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Preface

The theory of belief functions, also known as evidence theory or Dempster–Shafer
theory, was first introduced by Arthur P. Dempster in the context of statistical infer-
ence, and was later developed by Glenn Shafer as a general framework for modeling
epistemic uncertainty. These early contributions have been the starting points of many
important developments, including the transferable belief model and the theory of
hints. The theory of belief functions is now well established as a general framework for
reasoning with uncertainty, and has well understood connections with other frame-
works such as probability, possibility, and imprecise probability theories.

The series of biennal International Conferences on Belief Functions (BELIEF) is
dedicated to the confrontation of ideas, the reporting of recent achievements, and the
presentation of the wide range of applications of this theory. This conference series was
launched in Brest, France, in 2010. It subsequently took place in Compiègne (2012),
Oxford (2014) and Prague (2016). In 2018, the conference was held again in
Compiègne, during September 17–21. The reason for such a quick come-back was to
seize the opportunity to have a joint event with the 9th International Conference on Soft
Methods in Probability and Statistics (SMPS). Such a joint meeting promotes inter-
actions and discussions between different communities working on different aspects of
uncertainty theories.

This volume contains the proceedings of the 5th International Conference on Belief
Functions. The joint event collected 61 accepted submissions, each reviewed by at least
two reviewers. Thirty-three of these are included in the present volume. Original
contributions were solicited on theoretical aspects (including, for example, statistical
inference, mathematical foundations, continuous belief functions) as well as on
applications in various areas including classification, statistics, data fusion, network
analysis, and intelligent vehicles. The resulting proceedings were easily produced
through the use of EasyChair.

We would like to thank all the persons who made this volume and this conference
possible: all contributing authors, organizers, Program Committee members who
helped to build such an attractive program. We are especially grateful to our three
invited speakers, Thomas Augustin (Ludwig-Maximilians-Universität München) for his
talk “Belief Functions and Valid Statistical Inference,” Scott Ferson (University of
Liverpool) for his talk “Non-Laplacian Uncertainty: Practical Consequences of an Ugly
Paradigm Shift About How We Handle not Knowing,” and Ryan Martin (North
Carolina State University) for his talk “Belief Functions and Valid Statistical Infer-
ence.”We would like to thank all our generous sponsors: Elsevier and the International
Journal of Approximate Reasoning, the Laboratory of Excellence MS2T, the Heudi-
asyc laboratory, the International Society of Information Fusion (ISIF), the Compiègne



University of Technology, and the city of Compiègne. Furthermore, we would like to
thank the editors of the Springer series Lecture Notes in Computer Science, and
Springer for their dedication to the production of this volume.

June 2018 Sébastien Destercke
Thierry Denoeux
Fabio Cuzzolin
Arnaud Martin
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An Evidential Collaborative Filtering
Approach Based on Items Contents

Clustering

Raoua Abdelkhalek(B), Imen Boukhris, and Zied Elouedi

LARODEC, Institut Supérieur de Gestion de Tunis,
Université de Tunis, Tunis, Tunisia

abdelkhalek raoua@live.fr, imen.boukhris@hotmail.com, zied.elouedi@gmx.fr

Abstract. Recommender Systems (RSs) have emerged as powerful tools
to provide the users with personalized recommendations and to guide
them in their decision making process. Among the various recommen-
dation approaches, Collaborative Filtering (CF) is considered as one
of the most popular techniques in RSs. CF techniques are categorized
into model-based and memory-based. Model-based approaches consist in
learning a model from past ratings to perform predictions while memory-
based ones predict ratings by selecting the most similar users (user-
based) or the most similar items (item-based). In both types, recommen-
dations are fully based on users’ past ratings. However, aside from users’
ratings, exploiting additional information such as items’ features would
enhance the accuracy of the provided predictions. Another crucial chal-
lenge in the RSs area would be to handle uncertainty arising throughout
the prediction process. That is why, in this paper, we propose an item-
based Collaborative Filtering under the belief function theory that not
only takes advantages of both model- and memory- based CF approaches
but also integrates items’ contents in the recommendation process.

Keywords: Recommender systems · Collaborative filtering
Model-based · Memory-based · Belief function theory
Uncertainty · Items contents

1 Introduction

Recommender Systems (RSs) [1] are considered as an efficient tool to cope with
the information overload problem. Such systems generally try to predict the
users’ future ratings on unseen items and provide personalized recommendations
accordingly. In the research area of RSs, Collaborative Filtering (CF) approaches
[2] are considered among the most popular strategies commonly adopted in this
field. According to how they process the rating matrix, CF systems can be
divided into model-based and memory-based categories. Memory-based CF, also
referred to as neighborhood-based, compute the similarities between users (user-
based) or items (item-based) and then select the most similar ones for recom-
mendations. Commonly, Pearson and Cosine correlation coefficients are the most
c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 1–9, 2018.
https://doi.org/10.1007/978-3-319-99383-6_1
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2 R. Abdelkhalek et al.

widely used similarity measures in the neighborhood-based CF approaches [3].
In contrast to memory-based systems, which rely on the users’ ratings directly
in the prediction, model-based approaches exploit these ratings to build a model
which is used to predict ratings. In traditional CF systems, the final predictions
represent the user’s preference for a given item as a rating score (i.e., a hard rat-
ing). The predicted value indicates whether the concerned item would interest
the active user or not. Nonetheless, most of existing recommendation techniques
have not considered the important issue of uncertainty which reigns in real-world
problems. Such uncertainty needs to be appropriately represented and processed
so as to improve quality and reliability of RSs [4]. The belief function theory
(BFT) [5,6] is considered among the most used theories for reasoning under
uncertainty [7]. In our paper, we embrace this theory to quantify and represent
the uncertainty in the recommendation process. Furthermore, CF strategies rely
only on the available ratings given by the users. However, various additional
information stretching beyond the rating matrix can generally be available such
as items’ features (i.e., contents). Naturally, the more sources of information
about the given items are exploited, the more effective the performance of rec-
ommendations will be. Hence, we propose an evidential CF approach that deals
with uncertainty in both clusters assignment and final predictions while making
use of the items’ contents aside from their corresponding ratings.

This paper is organized as follows: Sect. 2 gives the necessary background of
the belief function framework. In Sect. 3, we provide some related work of the
Collaborative Filtering recommender. Section 4 describes our proposed approach.
Section 5 depicts the experimental results. Finally, Sect. 6 concludes the paper
and reports some potential future works.

2 Background on the Belief Function Theory

Let Θ be the frame of discernment representing the set of n elementary events
such that: Θ = {θ1, θ2, · · · , θn}. It contains hypotheses concerning the given
problem. The power set of Θ, denoted by 2Θ, is the set of all possible subsets
of Θ. A basic belief assignment (bba) expresses the belief committed to each
element of 2Θ. It corresponds to the mapping function m : 2Θ → [0, 1] such that∑

E⊆Θ

m(E) = 1 where m(E) represents the basic belief mass (bbm) stating the

part of belief exactly committed to the event E.
When an event E ⊆ Θ has m(E) > 0, it is called a focal element. A dis-

counting mechanism can be adopted to account for reliability of the independent
sources such that:

mα(E) = (1 − α) · m(E),∀E ⊂ Θ;mα(Θ) = α + (1 − α) · m(Θ)

where α ∈ [0, 1] is the discounting factor.
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The fusion of two bba’s m1 and m2 derived from two reliable and independent
sources of evidence can be performed using Dempster’s rule of combination. It is
defined as follows, where the empty set ∅ is the unique set having no elements.

(m1 ⊕ m2)(E) = k.
∑

F,G⊆Θ:F∩G=E

m1(F ) · m2(G)

where(m1 ⊕ m2)(∅) = 0 and k−1 = 1 − ∑

F,G⊆Θ:F∩G=∅
m1(F ) · m2(G).

To make decisions, beliefs can be transformed into a pignistic probability
BetP (E) computed as follows:

BetP (E) =
∑

F⊆Θ
|E∩F |

|F |
m(F )

(1−m(∅)) for all E ⊆ Θ. The hypothesis having the
highest value of BetP (E) is then selected.

In order to process uncertain data, a panoply of machine learning techniques
has been proposed under this theory, such as the Evidential K-Nearest Neighbors
[8] which allows a credal classification of the objects and the Evidential c-means
(ECM) [9] which allows the objects to belong to more than only one cluster,
which is referred to as credal partition.

3 Related Work on Collaborative Filtering

Much research has been recently devoted to the development of CF approaches
aiming to enhance the accuracy and the performance of the recommendations.
Clustering-based methods are among the widely used techniques in model-based
CF. In these approaches, a cluster model is created based on the available ratings
and predictions are then made based on these clusters. For instance, a clustering
based CF approach has been proposed in [10] to group the users in different
clusters based on their ratings and predictions have peen performed accordingly.
A graph cut-based clustering approach has been proposed in [11] to facilitate the
formation of similar user groups. In our work, we consider only item-based CF
where items are clustered into groups rather than users. While CF techniques
rely basically on users’ ratings to provide recommendations, RSs research direc-
tions are now emerging to exploit, not only the items’ ratings, but also additional
information that goes beyond the rating matrix such as items’ contents. In [12],
the correlation between movies genres is computed and traditional user-based
CF is then used to predict ratings. In [13], authors have developed a TV program
RS where they combine items’ contents with users’ preferences and the matrix
factorization technique has been applied. On the other hand, uncertainty can
arise in many different ways when dealing with RSs. Consequently, it is funda-
mental to take it into account. Recent works have emphasized the benefits of
the incorporation of such uncertainty using the belief function theory. Indeed,
authors in [14,15] have extended traditional item-based CF under the belief func-
tion theory where the items’ ratings have been represented by belief functions
and combined to provide the final predictions. A clustering based CF approach
has also been proposed under this theory where ECM has been involved to clus-
ter items based only on their ratings. Predictions are then computed as average
values of the similar items’ ratings [16].
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4 ECF-IC: Evidential CF Based on Items Contents

In our proposed recommendation approach, we tend to exploit the intuition of
both model-based and neighborhood-based approaches while making use, not
only of the items’ ratings but also of their corresponding features. In order to
deal with uncertainty, the belief function theory is adopted and several tools and
machine learning techniques under this theory come into play. The whole process
is illustrated in Fig. 1. Two major steps characterize the new approach namely
the model building step where a model is learned based on items features and the
evidential prediction step where the rating matrix is explored and predictions
are performed based on the K-similar items.

Fig. 1. Evidential CF approach based on items contents clustering

4.1 Model Building

In the first step, items’ features are exploited in order to generate soft clusters
among the items using the Evidential c-means technique. We define the frame
of discernment Ω1 = {c1, c2, . . . , cM} where M corresponds to the number of
clusters c. By exploiting the items contents, we aim in this phase to generate a
credal partition of the items. Thus, each given item in the system can belong to
any subsets of Ω1. For this purpose, we involve the Evidential c-means (ECM)
since this efficient soft clustering technique allows to allocate, for each item in
the rating matrix, a mass of belief not only to single clusters, but also to any
subsets of Ω1. Before performing the evidential clustering process, we normalize
the items’ features to be considered on the same scale as proposed in [17]. For
ith attribute and kth value of a given item A, we obtain the normalized value as
follows: NVAik

= (Aik − Ai,min)/(Ai,max − Ai,min). Once all the items features
are normalized, the cluster centers, commonly referred to as prototypes, are
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randomly initialized. The Euclidean distance between each item and the non
empty subsets of Ω1 is then computed and the credal partition is derived. More
details about the credal partition process and parameters can be found in [9].
Finally, we compute the pignistic probability induced by each bba. Each item is
assigned to its corresponding cluster based on the derived pignistic probabilities.
Once the items clustering is performed, the items belonging to the same cluster
as the target item are selected to be used in the second phase. Note that the
clustering process performed before the neighborhood selection is justified by its
ability to improve the scalability performance of neighborhood-based CF. Thus,
items similarities are computed between the target item and the items belonging
to the same cluster rather than the whole items in the system.

4.2 Predictions and Recommendations

In this phase, we define Ω2 = {ω1, ω2, · · · , ωn} where n is the number of the
possible ratings ω and ω1 < ω2 < · · · < ωn. In each cluster, the distance between
the target item and the other items is computed as follows:

d(a, b) =

√∑
u∈(ua∩ub)

(ωu,a − ωu,b)2

|ua ∩ ub|
ωu,a and ωu,b are the ratings of the user u for the target item a and the item
b. ua and ub are the users who rated both items a and b. Accordingly, the K-
similar items are extracted. Each similar item involves a particular hypothesis
about the predicted rating. Hence, we generate a bba over each rating provided
by the selected neighbor as well as the whole frame of discernment Ω2 [8].

ma,b({ωi}) = α0 exp−(γ2
ωi

×(d(a,b))2 ;ma,b(Ω2) = 1 − α0 exp−(γ2
ωi

×(d(a,b))2

Following [8], α0 is initialized to the value 0.95 and γωi
is computed as the inverse

of the mean distance between each couple of items sharing the same ratings. We
integrate the discounting technique [5] to quantify the reliability of each similar
item where we define the discounting factor β as: β = d(a, b)/max(d). max(d)
is the maximum value of the computed distances. We assume that the more
similar the item is, the more reliable its evidence is. The discounted bba’s are
then obtained such as:

mβ
a,b({ωi}) = (1 − β) · ma,b({ωi});mβ

a,b(Ω2) = β + (1 − β) · ma,b(Ω2)

Once the different bba’s provided by the K-Nearest Neighbors are generated,
they can be combined using Dempster’s rule of combination. Inspired by [8], the
following equations can be applied:

∀ωi ∈ {ω1, · · · , ωN} mβ({ωi}) =
1

Z
(1 −

∏
i∈SK

(1−αωi )) ·
∏

ωj �=ωi

∏
i∈SK

(1−αωj )

mβ(Ω2) =
1

Z

∏N

i=1
(1 −

∏
i∈SK

(1 − αωi ))
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where SK is the set containing the K-nearest neighbors of the target item over
the user-item matrix. N is the number of the ratings provided by the similar
items, αωi

is the belief committed to the rating ωi, αωj
is the belief committed

to the rating ωj 
= ωi, Z is a normalized factor defined by:

Z =
∑N

i=1
(1 −

∏
i∈SK

(1 − αωi )
∏

ωj �=ωi

∏
i∈SK

(1 − αωj ) +
∏N

i=1
(
∏

i∈SK

(1 − αωj )))

5 Experimental Analysis

In our experiments, we use the well-known MovieLens1 data set in order to eval-
uate our proposal. Such data set contains 1682 movies rated by 943 users. These
ratings are integer scores between 1 (dislike) and 5 (like). We follow the method-
ology in [18] which consists in ranking the movies rated by the 943 users accord-
ing to the number of the total ratings such as: Nbuser(movie1) ≥ Nbuser(movie2)
≥ · · · ≥ Nbuser(movie1682) where Nbuser(moviei) is the number of users who
rated the moviei. We extract 10 subsets by progressively increasing the number
of the missing rates. Thus, since few ratings provided for the total number of
items are available, each subset will contain a specific number of ratings leading
to different degrees of sparsity.

Evaluation Measures

We rely on two evaluation metrics: The Mean Absolute Error (MAE) defined
as: MAE = 1

‖ ̂Ru,i‖
∑

u,i |R̂u,i − Ru,i| and the precision measure defined as fol-

lows: Precision = IR
IR+UR . Note that Ru,i is the real rating for the user u on

the item i and R̂u,i is the predicted value. ‖R̂u,i‖ is the total number of the
predicted ratings. IR indicates that an interesting item has been correctly rec-
ommended while UR indicates that an uninteresting item has been incorrectly
recommended. The lower the MAE is, the more accurate the predictions are
while the highest precision indicates a better recommendation quality.

Experimental Results

Based on the 10 extracted subsets, we run our experiments while switching each
time the number of clusters c. For each experiment, we use the values c = 2,
c = 3, c = 4 and c = 5. Then, the MAE and the precision results are com-
puted for each value We set α0 = 0.95, as in [8], for the evidential prediction
process. For the obtained clusters, we set the number of the K-nearest neighbors
K to the value ‖c‖ − 1 since most of the best results were achieved with this
value. Note that ‖c‖ corresponds to the number of items in the cluster c. Our
proposed approach, that we denote by ECF-IC, is compared against five tradi-
tional item-based CF systems: The evidential model-based CF (ECL) [16], the
two evidential memory-based CF namely, the evidential item-based CF (EV)
[14] and the discounting-based item-based CF (DE) [15]. Besides, we run the

1 http://movielens.org.

http://movielens.org
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traditional Pearson item-based CF (P) and Cosine item-based CF (C) [3]. The
obtained results are depicted in Table 1. The combination of both memory- and
model-based strategies leads to better results compared to the single evidential
memory- and model-based approaches. Furthermore, the integration of items
contents in the recommendation process shows a great improvement in the per-
formance of the CF recommender compared to ECL which relies only users’
ratings. Overall, our approach achieves better results in term of MAE with a
value of 0.788 compared to 0.925 and 0.914 for both Pearson and Cosine CF,
0.809 for EV, 0.789 for DE and 0.793 for ECL. When it comes to the precision
measure, the average value of the new approach (0.757) outperforms EV (0.733),
DE (0.743), ECL (0.75) as well as Pearson and Cosine approaches (0.706).

Table 1. Overall MAE and Precision

Measures Subsets Sparsity EV C P DE ECL ECF-IC

MAE S1 53% 0.751 0.824 0.839 0.711 0.749 0.787

Precision 0.79 0.778 0.774 0.774 0.792 0.806

MAE S2 56.83% 0.84 0.87 0.936 0.802 0.8 0.81

Precision 0.76 0.739 0.737 0.748 0.74 0.736

MAE S3 59.8% 0.761 0.825 0.863 0.836 0.747 0.78

Precision 0.77 0.749 0.752 0.711 0.785 0.753

MAE S4 62.7% 0.763 0.876 0.905 0.743 0.793 0.748

Precision 0.763 0.745 0.746 0.775 0.782 0.830

MAE S5 68.72% 0.831 1 0.990 0.802 0.845 0.763

Precision 0.741 0.69 0.707 0.787 0.752 0.811

MAE S6 72.5% 0.851 0.917 0.976 0.843 0.8 0.785

Precision 0.735 0.733 0.732 0.74 0.813 0.78

MAE S7 75% 0.744 0.877 0.943 0.736 0.733 0.84

Precision 0.78 0.745 0.752 0.783 0.805 0.829

MAE S8 80.8% 0.718 0.848 0.927 0.723 0.762 0.745

Precision 0.778 0.718 0.729 0.821 0.755 0.733

MAE S9 87.4% 0.840 0.978 0.958 0.839 0.873 0.754

Precision 0.707 0.654 0.665 0.74 0.73 0.797

MAE S10 95.9% 0.991 1.13 0.913 0.978 0.83 0.87

Precision 0.513 0.509 0.463 0.431 0.55 0.5

Overall MAE 0.809 0.914 0.925 0.789 0.793 0.788

Overall Precision 0.733 0.706 0.706 0.743 0.75 0.757
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6 Conclusion

In this paper, we have proposed a new evidential CF approach that incorporates
items contents in the prediction process while combining both model-based and
memory-based strategies. Based on the items contents, the key idea is to learn
a model and to perform predictions accordingly whilst handling the uncertainty
that occurs in the different steps of the recommendation process. As future work,
we intend to better exploit the credal partition in the model building where
all the bba’s of the different clusters will be considered rather than the most
significant one. We intend also to perform more experiments using other real-
world data sets. It would also be interesting to propose a hybrid CF approach
where both items and users clustering are performed.
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Abstract. This paper investigates the usage of the belief functions the-
ory to localize sensors in indoor environments. The problem is tackled as
a zoning localization where the objective is to determine the zone where
the mobile sensor resides at any instant. The proposed approach uses
the belief functions theory to define an evidence framework, for estimat-
ing the most probable sensor’s zone. Real experiments demonstrate the
effectiveness of this approach as compared to other localization methods.

1 Introduction

Localization is an essential issue in wireless sensor networks to process the infor-
mation retrieved by sensor nodes. This paper proposes a zoning-based localiza-
tion technique that makes use of the belief functions theory (BFT) to combine
evidence revealed at each sensor. The proposed approach is constituted of two
phases. In an offline phase, received signal strength indicators (RSSIs) received
from neighboring WiFi Access Points (APs) are collected in each zone and a
fingerprints database is built. The kernel density estimation is then used to rep-
resent the measurements and set mass functions over the zones. In the same
manner, mass functions are also constructed over supersets of zones, by concate-
nating zones data. In an online phase, the collected RSSIs of a mobile sensor are
used in the belief functions framework to determine its zone. Since APs are not
completely reliable, their associated masses are discounted according to their
error rate. Afterwards, the fusion of all evidence is carried by combining masses
using the conjunctive rule of combination. Finally, the pignistic transformation
is applied to assign evidence to singleton sets that are the original zones. The
zone having the highest evidence is then selected. Experiments on real data
illustrate the performance of the belief functions framework for localization of
sensors against other localization techniques.

