
Chapter 8
A New Wavelet-Based Approach for Mass
Spectrometry Data Classification

Achraf Cohen, Chaimaa Messaoudi, and Hassan Badir

8.1 Introduction

Application of new technologies of big data and statistical learning theory to mass
spectrometry data classification problem can have a valuable impact on public
health. This need is particularly critical in early detection and identification of can-
cer. Many strategies can be implemented to combat cancer such as early detection,
close monitoring of the patient after initial treatment, and others (Diamandis 2004).
Proteomic patterns through mass spectrometry techniques have shown a promising
strategy to diagnose cancer.

Mass Spectrometry (MS) is an analytical chemistry technique that was intro-
duced to help to identify the amount and type of chemicals present in a sample
by measuring the mass-to-charge ratio and abundance of gas-phase ions. The mass
spectrometers consist of three principal elements: an ion source, a mass analyzer,
and an ion detection system (Aebersold and Mann 2003). The ionization is the first
step in mass spectrometry analysis. The second step is the separation of the ions
according to their mass to charge ratio. Finally, the compounds are detected and
the relative abundance of each of the resolved ionic species is recorded. The output
of the detector is a mass spectrum presented in a plot of the relative abundance or
relative intensity as a function of the mass-to-charge ratio, see Fig. 8.1.
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Fig. 8.1 Components of a mass spectrometer

In the last decade, MS data analysis has become an increasingly prominent field
allowing the identification, quantification, and characterization of peptides and pro-
teins in biological samples. It has been applied to discover patterns of differentially
expressed protein in clinical samples such as blood serum. Especially, biomarker
identification that can be used for diagnosis and monitoring of many diseases
(Cravatt et al. 2007). The Matrix Assisted Laser Desorption/Ionization Time-Of-
Flight (MALDI-TOF) and Surfaced-Enhanced Laser Desorption/Ionization Time-
Of-Flight (SELDI-TOF) are high-throughput technologies for the acquisition of
protein expression profiles from biological fluids (serum, plasma, etc.). The use of
these technologies, with statistical modeling, is essential for (1) the identification of
novel protein biomarkers of disease and (2) the classification of a new unseen mass
spectrum.

MS data are given by the number of mass-to-charge ratios (m/z). Tens of
thousands of m/z are available in the data but not necessarily all are used to MS data
classification. It is reasonable to have a feature extraction procedure that is able to
decrease the effects of noise, reduce dimension, and define new features to represent
the data. These new features are used to develop a good classification model (Das
2001). In the last decades, MS data analysis for cancer identification has focused
on two main concepts (1) selecting features from MS spectrum and (2) developing
classification models for prediction. Both concepts should work together in order to
provide an accurate model for classifying MS data.

The conventional method for processing an MS spectrum is to perform a number
of preprocessing steps before developing any statistical models. These tools include
baseline correction, normalization, and denoising (Dubitzky et al. 2007, pp. 79–
102). The authors in Petricoin et al. (2002) developed a bioinformatics tool to
identify ovarian cancer using self-organizing clustering analysis and genetic algo-
rithm. In Tang et al. (2010), the authors proposed an approach for dimensionality
reduction and tested it using mass spectrometry data for ovarian cancer. They used
the mean, variance, skewness, and kurtosis in order to reduce the dimension. A
Kernel Partial Least Squares model is then developed for ovarian cancer classifi-
cation. Moreover, Li and Zeng (2016) proposed a method based on the model of
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uncorrelated linear discriminant analysis combined with variable selection method,
applied to serum SELDI-TOF MS for ovarian cancer identification. Wu et al. (2016)
proposed a classification model based on probabilistic principal component analysis
and support vector machine. The model was applied to ovarian cancer. Sharma
and Singh (2016) suggested the use of the neural network for diagnosis of ovarian
cancer.

de Noo et al. (2006) studied colorectal cancer using the MALDI-TOF serum.
In a randomized block design, pre-operative samples from 66 colorectal cancer
patients and 50 controls were used, and a classification model is built using a linear
discriminant analysis with double cross-validation. Another study on colorectal
cancer is given in Ward et al. (2008). The authors used a logistic regression
model to classify MS spectrum for 67 patients with colorectal cancer and 72 non-
cancer control subjects. Lung cancer was studied in Yildiz et al. (2007), the paper
investigated MS data to identify lung cancer cases from matched controls. MALDI-
MS data were used with two methods of analysis: the weighted flexible compound
covariate method and support vector machine.

