
Chapter 16
Performance Evaluation
of Normalization Approaches for
Metagenomic Compositional Data
on Differential Abundance Analysis
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16.1 Introduction

Classical microbiological research requires microbial culture, by which the studied
microbes reproduce in culture medium (Handelsman 2004). However, since a
community of microbes (i.e., microbiome) is usually not able to survive under the
predetermined laboratory condition, our understanding of microbes at aggregate
level had been much hindered (National Research Council 2007). The scenario
started to change since mid-1980s when a different approach was innovated
(Woese 1987), in which microbiome samples are obtained from the site in situ;
DNA contents are extracted and sequenced; sequence alignment is subsequently
performed, and then followed by computational or statistical analysis (Wooley et al.
2010). The related study is named metagenomics, especially boosted by the rapid
advancement of DNA sequencing technologies in the past decade (Metzker 2010;
Bragg and Tyson 2014).

Having the entire genomic DNA or particular DNA contents (e.g., 16S rDNA)
sequenced, metagenomic datasets can be classified as whole-genome sequence
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(WGS) data or marker-gene survey data. They are together termed as metagenomic
sequence data, or metagenomic count data in this chapter. The obtained sequence
reads can be aligned against a database for taxonomic analysis (e.g., RDP database
(Cole et al. 2013)) or functional analysis (e.g., COGs (Tatusov et al. 2003),
eggNOGs (Powell et al. 2014) databases). The number of reads aligned to a
feature, either a taxonomic unit or a functional family, indicates the abundance
level of the feature in a sample. It is often of primary interest to identify the
features of which the abundance levels differ between conditions, for example,
to find the microbial species more abundantly appeared in a diseased human gut
than in a healthy gut (Shreiner et al. 2015). This comparative study is named
differential abundance analysis. However, due to the fact that the total amount of
DNA undergone sequencing, conventionally referred as to library size, may differ
substantially as observed, normalization of library size is inescapable before the
differential abundance analysis is performed. Otherwise, a differentially abundant
feature may be claimed because of uneven library sizes instead of the difference in
the abundance of study interest.

Various normalization methods have also been developed for RNA-Seq data
analysis (Dillies et al. 2013). As both metagenomic sequence data and RNA-Seq
data share a common structure: the count of reads aligned to a feature (e.g., a gene
for RNA-Seq data), there have been suggestions proposed to treat metagenomic
sequence data as another variant of RNA-Seq data and simply apply the existing
normalization methods for RNA-Seq data to metagenomics data analysis (Fernandes
et al. 2014; Anders et al. 2013). Towards differential abundance analysis, McMurdie
and Holmes (2014) classified the existing normalization methods widely used for
metagenomic count data into three groups: (1) Model/None, in which a parametric
model is employed to normalize the data or no normalization is applied in some
cases, includes the Upper Quartile (UQ) (Bullard et al. 2010), Relative Log
Expression (RLE) (Anders and Huber 2010), Trimmed Mean of M-value (TMM)
(Robinson and Oshlack 2010), and Cumulative Sum Scaling (CSS) (Paulson et al.
2013); (2) Rarefied (McMurdie and Holmes 2013), in which samples with library
size being less than a specified value will be discarded and the remaining samples
will be subsampled such that all library sizes equal to the specified value (detailed
later); (3) Proportion, in which raw counts are divided by total library size, is
named as Total Sum Scaling (TSS) in this chapter. The UQ normalization shares
the same spirit with CSS method, so we do not evaluate UQ method. The basic
conclusion McMurdie and Holmes drew from their study is that “both proportions
and rarefied counts result in a high rate of false positives in tests for species that are
differentially abundant across sample classes” and they suggest that it is fine to use
the normalization methods from Model/None group, “In particular, an analysis that
models counts with the Negative Binomial—as implemented in DESeq2 or in edgeR
with RLE normalization—was able to accurately and specifically detect differential
abundance over the full range of effect sizes, replicate numbers, and library sizes
that we simulated” (McMurdie and Holmes 2014).