2 Belief Functions Localization Method

2.1 Problem Formulation

The localization problem is tackled in the following manner. Let NZ be the
number of zones of the targeted area, denoted by Zj , j ∈ {1, 2, . . . , NZ}.
c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 10–13, 2018.
https://doi.org/10.1007/978-3-319-99383-6_2
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Let NAP be the number of detected APs, denoted by APk, k ∈ {1, 2 . . . , NAP }.
Let ρj,k,r, r ∈ {1, . . . , �j}, be the set of �j measurements collected in an offline
phase in the zone Zj with respect to APk. Let ρt be the vector of NAP RSSI
measurements collected by the mobile sensor at the instant t from all the APs.
The aim of the proposed algorithm is to determine the zone Ẑj,t having the
highest evidence, Ẑj,t = arg maxZj

Wt(Zj), such that Wt(Zj) represents the evi-
dence in having the mobile sensor of observation ρt residing in the zone Zj at
instant t.

2.2 Mass Assignment

In the offline phase, the kernel density estimation (KDE) is proposed to model
the distribution of the collected measurements ρj,k,r, r ∈ {1, . . . , �j}, of each
zone j according to each AP APk. The density estimate QKDE,Zj ,k(·) is
calculated as,

QKDE,Zj ,k(·) =
1

�j × h

�j∑

r=1

K
( · − ρj,k,r

h

)
, (1)

where K(u) is a Gaussian kernel, and h its bandwidth,

K(u) =
1√
2π

e− 1
2u2

. (2)

A practical approach to determine h is to maximize the pseudo-likelihood leave-
one-out cross validation,

ML(h) = �−1
j

�j∑

r=1

log

⎡

⎣
∑

r′ �=r

K
(

ρj,k,r′ − ρj,k,r

h

)⎤

⎦ − log[(�j − 1)h]. (3)

The computations are conducted in the same manner for all the supersets of the
zones. Let A be a superset of zones. Then, the RSSIs related to all zones of A
are considered to construct the kernel density estimate related to A, denoted
QKDE,A,k(·) as in Eq. (1). In the online phase, once a new measurement ρt =
(ρt,1, ..., ρt,NAP

) is carried for localization, the kernel density estimates obtained
in the offline phase is used with the belief functions theory to determine the zone
of the sensor. Let Z be the set of all possible zones Zj , j ∈ {1, . . . , NZ}, and let
2Z be the set of all supersets of Z, i.e., 2Z = {{Z1}, . . . ,Z}. The mass function
(MF) mAPk,t : 2Z → [0, 1], defined according to APk is calculated as follows [1],

mAPk,t(A) = QKDE,A,k(ρt,k). (4)

2.3 Discounting Operation

The detected APs are not completely reliable. Indeed, each AP could yield an
erroneous interpretation of evidence for some observations. In order to correct
this, one can discount the MFs of Eq. (4) by taking into account the error rate
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of the AP. The discounted MF αmAPk,t related to APk having an error rate αk

is deduced from mAPk,t as follows [2],

αmAPk,t(A) =

{
(1 − αk)mAPk,t(A), if A ∈ 2Z , A �= Z;
αk + (1 − αk)mAPk,t(A), if A = Z.

(5)

By doing this, the amounts of evidence given to the subsets of Z are reduced, and
the remaining evidence is given to the whole set Z. The source APk is assumed
not reliable if, according to an observation ρk,· being truly in A, it associates
more evidence to any set other than A, that is, the mass associated to A is less
than the mass of another subset of 2Z . Let εk(A) be the error rate related to the
set A with respect to APk. Then,

εk(A) =
∫

Dk,A

QKDE,A,k(ρ)dρ, (6)

such that Dk,A is the domain of error of set A according to APk, defined as,

Dk,A = {ρ | QKDE,A,k(ρ) ≤ max
A′∈2Z ,A′ �=A

(QKDE,A′,k(ρ))}. (7)

The error rate αk of APk is then the average error of all subsets according to
this AP, namely

αk =
∑

A∈2Z εk(A)
2|Z| − 1

. (8)

2.4 Evidence Fusion

The evidence is then combined by aggregating the information coming from
all the detected APs [3]. The mass functions can then be combined using the
conjunctive rule of combination as follows,

m∩,t(A) =
∑

A(k)∈2Z

∩kA(k)=A

NAP∏

k=1

αmAPk,t(A(k)), (9)

∀A ∈ 2Z , with A(k) is the subset A with respect to the Access Point APk.

2.5 Decision

An adequate notion of the BFT to attribute masses to singleton sets A ∈ 2Z is
the pignistic level [4]. It is defined as follows,

BetPt(A) =
∑

A⊆A′

m∩,t(A′)
|A′| , (10)

The zone Ẑj,t having the highest evidence at instant t is then selected,

Ẑj,t = arg max
Zj

BetPt({Zj}), j ∈ {1, . . . , NZ}. (11)
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3 Experiments

Real experiments are conducted in the Living Lab of the University of Technol-
ogy of Troyes, France. The considered floor of approximated area of 500 m2 is
partitioned into 19 zones, where 12 AP networks could be detected. A Set of
50 measurements is taken in each zone, of which 30 are randomly used to con-
struct the databases, and the others are kept for test. The proposed approach
is compared to other localization techniques such as weighted k-nearest neigh-
bors algorithm (WKNN) presented in [5] and a Multinomial logistic regression
(MLR) presented in [6]. The proposed method achieves an accuracy of 85.26%
outperforming the WKNN with 83.82% and the MLR with 82.94%.

4 Conclusion and Future Work

This paper presented a belief functions framework for localization of sensors in
indoor wireless networks. The kernel density estimation was used to set mass
functions, and the belief functions theory combined evidence to determine the
sensor’s zone. Experiments on real data prove the effectiveness of the approach
as compared to other localization techniques. Future work will focus on using
the mobility as another source of information.

Acknowledgment. The authors would like to thank the European Regional Devel-
opment Fund and Grand Est region in France for funding this work.
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Abstract. This paper introduces a new semi-supervised evidential clus-
tering algorithm. It considers label constraints and exploits the evi-
dence theory to create a credal partition coherent with the background
knowledge. The main characteristics of the new method is its ability to
express the uncertainties of partial prior information by assigning each
constrained object to a set of labels. It enriches previous existing algo-
rithm that allows the preservation of the uncertainty in the constraint
by adding the possibility to favor crisp decision following the inherent
structure of the dataset. The advantages of the proposed approach are
illustrated using both a synthetic dataset and a real genomics dataset.

Keywords: Evidential clustering · Partial labels
Semi-supervised clustering · Belief function

1 Introduction

Evidential clustering algorithms, such as ECM [1], rely on the theoretical foun-
dation of belief functions and evidence theory [2] and allow to express many
types of uncertainty about the assignment of an object to a cluster. It enables
to handle crisp single cluster assignment, as well as cluster membership degrees,
total ignorance and outliers detection. The credal partition, which is formed with
the assignments of all the objects, generalizes other soft partitions such as fuzzy,
possibilistic or rough partitions [3].

Clustering is a complex unsupervised task that often requires additional
assumptions to determine relevant solutions. The performances of a cluster-
ing algorithm can be highly improved by using background knowledge [4]. To
this end, several semi-supervised evidential clustering approaches have been pro-
posed [5–7]. In [7], the SECM-pl algorithm integrates prior information in the
form of labeled data instances. The particularity of SECM-pl is its ability to
c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 14–21, 2018.
https://doi.org/10.1007/978-3-319-99383-6_3
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handle partial knowledge, which corresponds to the uncertainty about the assign-
ment of an object to several classes. This partial knowledge is controlled by the
algorithm in such a way that the uncertainty can be preserved.

In this paper, we propose an approach that generalizes SECM-pl, which main-
tains a high flexibility on the constraints, by favoring a decision making on the
constraints. The paper is organized as follows: Sect. 2 recalls the basics con-
cerning the evidence theory and its application in clustering. Section 3 details
the novel SECM algorithm and focuses on how labels constraints are expressed
and incorporated in ECM. Section 4 presents experimental settings and results.
Finally a discussion and future work are presented in Sect. 5.

2 Preliminaries

2.1 Belief Functions

The evidence theory (or belief functions theory) [2,8] is a mathematical frame-
work that enables to reflect the state of partial and unreliable knowledge. Let
Ω = {ω1, . . . , ωc} be the frame of discernment where ωi is the true state of
the system which will be defined below. The mass function m : 2Ω → [0, 1],
also called basic belief assignment (bba), measures the degree of belief that ωi

belongs to a subset A ⊆ Ω. It satisfies
∑

A⊆Ω m(A) = 1. Any subset A such that
m(A) > 0 is named a focal set of m. Given a mass function m, the plausibility
function pl : 2Ω → [0, 1] is defined by:

pl(A) =
∑

B∩A �=∅
m(B), ∀A ⊆ Ω. (1)

The quantity pl(A) corresponds to the maximal degree of belief that could
be given to A. To make a decision, a mass function can be transformed into a
pignistic probability distribution BetP [8].

2.2 Evidential C-Means

Evidential clustering algorithms generate for each object x1, . . .xi, . . .xn ∈ R
p

a mass function mi on the set Ω = {ω1, . . . , ωc} denoting the clusters. The
collection M = (m1, . . . ,mn) forms the credal partition and allows to represent
the uncertainties and imprecisions regarding the class membership of each object.
ECM [1] is the credibilistic version of Fuzzy C-Means [9]. It considers for each
subset Aj ⊆ Ω a representation of the subset with a prototype vector vj in R

p.
The objective function is:

JECM (M,V) =
n∑

i=1

∑

Aj⊆Ω,Aj �=∅
|Aj |αmβ

ijd
2
ij +

n∑

i=1

ρ2mβ
i∅, (2)

where V is the collection of prototypes, mij = mi(Aj) corresponds to the bba
of the object xi for the subset Aj , mi∅ denotes the mass of xi allocated to the
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empty set and d2ij represents the squared Euclidean distance between xi and
the prototype vj . The last term of the objective function enables to handle the
empty set which can be interpreted as a cluster for outliers. The ρ parameter is
a fixed coefficient representing the distance between any object and the empty
set. The two parameters α and β > 1 are introduced to penalize the degree of
belief assigned to subsets with a high cardinality and to control the fuzziness of
the partition. The objective function is subject to

∑

j/Aj⊆Ω,Aj �=∅
mik + mi∅ = 1; mij ≥ 0 ∀i = {1, . . . n},∀j/Aj ⊆ Ω. (3)

2.3 SECM-pl

The main idea of the algorithm [7] is to add a penalty term in the objective
function of ECM, in order to take into account a set of already labeled objects.
Any mass function which partially or fully respects a constraint on a label ωk

has a high plausibility pl(ωk) given to the label. Similarly, an object constrained
in several classes, i.e. on the set Aj ⊂ Ω is respected with mass functions given
a high plausibility pl(Aj). Thus, the following penalty term has been proposed:

JS =
n∑

i=1

∑

Aj⊂Ω,Aj �=∅
bij(1 − Pli(Aj)), (4)

where bij = 1 if xi is constrained on Aj and 0 otherwise.

3 New ECM Algorithm with Partial Supervision

3.1 Modeling the Constraints

Let us consider a set of partially labeled constraints, i.e. a collection of objects
xi such that xi ∈ Aj , ∀Aj �= ∅. If Aj is a singleton, then the object i belongs
to a class with certainty. Otherwise, xi belongs to a class listed in Aj without
knowing which one more precisely. Notice that xi ∈ Ω corresponds to complete
ignorance concerning the class of the object i. Degrees of belief containing the
set of clusters Aj or a part of it should be favored as well as mass functions of
subsets with a low cardinality. Thus, we define the measure 1 ≥ Tij ≥ 0 by the
following formula:

Tij = Ti(Aj) =
∑

Aj∩Al �=∅

|Aj ∩ Al| r
2

|Al|r mil, ∀i ∈ {1 . . . n}, Aj ⊆ Ω, (5)

where r ≥ 0 controls a degree of penalization of the subsets. The coefficient
|Al|r is used to penalize subsets with a high cardinality and |Aj ∩ Al| r

2 allows
to concentrate efforts on subsets containing mostly elements of Aj . Notice that
when r = 0, Tij corresponds to the plausibility that the object xi belongs to Aj .
For the rest of the paper, we set r = 1.
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3.2 Illustration

The behavior of the new measure Tij is illustrated with the DiamondK3 dataset
presented Fig. 1(a). This dataset is composed of 15 objects that should be sep-
arated into 3 groups. As it can be observed, points 13 to 16 are well isolated,
whereas objects 1 to 11 seem to correspond to two natural clusters connected by
the object 6. Let us suppose that some partial knowledge is available: e.g. object
6 is in the cluster ω1 and object 13 belongs either to ω1 or to ω3, but not to ω2.
Thus, we obtain the two following constraints: x6 ∈ {ω1} and x13 ∈ {ω1, ω3}.

Fig. 1. DiamondK3 dataset (a) and illustration of the proposed penalty term Ti(Aj)
when considering several possible mass functions and compared to penalty term based
on plausibility Pl(Aj) for previous SECM-pl [7] (b).

Figure 1(b) presents in each column a set of possible mass functions for
an object xi coming from the DiamondK3 dataset. First, let us consider that
xi = x6 and let us assume that m6(ω1) = 1 as shown in the first column
of Fig. 1(b). Thus, the constraint is respected and it can be observed that
T6(ω1) = 1. Inversely, if m6(ω2) = 1 as presented in the last column of Fig. 1(b),
then the constraint is totally neglected and T6(ω1) = 0. Other columns illustrate
partial respect of the constraint, since the bba is allocated to subsets containing
the label ω1. The larger the cardinality of the subset, the lower the value of Tij .

Let us assume that xi = x13 and let us focus on the value obtained by
Ti({ω1, ω3}) for the set of possible mass functions. As it can be observed, Tij = 0
when no focal sets contain ω1 and/or ω3. Conversely, if there exists a degree of
belief not null on a subset including at least one of the classes included in the
constraint, then Tij > 0. As previously, the larger the cardinality of the subset,
the lower the value of Tij . For the same amount of subsets, for example columns
2 and 3 in Fig. 1(b), a higher value is given to subsets containing the most
of classes in the constraint, i.e. {ω1, ω3}. This is a significant difference with
the plausibility measure for which all subsets intersecting with the constraints
contribute equally to the final value.
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3.3 Objective Function and Optimization

Based on the mass function mi of an object i, we can quantify the degree to which
a partial constraint xi ∈ Aj is respected by computing Tij in Eq. (5). Tij = 1
when the belief is given to a cluster in Aj and is 0 when the belief is assigned
to none of the clusters included in Aj , i.e. when the constraint is not respected.
If we consider now that the bbas have to be found, a natural requirement is to
obtain a value of Tij as high as possible if there exists a constraint such that
xi ∈ Aj . This goal is achieved by minimizing the following objective function:

JSECM (M,V ) = (1 − γ)
1

2cn
JECM (M,V ) + γ

1
s

n∑

i=1

∑

Aj⊂Ω,Aj �=∅
bij(1 − Tij), (6)

such that constraints (3) are respected, s corresponds to the number of con-
straints, and bij = 1 if xi ∈ Aj , i.e if the object i is constrained with Aj and 0
otherwise.

The coefficient γ controls the tradeoff between the objective function of ECM
and the constraints. Notice that if r = 0 for the computation of Tij , then JSECM

is identical to the objective function proposed in [7]. Such setting allows the
penalty term to give equal importance to any subset intersecting with the con-
straints, whereas r > 0 favors subsets with low cardinality. As ECM, the credal
partitioning is carried out through an iterative optimization of the objective
function, with the update of the mass functions and the prototypes. If β is set
to 2, then the problem becomes quadratic with linear constraints and can be
resolved with classical methods, for instance [10].

4 Experimentations

4.1 Toy Example

To illustrate the behavior of the SECM algorithm, we used the DiamondK3
dataset. First, an execution of ECM is performed with α = 1, β = 2, ρ2 = 103

and the final mass functions for the most representative subsets varying with
the objects number are presented Fig. 2(a). It can be seen that ECM identifies
the 3 clusters by assigning the belief to the 3 singletons. The object 6, which is
located between the cluster ω1 and ω2, is ambiguous as it can belong to either
ω1 or ω2. Thus, ECM assigns for x6 a high mass for the subset {ω1, ω2}.

Let us consider now that the following set of constraints are available: x5 ∈
{ω1}, x6 ∈ {ω2} and x13 ∈ {ω1, ω2}. The SECM algorithm is executed with
γ = 0.5 and the credal partition obtained is presented Fig. 2(b). As it can be
observed, constraints are well respected. The object 6, previously ambiguous
with the ECM algorithm, is now assigned with certainty to ω2. Similarly, the
object 5 had with ECM its belief divided into {ω1, ω2} and ω1, whereas now
all its belief is given to {ω1}. Finally, the mass function m13(ω3) for the object
13, which is already high with ECM, has increased with SECM. It shows that
SECM is able to constrained x13 more specifically on ω3 following the inherent
structure of the dataset.
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Fig. 2. Credal partitions obtained for DiamondK3 with (a) ECM and (b) SECM such
that x6 ∈ {ω1} and x5 ∈ {ω2} and x13 ∈ {ω1, ω3}.

4.2 Genomics Application

Dataset: Dozens of thousands microorganism’s genomes are available in pub-
lic databases. We selected three known genomes from the RefSeq database [11],
namely Clostridium acetoburylicum, Bacillus cereus and Brachyspira hyodysen-
teriae, to simulate a small microbial community. DNA sequences were extracted
from these genomes then embedded in numerical vectors using normalized
tetranucleotide frequencies with a CONCOCT-inspired approach [12]. The final
dataset, called tetragen, is composed of 22 attributes and 1188 objects corre-
sponding to DNA sequences. Classes, i.e. the genomes B. hyodysenteriae, C. ace-
toburylicum and B. cereus contain respectively 288, 383 and 517 instances. In
order to obtain the tetragen dataset, the largest DNA sequences were divided
in several objects. We took benefit of this process to create label constraints:
we assigned two DNA sequences composed of 13 and 21 objects in the subsets
{B. cereus} and {B. cereus,B. hyodysenteriae} respectively. As a consequence,
we obtained a dataset composed of 2.9% of constrained objects. Figure 3 presents
the class and prior information used for the tetragen dataset.

Experimental Protocol: For both ECM and SECM, we performed 10 execu-
tions with random initialization of the centroids and kept the credal partition
giving the minimum value for the objective function. To synthesize the infor-
mation provided by the partitions, we transformed them into hard credal par-
titions by assigning each object to the subset of classes with the highest mass.
Figures 4(a) and (b) illustrates the obtained results. As it can be observed, con-
straints helped SECM to impact the boundary of ω3.

In order to compare the methods, partitions obtained with ECM and SECM
were transformed into hard partitions by selecting the cluster with the maximal
pignistic probability. Then, their agreement with the real partition were mea-
sured with the Adjusted Rand Index (ARI) [13] and the Normalized Mutual
Information (NMI). Both of them provide a 1 value when the partitions totally
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Fig. 3. Real classes (color) and constrained objects (encircled) for the tetragen data
set. (Color figure online)

Fig. 4. Hard credal partition obtained with (a) ECM and (b) SECM for tetragen. Col-
ors are lightened in (b) for objects for which the assignment has not changed between
the two algorithms. (Color figure online)

match. With ECM, we obtained ARI = 0.75 and NMI = 0.71 whereas SECM
gives an ARI = 0.78 and a NMI = 0.73. It shows that a few number of con-
strained objects, even partially labeled, can lead our clustering algorithm to a
better result than ECM.

5 Conclusion

In this paper, a new semi-supervised clustering algorithm called SECM is pro-
posed. It generalizes previous approach [7] based on partial label constraints.
The new penalty term can be parameterized to favor either any credal partition
for which constraints are still plausible or only credal partitions for which con-
strained objects have belief on subsets with low cardinalities. A proof of concept
is provided and shows the benefits of the new algorithm. Finally, a real test
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is performed on genomics data set and shows the necessity of such expressive
approaches in real use case.

In the future, extensive tests on real and synthetic datasets should be con-
ducted in order to show the influence of the parameter r and to compare various
semi-supervised clustering algorithms. The genomics use case should also be
developed as it offers a relevant testbed for partial user knowledge integration.
A further work is to scale SECM for larger datasets, in order to apply the algo-
rithm in a real genomics application.
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Abstract. Case Base Maintenance (CBM) presents one of the key fac-
tors success for Case Based Reasoning (CBR) systems. Thence, several
CBM policies are proposed to improve their problem-solving performance
and competence. However, to the best of our knowledge, all of them are
not able to make use of prior knowledge which can be offered by domain
experts, especially that CBR is widely applied in real-life domains. For
instance, given symptoms of two different cases in medicine area, the
doctor can affirm that these two cases should never follow the same
treatment, or conversely. This kind of prior knowledge is presented in
form of Cannot-Link and Must-link constraints. In addition, most of
them cannot manage uncertainty in cases during CBM. To overcome this
shortcoming, we propose, in this paper, a CBM policy that handles con-
straints to exploit experts’ knowledge during case base learning along
with managing uncertainty using the belief function theory. This new
CBM approach consists mainly in noisy and redundant cases deletion.