Pancreatic cancer was the goal of the study given in Ge and Wong (2008).
The authors investigated the utility of three feature selection schemas Student t-
test, Wilcoxon rank sum test, and genetic algorithm. Some of the selected features
were then used to classify MS Pancreatic cancer through six different decision tree
classifier ensembles, such as Random forest, Adaboost, and others. Ohn et al. (2016)
used 2D polyacrylamide gel electrophoresis (2D PAGE) approach to generate the
2D proteome patterns, and they then compared three classification methods: genetic
algorithm combined with SVM, stepwise forward feature selection with K-NN, and
random forest. These methods were applied to identify breast cancer.

Lancashire et al. (2009) presented a review of the concepts related to neural
networks with their applications in mass spectrometry and focus on cancer studies.
In this study (Gromski et al. 2014), the researchers compared feature selection
methods with some classification approaches such as Random Forest with its
variable selection techniques and SVM combined with support vector machines-
recursive feature elimination, and they showed better performance is given by SVM.
Awedat et al. (2016) proposed a compressive sensing sampling approach to reducing
the dimension. They showed L2-algorithm with regularization terms has better
performance than standalone L2-algorithm.

Wavelet analysis has been shown potential application for MS classification to
(a) reducing dimension, (b) extracting features, or (c) denoising data. In Yu et al.
(2005), a procedure to classify ovarian cancer based on MS data was developed. The
authors combined binning, Kolmogorov-Smirnov test, wavelet analysis, and support
vector machines to preprocess and develop a classification model, The authors used
the db4 wavelet. Another classification approach of proteomic MS data based on bi-
orthogonal discrete wavelet transform and support vector machines was proposed in
Schleif et al. (2009). The authors used bior3.7 wavelet for denoising purposes. Du
et al. (2009) proposed a workflow for MS classification based on wavelet analysis,
Kolmogorov-Smirnov test with bagging predictor. The wavelet sym8 was used to
denoise the MS data. Nguyen et al. (2015) showed that combining Haar wavelet
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coefficients and genetic algorithm provides a good selection feature subset for the
performance classification, but genetic algorithms require a random initialization
that may lead to different results. The Wavelet-based function mixed model, which
generalizes the linear mixed models to the case of functional data was used in order
to analyze MS-data (Morris et al. 2006).

The goal of this chapter is to present a new approach for MS data classification.
The proposed approach is original and based on a combination between principal
component and wavelet analyses in addition to a new T 2 statistic. Most of the
previous research using wavelet analysis did not show how they did select the
wavelet family for their analysis. To this end we propose a prior study to select
the best-suited wavelet for the analysis. This will help future MS research to
have a subjective tool for wavelet selection. The principal component analysis is
applied to six features (statistics) that are calculated on the wavelets coefficients

(approximation and details). Next, we propose a new statistic T 2 =
√

T 2
a + T 2

d

combining T 2 on the approximation and details coefficients, respectively. Finally,
a support vector machine model is built on the new aforementioned statistic. The
proposed approach shows high accuracy, specificity, and sensitivity. We provide a
detailed description of each step to ensure the reproductivity of the present research
work.

This chapter is organized as follows. Section 8.2 presents the proposed approach
for mass spectrometry data classification. In Sect. 8.3, experiments and results are
given, and Sect. 8.4 presents conclusions and some directions of research.