There is increasing evidence that many metagenomic count data may be regarded
as samples from the microbial ecosystems, and the count of reads to a feature
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indicates the relative abundance (i.e., compositional proportion) of the feature
in the ecosystem (Tsilimigras and Fodor 2016; Gloor et al. 2016). Mandal et
al. (2015) provided an excellent example explaining the difference between the
comparison of abundance across specimens, and that across microbial ecosystems.
We summarize that the former is about absolute abundance, while the latter
is about relative abundance. Weiss et al. (2017) explicitly pointed out that the
metagenomic data from 16S rDNA amplicon sequencing possess the composi-
tional data characteristics, and studied six normalization methods combined with
different test approaches for differential abundance analysis. The simulation studies
conducted in their paper utilized Multinomial, Dirichlet-multinomial, and Gamma-
Poisson distributions. However, as indicated in the same paper, both Multinomial
and Dirichlet-multinomial distributions may not be appropriate for metagenomic
compositional data as these distributions imply a negative correlation between any
pair of the features, while Gamma-Poisson distribution does not impose the simplex
(i.e., the relative abundances sum to 1). Adequate simulation criteria are strongly
needed for drawing correct conclusions about the performance of normalization
methods on metagenomic compositional data.

In this chapter, we adopt a metagenomic dataset to show the ineffectiveness
of some normalization methods, list the details of conducting simulation based
on the characteristics learned from the dataset, and demonstrate the impact of
normalization methods on the differential abundance analysis. We advocate, in order
to avoid ineffective normalization, case-by-case simulation should be conducted
according to the dataset to be analyzed. We are drawing attention to the research
community and calling for normalization methods specially designed for metage-
nomics compositional data.

16.2 Motivating Example

The NIH Human Microbiome Project (HMP) (https://hmpdacc.org/hmp/ (Peterson
et al. 2009)) provides the 16S rDNA sequencing output and the processed datasets,
collected from different sites of healthy human bodies. We downloaded the saliva
and stool sample data (170 saliva samples vs. 191 stool samples) from http://www.
hmpdacc.org/HMQCP/ (last visited on February 28, 2018). The sequencing reads
were processed by the bioinformatics tool Quantitative Insights Into Microbial
Ecology (QIIME, (Caporaso et al. 2010)). For each taxonomic unit, the coefficients
of variation (CV: the ratio of the sample standard deviation over the sample mean)
of the counts can be calculated for the saliva and the stool samples, respectively. As
the CV is an indication of the level of standardized variation between the samples
for a feature, it is expected that after appropriate normalization the CV values from
all the features under the same condition will decrease in general since the variation
due to unequal library sizes should have been reduced. A subsampled dataset is
obtained using the steps: randomly selecting the same number (i.e., 361) of samples
from the HMP saliva and stool dataset with replacement, and then removing the

https://hmpdacc.org/hmp/
http://www.hmpdacc.org/HMQCP/
http://www.hmpdacc.org/HMQCP/
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Fig. 16.1 Boxplots of the median values of Coefficients of Variation of the counts in the non-
normalized subsampled datasets (Raw), and the normalized subsampled datasets by five different
methods from the HMP saliva and stool dataset

duplicated ones. The resampling process repeated one hundred times. Figure 16.1
shows the boxplots of the median CV values of the non-normalized subsampled
datasets (Raw), and the normalized subsampled datasets by five different methods.
We can see instead of reducing the CV, the TMM normalization has noticeably
increased CV values in both saliva and stool samples. This may imply that the TMM
normalization is ineffective for the data intended for differential abundance analysis
between saliva and stool microbiota. The TSS normalization results in higher CV
values for the datasets subsampled from the saliva samples as well. However, it is
worth noting that reduced CV itself does not sufficiently mean a good normalization
because overreducing sample variation could lead to additional false positives. That
is, we cannot conclude that RFY is superior than the other normalizations for this
dataset either. This CV analysis on the HMP saliva and stool dataset shows a striking
example, which motivated us to investigate how the existing normalization methods
perform with metagenomic compositional datasets.

16.3 Data Notation and Methods

A metagenomic dataset can be organized as shown in Table 16.1. A column contains
the sequence counts for all the features in a sample; a row lists the counts for a
feature across all the samples. For example, yij denotes the count for feature i from
sample j.

With these notations, the steps and the formula of the normalization methods
studied in this chapter are briefly introduced as follows.