1 Introduction

Case Based Reasoning is a methodology for reasoning through adapting previ-
ous experiences to solve new problems. Each success solving operation will be
retained for future learning, where an incremental aspect characterizes the case
bases evolution [1]. As CBR systems are widely applied within real-life domains,
and as they are designed to work over long time frames, the Case Base Main-
tenance (CBM) becomes a fundamental task to guarantee their success. In fact,
CBM has been defined as the field that cares on implementing policies that aim
to reach a particular set of performance objectives through revising the content
and the organization of case bases [2]. Indeed, we note a great interest within
current research that addresses issues for growing case bases. For instance, CBM
policies may be divided into two strategies, even to the optimization strategy
where the deletion is done after optimizing a given evaluation criterion, or to
the partition strategy which allows to treat a set of small case bases indepen-
dently. In the latter strategy, uncertainty about the membership of cases to the
c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 22–30, 2018.
https://doi.org/10.1007/978-3-319-99383-6_4
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different classes (clusters) have also been handled [3,4]. However, these CBM
policies are not offering the possibility to exploit background knowledge which
can be provided by an expert of domain in which the CBR system is deployed.
Therefore, we aim, in this paper, to propose a new CBM approach based on
an evidential clustering to manage uncertainty about the membership of cases.
Moreover, this approach handles extra-information for cases clustering presented
in the form of two types of constraints [5]: Must-link constraints which specify
that two cases have the same solution and Cannot-link constraints which specify
that two solutions cannot belong to the same cluster. To do, we used then the
Constrained Evidential C-Means algorithm (CECM) [6]. The remainder of this
paper is organized as follows. Section 2 reviews briefly some CBM approaches
based on clustering techniques. Section 3 describes the used constrained eviden-
tial clustering technique called CECM. Our new CBM approach will be detailed
in Sect. 4. Throughout Sect. 5, we discuss experimental settings, the pairwise
constraints generation, testing strategy, and results.

2 Clustering-Based CBM Policies

Intuitively, when addressing the problem of maintaining a large case base, its
decomposition into a number of related closely cases groups appears to be a
good solution for their maintenance. Indeed, clustering techniques have been well
applied within CBR since the notions of neighborhood and distances between
cases are well presented. Actually, there are several works in this way. However,
during the rest of this Section, two of them which handle uncertainty regarding
the membership of cases to different clusters will be reviewed. The first one is
called SCBM noting “Soft case base maintenance method based on competence
model” which groups cases within the frame of fuzzy sets theory [7]. Then, it tries
to detect the right case types to be removed without decreasing the competence
of the CBR system. The second policy is named ECTD for “Evidential Clustering
and case Types Detection for case base maintenance” which is more able to
manage uncertainty using the belief function theory [8,9]. First, ECTD applies
ECM [10] algorithm to group cases and obtain the credal partition of cases along
with the different clusters centers. Then, it reasons on the way of detecting
four types of cases in order to be able at the end to eliminate noisiness and
redundancy. However, techniques used inside these methods do not allow to
make use of the background knowledge that helps to guide to the best solution.
For this paper, we consider prior knowledge in form of Must-link and Cannot-link
constraints. To do, we apply on the case base a constrained evidential clustering
technique as presented in the following Section.

3 Constrained Evidential Clustering Technique: CECM

When dealing with clustering-based CBM policies, it is gainful to express prior
knowledge in form of instance level constraints as indicated in the Introduction.
In what follows, we will present CECM through its constraints expression and
work standard.
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3.1 Constraints Expression by CECM

Let two objects oi and oj and their associated mass functions mi and mj . The
mass function mi×j regarding their joint class membership may be calculated in
the Cartesian product Ω2 = Ω ×Ω, as the combination between mi and mj [11]
such that:

mi×j(A × B) = mi(A) mj(B) , A,B ⊆ Ω,A �= ∅, B �= ∅ (1a)
mi×j(∅) = mi(∅) + mj(∅) − mj(∅) mj(∅) (1b)

Let the subset θ = {(ω1, ω1), (ω2, ω2), ..., (ωc, ωc)} in Ω2 (where c is the number
of classes) presents the event “The pair of objects oi and oj belong to the same
class”. Therefore, after calculating the plausibility pli×j from mi×j , the value
pli×j(θ) = 0 corresponds to a Cannot-link constraint (C) between oi and oj and
the value pli×j(θ) = 0 corresponds to a Must-link constraint (M) between oi

and oj .

3.2 Objective Function and Optimization of CECM

First of all, let mention that CECM [6] is a variant of ECM [10] algorithm
(noisiness is assigned to the empty set partition). The principle of both of them
during the evidential clustering is to minimize an objective function in order to
maximize distances between objects belonging to different classes and minimizing
those belonging to the same one. The objective function for ECM algorithm is
defined such that:

JECM (M,V ) =
1

2cn
[

n∑

i=1

∑

Ak �=∅
|Ak|αmβ

ikd2ik +
n∑

i=1

ρ2mβ
i∅ ] (2)

subject to: ∑

j/Aj⊆Ω,Aj �=∅
mij + mi∅ = 1 ∀i = 1, .., n (3)

where M represents the credal partition of n objects to c clusters, V presents
2c clusters centers, dij represents a given distance between oi and oj , ρ and
β are two parameters to treat noisy objects, and the coefficient α controls the
penalization of degree’s allocation to subsets with high cardinality.

CECM algorithm shares the same standard of ECM with an additional
requirement that pli×j(θ) (respectively pli×j(θ)) should be as low as possible
if (oi ,oj ) ∈ C (respectively (oi ,oj ) ∈ M). Consequently, its objective function
to be minimized is defined such that:

JCECM (M,V ) = (1 − ξ)JECM (M,V ) + ξJCONST (4)

where the parameter ξ controls the balance between constraints and geometrical
model, and JCONST , which indicates C and M violating cost, is defined such
that:

JCONST =
1

|M| + |C| [
∑

(oi ,oj )∈M
pli×j(θ) +

∑

(oi ,oj )∈C
pli×j(θ) ] (5)
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To minimize Eq. 4, an alternate optimization scheme has been proposed in [6]
aiming to fix the partition matrix M and the centroid matrix V . Furthermore,
CECM with adaptive metric (Mahalanobis distance) is proposed to support
arbitrary shapes of clusters. More details of optimization will be found on [6].

4 Maintaining Case Bases Through Constrained
Evidential Clustering and Case Types Detection
(CECTD)

In this Section, we present the different steps of our CBM approach. To build our
case base maintainer, our method applies the constrained evidential clustering
analysis, detects cases that should be eliminated from the case base, and performs
the maintenance.

4.1 Case Bases Clustering with Background Knowledge

First, we perform on case bases the CECM constrained evidential clustering
as presented in Sect. 3, where each object is considered as a case and its class
presents the solution part of that case. The background knowledge is presented
as case-level constraints. Actually, CECM algorithm manages uncertainty by
offering clusters centers along with the credal partition which provides the belief
degree of cases membership to the different partitions. These two outputs are
the source of case types detection strategy.

4.2 Case Types Detection

Several works on the CBM field divide cases into different types according to
their role towards to whole case base or their competence for other problems
resolution. In this paper, we classify cases into four types [3,4] such that:

– Noisy cases: They present a distortion of values and cannot be correctly
classified in any one of clusters.

– Similar cases: They present a number of cases which are so close that they
are considered as redundant.

– Isolated cases: They are dissimilar and situated in clusters borders.
– Internal cases: They present the center of each group of similar case.

Detect Noisy Cases. Since CECM algorithm allocates a high belief’s degree
to the empty set for noisy cases, we propose, as in [4], to detect them such that:

xi ∈ NC iff mi(∅) >
∑

Aj⊆Ω,Aj �=∅
mi(Aj) (6)

where xi presents one case and NC represents the set of all the Noisy cases.
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Fig. 1. Distinguish between similar and isolated cases within a cluster using a threshold

Distinguish Between Similar and Isolated Cases. Let c clusters are
obtained after cases clustering step. Logically, the majority of cases are situated
in the core of each cluster (Similar cases). However, we find some cases which are
isolated and far somehow to the cluster’s center (Isolated cases). To distinguish
between these two types, we compare cluster-case distance to a given threshold
(Thk) which has been defined as the mean of all cases distances to a given clus-
ter’s center (see Fig. 1). To calculate the distance between a case and cluster’s
center, we chose to use the following Belief Mahalanobis Distance (BMD) [4]:

BMD(xi ,vk) =
√

(xi − vk)T Σ−1
k (xi − vk) (7)

where vk is the kth cluster’s center generated by CECM, and Σk presents the
Belief Covariance Matrix which has been presented in [6] as follows:

Σk =
n∑

i=1

∑

Aj�wk,Aj⊆Ω

m2
ij |Aj |α−1(xi − vj )(xi − vj )T (8)

where k is the cluster’s number with k = 1, .., c, mij and vj are respectively the
credal partition and their prototypes defined by CECM.

Ultimately, we distinguish between Similar and Isolated cases such that:

xi ∈
{

SCk if ∃k/BMD(xi ,vk) < Thk

IsC Otherwise
(9)

where SCk is the set of similar cases, IsC is the set of Isolated ones and the
threshold Thk is defined such that:

Thk =

∑
xi /∈NC BMD(xi ,vk)

#TotalCases − #NoisyCases
(10)

Flag Internal Cases. From each group of Similar cases, we have to flag an
internal case as a representative for covering all of them. Hence, we choose to
detect this case as the closest one to each cluster’s center using BMD. Hence,
they can be formally defined such that:

xi ∈ InC iff ∃k;¬∃xj/BMD(xj ,vk) < BMD(xi ,vk) (11)

where xi and xj are two cases, and InC represents the set of Internal cases.
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4.3 Case Base Maintenance

While maintenance, we aim to remove cases that are dispensable or distorting the
problem-solving process. Through this idea, we remove cases detected as Similar
in order to eliminate redundancy and improve performance, as well as Noisy
cases so as to improve the competence of CBR systems in problem resolution.

5 Experimental Study Using Artificial Constraints

During this Section, we aim to differently generate the pairwise Must-link and
Cannot-link constraints, as well as to validate our new CBM method benefit.

5.1 Experimental Setting

Our new CBM approach has been developed using R-3.3.2 and it is tested on
a number of numeric case bases from UCI Repository which are described in
Table 1 by their references, number of attributes, size, number of classes and
their classes distribution. While developing, default values are taken for the
CECM parameters, and the number of clusters and classes were equally taken.
Besides, we used CECM with adaptive metric to consider arbitrary clusters’
shape.

Table 1. UCI data sets used in our experimental study

Case base Reference Attributes Instances Classes Class distribution

Sonar SN 60 208 2 97/111

Ionosphere IO 34 351 2 226/125

Heberman HB 3 306 2 225/81

Seeds SD 7 210 3 70/70/70

Mammographic MM 6 961 2 516/445

Banknote authentication BA 5 1372 2 762/610

5.2 Pairwise Constraints Generation

The aim of this subsection is to implement two different ways for artificially-
generating constraints in conjunction with experiments applied on our method.
The idea consists in randomly picking two cases. If they are classified with high
degree of certainty (mi(A) > 0.5 with A is a singleton partition), we generate
a constraint through their solution (If they have the same solution, we create a
Must-link constraint, otherwise we generate a Cannot-Link constraint). There-
fore, we perform the following two ways:

– Batch constraints generation (CECTDbat): Apply ECM algorithm (CECM
without constraint), generate a number of constraints equal to 10% of the
case base size. Then, apply our CECTD method.
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– Alternate constraints generation (CECTDalt): Within the first step of our
method, we alternate between running CECM and generating randomly one
constraint having high degree of certainty, until reaching 10% of constraints.

5.3 Maintenance Testing Strategy

To measure the effectiveness of our maintaining method, we track the following
testing strategy. Each case base is divided into Training set (Tr) and Test set
(Ts), and we apply our maintaining method on Tr to obtain a modified Training
set (T ′

r). Then, we compute three evaluation criteria as follows:

1. Classify Ts from T ′
r using 1-Nearest Neighbor algorithm. Therefore, the clas-

sification accuracy to measure the performance is calculated such that:

PCC(%) =
# correct classifications on Ts

size of Ts
× 100

2. Measure the Retrieval Time (RT ) as the time spent to classify all cases’
instances in Tr using 1-NN.

3. Calculate the storage size as the data Retention Rate (RR) of Tr comparing
to T ′

r as follows:

RR (%) =
size of T ′

r

size of Tr
× 100

The final estimation of each evaluation criterion is obtained by averaging ten
trials values using 10-Folds cross validation technique.

5.4 Experimental Results

According to the evaluation criteria mentioned above, we compare our method
with its two different ways to generate constraints (CECTDbat and CECTDalt) to
the Initial case base (ICBR) as well as to ECTD method [4]. Results are therefore
shown in Tables 2 and 3. Obviously, we tolerate some degradation in accuracy
after maintenance at the aim of accelerating cases retrieving task and improv-
ing CBR systems performance. Nevertheless, Table 2 shows some improvements
in accuracy especially with the alternate version of our approach. For instance,
it moves from 80.78% to 82.10% after applying CECTDalt. In parallel, Table 3
presents, in term of cases retention rate and retrieval time, how our approach
can notably boost CBR systems. Herein, we note that we were able to reduce
more than half of all case bases. For example, “Heberman” dataset were reduced
by CECTDalt until almost quarter. Moreover, even with using 1-NN for classi-
fication, we clearly note the improvement of retrieval time values particularly
comparing to the Initial non-maintained case base, where all of them move from
about 0.1 s to about 0.001 s.
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Table 2. Accuracy evaluation (%)

Case bases ICBR ECTD CECTDbat CECTDalt

SN 80.78 68.31 79.78 82.10

IO 85.47 79.45 85.00 84.90

HB 72.88 67.23 70.85 72.88

SD 90.00 83.16 88.70 90.18

MM 79.81 72.13 80.01 79.92

BA 99.12 86.40 88.97 95.14

Table 3. Data Retention Rate (%) and Retrival Time (s) evaluation

CB ICBR ECTD CECTDbat CECTDalt

RR RT RR RT RR RT RR RT

SN 100 0.1003 48.98 0.0021 48.50 0.0026 46.51 0.0020

IO 100 0.0094 37.04 0.0017 35.36 0.0017 33.89 0.0015

HB 100 0.0993 29.72 0.0027 34.52 0.0021 28.14 0.0019

SD 100 0.0911 44.13 0.0023 45.77 0.0018 43.98 0.0016

MM 100 0.0852 26.23 0.0014 39.57 0.0016 40.02 0.0022

BA 100 0.1033 31.82 0.0026 44.54 0.0036 39.15 0.0027

6 Conclusion

Aiming at the performance and learning capability issues that the growing scale
of CBR case bases brings, a new CBM approach based on a constrained evi-
dential clustering technique has been developed, in this paper, using two ways
for constraints generation with managing uncertainty. Better results are offered,
during experiments, when generating constraints one by one alternatively with
running CECM.
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Abstract. The aim of this paper is to show that the Kantorovich prob-
lem, well known in models of economics and very intensively studied in
probability theory in recent years, can be viewed as the basis of some
constructions in the theory of belief functions. We demonstrate this by
analyzing specialization relation for finitely defined belief functions and
belief functions defined on reals. In addition, for such belief functions we
consider the Wasserstein metric and study its connections to disjunctions
of belief functions.

Keywords: Random sets · Belief functions · Specialization
Kantorovich problem · Wasserstein metric

1 Introduction

Theory of belief functions has been successfully applied in many fields such as
decision-making [1], data analysis [2–4], image processing [5–7], but the unified
background of this theory are random sets [8] . Certainly, in practice the sim-
plest random sets are used, such as finite random sets [9] or random sets on
reals [10], because in other cases the underlying problems seem to be can be
solved only theoretically. In the paper, we give the main notions from the theory
of belief functions based on random sets and show how introduced constructions
can be viewed through the Kantorovich problem [11,12], especially we study
the specialization relation and the Wasserstein metric on belief functions. This
metric seems to be introduced very naturally because it can be considered as an
extension of a metric defined on usual sets.

The paper has the following structure. In Sect. 2 we describe the Kantorovich
problem and connected with this problem the Wasserstein metric defined on
probability measures. In Sect. 3 we give basic constructions from the theory of
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belief functions using random sets. In Sect. 4 we introduce the inclusion of ran-
dom sets known as specialization relation for belief functions. We show how this
relation can be viewed through the Kantorovich problem, and we characterize the
inclusion of random sets through lower and upper subsets of the corresponding
partially ordered set. In Sect. 5 we introduce the Wasserstein metric on random
sets and study its connections to disjunctions of belief functions. We finish the
paper with conclusions and lighten problems for future research.

2 The Kantorovich Problem

The Kantorovich problem [11,12] is well known in economics and it can be
formally formulated as follows. Let (X,A, μ) and (Y,B, ν) be probability spaces,
and let M(μ, ν) be the set of all probability measures on (X × Y,A ⊗ B) with
marginals μ and ν on X and Y respectively. Then the Kantorovich problem
consists in finding a probability measure σ̂ ∈ M(μ, ν) providing the infimum of
the functional

K(μ, ν, c) = inf
σ∈M(μ,ν)

∫

X×Y

c(x, y)dσ

for the cost function c : X × Y → [0,+∞). If X and Y are finite sets, i.e.
X = {x1, ..., xn} and Y = {y1, ..., ym}, then we can define probability measures
μ,ν, σ by probabilities μi = μ ({xi}), νj = ν ({yj}), σij = σ({(xi, yj)}) and the
Kantorovich problem is simplified to the linear programming problem:

n∑
i=1

m∑
j=1

c(xi, yj)σij → min,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

σij = νj , j = 1, ...,m,

m∑
j=1

σij = μi, i = 1, ..., n,

σij ≥ 0, i = 1, ..., n, j = 1, ...,m.

In economics, the Kantorovich problem consists in the following. Assume
that X is the set of factories, producing the same goods and Y is the set of
storages. The factory xi produces amount of goods νi that should be kept in

storages yj with volumes νj , and
n∑

i=1

μi =
m∑

j=1

νj = 1, and c(xi, yj) gives as the

transportation cost of the unit of goods from the factory xi to the storage yj .
Then the optimal values σij give us the optimal transportation plan for produced
goods.

Assume that X = Y and d(x, y) = c(x, y) is a metric in X, then dW (μ, ν) =
K(μ, ν, d) is the Wasserstein metric [13,14] on probability measures. Obviously,
many constructions in the theory of belief functions are linked with the Kan-
torovich problem (see, for example, [15–17] ), and the aim of our paper is to
lighten these constructions and to extend them for belief functions on reals.
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3 Theory of Belief Functions: Main Notions
and Constructions

Let (Ω,A, μ) be a probability space and (X,B) be a measurable space and
A ⊆ B be a collection of subsets in X. Then every mapping Ξ : Ω → A is
called a random set if for every B ∈ B the set {ω ∈ Ω|Ξ(ω) ⊆ B} is in A.
Obviously, the mapping Ξ induces the algebra C on A that consists of sets
{B ∈ A|Ξ−1(B) ∈ A} for any A ∈ A, and the probability measure P on C is
defined by P (C) = μ(A) if C = {B ∈ A|Ξ−1(B) ∈ A}. In the theory of belief
functions the probability measure P is called the basic probability assignment
and the set function

Bel(B) = μ ({y ∈ Y |Ξ(y) ⊆ B})

is called a belief function. Since {ω ∈ Ω|Ξ(ω)∩B 	= ∅} = Ω\{ω ∈ Ω|Ξ(ω) ⊆ B̄},
the set {ω ∈ Ω|Ξ(ω) ∩ B 	= ∅}, B ∈ B is also measurable, and we can introduce
the set function

Pl(B) = μ ({y ∈ Y |Ξ(y) ∩ B 	= ∅}) ,

called the plausibility function. Obviously, they satisfy the dual relation:

Pl(B) = 1 − Bel(B̄), B ∈ B.

We will illustrate these notions by two notable examples.

Example 1. If A is finite (this is the case when the set X is also finite, B is the
powerset of X and A = B), then we can define the basic probability assignment
by the set function m : A → [0, 1] assuming that m(A) = P ({A}), A ∈ A. In
addition,

Bel(B) =
∑

A∈A|A⊆B

m(A), P l(B) =
∑

A∈A|A∩B �=∅
m(A) for any B ∈ B.

Example 2. Assume that X = R, B is the σ-algebra of Borel measurable subsets
in R, and A = {[a, b]|a ≤ b, a, b ∈ R}. Consider a probability space (Ω,A, μ), in
which Ω = R

2 and A consists of Borel measurable subsets of R2 and μ({(x, y) ∈
R

2|x + y ≤ 0} = 0 . Then we can define a random set Ξ : Ω → A assuming that
Ξ(x, y) = [−x, y]. We see that for B = [a, b]

{ω ∈ Ω|Ξ(ω) ⊆ B} = {(x, y) ∈ R
2|x ≤ −a, y ≤ b, x + y ≥ 0}.

