
Chapter 5
Mammogram Diagnostics Using Robust
Wavelet-Based Estimator of Hurst
Exponent

Chen Feng, Yajun Mei, and Brani Vidakovic

5.1 Introduction

Breast cancer is one of the major health concerns among women. It has been
estimated by the National Cancer Institute that 1 in 8 women will be diagnosed
with breast cancer during their lifetime. Early detection is proven to be the best
strategy for improving prognosis. Most of the references dealing with automated
breast cancer detection are based on microcalcifications (El-Naqa et al. 2002;
Kestener et al. 2011; Bala and Audithan 2014; Netsch and Peitgen 1999; Wang and
Karayiannis 1998). Recently, predicting disease using image data becomes an active
research area in statistics and machine learning (Reiss and Ogden 2010; Zhou et al.
2013; Zipunnikov et al. 2011; Reiss et al. 2005). For example, Reiss and Ogden
proposed a functional generalized linear regression model with images as predictors
(Reiss and Ogden 2010). However, predicting breast cancer based on the tissue
images directly is like a black-box. Physicians will have a hard time to summarize
the common features from the cancerous images, and the prediction results are not
easily interpreted. In this paper, we study the scaling information from the tissue
image and then predict breast cancer based on the estimated scaling parameter. It
has been found in literatures that the scaling information is efficient and accurate in
early detection of breast cancer (Hamilton et al. 2011; Nicolis et al. 2011; Ramírez-
Cobo and Vidakovic 2013; Jeon et al. 2014). In fact, regular scaling is a common
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phenomenon in high-frequency signals and high-resolution digital images collected
in real life. Examples can be found in a variety of fields including economics,
telecommunications, physics, geosciences, as well as in biology and medicine (Feng
and Vidakovic 2017; Engel Jr et al. 2009; Gregoriou et al. 2009; Katul et al. 2001;
Park and Willinger 2000; Woods et al. 2016; Zhou 1996).

The standard measure of regular scaling is the Hurst exponent, denoted by H

in the sequel. Recall that a stochastic process
{
X (t) , t ∈ R

d
}

is self-similar with

Hurst exponent H if, for any λ ∈ R
+, X (t)

d= λ−H X (λt). Here the notation
d= means the equality in all finite-dimensional distributions. The Hurst exponent
quantifies the self-similarity and describes the rate at which autocorrelations
decrease as the lag between two realizations in a time series increases. A value
H in the range 0–0.5 indicates a zig-zagging intermittent time series with long-term
switching between high and low values in adjacent pairs. A value H in the range 0.5
to 1 indicates a time series with long-term positive autocorrelations, which preserves
trends on a longer time horizon and gives a time series more regular appearance.

Multiresolution analysis is one of the many methods to estimate the Hurst
exponent. An overview can be found in Abry et al. (2000, 1995, 2013). In particular,
the non-decimated wavelet transforms (NDWT) (Nason and Silverman 1995;
Vidakovic 2009; Percival and Walden 2006) has several potential advantages when
employed for Hurst exponent estimation. Input signals and images of arbitrary size
can be transformed in a straightforward manner due to the absence of decimation. As
a redundant transform, the NDWT can decrease variance in the scaling estimation
(Kang and Vidakovic 2017). Least square regression can be fitted to estimate H

instead of weighted least square regression since the variances of the level-wise
derived distributions based on log NDWT coefficients do not depend on level.
Local scaling can be assessed due to the time-invariance property. Of course, the
dependence of coefficients in NDWT is much more pronounced. Similar to Soltani
et al. (2004), we will control this dependence by systematic sampling of coefficients
on which the estimator is based.

Different wavelet-based methods for estimation of H have been proposed in the
literature for the one-dimensional case. Abry et al. (2000) suggested the estimation

of H by weighted least square regression using the level-wise log2

(
d2
j

)
, In addition,

the authors corrected for the bias caused by the order of taking the logarithm and

the average in log2

(
d2
j

)
, where dj indicates any detail coefficient at level j . We

use dj,k to denote the kth coefficient at level j in the sequel. Soltani et al. (2004)

defined a mid-energy as Dj,k =
(
d2
j,k + d2

j,k+Nj /2

) /
2, and showed that the level-

wise averages of log2 Dj,k are asymptotically normal and more stable, which is used
to estimate H by regression. The estimators in Soltani et al. (2004) consistently
outperform the estimators in Abry et al. (2000). Shen et al. (2007) showed that the
method of Soltani et al. (2004) yields more accurate estimators since it takes the
logarithm of the mid-energy first and then averages.

The robust estimation of H has recently become a topic of interest due to the
presence of outlier coefficients and outlier multiresolution levels, inter and within
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level dependences, and distributional contaminations (Franzke et al. 2012; Park and
Park 2009; Shen et al. 2007; Sheng et al. 2011). Hamilton et al. (2011) came up
with a robust approach based on Theil-type weighted regression (Theil 1992), a
method for robust linear regression that selects the weighted average of all slopes
defined by different pairs of regression points. Like the VA method, they regress the

level-wise log2

(
d2
j

)
against the level indices, but instead of weighted least square

regression, they use the Theil-type weighted regression to make it less sensitive to
outlier levels. Kang and Vidakovic (2017) proposed MEDL and MEDLA methods
based on non-decimated wavelets to estimate H . MEDL estimates H by regressing
the medians of log d2

j on level j , while MEDLA uses the level-wise medians of

log
((

d2
j,k1

+ d2
j,k2

)/
2
)

to estimate H , where k1 and k2 are properly selected

locations at level j to approximate the independence.
Both MEDL and MEDLA use the median of the derived distribution instead

of the mean, because the medians are more robust to potential outliers that can
occur when logarithmic transform of a squared wavelet coefficient is taken and the
magnitude of coefficient is close to zero. Although median is outlier-resistant, it can
behave unexpectedly as a result of its non-smooth character. The fact that the median
is not “universally the best outlier-resistant estimator” motivates us to develop the
general trimean estimators of the level-wise derived distributions to estimate H ,
where the general trimean estimator was derived as a weighted average of the
distribution’s median and two quantiles symmetric about the median, combining
the median’s emphasis on center values with the quantiles’ attention to the tails.
Tukey’s trimean estimator (Tukey 1977; Andrews and Hampel 2015) and Gastwirth
estimator (Gastwirth 1966; Gastwirth and Cohen 1970; Gastwirth and Rubin 1969)
are two special cases under such general framework.

In this paper, we are concerned with the robust estimation of Hurst exponent
in self-similar signals. Here, the focus is on images, but the methodology applies
to multiscale context of arbitrary dimension. The properties of the proposed
Hurst exponent estimators are studied both theoretically and numerically. The
performance of the robust approach is compared with other standard wavelet-
based methods (Veitch and Abry (VA) method, Soltani, Simard, and Boichu
(SSB) method, median based estimators MEDL and MEDLA, and Theil-type (TT)
weighted regression method).

The rest of the paper consists of six additional sections and an Appendix. Sec-
tion 5.2 discusses background of non-decimated wavelet transforms and wavelet-
based spectrum in the context of estimating the Hurst exponent for fractional
Brownian motion (fBm). Section 5.3 introduces the general trimean estimators
and discusses two special estimators following that general framework; Sect. 5.4
describes estimation of Hurst exponent using the general trimean estimators,
presents distributional results on which the proposed methods are based, and derives
optimal weights that minimize the variances of the estimators. Section 5.5 provides
the simulation results and compares the performance of the proposed methods to
other standardly used, wavelet-based methods. The proposed methods are applied
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to classify the digitized mammogram images as cancerous or non-cancerous in
Sect. 5.6. The paper is concluded with a summary and discussion in Sect. 5.7.