16 Performance Evaluation of Normalization Approaches for Metagenomic. . . 333

Table 16.1 Format of a metagenomic dataset of two conditions

Condition 1 Condition 2
Sample 1 · · · Sample n1 Sample n1 + 1 · · · Sample n1 + n2

Feature 1 y11 · · · y1n1 y1,n1+1 · · · y1,n1+n2

Feature 2 y21 · · · y2n1 y2,n1+1 · · · y2,n1+n2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Feature m ym1 · · · ymn1 ym,n1+1 · · · ym,n1+n2

TSS (White et al. 2009): The total sum of the counts in a sample serves as the
estimate of the library size of the sample. A TSS normalized count is calculated as

ỹT SS
ij = yij

∑
i yij

NT SS,

where NTSS is an appropriately chosen normalization constant.
RLE (Anders and Huber 2010): The geometric mean of the counts to a feature

from all the samples is first calculated. The ratio of a raw count over the geometric
mean to the same feature is then computed. The scale factor of a sample is obtained
as the median of the ratios for the sample. A RLE normalized count can be
calculated as

ỹRLE
ij = yij /mediani

⎧
⎪⎪⎨

⎪⎪⎩

yij

(∏
j yij

) 1
n1+n2

⎫
⎪⎪⎬

⎪⎪⎭
.

TMM (Robinson and Oshlack 2010): The ratio of two observed relative abun-
dances for a feature in two samples is considered to be an estimate of the scale factor
between the two samples. The log2 of the ratio is named M value; and the log2 of
the geometric mean of the observed relative abundances is called A value. This name
convention follows the M and A values given originally in the M-A plot (Yang et al.
2002). That is, for feature i from samples j, l,

Mi(jl) = log2
yij /

∑
iyij

yil/
∑

iyil

; Ai(jl) = 1

2
log2

(
yij

∑
i yij

yil
∑

i yil

)

.

The features with specified upper or lower percent of M (default 30%) or A
(default 5%) values are trimmed out. The weighted sum of the M values can be
used to derive the scale factor,

log2

(
SFT MM

jl

)
=

∑
i∈mT MM

jl

(
wi(jl)Mi(j l)

)

∑
i∈mT MM

jl

(
wi(jl)

) ,
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where SFT MM
jl denotes the scale factor of sample j relative to sample l by TMM

method, and mT MM
jl denotes the remaining features after the trimming step for the

two samples. The weight wi(jl) is computed by,

wi(jl) =
∑

i yij − yij

yij

∑
iyij

+
∑

i yil − yil

yil

∑
iyil

.

After appropriate steps, a TMM normalized count can also be expressed as the
quotient of yij and some attainable value.

CSS (Paulson et al. 2013): For a sample, CSS is defined as the sum of counts that
are less than or equal to a percentile, determined by the data. This cumulative sum
excludes the raw counts from features that are preferentially amplified, and thus is
considered to be relatively invariant across the samples. Using this sum as the scale
factor, a CSS normalized count can be calculated as

ỹCSS
ij = yij

∑
i∈mCSS

(
yij

)NCSS,

where NCSS is an appropriately chosen normalization constant, and mCSS denotes
the features included in the cumulative summation for the sample.

RFY (McMurdie and Holmes 2013): Rarefying normalization starts with selec-
tion of a library size, NRFY . Then any sample, with library size less than NRFY ,
is considered defective and discarded. For any remaining sample, the features are
resampled using their counts as sampling weights. The resampled dataset, or the
normalized samples, share the same library size. In this chapter, we use the same
criterion as that in McMurdie and Holmes (2014) to set the 15th percentile of total
sums of the counts of raw samples as the NRFY . Note that, RFY does not provide an
estimate of scale factor of a sample as other normalizations do. In this sense, TSS,
RLE, TMM, and CSS are called scaling normalizations, but RFY is not.

16.4 Simulation Study

16.4.1 Parameters and Data Characteristics

Mandal et al. (2015) has made a remarkable comment for metagenomic composi-
tional data analysis: “It is critical to understand what the observed data represent
and what statistical parameters are being tested.” As discussed in Introduction,
in our opinion, the answer to the comment is: metagenomic compositional data
should be deemed as samples from the microbial ecosystems, and the read counts
to the features should be used as the indication of the relative abundances (i.e.,
compositional proportions) of the features in the ecosystems. For a statistical
test, the relative abundance is the underlying parameter to be compared between
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conditions. The relative abundance of feature i for condition k is denoted by p
(k)
i ,

subject to the simplex, i.e.,
∑m

i=1 p
(k)
i = 1.

Through more than a decade of metagenomics research, it has been recognized
that metagenomic data possess at least three outstanding characteristics: (1) a great
proportion of the features have a sparse count, meaning that the data contain an
inflated proportion of zero counts (Paulson et al. 2013; Sohn et al. 2015); (2) the
data suffer from the under-sampling issue, that is, more features are found from
sample with larger library size, in other words, zero counts could also be associated
to library size (Srinivas et al. 2013); (3) the counts are usually overdispersed
(McMurdie and Holmes 2014).

16.4.2 Data Simulation

Data simulation encompasses two consecutive steps: learning of real dataset on
the characteristics outlined above, and statistical simulation using the parameters
learned. To emphasize, both the learning of real dataset and statistical simulation
are carried out for each condition separately.

Learning of real dataset. The expectation of yij is expressed as μij = μjp
(k)
i ,

where μj is the expectation of the sum of the counts in sample j and is named
sample scale here. An estimate of μij can be obtained by,

μ̂ij = μ̂j · p̂
(k)
i =

∑

i

yij ·
∑

j∈(k) yij
∑

i,j∈(k) yij

,

where j ∈ (k) represents the samples from condition k only. Note that, as an estimate
of count, μ̂ij is rounded to the nearest integer.

The observed counts, with the same estimated expectation, of all the samples
under the same condition, are put together to fit a Negative Binomial (NB)
distribution. There is a fitted size parameter of NB distribution from each of the
grouped raw counts. This size parameter indicates the level of overdispersion of the
counts, which is detailed in Appendix. We will use the average of the fitted size
values for the simulation.

After the NB fitting, for the group of observed counts that share the same
estimated expectation, the probability of zero can be calculated using the fitted NB
distribution. If the observed proportion of zeros is greater than this probability, their
difference is recorded as the estimated probability of inflated zero counts for that
expectation.

The samples (or columns in Table 16.1) under the same condition are sorted
according to the values of μ̂j (i.e.,

∑
iyij) from the least to the greatest. Then, for a

feature (or a row in Table 16.1), the cumulative sums of the counts from sample 1 to
another sample are calculated, i.e.,

∑J
j=1yij , J = 1, . . . nc, where nc is the sample

size under that condition. Thus, for a feature, we use the maximum of the μ̂j ’s, over



336 R. Du et al.

the samples (or columns) with the cumulative sums ≤3, to estimate the boundary
library size of the under-sampling.

Simulation steps. Simulation is carried out for each of the conditions separately
as well. First, the μ̂j ’s from the real dataset are used to build an empirical
distribution from which random numbers can be generated and serve as the sample
scales (μsim

j ’s) for the simulation. Second, the expectation of count is obtained

following μsim
ij = μsim

j · p̂
(k)
i . The simulated count (ysim

ij ) is randomly selected
from either a zero point, or a random number from the NB distribution with the
learned parameter values. Third, in simulated sample j, if the estimated boundary
size of under-sampling for a feature is greater than

∑
iy

sim
ij , the corresponding

count is replaced by zero. R codes for learning of a real dataset and subsequently
data simulation are available at a Github webpage https://github.com/rdu2017/
Normalization-Evaluation.

16.4.3 Normalization Performance

The purpose of normalization is to adjust all the samples to the same scale for differ-
ential abundance analysis. Although it is conventional to say that normalization is
for library size, it is essentially the sample scale that needs to be normalized. After
normalization, the counts for a feature in different samples under the same condition
are assumed to have the same expectation. The expectations are compared between
conditions to draw the conclusion for the analysis. Thereupon, the sample scale, the
sum of expectations of counts in the sample, needs to be normalized among all the
samples. In turn, the relative abundance is compared.

Using the HMP saliva and stool sample data as template, we generated 100
simulated datasets. The four methods (TSS, RLE, TMM, and CSS) were applied
for estimation of the sample scales in the normalization. Since the RFY approach
does not perform normalization through estimating sample scale, it is not included
here. The Pearson correlation coefficient between the estimated sample scales and
the true values is calculated to show how well a normalization works. The estimate
is better when the coefficient is closer to one. Figure 16.2 displays the boxplots
of the coefficients from the 100 simulated datasets. Among these four methods,
TMM appears uncompetitive. Both TSS and CSS perform better than RLE, while
the median of TSS (0.625) is slightly higher than that of CSS (0.61) but with two
times larger standard deviation (0.08 vs. 0.04).

16.4.4 Impact of Normalization on Differential Abundance
Analysis

To be able to set true/false differentially abundant features explicitly, we take only
the simulated data from one condition, i.e., the stool metagenome. A simulated

https://github.com/rdu2017/Normalization-Evaluation
https://github.com/rdu2017/Normalization-Evaluation
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Fig. 16.2 Boxplots of Pearson correlation coefficients of sample scales estimated after different
normalization methods and the true values, using the 100 simulated datasets

dataset, containing 191 samples, is randomly partitioned into two smaller datasets
with 96 and 95 samples in each. Meanwhile, we intend to keep the compositional
characteristics of the data. The quartiles of p

(k)
i ’s are calculated. In the dataset that

contains 96 samples, the features (i.e., rows) from the third and fourth quartiles are
randomly swapped with the features from the first and second quartiles. By so doing,
the two partitioned datasets share 50% true and 50% false differentially abundant
features with the compositional structure still maintained. A two-sided T test is first
performed to compare the normalized counts for each feature, and followed by the
Benjamini-Hochberg procedure (Benjamini and Hochberg 1995) for false discovery
rate controlling at 0.05 among all the tests. Figure 16.3a shows the boxplots of the
observed false discovery rates (FDR) in the analysis output after a normalization
procedure. It is noticeable that TMM normalization has much higher FDR, with
46% tests showing FDR greater than 0.05. RFY normalization performs the second
worst regarding FDR controlling, with 12% tests having FDR greater than 0.05. As
indicated in Fig. 16.3b, the true positive rates (TPR) associated with TMM and non-
normalization are lower than TPR associated with the other normalizations. It is
clear that an ineffective normalization (TMM here) will discourage the differential
analysis in error rate controlling or statistical power, or both.

Our focus is to examine how a normalization impacts subsequent differential
analysis. However, it should be pointed out that differential abundance analysis itself
is influenced by both normalization and the statistical approach used for analysis.
Figure 16.4 shows FDR and TPR on the same shuffled datasets above but analyzed
using NB regression approach. It seems NB approach has better TPR rate but worse
FDR controlling compared to T test. Nonetheless, TMM still shows ineffectiveness
in the NB approach.
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Fig. 16.3 Impact of normalization on differential abundance analysis in both FDR and TPR, by
two-sided T test with 100 datasets shuffled from stool metagenome dataset. (a) False discovery
rate. (b) True positive rate

Fig. 16.4 Impact of normalization on differential abundance analysis in both FDR and TPR, by
Negative Binomial regression with 100 datasets shuffled from stool metagenome dataset. (a) False
discovery rate. (b) True positive rate
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16.5 Discussion

16.5.1 TMM and RLE with Metagenomic Compositional
Dataset

For gene expression studies, there is a widely used assumption that the majority
of genes do not express differentially between conditions. Many of RNA-Seq nor-
malization methods were developed based on this assumption, including TMM and
RLE. The “non-differential” in the assumption is implemented as non-differential
absolute abundance after normalization. Subsequent differential analysis is also
to compare the normalized counts between conditions, instead of comparing the
relative abundances as it is for compositional data. In Appendix, we use hypothetical
datasets to explain why TMM and RLE normalizations may not work well with
metagenomic compositional dataset. We would then like to suggest using RNA-Seq
normalization with caution for metagenomic compositional data analysis.

16.5.2 Simulation Benchmark

Metagenomic studies have been frustrated by lack of good simulation benchmarks
(Johnson et al. 2014). Meanwhile, contrary conclusions have been seen from the
simulation studies conducted with different criteria (McMurdie and Holmes 2014;
Weiss et al. 2017; Costea et al. 2014; Paulson et al. 2014). In our vision, the practice
needs improvement from at least two aspects. First, the idea that a simulation study
should be designed to apply for overall situations may not be realistic. Instead, a
case-by-case simulation practice should be encouraged, based on the real dataset to
analyze. Second, in terms of metagenomic compositional data, all the important data
characteristics should be included when designing a simulation. Using a convenient
statistical distribution is not a good strategy because it may not be capable to reflect
the complex in a real dataset.

We suggest that a simulation be carried out for each condition independently
for metagenomic compositional data. The distribution of library size, the relative
abundance, the overdispersion parameter, the probability of zero count from a zero
mass state, and the boundary library size in terms of under-sampling are learned
from a real metagenomic dataset. Hopefully, the simulation approach we provide in
this chapter can serve as a good basis for building up simulation benchmarks in the
research community of metagenomic data analysis.

16.5.3 Novel Normalization Methods Are Needed

As observed, TMM method should be avoided for analysis of the HMP saliva
and stool dataset. In Appendix, we also provide a figure showing that the RLE
normalization does not work well for the mouse stool metagenomic dataset, which
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has been used as the benchmark dataset in the chapter where CSS was introduced
(Paulson et al. 2013). From our experience, no matter with real or simulated data,
in most situations the CSS does not identify the data-driven percentile, up to which
the raw counts will be summed, and then the default value 50th percentile is used. It
is questionable to us whether there commonly exists a claimed percentile so that the
raw counts are distributed differently lower or greater than it (see Supplementary
Figure 1 in Paulson et al. 2013). In addition, there is no specific consideration of the
compositional characteristics in the development of CSS. Conceptually, TSS may
be fine for compositional data normalization as it uses a count divided by the total
sum of the counts of a sample, as an estimate of the relative abundance. However,
as many previous studies have shown, TSS is unreliable against the overdispersed
counts, under-sampling issue, and aberrant counts in many situations. In a word,
novel normalizations, specifically designed for metagenomic compositional data,
are highly in demand. Developing novel normalization methods is our future
research topics.
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A.1 Appendix

A.1.1 Supplementary Data Distribution

Negative Binomial Distribution. A NB distribution is defined as,

P (X = x) = � (x + r)

� (r) x! pr(1 − p)x,

where r and p are two parameters, and r is called size parameter. The mean of the
NB distribution is,

μ = r (1 − p)

p
,

and the variance is,

V = r (1 − p)

p2 = μ + 1

r
μ2.

Thus, r indicates the level of overdispersion in the counts.
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Fig. 16.5 TMM normalization on a hypothetical dataset

A.1.2 Supplementary Illustration of TMM and RLE
with Compositional Dataset

For gene expression studies, there is a widely used assumption that the majority
of genes do not express differentially between conditions. Many of RNA-Seq nor-
malization methods were developed based on this assumption, including TMM and
RLE. The “non-differential” in the assumption is implemented as non-differential
absolute abundance after normalization. Subsequent differential analysis is also
to compare the normalized counts between conditions, instead of comparing the
relative abundances as it is for compositional data.

Focusing on the essence of a normalization procedure, the hypothetical datasets
are made of the expectations of counts. For TMM approach, the logarithm function
and the weighted sum are not applied since those are designed for reducing the effect
of count variation. In Fig. 16.5, the relative abundance ratio, compared to the first

sample, is first calculated from the raw counts, i.e.,
yij /

∑
i yij

yi1/
∑

i yi1
. The trimmed mean of

the ratios for each sample, after trimming the largest and smallest values, is used as
the scale factor. The true scale factor is 2.6 (390/150), but the output from TMM
is 1.73. Figure 16.5 shows a very likely situation for metagenomic compositional
data, in which the relative abundances vary largely between conditions. TMM may
not work well for such data since it merely relies on the assumption that after
normalization most of features should share the same absolute abundance.

For RLE normalization, the geometric mean of the counts to each feature from
all the samples is first calculated, see Fig. 16.6. Next, the ratio of a raw count over
the mean count for the same feature is computed. The scale factor for a sample is
obtained as the median of the ratios for the sample. For this hypothetic dataset, RLE
approach does not suggest any normalization adjustment since all the scale factors
equal to 1; however, the true library sizes are very different (e.g., 210 vs. 310).



342 R. Du et al.

Fig. 16.6 RLE normalization steps on a hypothetical dataset

In Fig. 16.6, it is clear that the scale factor is determined by the absolute count of
Feature 2, 3, 4, or 5, instead of the relative abundance of one of those features.
A subsequently comparative analysis would reach the conclusion that there is no
differential abundance for Feature 2, 3, 4, or 5 between the conditions. However, the
relative abundances of the features have altered, for Feature 4 it is 14% and 10%
under the two conditions, respectively.

A.1.3 Supplementary Example

Mouse stool metagenomic data. Fresh or frozen adult human fecal microbial com-
munities were transplanted into guts of germ-free C57BL/6J mice. Here, germ-free
environment is referred to as mice gut that does not previously expose to microbes.
Following the transplanting, 12 recipient mice were fed with a standard low-fat,
plant polysaccharide-rich diet for 4 weeks; after that, six mice were switched
to take high-fat/high-sugar Western diet for another 6 weeks. Amplification and
pyrosequencing of V2 region of 16S rRNA genes were performed periodically to
record the changes of microbial community structure of fecal samples of the mice
(Turnbaugh et al. 2009). There are 85 samples under condition one (associated to
low-fat diet fed mice), and 54 samples under condition two (associated to Western
diet fed mice). The bioinformatic tool RDP (Wang et al. 2007) was used to generate
the count data, which is featured at species level.Together, there are 52 genera
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Fig. 16.7 Boxplots of coefficients of variation of counts in the raw data, and the normalized data
for the mouse stool metagenomic data

shown under both conditions, and the data is considered to represent low complex
metagenomic data. Figure 16.7 demonstrates that RLE and RFY should not be
recommended for normalization of the metagenomic data.
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