This set is depicted on Fig. 1. If F : R2 → [0, 1] is the cumulative distribution
function for μ, i.e. F (x, y) = μ((−∞, x] × (−∞, y]), then Bel([a, b]) = F (−a, b).
Smets considers in [10] continuous belief functions when μ defines a continuous
random variable on R

2. Obviously, if set B is represented as a union of mutually
disjoint intervals Ai, i.e. B =

⋃n
i=1 Ai and Ai ∩ Aj = ∅ for i 	= j, then Bel(B) =

n∑
i=1

Bel(Ai).
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Fig. 1. The set {ω ∈ Ω|Ξ(ω) ⊆ B}

4 Inclusion of Random Sets

At first, we will introduce the specialization relation [18] that has the same
role as inclusion for usual sets. Let Ξ1 and Ξ2 be random sets, then formally
Ξ1 ⊆ Ξ2 iff there is a joint probability distribution P of Ξ1 and Ξ2 such that
P (Ξ1 ⊆ Ξ2) = 1. If Ξ1 ⊆ Ξ2, then Ξ1 is called a specialization of Ξ2. We will
illustrate this notion on previous examples of random sets.

Example 3. Let us use assumptions and notations from Example 2 and random
sets Ξ1 and Ξ2 are given by their basic probability assignments m1 : A → [0, 1]
and m2 : A → [0, 1]. Then Ξ1 ⊆ Ξ2 if there is their joint probability assignment
m : A × A → [0, 1], such that m(A,B) = 0 if A 	⊆ B and

⎧⎨
⎩

∑
B∈A

m(A,B) = m1(A),
∑

A∈A
m(A,B) = m2(B). (1)

We can check whether Ξ1 ⊆ Ξ2 solving the Kantorovich optimization problem
w.r.t. m given (1).

Example 4. Let us use assumptions and notations from Example 2. Consider
random sets Ξμ and Ξν generated by probability measures μ and ν on the algebra
A and the mapping Ξ(x, y) = [−x, y], In this case Ξ(x) ⊆ Ξ(y) for x = (x1, x2)
and y = (y1, y2) if x ≤ y (we use here the notation: x ≤ y if x1 ≤ y1 and
x2 ≤ y2). Then Ξμ ⊆ Ξν iff there is a probability measure γ on A ⊗ A with
corresponding marginals μ and ν such that γ({(x,y) ∈ R

2 × R
2|x ≤ y} = 1.

Now we will give the characterization of the specialization relation in terms of
upper subsets [19] of partially ordered sets. Consider first the case from Exam-
ple 1. Then the algebra B = 2X can viewed as a partially ordered set w.r.t.
inclusion of sets. A subset f ⊆ 2X is called an upper subset (semi-filter) in
algebra 2X if A ∈ f and A ⊆ B implies B ∈ f.
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Proposition 1. 1Let us consider the case from Example 3. Then Ξ1 ⊆ Ξ2 iff∑
A∈2X\f

m1(A) +
∑
A∈f

m2(A) ≥ 1 for any upper set f in 2X .

Remark 1. The inequality from Proposition 1 can be rewritten in the form
∑
A∈f

m2(A) ≥
∑
A∈f

m1(A).

Clearly, the set fB =
{
A ∈ 2X |A ∩ B 	= ∅}

is a upper set in 2X and we see that
such upper sets define plausibility functions Pli(B) =

∑
A∈fB

mi(A), i = 1, 2, on

2X . Thus, Ξ1 ⊆ Ξ2 implies Pl1(B) ≤ Pl2(B) for all B ∈ 2X .

Remark 2. We can equivalently reformulate Proposition 1 through the notion of
lower subset (semi-ideal) [19] of a partially ordered set. We will call the subset
g ⊆ 2X a lower set in 2X if B ∈ g and A ⊆ B implies A ∈ g. Obviously, if
f is an upper set in 2X , then 2X\f is a lower set in 2X and vice versa. Thus,
Ξ1 ⊆ Ξ2 iff

∑
A∈g

m2(A) ≤ ∑
A∈g

m1(A) for every lower set g in 2X . For example,

if we consider lower sets fB from Remark 1, then we can define a lower set
gB = 2X\f B̄ = {A ∈ 2X |A ⊆ B}. Then Beli(B) =

∑
A∈gB

mi(A), i = 1, 2, on 2X .

Thus, Ξ1 ⊆ Ξ2 implies Bel1(B) ≥ Bel2(B) for all B ∈ 2X .

Next example shows that the inequalities Pl1(B) ≤ Pl2(B) for all B ∈ 2X (or
Bel1(B) ≥ Bel2(B) for all B ∈ 2X) do not provide the inclusion of random sets.

Example 5. Let X = {x1, x2, x3} and let basic probability assignments m1 and
m2 be defined by m1({xi}) = 1/6, i = 1, 2, 3; m1(X) = 1/2; m2({x1, x2}) =
m2({x1, x3}) = m2({x2, x3}) = 1/3. Then Pl1(B) ≤ Pl2(B) for all B ∈ 2X , but
Ξ1 	⊆ Ξ2. For proving last statement it is sufficient to consider the upper set
f = {X} and to notice that m1(X) > m2(X).

Remark 3. If we define random sets as in Example 2, then we should consider
the partially ordered set R

2 w.r.t. ≤. In this case a subset f ⊆ R
2 is called an

upper set in R
2 if x ∈ f and x ≤ y implies y ∈ f.

Proposition 2. Let random sets Ξμ and Ξν be defined as in Example 4 and
Ξμ ⊆ Ξν . Then μ(f) ≤ ν(f) for any upper set f ∈ A.

Proof. Assume that Ξμ ⊆ Ξν and a measure γ is defined like in Example 4. Then

μ(f) = γ({(u,v) ∈ R
2 × R

2|u ∈ f,u ≤ v}).

Because u ∈ f,u ≤ v implies v ∈ f, we infer that

μ(f) ≤ γ({(u,v) ∈ R
2 × R

2|v ∈ f}) = ν(f).
1 The proof of this proposition is based on Ford-Fulkerson Theorem for the network
flow problem and it is omitted because of the required format of the paper.
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Remark 4. We can reformulate the statement from Proposition 2 using the
notion of lower set in R

2. We will call the subset g ⊆ R
2 a lower set in R

2

if x ∈ g, x ≥ y implies y ∈ g. It is easy to check that if f is an upper set in
R

2, then R
2\f is a lower set in R

2. Thus, Ξμ ⊆ Ξν implies that μ(g) ≥ ν(g)
for any lower set g ∈ A. As an example of lower set can be viewed the set
gx = {y ∈ R

2|y ≤ x}. Obviously, using gx we can compute cumulative distribu-
tion functions Fμ and Fν by Fμ(x) = μ(gx) and Fν(x) = μ(gx). Thus, Ξμ ⊆ Ξν

implies the following inequalities Fμ(x) ≥ Fν(x) for all x ∈ R
2. Next example

shows that these inequalities do not imply the inclusion Ξμ ⊆ Ξν .

Example 6. Assume that probability measures μ and ν are finitely defined and

μ({(1, 1)}) = 0.3, μ({(1, 2)}) = 0.1, μ({(2, 1)}) = 0.1, μ({(2, 2)}) = 0.5;
ν({(1, 1)}) = 0.2, ν({(1, 2)}) = 0.2, ν({(2, 1)}) = 0.2, ν({(2, 2)}) = 0.4.

Then Fμ(x) ≥ Fν(x) for all x ∈ R
2. However, Ξμ 	⊆ Ξν , because μ(fy) ≥ ν(fy),

where fy = {x ∈ R
2|x ≥ y} and y = (2, 2).

5 The Wasserstein Metric on Random Sets

The Wasserstein metric allows us to extend the distance defined on the sets to the
distance defined on random sets. For instance, if we consider random sets defined
in Example 1, then the possible distance between sets A,B ∈ 2X is d(A,B) =
|(A\B) ∪ (B\A)|, i.e. the cardinality of symmetrical difference between sets A
and B. Then to compute the distance between random sets we should solve the
Kantorovich problem

d(Ξ1, Ξ2) = min
∑

A∈2X

∑
B∈2X

m(A,B)d(A,B)

⎧⎨
⎩

∑
B∈2X

m(A,B) = m1(A), A ∈ 2X ,
∑

A∈2X
m(A,B) = m2(B), B ∈ 2X .

(2)

Now we will find the connection between the introduced Wasserstein distance
and disjunctions of random sets. We call the random set Ξ3 the disjunction of
random sets Ξ1 and Ξ2 if there is the joint probability assignment m satisfying
(2), and the basic probability assignment m3 for Ξ3 is computed by

m3(C) =
∑

A,B∈2X |A∪B=C

m(A,B).

We will define the cardinality of random set Ξi with the basic probability assign-
ment mi by |Ξi| =

∑
A∈2X

mi(A) |A|.
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Proposition 3. Let a random set Ξ3 be the disjunction of Ξ1 and Ξ2 with the
smallest cardinality. Then d(Ξ1, Ξ2) = 2 |Ξ3| − |Ξ1| − |Ξ2|.
Proof. The truth of the proposition follows from the equality d(A,B) = 2 |A ∪ B|
− |A| − |B|, which is valid for usual sets A,B ∈ 2X .

Let us consider how introduced constructions for random sets from Example 1
can be defined for random sets from Example 2. In this case for measuring car-
dinality of a segment [a, b] we can use the Lebesgue measure of this segment
defined by V ([a, b]) = b − a. Then the cardinality of a random set Ξμ can be
evaluated by the integral V (Ξμ) =

∫
R2

v(x)dFμ(x), where v(x, y) = x + y. The

use of usual union of segments for defining the disjunction of random sets is not
well suited for our problem, because the union of segments is not the segment
in general. Thus, we define the disjunction of segments [a1, b1] and [a2, b2] by
[min{a1, a2},max{b1, b2}]. If we depict such segments in R

2 like in Example 2,
then z = (z1, z2) is the disjunction of segments x = (x1, x2) and y = (y1, y2) if
(z1, z2) = (max{x1, y1},max{x2, y2}) (z = x ∨ y for short). A random set Ξη is
called the disjunction of random sets Ξμ and Ξν if there is a joint probability
distribution γ on A⊗A with marginals μ and ν, and the random set Ξη can be
obtained from γ by the mapping f : R2 × R

2 → R
2, where f(x,y) = x ∨ y.

Proposition 4. Let X = {Ξη} be the set of all possible disjunctions of ran-
dom sets Ξμ and Ξν . Then the functional d(Ξμ, Ξν) = 2 inf {V (Ξη)|Ξη ∈ X}
− V (Ξμ) − V (Ξν) is the Wasserstein metric on random sets.

Proof. Assume that Ξη is obtained from γ by the mapping f : R2 × R
2 → R

2,
where f(x,y) = x ∨ y. Then

2V (Ξη) − V (Ξμ) − V (Ξν) =
∫

R2×R2

(2v(x ∨ y) − v(x) − v(y))dFγ(x,y).

We see that 2v(x ∨ y) − v(x) − v(y) = 2(max{x1, y1} + max{x2, y2}) − x1 − y1
− x2 − y2 = |x1 − y1| + |x2 − y2|, where x = (x1, x2) and y = (y1, y2), i.e.
d(x,y) = 2v(x∨y)−v(x)−v(y) is a metric on R

2. This implies the proposition.

6 Conclusion

We show that the Kantorovich problem appears naturally in many constructions
of the theory of belief functions. However, this problem seems to be tractable,
when we can describe random sets by discrete probability distributions and it
can be represented as a linear programming problem. We are certain that the
Wasserstein metric on belief functions can be used in many applications, for
example, for measuring conflict in weather forecasts as shown in [16].
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Abstract. In this paper we propose a generalised maximum-entropy
classification framework, in which the empirical expectation of the fea-
ture functions is bounded by the lower and upper expectations asso-
ciated with the lower and upper probabilities associated with a belief
measure. This generalised setting permits a more cautious appreciation
of the information content of a training set. We analytically derive the
Karush-Kuhn-Tucker conditions for the generalised max-entropy classi-
fier in the case in which a Shannon-like entropy is adopted.

Keywords: Classification · Max entropy · Constrained optimisation

1 Introduction

The emergence of new challenging real-world applications has exposed serious
issues with current approaches to model adaptation in machine learning. Exist-
ing theory and algorithms focus on fitting the available training data, but cannot
provide worst-case guarantees in mission-critical applications. Vapnik’s statisti-
cal learning theory is useless for model selection, as the bounds on generalisation
errors it predicts are too wide to be useful, and rely on the assumption that train-
ing and testing data come from the same (unknown) distribution. The crucial
question is: what exactly can one infer from a training set?

Max entropy classifiers [19] provide a significant example, due to their sim-
plicity and widespread application. There, the entropy of the sought joint (or
conditional) probability distribution of data and class is maximised, following
the maximum entropy principle that the least informative distribution which
matches the available evidence should be chosen. Having picked a set of feature
functions, selected to efficiently encode the training information, the joint distri-
bution is subject to the constraint that their empirical expectation equals that
associated with the max entropy distribution. The assumptions that (i) training
and test data come from the same probability distribution, and that (ii) the
empirical expectation of the training data is correct, and the model expectation
should match it, are rather strong, and work against generalisation power.

A way around this issue is to adopt as models convex sets of probabil-
ity distributions, rather than standard probability measures. Random sets,
in particular, are mathematically equivalent to a special class of credal sets
induced by probability mass assignments on the power set of the sample space.
c© Springer Nature Switzerland AG 2018
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When random sets are defined on finite domain, they are often called belief
functions [20]. One can then envisage a robust theory of learning based on gen-
eralising traditional statistical learning theory in order to allow for test data
to be sampled from a different probability distribution than the training data,
under the weaker assumption that both belong to the same random set.

In this paper we make a step in that direction by generalising the max entropy
classification framework. We take the view that a training set does not provide,
in general, sufficient information to precisely estimate the joint probability dis-
tribution of class and data. We assume instead that a belief measure can be
estimated, providing lower and upper bounds on the joint probability of data
and class. As in the classical case, an appropriate measure of entropy for belief
measures is maximised. In opposition to the classical case, however, the empiri-
cal expectation of the chosen feature functions is assumed to be compatible with
lower and upper bounds associated with the sought belief measure. This leads
to a constrained optimisation problem with inequality constraints, rather than
equality ones, which needs to be solved by looking at the Karush-Kuhn-Tucker
(KKT) conditions. Due to the concavity of the objective function and the con-
vexity of the constraints, KKT conditions are both necessary and sufficient.

Related Work. A significant amount of work has been conducted in the past
on machine learning approaches based on belief theory. Most efforts were directed
at developing clustering tools, including evidential clustering [4], evidential and
belief C-means [15]. Ensemble classification [23], in particular, has been exten-
sively studied. Concerning classification, Denoeux [5] proposed in a seminal work
a k-nearest neighbor classifier based on belief theory. Relevantly to this paper,
interesting work has been conducted to generalise the framework of decision
trees to situations in which uncertainty is encoded by belief functions, mainly
by Elouedi and co-authors [7], and Vannoorenberghe and Denoeux [22].

Paper Outline. After reviewing in Sect. 2 max-entropy classification, we recall
in Sect. 3 the necessary notions of belief theory. In Sect. 4 the possible generalisa-
tions of Shannon’s entropy to the case of belief measures are reviewed. In Sect. 5
the generalised max-entropy problem is formulated, together with the associated
Kush-Karun-Tucker conditions. It is shown that for several generalised measures
of entropy the KKT conditions are necessary and sufficient for the optimalised of
generalised max-entropy (Sect. 5.1). In Sect. 5.2 we derive the analytical expres-
sion of the system of KKT conditions for the case of a Shannon-like entropy for
belief measures. Section 6 concludes the paper.

2 Max-entropy Classifiers

The objective of maximum entropy classifiers is to maximise the Shannon
entropy of the conditional classification distribution p(Ck|x), where x ∈ X is
the observable and Ck ∈ C = {C1, ..., CK} is the associated class.

Given a training set in which each observation is attached a class, namely:
D = {(xi, yi), i = 1, ..., N |xi ∈ X, yi ∈ C}, a set M of feature maps is designed,
φ(x,Ck) = [φ1(x,Ck), · · · , φM (x,Ck)]′ whose values depend on both the object
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observed and its class. Each feature map φm : X × C → R is then a random
variable whose expectation is: E[φm] =

∑
x,k p(x,Ck)φm(x,Ck). In opposition,

the empirical expectation of φm is: Ê[φm] =
∑

x,k p̂(x,Ck)φm(x,Ck), where p̂
is a histogram constructed by counting occurrences of the pair (x,Ck) in the
training set: p̂(x,Ck) = 1

N

∑
(xi,yi)∈D δ(xi = x ∧ yi = Ck). The theoretical

expectation E[φm] can be approximated by decomposing p(x,Ck) = p(x)p(Ck|x)
via Bayes’ rule, and approximating the (unknown) prior of the observations p(x)
with the empirical prior p̂, i.e., the histogram of observed values in the training
set: Ẽ[φm] =

∑
x,k p̂(x)p(Ck|x)φm(x,Ck).

Definition 1. Given a training set D = {(xi, yi), i = 1, ..., N |xi ∈ X, yi ∈ C}
related to problem of classifying x ∈ X as belonging to one of the classes
C = {C1, ..., CK}, the max entropy classifier is the conditional probability
p∗(Ck|x) such that: p∗(Ck|x) .= arg maxp(Ck|x) Hs(P ), where Hs is the tradi-
tional Shannon entropy, subject to: Ẽp[φm] = Ê[φm] ∀m = 1, ...,M.

The constraint requires the classifier to be consistent with the empirical fre-
quencies of the features in the training set, while seeking the least informative
probability distribution that does so. The solution of the maximum entropy clas-
sification problem (Definition 1) is the so-called log-linear model : p∗(Ck|x) =

1
Zλ(x)

e
∑

m λmφm(x,Ck), where λ = [λ1, ..., λM ]′ are the Lagrange multipliers asso-

ciated with the linear constraints Ẽp[φm] = Ê[φm], and Zλ(x) is a normalisation
factor. The related classification function is: y(x) = arg maxk

∑
m λmφm(x,Ck),

i.e., x is assigned the class which maximises the linear combination of the feature
functions with coefficients λ.

3 Belief Functions

Definition 2. A basic probability assignment (BPA) [1] over a discrete set Θ
is a function m : 2Θ → [0, 1] defined on 2Θ = {A ⊆ Θ} such that: m(∅) = 0,∑

A⊂Θ m(A) = 1. The belief function (BF) associated with a BPA m : 2Θ →
[0, 1] is the set function Bel : 2Θ → [0, 1] defined as: Bel(A) =

∑
B⊆A m(B).

The elements of the power set 2Θ associated with non-zero values of m are called
the focal elements of m. For each subset (‘event’) A ⊂ Θ the quantity Bel(A) is
called the degree of belief that the outcome lies in A, and represents the total
belief committed to a set of outcomes A by the available evidence m. Dually, the
upper probability of A: Pl(A) .= 1−Bel(Ā), Ā = Θ\A, expresses the ‘plausibility’
of a proposition A or, in other words, the amount of evidence not against A [3].
The plausibility function Pl : 2Θ → [0, 1] thus conveys the same information as
Bel, and can be expressed as: Pl(A) =

∑
B∩A 	=∅ m(B) ≥ Bel(A).

Belief functions are mathematically equivalent to a special class of credal
sets (convex sets of probability measures), as each BF Bel is associated with
the set P[Bel] = {P : P (A) ≥ Bel(A)} of probabilities dominating it. Its cen-
tre of mass is the pignistic function BetP [Bel](x) =

∑
A�x m(A)/|A|, x ∈ Θ.



42 F. Cuzzolin

Given a function f : Θ → R, the lower expectation and upper expectation
of f w.r.t. Bel are, respectively: EBel∗[f ] .= infP∈P[Bel] EP [f ] =

∑
A⊆Θ m(A)

infx∈A f(x), E∗
Bel[f ] .= supP∈P[Bel] EP [f ] =

∑
A⊆Θ m(A) supx∈A f(x).

4 Measures of Generalised Entropy

The issue of how to assess the level of uncertainty associated with a belief func-
tion [10] is not trivial, as authors such as Yager and Klir argued that there
are several facets to uncertainty, such as conflict (or discord, dissonance) and
non-specificity (also called vagueness, ambiguity or imprecision).

Some measures are directly inspired by Shannon’s entropy of probability
measures: Hs[p] = −∑

x∈Θ p(x) log p(x). While Nguyen’s measure is a direct
generalisation in which probability values are replaced by mass values [17]:
Hn[m] = −∑

A∈F m(A) log m(A), where F is the list of focal elements of
m, in Yager’s entropy [24] probabilities are (partly) replaced by plausibilities:
Hy[m] = −∑

A∈F m(A) log Pl(A). Hohle’s measure of confusion [9] is the dual
measure: Ho[m] = −∑

A∈F m(A) log Bel(A). All such measures only capture
the ‘conflict’ portion of uncertainty. Other measures are designed to capture the
specificity of belief measures, i.e., the degree of concentration of the mass assigned
to focal elements. A first such measure was due to Klir, Dubois & Prade [6]:
Hd[m] =

∑
A∈F m(A) log |A|, and can be considered as a generalization of Hart-

ley’s entropy (H = log(|Θ|)) to belief functions. A more sophisticated proposal
by Pal [18]: Ha[m] =

∑
A∈F m(A)/|A|, assesses the dispersion of the evidence

and is linked to the pignistic transform. A final proposal based on the common-
ality function Q(A) =

∑
B⊃A m(B) is due to Smets: Ht =

∑
A∈F log( 1

Q(A) ).
Composite measures, such as Lamata and Moral’s Hl[m] = Hy[m] + Hd[m]

[14], as designed to capture both entropy and specificity. Klir & Ramer [13]
proposed a ‘global uncertainty measure’ defined as: Hk[m] = D[m] + Hd[m],
where: D(m) = −∑

A∈F m(A) log[
∑

B∈F m(B) |A∩B|
|B| ]. Pal et al. [18] argued

that none of these composite measures is really satisfactory, as they do not
admit a unique maximum and there is no sounding rationale for simply adding
conflict and non-specificity measures together.

In the credal interpretation of belief functions, Harmanec and Klir’s aggre-
gated uncertainty (AU) [8] is defined as the maximal Shannon entropy of all the
probabilities consistent with the given BF: Hh[m] = maxP∈P[Bel]{Hs[P ]}. Hh[m]
is the minimal measure meeting a set of rationality requirements which include:
symmetry, continuity, expansibility, subadditivity, additivity, monotonicity, nor-
malisation. Similarly, Maeda and Ichihashi [16] proposed a composite measure
Hi[m] = Hh[m]+Hd[m] whose first component consists of the maximum entropy
of the set of probability distributions consistent with m, and whose second part
is the generalized Hartley entropy. As both Hh and Hi have high computational
complexity, Jousselme et al. [11] proposed an ambiguity measure (AM), as the
classical entropy of the pignistic function: Hj [m] = Hs[BetP [m]].

Jirousek and Shenoy [10] analysed all these proposal in 2016, assessing
them versus a number of significant properties, concluding that only the
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Maeda-Ichihashi proposal meets all these properties. The issue remains still
unsettled. In the following we will adopt a straighforward generalisation of Shan-
non’s entropy, and a few selected proposals based on their concavity property.

5 Generalised Max-entropy Problem

Technically, in order to generalise the max-entropy optimisation problem
(Definition 1) to the case of belief functions, we need to: (i) choose an appropri-
ate measure of entropy for belief function as the objective function; (ii) revisit
the constraints that the (theoretical) expectations of the feature maps are equal
to the empirical ones computed over the training set.

As for (ii), it is sensible to require that the empirical expectation of the
feature functions is bracketed by the lower and upper expectations associated
with the sought belief function Bel : 2X×C → [0, 1]. In this paper we only make
use of the 2-monotonicity of belief functions, and write:

∑

(x,Ck)

Bel(x,Ck)φm(x,Ck) ≤ Ê[φm] ≤
∑

(x,Ck)

Pl(x,Ck)φm(x,Ck) (1)

∀m = 1, ...,M , as we only consider probability intervals on singleton elements
(x,Ck) ∈ X ×C. Fully fledged lower and upper expectations (cfr. Sect. 3), which
express the full monotonicity of BFs, will be considered in future work.

Going even further, should constraints of the form (1) be enforced on all
possible subsets A ⊂ X × C, rather than just singleton pairs (x,Ck)? This goes
back to the question of what information does a training set actually carry. More
general constraints would require extending the domain of feature functions to
set values – we will investigate this idea in the near future as well.

5.1 Formulation and Karush-Kuhn-Tucker (KKT) Conditions

In the same classification setting of Sect. 2, the maximum belief entropy clas-
sifier is the joint belief measure Bel∗(x,Ck) : 2X×C → [0, 1] which solves the
following optimisation problem: Bel∗(x,Ck) .= arg maxBel(x,Ck) H(Bel) subject
to the inequality constraints (1), where H is an appropriate measure of entropy
for belief measures. As the above optimisation problem involves inequality con-
straints (1), as opposed to the equality constraints of traditional max entropy
classifiers, we need to analyse the Karush-Kuhn-Tucker (KKT) [12] necessary
conditions for a belief function Bel to be an optimal solution to the problem.

Definition 3. Suppose that the objective function f : Rn → R and the constraint
functions gi : Rn → R and hj : Rn → R of a nonlinear optimisation problem
arg maxx f(x) subject to: gi(x) ≤ 0 i = 1, ...,m, hj(x) = 0 j = 1, ..., l are
continuously differentiable at a point x∗. If x∗ is a local optimum, under appro-
priate regularity conditions then there exist constants μi, (i = 1, . . . , m) and
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λj (j = 1, . . . , l), called KKT multipliers, such that the following conditions
hold:

1. Stationarity: ∇f(x∗) =
∑m

i=1 μi∇gi(x∗) +
∑l

j=1 λj∇hj(x∗);
2. Primal feasibility: gi(x∗) ≤ 0 ∀i = 1, . . . , m, and hj(x∗) = 0, ∀j = 1, . . . , l;
3. Dual feasibility: μi ≥ 0 for all i = 1, . . . ,m;
4. Complementary slackness: μigi(x∗) = 0 for all i = 1, . . . ,m.

Crucially, the KKT conditions are also sufficient whenever the objective func-
tion f is concave, the inequality constraints gi are continuously differentiable
convex functions, and the equality constraints hj are affine1.

Theorem 1. If either Ht,Hn,Hd,Hs[Bel] or Hs[Pl] is adopted as measure of
entropy, the generalised max entropy optimisation problem has concave objective
function and convex constraints. Therefore, the KKT conditions are sufficient
for the optimality of its solution(s).

Concavity of the entropy objective function. It is well known that Shannon’s
entropy is a concave function of probability distributions, represented as vectors
of probability values2. Furthermore: any linear combination of concave func-
tions is concave; a monotonic and concave function of a concave function is still
concave; the logarithm is a concave function.

As shown by Smets [21], the transformations which map mass vectors to
vectors of belief (and commonality) values are linear, as they can be expressed
in the form of matrices. In particular, bel = BfrMm, where BfrM is a matrix
whose (A,B) entry is: BfrM(A,B) = 1 if B ⊆ A, 0 otherwise, and bel,m are
vectors collecting the belief (mass) values of all events A ⊆ Θ. The same can
be said of the mapping q = QfrMm between a mass vector and the associated
commonality vector. As a consequence, belief, plausibility and commonality are
all linear (and therefore concave) functions of a mass vector.

Using this matrix representation, it is easy to conclude that several of the
entropies defined in Sect. 4 are indeed concave. In particular, Smets’ specificity
measure Ht =

∑
A log( 1

Q(A) ) is concave, as a linear combination of concave func-
tions. Nguyen’s entropy Hn = −∑

A m(A) log(m(A)) = Hs[m] is also concave,
as the Shannon’s entropy of a mass assignment. Dubois and Prade’s measure
Hd =

∑
A m(A) log(|A|) is also concave with respect to m, as a linear combi-

nation of mass values. Direct applications of Shannon’s entropy function to Bel
and Pl: HBel[m] = Hs[Bel] =

∑
A⊆Θ Bel(A) log( 1

Bel(A) ), HPl[m] = Hs[Pl] =
∑

A⊆Θ Pl(A) log( 1
Pl(A) ) are also trivially concave, due to the concavity of the

entropy function and to the linearity of the mapping from m to Bel, P l. Drawing
conclusions on the other measures is less immediate, as they involve products of
concave functions (which are not, in general, guaranteed to be concave).

Convexity of the Interval Expectation Constraints. As for the contraints (1) of the
generalised max entropy problem, we first note that (1) can be decomposed into
1 More general sufficient conditions can be given in terms of invexity [2] requirements.
2 http://projecteuclid.org/euclid.lnms/1215465631.

http://projecteuclid.org/euclid.lnms/1215465631
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the following pair of constraints: g1m(m) .=
∑

x,k Bel(x,Ck)φm(x,Ck) − Ê[φm]
≤ 0, g2m(m) =

∑
x,k φm(x,Ck)[p̂(x,Ck) − Pl(x,Ck)] ≤ 0 for all m = 1, ...,M .

The first inequality constraint is a linear combination of linear functions of the
sought mass assignment m∗ : 2X×C → [0, 1] (since Bel∗ results from applying a
matrix transformation to m∗). As pl = 1−Jbel = 1−JBfrMm, constraint g2m
is also a linear combination of mass values. Hence, as linear function, constraints
g1m and g2m are both concave and convex.

5.2 Belief Max-entropy Classifier for Shannon’s Entropy

For the Shannon-like entropy Condition 1. (stationarity), applied to the
sought optimal BF Bel∗ : 2X×C → [0, 1], reads as: ∇HBel(Bel∗) =

∑M
m=1

μ1
m∇g1m(Bel∗)+μ2

m∇g2m(Bel∗). The components of ∇HBel are the partial deriva-
tives of the entropy with respect to the mass values m(B), for all B ⊆ Θ. They
read as:

∂HBel

∂m(B)
=

∂

∂m(B)

∑

A⊇B

[

−(
∑

B⊆A

m(B)) log(
∑

B⊆A

m(B))
]

= −
∑

A⊇B

[1+log Bel(A)].

As for ∇g1m(Bel∗) we have: ∂g1
m

∂m(B)
= ∂

∂m(B)

∑
(x,Ck)∈Θ Bel(x,Ck)φm(x,Ck)

− Ê[φm] = ∂
∂m(B)

∑
(x,Ck)∈Θ m(x,Ck)φm(x,Ck) − Ê[φm] which is equal to

φm(x,Ck) for B = {(x,Ck)}, 0 otherwise3. As for the second set of constraints:
∂g2

m

∂m(B)
= ∂

∂m(B)

∑
(x,Ck)∈Θ φm(x,Ck)[p̂(x,Ck) − Pl(x,Ck)] which, recalling that

Pl(x,Ck) =
∑

B∩{(x,Ck)}	=∅ m(B), becomes equal to = −∑
(x,Ck)∈B φm(x,Ck).

Assembling all our results, the KKT stationarity conditions for the gener-
alised, belief-theoretical maximum entropy problem amount to, for all B ⊂ X×C:
{

−∑
A⊇B[1 + log Bel(A)] =

∑M
m=1 φm(x,Ck)[μ1

m− μ2
m], |B = {(x,Ck)}| = 1,

−∑
A⊇B[1 + log Bel(A)] =

∑M
m=1 μ2

m

∑
(x,Ck)∈B φm(x,Ck), |B| > 1.

(2)
The other conditions are, ∀m = 1, ...,M , (1) (primal feasibility), μ1

m, μ2
m ≥ 0

(dual feasibility), and complementary slackness: μ1
m

∑
(x,Ck)∈Θ Bel(x,Ck)

φm(x,Ck) − Ê[φm] = 0, μ2
m

∑
(x,Ck)∈Θ φm(x,Ck)[p̂(x,Ck) − Pl(x,Ck)] = 0.

6 Conclusions

In this paper we proposed a generalisation of the max entropy classifier entropy
in which the assumptions that test and training data are sampled by a same
probability distribution, and that the empirical expectation of the feature func-
tions is ‘correct’ are relaxed in the formalism of belief theory. We also studied

3 If we could define feature functions over non singletons subsets A ⊆ Θ, this would
simply generalise to φ(B) for all B ⊆ Θ.
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the conditions under which the associated KKT conditions are necessary and
sufficient for the optimality of the solution. Much work remains: (i) providing
analytical model expressions, similar to log-linear models, for the Shannon-like
and other major entropy measures for belief functions; (ii) analysing the case in
which the full lower and upper expectations are plugged in; (iii) comparing the
resulting classifiers; (iv) analysing a formulation based on the least commitment
principle, rather than max entropy, for the objective function to optimise; finally,
(v) relaxing the constraint that feature functions be defined on singleton pairs
(x,Ck), in a further generalisation of this important framework.
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Abstract. In this paper we build on previous work on the geometry of
Dempster’s rule to investigate the geometric behaviour of various other
combination rules, including Yager’s, Dubois’, and disjunctive combina-
tion, starting from the case of binary frames of discernment. Believabil-
ity measures for unnormalised belief functions are also considered. A
research programme to complete this analysis is outlined.
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1 Introduction

In the geometric approach to uncertainty and belief function theory [3], belief
measures are represented as points of a convex space, termed belief space B
[2]. In a series of papers, in particular, this author studied the behaviour of
Dempster’s rule of combination in this geometric setting [1]. An earlier analysis
of Dempster’s rule on binary domains can be found in [6].

In this work, we start to extend this geometric analysis to several other
major combination operators, including Yager’s [10] and Dubois’ rules, but also
the disjunctive operator [8]. The final objective of the research programme is
a comparative geometric analysis of combination rules, which would eventually
allow us to describe the ‘cone’ of possible future belief states under stronger
or weaker assumptions on reliability and independence of sources, associated
with conjunctive and disjunctive combination. The bulk of the analysis focusses
on standard, normalised belief functions – towards the end, however, we also
consider unnormalised belief functions [9] and provide some preliminary results.

We start by giving a general definition of conditional subspace (cfr. [3],
Chap. 8), as the set of possible future states under a given combination rule.

Definition 1. Given a belief function (BF) Bel ∈ B we call conditional sub-
space 〈Bel〉� the set of all � combinations of Bel with any other BF Bel′ defined
on the same frame, where � is an arbitrary combination rule, assuming their
combination exists: 〈Bel〉�

.=
{

Bel � Bel′, Bel′ ∈ B s.t. ∃ (
Bel � Bel′

)}
.

c© Springer Nature Switzerland AG 2018
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Our analysis will be conducted on binary spaces, and used to formulate con-
jectures on the case of general frames of discernment. We will first recall the
necessary notions of the geometric approach to belief theory in Sect. 2. We will
consider Yager’s and Dubois’ rules in Sect. 3, disjunctive combination in Sect. 4,
to cover the behaviour of unnormalised BFs in Sect. 5. We will draw some ver-
dicts and outline future work in our Conclusions.

2 Belief Functions and Their Geometry

Belief functions. A basic probability assignment (BPA) [7] over a discrete set
(frame) Θ is a function m : 2Θ → [0, 1] defined on 2Θ = {A ⊆ Θ} such that:
m(∅) = 0,

∑
A⊂Θ m(A) = 1. The belief function (BF) associated with a BPA m :

2Θ → [0, 1] is the function Bel : 2Θ → [0, 1] defined as: Bel(A) =
∑

B⊆A m(B).
The elements of the power set 2Θ associated with non-zero values of m are
called the focal elements of m. For each subset (‘event’) A ⊂ Θ the quantity
Bel(A) is called the degree of belief that the outcome lies in A. Dempster’s
combination Bel1 ⊕ Bel2 of two belief functions on Θ is the unique BF there
with as focal elements all the non-empty intersections of focal elements of Bel1
and Bel2, and basic probability assignment: m⊕(A) = m∩(A)

1−m∩(∅) , where m∩(A) =∑
B∩C=A m1(B)m2(C) and mi is the BPA of the input BF Beli.

Belief space. Given a frame of discernment Θ, a BF Bel is specified by its
N −2 belief values {Bel(A), ∅ � A � Θ}, N

.= 2|Θ|, and can then be represented
as a point of RN−2. The belief space [1,2] associated with Θ is the set of points
B of RN−2 which correspond to proper belief functions. It can be proven that
the belief space B is the convex closure Cl of all the vectors associated with
categorical BFs BelA (such that m(A) = 1): B = Cl(BelA, ∅ � A ⊆ Θ) =
{∑

∅�A⊆Θ αABelA, αA ≥ 0∀A,
∑

A αA = 1}, an (N − 2)-dimensional simplex.

Geometry of Dempster’s rule. In [3] we proved that the conditional subspace
〈Bel〉 under Dempster’s combination is 〈Bel〉 = Cl{Bel ⊕ BelA, A ⊆ CBel},
where CBel is the union of the focal elements of Bel (see Fig. 1, in light blue,
for the binary case Θ2 = {x, y}). Dempster’s combination of a BF Bel with
another BF Bel′ with mass m′ describes, for m′(y) ∈ R1, a straight line in the
belief space, except the point with coordinates: Fx(Bel) = [1,−m(Θ2)

m(x) ]′,2 which
coincides with the limit of Bel ⊕ Bel′ for m′(y) → ±∞. This is true for every
value of m′(x) ∈ [0, 1]. Indeed, all the collections of Dempster’s sums Bel ⊕ Bel′

with m′(x) = k = const have a common intersection at the point Fx(Bel),
which is located outside the belief space. In the same way, this holds for the
sets {Bel ⊕ Bel′ : m′(y) = l = const}, which each form a distinct line passing
through a twin point: Fy(Bel) = [−m(Θ)

m(y) , 1]′.
We call Fx(Bel), Fy(Bel) the foci of the conditional subspace 〈Bel〉.

Dempster’s rule thus admits an elegant geometric construction in the belief
space, illustrated, for the binary case, in Fig. 1.
1 For Dempster’s rule can be extended to pseudo belief functions.
2 We write m(x) instead of m({x}), Belx rather than Bel{x} to simplify the notation.
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Fig. 1. Graphical construction of Dempster’s combination in the binary belief space.

Algorithm 1. Dempster’s rule: geometric construction in B2.
1: procedure GeoDempster2(Bel, Bel′)
2: compute the foci Fx(Bel), Fy(Bel) of the conditional subspace 〈Bel〉;
3: project Bel′ onto P along the orthogonal directions, obtaining P ′

x and P ′
y;

4: combine Bel with P ′
x and P ′

y (a much simpler operation) to get Px and Py;

5: draw the lines PxFx(Bel) and PyFy(Bel): their intersection is the desired
orthogonal sum Bel ⊕ Bel′.

6: end procedure

These notions can be naturally extended to finite frames with an arbitrary
number |Θ| of elements ([3], Chap. 8).

3 Geometry of Yager’s and Dubois’ Rules

Yager’s and Dubois’ rules. Yager’s rule [10] is based on the view that conflict is
generated by non-reliable information sources. In response, the conflicting mass
(here denoted by m∩(∅)) is re-assigned to the whole frame of discernment Θ:

mY©(A) =
{

m∩(A) ∅ �= A � Θ
m∩(Θ) + m∩(∅) A = Θ.

(1)

The combination operator proposed by Dubois and Prade [5] comes from
applying the minimum specificity principle to the cases in which the focal ele-
ments B,C of two input BFs do not intersect, and assigns their product mass
to B ∪ C:

mD(A) = m∩(A) +
∑

B∪C=A,B∩C=∅
m1(B)m2(C). (2)
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Analysis on binary frames. On binary frames, Θ = {x, y} Yager’s rule (1) and
Dubois’ rule (2) coincide, as the only conflicting focal elements are {x} and {y},
whose union is Θ itself:

mY©(x) = m1(x)(1 − m2(y)) + m1(Θ)m2(x),
mY©(y) = m1(y)(1 − m2(x)) + m1(Θ)m2(y),
mY©(Θ) = m1(x)m2(y) + m1(y)m2(x) + m1(Θ)m2(Θ).

(3)

Using (3) we can easily show that:

Bel Y©Belx = [m(x) + m(Θ), 0,m(y)]′; Bel Y©Bely = [0,m(y) + m(Θ),m(x)]′;
Bel Y©BelΘ = Bel = [m(x),m(y),m(Θ)],

(4)
once adopting the vector notation Bel = [Bel(x), Bel(y), Bel(Θ)]′.
The conditional subspace 〈Bel〉Y© (Fig. 2(left)) is thus the convex closure of the
points (4): 〈Bel〉Y© = Cl(Bel,Bel Y©Belx, Bel Y©Bely).

Comparing (3) with (4), it is easy to see that

Bel1 Y©Bel2 = m2(x)
(
Bel1 Y©Belx

)
+m2(y)

(
Bel1 Y©Bely

)
+m2(Θ)

(
Bel1 Y©BelΘ

)
,

i.e., the simplicial coordinates of Bel2 in the binary belief space B2 and of the
Yager combination Bel1 Y©Bel2 in the conditional subspace 〈Bel1〉Y© coincide.
We can then conjecture the following.

Bel  = [0,0]'

Bel  

Bel  = [0,1]'

x

y

Bel BelyY

Bel BelxY

Bel

Bel Y

Bel

Bel

Bel Bel yY

Bel y

Bel x

Bel Bel xY

Fig. 2. (Left) Conditional subspace 〈Bel〉Y© for Yager’s (and Dubois’) combination rule
on a binary frame Θ = {x, y}. Dempster’s 〈Bel〉 is also shown for comparison. (Right)
In Yager’s combination, the images of constant mass loci (dashed blue segments) do
not converge to a focus, but form parallel lines (dashed purple, cfr. Fig. 1). (Color figure
online)
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Conjecture 1. Yager combination and affine combination commute. Namely:

Bel Y©
(∑

i

αiBeli

)
=

∑
i

αiBel Y©Beli, αi ∈ R ∀i,
∑

i

αi = 1.

As commutativity is the basis for the geometric analysis of Dempster’s rule
[1], this opens the way for a similar geometric construction for Yager’s rule.
However, as shown in Fig. 2 (right), images of constant mass loci under Yager’s
rule are parallel, and there are no foci. From (3) it follows that:

lim
m2(y)→−∞

mY©(y)
mY©(x)

=
m1(y)(1 − m2(x)) + m1(Θ)m2(y)
m1(x)(1 − m2(y)) + m1(Θ)m2(x)

= −m1(Θ)
m1(x)

,

and similarly for the loci with m2(y) = const.
Nevertheless, as we will rigorously prove in upcoming work, Yager’s combi-

nation also admits a geometric construction based on intersecting linear spaces
which are images of constant mass loci.

4 Geometry of Disjunctive Combination

Disjunctive combination [8] is the natural, cautious dual of Dempster’s combina-
tion. The operator follows from the assumption that the consensus between two
sources of evidence is best represented by the union of the supported hypotheses,
rather than by their intersection. An algebraic analysis of disjunctive combina-
tion on binary frames, in the form of ‘Dempster semigroups’, is due to Daniel
[4]. Combination results are there visualised in a way similar to that presented
here, although the focus is not on the geometry.

Conditional subspace. By definition: m ∪©(x) = m1(x)m2(x), m ∪©(y) =
m1(y)m2(y), m ∪©(Θ) = 1 − m1(x)m2(x) − m1(y)m2(y). Hence, in the usual
vector notation:

Bel ∪©Belx = [m(x), 0, 1 − m(x)]′; Bel ∪©Bely = [0,m(y), 1 − m(y)]′;
Bel ∪©BelΘ = BelΘ.

(5)

The conditional subspace 〈Bel〉 ∪© is thus the convex closure of the points (5):

〈Bel〉 ∪© = Cl(Bel,Bel ∪©Belx, Bel ∪©Bely)

(see Fig. 3). As in Yager’s case: Bel ∪©[αBel′ + (1 − α)Bel′′] = [m(x)(αm′(x) +
(1−α)m′′(x)),m(y)(αm′(y)+(1−α)m′′(y))]′ = αBel ∪©Bel′+(1−α)Bel ∪©Bel′′,
i.e., ∪© commutes with affine combination, at least in the binary case.

Pointwise behaviour. As in Yager’s case, for disjunctive combination images of
constant mass loci are parallel to each other. Actually, they are parallel to the
corresponding constant mass loci and the coordinate axes (observe in Fig. 3
(left) the locus m′(x) = m′′(x) = 1/3 and its image in the conditional subspace
〈Bel〉 ∪©, with coordinate 1/3m(x)). We can prove the following.
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Fig. 3. (Left) Conditional subspace 〈Bel〉 ∪© for disjunctive combination on a binary
frame. (Right) Geometric construction for the disjunctive combination of two belief
functions Bel, Bel′ on a binary frame.

Theorem 1. In the binary case Θ = {x, y}, all the lines joining Bel′ and
Bel ∪©Bel′ for any Bel′ ∈ B intersect at the point:

m(x) = m′(x)
m(x) − m(y)

1 − m(y)
, m(y) = 0. (6)

Proof. Recalling the equation of the line joining two points (χ1, υ1) and (χ2, υ2)
of R2, with coordinates (χ, υ): (υ − υ1) = υ2−υ1

χ2−χ1
(χ − χ1), we can identify the

line joining Bel′ and Bel ∪©Bel′ as:

(υ − m′(y)) =
m(y)m′(y) − m′(y)
m(x)m′(x) − m′(x)

(χ − m′(x)).

Its intersection with υ = 0 is the point (6), which does not depend on m′(y)
(i.e., on the vertical location of Bel′ on the constant mass loci).

A geometric construction for the disjunctive combination Bel ∪©Bel′ of two
BFs in B2 is provided by simple trigonometric arguments (Fig. 3 (right)):

1. starting from Bel′, find its orthogonal projection onto the horizontal axis,
with coordinate m′(x) (point 1);

2. draw the line with slope 45o passing through such projection, and intersect
it with the vertical axis, at coordinate υ = m′(x) (point 2);

3. finally, take the line l passing through Bely and the orthogonal projection of
Bel onto the horizontal axis, and draw a parallel one l′ through point 2 – its
intersection with the horizontal axis (point 3) is the x coordinate m(x)m′(x)
of the desired combination.

A similar construction (in magenta) allows us to locate the y coordinate of the
combination (as shown in Fig. 3 (right)).
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5 Combination of Unnormalised Belief Functions

In the case of unnormalised belief functions (those for which m(∅) ≥ 0, UBFs
[9]), Dempster’s rule is replaced by conjunctive combination: m ∩©(A) .= m∩(A).
Disjunctive combination itself needs to be reassessed for UBFs as well.

In the unnormalised case, a distinction exists between the belief measure
Bel(A) .=

∑
∅=B⊆A m(B) and the believability (in Smets’ terminology) measure

of an event A, denoted by: b(A) .=
∑

∅⊆B⊆A m(B). Here we analyse the geometric
behavior of the latter, in which case ∅ is not treated as an exception: the case
of belief measures is left to future work. As b(Θ) = 1, as usual, we neglect the
related coordinate and represent believability functions as points of a Cartesian
space of dimension |2Θ| − 1 (as ∅ cannot be ignored anymore).

Conjunctive combination on the binary frame. In the case of a binary frame, the
conjunctive combination of two belief functions Bel1 and Bel2 yields:

m ∩©(∅) = m1(∅) + m2(∅) − m1(∅)m2(∅) + m1(x)m2(y) + m1(y)m2(x),
m ∩©(x) = m1(x)(m2(x) + m2(Θ)) + m1(Θ)m2(x),
m ∩©(y) = m1(y)(m2(y) + m2(Θ)) + m1(Θ)m2(y),
m ∩©(Θ) = m1(Θ)m2(Θ).

(7)

Conditional subspace for conjunctive combination. The global behaviour of ∩© in
the binary (unnormalised) case can then be understood in terms of its conditional
subspace, this time in R3. We have, after denoting b = [b(∅), b(x), b(y)]′:

b ∩©b∅ = b∅ = [1, 1, 1]′;
b ∩©bx = (m(∅) + m(y))b∅ + (m(x) + m(Θ))bx

= [m(∅) + m(y), 1,m(∅) + m(y)]′ = b(y)b∅ + (1 − b(y))bx;
b ∩©by = (m(∅) + m(x))b∅ + (m(y) + m(Θ))by

= [m(∅) + m(x),m(∅) + m(x), 1]′ = b(x)b∅ + (1 − b(x))by;
b ∩©bΘ = b,

(8)

as bx = [0, 1, 0]′, by = [0, 0, 1]′, b∅ = [1, 1, 1]′ and bΘ = [0, 0, 0]′. From (8),
we can note that the vertex b ∩©bx belongs to the line joining b∅ and bx, with
affine coordinate given by the believability assigned by b to the other outcome y.
Similarly, the vertex b ∩©by belongs to the line joining b∅ and by, with coordinate
given by the believability assigned by b to outcome x (see Fig. 4).

Conditional subspace for disjunctive combination. As for the disjunctive com-
bination, it is easy to see that in the unnormalised case we get: b ∪©bΘ = bΘ,
b ∪©bx = b(x)bx + (1 − b(x))bΘ, b ∪©b∅ = b, b ∪©by = b(y)by + (1 − b(y))bΘ, so
that the conditional subspace is as in Fig. 4. Note that, in the unnormalised
case, there is a unit element to ∪©, namely b∅. We can observe a clear symmetry
between the subspaces induced by disjunctive and conjunctive combination.



General Geometry of Belief Function Combination 55

b

b(y)

b(x)

by

bx

b

1-b
(y)

b(x)

1-b(x)

b

b bx

b
U

b bxU

b(y
)

b U

b byU

U

b by
U

Fig. 4. Conditional subspaces induced by ∩© and ∪© in a binary frame, for the case of
unnormalised belief functions.

6 Conclusions

A number of questions remain open after this preliminary geometric analysis
of other combination rules on binary spaces, and its extension to the case of
unnormalised belief functions. In particular, the general pointwise geometric
behaviour of disjunctive combination, in both the normalised and unnormalised
case, needs to be understood. The question of whether disjunctive combination
commutes with affine combination in general belief spaces remains open. A dual
query concerns the conjuctive rule, as the alter ego of Dempster’s rule in the
unnormalised case. The general pointwise geometric behaviour of conjunctive
and disjunctive combinations in the unnormalised case, as well as the complete
description of their conditional subspaces, will also be subject of future work.
The bold and cautious rules, which are also inherently defined for unnormalised
belief functions, will also be analysed.
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Abstract. We show that the weighted sum and softmax operations per-
formed in logistic regression classifiers can be interpreted in terms of
evidence aggregation using Dempster’s rule of combination. From that
perspective, the output probabilities from such classifiers can be seen as
normalized plausibilities, for some mass functions that can be laid bare.
This finding suggests that the theory of belief functions is a more general
framework for classifier construction than is usually considered.

Keywords: Evidence theory · Dempster-Shafer theory
Classification · Machine learning

1 Introduction

In the last twenty years, the Dempster-Shafer (DS) theory of belief functions
has been increasingly applied to classification. One direction of research is clas-
sifier fusion: classifier outputs are expressed as belief functions and combined
by Dempster’s rule or any other rule (see, e.g., [1,7,8]). Another approach is
to design evidential classifiers, which can be defined as classifiers built from
basic principles of DS theory. Typically, an evidential classifier has the structure
depicted in Fig. 1: when presented by a feature vector x, the system computes k
mass functions m1, . . . ,mk defined on the set Θ of classes, based on a learning
set. These mass functions are then combined using Dempster’s rule, or any other
rule. The first evidential classifier was the evidential k-nearest neighbor classifier
[3], in which mass functions mj are constructed from the k nearest neighbor of x,
and combined by Dempster’s rule. In the evidential neural network classifier [5],
a similar principle is applied, but mass functions are constructed based on the
distances to prototypes, and the whole system is trained to minimize an error
function.

In this paper, we show that not only these particular distance-based classi-
fiers, but also a broad class of widely-used classifiers, including logistic regression
and its nonlinear extensions, can be seen as evidential classifiers. This finding
leads us to the conclusion that DS theory is a much more general framework for
classifier construction than was initially believed.

c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 57–64, 2018.
https://doi.org/10.1007/978-3-319-99383-6_8
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Fig. 1. Basic structure of an evidential classifier.

The rest of the paper is organized as follows. Some background definitions
will first be recalled in Sect. 2. A general model of feature-based evidence will be
described in Sect. 3, where we will show that the normalized plausibility function,
after combining the evidence of J features, is identical to the output of logistic
regression. The recovery of the full mass function will then be addressed, and a
simple example will be given in Sect. 4. Section 5 will conclude the paper.

2 Background

In this section, we first recall some basic notions and definitions needed in the rest
of the paper. The notion of weight of evidence will first be recalled in Sect. 2.1,
and some notations for logistic regression will be introduced in Sect. 2.2.

2.1 Weights of Evidence

Let us consider a simple mass function m on a frame Θ, such that

m(A) = s, m(Θ) = 1 − s,

where s is a degree of support in [0, 1]. Typically, such a mass function represents
some elementary piece of evidence supporting hypothesis A. Shafer [9, p. 77]
defines the weight of this evidence as w = − ln(1 − s). Conversely, we thus have
s = 1 − exp(−w). The rationale for this definition is that weights of evidence
are additive: if m1 and m2 are two simple mass functions focussed on the same
subset A, with weights w1 and w2, then the orthogonal sum m1⊕m2 corresponds
to the weight w1 + w2. If we denote a simple mass function with focal set A and
weight w by Aw, we thus have Aw1⊕Aw2 = Aw1+w2 . It follows that any separable
mass function can be written as m =

⊕
∅�=A⊂Θ AwA , where wA is the weight of

evidence pointing to A. We note that, in [6], following [10], we used the term
“weight” for − ln w. As we will see, the additivity property is central in our
analysis: we thus stick to Shafer’s terminology and notation in this paper.
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2.2 Logistic Regression

Consider a multi-category1 classification problem with J-dimensional feature
vector x = (x1, . . . , xJ ) and class variable Y ∈ Θ = {θ1, . . . , θK} with K > 2.
In the logistic regression model, we assume the logarithms of the posterior class
probabilities P(Y = θk)|x) to be affine functions of x, i.e.,

lnP(Y = θk|x) =
J∑

j=1

βjkxj + β0k + γ, ∀k ∈ �1,K�, (1)

where βjk, j = 0, . . . , J are parameters and γ is a constant. Using the equation
∑K

k=1 P(Y = θk|x) = 1, we easily get the following expressions for the posterior
probabilities,

P(Y = θk|x) =
exp

(∑J
j=1 βjkxj + β0k

)

∑K
l=1 exp

(∑J
j=1 βjlxj + β0l

) . (2)

This transformation from arbitrary real quantities (1) to probabilities is some-
times referred to as the softmax transformation. Parameters βjk are usually
estimated by maximizing the conditional likelihood. In feedforward neural net-
works with a softmax output layer, a similar approach is used, with variables xj

defined as the outputs of the last hidden layer of neurons. These variables are
themselves defined as complex nonlinear functions of the input variables, which
are optimized together with the decision layer weights βjk. Logistic regression is
functionally equivalent to a feedforward neural network with no hidden layer.

3 Model

We consider a multi-category classification problem as described in Sect. 2.2. We
assume that each feature xj provides some evidence about the class variable Y .
For each θk, the evidence of feature xj points either to the singleton {θk} or to
its complement {θk}, depending on the sign of

wjk = βjkxj + αjk, (3)

where (βjk, αjk), k = 1, . . . ,K, j = 1, . . . , J are parameters. The weights of
evidence for {θk} and {θk} are, respectively,

w+
jk = (wjk)+ and w−

jk = (wjk)−, (4)

where (·)+ and (·)− denote, respectively, the positive and the negative parts. For
each feature xj and each class θk, we thus have two simple mass functions

m+
jk = {θk}w+

jk and m−
jk = {θk}w−

jk . (5)

1 The case of binary classification with K = 2 classes requires a separate treatment.
Due to space constaints, we focus on the multi-category case in this paper.
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Assuming these mass functions to be independent, they can be combined by
Dempster’s rule. Let

m+
k =

J⊕

j=1

m+
jk = {θk}w+

k and m−
k =

J⊕

j=1

m−
jk = {θk}w−

k

where

w+
k =

J∑

j=1

w+
jk and w−

k =
J∑

j=1

w−
jk. (6)

The contour functions pl+k and pl−k associated, respectively, with m+
k and m−

k

are

pl+k (θ) =

{
1 if θ = θk,

exp
(−w+

k

)
otherwise,

and

pl−k (θ) =

{
exp

(−w−
k

)
if θ = θk,

1 otherwise.

Now, let

m+ =
K⊕

k=1

m+
k and m− =

K⊕

k=1

m−
k ,

and let pl+ and pl− be the corresponding contour functions. We have

pl+(θk) ∝
K∏

l=1

pl+l (θk) = exp

⎛

⎝−
∑

l �=k

w+
l

⎞

⎠ = exp

(

−
K∑

l=1

w+
l

)

exp(w+
k )

∝ exp(w+
k ),

and

pl−(θk) ∝
K∏

l=1

pl−l (θk) = exp(−w−
k ).

Finally, let m = m+ ⊕m− and let pl be the corresponding contour function. We
have

pl(θk) ∝ pl+(θk)pl−(θk) ∝ exp(w+
k − w−

k )

∝ exp

⎛

⎝
J∑

j=1

wjk

⎞

⎠ = exp

⎛

⎝
J∑

j=1

βjkxj +
J∑

j=1

αjk

⎞

⎠ .

Let p be the probability mass function induced from m by the plausibility-
probability transformation [2], and let

β0k =
J∑

j=1

αjk. (7)
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We have

p(θk) =
exp

(∑J
j=1 βjkxj + β0k

)

∑K
l=1 exp

(∑J
j=1 βjlxj + β0l

) , (8)

which is equivalent to (2). We thus have proved that the output probabilities
computed by a logistic regression classifier can be seen as the normalized plau-
sibilities obtained after combining elementary mass functions (5) by Dempster’s
rule: these classifiers are, thus, evidential classifiers as defined in Sect. 1.

4 Recovering the Mass Function

Having shown that the output probabilities of logistic regression classifiers are
normalized plausibilities, it is interesting to recover the underlying output mass
function, defined as

m =
K⊕

k=1

(

{θk}w+
k ⊕ {θk}w−

k

)

. (9)

Its complete expression can be derived (after some tedious calculation), but it
cannot be given here for lack of space.

There is, however, a difficulty related to the identifiability of the weights w+
k

and w−
k . First, parameters βjk are not themselves identifiable, because adding

any constant vector c to each vector βk = (β0k, . . . , βJk) produces the same
normalized plausibilities (8). Secondly, for given β0k, any αjk verifying (7) will
yield the same probabilities (8). This problem is addressed in the next section.

4.1 Identification

To identifying the underlying output mass function, we propose to apply the
Least Commitment Principle, by searching for the mass function m∗ of the form
(9) verifying (8) and such that the sum of the squared weights of evidence is
minimum. More precisely, let {(xi, yi)}n

i=1 be a learning set, let β̂jk be the max-
imum likelihood estimates of the weights βjk, and let α denote the vector of
parameters αjk. Any β∗

jk = β̂jk + cj will verify (8). The parameter values β∗
jk

and α∗
jk minimizing the sum of the squared weights of evidence can thus be

found by solving the following minimization problem

min f(c,α) =
n∑

i=1

J∑

j=1

K∑

k=1

[
(β̂jk + cj)xij + αjk

]2
(10)

subject to
J∑

j=1

αjk = β̂0k + c0, ∀k ∈ �1,K�. (11)
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In (10), xij denotes the value of feature j for learning vector xi. Developing the
square in (10), we get

f(c,α) =
∑

j,k

(β̂jk +cj)2
(

∑

i

x2
ij

)

+n
∑

j,k

α2
jk +2

∑

j,k

(β̂jk +cj)αjk

∑

i

xij . (12)

Assuming that the input variables xj have been centered, we have
∑

i xij = 0
and

∑
i x2

ij = s2j , where s2j is the empirical variance of feature xj . Equation (12)
then simplifies to

f(c,α) =
∑

j,k

s2j (β̂jk + cj)2 + n
∑

j,k

α2
jk. (13)

Due to constraint (11), for any c0, the second term in the right-hand side of (13)
is minimized for αjk = 1

J (β̂0k + c0), for all j ∈ �1, J� and k ∈ �1,K�. Hence, the
problem becomes

min
c

f(c) =
J∑

j=1

s2j

{
K∑

k=1

(β̂jk + cj)2
}

+
n

J

K∑

k=1

(β̂0k + c0)2.

Each of the J + 1 terms in this sum can be minimized separately. The solution
can easily be found to be

c∗
j = − 1

K

K∑

k=1

β̂jk, ∀j ∈ �0, J�

The optimum coefficients are, thus,

β∗
jk = β̂jk − 1

K

K∑

l=1

β̂jl, ∀j ∈ �0, J�,∀k ∈ �1,K�

and
α∗

jk = β∗
0k/J, ∀j ∈ �1, J�,∀k ∈ �1,K�. (14)

To get the least committed mass function m∗ with minimum sum of squared
weights of evidence and verifying (8), we thus need to center the rows of the
(J + 1) × K matrix B = (βjk), set α∗

jk according to (14), and compute the
weights of evidence w−

k and w+
k from (3), (4) and (6).

4.2 Example

As a simple example, let us consider simulated data with J = 1 feature, K = 3
classes, and Gaussian conditional distributions X|θk ∼ N (μk, 1), with μ1 = −1,
μ2 = 0 and μ3 = 1. We randomly generated 10, 000 from each of the three
conditional distributions, we standardized the data and we trained a logistic
regression classifier on these data. Decisions are usually based on the posterior
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class probabilities P(θk|x) displayed in Fig. 2(a). Figure 3 shows the underlying
masses, computed as explained in Sect. 4.1. As we can see, masses are assigned
to subsets of classes in regions where these classes overlap, as could be expected.
Figure 2(b) shows the contour functions pl(θk|x) vs x. Interestingly, the graphs of
these functions have quite different shapes, as compared to those of the posterior
probabilities shown in Fig. 2(a). Whereas decisions with probabilistic classifiers
are classically based on minimum expected loss, seeing logistic regression classi-
fiers as evidential classifiers opens the possibility to experiment with other rules
such as minimum lower or upper expected loss [4] or interval dominance [11].
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Fig. 2. Posterior class probabilities P(θk|x) (a) and contour functions pl(θk|x) for the
logistic regression example.
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Fig. 3. Masses on singletons (a) and compound hypotheses (b) vs. x for the logistic
regression example.
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5 Conclusions

We have shown that logistic regression classifiers and also, as a consequence,
generalized linear classifiers such as feedforward neural network classifiers, which
essentially perform logistic regression in the output layer, can be seen as pooling
evidence using Dempster’s rule of combination. This finding may have important
implications, as it opens the way to a DS analysis of many widely used classifiers,
beyond the particular distance-based classifiers introduced in [3,5]. In future
work, we will deepen this analysis by exploring the consequences of viewing
neural network classifiers as evidential classifiers, in terms of decision strategies,
classifier fusion, and handling missing or uncertain inputs, among other research
directions.
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Compiègne CS 60319, 60203 Compiègne cedex, France
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Abstract. In uncertainty theories, a common problem is to define how
we can extend relations between sets (e.g., inclusion, ranking, consis-
tency, . . . ) to corresponding notions between uncertainty representations.
Such definitions can then be used to perform the same operations as those
that are done for sets: measuring information content, ordering alterna-
tives or checking consistency, to name a few. In this paper, we propose a
general way to extend set relations to belief functions, using constrained
stochastic matrices to identify those belief functions in relation. We then
study some properties of our proposal, as well as its relations with exist-
ing works focusing on peculiar relations.

Keywords: Set relations · Belief functions · Specificity · Ranking
Consistency

1 Introduction

One can define many relations between two (or more) subsets A,B of some
finite set X, i.e. between elements of some boolean algebra

(
2X ,∩,∪, .C)

. Such
relations can check whether the sets are consistent (A ∩ B �= ∅); whether one
set is more informative than another, or imply one another (A ⊆ B); when the
space on which they are defined is ordered, whether one set is “higher” than
another (A ≺ B ); etc. These relations can then be related to practical problems
such as restoring consistency or ranking alternatives.

To address the same questions in those uncertainty theories that formally
generalize set theory (based, e.g., on possibility distributions, belief functions
or sets of probabilities), it is desirable to carry over relations between sets to
uncertainty representations. Given the higher expressiveness of such theories,
the problem is ill-posed in the sense that there is not a unique way to do so.
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We can cite as a typical example the notion of inclusion between belief functions,
that has many definitions [3]. Yet, such works usually focus on extending one
particular relation in meaningful ways.

In this paper, we propose a simple way to extend any set relation to an
equivalent relation between belief functions, in the sense that the relation is
exactly recovered when considering categorical belief functions (i.e., belief func-
tions reduced to one focal element). Basically, we require that for a pair of belief
functions to be in relation, there must exist at least one stochastic matrix such
that one of these belief functions is obtained as the dot product of the matrix
with the other belief function. Additionally, the matrix is constrained to have
non-null entries on pairs of focal sets satisfying the relation to extend.

We develop and study the properties of our proposal in Sect. 2, in which we
also include necessary reminders. We then show in Sect. 3 how this proposal is
linked to previously proposed relations between belief functions, as well as to
other related results. We will focus, in particular, on the notions of information
specificity, of consistency, and of ranking. Finally, we formalize in Sect. 4 how we
can say whether a relation is preserved through functional mapping of a variable
to another one, and provide some results about the inclusion and ranking cases.

2 Main Proposal

2.1 Definitions

A belief function on a finite space X = {x1, . . . , xK} is in one-to-one correspon-
dence with a mass function mi : 2X → [0, 1] that satisfies

∑
A⊆X mi(A) = 1.

From such a mass function, the belief and plausibility of an event A respectively
read

Beli(A) =
∑

E⊆A

mi(E) and Pli(A) =
∑

E∩A �=∅
mi(E).

If mi(∅) = 0, they can be interpreted as bounds of the probability P (A) of A,
inducing the probability set Pi = {P : Beli(A) ≤ P (A) ≤ Pli(A),∀A ⊆ X}.
We denote by BX the set of all belief functions on X. A particularly interesting
subclass of belief functions for this study will be the one of categorical ones.
A categorical mass function, denoted mB , is such that mB(B) = 1.

Let us now consider a relation such that for any ordered pair (A,B) ⊆ X2,
we will denote by ARB the truth of the relation between A and B (R is thus
a binary relation on 2X , or equivalently a subset of 2X × 2X). We then propose
the following simple definition to extend this relation to belief functions, i.e. into
a relation on BX :

Definition 1. Given two mass functions m1,m2 and a subset relation R, we
say that m1R̃m2 iff there is a (left)1 stochastic matrix SR such that ∀A,B ⊆ X

m1(A) =
∑

B⊆X

SR(A,B)m2(B) (1)

with S(A,B) > 0 ∧ m2 (B) > 0 =⇒ ARB. (2)
1 We use left-stochasticity only throughout the paper.
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It is easily checked that R̃ is a generalisation of R in the sense that

mAR̃mB ⇔ ARB, ∀A,B ⊆ X. (3)

Indeed, if ARB, we can choose SR (E,F ) = mA (E) and this matrix matches
the conditions of Definition 1, hence mAR̃mB . Also, there is only one relation R̃
on belief functions spanned by Definition 1 from a given set relation R. Suppose
two such belief function relations exist. If a matrix matching the conditions of
Definition 1 was found for the first one then the same matrix also works for the
other and the relations are equivalent. Similarly, if R̃ is spanned by Definition 1
from a given set relation R then it cannot be spanned by other set relations in
the same way. This is an immediate consequence of (3). Consequently, we will
use the same notation for a relation R on the subset or belief function side in
the remainder of the paper.

Definition 1 is inspired from previous works on specificity of belief func-
tions [3,4,6], as well as on recent proposals dealing with belief function order-
ing [5]. As these works dealt with directional, or rather asymmetric relations,
Definition 1 is naturally asymmetric. However, Proposition 1 shows that it has a
somehow symmetric counterpart.

Proposition 1. Consider two mass functions m1,m2 and a belief function rela-
tion R. Then the two following conditions are equivalent:

1. there is a stochastic matrix SR(A,B) such that

m1(A) =
∑

B⊆X

SR(A,B)m2(B),

with SR(A,B) > 0 ∧ m2 (B) > 0 =⇒ ARB.

2. there is a joint mass function m12 on 2X × 2X such that

m12(A,B) > 0 =⇒ ARB, (4)

m1(A) =
∑

B

m12(A,B), (5)

m2(B) =
∑

A

m12(A,B). (6)

Proof (Sketch). 1. =⇒ 2: from a matrix SR(A,B), we can deduce a joint
m12(A,B) = m2(B)SR(A,B) for any A,B which satisfies 2.

2. =⇒ 1: from a joint m12(A,B) satisfying (4)–(6), define SR(A,B) =
m12(A,B)/m2(B) if m2 (B) > 0, and with arbitrary values making it (left)-
stochastic if m2(B) = 0. This matrix satisfies 1.

This proposition shows, in particular, that any stochastic matrix SR can be
associated to a unique joint mass function m12, and vice-versa. Also note that,
using a transformation similar to the one used in the proof, we can build a
stochastic matrix S′

R such that S′
R(B,A) = m12(A,B)/m1(A) if m1 (A) > 0, and

be with arbitrary values else. S′ is such that m2(B) =
∑

A⊆X S′
R(B,A)m1(A)

with S′
R(A,B) > 0 and m1 (A) > 0 implying BRA, but not necessarily ARB.
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2.2 Relation Properties Preservation

We may now wonder how much of the initial relation R properties between
sets do still exist when extended in this way to belief functions. We will now
provide a series of results for common properties, either by providing proofs
or counter-examples. We will keep the proposition/proof format, to provide a
uniform presentation.

Proposition 2 (Preserved symmetry). If R is symmetric on sets, it is so
on belief functions:

m1Rm2 ≡ m2Rm1,∀m1,m2

Proof (Sketch). If R is symmetric, then S′
R(A,B) as defined above is such that

S′
R(A,B) > 0 and m1 (A) > 0 implies ARB.

Proposition 3 (Unpreserved antisymmetry). If R is antisymmetric on
sets, it is not necessarily so on belief functions, as we may have

m1Rm2 ∧ m2Rm1 and m2 �= m1

Proof. Consider two mass functions that are positives only on subsets A,B,C
and such that

m1(A) = 0.3, m1(B) = 0.5, m1(C) = 0.2,

m2(A) = 0.4, m2(B) = 0.3, m2(C) = 0.3,

and the antisymmetric relation R on A,B,C summarised by the matrix

A B C
[ ]

A ARA ARB
B BRB BRC
C CRA CRC

We can then build two different joint mass functions such that m1Rm2 and
m2Rm1. ��
Proposition 4 (Unpreserved asymmetry). If R is asymmetric on sets, it
is not necessarily so on belief functions, as we may have

m1Rm2 and m2Rm1

Proof. Simply consider two mass functions m1,m2 that are positive only on
subsets A,B,C,D,E and such that

m1(A) = 0.2, m1(B) = 0.3, m1(C) = 0.2, m1(D) = 0.1, m1(E) = 0.2,

m2(A) = 0.2, m2(B) = 0.1, m2(C) = 0.3, m2(D) = 0.3, m2(E) = 0.1
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as well as the asymmetric relation R on those subsets summarised by the matrix

A B C D E
⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

A ARC ARD
B BRA BRE
C CRB CRD
D DRB DRE
E ERA ERC

.

We can then build two different joint mass functions such that m1Rm2 and
m2Rm1. ��
Proposition 5 (Preserved reflexivity). If R is reflexive on sets, it is so on
belief functions:

∀m, we have mRm

Proof (sketch). Just consider the joint mass function m12(A,A) = m(A) if m1 =
m2 = m.

Proposition 6 (Unpreserved irreflexivity). If R is irreflexive on sets, it is
not necessarily so on belief functions, as we may have mRm for some m ∈ B.

Proof. Consider the following mass function

m(A1) = 0.5,m(A2) = 0.5

and the relation R summarised in the following matrix

A1 A2[ ]
A1 A1RA2

A2 A2RA1

which is irreflexive. However, the joint m(A1, A2) = m(A2, A1) = 0.5 shows that
we have mRm, hence R may not be irreflexive for belief functions. ��
Proposition 7 (Preserved transitivity). If R is transitive on sets, it is so
on belief functions:

m1Rm2 ∧ m2Rm3 =⇒ m1Rm3

Proof (sketch). Consider two stochastic matrices SR12 and SR23 satisfying Def-
inition 1, we can show that their product gives a matrix SR13 satisfying Defini-
tion 1.

Proposition 8 (Unpreserved completeness). If R is complete (or total)
on sets, it is not necessarily so on belief functions: for any two m1,m2 we may
have neither m1Rm2 nor m2Rm1.
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Proof. Consider the following mass functions

m1(A1) = 0.6,m1(A2) = 0.4; m2(B1) = m2(B2) = 0.5

and the relation R summarised in the following matrix

B1 B2[ ]
A1 A1RB1 B2RA1

A2 B1RA2 A2RB2

It is clear that any joint mass function respecting conditions (5)–(6) must
give a non-null mass to both (A1, B1) and (A1, B2), hence we have neither
m1Rm2 nor m2Rm1. ��

Table 1 summarises our obtained results. Note that some properties unpre-
served in general can nevertheless be preserved in peculiar cases (e.g., antisym-
metry of inclusion is preserved, as specialisation is antisymmetric). This opens
the way to various further questions (i.e., what happens when considering poset
structures).

Table 1. Summary of properties preservation

R on 2X is → R on BX is R on 2X is → R on BX is
Symmetric Yes Irreflexive No

Antisymmetric No Transitive Yes
Asymmetric No Complete No
Reflexive Yes

3 Related Works

3.1 Inclusion and Consistency

In the case where the relations are either inclusion or consistency, then we
retrieve well-known results of the literature:

– in the case of inclusion we have ARB iff A ⊆ B, our definition is essentially
the same as specialisation [3], since checking m2 (B) > 0 is unnecessary in
this case.

– in the case of consistency, we have ARB iff A ∩ B �= ∅, and one can see that
m1Rm2 iff there is a joint mass affecting positive mass to pairs of sets having
a non-empty intersection. This is equivalent to require P1 ∩ P2 �= ∅, with Pi

the probability set induced by mi [1].
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3.2 Rankings

When the space X is ordered (with xi ≤ xi+1) and possibly infinite, it makes
sense to consider relations of the kind “higher than” in order to compare sets.

There are many ways to rank two sets A,B, such as:

– Single-bound dominance, that can be declined itself into four notions:
• loose dominance: AR≤LD

B if minA ≤ maxB
• lower bound: AR≤LB

B if minA ≤ minB
• upper bound: AR≤UP

B if maxA ≤ maxB
• strict dominance: AR≤SD

B if maxA ≤ minB
– Pairwise-bound or lattice dominance: AR≤PD

B if minA ≤ minB and
maxA ≤ maxB, whose extension to belief functions studied in [5] correspond
to our proposal.

Extensions of this kind are connected to the extensions of stochastic dominance
explored in [2].

4 Preservation by Functional Mapping

In this section, we investigate how we can check whether a relation is preserved by
a functional mapping, in the univariate case (multivariate case easily follows).
Such mappings are indeed used in lots of applications involving uncertainty
propagation (e.g., multi-criteria decision making, risk analysis, . . . ).

Let f be some function with domain X and codomain Y , i.e., f : X → Y .
The image f(A) of A ⊆ X under f is the subset f(A) = {f(x) : x ∈ A} ⊆ Y .
More generally, the image f(m) of some mass function m ∈ BX under f is the
mass function f(m) ∈ BY defined as

f(m)(B) =
∑

f(A)=B

m(A) for all B ⊆ Y. (7)

Definition 1. Let f : X → Y . Let RX and RY be relations on 2X and 2Y ,
respectively. The pair (RX ,RY ) of relations RX and RY is said to be compatible
with respect to f (f-compatible for short) if, for all A,B ⊆ X,

ARXB ⇒ f(A)RY f(B).

Example 1. Let RX
⊆ be the relation corresponding to inclusion on X, i.e., ARX

⊆B

iff A ⊆ B, A,B ⊆ X. Similarly, let RY
⊆ denote inclusion on Y . Since for any

function f and any A,B ⊆ X such that A ⊆ B it holds that f(A) ⊆ f(B),
the pair (RX

⊆ ,RY
⊆) is f -compatible for any f . Similarly, the pair (RX

⊂ ,RY
⊆) is

f -compatible for any f .
Now, let X and Y be two ordered spaces and let RX

≤PD
and RY

≤PD
be the rela-

tions corresponding to pairwise-bound dominance on X and on Y , respectively.
Then, the f -compatibility of pair (RX

≤PD
,RY

≤PD
) depends on f . In particular, if

f is monotonically non-decreasing, we have f(A) ≤PD f(B) for all A,B ⊆ X
such that A ≤PD B, and thus the pair (RX

≤PD
,RY

≤PD
) is f -compatible for such

f . However, this pair is not f -compatible when f is monotonically non-increasing
since in general we have in this case A ≤PD B �⇒ f(A) ≤PD f(B).
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Proposition 9 (Preserved compatibility). If (RX ,RY ) is f-compatible, it
is so on belief functions:

m1RXm2 ⇒ f(m1)RY f(m2). (8)

Proof (sketch). Consider a joint mass m12 on X satisfying (4)–(6) for RX . Then
if RX ,RY is f -compatible, mapping m12 through f results in a joint mass
showing that f(m1)RY f(m2).

We note that Proposition 9 and its straightforward extension to multivariate
functions (not presented here due to lack of space) generalize results in [4,5]
concerning inclusion and ranking.

5 Conclusion

In this paper, a very general way to extend a binary relation on sets to a binary
relation on belief functions is introduced. Several results are provided to assess
which properties of the relation are preserved through this mechanism. Our
proposal is also connected to more specific generalisation of binary relations, such
as the notion of specialisation. Consequently, our results are also a generalisation
of pre-existing ones for specific relations.

We believe that the original ideas presented in this paper shall reach out a
large audience of belief function practitioners wishing to address multi-criteria
decision making, reliability analysis or optimisation problems, in which some
relations such as ranking or information loss relations can play a significant role.
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Abstract. We propose the use of Smets and PCR5 rules to merge artifi-
cial geophysical and geotechnical data, as part of fluvial levee assessment.
It highlights the ability to characterize the presence of interfaces and a
geological anomaly.

Keywords: Levee assessment · Geophysics · Geotechnical testing
Belief functions · Data fusion

1 Introduction

Fluvial levees are manmade structures built for flood protection. They are con-
sidered as hazardous structures that can fail and lead to disastrous consequences
such as human or material loss and economic disasters. There are globally
acknowledged methodologies for levee assessment that include geophysical and
geotechnical investigation methods [1]. Geophysical methods are non-intrusive
and provide physical information on large volumes of subsoil with high output
and potentially significant related uncertainties. These associated uncertainties
are notably due to the indirect and integrating aspects of the methods and to
the resolution of inverse problems. Geotechnical investigation methods are intru-
sive and provide more punctual and more accurate information. An important
issue of assessment of levees is to be able to combine geophysical and geotech-
nical data taking into consideration their respective associated uncertainties,
imprecisions and spatial distributions. In this work, we suggest the use of Belief
Functions (BFs) and combination rules to merge artificial geophysical (electri-
cal resistivities) and geotechnical (cone bearing) data to display their ability to
discriminate three sets of soils. We assume that the reader is familiar with the
BFs introduced by Shafer in [2]. The use of BFs requires: (1) to select a com-
mon frame of discernment (FoD) of the considered problem, (2) to determine
the masses of belief or Basic Belief Assignments (BBAs) from available data
(geophysical and geotechnical) and (3) to choose a rule of combination.
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2 FoD and BBAs Construction

For the addressed levee problematic, we consider three classes of distinct soils θ1,
θ2 and θ3. Because the FoD, Θ, must consist of a set of exhaustive and exclusive
hypotheses, we will be using a fourth class θ4 to cover the physical characteris-
tics not included in the three first sets. The FoD is common to both information
sources. We use Θ = {θ1, θ2, θ3, θ4}. The construction of the BBAs for each data
source consists in assigning each data type to Θ.

BBA Construction From Geophysical Data: since the electrical resistivity
(ER) tomography method is one of the most employed, we propose the use
of ER as geophysical data. We consider two soil layers: an upper conductive
layer (10 Ω.m) standing for clays [3] and a subjacent and more resistive one
(102Ω.m) standing for silts starting at 10.4m depth. A very resisitive anomaly
(103Ω.m) standing for a sandy lens of about 10.5m high and 21.25m wide, is
finally positioned between these two first media. We then associate ER classes to
specific soils (split into ranges of ER) to Θ: θ1 = [5, 20], θ2 = [50, 2 ·102], θ3 = [5 ·
102, 2·103] and θ4 = [1, 5[∪]20, 50[∪]2·102, 5·102[∪]2·103, 104]. We use Res2Dmod
free software [4] to simulate noised data acquisition from a chosen resitivity
model (Fig. 1a) and then use the Res2Dinv software [5] to obtain the inverted
ER section as one would get from the processing of survey data (Fig. 1b). The
distinction between clays and silts can easily be made while the discrimination
of the anomaly is not obvious. We finally use the Res2dinv discretization grid
for the BBA m1(·) corresponding to each event of 2Θ. The values of the masses
are set using the Wasserstein distances between an inverted ER value ± its
uncertainty issued from Res2dinv and the interval corresponding to each event,
so as each cell of the grid gets a normalized BBA.

Fig. 1. 2D section of subsoil displaying (a) true ER with boreholes position in dashed
line and associated cone bearing values in white and (b) inverted ER.

BBA Construction From Geotechnical Data: as geotechnical data, we use
artificial cone bearing values (expressed in MPa). These information could be
obtained from a cone penetrometer test investigation campaign. We simulate a
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data acquisition from 4 boreholes with an interspacing of 50 m (as recommanded
in [6]), drilled to 40m depth with an acquisition every meter (Fig. 1a). One of the
boreholes is positioned so that it goes through the resistive anomaly. We consider
the following assignment of intervals of cone bearing values to Θ: θ1 = [0.3, 0.7],
θ2 = [3, 7], θ3 = [30, 70] and θ4 = [10−2, 0.3[∪]0.7, 3[∪]7, 30[∪]70, 102] that can
be associated to specific soils [7], such as clays for low values, silty soils for
intermediate values and sands for higher ones. We assume a belief mass equal
to 1 in the borehole and impose a lateral decrease of the trust in the data. The
geotechnical grid depends on the boreholes distance and on the acquisition rate.
Thus, for each cell, a second BBA m2(·) is fixed, entering in the fusion process.

3 BBAs Combination and Preliminary Results

We propose a fusion mesh containing all the meshes from the geotechnical and
geophysical grids in order to avoid the unnecessary data alteration due to inter-
polations. The merging process is carried out on two meshes of same dimension.
The data fusion consists in combining m1(·) and m2(·) assigned to each cell of
the grid. Many rules of BBA combination have been proposed. Here we present
only two of them: Smets’ rule [8] and the Proportional Conflict Redistribution
rule no. 5 (PCR5) [9] allowing the redistribution of all partial conflicts pro-
portionately to the masses involved in them. We use PCR5 since we combine
only two sources of evidence thus PCR6 is equivalent to PCR5 rule [9] in this
case. Smets’ rule (conjunctive rule under an open-world assumption) allows the
quantification of the classical conflict level represented by (Eq. 1):

m12(∅) =
∑

X1,X2⊆Θ|X1∩X2=∅
m1(X1)m2(X2) (1)

Fig. 2. Data fusion with Smets’ combination rule (a, b) and with PCR5 (c, d). (a) and
(c) represent the BBAs associated to the events with the highest mass, presented in
(b) and (d) respectively. The black lines stand for the interfaces fixed in the ER model
(Fig. 1a) while the dashed lines stand for the boreholes position.
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Thanks to it, we are able to point out the conflictual zones around the hori-
zontal interfaces and the resistive anomaly (Fig. 2b). The fusion, following PCR5
(closed world assumption)[9] (Fig. 2d) is very close to the true model we imposed
(Fig. 1a), giving a clearer view of the interface and of the vertical and horizontal
extension of the resistive anomaly compared to the image given by the inverted
ER (Fig. 1b). As a decision-making support, we choose to represent the events
having the highest belief masses (Fig. 2b and d) and their related degrees of
belief (Fig. 2a and c).

4 Conclusion

The use of BFs for investigation of levees is promising. It is able to highlight
the presence of an interface between two media much more precisely than the
geophysical method alone. Furthermore, it enables the reliable estimation of
the complete extension of an anomaly with high ER and cone bearing values.
Without normalization, Smets’ combination rule easily spotlights the conflicting
zones. Such information could be precious during an investigation campaign,
indicating areas where survey has to be reinforced. In future work, we will focus
on parametric studies to choose the best decreasing functions for the lateral
propagation of the geotechnical information. Finally, we will test our algorithm
using real data acquired on a scale model and on a levee.
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Abstract. G. Shafer views belief functions as the result of the fusion
of elementary partially reliable testimonies from different sources. But
any belief function cannot be seen as the combination of simple support
functions representing such testimonies. Indeed the result of such a com-
bination only yields a special kind of belief functions called separable.
In 1995, Ph. Smets has indicated that any belief function can be seen
as the combination of so-called generalized simple support functions. We
propose a new interpretation of this result in terms of a pair of separa-
ble belief functions, one of them modelling testimonies while the other
represents the idea of prejudice. The role of the latter is to weaken the
weights of the focal sets of the former separable belief function. This
bipolar view accounts for a form of resistance to accept the information
supplied by the sources, which differs from the discounting of sources.

1 Introduction

G. Shafer [1] has presented his theory of belief functions essentially as an app-
roach to the fusion of unreliable elementary testimonies, each being represented
by simple support functions. However many belief functions prove to be not sep-
arable, i.e., not the orthogonal sum of simple support functions. Ph. Smets [2]
tries to remedy this difficulty by generalizing simple support functions, show-
ing that any belief function is the conjunctive combination of such generalized
elementary belief functions (where some masses can be negative). Using a retrac-
tion operation, he shows that any belief function can be decomposed into two
separable belief functions. One represents the fusion of elementary testimonies
(expressing confidence), and the other (expressing doubt) plays the role of a
moderator that can annihilate, via retraction, some information supplied by the
former, possibly resulting in ignorance. This pair of belief functions is called
“Latent Belief Structure” by Smets.

In this paper, we present a bipolar belief function model which pushes the
notion of “Latent Belief Structure” further. In a belief function, the doubt com-
ponent is assumed to reflect a cognitive bias interpreted as a prejudice, pertaining
to the information supplied by the confidence component. This cognitive bias
leads to weaken the strength attached to the combination of some elementary
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testimonies appearing in the confidence part, thus expressing a lack of trust in
the information obtained by merging these testimonies.

The organization of the rest paper is as follows. In Sect. 2, some necessary
background on belief functions is introduced. In Sect. 3, we propose new results
about the decomposition of belief functions, providing new insights in the weight
function introduced by Smets [2], as well as conditions for separability in a sim-
ple case. Section 4 presents a generalized setting for the merging of elementary
testimonies in the presence of prejudices, focusing on the process of belief atten-
uation by means of the retraction operation. This framework is illustrated on
the Linda example [3], highlighting the difference between belief retraction and
source discounting.

2 Separable Belief Functions

In Shafer evidence theory, the uncertainty concerning an agent’s state of belief on
a finite set of possible situations, called the frame of discernment Ω is represented
by a basic belief assignment (BBA) or mass function m defined as a mapping
m : 2Ω to [0, 1] verifying

∑
A⊆Ω m(A) = 1. Each subset A ⊆ Ω such as m(A) > 0

is called a focal set of m. A BBA m is called normal if ∅ is not a focal set
(subnormal otherwise), vacuous if Ω is the only focal element, non-dogmatic if
Ω is a focal set, categorical if m has only one focal set different from Ω.

An elementary testimony T with strength 1−x in favor of a non-contradictory
proposition A ∈ 2Ω is represented by a simple BBA (SBBA) m : 2Ω −→ [0, 1]
such that m(A) = 1 − x, for A �= Ω and m(Ω) = x, with x ∈ [0, 1] and is
denoted by m = Ax. The value x, we call diffidence weight, evaluates the lack of
reliability of the testimony (or the source of information). A vacuous BBA can
thus be denoted by A1 for any A ⊂ Ω, and a categorical BBA A �= Ω can be
denoted by A0.

A belief function Bel(A) is a non-additive set function which represents
the total quantity of belief in the subset A of Ω and is defined by Bel(A) =∑

∅�=B⊆A m(B). A BBA m can be equivalently represented by its associated
plausibility and commonality functions respectively defined for all A ⊆ Ω by
Pl(A) =

∑
A∩B �=∅ m(B) = 1 − Bel(A) and Q(A) =

∑
B⊇A m(B).

The conjunctive combination of BBA’s mj derived from k distinct sources,

denoted by m ∩© is expressed by m ∩©(A) =
∑

A1∩...∩Ak=A

(∏k
j=1 mj(Aj)

)
. Note

that m ∩© is not always normal. Dempster’s rule, denoted by ⊕, is a normalized
version of the conjunctive combination rule and is defined such that: m⊕(∅) = 0
and m⊕(A) = K · m ∩© for A �= ∅. The normalization factor K is of the form

(1 − c(m1, . . . mk))−1 where c(m1, . . . mk) =
∑

A1∩...∩Ak=∅

(∏k
j=1 mj(Aj)

)
< 1

represents the amount of conflict between the sources. These two combination
rules are commutative, associative, and generally used to combine BBAs from
distinct sources. The Dempster rule is simply expressed using the commonality
functions as: Q1 ⊕ . . . ⊕ Qk = K.Q1 · Q2 · · · Qk.
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In Shafer’s view [1], a separable BBA is the result of Dempster’s rule of
combination of simple BBAs: m =

⊕
∅�=A⊂Ω Aw(A), w(A) ∈ [0, 1], ∀A ⊂ Ω,A �=

∅. We call the mapping w : 2Ω \ {Ω} → (0, 1] a diffidence function. If the BBA
is non-dogmatic (m(Ω) > 0), this representation is unique, and w(A) > 0,∀A ⊂
Ω. Denœux [4] has extended this concept to the conjunctive combination of
subnormal BBA’s ∩©∅�=A⊂ΩAw(A), w(A) ∈ [0, 1] ∀A ⊂ Ω.

Shafer [1] [Th. 7.2 p.143] shows that if Bel is a separable belief function, and
A and B are two of its focal sets such as A∩B �= ∅, then A∩B is a focal set of Bel.
The condition A ∩ B �= ∅ can be dropped if we allow for sub-normalized belief
functions. But the converse is not true. This necessary condition clearly indicates
that not all belief functions are separable. To overcome this difficulty, Smets [2]
generalized the concept of simple support function, considering Ax such that
x ∈ (0,+∞). Smets has shown that any non dogmatic BBA can be decomposed
into the conjunctive combination of generalized BBA’s: m = ∩©∅�=A⊂ΩAw(A),
extending the range of diffidence functions w to (0,+∞). For every A ⊂ Ω,
the weights w(A) are obtained from the commonality function of m as: w(A) =
∏

B⊇A Q(B)(−1)|B|−|A|+1
=

∏
C∩A=∅,|C|odd Q(A∪C)

∏
C∩A=∅,|C|even Q(A∪C) .

3 The Bipolar Decomposition of a Belief Function

We can write the decomposition of a non-dogmatic belief function as m =
( ∩©A∈CAw+(A)) �∩©( ∩©B∈DBw−(B)), where

– w+ and w− are standard diffidence functions in (0, 1) defined from the original
one w associated to m, such that: w+(A) = min(1, w(A)), and w−(A) =
min(1, 1/w(A)),∀A ⊂ Ω.

– C and D ⊆ 2Ω , w(A) < 1 if A ∈ C and w(B) > 1 if B ∈ D.
– �∩© defined by m1 �∩©m2 = ( ∩©∅�=A⊂ΩAw1(A)) ∩©( ∩©∅�=B⊂ΩB

1
w2(B) ) is the

retraction operation, also obtained by the division of commonality functions:
Q1 �∩©Q2(X) = Q1(X)

Q2(X) ,∀X ⊆ Ω, called decombination [2] or removal [5]. Gins-
berg [6] and Kramosil [7] have exploited this division rule.

– Factors of the form Aw(A) represent testimonies in favor of A if w(A) < 1,
and will be called prejudices against believing A if w(A) > 1.

A belief function is separable if and only if w(A) ≤ 1,∀A ⊂ Ω in the above
decomposition. In that case, the set of focal sets of m contains Ω and is closed
under conjunction [1]. So a separable belief function will be of the unique form:
m = ∩©A∈CAw+(A).

A mass function m can thus be decomposed in a unique irredundant way as
a pair (m+,m−), of separable belief functions induced by BBAs m+ and m−,
such that m = m+ �∩©m−. The confidence component denoted by m+ is a BBA
obtained from the merging of SBBAs, with focal sets in C, and the diffidence
component denoted by m− is a BBA obtained likewise, with focal sets in D. By
construction, C ∩D = ∅. The pair (m+,m−) of separable BBAs is called a latent
belief structure [2] more recently studied in [4,8,9]. The existence of positive
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and negative information is generally coined under the term bipolarity [10], an
idea applied to latent belief structures in [11]. A general study of the canonical
conjunctive decomposition of a belief function was realised by Ke et al. [12] and
Pichon [13], albeit without focusing on its possible meaning.

In the following we are interested in retrieving the mass function m from
its diffidence function w via the commonality function rather by the conjunc-
tive combination. First, note that the expression

∏
B⊇A Q(B)(−1)|B|−|A|+1

makes
sense for A = Ω, and we get w(Ω) = 1/Q(Ω). So function w can be extended to
the whole of 2S , even if only sets A ⊂ Ω appear in the decomposition formula.
In previous studies, w(Ω) remained undefined. Of course, w(Ω) > 1 but this
will be also the case for the diffidence weights of other subsets for non-separable
belief functions.

Noticing that m(A) =
∑

A⊆B(−1)|B|−|A|Q(B), and moreover log w(A) =
∑

A⊆B(−1)|B|−|A|+1 log Q(B), it is clear that m is to Q what − log w is to
log Q. Since Q(A) =

∑
A⊆B m(B), we have log Q(A) =

∑
A⊆B log(1/w(B)) =

log
∏

A⊆B
1

w(B) . Hence,

Q(A) =
1

∏
A⊆B w(B)

(1)

Note that in (1), the weight w(Ω) appears explicitly in all the expressions of
Q(A) for all subsets A. Hence we can retrieve the BBA m, from the diffidence
function w computed from it, directly as m(E) =

∑
E⊆A(−1)|B|−|A|( 1∏

A⊆B w(B) ).
In particular we can have the following result:

Proposition 1. A diffidence function computed from m via (1) is such that∏
A⊆Ω w(A) = 1.

Proof. We know that commonalities satisfy Q(∅) = 1. Using (1) yields Q(∅) =
1∏

∅⊆B w(B) = 1. So,
∏

A⊆Ω w(A) = 1.

It gives a general definition of a diffidence function as a mapping w : 2Ω →
(0,+∞), such that

∏
A⊆Ω w(A) = 1 and w(Ω) ≥ 1. Note that the mass function

mw derived from any function w defined in this way is not always positive.
Indeed, suppose that w(A) = λ < 1, w(B) = μ > 1, w(C) = 1, C �= Ω otherwise
(so w(Ω) = 1/λμ > 1). By means of the conjunctive rule, one gets the BBA:
m(A ∩ B) = (1 − λ)(1 − μ),m(A) = λ(1 − μ),m(B) = (1 − λ)μ,m(Ω) = λμ. It
is clear that m(A∩B),m(A) are negative, in general. So the mapping m �→ w is
injective, but it is not surjective. Namely, given a diffidence function w such that∏

A⊆Ω w(A) = 1 and w(Ω) ≥ 1, Qw obtained by (1) is a decreasing set-function
that ranges on [0, 1], but decreasingness is not sufficient to ensure that masses
obtained from function Qw are all positive, i.e., Qw is not always a commonality
function. On the other hand, diffidence functions such that w(A) ≤ 1,∀A ⊂ Ω
are in one to one correspondence with BBAs of separable belief functions.



Prejudiced Information Fusion Using Belief Functions 81

Example: Two Overlapping Focal Sets on a 4-Element Frame. Let Ω =
{a, b, c, d}. We denote {a} by a, {a, b} by ab, etc. Consider m with m(ab) =
β;m(ac) = γ;m(a) = α with α + β + γ < 1, (hence m(Ω) = 1 − (α + β + γ)).
Note that Q(a) = 1, Q(ab) = 1−α−γ, Q(ac) = 1−α−β, Q(B) = 1−α−β −γ
for other non-empty sets B.

We can decompose m as a combination m = {ab}w(ab) ∩©{ac}w(ac) ∩©{a}w(a).
Its diffidence function is given in Table 1.

Table 1. Decomposition with focal sets: ab, ac, a and Ω

A m w Inverse solution

a α w(a) = (1−α−γ)(1−α−β)
1−α−β−γ

1 − (w(ab) + w(ac) −
w(ab)w(ac))w(a)

ab β w(ab) = 1−α−β−γ
1−α−γ

(1 − w(ab))w(ac)w(a)

ac γ w(ac) = 1−α−β−γ
1−α−β

(1 − w(ac))w(ab)w(a)

abcd 1 − α − β − γ w(Ω) = 1
1−α−β−γ

w(ac)w(ac)w(a)

other subsets 0 1 0

It is a separable belief function if the diffidence weights are ≤ 1. Note that
w(ab) = 1−α−β−γ

1−α−γ < 1 and w(bc) = 1−α−β−γ
1−α−β < 1 but it is not always the case for

w(a) = (1−α−γ)(1−α−β)
1−α−β−γ . The condition of separability of the belief function m is

α2 +α(−1+β +γ)+βγ � 0. Fixing β, γ, this condition is of the form α1 ≤ α ≤
α2, with α1 = (1−β−γ)−

√
(−1+β+γ)2−4βγ

2 and α2 = (1−β−γ)+
√

(−1+β+γ)2−4βγ

2 ,
provided that (1−β−γ)2 ≥ 4βγ. The latter condition is valid only if β and γ are
small enough, that is if

√
β+

√
γ ≤ 1. Besides note that 0 ≤ α1 ≤ α2 ≤ 1−β−γ.

It is of interest to consider the special case when β = γ. It is easy to verify
that α1 = 1−2β−√

1−4β
2 and α2 = 1−2β+

√
1−4β

2 . We must have β ≤ 0.25 otherwise
the belief function cannot be decomposable (α1 and α2 are not defined). For
β = 0.25 we have that α1 = α2 = 0.25. See the graph of the functions giving α1

and α2 in terms of β on Fig. 1. It indicates the zone of non-separability under
the line 1 − 2β and on the right-hand side of the curve for α1 and α2.

Fig. 1. Left: m(a) in terms of β = γ if w(a) = 1. Right: diffidence weights in terms
of α
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It may sound strange that there are two separability thresholds α1 and α2.
Actually, it means that, fixing β and γ, there are still two possibilities for choos-
ing m(a) such that m is the conjunctive combination of two SBBAs mb and mc

respectively focused on ab and ac. Let λ = mb(ab) and μ = mc(ac). By defini-
tion, we have β = λ(1 − μ) and γ = (1 − λ)μ. Suppose without loss of generality
that λμ ≤ (1 − λ)(1 − μ). There are two possible choices for mb and mc:

– m1
b(ab) = λ and m1

c(ac) = μ. Then α1 = λμ, where a is weakly supported.
– m2

b(ab) = 1 − μ and m2
c(ac) = 1 − λ. Then α2 = (1 − λ)(1 − μ), where a is

strongly supported (λμ is small). Note that m1
b(ab) = 1 − m2

c(ac).

When m defined by parameters α, β, γ is separable, we get w(a) = 1, which
leads to the condition (α + β)(α + γ) = α. Hence w(ab) = 1 − α − β and
w(ac) = 1 − α − γ. So we can define mb(ab) = α + β, mb(Ω) = 1 − α − β; and
mc(ac) = α + γ, mc(Ω) = 1 − α − γ. Choosing α = α1 or α2 leads to respective
pairs of SBBAs (m1

b ,m
1
c) and (m2

b ,m
2
c). We can check that indeed these pairs

are related by the condition m1
b(ab) = 1 − m2

c(ac), that is, α1 + β + α2 + γ = 1.
Finally, we can study the variation of the diffidence weights when α ranges

from 0 to its maximum 1−β −γ. Note that w(a) is the mass of Ω for the SBBA
ma focusing on a, when considering the decomposition of the BBA m. The less
w(a) the stronger is the testimony pointing to a, the testimony is not present
if w(a) = 1, and it becomes a prejudice against a when w(a) > 1. It can be
checked (see Fig. 1 right) that:

– For α = 0, we get w(a) = (1−β)(1−γ)
1−β−γ > 1.

– w(a) decreases with α until a value α = 1−β −γ −√
βγ where the derivative

vanishes. The minimal value of w(a) is (β+
√

βγ)(γ+
√

βγ)√
βγ

and it is less than 1
only if

√
β +

√
γ ≤ 1, as seen earlier. When α1 and α2 exist, α1 ≤ α ≤ α2,

and they coincide if and only if
√

β +
√

γ = 1.
– w(a) increases with α ≥ α and limα→1−β−γ w(a) = +∞.

Looking at the right part of Fig. 1, we note that when α = 0, w(a) > 1 and
testimonies in favor of ab and ac are weak; so the prejudice against a is strong
enough to erase the focal set a from m. When w(a) reaches its minimal value,
the prejudice in favor of a is maximal. When α is close to its maximum value
1−β−γ, testimonies in favor of ab and ac are less and less challenged since their
diffidence weights get close to 0, while the prejudice against a rapidly increases
to infinity. At the limit, we get a dogmatic belief function with m(a) = 1−β −γ
and the prejudice no longer compensates the elementary testimonies in favor of
ab and ac.

4 Prejudiced Information Fusion

A generalized SBBA focused on a subset E with diffidence weight x represents
the idea that “one has some reason to believe that the actual world is in E (and
nothing more)” when x is small (x < 1), whereas, when x > 1, it expresses
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the idea that “one has some reason not to believe that the actual world is in
E” [2], what we called prejudice. Note that the latter does not mean that we
have a reason to believe the complement E of E (which would mean assigning
a weight x < 1 to E). In this section, we try to provide an interpretation of
non-separable belief functions in terms of merging elementary testimonies with
prejudices that weaken the result of the former merging. The idea is that the
agent possessing a prejudice of strength y > 1 against believing E is ready to
doubt about the truth of E whenever receiving a testimony claiming that E is
true. More generally, the combination Ax ∩©By of a simple BBA Ax, x < 1 with
a simple prejudice By, y > 1 yields the diffidence function w(·) such that:

if B �= A,w(E) =

⎧
⎪⎨

⎪⎩

x if E = A

y if E = B

1 otherwise.
(2)

and w(A) = xy if A = B. So, it is a belief function if and only if A = B
and xy < 1. It is equivalent to erode the testimony Ax with another testimony
A1/y using retraction. In particular, Ax ∩©A1/x yields total ignorance. However,
erosion cannot alter Ax by retracting B �= A.

We can compare the erosion with discounting an SSB Ax: the discounting
procedure reduces the mass 1−x bearing on A with a factor δ ∈ [0, 1] and yields
mδ(A) = A(1−δ)+δ.x, which is equal to Axy provided that 0 < δ = 1−xy

1−x ≤ 1
since y > 1, that is 1 < y < 1/x.

More generally we can retract a focal set B from a separable mass function
m. Consider m = ