ao Af
execution sequence As Aa Fa Sso 
 Ro 
 τ Ao Aaa 
 Af

When doing conformance checking on the mixed paradigm model of Figure 9.16
while enforcing all constraints, the alignment would be:

log trace As Aa Fa Sso Sso Ro Ro Ao Aaa Ao 
 Af
execution sequence As Aa Fa Sso Sso Ro Ro Ao Aaa 
 Do Af

If the default cost function is used, then this alignment has cost 2 due to the
mismatch between the “Accept offer” in the trace and the “Decline offer” which
is needed to complete the model and satisfy all constraints. However, if we allow
the unary constraint to be violated with cost 1, then there is a different alignment,
namely:

log trace As Aa Fa Sso Sso Ro Ro Ao Aaa Ao Af
execution sequence As Aa Fa Sso Sso Ro Ro Ao Aaa Ao! Af
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In this alignment, the exclamation mark indicates the point where a constraint
becomes violated. However, since this only has cost 1, this alignment is better than
the previous one.
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recently presented in [19]. Another remarkable approach that presents a RESTful
service for conformance checking for the case of BPMN process models can be
found in [129]. In [21], online conformance checking is done using behavioural
patterns obtained through pre-processing the model.
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The use of event structures as a unifying notation for event logs and process
models represents a new way to align recorded and modelled behaviour [47]. Inter-
estingly, each behavioural difference detected by this approach can be verbalised as
a natural language statement.

Alignments can be computed on different representations, like declarative pro-
cesses [27], optionally including multiple process perspectives [20].

Also, recent approaches transform the internal representation of conformance
checking methods into an automaton, so that efficient automata-based techniques
can be applied [58, 87].

9.6 Exercises

9.A) Alignments for other perspectives

Given the loan application process shown in Figure 9.1, compute an
alignment that also takes into account the data perspective for the following
case.

Event Application Offer Activity Amount Signed Resource Timestamp

e17 A006 Application submitted e7000 <user> Feb. 1, 12:31

e34 A006 Accept application John Feb. 1, 12:32

e43 A006 Finalise application John Feb. 3, 09:00

e47 A006 5407 Select and send offer e11,000 John Feb. 5, 12:32

e62 A006 5407 Receive offer YES John Feb. 10, 10:00

e68 A006 Cross-check application John Feb. 11, 10:00

e74 A006 5407 Accept offer John Feb. 11, 10:04

e84 A006 Approve and act. application John Feb. 14, 09:05

e85 A006 Application finished Feb. 15, 09:06

9.B) Online computation of prefix alignments

Given the Petri net of Figure 9.2 and the partial trace 〈a, b, b, d〉, compute a
prefix alignment.
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9.C) Decompositional computation of alignments

Given the following process model:
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• Compute a valid decomposition to allow for decompositional computa-
tion of alignments.

• Project the trace T1 = 〈a, b, d, g, j, k, f, e, h, l,m, n, p, o, n, p, q, s〉
according to the decomposition obtained.

• Decide the fitness of T1 on the basis of the replay of its projections’ replay
on the valid decomposition.

• Do the same for the trace T2 = 〈b, d, j, k, l, f, e, h, l,m, o, n, p, s〉.

9) In the lab: tool support for computing variants of alignments

Check out the lab session to practise
with different tools to compute vari-
ants of alignments introduced in this
chapter.

http://www.conformancechecking.com/CC_book_Chapter_9

http://www.conformancechecking.com/CC_book_Chapter_9


Part III
Conformance Checking Applications

Preface to the Third Part

The capability of automatically aligning recorded and modelled behaviour is crucial
to detect deviations between both process representations. Although important, in
some situations it is not enough to simply report the (dis)agreement. The third part
of this book is meant to provide further techniques to enhance, repair and reflect on
the process models and event logs used in conformance checking.

Organizations often demand incorporating more information when aligning a log
and a model, so that more information about the real process can be projected onto
the model. In Chapter 10 some model enhancement techniques are provided which
allow for important aspects like performance or decision points to be incorporated
in the model. This information is extracted from the additional attributes that
often exist in event logs. Additionally, further metrics that complement fitness
and precision are provided in Chapter 10 to better understand a process model:
generalization and simplicity.

When deviations are detected that pinpoint undesired situations, amending the
source of these deviations (either the process model, or the event log) is a reasonable
next step. Chapter 11 provides two complementary forms of overcoming such
deviations: repairing the process model or repairing the event log. Moreover, once
these two operations are defined, a general framework for conformance checking is
presented.

Practical tools for conformance checking are considered in Chapter 12. Specif-
ically, we review the conformance checking functionality implemented in ProM,
a widely established open-source framework. We also discuss functional and
non-functional aspects that help in the assessment of commercial offerings for
conformance checking.



Chapter 10
Understanding Processes

After aligning recorded and modelled behaviour, a general perspective of the process
can be attained if further dimensions are explored. For instance, the additional
information available in an event log on the time elapsed between the events can
be crucial to understand the process bottlenecks. Likewise, further event attributes
can explain the rules governing the decisions made during the executions of the
process, so that hidden strategies with respect to the data are elicited.

Also, it is very important to consider additional quality metrics that complement
fitness and precision, which may help in assessing the ability of a model to
generalizing the patterns recorded in the event log, or analysing its simplicity.

This chapter is organized as follows: in Section 10.1 a gentle introduction to
performance analysis is presented. Then, we provide techniques for decision point
analysis in Section 10.2. Finally, Section 10.3 completes the spectrum of quality
dimensions, introducing the notion of generalization and simplicity.

10.1 Performance Analysis

The performance of its processes is critical to the success of an organization.
Customers waiting for their services and products longer than necessary can become
dissatisfied, for example if the delivery date is postponed, or not communicated
clearly. Even more so, if the competitors are faster and do manage their processes
better, customers are likely to switch to them.

By measuring the actual performance of a process for a specified period, it is
possible to compare one period to another. If an organization tries to improve its
processes and changes some aspects of a process (e.g., removes an unnecessary
activity), they need to have an understanding of the effects of the changes. Ideally,
the performance can then be projected onto the new process model, which is the
central artefact in process management to communicate about the process.
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10.1.1 Basics of Performance Analysis

In this section, we explore how to use alignment techniques that we covered in Part II
of this book for performance analysis. To be able to analyse durations of activities
and waiting times in between, we need temporal information in the event logs (e.g.
in the form of timestamps). If we have an alignment of an event log with respect
to a process model, we already know the synchronous moves and we are able to
enrich the model using the timing information from the event log. In essence, for
every path traversed in a process model, we record how long each activity took (i.e.,
we record the activity durations), and how much time has passed on the arcs that
connect the nodes in the model (i.e., the waiting times between activities).

After collecting the information in the model, a process model with temporal
statistics is obtained. In process mining, this procedure is called model enrichment.
The temporally enriched process model collects the encountered durations per
element and aggregates them for quick analysis. Typical performance measures are
statistics about the duration of an activity. That is, we are interested in how long
activities take on average, or how long they took in the worst case (maximum),
or the best case (minimum). One very important measure is the variability of the
duration. We can measure for example the standard deviation of a duration to get
a feeling for the variance. Besides the summary statistics, we can also display the
estimated distribution of the durations.

Figure 10.1 shows exemplary enrichment information. To avoid cluttering the
image, we only display some example durations and branching probabilities.
Performance analysis can be performed on individual activities and arcs between
them, but it can also be performed on milestones in the process that reflect key
performance indicators (KPIs). For example, the time passed between the receipt
of an order and the delivery of the goods is more important for the customer than
the time from the receipt of an order to issuing an invoice. Modelling and extracting
KPIs in a process model is only possible through accurately mapping actual event
data to the process model.
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Figure 10.1 Running example process with enriched durations, waiting times and branching
probabilities
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Excursion 21
What about a synchronous moves?
The simple enrichment procedure, as sketched in Section 10.1.1, does not
work well if there are only a few synchronous moves, and we did not discuss
what to do with the elements in the log that do not have counterparts in the
model to project onto.

One simple solution is to discard asynchronous moves entirely from
the analysis and only focus on the synchronous moves. We might risk to
discarding valuable data and the aggregate statistics can be biased if the
unaligned data behaves differently than the aligned data.

A typical example is a missing record of an activity (say b) in the log,
which is required according to the model. This typically results in a model
move in the alignment (the activity b is skipped in the log). If there is an
activity a before, and an activity c after a, we can think about distributing the
time between a and c to the two arcs connecting the activities in sequence.
However, things get more complicated when in reality we know that b actually
must have occurred before c. Then, we have the problem of missing data as
it is known in statistics, and we can rely on different missing data imputation
methods to correct the durations.

If the deviations between the model and the log are frequent, and there is
a recurring pattern in the asynchronous moves, we can think about repairing
the process model to reflect more what is in the data. Section 11.1 shows how
models can be repaired in this way.

10.1.2 Performance Beyond the Temporal Perspective

The time taken to perform a process and the activities therein is important. But there
are more perspectives an analyst can look at. The same enrichment procedure as
for the temporal aspect can be applied to monetary costs. By projecting the costs
of certain activities into the process model, analysts can quickly see which tasks
incur the most costs and which ones are cheapest. For a hospital, for example, each
treatment is associated to refundable costs, which can also be projected into the
process model.

Tools that help in understanding the performance of a process according to
different perspectives, provide different views on the data. Through these views,
only those perspectives are shown which are relevant to the question at hand, thereby
greatly improving understandability of an enriched model.

Another example of a perspective that is commonly considered is the organiza-
tional perspective. Using information from the log about the resources involved in
and the participants interacting in the process, insights can be obtained into which
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activities were performed by whom. An interesting metric in this regard is the
count of hand-overs of work, i.e. when was a case handed over from one person
or department to the next person or department? By annotating the resources that
really performed the activities, we can check whether a new process version indeed
requires fewer hand-overs than the previous one.