5.2 Background

5.2.1 Non-decimated Wavelet Transforms

The non-decimated wavelet transforms (NDWT) (Nason and Silverman 1995;
Vidakovic 2009; Percival and Walden 2006) are redundant transforms because they
are performed by repeated filtering with a minimal shift, or a maximal sampling
rate, at all dyadic scales. Subsequently, the transformed signal contains the same
number of coefficients as the original signal at each multiresolution level. We start
by describing algorithmic procedure of 1-D NDWT and then expand to 2-D NDWT.
Traditionally, we perform a wavelet transformation as a convolution of an input data
with wavelet and scaling filters. A principal difference between NDWT and DWT
is the sampling rate.

Any square integrable function f (x) ∈ L2(R) can be expressed in the wavelet
domain as

f (x) =
∑

k

cJ0,kφJ0,k(x) +
∞∑

j≥J0

∑

k

dj,kψj,k(x),

where cJ0,k denote coarse coefficients, dj,k indicate detail coefficients, φJ0,k(x)

represent scaling functions, and ψj,k(x) signify wavelet functions. For specific
choices of scaling and wavelet functions, the basis for NDWT can be formed from
the atoms

φJ0,k(x) = 2J0/2φ
(

2J0 (x − k)
)

and

ψj,k(x) = 2j/2ψ
(

2j (x − k)
)

,

where x ∈ R, j is a resolution level, J0 is the coarsest level, and k is the location
of an atom. Notice that atoms for NDWT have the constant location shift k at all
levels, yielding the finest sampling rate on any level. The coarse coefficients cJ0,k

and detail coefficients dj,k can be obtained via

cJ0,k =
∫

f (x) φJ0,k(x)dx and dj,k =
∫

f (x) ψj,k(x)dx. (5.1)

In a J -level decomposition of an 1-D input signal of size N , an NDWT will yield
N × (J + 1) wavelet coefficients, including N × 1 coarse coefficients and N × J

detail coefficients.



5 Mammogram Diagnostics Using Robust Wavelet-Based Estimator of Hurst. . . 113

Expanding on the 1-D definitions, we could easily describe 2-D NDWT of
f (x, y) with (x, y) ∈ R

2. Several versions of 2-D NDWT exist, but we only focus
on the scale-mixing version based on which our methods are proposed. For the
scale-mixing 2-D NDWT, the wavelet atoms are

φJ01,J02;k(x, y) = 2(J01+J02)/2φ(2J01(x − k1))φ(2J02(y − k2)),

ψJ01,j2;k(x, y) = 2(J01+j2)/2φ(2J01(x − k1))ψ(2j2(y − k2)),

ψj1,J02;k(x, y) = 2(j1+J02)/2ψ(2j1(x − k1))φ(2J02(y − k2)),

ψj1,j2;k(x, y) = 2(j1+j2)/2ψ(2j1(x − k1))ψ(2j2(y − k2)),

where k = (k1, k2) is the location index, J01 and J02 are coarsest levels, j1 > J01,
and j2 > J02. The wavelet coefficients for f (x, y) after the scale-mixing NDWT
can be obtained as

cJ01,J02;k =
∫∫

f (x, y) φJ01,J02;k(x, y)dxdy,

hJ01,j2;k =
∫∫

f (x, y) ψJ01,j2;k(x, y)dxdy,

vj1,J02;k =
∫∫

f (x, y) ψj1,J02;k(x, y)dxdy,

dj1,j2;k =
∫∫

f (x, y) ψj1,j2;k(x, y)dxdy.

(5.2)

Note that cJ01,J02;k are coarse coefficients and represent the coarsest approximation,
hJ01,j2;k and vj1,J02 represent the mix of coarse and detail information, and dj1,j2;k
carry information about details only. In our methods, only detail coefficients dj1,j2;k
are used to estimate H .

5.2.2 The fBm: Wavelet Coefficients and Spectra

Among models having been proposed for analyzing the self-similar phenomena,
arguably the most popular is the fractional Brownian motion (fBm) first described
by Kolmogorov (1940) and formalized by Mandelbrot and Van Ness (1968).

In this section, an overview of 1-D fBm and its extension to 2-D fBm is provided.
Consider a stochastic process {X(t), t ∈ R} is self-similar with Hurst exponent H ,
then the 1-D detail coefficients defined in (5.1) satisfy

djk
d= 2−j (H+1/2)d0k,
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for a fixed level j (Abry et al. 2003). If the process has stationary increments, i.e.,
X(t + h) − X(t) is independent of t , then E(d0k) = 0 and E(d2

0k) = E(d2
00). We

obtain

E

(
d2
jk

)
∝ 2−j (2H+1). (5.3)

The Hurst exponent can be estimated by taking logarithms on both sides of Eq. (5.3).

The wavelet spectrum is defined by the sequence
{
S(j) = logE

(
d2
jk

)
, j ∈ Z

}
.

Fractional Brownian motion (fBm), denoted as BH (t) is the unique Gaussian
process with stationary increments that is self-similar (Abry et al. 2003; Abry 2003).
The definition of the one-dimensional fBm can be extended to the multivariate case.
In particular, a two-dimensional fBm, BH (t), for t ∈ [0, 1] × [0, 1] and H ∈ (0, 1),
is a Gaussian process with stationary zero-mean increments, satisfying

BH (at)
d= aH BH (t).

It can be shown that the detail coefficients dj1,j2;k defined in Eq. (5.2) satisfy

log2 E

(
|dj1,j2;k|2

)
= −(2H + 2)j + C,

which defines the two-dimensional wavelet spectrum, from which the Hurst expo-
nent can be estimated. Our proposed methods in next sections are based on but
improve from this spectrum.

5.3 General Trimean Estimators

Let X1, X2, . . . , Xn be i.i.d. continuous random variables with pdf f (x) and cdf
F(x). Let 0 < p < 1, and let ξp denote the pth quantile of F , so that ξp =
inf{x|F(x) ≥ p}. If F is monotone, the pth quantile is simply defined as F(ξp) =
p.

Let Yp = X�np�:n denote a sample pth quantile. Here �np� denotes the greatest
integer that is less than or equal to np. The general trimean estimator is defined as
a weighted average of the distribution’s median and its two quantiles Yp and Y1−p,
for p ∈ (0, 1/2):

μ̂ = α

2
Yp + (1 − α) Y1/2 + α

2
Y1−p. (5.4)

The weights for the two quantiles are the same for Yp and Y1−p, and α ∈ [0, 1].
This is equivalent to the weighted sum of the median and the average of Yp and
Y1−p with weights 1 − α and α:
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μ̂ = (1 − α) Y1/2 + α

(
Yp + Y1−p

2

)
.

This general trimean estimator turns out to be more robust than mean but smoother
than the median. To derive its asymptotic distribution, the asymptotic joint distribu-
tion of sample quantiles is needed, as shown in Lemma 5.1; detailed proof can be
found in DasGupta (2008).

Lemma 5.1 Consider r sample quantiles, Yp1 , Yp2 , . . . ., Ypr , where 1 ≤ p1 <

p2 < . . . < pr ≤ n. If for any 1 ≤ i ≤ r ,
√

n (�npi�/n − pi) → 0 is satisfied, then
the asymptotic joint distribution of Yp1, Yp2 , . . . ., Ypr is:

√
n

((
Yp1, Yp2 , . . . ., Ypr

) − (
ξp1 , ξp2 , . . . ., ξpr

)) approx∼ MV N (0,Σ) ,

where

Σ = (
σij

)
r×r

,

and

σij = pi

(
1 − pj

)

f
(
xpi

)
f

(
xpj

) , i ≤ j. (5.5)

From Lemma 5.1, the asymptotic distribution of general trimean estimator will be
normal as a linear combination of the components each with an asymptotic normal
distribution. The general trimean estimator itself may be defined in terms of order
statistics as

μ̂ = A · y,

where

A =
[α

2
1 − α

α

2

]
, and y = [

Yp Y1/2 Y1−p

]T
.

It can be easily verified that
√

n (�pn�/n − p) → 0 for p ∈ (0, 1/2]. If we denote
ξ = [

ξp ξ1/2 ξ1−p

]T the population quantiles, the asymptotic distribution of y is

√
n (y − ξ)

approx∼ MV N (0, 	) ,

where 	 = (
σij

)
3×3 , and σij follows Eq. (5.5) for p1 = p, p2 = 1/2, and p3 =

1 − p. Therefore

μ̂
approx∼ N

(
E

(
μ̂

)
, Var

(
μ̂

))
,
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with the theoretical expectation and variance being

E
(
μ̂

) = E (A · y) = A · E (y) = A · ξ , (5.6)

and

Var
(
μ̂

) = Var (A · y) = A Var (y) AT = 1

n
A	AT . (5.7)

5.3.1 Tukey’s Trimean Estimator

Tukey’s trimean estimator is a special case of the general trimean estimators, with
α = 1/2 and p = 1/4 in Eq. (5.4). To compute this estimator, we first sort the data
in ascending order. Next, we take the values that are one-fourth of the way up this
sequence (the first quartile), half way up the sequence (i.e., the median), and three-
fourths of the way up the sequence (the third quartile). Given these three values, we
then form the weighted average, giving the central (median) value a weight of 1/2
and the two quartiles a weight of 1/4 each.

If we denote Tukey’s trimean estimator as μ̂T , then

μ̂T = 1

4
Y1/4 + 1

2
Y1/2 + 1

4
Y3/4.

The asymptotic distribution is

μ̂T

approx∼ N

(
AT · ξT ,

1

n
AT 	T AT

T

)
,

where AT =
[

1
4

1
2

1
4

]
, ξT = [

ξ1/4 ξ1/2 ξ3/4
]T , 	T = (

σij

)
3×3 is the

covariance matrix of the asymptotic multivariate normal distribution, and σij

follows Eq. (5.5) with p1 = 1/4, p2 = 1/2, and p3 = 3/4.

5.3.2 Gastwirth Estimator

As Tukey’s estimator, the Gastwirth estimator is another special case of the general
trimean estimators, with α = 0.6 and p = 1/3 in Eq. (5.4).

If we denote this estimator as μ̂G, then

μ̂G = 0.3 Y1/3 + 0.4 Y1/2 + 0.3 Y2/3.

The asymptotic distribution can be derived as
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μ̂G

approx∼ N

(
AG · ξG,

1

n
AG	GAT

G

)
,

where AG = [0.3 0.4 0.3], ξG = [
ξ1/3 ξ1/2 ξ2/3

]T , 	G = (
σij

)
3×3, and σij

follows Eq. (5.5) with p1 = 1/3, p2 = 1/2, and p3 = 2/3.

5.4 Methods

Our proposal for robust estimation of Hurst exponent H is based on non-decimated
wavelet transforms (NDWT). In a J -depth decomposition of a 2-D fBm of size
N×N , a scale-mixing 2-D NDWT generates (J +1)×(J +1) blocks of coefficients,
with each block the same size as original image, i.e., N × N . The tessellation of
coefficients of scale-mixing 2-D NDWT is shown in Fig. 5.1a. From the 2-D NDWT
wavelets coefficients, our methods use the diagonal blocks (j1 = j2 = j) of the
detail coefficients dj1,j2;k to predict H , as is shown in Fig. 5.1b.

At each detail level j , the corresponding level-j diagonal block is of size
N × N , the same size as original image. Note that those coefficients dj,j ;k in
level-j diagonal block are not independent, however, their autocorrelations decay
exponentially, that is, they possess only the short memory. We reduce such within
block dependency by dividing the block into M × M equal grids and then random
sampling one coefficient from each grid, therefore increasing the distance between
two consecutive coefficients. To improve the efficiency, here we apply symmetric
sampling. To be specific, we partition the level-j diagonal block into four equal
parts (top left, top right, bottom left, and bottom right), only sample from the M2/4

Fig. 5.1 (a) Four types of wavelet coefficients with their locations in the tessellation of a 2-D
scale mixing NDWT of depth of 3 (J = 3), with each block the size of N × N . Coefficients c

represent the coarsest approximation, h and v are the mix of coarse and detail information, and d

carry detail information only. (b) Detail coefficients d and its diagonal blocks corresponding to 3
(J = 3) levels. (c) Symmetric random sampling from level-1 (j = 1) diagonal block divided into
6 × 6 (M = 6) grids
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grids at the top left, and then get the corresponding coefficients that have the same
location in other parts, which is shown in Fig. 5.1c.

If assuming the coefficient dj,j ;(ki1,ki2) is randomly sampled from grid

i ∈ {1, . . . , M2

4 } at the top left part of level-j diagonal block, and ki1, ki2 ∈
{1, 2, . . . , N

2 } being the corresponding location indexes, then we can extract
corresponding coefficients d

j,j ;(ki1,ki2+ N
2 )

, d
j,j ;(ki1+ N

2 ,ki2)
, and d

j,j ;(ki1+ N
2 ,ki2+ N

2 )

from the top right, bottom left, and bottom right parts, respectively. From the set

{dj,j ;(ki1,ki2), dj,j ;(ki1,ki2+ N
2 )

, d
j,j ;(ki1+ N

2 ,ki2)
, d

j,j ;(ki1+ N
2 ,ki2+ N

2 )
},

we could generate two mid-energies as

Di,j =
d2
j,j ;(ki1,ki2)

+ d2
j,j ;(ki1+ N

2 ,ki2+ N
2 )

2

D′
i,j =

d2
j,j ;(ki1,ki2+ N

2 )
+ d2

j,j ;(ki1+ N
2 ,ki2)

2
, i ∈ {1, . . . ,

M2

4
},

(5.8)

where Di,j and D′
i,j denote the two mid-energies corresponding to grid i at level j .

If we denote Dj as the set of all mid-energies at level j , then

Dj = {D1,j ,D
′
1,j ,D2,j ,D

′
2,j , . . . , DM2

4 ,j
,D′

M2
4 ,j

}. (5.9)

The M2/2 mid-energies at each level j are treated as if they are independent. Note
that M must be divisible by 2.

Our methods have two different versions, one is based on mid-energies Dj , while
the other is using logged mid-energies log Dj (in bracket). First, the distribution of
Dj

(
log Dj

)
is derived under the independence approximation between dj,j ;(ki1,ki2),

d
j,j ;(ki1,ki2+ N

2 )
, d

j,j ;(ki1+ N
2 ,ki2)

, and d
j,j ;(ki1+ N

2 ,ki2+ N
2 )

. Next, we calculate the gen-
eral trimean estimators from the level-wise derived distributions to estimate H .

5.4.1 General Trimean of the Mid-energy (GTME) Method

At each decomposition level j , the asymptotic distribution of the general trimean
estimator on M2/2 mid-energies in Dj is derived, from which we find the
relationship between the general trimean estimators and H . The general trimean
of the mid-energy (GTME) method is described in the following theorem:

Theorem 5.1 Let μ̂j be the general trimean estimator based on the M2/2 mid-
energies in Dj defined by (5.9) at level j in a J -level NDWT of a 2-D fBm of size
N × N with Hurst exponent H . Then, the asymptotic distribution of μ̂j is normal,
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μ̂j

approx∼ N

(
c (α, p) λj ,

2

M2 f (α, p) λ2
j

)
, (5.10)

where

c (α, p) = α

2
log

(
1

p (1 − p)

)
+ (1 − α) log 2,

f (α, p) = α(1 − 2p)(α − 4p)

4p(1 − p)
+ 1,

λj = σ 2 · 2−(2H+2)j ,

and σ 2 is the variance of wavelet coefficients from level 0, the Hurst exponent can
be estimated as

Ĥ = − β̂

2
− 1, (5.11)

where β̂ is the regression slope in the least square linear regression on pairs(
j, log2

(
μ̂j

))
from level J1 to J2, J1 ≤ j ≤ J2. The estimator Ĥ follows the

asymptotic normal distribution

Ĥ
approx∼ N (H, V1) , (5.12)

where the asymptotic variance V1 is a constant number independent of simple size
N and level j ,

V1 = 6f (α, p)

(log 2)2M2c2 (α, p) q(J1, J2)
,

and

q(J1, J2) = (J2 − J1)(J2 − J1 + 1)(J2 − J1 + 2). (5.13)

The proof of Theorem 5.1 is deferred to the Appendix.
To find the optimal α and p by minimizing the asymptotic variance of μ̂j , we

take partial derivatives of f (α, p) with respect to α and p and set them to 0. The
optimal α̂ and p̂ can be obtained by solving

∂f (α, p)

∂α
= − 2p − 1

2p (1 − p)
α + 1 + p

2 (1 − p)
− 3

2
= 0,

∂f (α, p)

∂p
= α (2 − α)

2 (1 − p)2
+ α2 (2p − 1)

4p2 (1 − p)2
= 0.

(5.14)
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Since α ∈ [0, 1] and p ∈ (0, 1/2), we get the unique solution α = 2p ≈ 0.6 and
p = 1 − √

2/2 ≈ 0.3. The Hessian matrix of f (α, p) is

⎡

⎣
∂2f (α,p)

∂α2
∂2f (α,p)

∂α∂p
∂2f (α,p)

∂α∂p
∂2f (α,p)

∂p2

⎤

⎦ =

⎡

⎣
− 2p−1

2p(1−p)
2p2−2αp2+α(2p−1)

2p2(1−p)2

2p2−2αp2+α(2p−1)

2p2(1−p)2
2p3α(2−α)+α2p(1−p)+α2(2p−1)2

2p3(1−p)3

⎤

⎦ .

Since − 2p−1
2p(1−p)

> 0 and the determinant is 5.66 > 0 when α = 2p ≈ 0.6 and

p = 1 − √
2/2 ≈ 0.3, the above Hessian matrix is positive definite. Therefore, α̂ =

2 − √
2 and p̂ = 1 − √

2/2 provide the global minima of f (α, p), minimizing also
the asymptotic variance of μ̂j,i . In comparing these optimal α̂ ≈ 0.6 and p̂ ≈ 0.3
with α = 0.6 and p = 1/3 from the Gastwirth estimator, curiously, we find that the
optimal general trimean estimator is very close to the Gastwirth estimator.

5.4.2 General Trimean of the Logarithm of Mid-energy
(GTLME) Method

Previously discussed the GTME method calculates the general trimean estimator of
the mid-energy first and then takes the logarithm. In this section, we will calculate
the general trimean estimator of the logged mid-energies at each level j . The
following theorem describes the general trimean of the logarithm of mid-energy,
the GTLME method.

Theorem 5.2 Let μ̂j be the general trimean estimator based on log(Dj ), which is
the set of M2/2 logged mid-energies at level j in a J -level NDWT of a 2-D fBm
of size N × N with Hurst exponent H , and 1 ≤ j ≤ J . Then, the asymptotic
distribution of μ̂j is normal,

μ̂j

approx∼ N

(
c (α, p) + log

(
λj

)
,

2

M2 f (α, p)

)
, (5.15)

where

c (α, p) = α

2
log

(
log

1

1 − p
· log

1

p

)
+ (1 − α) log (log 2) ,

f (α, p) = α2

4g1 (p)
+ α (1 − α)

2g2 (p)
+ (1 − α)2

(log 2)2 ,



5 Mammogram Diagnostics Using Robust Wavelet-Based Estimator of Hurst. . . 121

g1 (p) and g2 (p) are two functions of p given in the Appendix,

λj = σ 2 · 2−(2H+2)j ,

and σ 2 is the variance of wavelet coefficients from level 0. The Hurst exponent can
be estimated as

Ĥ = − 1

2 log 2
β̂ − 1, (5.16)

where β̂ is the regression slope in the least square linear regressions on pairs
(
j, μ̂j

)

from level J1 to J2, J1 ≤ j ≤ J2. The estimator Ĥ follows the asymptotic normal
distribution

Ĥ
approx∼ N (H, V2) , (5.17)

where the asymptotic variance V2 is a constant number independent of simple size
N and level j ,

V2 = 6f (α, p)

(log 2)2M2q(J1, J2)
,

and q(J1, J2) is given in Eq. (5.13).

The proof of Theorem 5.2 is provided in the Appendix. Similarly, as for the
GTME, the optimal α and p which minimize the asymptotic variance of μ̂j can be
obtained by solving

∂f (α, p)

∂α
= 0, and

∂f (α, p)

∂p
= 0. (5.18)

From the first equation in (5.18) it can be derived that

α =
2

log(2)2 − 1
2g2 (p)

1
2g1 (p) − g2 (p) + 2

(log 2)2

.

The second equation in (5.18) cannot be simplified to a finite form. As an
illustration, we plot the f (α, p) with p ranging from 0 to 0.5 and α being a function
of p. The plot of α against p is also shown in Fig. 5.2. Numerical computation
gives α̂ = 0.5965 and p̂ = 0.24. These optimal parameters are close to α = 0.5
and p = 0.25 in the Tukey’s trimean estimator, but put some more weight on the
median.
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Fig. 5.2 Plot of f (α, p) against p on the left; plot of α against p on the right

5.4.3 Special Cases: Tukey’s Trimean and Gastwirth
Estimators

The Tukey’s trimean of the mid-energy (TTME) method and Gastwirth of the mid-
energy (GME) method are described in the following Lemma.

Lemma 5.2 Let μ̂T
j and μ̂G

j be the Tukey’s trimean and Gastwirth estimators based

on Dj defined in (5.9). Then the asymptotic distributions of μ̂T
j and μ̂G

j are normal:

μ̂T
j

approx∼ N

(
c1λj ,

5

3M2 λ2
j

)
, (5.19)

μ̂G
j

approx∼ N

(
c2λj ,

1.67

M2
λ2

j

)
, (5.20)

where c1 and c2 are constant numbers and can be found in the Appendix, λj =
σ 2 · 2−(2H+2)j , and σ 2 is the variance of wavelet coefficients from level 0. The
Hurst exponent can be estimated as

Ĥ T = − β̂T

2
− 1, and ĤG = − β̂G

2
− 1, (5.21)

where β̂T and β̂G are the regression slopes in the least square linear regression on

pairs
(
j, log2

(
μ̂T

j

))
and pairs

(
j, log2

(
μ̂G

j

))
from level J1 to J2, J1 ≤ j ≤ J2.

The estimators Ĥ T and ĤG follow the asymptotic normal distributions

Ĥ T approx∼ N
(
H,V T

1

)
, and ĤG approx∼ N

(
H,V G

1

)
, (5.22)
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where the asymptotic variances V T
1 and V G

1 are constant numbers,

V T
1 = 5

(log 2)2M2c2
1q(J1, J2)

,

V G
1 = 5.01

(log 2)2M2c2
2q(J1, J2)

.

The function q(J1, J2) is the same as Eq. (5.13) in Theorem 5.1.

The following Lemma describes the Tukey’s trimean (TTLME) and Gastwirth
(GLME) of the logarithm of mid-energy method.

Lemma 5.3 Let μ̂T
j and μ̂G

j be the Tukey’s trimean estimator and Gastwirth
estimator based on log(Dj ) defined in the Theorem 5.2. The asymptotic distributions
of μ̂T

j and μ̂G
j are normal,

μ̂T
j

approx∼ N (− (2H + 2) log 2j + c3, VT ) , (5.23)

μ̂G
j

approx∼ N (− (2H + 2) log 2j + c4, VG) , (5.24)

where c3 ,VT , c4, and VG are constant numbers and can be found in the Appendix.
The Hurst exponent can be estimated as

Ĥ T = − β̂T

2 log 2
− 1, and ĤG = − β̂G

2 log 2
− 1, (5.25)

where β̂T and β̂G are the regression slopes in the least square linear regression on

pairs
(
j, μ̂t

j

)
and pairs

(
j, μ̂

g
j

)
from level J1 to J2, J1 ≤ j ≤ J2. The estimators

Ĥ T and ĤG follow the asymptotic normal distributions

Ĥ T approx∼ N
(
H,V T

2

)
, and ĤG approx∼ N

(
H,V G

2

)
, (5.26)

where the asymptotic variances V T
2 and V G

2 are constant numbers,

V T
2 = 3VT

(log 2)2q(J1, J2)
,

V G
2 = 3VG

(log 2)2q(J1, J2)
.

The function q(J1, J2) is provided in Eq. (5.13).
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Fig. 5.3 Histograms and theoretical distributions of Ĥ

The proofs of Lemmas 5.2 and 5.3 are provided in the Appendix. To verify the
asymptotic normal distributions of predictors in Lemmas 5.2 and 5.3, we perform
an NDWT of depth 10 on 300 simulated fBm’s with H = 0.3. We use resulting
wavelet coefficients from levels 4 to 10 inclusive to estimate H. Figure 5.3 shows
the histograms and theoretical distributions of Ĥ using TTME, TTLME, GME, and
GLME methods, respectively.

5.5 Simulation

We simulate 2-D fBm of sizes 210 × 210 (N = 210) with Hurst exponent H =
0.3, 0.5, 0.7, 0.8, 0.9, respectively. NDWT of depth J = 10 using Haar wavelet
is performed on the simulated signal to obtain wavelet coefficients. The two-
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Table 5.1 Simulation results for 210 × 210 fBm using Haar wavelet (300 replications)

Existing methods Proposed methods

H VA SSB MEDL MEDLA TT TTME TTLME GME GLME GTME GTLME

Ĥ

0.3 0.3103 0.3055 0.3018 0.3031 0.3054 0.3032 0.3028 0.3032 0.3034 0.3028 0.3030

0.5 0.5220 0.5132 0.5095 0.5102 0.5151 0.5126 0.5111 0.5108 0.5100 0.5118 0.5116

0.7 0.7382 0.7235 0.7175 0.7165 0.7326 0.7193 0.7179 0.7193 0.7184 0.7199 0.7181

0.8 0.8458 0.8261 0.8200 0.8204 0.8398 0.8222 0.8214 0.8208 0.8206 0.8212 0.8221

0.9 0.9593 0.9328 0.9241 0.9274 0.9641 0.9303 0.9282 0.9287 0.9278 0.9295 0.9287

Variances

0.3 0.0014 0.0016 0.0026 0.0020 0.0017 0.0015 0.0016 0.0016 0.0016 0.0015 0.0016

0.5 0.0020 0.0017 0.0027 0.0018 0.0034 0.0013 0.0016 0.0014 0.0016 0.0014 0.0016

0.7 0.0037 0.0019 0.0030 0.0026 0.0086 0.0018 0.0021 0.0020 0.0021 0.0019 0.0020

0.8 0.0050 0.0021 0.0027 0.0023 0.0095 0.0018 0.0020 0.0020 0.0021 0.0019 0.0020

0.9 0.0073 0.0021 0.0028 0.0022 0.0168 0.0018 0.0019 0.0019 0.0020 0.0018 0.0019

MSEs

0.3 0.0015 0.0016 0.0026 0.0020 0.0017 0.0015 0.0016 0.0016 0.0016 0.0015 0.0016

0.5 0.0025 0.0019 0.0027 0.0019 0.0037 0.0015 0.0017 0.0016 0.0017 0.0015 0.0017

0.7 0.0052 0.0025 0.0033 0.0028 0.0097 0.0022 0.0024 0.0024 0.0025 0.0023 0.0024

0.8 0.0070 0.0027 0.0031 0.0028 0.0110 0.0023 0.0024 0.0024 0.0025 0.0023 0.0025

0.9 0.0108 0.0032 0.0033 0.0030 0.0208 0.0027 0.0027 0.0027 0.0028 0.0027 0.0027

dimensional fBm signals were simulated based on the method of Wood and Chan
(1994).

The proposed methods (with six variations) are applied on the NDWT detail
coefficients to estimate Hurst exponent H . Each level diagonal block is divided
into 16 × 16 grids (M = 16) for all proposed methods, and we use wavelet
coefficients from levels 4 to 10 for the least square linear regression. The estimation
performance of the proposed methods is compared to five other existing methods:
Veitch and Abry (VA) method, Soltani, Simard, and Boichu (SSB) method, MEDL
method, MEDLA method, and Theil-type regression (TT) method. The GTME
and GTLME methods are based on the optimal parameters which minimize the
variances. Estimation performance is reported in terms of mean, variance, and mean
square error (MSE) based on 300 repetitions for each case.

The simulation results are shown in Table 5.1. For each H (corresponding to each
row in the table), the smallest variances and MSEs are highlighted in bold. From
simulations results, all our six variations outperform SSB, MEDL, MEDLA, and
TT methods for all H ’s regarding variances and MSEs. Compared with VA method,
our methods yield significantly smaller variances and MSEs when H > 0.5. When
H = 0.3, our methods are still comparable to VA. Although the performances of
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our six variations are very similar regarding variances and MSEs, the TTME method
based on Tukey’s trimean estimator of the mid-energy has the best performance
among all of them. The variances of GTME based on the optimal parameters are
very close or equal to those of GME and TTME methods in most cases. Besides, in
most cases the optimized GTLME method is superior to other logged mid-energy
methods TTLME and GLME with respect to variances; however, such superiority
is not significant, since the variances are close to each other.

5.6 Application

In this section, we apply the proposed methodology to classification of digitized
mammogram images. The digitized mammograms were obtained from the Uni-
versity of South Florida’s Digital Database for Screening Mammography (DDSM)
(Heath et al. 2000). All cases examined had biopsy results which served as ground
truth. Researchers used the HOWTEK scanner at the full 43.5-micron per pixel
spatial resolution to scan 45 mammograms from patients with normal studies
(control group) and 79 from patients with confirmed breast cancer (study group).
Figure 5.4 shows an example of mammograms from study group, and it is almost
impossible for physicians to distinguish a cancerous mammogram with a non-
cancerous mammogram just by eyes. Each subject contains two mammograms from
a screening exam, one craniocaudal projection for each side breast. We only keep
one projection for each subject, either right side or left side breast image. A sub-
image of size 1024 × 1024 was taken manually from each mammogram.

Our methods were then applied on each sub-image to estimate the Hurst exponent
parameter for each subject. To be specific, the NDWT of depth J = 10 using
Haar wavelet was performed on each sub-image to obtain wavelet coefficients. The
proposed methods (with six variations) are applied on the NDWT detail coefficients

Fig. 5.4 An example of
mammograms with breast
cancer
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Table 5.2 Descriptive statistics group summary

Existing methods Proposed methods

Group VA SSB MEDL MEDLA TT TTME TTLME GME GLME GTME GTLME

Mean of Ĥ

Control 0.3570 0.3457 0.3323 0.3403 0.3716 0.3454 0.3422 0.3444 0.3420 0.3450 0.3430

Study 0.4310 0.4038 0.3935 0.4023 0.4203 0.4061 0.4026 0.4031 0.4019 0.4053 0.4027

Median of Ĥ

Control 0.3368 0.3339 0.3326 0.3140 0.3871 0.3248 0.3188 0.3198 0.3240 0.3263 0.3278

Study 0.4286 0.4147 0.3865 0.4165 0.4204 0.4194 0.4211 0.4178 0.4150 0.4168 0.4209

Variance of Ĥ

Control 0.0267 0.0270 0.0268 0.0298 0.0305 0.0284 0.0279 0.0285 0.0279 0.0281 0.0277

Study 0.0159 0.0172 0.0198 0.0175 0.0128 0.0169 0.0173 0.0174 0.0175 0.0175 0.0174

Fig. 5.5 Using GME method to estimate Hurst exponent, boxplots in cancer and non-cancer
groups on the left; normal density curves fitted in cancer and non-cancer groups on the right

to estimate Hurst exponent H . Each level diagonal block is divided into 16×16 grids
(M = 16) for all proposed methods, and we use levels 4 to 10 for the least square
linear regression. Veitch and Abry (VA) method, Soltani, Simard, and Boichu (SSB)
method, MEDL method, MEDLA method, and Theil-type regression (TT) method
were applied, as well, to compare with our methods.

Table 5.2 provides descriptive statistics of the estimated Hurst exponent Ĥ in
each group using our proposed methods and other standard methods to compare
with. To visualize the difference in Ĥ across cancer and non-cancer groups, we
present in Fig. 5.5 the boxplots of estimated H and fitted normal density curves in
two groups based on proposed GME method. As can be seen, the non-cancer group
exhibited a smaller value for Ĥ in both the mean and median, and the variance of
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Table 5.3 Results of classification by logistic regression

Existing methods Proposed methods

VA SSB MEDL MEDLA TT TTME TTLME GME GLME GTME GTLME

Overall
accuracy

0.629 0.597 0.645 0.589 0.547 0.622 0.613 0.654 0.605 0.628 0.645

Sensitivity 0.695 0.659 0.709 0.623 0.543 0.659 0.659 0.722 0.647 0.684 0.708

Specificity 0.511 0.491 0.532 0.534 0.553 0.553 0.534 0.536 0.532 0.528 0.534

Ĥ is slightly larger. In fact, images with smaller Hurst exponent tend to be more
disordered and unsystematic, therefore healthy individuals tend to have more rough
breast tissue images.

For subject i, we generated the data {Yi,Hi}, where Hi represents the estimated
Hurst exponent, and Yi is the indicator of the disease status with 1 and 0 signifying
cancer and non-cancer, respectively. The subjects were classified using a logistic
regression model by treating Hi as the predictor and Yi as the response. The
overall classification accuracy, true positive rate (sensitivity), and true negative
rate (specificity) were obtained by using a fourfold-cross validation. Instead of the
constant 0.5 threshold, we used a training-data-determined adaptive threshold, i.e.,
each time the threshold of the logistic regression was first chosen to maximize
Youden index on the training set and then applied to the testing set to classify.

Table 5.3 summarizes the results of the classification for each estimation method.
The best classification rate (0.6538) and sensitivity (0.7217) were both achieved
using GME estimator, and the best specificity (0.5530) was achieved using TT or
TTME estimator (highlighted in bold). In general, the six variations of our robust
method performed better as compared to other methods in classification of breast
cancers using mammograms.

Real-world images like mammograms may be characterized by non-stationary
conditions such as extreme values, causing outlier coefficients in multiresolution
levels after NDWT. VA method estimates H by weighted least square regression

using the level-wise log2

(
d2
j,j

)
, and SSB method uses log2 Dj , with Dj defined

in (5.9), they are easily affected by those within level outliers, in that they both
use mean of derived distributions on level-wise detail coefficients to estimate H .
Besides, potential outliers can also occur when logarithmic transform is taken and
the magnitude of coefficient is close to zero. Like the VA method, TT method

regress the level-wise log2

(
d2
j,j

)
against the level indices, but instead of weighted

least square regression, they use the Theil-type weighted regression, the weighted
average of all slops between different pairs of regression points, to make it less
sensitive to outlier levels. However, it is still not robust to within level outlier
coefficients. MEDL and MEDLA use the median of the derived distribution instead
of the mean. Although median is outlier-resistant, it can behave unexpectedly as
a result of its non-smooth character. To improve, our methods (six derivations)
use the general trimean estimator on non-decimated wavelet detail coefficients of
the transformed data, combining the median’s emphasis on central values with the
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quantiles’ attention to the extremes. Besides, in the context of our scenario, Theil-
type regression is equivalent to least square regression, since the variance of our
pair-wise slop is independent of levels and sample size. Those explain why our
robust methods performed the best in classification of mammograms.

5.7 Conclusions

In this paper, we proposed methodologies and derived six variations to improve
the robustness of estimation of Hurst exponent H in two-dimensional setting. Non-
decimated wavelet transforms (NDWT) are utilized for its redundancy and time-
invariance. Instead of using mean or median of the derived distribution on level-wise
wavelet coefficients, we defined the general trimean estimators that combine the
median’s emphasis on center values with the quantiles’ attention to the extremes
and used them on the level-wise derived distributions to estimate H .

The proposed variations were: (1) Tukey’s trimean of the mid-energy (TTME)
method; (2) Tukey’s trimean of the logged mid-energy (TTLME) method; (3)
Gastwirth of the mid-energy (GME) method; (4) Gastwirth of the logged mid-
energy (GLME) method; (5) general trimean of the mid-energy (GTME) method;
(6) general trimean of the logarithm of mid-energy (GTLME) method. The GTME
and GTLME methods are based on the derived optimal parameters in general
trimean estimators to minimize the asymptotic variances. Tukey’s trimean and
Gastwirth estimators are two special cases following the general trimean estimators’
framework. These estimators are applied on both mid-energy (as defined by Soltani
et al. 2004) and logarithm of the mid-energy at each NDWT level detail coefficient
diagonal block. The estimation performance of the proposed methods is compared
to five other existing methods: Veitch and Abry (VA) method, Soltani, Simard, and
Boichu (SSB) method, MEDL method, MEDLA method, and Theil-type regression
(TT) method.

Simulation results indicate all our six variations outperform SSB, MEDL ,
MEDLA, and TT methods for all H ’s regarding variances and MSEs. Compared
with VA method, our methods yield significantly smaller variances and MSEs when
H > 0.5. When H = 0.3, our methods are still comparable to VA. Although the
performances of our six variations are very similar regarding variances and MSEs,
the TTME method based on Tukey’s trimean estimator of the mid-energy has the
best performance among all of them.

The proposed methods have been applied to digitized mammograms to classify
patients with and without breast cancer. Our methods helped to differentiate
individuals based on the estimated Hurst parameters Ĥ . Higher values for Ĥ have
been found in cancer group, and individuals with breast cancer have smoother breast
tissue images. This increase of regularity with increase of the degree of pathology
is common for many other biometric signals: EEG, EKG, high frequency protein
mass-spectra, high resolution medical images of tissue, to list a few.
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Appendix

Proof of Theorem 5.1

Proof A single wavelet coefficient in a non-decimated wavelet transform of a 2-D
fBm of size N × N with Hurst exponent H is normally distributed, with variance
depending on its level j . The four coefficients in each set

{dj,j ;(ki1,ki2), dj,j ;(ki1,ki2+ N
2 )

, d
j,j ;(ki1+ N

2 ,ki2)
, d

j,j ;(ki1+ N
2 ,ki2+ N

2 )
}

are assumed to be independent and follow the same normal distribution.

dj,j ;(ki1,ki2), dj,j ;(ki1,ki2+ N
2 )

, d
j,j ;(ki1+ N

2 ,ki2)
, d

j,j ;(ki1+ N
2 ,ki2+ N

2 )

∼ N
(

0, 2−(2H+2)j σ 2
)

.

Then the mid-energies in Dj defined in (5.9) and (5.8) can be readily shown to have
exponential distribution with scale parameter λj = σ 2 · 2−(2H+2)j . Therefore at

each detail level j , the mid-energies in Dj are i.i.d. E xp
(
λ−1

j

)
, and when applying

general trimean estimator μ̂j on Dj , following the derivation in Sect. 5.3, we
have

ξ =
[

log

(
1

1 − p

)
λj log (2) λj log

(
1

p

)
λj

]T

,

and

	 =
⎡

⎢
⎣

p
(1−p)

λ2
j

p
(1−p)

λ2
j

p
(1−p)

λ2
j

p
(1−p)

λ2
j λ2

j λ2
j

p
(1−p)

λ2
j λ2

j
1−p
p

λ2
j

⎤

⎥
⎦

3×3

,

therefore, the asymptotic distribution of μ̂j,i is normal with mean

E
(
μ̂j,i

) = A · x

=
(

α

2
log

(
1

p (1 − p)

)
+ (1 − α) log 2

)
λj

� c (α, p) λj ,

and variance
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Var
(
μ̂j,i

) = 2

M2 A	AT

= 2

M2

(
α(1 − 2p)(α − 4p)

4p(1 − p)
+ 1

)
λ2

j

� 2

M2 f (α, p) λ2
j .

Since the Hurst exponent can be estimated as

Ĥ = − β̂

2
− 1, (5.27)

where β̂ is the regression slope in the least square linear regression on pairs(
j, log2

(
μ̂j

))
from level J1 to J2, J1 ≤ j ≤ J2. It can be easily derived that β̂

is a linear combination of log2
(
μ̂j

)
,

β̂ =
J2∑

j=J1

aj log2
(
μ̂j

)
, aj = j − (J1 + J2)/2

∑J2
j=J1

(j − (J1 + J2)/2)2
.

We can check that
∑J2

j=J1
aj = 0 and

∑J2
j=J1

aj j = 1. Also, if X ∼ N (μ, σ 2), the
approximate expectation and variance of g(X) are

E (g(X)) = g(μ) + g′′(μ)σ 2

2
, and Var (g(X)) = (

g′(μ)
)2

σ 2,

based on which we calculate

E
(
log2

(
μ̂j

)) = −(2H +2)j+Constant, and Var
(
log2

(
μ̂j

)) =
2

M2 f (α, p)

(log 2)2c2 (α, p)
.

Therefore

E

(
β̂
)

=
J2∑

j=J1

ajE
(
log2

(
μ̂j

)) = −(2H + 2), and Var
(
β̂
)

=
J2∑

j=J1

a2
j Var

(
log2

(
μ̂j

)) := 4V 1,

and

E

(
Ĥ

)
= H, and Var

(
Ĥ

)
= V 1, (5.28)
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where the asymptotic variance V1 is a constant number independent of simple size
N and level j ,

V1 = 6f (α, p)

(log 2)2M2c2 (α, p) q(J1, J2)
,

and

q(J1, J2) = (J2 − J1)(J2 − J1 + 1)(J2 − J1 + 2).

Proof of Theorem 5.2

Proof We have stated that each mid-energy in Dj follows E xp
(
λ−1

j

)
with scale

parameter λj = σ 2 · 2−(2H+2)j . If we denote the kth element in log
(
Dj

)
as yj,k for

k = 1, . . . , M2

2 and j = 1, . . . , J , the pdf and cdf of yj,k are

f
(
yj,k

) = λ−1
j e

−λ−1
j e

yj,k

eyj,k ,

and

F
(
yj,k

) = 1 − e
−λ−1

j e
yj,k

.

The p-quantile can be obtained by solving F
(
yp

) = 1 − e
−λ−1

j eyp = p, and yp =
log

(−λj log (1 − p)
)
. Then it can be shown that f

(
yp

) = − (1 − p) log (1 − p).
When applying the general trimean estimator μ̂j on log

(
Dj

)
, following the

derivation in Sect. 5.3, we get

ξ =

⎡

⎢⎢
⎣

log
(

log
(

1
1−p

))
+ log

(
λj

)

log (log 2) + log
(
λj

)

log
(

log
(

1
p

))
+ log

(
λj

)

⎤

⎥⎥
⎦ ,

and

	 =

⎡

⎢⎢
⎣

p

(1−p)(log(1−p))2
p

(1−p) log(1−p) log
(

1
2

) p
(1−p) log(1−p) log p

p

(1−p) log(1−p) log
(

1
2

) 1
(log 2)2

1
log

(
1
2

)
log p

p
(1−p) log(1−p) log p

1
log

(
1
2

)
log p

1−p

p(log p)2

⎤

⎥⎥
⎦ ,
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thus, the asymptotic distribution of μ̂j,i is normal with mean

E
(
μ̂j,i

) = A · ξ

= α

2
log

(
log

1

1 − p
· log

1

p

)
+ (1 − α) log (log 2) + log

(
λj

)

� c (α, p) + log
(
λj

)
,

and variance

Var
(
μ̂j,i

) = 2

M2 A	AT

= 2

M2

(
α2

4
g1 (p) + α (1 − α)

2
g2 (p) + (1 − α)2

(log 2)2

)

� 2

M2 f (α, p) ,

where

g1 (p) = p

(1 − p) (log (1 − p))2 +

1 − p

p (log p)2 + 2p

(1 − p) log (1 − p) log p
,

and

g2 (p) = 2p

(1 − p) log (1 − p) log 1
2

+ 2

log 1
2 log p

.

Since the Hurst exponent can be estimated as

Ĥ = − 1

2 log 2
β̂ − 1, (5.29)

where β̂ is the regression slope in the least square linear regressions on pairs
(
j, μ̂j

)

from level J1 to J2, J1 ≤ j ≤ J2. It can be easily derived that β̂ is a linear
combination of μ̂j ,

β̂ =
J2∑

j=J1

aj μ̂j , aj = j − (J1 + J2)/2
∑J2

j=J1
(j − (J1 + J2)/2)2

.
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Again, we can check that
∑J2

j=J1
aj = 0 and

∑J2
j=J1

aj j = 1. Therefore

E

(
β̂
)

=
J2∑

j=J1

ajE
(
μ̂j,i

) = −(2H + 2) log 2, and Var
(
β̂
)

=
J2∑

j=J1

a2
j Var

(
μ̂j,i

) := 4(log 2)2V2,

and

E

(
Ĥ

)
= H, and Var

(
Ĥ

)
= V2, (5.30)

where the asymptotic variance V2 is a constant number independent of simple size
N and level j ,

V2 = 6f (α, p)

(log 2)2M2q(J1, J2)
,

and q(J1, J2) is given in Eq. (5.13).

Proof of Lemma 5.2

Proof When applying Tukey’s trimean estimator μ̂T
j on Dj , following the deriva-

tion in Sect. 5.3.1, we have

ξT =
⎡

⎢
⎣

log
(

4
3

)
λj

log (2) λj

log (4) λj

⎤

⎥
⎦ ,

and

	T =
⎡

⎢
⎣

1
3λ2

j
1
3λ2

j
1
3λ2

j
1
3λ2

j λ2
j λ2

j
1
3λ2

j λ2
j

1
3λ2

j

⎤

⎥
⎦

3×3

,

therefore, the asymptotic distribution of μ̂T
j is normal with mean

E

(
μ̂T

j

)
= AT · ξT = 1

4
log

(
64

3

)
λj � c1λj ,
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and variance

Var
(
μ̂T

j,i

)
= 2

M2 AT 	T AT
T = 5

3M2 λ2
j .

When applying Gastwirth estimator μ̂G
j on Dj , following the derivation in

Sect. 5.3.2, we have

ξG =
⎡

⎢
⎣

log
(

3
2

)
λj

log (2) λj

log (3) λj

⎤

⎥
⎦ ,

and

	G =
⎡

⎢
⎣

1
2λ2

j
1
2λ2

j
1
2λ2

j
1
2λ2

j λ2
j λ2

j
1
2λ2

j λ2
j

1
2λ2

j

⎤

⎥
⎦ ,

therefore, the asymptotic distribution of μ̂G
j is normal with mean

E

(
μ̂G

j,i

)
= AG · ξG

=
(

0.3 × log

(
9

2

)
+ 0.4 × log (2)

)
λj

� c2λj ,

and variance

Var
(
μ̂G

j,i

)
= 2

M2 AG	GAT
G = 1.67

M2 λ2
j .

Based on Eq. (5.28), we have

Ĥ T approx∼ N
(
H,V T

1

)
, and ĤG approx∼ N

(
H,V G

1

)
, (5.31)

where the asymptotic variances V T
1 and V G

1 are constant numbers,

V T
1 = 5

(log 2)2M2c2
1q(J1, J2)

,

V G
1 = 5.01

(log 2)2M2c2
2q(J1, J2)

.
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The function q(J1, J2) is the same as Eq. (5.13) in Theorem 5.1.

Proof of Lemma 5.3

Proof When applying Tukey’s trimean estimator μ̂T
j on log

(
Dj

)
, following the

derivation in Sect. 5.3.1, we have

ξT =
⎡

⎢
⎣

log
(

log
(

4
3

))
+ log

(
λj

)

log (log 2) + log
(
λj

)

log (log 4) + log
(
λj

)

⎤

⎥
⎦ ,

and

	T =

⎡

⎢⎢⎢⎢⎢
⎣

1

3
(

log
(

3
4

))2
1

3 log
(

3
4

)
log

(
1
2

) 1

3 log
(

3
4

)
log

(
1
4

)

1

3 log
(

3
4

)
log

(
1
2

) 1
(log 2)2

1

log
(

1
2

)
log

(
1
4

)

1

3 log
(

3
4

)
log

(
1
4

) 1

log
(

1
2

)
log

(
1
4

) 3
(log 4)2

⎤

⎥⎥⎥⎥⎥
⎦

,

therefore, the asymptotic distribution of μ̂T
j is normal with mean

E

(
μ̂T

j,i

)
= AT · ξT

= − (2H + 2) log 2 · j + log σ 2+
1

4
log

(
log

(
4

3

)
· log 4

)
+ 1

2
log (log 2)

� − (2H + 2) log 2 · j + c3

and variance

Var
(
μ̂T

j,i

)
= 2

M2 AT 	T AT
T

= 2

M2

(
1

48
(

log 3
4

)2 + 1

12 log 3
4 log 1

2

+ 1

24 log 3
4 log 1

4

+

1

4 (log 2)2 + 1

4 log 1
2 log 1

4

+ 3

16
(

log 1
4

)2

)

� VT .
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When applying Gastwirth estimator μ̂G
j on log

(
Dj,i

)
, following the derivation

in Sect. 5.3.2, we have

ξG =
⎡

⎢
⎣

log
(

log
(

3
2

))
+ log

(
λj

)

log (log 2) + log
(
λj

)

log (log 3) + log
(
λj

)

⎤

⎥
⎦ ,

and

	G =

⎡

⎢⎢⎢⎢⎢
⎣

1

2
(

log 2
3

)2
1

2 log
(

2
3

)
log

(
1
2

) 1

2 log
(

1
3

)
log

(
2
3

)

1

2 log
(

2
3

)
log

(
1
2

) 1
(log 2)2

1

log
(

1
2

)
log

(
1
3

)

1

2 log
(

1
3

)
log

(
2
3

) 1

log
(

1
2

)
log

(
1
3

) 2
(log 3)2

⎤

⎥⎥⎥⎥⎥
⎦

,

therefore, the asymptotic distribution of μ̂G
j is normal with mean

E

(
μ̂G

j,i

)
= Ag · ξG

= − (2H + 2) log 2 · j + log σ 2+

0.3 × log

(
log

(
3

2

)
· log 3

)
+ 0.4 × log (log 2)

� − (2H + 2) log 2 · j + c4

and variance

Var
(
μ̂G

j,i

)
= 2

M2
AG	GAT

G

= 2

M2

(
0.09

2
(

log 2
3

)2
+ 0.12

log 2
3 log 1

2

+ 0.09

log 1
3 log 2

3

+

0.16
(

log 1
2

)2
+ 0.24

log 1
2 log 1

3

+ 0.18
(

log 1
3

)2

)

� VG.

Based on Eq. (5.30), we can easily derive

Ĥ T approx∼ N
(
H,V T

2

)
, and ĤG approx∼ N

(
H,V G

2

)
, (5.32)
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where the asymptotic variances V T
2 and V G

2 are constant numbers,

V T
2 = 3VT

(log 2)2q(J1, J2)
,

V G
2 = 3VG

(log 2)2q(J1, J2)
.

The function q(J1, J2) is provided in Eq. (5.13).
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