8.2 The Proposed Approach

We have designed and implemented a new approach to classify mass spectrometry
data. The main steps of our proposed approach are illustrated in Fig. 8.2. The
philosophy of the method consists of subdividing the MS sample into several
windows and extracting from them some features that will help discriminate/classify
the entire MS spectrum. The wavelets analysis has potential capabilities to extract
features especially when noisy data is used such as the case with MS data. The
principal component analysis with T 2 statistic is used in order to aggregate the
features from the wavelets coefficients into one statistic.

The proposed approach can be implemented as follows:
In this approach, each MS spectrum is represented by a T 2 statistic calculated

into the feature space of the principal component analysis. The latter is applied to the
features (Energy, Mean, Kurtosis, Skewness, Variance, and Coefficient of Variation)
of the wavelets coefficients. This approach will be applied to a real dataset in the
next section.
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1: Input data: MS spectrum X of length L
2: Divide X into n samples of length N = 2J , and rearrange X into a data matrix Z(N×n)

3: Apply Discrete Wavelet Transform using bior3.1 to each column of Z(N×n); see Sect. 8.2.1
4: Compute [Energy, Mean, Kurtosis, Skewness, Variance, and Coefficient of Variation (CV)] of

the approximation and details wavelets coefficients as follows:

Energy =
∑

w2
i ; Mean =

∑
wi/m (8.1)

V ariance =
∑

(wi − Mean)2/(m − 1); CV =
√

V ariance

Mean
(8.2)

Skewness = E

[(
X − μ√
V ariance

)3
]

; Kurtosis = E

[(
X − μ√
V ariance

)4
]

(8.3)

The data look now as follows, for both approximation and details coefficients:

Feature =

Energy Mean Variance Skewness Kurtosis CV
Window1 E1 M1 V1 Sk1 Ku1 CV1

Window2 E2 M2 V2 Sk2 Ku2 CV2
.
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5: Apply Principal Component Analysis to Featureaj
and Featuredj

data matrices, and select
a number of principal components (reduced space)

6: Compute T 2
aj

and T 2
dj

statistics corresponding to the approximation and details wavelets
coefficients, respectively, in the reduced space, see Sect. 8.2.2

7: Develop an SVM model on the T 2 =
√

T 2
aj

+ T 2
dj

statistic, see Sect. 8.2.3

where wi are the wavelet coefficients (either approximations or details), m is the number of
coefficients, L is the length of the MS, J is a natural number, and aj and dj are the approximations
and details wavelet coefficients, respectively.

8.2.1 Wavelets Analysis

Wavelet analysis is a mathematical tool that consists of projecting data into a
time-frequency representation. The theory of Multi-Resolution Analysis (MRA)
has linked wavelets theory to filter analysis. It opened the door to apply wavelets
to image processing and also resulted in the implementation of the Fast Wavelet
Transform (FWT) algorithm (Mallat 1989; Misiti et al. 1996). Wavelets func-
tions are grouped by families such as Haar, Daubechies, Coiflet, Symlet, and
Biorthogonal (Daubechies 1992). The Continuous Wavelet Transform (CWT) is a
redundant transformation since the scale and the translation parameters are changed
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Fig. 8.2 The proposed method for MS classification

Fig. 8.3 The discrete wavelet transform through filter banks

continuously. The Discrete Wavelet Transform (DWT) is computationally efficient
and can be achieved by the discretization of the scale s and translation τ parameters,
as follows:

ψj,k(t) = 2j/2ψ(2j t − k) (8.4)

where s = 2j and τ = ks; j, k ∈ Z.
These wavelet bases are orthogonal and defined in the framework of the Multi-

Resolution Analysis (MRA), which provides a multiscale decomposition using
orthogonal wavelets families across filter banks, see Fig. 8.3.
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The wavelets coefficients of the DWT, approximations aj (k) and details dj (k),
are given as follows:

aj (k) =
l∑

i=0

h[i]aj−1[2k − i] (8.5)

dj (k) =
l∑

i=0

g[i]aj−1[2k − i] (8.6)

where a0 = x the original signal, j represents the decomposition scale; k ∈ Z; l is
the filter length; h and g are the scaling and wavelets filters, respectively.

The past research publications in bioinformatics have used the shrinkage tech-
niques, which consist of thresholding wavelets coefficients. These techniques
have shown a good performance for reducing noise in mass spectrometry data.
Several thresholds have been developed, VisuShrink (Donoho and Johnstone 1994),
RiskShrink, SUREShrink (Donoho and Johnstone 1995; Donoho 1995), FirmShrink
(Gao et al. 1997; Gao 1998), to name a few. One of the benefits of the wavelet
transform is the plenty of the wavelets functions developed over the past decades,
but from such advantage arises the question of how to select a wavelet that is best
suited for analyzing MS data.

There are two approaches in order to choose a wavelet for a specific signal. First,
the qualitative methods such as orthogonality, symmetry, and compact support.
Second, the quantitative measures such as energy, entropy, mutual Information,
conditional entropy, and energy-to-Shannon entropy ratio. In this work, we used
the energy-to-Shannon entropy ratio, which is defined as:

R = Energy

Entropy
=

∑N | wt(s, i) |2
−∑N

pi log2 pi

(8.7)

where N is the number of wavelet coefficients and wt represents the wavelets

coefficients, s is the scaling parameter, and pi = |wt(s,i)|2
Energy

.
The set of wavelets that has given a large energy-to-Shannon entropy ratio

should be considered the candidate wavelets, one can choose the wavelets that have
produced the largest energy-to-Shannon entropy ratio.

We conducted a preliminary study to choose which wavelet will be used to
extract features. We considered 58 wavelets, and by using the Breast cancer Mass
Spectrometry data presented in Sect. 8.3. The largest average energy-to-Shannon
entropy ratio is equal to 49.88 and given by bior3.1, see Fig. 8.4. Therefore, we
chose the biorthogonal wavelet (Cohen et al. 1992) bior3.1 as the best-suited
wavelet of the analysis.
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Fig. 8.4 The average energy-to-Shannon entropy ratio using 30 MS Spectrum and 58 Wavelets.
dbN: Daubechies of order N; Sym: Symlet; Coif: Coiflet; bior: Biorthogonal, dmey: discrete Meyer

8.2.2 Principal Component Analysis and Hotelling T 2 Statistic

Principal component analysis (PCA) (Jolliffe 1986) is widely used for data explo-
ration and interpretation. Principal component analysis of a data matrix provides
new uncorrelated variables (principal components) whose variances are as large as
possible. Consider a normalized data matrix, with p variables and N observations.

Z =

⎛
⎜⎜⎜⎝

z11 z12 . . . z1p

z21 z22 . . . z2p

...
...

. . .
...

zN1 zN2 . . . zNp

⎞
⎟⎟⎟⎠ (8.8)

The covariance matrix of Z can be approximated as:

�̂ = 1

N − 1
ZT Z = PΛP T (8.9)
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where Λ = diag(λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ . . . ,≥ λp. λi are the eigenvalues
and P are the eigenvectors of �̂. According to λi’s, P and Λ could be divided into
a feature space (feat) and a residual space (res). We can then rewrite P and Λ as
follows:

P = [
Pf eat Pres

]
(8.10)

Λ =
[

Λf eat 0
0 Λres

]
(8.11)

The Hotelling T 2 statistic can then be computed as follows:

T 2 = ZPf eatΛ
−1
f eatP

T
f eatZ

T (8.12)

where T 2 is the Hotelling statistic calculated into the multivariate feature space of
the principal component analysis, and P T is the transpose of P . The number of
components in the feature space can be determined by using techniques such as the
cumulative explained variance and the scree plot. In our approach, the number of
principal component in the feature space is determined by the cumulative explained
variance technique.

8.2.3 Support Vector Machines

The Support Vector Machines (SVM) are one of the most used statistical learning
methods for classification and regression. Classification using SVM can handle
problems where a training set S is linearly separable or linearly non-separable. The
kernel approach allows the training data to be projected into a higher dimensional
feature space where the data become separable (Shawe-Taylor and Cristianini 2004;
Cristianini and Shawe-Taylor 2000; Vapnik 2013). This property makes the use of
SVM valuable for many applications.

Given a training set of pairs (Xi, Yi), i = 1, . . . , N where Xi ∈ Rn and Y ∈
{1(cancer),−1(Non − cancer)}N , the support vector machines find a hyperplane
that separates the two classes. The generalized optimal separating hyperplane is
determined by w that minimizes the following optimization problem (Cortes and
Vapnik 1995):

1

2
wT w + C

N∑
i=1

εi (8.13)

subject to

yi(w
T φ(xi) + b) ≥ 1 − εi; εi ≥ 0 (8.14)
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where the training set xi is mapped into a higher dimension space using the function
φ. C is a positive constant (regularization parameter). It is shown that the problem
presented in Eqs. (8.13)–(8.14) depends only on the inner product of x. Therefore,
the inner product in the high dimensional feature space can be performed in the
input space via the kernel functions. Many kernel functions exist such as polynomial
and Gaussian Radial Basis Function (RBF). The Gaussian kernel has given a great
attention and defined by:

K(x, x′) = exp

(
− γ || x − x′ ||2

)
(8.15)

where γ is the Kernel parameter. In order to find the best decision boundaries,
the hyperparameters C and γ should be controlled. The hyperparameter opti-
mization can be used to select C and the Kernel parameter. Methods such as
grid search, random search, and Bayesian optimization are often used for such
purpose. In this work, we used a grid search on C ∈ {2−8, 2−7, . . . , 28} and
γ ∈ {2−10, 2−9, . . . , 210} to select the hyperparameters C and γ . We run a 50-fold
cross validation on the training data set to determine the hyperparameters as follows:
C = 2 and γ = 0.0009765

8.3 Experiments and Results

The data used are low-mass range SELDI spectra derived from patients with breast
cancer and from normal controls. They can be found online at the Department
of Bioinformatics and Computational Biology at the University of Texas M.D.
Anderson Cancer Center (P. datasets for Breast Cancer 2004). The datasets were
generated using IMAC-3 protein chip and sample application was performed using
the Biomek 2000 Laboratory Automation Workstation robot (Beckman Coulter,
Fullerton, CA). There are 33,885 m/z values and 156 samples where control
(normal) patients contribute with 57 samples and 99 samples are cancer. The
analysis was done using Matlab and R. The authors are willing to share the code
used in this work if requested by e-mail. An example of a sample of cancer and a
sample from normal patients is in Fig. 8.5.

In the experiment, each MS sample is subdivided into 64 windows of 28 = 256
observations that is 32,768 m/z values. Since the data have 33,885 values the
remaining values are not used. The data then are arranged into a matrix data of 256
rows and 64 columns. Next, the discrete wavelet transform is applied to each column
(window) using the bior3.1 wavelet as shown in Sect. 8.2.1. This results in obtaining
the approximation coefficients and details coefficients for each window. Afterwards,
the features presented in Sect. 8.2 are computed for each window, therefore the
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Fig. 8.5 An example of MS samples from cancer and normal patients

data are now arranged as two matrices data of 64 rows (windows) and 6 columns
(features), one matrix data is based on the approximations and the other is given by
the details coefficients. Each window is represented by six features of the wavelets
coefficients, namely Energy, Mean, Variance, Skewness, Kurtosis, and Coefficient
of Variation (CV).

Next, the principal component analysis is conducted on the two data matrices,
and the number of principles components are selected based on the explained
variances. We selected a number of principal components that explain at least 90%
and at most 95% of the data. Then, the Hotelling T 2

aj
and T 2

dj
are calculated into

the reduced space, see Sect. 8.2.2, for the approximation and details coefficients,

respectively. Finally, T 2 =
√

T 2
aj

+ T 2
dj

statistic is then calculated to represent the

original MS spectrum, see Fig. 8.6. Each MS sample will be given by T 2 statistic,
and the classification model will be built on T 2 statistics for each patient.

8.3.1 Results and Performance

The classification model is built in two phases, a training phase, and a test phase.
80% of the dataset is used as the training dataset (78 Cancer, 46 Normal) and 20%
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Fig. 8.6 T 2 statistic for normal and cancer MS spectrum

as the testing data set. The MS data are then classified as normal or cancer. The
classification results will be given in terms of accuracy, sensitivity, and specificity,
as follows:

Accuracy = T P + T N

T P + T N + FP + FN
, (8.16)

Sensitivity = T P

T P + FN
, (8.17)

Specificity = T N

T N + FP
, (8.18)

where TP is True Positive, TN True Negative, FP False Positive, and FN False Neg-
ative. The proposed framework achieves a reasonable classification performance.
The combination of wavelets coefficients and higher order statistics provide useful
discriminatory information about MS data.

The classification model is developed using the training set and then tested using
the testing samples. The predictive procedure optimizes the model parameters to
build a model that fits the training data as well as possible, which then may lead
to an overfitting. Cross-validation can be used as a model validation technique for
assessing how the results of a statistical analysis will generalize to an independent
data set, therefore, this will help overcome the overfitting problem.

We performed a k-fold cross-validation procedure in order to avoid overfitting
and evaluate the generalization capabilities of our model. The parameter k varies
into {5, 10, 20, 50}. A Monte-Carlo simulation repeating the whole process includ-
ing the selection of the training and testing sets is also performed. 100 simulation
runs were conducted. Consequently, the results reported are the averages and
standard errors of the performance measures given in Eqs. (8.16)–(8.18).

Table 8.1 shows a summary of the performance results of our proposed method.
The accuracy classification is 100% on average with 0 standard error. The average
sensitivity and specificity are equal to 100% for the training set and the testing set.
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Table 8.1 The average (standard error) of the performance results using 100 replications of
k-Fold cross validation, and the hyperparameters C = 2 and γ = 0.0009765 obtained from the
grid search optimization

k ↓ Accuracy(SE) % Sensitivity Specificity

Training set Testing set Training set Testing set

5 99.91 (0.12) 1 (0) 1 (0) 1 (0) 1 (0)

10 100 (0) 1 (0) 1 (0) 1 (0) 1 (0)

20 100 (0) 1 (0) 1 (0) 1 (0) 1 (0)

50 100 (0) 1 (0) 1 (0) 1 (0) 1 (0)
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Fig. 8.7 The first two principal components on T 2 statistic for 99 cancer samples and 57 normal
samples

In order to investigate the excellent performance of the proposed method, we
conducted a principal component analysis (PCA) on the 156 samples of MS data (57
normal and 99 cancer). The PCA is applied to a data matrix of 156 rows (patients)
and 64 columns (T 2 statistics). The results given in Fig. 8.7 show clearly that the
proposed method ingeniously separates the cancer MS samples from the Normal
MS samples.

This result has a valuable scientific impact on public health, especially on the
early cancer detection. In fact, automatic classification of these mass spectrometry
patterns will definitely help physicians in the diagnosis of diseases such as cancer.
In addition, the higher classification performance we have, the more confident in the
diagnosis we become.



188 A. Cohen et al.

8.4 Conclusion

The MS data are important for clinical diagnosis and health advances. Preprocessing
methods and transformation such as wavelets analysis and principal component
analysis can help face high dimensionality and reduce noise.The accuracy of the
proposed model is 100% on average with 0 standard error. The average sensitivity
and specificity are equal to 100% for the training set and the testing set. This paper
contributes to the development of accurate models for MS classification. We aim at
applying the proposed method to other MS data of different types of cancer.
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