10.2 Decision Point Analysis

As the previous section has already pinpointed, once the process model and the event
log are aligned, further information can be derived from the event log to enrich the
model. Where performance analysis focuses on the projection of information onto
the model, decision point analysis goes one step further. In decision point analysis,
the event log is used to analyse decisions from a data perspective.

Typical data available in the event log is manifested as additional attributes for
the events. For instance, in the event log shown in Table 2.2, there are attributes
like Amount and Signed, which complement the information about the activity
executed. Decision point analysis uses these and other attributes to learn rules that
can explain decisions in the process model. For instance, Figure 10.2 shows simple
rules that can be incorporated in the process model to explain the decision made in
the loan application process, from the perspective of the traces in the event log. The
following decisions are elicited on top of the model:

1. Applications are declined if their amount is very small (less than 100 Euros),
or when too many loans have been already accepted in the current month (more
than 250K Euros).

2. The customer tends to ask for a change when the offer amount is less than 80%
of the initial amount. If the customer forgets to sign it, it is also sent again.

3. Finally, loan applications that cannot be resolved in less than 2 months are always
rejected.
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Figure 10.2 Example of decision point analysis for the process model of a loan application
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Excursion 22
Data mining and conformance checking: Enhancing process models with
data
The digital explosion of data makes it easy to find it almost everywhere,
enabling the application of techniques that extract meaning from and assign
value to this data. Data mining is a mature area providing a family of
techniques to elicit meaning (e.g., in the form of rules, patterns or other
structures) from raw data [17].

Input for data mining techniques is data in tabular form, like for instance:

Age Gender Weight Sport Family Issues Married Decision

23 Male 67 Yes Cancer No No

38 Female 55 No None Yes Yes

59 Female 51 No None Yes Yes

50 Male 80 No Obesity Yes No

. . . . . . . . . . . . . . . . . . . . .

Data mining techniques can be partitioned into two families:

• Supervised Learning: In the data there is a special attribute, denoted as
response variable, that corresponds to the label of the instance considered.
In contrast, the rest of variables are denoted predictor variables, which are
used to explain the response variable. Two different families of techniques
are available under supervised learning: classification and regression. The
former assumes the predictor variable to be a category. It is applied when
the goal is to classify the instances with the help of the predictor variables.
In this section, we show an example of classification techniques, decision
tree learning. Instead, regression assumes the predictor variable to be
numerical. It is applied to find a function that fits the data with the least
error.

• Unsupervised Learning: When no response variable is available, unsu-
pervised learning is applied. Two families of techniques are available in
unsupervised learning: clustering and pattern discovery. The former is
applied to classify the input data into groups, so that the instances of each
group are similar, given a notion of similarity. Pattern discovery is used to
extract patterns from data, e.g., rules that relate the variables. One of the
most popular techniques in pattern discovery is association rule learning.

As we have said at the beginning of this section, event logs contain many
data attributes that can be used as input for data mining techniques.
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In the previous example, apart from the event attributes (Amount, Signed), some
other types of attributes can be considered for decision point analysis:

• Case attributes: Attributes that refer to the case, like accumulated elapsed time
from the beginning of the case at every event, or the number of times a certain
activity has been executed. In our example, the former is used in the decision to
decline an application if it cannot be resolved in 2 months.

• Contextual attributes: This information is not usually encountered in the event
log, but obtained from other sources of information. For instance, the information
on the total amount of Euros corresponding to loans granted in the current month
is an example.

We use the example of Figure 10.2 to illustrate how decision point analysis can
be performed. Let us first have a look at Table 10.1, which shows an event log in
such a way it can be used for decision point analysis. We focus on the first decision
found in the process model of Figure 10.2.

In order to learn the rules governing the decision once the application is
submitted, a supervised learning problem is generated (see Excursion 22), where
the response variable is the next activity to be executed in the case, and the predictor
variables correspond to all the attributes available (including contextual attributes,
like the amount of Euros in the current month for approved loans). If the data from
Table 10.1 is given to a classification technique like C4.5 algorithm, a well-known
decision tree learning algorithm [85], the tree shown in Figure 10.3 is extracted for
predicting the next activity.

Table 10.1 Part of an event log extended for decision point analysis

Case ID Activity Timestamp Amount Month_Loans Signed Next Activity

A5345 As 10-02-2017 9:08am 1000 130K Yes Aa

A5342 As 12-04-2017 10:03am 1500 30K No Aa

A5343 As 20-04-2017 11:32am 2000 235K Yes Aa

A5324 As 27-04-2017 2:01pm 1500 250K Yes Da

A5352 As 3-05-2017 7:06pm 3500 15K No Aa

A5351 As 18-05-2017 9:08pm 75 120K No Da

A5357 As 6-06-2017 10:28pm 550 75K No Aa

A5359 As 29-06-2017 10:40pm 7500 255K Yes Da

A5513 As 12-07-2017 9:08am 8000 136K No Aa

A5434 As 19-07-2017 10:03am 100 207K No Da

A5222 As 23-07-2017 11:32am 2500 249K Yes Aa

A5555 As 1-08-2017 2:01pm 5000 0K No Aa

A5232 As 12-08-2017 7:06pm 9000 102K Yes Aa

A5444 As 20-08-2017 9:08pm 6000 160K Yes Aa

A5213 As 28-08-2017 10:28pm 5000 257K No Da

A5115 As 30-08-2017 10:40pm 30 257K No Da
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Month_Loans
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< 250K >= 250K

> 100 <= 100

Figure 10.3 Decision tree learned from the data in Table 10.1

From the tree in Figure 10.3, the rule

Month_Loans ≥ 250K ∨ Amount ≤ 100

can be extracted for predicting the execution of the activity “Decline application”.
However, notice that in the process model in Figure 10.2, there exist two tasks with
the label “Decline application”: one at the beginning (t1, right after the start of the
process), and one near the end (t2, right before the end of the proces). In order to
decide at which point the rule should be inserted into the model, we again resort to
alignments, which tell us that after activity “Application submitted”, the first activity
“Decline application” is the most likely candidate and the rule should be added to
the first decision point.

An interesting feature of decision tree learning is the capability to include
only a subset of the attributes in the final rules. For instance, in the rule learned
before, the attribute Signed is not used (see Figure 10.3). This is beneficial to
decision point analysis, as in principle only the necessary attributes appear in
the rules learned to annotate the process model, which helps readability and
comprehension.

10.3 Further Metrics for Comparing Models

In this book, the importance of having metrics that enable evaluating the relation
between a process model and an event log has already been emphasized. The two
main metrics considered, fitness and precision, are tailored to this. Fitness, on one
hand, assesses whether an event log is well represented as a process model and
precision, on the other hand, assesses whether the process model represents the
behaviour of the event log in a concise manner. In this section, we reflect on
two additional metrics, which complement fitness and precision by focusing on a
different perspective, namely generalization and simplicity.
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10.3.1 Generalization

In Section 3.4.2, a discussion on the behaviour that is modelled but not recorded
can be found. With regard to this behaviour, elements in (LM \ L) ∩ S denote
behaviour that, in spite of not being recorded, correctly represents the underlying
process. Generally speaking, these elements represent an interesting feature of a
process model: correctly capturing parts of the system that have not been recorded.

A typical example of parts of the system that were not recorded are loops: When
the real process allows for the iterative execution of a set of activities, one cannot
assume that all possible executions (in principle, an infinite number) were recorded
in reality. Accordingly, in spite of not observing all the possible instances of the
loop, a process model for the underlying process is expected to contain a loop
over these activities, generalizing the finite behaviour recorded. For instance, let
us consider the loan application process that is used through this book. Clearly, an
important feature of this process is the iteration over the activities “Select and send
offer”, “Receive offer” and “Cancel offer”, so that they can be done more than once
within a case. When confronted with an event log for this process, it is clear that
there exists a maximum number of times where these activities have been performed
in any case, even though in principle, no upper bound has been explicitly defined.
In this context, the process model shown in Figure 1.3, which explicitly contains a
loop over these activities, generalizes the recorded behaviour.

Now let us assume that domain knowledge is available with respect to the
maximal number of iterations among the activities “Select and send offer”, “Receive
offer” and “Cancel offer”. If at most three iterations are possible, is the process
model of Figure 1.3 then a proper generalization of the process recorded in the
event log? Clearly, the process model of Figure 1.3 allows also for traces with more
than three repetitions over these activities, and therefore, the underlying process is
not precisely described. And what if the domain knowledge states that offers can
be selected for the first month after the application was accepted, but not longer? In
that case, no explicit upper limit is specified, but the number of iterations will be
finite.

In summary, process models are expected to generalize the behaviour recorded in
event logs. However, the notion of good or bad generalization strongly depends on
the system and any comparison between modelled and recorded behaviour should
be considered in the context of this system.

Definition 22 (Generalization) A process model M generalizes a log L with
respect to system S if some behaviour in S \ L exists in LM .

Although the existence of loops influences the generalization of recorded
behaviour, they are not the only factors to consider. Concurrency is another construct
related to generalization. For instance, assume that a process contains ten parallel
activities. It is very unlikely to observe the 10! = 3, 628, 800 possible permutations
of executions of these activities in the event log. In spite of observing a considerably
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smaller set of permutations, a process model that elicits this concurrency denotes a
good generalization of the behaviour considered.

A careful look at Definition 22 reveals a complication when trying to evaluate the
generalization dimension: the real process, S, is in general not available. Therefore,
the few available metrics for generalization dimension only consider the event log
and the process model [18, 121, 126] as input.

Generalization Based on Frequency of Replay

A simple metric to evaluate generalization was presented in [18]. This metric is
based on the frequency of each task execution when replaying the traces of the event
log. The intuitive idea is that if parts of the process model are infrequently visited
during the replay of the log, generalization is bad. For instance, the process model in
Figure 10.4 shows frequent tasks with thick lines. Clearly, in this model some parts
are not frequent (tasks “Decline application”, “Cancel offer”, and “Decline offer”).
According to the metric from [18] this represents a low generalization capability of
the process model.

Generalization Based on Negative Artificial Events

An alternative metric to evaluate generalization is based on the notion of weighted
artificial negative events [126]. This metric first computes, for every possible prefix
of a trace in the event log, the activities that cannot occur, denoted as negative
events. For instance, in the loan application example used throughout this book,
if we consider the prefix of a log trace to be 〈As,Aa, Sso,Ro,Fa〉, then examples
of negative events at the end of the prefix are As, Aa, Da, Fa, Da, Sso, Ro, Aaa and
Af , i.e., according to the traces in the log, events relating to these activities are not
expected to occur after observing the prefix above. Notice the difference between
the concept of negative events with respect to the escaping arcs used to estimate
precision: Negative events do not consider the process model, and instead are only
computed on the information available in the event log.
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Figure 10.4 Loan application process model with frequent tasks highlighted with thick line
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Generalization can be computed from the complement of the set of negative
events (i.e. the so-called positive events) at each position using the model. At every
prefix of a trace, the allowed generalizations (AG, activities that the model can
replay) and the disallowed generalizations (DG, activities that the model cannot
replay) are considered. The formula |AG|

|AG|+|DG| is used to estimate generalization.

Generalization Based on Anti-Alignments

In Section 8.5.2, it is shown how precision can be measured using the notion of
anti-alignments. Remember that an anti-alignment of a model with respect to a log
is an execution sequence of a model, which is as different as possible from the
traces in the log. In order to quantify generalization, the approach in [121] considers
not only the sequential behaviour that is allowed by the model, but also quantifies
how different this behaviour is when considering the state space of the model:
Models that introduce new traces without introducing new states are considered to
be generalizing.

Structured loops and parallel structures, which are most commonly used to
achieve generalization when modelling a system, have the tendency to allow for
many different sequential traces while introducing fewer states. In particular, for
structured loops, the number of states does not increase with the number of
executions of the loop. Also for parallel transitions, the number of states 2n grows
slower than the number of sequences (n!).

In the generalization metric in [121], the notion of a recovery distance for an
anti-alignment is used, which establishes the maximum distance between any of the
states reached in the anti-alignment and the states visited by the log.

Recall that an anti-alignment is an execution sequence of the model which is
as different as possible from the recorded traces. For precision, we would remove
one trace from the log, then compute an anti-alignment for the remaining log and
compare the anti-alignment to the removed trace. The more different the anti-
alignment is to the removed trace, the less precise the model (see Section 8.5.2).

For generalization, we compare the anti-alignment identified this way with the
log and we investigate, at each point in the execution sequence, what the recovery
distance is. The recovery distance in this context is the maximum number of task
executions necessary to get from a state reached by the anti-alignment to any of the
states reached by the (aligned) event log.

The combination of the anti-alignment distance and the recovery distance then
determine the generalization. If a model is properly generalizing, it is likely that the
behaviour recorded in the log covers a significant part of the state space introduced
by the generalizing structure. Hence, a previously unobserved trace (the anti-
alignment) does not introduce many new states, but rather new paths between
existing states, even if the introduced trace is completely different from anything
recorded in the log, resulting in a high anti-alignment distance with low recovery
distance.
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Excursion 23
Evaluating generalization for discovery algorithms
The scope of the previous techniques is a general one: Given an event log
and a process model, to estimate how good the model is in generalizing
the underlying process. In some situations, process models are not created
manually and instead are the result of a discovery algorithm [114]. In these
contexts, one can shift the focus, evaluating generalization not on process
models, but instead on the discovery algorithms that were used to create these
process models.

In machine learning, a learning algorithm generalizes when it is able to
predict previously unseen data. In our context, generalization for a process
discovery algorithm tests whether discovered process models generate traces
that are not present in the log, but that can be produced by the underlying
process. One can use k-fold cross validation to assess the generalization of
a process discovery technique, by partitioning the event log into k parts,
and using k − 1 parts to discover a process models that would be tested on
the part left out. The test simply measures fitness, so that the ability of the
learned process model to reproduce the part left out is considered. One can
then measure generalization by repeating the experiment for each one of the
possible k parts, and averaging the fitness values accordingly. If the algorithm
is able to generalize, then the average fitness computed should be high. If in
contrast, the algorithm has problems in generalizing, then it should obtain a
low average value.

10.3.2 Simplicity

Another metric to evaluate a process model is simplicity: Is the derived process
model the most simple explanation of the underlying process? This metric refers to
the Occam’s Razor principle. Simplicity is generally considered to be a property of
the model itself and not a relation between the model and an event log. We mention
some available metrics for completeness, but we refer to the relevant literature for
an in-depth discussion.

One method for measuring simplicity is by analysing the complexity of the
underlying graph. In [70], the following metrics have been proposed to measure
this complexity:

• Size: number of nodes and arcs,
• Diameter: length of the longest path from a start node to an end node,
• Density: relation between the number of arcs and the maximum number of arcs

between all nodes,
• Connectivity: ratio between number of arcs and number of nodes,
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• Node Degree: average or maximum number of nodes each node is connected to,
• Separability: ratio between the number of cut-vertices (i.e., the minimal number

of vertices needed to disconnect the graph) to the number of nodes.

When taking into account that the graph is in fact describing a process model,
some other tailored metrics are considered in [70]:

• Sequentiality: number of arcs to/from gateways (i.e., nodes that encode control
flow semantics) divided by the overall number of arcs,

• Structuredness: the proportion or well-structured parts with respect to the rest
(non-structured) in the process model. Well-structured parts can be reduced by
applying simple reduction rules,

• Depth: average or maximum depth for split/join constructs,
• Gateway Mismatch: absolute sum of all input arcs minus output arcs over all

pairs of split/join connected gateways,
• Gateway Heterogeneity: entropy of the gateways used,
• Control Flow Complexity: sums of all choices of a process based on the number

of splits of each type and its number of outgoing arcs,
• Cyclicity: number of nodes within cycles with respect to the total number of

nodes,
• Token Splits: number of concurrent threads that can be activated by AND- and

OR-splits in the process.

Clearly, any of the aforementioned metrics can be used to compare the simplicity
of two process models represented in the same notation, e.g., two process models
in BPMN. However, these metrics may be less reliable when the comparison is
done across different notations. For instance, a Petri net does not explicitly represent
gateways, and therefore some of the metrics in the second list are not applicable.
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framework which covers decision point analysis and other analysis has been recently
proposed [31]. Another interesting direction is the discovery of overlapping rules,
which may be useful when insufficient information is available, or in case of non-
deterministic data, as the approach in [65] describes.

10.4 Exercises

10.A) Performance

Given the part of a bigger model, as shown in Figure 10.5 and the following
log.

Case ID Event Time Date User

X123 pstart 9:45 10.03 Freddy

X123 pcompl 10:05 10.03 Freddy

X144 nstart 10:00 10.03 Peter

X144 ncompl 10:10 10.03 Peter

X188 nstart 18:00 10.03 Carla

X188 ncompl 09:30 11.03 Carla

start
handle

premium 
customer 

(pstart)

start
handle
normal

customer
(nstart)

complete
handle

premium 
customer

(pcompl)

complete
handle
normal

customer
(ncompl)

Figure 10.5 Part of a process with customer interaction

1. Calculate the average duration of activity “handle normal customer”
based on the given observations.

2. What is the ratio between the two customer types premium and normal?

(continued)
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10.A) (continued)

3. Activity “handle normal customer” for case X188 took 15 hours and 30
minutes to finish. What is the most plausible reason for this long activity
duration? And what does that mean for handling temporal information
derived from raw log data?

10.B) Decision point analysis

Using the process model of the loan application in Figure 1.3, find the rules
that explain the decisions to accept or decline an offer according to the data
shown in the table below.

Case ID Activity Elapsed Days Amount Offer Responsible Next Activity

A1345 Fa 18 1000 900 Darla Ao

A2342 Fa 100 1500 1420 Aaron Do

A3343 Fa 25 2000 2000 Jane Do

A5324 Fa 20 1500 1450 Aaron Ao

A8352 Fa 230 3500 3300 Darla Do

A1351 Fa 26 7550 7000 Darla Ao

A3357 Fa 12 5500 5000 Jane Do

A4359 Fa 30 7500 3400 Aaron Do

A5513 Fa 34 8000 7900 Aaron Ao

A8434 Fa 40 1000 150 Darla Do

A0222 Fa 120 2500 2400 Darla Do

A7555 Fa 23 5000 4200 Aaron Ao

A1232 Fa 15 6000 5800 Jane Do

A1444 Fa 140 6000 5900 Darla Do

A2213 Fa 17 5000 4600 Aaron Ao

A3115 Fa 23 3000 1200 Aaron Do

The columns of the table represent:

• Case ID, Activity and Next Activity: the case of an event, and the activity
performed before and after the decision, respectively.

• Elapsed Days: the number of days since the application entered the
system.

• Amount: amount of the loan.
• Offer: amount of the last offer made.
• Responsible: person in charge of the loan application.
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10.C) Generalization

Given the following event log:

Trace Frequency

〈As,Aa, Sso,Fa,Ro,Do,Da,Af 〉 700

〈As,Aa,Fa, Sso,Ro,Ao,Aaa,Af 〉 545

〈As,Aa, Sso,Fa,Ro,Co, Sso,Ro,Do,Da,Af 〉 50

〈As,Da,Af 〉 28

Decide whether the loan application process model in Figure 1.3 generalizes
well or not according to the simple precision metric based on frequency of
replay from [18], explained in Section 10.3.1.

10.D) Simplicity

Given the following three process models, namely M1, M2 and M3
(Figures 10.6, 10.7, and 10.8).

A

B

C

D

E F G

H

Figure 10.6 M1

(continued)
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10.D) (continued)

A

B C

D

E B C

H

Figure 10.7 M2

A B C

D

E H

Figure 10.8 M3

Rank them according to the size, diameter and density simplicity metrics
reported in this chapter.

10) In the lab: tool support for understanding processes

Check out the lab session to prac-
tise with different tools for under-
standing processes and implementing
techniques introduced in this chapter.

http://www.conformancechecking.com/CC_book_Chapter_10

http://www.conformancechecking.com/CC_book_Chapter_10


Chapter 11
Improving Processes Using Conformance
Checking

Processes evolve continuously, so it is desirable to guarantee today’s process
models to be optimally aligned with respect to today’s processes as they are
recorded. Detecting deviations between the process, as manifested in event logs,
and the process model is necessary functionality in an operational setting. So
far, conformance checking has been positioned as a diagnostic technique, able to
identify deviations, but not able to follow up on these deviations and explain them
in the context of the underlying process.

In this chapter, we provide an overview of automated techniques that enable
addressing the deviations encountered, so that a better relation can be established
between the process model and the process as recorded. This clearly widens the
usefulness of conformance checking. In this chapter, we present a symmetrical
view to this problem, that builds up on top of the conformance artefacts, and
enables the automatic repair of a model (Section 11.1) or a log (Section 11.2), or
both. In Section 11.3, the general problem of conformance checking, which also
incorporates model or log repair in a continuous setting, is provided.

11.1 Model Repair

When deviations are encountered between a process model and an event log, they
may be attributed to the current process model failing to represent the real process.
Consequently, the process model should be modified (repaired) to better describe the
reality, as recorded in the event log. These deviations can then be used to reconstruct
the process model, so that the updated process model is free of these problems.
Conceptually, model repair tries to bring the model M closer to the event log L, as
sketched in Figure 11.1. Hopefully, after the repair, the resulting model M∗ is better
fitting, or more precise with respect to L than the original model M .
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L

M

logs models

model
repair

M*

Figure 11.1 Model repair brings the model M closer to the event log L. The repaired model is
sketched as M∗
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Figure 11.2 Process highlighting one trace with a missing event. More precisely, a deviation
corresponding to a trace that does not include an event to signal that the application has been
finalised (Fa), illustrated already in Figure 3.7 on page 48

Let us illustrate how a repair technique handles a deviation. From the loan
application process (shown in Figure 1.3), assume that the activity Finalise
application (Fa) becomes optional. A new possible trace is for example
〈As,Aa, Sso,Ro,Do,Da,Af 〉. Let us call this trace σnew . The deviation of trace
σnew is illustrated in Figure 11.2, which pinpoints an unfitting behaviour seen in
the event log. We want to repair the running example process model in Figure 1.3
to also reflect cases like σnew . Figure 11.3 shows a possible way of repairing the
deviation reported in Figure 11.2 by changing the type of the two parallel gateways
to a different gateway type: the inclusive gateway.

Excursion 24
The inclusive gateway
In this book, so far, we have only considered two main gateway types: the
exclusive and the parallel gateway. The inclusive gateway, denoted by a circle
symbol, can be seen as a combination of an exclusive and a parallel gateway.
Like an exclusive gateway, it can be used to define conditions on outgoing
sequence flows and the inclusive gateway then evaluates them. However, the

(continued)
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main difference is that the inclusive gateway can produce more than one
token. The enabled branches are executed in parallel. The functionality of
the inclusive gateway is based on the incoming and outgoing arcs:

• split: All outgoing arc conditions are evaluated and for the conditions that
evaluate to “true”, the arcs are assigned an additional token, creating one
concurrent branch for each arc.

• join: All tokens arriving at the inclusive gateway wait at the gateway until
a token has arrived for each of the incoming arcs, on which a token may
arrive eventually. This is an important difference from the parallel gateway.
In other words, the inclusive gateway only waits for tokens on arcs of
branches that are executed. After the join, the process continues past the
joining inclusive gateway.

Inclusive gateways can be modelled with exclusive and parallel gateways,
duplicating the tasks accordingly. For instance, the following two BPMN
fragments are behaviourally equivalent:

A

B

A

B

A

B

That is the main reason why, in this book, we stick to the exclusive and parallel
gateways.

In terms of the simplicity metrics reported in Section 10.3.2, repairing the model
by changing gateway types has zero cost, i.e., the model shown in Figure 11.3 is
as easy to understand as the original. So, this modification is ideal in this regard,
i.e., the model obtained is structurally similar to the original model. Moreover,
the repaired model accepts the trace σnew , as it allows us to skip the branch with
the Fa activity. Swapping the parallel gateway for an inclusive one, only added
possible behaviour. Therefore, the new model is more fitting to the log than the
original model. However, the repaired model in Figure 11.3 is less precise. Some
of the new behaviour is not backed up by the event log. For example, the trace
〈As,Aa,Fa,Ao,Aaa,Af 〉, i.e., an application that is approved without an offer, is
now an execution sequence of the model.

In contrast, a different strategy to repair the aforementioned deviation is
described in Figure 11.4. This repair modification inserts two exclusive gateways
and connecting arcs around activity Finalise application (Fa). The repaired model
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Figure 11.3 Possible repair of the process model for the deviation reported in Figure 3.7
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Figure 11.4 Possible repair of the process model for the deviation reported in Figure 3.7

has more elements than the original. Hence, its simplicity is reduced. It is better
fitting, by accepting also the trace that underlies Figure 3.7. Finally, the obtained
model retains the precision of the original model, since the only new traces accepted
are precisely the ones corresponding to the unfitting behaviour diagnosed.

In the previous example, we saw one of the main challenges in model repair: the
trade-off between staying close to the initial model on the one hand, and improving
conformance metrics like fitness and precision on the other hand. This means the
transformation needs to retain the initial process model structure, while amending
deviations as much as possible.

We now shortly describe a simple technique for model repair, so that the main
idea of using alignments to repair process models is illustrated (see the references
at the end of this section for more elaborated approaches). We explain the technique
on an example. Let us have a look to the following trace, where the activities Senior
check 1 (Sc1) and Senior check 2 (Sc2) are two new activities incorporated in
the loan application, that force a senior member to perform two different checks,
possibly more than once: 〈As,Aa, Sso,Ro,Ao,Aaa, Sc1, Sc2, Sc1, Sc2,Af 〉.
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If we align this trace with the process model of Figure 1.3, the following
alignment is obtained:

log trace As Aa 
 Sso Ro Ao Sc1 Sc2 Sc1 Sc2 Aaa Af
execution sequence As Aa Fa Sso Ro Ao 
 
 
 
 Aaa Af

There are two ways of repairing deviations: repairs associated to moves in
the model (such as (
,Fa) in the alignment above), and repairs associated to
moves in the log (such as the consecutive moves in log (Sc1,
), (Sc2,
),

(Sc1,
), (Sc2,
) in the alignment above).
A simple way of repairing a move in the model is by substituting the corre-

sponding task in the process model by an optional execution of it, i.e., a simple
exclusive-choice-based structure that allows us to optionally execute the task. The
repair was already shown in Figure 11.4.

In general, each model move encountered in the alignment can be repaired as
described above, extending the model capability to decide on the execution of those
tasks. If we align the trace to the model of Figure 11.4, the following alignment
is obtained where the model move (
,Fa) has been repaired, thus improving the
fitness for the process model:

log trace As Aa Sso Ro Ao Sc1 Sc2 Sc1 Sc2 Aaa Af
execution sequence As Aa Sso Ro Ao 
 
 
 
 Aaa Af

The strategy to repair log moves is different. In particular, the repair of segments
of consecutive log moves, such as (Sc1,
), (Sc2,
), (Sc1,
), (Sc2,
) in the
example above. First, the state of the process model at the start of this deviation
is computed. The state of the model in the previous alignment, at the beginning of
these log moves, is reported in Figure 11.5.
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Figure 11.5 State of the process model in Figure 11.4 before the model moves (Sc1,
),

(Sc2,
), (Sc1,
), (Sc2,
)
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The behaviour in the state reported in Figure 11.5 is extended to allow for the
new behaviour observed, i.e., σ = 〈Sc1, Sc2, Sc1, Sc2〉, so that the model can either
execute it and go back to the same state, or simply move forward in the process. But
how we can generate a BPMN fragment that accepts the behaviour in σ? Process
discovery comes to the rescue!

Excursion 25
Process discovery: Inducing process models from traces
A process discovery technique produces a process model from an event log.
Given the traces in an event log, process discovery techniques analyse them
to infer the necessary structures which are composed to produce a process
model that is capable of reproducing the input traces. There exist a plethora of
process discovery techniques, not always producing the same process model.
Please refer to [114] for a detailed survey on available techniques for process
discovery.

Therefore, through some of the state-of-the-art process discovery techniques, the
fragment in Figure 11.6 to represent the subtrace σ is discovered.

Now, this fragment should be inserted in the state highlighted in the process
model of Figure 11.5, so that the two checks can be executed several times, or not at
all. For that, the process start and end in Figure 11.6 are removed and the fragment
is inserted between activities Ao and Aaa. The final process model is depicted in
Figure 11.7.
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Figure 11.6 Process model discovered for the trace σ = 〈Sc1, Sc2, Sc1, Sc2〉
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Figure 11.7 Final repair of the process model of Figure 1.3 for the trace
〈As,Aa, Sso,Ro,Ao, Sc1, Sc2, Sc1, Sc2,Aaa,Af 〉
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In the final model, the trace 〈As,Aa, Sso,Ro,Ao, Sc1, Sc2, Sc1, Sc2,Aaa,Af 〉
is fitting, as are all previously fitting traces. Hence, the fitness of the model
has improved. Moreover, since no new escaping arc has been introduced (see
Section 8.5.1), the precision of the model according to the escaping arcs metrics has
not changed. However, the complexity of the model increased due to the repairs.

11.2 Log Repair

In the previous section, we assumed that the event log contained the truth and the
model was incorrect and hence needed to be repaired to better reflect the event log’s
contents. However, this is not the only way to look at non-aligned parts between
an event log and a process model. Errors in the recording of the log can lead to
noisy or incorrect events in an event log. For example, human recording of events
is prone to errors. If the time of one event is noted with a mistake, the chronological
order of events can be altered in the event log. Also, especially in manually logged
processes, the documentation of occurred activities can be forgotten, leading to
missing events in a trace.

Conceptually, log repair uses the information and rules stored in the model to
correct deviations and violations in the event log. Figure 11.8 shows the conceptual
picture of log repair. Errors in the log L are fixed in L∗ to make it better fit to the
model M .

Looking at the event log from this angle, log repair can be used to fix
misalignments in the event log. Using alignments as an information source for
correcting event logs is straightforward. We can simply insert corresponding events
for each model move, and remove events that cause a log move in the alignment
(i.e., that do not have a counterpart in the model). For instance, consider again the
log trace used in the previous section:

〈As,Aa, Sso,Ro,Ao, Sc1, Sc2, Sc1, Sc2,Aaa,Af 〉

After aligning this trace with the process model of Figure 1.3, the alignment is:
Repairing the trace based on this alignment would result in the following trace:

L

M

logs models

log
repair

L*

Figure 11.8 Log repair brings the log L closer to the model M . The repaired log is sketched as
L∗



236 11 Improving Processes Using Conformance Checking

log trace As Aa 
 Sso Ro Ao Sc1 Sc2 Sc1 Sc2 Aaa Af

execution sequence As Aa Fa Sso Ro Ao 
 
 
 
 Aaa Af

〈As,Aa,Fa, Sso,Ro,Ao,Aaa,Af〉

Log repair is to be used with caution and, as any other method, needs to be
well documented. Ideally, artificially inserted events or removed events can be
distinguished in later analysis of the event logs, to compare the repaired log with
the original. We need to distinguish between the artificial events (and likewise the
removed ones) that we are certain to have happened, from those where we cannot
know this. Sometimes, we have domain knowledge that allows us to reason about
missing events. One example is a medical case, where events are manually recorded.
In this case a process model describes that before the surgery, the patient must be
anaesthetised. In such a setting, assume that we see a trace that only contains events
recording the surgery and no events pertaining to the patient being anaesthetised.

We know that is it very unlikely that surgery was performed on the patient while
they were awake. Therefore, we can deduce that the missing event is not a modelling
error, but a recording error, and induce the missing “anaesthetize patient” event.
These logical dependencies can be encoded in the model as causal dependencies
between respective tasks. Furthermore, data is created, read, and written throughout
the process. With the same argumentation as with the hospital case, we can deduce
that a “fill form” activity must have happened, if a filled form exists in the data
of the process at some point. To make use of these logical dependencies, logic
programming is one way to fill in the blanks in an event log [24].

11.3 General View on Conformance Checking

In the previous two sections, we discussed model repair and log repair. Each of these
problems addresses one particular side of conformance checking. Now, we would
like to introduce a more general view that allows us to balance (non-)conformance
between models and logs.

When considering whether we need to repair the model or the log, we need to
have a mechanism that helps us to decide which part needs to be repaired by how
much. The notion of trust can be used to specify the degree of assumed correctness
at each side. For example, if the model is the result of a quick, first brainstorming
session, we would have less trust in its correctness and completeness, as opposed to
when the model is the result of a rigorous process analysis project.

Analogously, event logs that are generated by an erroneous process (for example
manual documentation of activities, followed by optical character recognition)
would be less trustworthy than the event log generated by an model-driven
information system orchestrating the execution of the process.



11.3 General View on Conformance Checking 237

L

M

logs models

L*
M*

L2

M2

LM

log
repair

model
repair

Figure 11.9 A general view on conformance checking needs to balance the repair on both the
model M and the log L
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Figure 11.10 General view on conformance checking with trust-based radii to balance the repair
on both the model M and the log L

Figure 11.9 shows that in the general view, we repair parts of the model and parts
of the log. In the problem formulation, we show one proposal on how it is possible
to balance the repairs based on the respective trust levels.

11.3.1 General Problem Formulation

With the introduction of trust level in the model, we can specify how much we would
like to repair the model. The more we trust the model, the less we want to repair it.
If we fully trust the model, it should not be repaired at all. The same argumentation
holds for the trust that we have in the event log.

Therefore, we define the trust levels to be normalised between 0 (no trust
whatsoever, can be swapped entirely) and 1 (complete trust, must not be changed).
Let us illustrate the effect of trust levels on the allowed changes in Figure 11.10.
We see that the trust levels in log and model are not equal. In this sketch, we have a
higher trust in the log than in the model. Therefore, the allowed repair radius around
log L is smaller than the one around the model M .

The trust radius specifies how much we are allowed to move away from the
input. To be able to quantify the repairing, we need distance notions. We need to
compute distance measures among event logs, and among models. Additionally, we
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we can define the distance between log and model as some combination of fitness
and precision.

Formally, we distinguish between the following distance functions:

• The function δL2 : UL ×UL → [0, 1] measures the distance between two event
logs.

• The function δM2 : UM × UM → [0, 1] measures the distance between two
models.

• The function δL,M : UL ×UM → [0, 1] measures the distance between an event
log and a process model, for example alignment-based fitness, or the average
fitness and precision.

Now we are ready to formulate the generalized conformance checking prob-
lem [91].

Problem 1 (Generalized Conformance Checking Problem) Given the input
tuple 〈L,M, δL2 , δM2, δL,M, τL, τM〉 of the initial log, the initial model, the distance
functions and the two trust levels, find a pair (L∗,M∗) ∈ UL × UM such that

(L∗,M∗) = arg min
L′ ∈ {L′′ ∈ UL | δL2 (L,L′′) ≤ 1 − τL}

M ′ ∈ {M ′′ ∈ UM | δM2(M,M ′′) ≤ 1 − τM }

f (δL,M(L′,M ′), δL2 (L,L′), δM2 (M,M ′))

(11.1)

where f is an abstract function weighing the three distance metrics, for example by
taking the weighted average.

In generalized conformance checking, we aim at a log model pair (L∗,M∗) that
is in a trust-based proximity to the original log L and model M , as well as at minimal
distance from each other. The former is reflected by bounding L′ and M ′ to logs and
models that are inside the trust-based radius and the latter is reflected by minimizing
the mutual distance (arg min returns the argument that minimizes an expression).

11.3.2 Different Process Mining Techniques as Specific
Instances

With this problem formulation, conformance checking can be seen as a search
problem, where we try to find the optimal solution to minimize the distances.
However, unlike the alignment problem, the generalized conformance checking
problem cannot be solved with the A� algorithm. The reason is that the goal state
is not known. We have a more general optimization problem at hand, which in its
generality also includes process mining.

Table 11.1 shows the various disciplines known in the process mining field
that can be seen as instances of the generalized conformance checking problem,
Problem 1. This table emphasizes that the problem itself is interesting to explore,
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Table 11.1 Some process mining tasks can be seen as instances of the generalized conformance
checking problem. The respective trust levels in log and model are given on the right; cf. [91]

Process mining task Log Trust Model Trust

Classical Process Discovery finds a model that best fits to the
entire event log, e.g., the alpha algorithm [119].

τL = 1 τM = 0

Heuristic Process Discovery algorithms apply preprocessing to
the event log by discarding infrequent patterns [52, 134].

0 < τL < 1 τM = 0

Model Repair fixes deficient models due to, e.g., a change in
the system that is reflected in the log. For example [41].

τL = 1 0 < τM < 1

Conformance Checking tries to find misalignments between
event log and model. Example works include [97, 101, 115].

τL = 1 τM = 1

Log Repair modifies the log such that it better conforms to the
given trusted model [90, 128].

0 < τL < 1 τM = 1

“Happy Path” Simulation is complementary to heuristic
process discovery. It is a theoretical use case where we do not
trust infrequent parts of the model [68].

τL = 0 0 < τM < 1

Process Simulation is complementary to process discovery,
where we are given an untrustworthy empty log and a fully
trustworthy model.

τL = 0 τM = 1

Garbage In, Garbage Out. When both the model and the log
are untrustworthy, the best log and model tuple that fits them is
any pair of model and log that fits each other, including an
empty log and an empty model.

τL = 0 τM = 0

Generalized Conformance Checking answers the question
where the model would best be adopted, and where the log
would best be adopted for a better overall fit. This goes beyond
alignments, as the latter only detect the misalignments without
specifying which side is to “blame”.

0 < τL < 1 0 < τM < 1

and some first attempts at solving it in its generality have been made in [91].
However, conformance checking is still a novel and active area of research and
more advanced solutions can be expected soon.

In fact, some of the research results we presented in this book are already
sophisticated enough to find their way into software products. We shall explore
conformance checking software in the next chapter.

Bibliographical Notes

There are a few available techniques for repairing process models [10, 41, 81]. In
Section 11.1 we shortly described part of the technique in [41], which is available in
ProM through the package Uma. Techniques related to model repair that are more
focused on the simplification of the model without degrading other quality metrics
can be found in different publications [34, 40, 83].

Log repair can be simple and frequency-based with the assumption that whatever
behaviour is rare, is also wrong behaviour that can be filtered out [25]. Many process
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mining algorithms use this assumption to restrict the variability and focus on the
most frequent behaviour [134]. The log “repair” in this case is implicitly done before
mining the models. More explicit log repair approaches using logical rules to restore
missing events can be found in [24, 43]. Bayesian statistics to restore missing events
with their most likely timestamps are applied in [90]. A catalogue of patterns that
indicate problems with event logs and corresponding solutions is given in [105].

The general view on conformance checking first appeared in [91], but the authors
are continuing the research in this area.

11.4 Exercises

11.A) Model repair

Given the following process model:

A

B

C

D

E F G

H

Repair it according to the trace 〈A,E,G,B,X, Y,D,H 〉. Remember that
for repairing a model, you first need to align the trace with the model and
then treat each one of the types of asynchronous moves individually as
explained in Section 11.1.

11.B) Log repair

Given the process model and trace shown in the previous exercise, now
perform the opposite operation: Repair the trace according to the process
model.

11) In the lab: tool support for improving processes

Check out the lab session to practise
with different tools implementing the
techniques for improving processes
introduced in this chapter.

http://www.conformancechecking.com/CC_book_Chapter_11

http://www.conformancechecking.com/CC_book_Chapter_11


Chapter 12
Conformance Checking Software

The previous chapters of this part of the book introduced techniques that exploit
alignments between recorded and modelled behaviour to understand or even
improve the conduct of a process. Yet, our focus has been on the general concepts
in terms of models, measures, and algorithms. The application of these techniques
in practice, however, requires the implementation of these concepts in software
solutions.

Against this background, this chapter turns to conformance checking software.
Specifically, our goal is twofold. First, in Section 12.1 we show how conformance
checking techniques can be implemented by reviewing the ProM Framework,
a widely established open-source framework. It covers most of the techniques
discussed in this book, making them easily accessible and enabling researchers to
create prototypes for testing novel approaches to conformance checking. Clearly,
the ProM Framework is not aimed at end users, who would simply like to apply
conformance checking in an organization. A second goal of this chapter is, therefore,
a discussion of commercial offerings for conformance checking, provided in
Section 12.2. These offerings represent a highly dynamic market with new solutions
being released every few months. Hence, instead of reviewing specific solutions, this
chapter details some general considerations, which include requirements in terms
of functionality beyond the core algorithms as well as non-functional aspects. This
way, we strive for a discussion that supports users in the assessment and comparison
of commercial offerings for conformance checking, in the light of their specific
application scenario.

12.1 The ProM Framework

The ProM Framework is an open-source framework for Process Mining
(Figure 12.1). The first version of ProM was released in 2004. The initial goal of
ProM was to unify process mining efforts at Eindhoven University of Technology
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Figure 12.1 ProM splash screen

and other cooperating groups. The framework allows researchers from all over the
world to contribute their work and expose their ideas to a large community. Over
the years, ProM has grown to be the world-leading proof-of-concept for all kinds
of Process Mining technology, ranging from process discovery to social network
analysis, and from event visualization to conformance checking.

In this section, we focus on the conformance checking abilities of ProM. We
show, tutorial style, which steps need to be taken to do conformance checking
on a process model and an event log. As an example, we use a real-life event
log published by the 4TU Centre for Research Data in 2012: http://data.4tu.nl/
repository/uuid:3926db30-f712-4394-aebc-75976070e91f

This event log is a log of a loan application process in a global financial institute.
It contains 13,087 traces with 262,200 events. Apart from some anonymization, the
log contains all data as it came from the financial institute. The process represented
in the event log is an application process for a personal loan or overdraft within a
global financing organization. The amount requested by the customer is indicated
in the case attribute AMOUNT_REQ, which is global, i.e., every case contains this
attribute. The event log is a merger of three intertwined sub-processes, namely the
(A)pplication process, the (O)ffer process, and the (W)orkflow. The first letter of
each activity name identifies from which sub-process (source) it originated.

http://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f
http://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f
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Figure 12.2 ProM workspace

The version of ProM we use for this section is ProM Lite.1 ProM Lite is a release
for end users. It only contains the most common packages, shows the most common
plug-ins, and it allows a user to select whether to install new packages and/or
updates when starting. We refer to http://www.promtools.org/ for more information
on ProM, ProM Lite, and online courses on how to use ProM in common scenarios.

We start by opening ProM, which shows us the workspace as shown in
Figure 12.2. In the top-right corner is a button to import files into the workspace.
We import both the event log file and the Petri net (.pnml) file. Note that opening the
log file results in ProM asking for the appropriate import plugin. The default will do
here.

After import, ProM shows the two objects opened as depicted in Figure 12.3.
The first step is now to view the contents of the log by first selecting the log and

then clicking the eye icon to the right of the log. This shows the log visualization
depicted in Figure 12.4.

This logview allows the user to inspect the log and its contents. On the first
page, an overview is shown indicating the number of events (262,200) and cases
(13,087). The inspector and summary tabs can be used to inspect individual events
and cases. In Figure 12.5, one case is shown (case number 173688) which was a

1The figures in this chapter are made using ProM Lite version 1.2.

http://www.promtools.org/
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Figure 12.3 ProM workspace showing imported log and model

Figure 12.4 ProM visualization of the log
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Figure 12.5 ProM visualization of one case

loan for 20,000 Euro (AMOUNT_REQ). Furthermore, some events are shown with
names and timestamps.

Going back to the workspace, we can also visualize the model by clicking the eye
icon. The result is depicted in Figure 12.6. Please note that the layout information
for this model is stored in the PNML file. However, if no layout information is
present, ProM does an automatic layout of the model.

The model depicted contains only transitions relating to (A)pplications and
(O)ffers. Essentially, the middle part of the model is the logical flow of the process.
The top part deals with cancellation and the bottom part with rejection. Applications
go through a number of steps and, if applicable, offers are sent to the customer in a
loop. Offers are sent one by one, until the customer cancels the application, rejects
the offer, or accepts the offer. In the latter case, the process continues with a load
activation, i.e., money is transferred to the customer.

In order to investigate the conformance between the log and the model, we start
by filtering the log for events pertaining to applications and offers. We do so by
going back to the workspace. Then, we select the log and click the play icon. This
opens the Actions view and here we search for the plugin called “Filter Log using
Simple Heuristics” as depicted in Figure 12.7.



246 12 Conformance Checking Software

Figure 12.6 ProM visualization of the Petri net

Figure 12.7 Actions view with filter plugin selected
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Figure 12.8 Filtering steps in the “Filter Log using Simple Heuristics” ProM-plugin. (a) Filtering
for event types. (b) Filtering for start events. (c) Filtering for end events. (d) Filtering for events
starting with “A” and “O”

When clicking “start”, this filtering plugin takes the user through a number of
steps during which we select:

1. To filter out all events with “schedule” and “start” in the name (Figure 12.8a),
2. To keep all cases starting with “A_submitted” (Figure 12.8b),
3. To keep all cases ending with any of the end events (Figure 12.8c),
4. To keep only events starting with “A” or “O” (Figure 12.8d).

After filtering, we have a new event log with the name “BPI Challenge 2012
(filtered for AO)” with 13,087 cases and 92,093 events (Figure 12.9).

By clicking the play icon again on the top right, we go back to the actions
view, where we search for the plugin “Replay a Log on Petri Net for Conformance
Analysis”. On the input side, we select both the filtered event log and the model we
imported earlier and we can click start again as depicted in Figure 12.10.

The conformance checking plugin now takes the user through a number of
configuration steps, which are necessary to compute alignments. First, the user is
asked to provide a final marking for the Petri net, i.e. what is the desired final state
for the model? Most Petri nets do not come with a pre-defined final marking and
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Figure 12.9 Result of first filtering: 13,087 cases and 92,093 events remained

Figure 12.10 Actions view for conformance checking
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Figure 12.11 Wizard for creating a final marking in the Petri net

often, the file formats do not even support storing it. Hence, this question is asked
for each Petri net (but only once per ProM session). In our case, we specify the final
marking to have a single token in the place “p_final” as depicted in Figure 12.11.

The next step is specification of the relation between the events in the log and the
transitions in the model. Each transition of the model needs to be mapped to zero
or one activity recorded in the log. In ProM, activities are called “event classes”
and they are derived from a log based on so-called classifiers. In our example, the
classifier “Event Name” should be selected and then the appropriate mapping is
suggested automatically as depicted in Figure 12.12. Please note that the yellow
entries show that the names do not exactly match. Furthermore, on the bottom of
the list, there are some transitions that are not mapped to any activity. Some of these
transitions are the τ -labelled transitions we discussed in the book, others may be
transitions referring to activities which are not recorded in the log. Like the final
marking, this mapping is also stored for the entire ProM session.

After setting up the relation between log and model, we need to select a
Conformance Checking algorithm as well as the parameters for that specific
algorithm. In this section, we select “A∗ Cost-based Fitness Express with ILP” as
an algorithm and we leave the parameters as default as depicted in Figure 12.13.

The next step is the cost function associating costs to deviations. The wizard
to set this cost function is shown in Figure 12.14. By default, move on model
costs for transitions that are mapped to activities is set to 1 and for transitions
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Figure 12.12 Wizard for mapping events to transitions in the Petri net

Figure 12.13 Replay algorithm selection
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Figure 12.14 Replay cost function selection

that are not mapped to transitions to 0. Also move on log costs are by default set
to 1 for all activities and finally the costs of synchronous moves are set to 0. On
the bottom of this dialog, there is also an option to improve the performance of
the alignment algorithm for event logs where multiple events within a case have
the same timestamp. Checking this option may improve the result, but may also
decrease performance.

Finally, after clicking “Finish”, the conformance checker starts aligning each
trace to the process model. This takes a few seconds for this example, but can
take considerably longer. During the computations, progress is reported as shown
in Figure 12.15.

After completing the alignment computations, the result is (by default) projected
on the model and a visualization is shown, as depicted in Figure 12.16.

On the top right, another visualization can be chosen for the conformance result,
namely “Project Alignment to Log”, which shows a different visualization which
we discussed earlier in the book, i.e., the visualization shown in Figure 12.17 with
explicit synchronous moves, log moves, and model moves. Furthermore, in this
view, we can also obtain the fitness values from the menu on the right-hand side,
which for this event log and model combination are as follows: The alignment-
based fitness (trace fitness in the tool) is 0.9476. The move model fitness is 0.9808
and the move log fitness is 0.9580. Overall, this model and log fit very well together.
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Figure 12.15 Replaying might take time, progress is reported

Figure 12.16 Default visualization of a replay result
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Figure 12.17 Log-based visualization of a replay result

Using the play button on the top right corner of Figure 12.17, the alignments
that have been computed can be used to compute precision and generalization.
Figure 12.18 shows the necessary input for the precision plugin and, using the
default settings, the precision for this model (using the technique outlined in
Section 8.5.1) on the filtered log is reported to be 0.62559.

The small tutorial here only gives a brief introduction to conformance checking
in ProM. Using the inspector in the model projection, users can filter traces with
specific deviations, export them to a separate log, and inspect the respective cases.
In this particular example, there are three problematic cases, namely 177083,
180310 and 198310. In the three respective traces, the activity “O_Accepted” never
happened, while the activities “A_Accepted” and “A_Activated” did. This implies
that in these cases, the customer never accepted an offer, but still the financial
institute transferred money to their bank accounts, in total: 63,000 Euro.

Furthermore, as is already visible in Figure 12.16, the activity “O_sent_back” is
often not seen in the log. This turned out to be related to the fact that call agents
did not actually send offers one by one, but they would send multiple offers in one
envelope. Only one of the offers would often be sent back by the customer; hence,
for the others, the corresponding events would then be missing.
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Figure 12.18 Action view with precision/generalization plugin selected

12.1.1 Beyond ProM-Lite

Many of the techniques presented in this book have been implemented in ProM
packages. These packages are however not always available in ProM Lite. In this
section, we give an overview of the relevant ProM packages and we refer to the
documentation of ProM on how to install these packages and how to use the plugins
in there.

AntiAlignment This package contains the implementations in ProM for comput-
ing anti-alignments as presented in Section 8.5.2.

DataAwareReplayer Is a package covering the data-aware techniques reported in
Section 9.1.

DecomposedReplayer Is a package with the plugins for decomposed replaying as
presented in Section 9.3.

StreamConformance Contains the work on online conformance checking pre-
sented in Section 9.2.

Mixed Paradigm This package allows the alignment plugin presented in this chap-
ter to work on mixed-paradigm models, i.e. models with declarative constraints
between transitions as presented in Section 9.5.2.

Uma This package contains several model repair techniques, including those ones
presented in Section 11.1.
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ProM, not ProM Lite, but the larger framework, contains many more plugins in
various stages of maturity and it is beyond the scope of this book to present them
all. However, we encourage the reader to try ProM.

12.2 Software for Conformance Checking in Industry

In recent years, several commercial offerings for process mining have entered the
market. Some of these software solutions offer conformance checking capabilities.
Since the market of process mining solutions is changing rapidly, we refrain from
discussing these solutions in detail in this section. Rather, we elaborate on some
general considerations in terms of functional and non-functional requirements that
provide a basis for the assessment of conformance checking solutions in practice.

Our goal is to outline the spectrum of aspects that may be considered when
evaluating software for conformance checking. Yet, this discussion can neither
be exhaustive, nor argue for the importance of individual aspects for particular
application domains. Rather, the discussion shall be understood as some general
guidance that may be useful in the assessment of a software solution with respect to
specific analysis questions.

12.2.1 The Functional Perspective

From a functional point of view, first and foremost, software solutions for con-
formance checking differ in the actual algorithms that detect deviations between
modelled and recorded behaviour. However, as detailed below, practical support for
conformance checking may include functionality beyond the actual conformance
checking algorithms.

Conformance Checking Algorithms Software solutions may adopt different
formalisms for conformance checking. In Section 4, we reviewed three such
formalisms, in terms of rule checking, token replay, and alignments. Also, we
argued that these three methods are complementary, as they strive for a different
balance, for instance, between the completeness of conformance checking and its
computational efficiency. As such, tools that are based on either type of method
may be more suitable for a particular use case, than another software solution that
adopts a different formalism.

Independently of the general approach taken for conformance checking, software
solutions shall also be assessed in the details of the specific realization. In rule
checking, the set of supported rule definitions has far-reaching consequences; see
Section 4.1. In token replay, as discussed in Section 4.2, algorithmic choices
on how to handle non-determinism in a process model influence the obtained
conformance checking results. Similarly, when adopting the paradigm of alignments
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for conformance checking, tools may differ in how they compute alignments. From
a qualitative point of view, differences may relate to the question of whether the
computation is guaranteed to be optimal and deterministic; see Chapter 7.

Event Log Preparation In many application scenarios, conformance checking is
preceded by some data preparation phase. Starting with raw data as extracted from
information systems, event logs in the structure required by conformance checking
techniques need to be derived. Beyond basic data normalisation and filtering, this
includes functionality to relate events and activities, and events and traces; see
Chapter 6.

Since event log preparation may require significant manual effort, it often
represents a major obstacle to conducting conformance checking in practice. Tool
support for the event log preparation, therefore, is of crucial importance. Potentially,
such support includes adapters for data extraction from legacy systems, methods for
data profiling to explore the structure of extracted data, mechanism for filtering and
outlier detection to handle noise and define the scope of the analysis, automatic drift
detection and data abstraction, learning methods to correlate events into traces, or
(semi-)automated matching to link events with activities.

Result Abstraction: Drill-Down and Roll-Up In order to make effective use
of conformance checking, the obtained link established between modelled and
recorded behaviour needs to be interpreted. For instance, in Section 8, we discussed
how alignments can be visualized and provide the basis for manifold measures to
assess the conformance of an event log and a process model.

Tools differ widely in how they support such interpretation of conformance
checking results. Even when relying on the same formalism and adopting the same
visualization, important differences may relate to the functionality offered in terms
of result abstraction. Instead of providing solely low-level feedback on the detected
deviations per trace of an event log, tools may derive more abstract representations.
Abstractions here potentially relate to the notion of the reported deviations. For
instance, when considering alignments, feedback may not be limited to listing the
moves in log and moves in model per trace. Rather, it can be given in terms of high-
level behavioural patterns, e.g., on the level of sub-processes. Similarly, abstractions
may be grounded in the scope of the considered events. Deviations can be reported
per trace, group of similar traces, or the log as a whole.

To support the interpretation of conformance checking results, an implementa-
tion of the above abstractions shall be accompanied with support for navigating
through these abstractions. Software solutions with drill-down and roll-up function-
ality that enable a user to derive more or less abstract feedback on deviations are
valuable means to make sense of conformance checking results.

Reference Models Conformance checking solutions can support process analysis
based on predefined reference models. That is, behaviour as recorded by infor-
mation systems as part of process execution is compared against models that are
shipped with the conformance checking tool. For application domains such as
order processing in the automotive industry or IT incident management, reference
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models are widely established, sometimes even promoted by standardization bodies.
Commercial offerings for conformance checking that are tailored for these domains
may provide functionality to customize the respective reference models, thereby
largely releasing the end user from the burden to explicitly provide process models
for the analysis.

Integration with Process Discovery Conformance checking may be conducted in
application scenarios, in which a specification of a system’s behaviour is not directly
available. In that case, software solutions may also offer techniques for process
discovery that construct a process model from the event log. Common techniques
for process discovery filter the information in an event log, excluding rare behaviour
in particular. At the same time, discovery often generalizes, i.e., creates a process
model that allows for more behaviour than what has been recorded in the log.
Consequently, even when a discovered model is used as the input for conformance
checking, one typically finds deviations between this model and the original event
log.

Software solutions differ in their support for automated process discovery,
e.g., in terms of the applied representational bias and the implemented discovery
algorithms. In addition, some tools include actual process modelling functionality,
which allows for manual adaptation of the model derived by automated discovery.

Comparative Analysis Conformance checking typically is not only a one-off
operation, but relates to the evolution of the consistency between modelled and
recorded behaviour over time. One could argue that, in order to understand this
evolution, it is sufficient to compare the conformance checking results at different
points in time, or for models and event logs capturing different time periods,
respectively. Yet, software solutions to conformance checking may offer more
elaborate support for such comparative analysis. Exemplary functionality in this
regard includes an explicit detection of changes in the deviations between a model
and a log, thereby highlighting, e.g., the outcome of process improvement or
redesign initiatives.

In addition to functionality to analyse the evolution of process conformance
for user-defined time periods, tool support may also cover change point detection.
That is, the point in time at which significant changes in a process’ conformance
materialize are identified automatically.

Impact Assessment In practice, deviations between modelled and recorded
behaviour of a system shall be assessed in terms of their impact. Clearly, some
deviations are more important than others. Considering the process of processing
a loan application, an activity related to informing the applicant on the progress of
processing is less crucial in terms of business impact than the activities that refer to
the acceptance of a request. Skipping the former has implications in terms of client
inconvenience, whereas deviations regarding the latter activity may have severe
legal and financial consequences.

While the assessment of the impact of deviations is domain-specific, software
solutions typically offer means to configure the importance of particular activities.
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Also, the impact of deviations can be evaluated against the importance of cases
as a whole. For instance, in the above example, the amount of the requested loan
provides for a simple indicator of the importance of individual cases. Based thereon,
the impact of a specific deviation in terms of the importance of the affected cases
can be determined. By providing means to compute such impact metrics, software
solutions enable users to prioritize deviations in their analysis of conformance
checking results.

Root Cause Analysis The actual computation of conformance checking results is
typically succeeded by an in-depth analysis that aims at revealing the origins of
deviations. Such root cause analysis strives for a characterization of the context in
which particular process conformance issues materialize. Here, the context can be
defined along various dimensions. A conformance issue may be limited to a time-
of-day or day-of-week of process execution, involve specific roles and resources,
or be attributable to data assigned to individual cases. Understanding such contexts
is valuable when aiming at an understanding of the factors that contribute to non-
conformance.

Software solutions to conformance checking can support such root cause analysis
by implementing basic machine learning algorithms. For instance, a characterization
of the context of a deviation may be identified by solving a classification problem.
Using contemporary learning algorithms, a classifier is learned that separates traces
for which the deviation has been observed, from those that do not show the
respective conformance issue.

Operational Support Most of the techniques covered in this book target a
posteriori analysis, i.e., conformance is established after the fact, based on event
data recorded in the past. Yet, as outlined in Section 9.2, conformance checking may
also be conducted as an online procedure that assesses the conformance of a running
case based on a stream of events. Since such online processing requires different
algorithms than offline analysis and imposes new challenges in terms of interpreting
the result, tools for a posteriori conformance checking cannot directly be employed.
Rather, software solutions need to provide dedicated support for online analysis.

Software solutions may further offer functionality to move from reactive confor-
mance checking to predictive analytics. For a running case, forecast models may
be able to anticipate the occurrence of a conformance issue in the near future, e.g.,
based on behavioural patterns as well as the data assigned to cases. The functionality
provided to learn such forecast models and evaluate them in an online manner,
therefore, is a feature that may turn out to be important when comparing different
software solutions.

12.2.2 The Non-functional Perspective

The functional requirements discussed above are not sufficient to assess the
suitability of some conformance checking software for a particular application
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scenario. They shall be complemented by an investigation of additional aspects,
often summarized under the umbrella of non-functional requirements. Below,
several of these aspects are reviewed. Again, this list cannot be exhaustive, and
may refer to aspects that are not important under all circumstances. The judgement
ultimately needs to be taken in the light of a specific application scenario.

Scalability Depending on the size of the event logs to consider, scalability of
conformance checking may be important. Here, scalability relates to the sheer
volume of data that can be handled by a tool in the first place, as well as
optimizations that reduce the encountered run-time. If conformance checking is
based on alignments, common algorithms show an exponential time complexity (see
Section 7.6), and thus may become a bottleneck in the analysis.

Against this background, conformance checking software may implement
decomposition schemes in order to speed up the computation. As discussed in
Section 9.3, this may involve vertical decomposition of entire traces of an event
log, and horizontal decomposition that slices traces by event groups. For instance,
vertical decomposition provides a simple way to parallelize the computation of
alignments, potentially using distributed infrastructures for data-parallel processing.

Security and Privacy Since conformance checking may refer to sensitive data,
respective software shall provide the appropriate security and privacy mechanism.
This is not limited to securing the process models and event logs used as input
for the analysis, which may denote valuable business assets. Security and privacy
mechanism shall also extend to the actual results of the analysis, i.e., information on
conformance issues. In particular, monitoring of work forces can only be conducted
within the bounds set by the respective legal frameworks. Conformance checking
may therefore provide mechanisms for data anonymization or aggregation, in order
to ensure that conformance issues cannot be attributed to individual resources or
workers, if needed.

Version Management As argued above, conformance checking is rarely a one-
off operation. In addition to providing support for comparative analysis, software
solutions shall enable management of the meta-information related to analysis
setups. To this end, version management of the artefacts used as input, event logs
and process models, as well as the analysis output are crucial to achieve traceability
of conformance checking.

Usability To make conformance checking easily accessible, usability aspects need
to be considered when assessing and comparing software solutions. The respective
offerings shall tailor their interaction concepts and interfaces to the background of
particular user types. Beyond the adopted visualizations (see also Section 8.2), an
intuitive graphical user interface, the supported languages, built-in help functions,
and search mechanisms contribute to high usefulness of a tool.

Documentation Conformance checking solutions may differ in the availability
of accompanying documentation. Such documentation shall be tailored to specific
types of stakeholders and shall potentially span various perspectives, from system
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setup and customization, through administration and maintenance, to guidance for
end users.

Deployment and License Models Commercial offerings for conformance check-
ing differ in the adopted and deployment and license models. For instance, some
solutions are available as stand-alone desktop applications, whereas others rely on
server-based architectures that may be deployed in-house or used in a software-as-
a-service model. Such differences are typically also reflected in the license models,
being based, for instance, on the number of installations or users, the richness of the
used functionality, or the volume of the event data that may be processed.

12) In the lab: tool support for conformance checking

Check out the lab session to practise
with different tools available for con-
formance checking.

http://www.conformancechecking.com/CC_book_Chapter_12

http://www.conformancechecking.com/CC_book_Chapter_12


Chapter 13
Epilogue

To conclude this book, we first summarize the reasons why conformance checking
is an important field on its own. Then we report on the different aspects of
conformance checking, and how they have been introduced through the book.
Finally, we illustrate challenges that can be tackled by the research community
and industry to ensure that the widespread application of conformance checking
is possible.

Conformance Checking Without doubt, aligning recorded and modelled
behaviour is a key enabler for understanding how the processes in an organization
work in reality. By looking at the reality from the model’s perspective, several
insights can be obtained and through continuous monitoring using conformance
checking techniques, improved processes can be attained. Last, but not least,
through conformance checking, operational processes can automatically be
monitored for compliance to regulations and alignment with business goals.

Description of the Book In Part I of the book, the reader is introduced to the field
of conformance checking. First, important factors that contextualize the field are
considered, as well as the positioning of conformance checking with respect to other
disciplines. Also the spectrum and setting of the field is described.

Using intuitive explanations and with the help of a running example, the
main inputs of conformance checking techniques are described: event logs and
process models. Quality dimensions are then informally introduced, for having an
informal understanding on metrics that evaluate the relation between recorded and
modelled behaviour. Finally, a qualitative analysis is presented that considers three
complementary ways of relating recorded and modelled behaviour: rule checking,
token replay and alignments.

Part II of the book is devoted to providing an algorithmic insight to the core
techniques for conformance checking. Preliminaries as well as formal definitions of
the main elements are introduced. Then we show an in-depth algorithmic description
of the state-of-the-art technique for computing so-called alignments, which provide
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a mathematical foundation to the conformance checking techniques presented in
this book. The discussion on variations in the algorithmics and heuristic approaches
may trigger future research on improving the computation of alignments, which to
date is the lion’s share of conformance checking and its most challenging problem.

In Part II, we also reflect on important concerns related to alignments, such as the
non-uniqueness of optimal alignments and properties that quality metrics computed
on top of alignments should adhere to. Finally, we broaden the scope of alignment-
based conformance checking by reporting on variations of the main technique,
so that it can be applied for different purposes. We, for example, show how to
include the data and resource perspective in conformance checking and we show
how conformance checking can be performed in an online setting or in scenarios
where the process descriptions are not Petri nets. Also, an alternative for computing
alignments using so-called event structures is described.

Part III is focused on applications of conformance checking. It starts by
illustrating that conformance artefacts are not the end of the story, but instead enable
further analyses to reflect on the process beyond control flow. Among them, we
highlight performance analysis and decision point analysis as prominent examples.
We also discuss the generalizing ability of process models. Furthermore, we show
that conformance checking opens the door to repairing either process models or
event logs, so that the representations are modified to better represent the underlying
process. We stress the importance of trust in both the log and the model in this
section.

Finally we turn our focus to software support for conformance checking, by
describing an open-source initiative that contains most of the techniques described
in this book. On a more general setting, we then list requisites on the functionality
that any software for conformance checking should have in order to satisfy
important requirements for its successful application.

Challenges in Conformance Checking Although conformance checking is a well-
established field, the maturity of the different techniques varies significantly. One
example is the metrics available: Whilst fitness or even precision are considered well
evaluated through current metrics, accurate generalization metrics that additionally
can be evaluated efficiently are yet to come.

Alignments are a central pillar of current techniques for conformance checking,
as has been illustrated through this book. However, the complexity requirements
of the state-of-the-art techniques hamper their application for large instances.
Alternative approaches, like the decomposition or structural techniques presented
in Part II of this book, only alleviate the problem, at the expense of losing
the guarantee of important properties like optimality. Also, when incorporating
other dimensions like data or resources, so that multi-perspective conformance
checking is enabled, the complexity of the problem increases significantly, making it
difficult to be applied for real-life problems. We envision new contributions also for
multi-perspective conformance checking in the near future that can overcome this
limitation. A similar situation is observed with online techniques for conformance
checking.
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With remarkable exceptions, the industry uptake of conformance checking has
been limited so far. This holds both for developing commercial software that incor-
porates conformance checking features, and for applying conformance checking
practices into the daily activities of organizations. Clearly, the former enables
the latter, i.e., if more tools were made available for organizations, conformance
checking would be applied more often.

In brief, in order to have a population of commercial software for conformance
checking, more research should be conducted, so that the important computational
challenges are overcome. In spite of the aforementioned limited industry uptake,
there exist few tools in the market with conformance checking features. In general,
the available tool support for conformance checking mostly applies simple tech-
niques, so that the software can provide results in reasonable time.

The future for conformance checking is ahead us; are you willing to join?
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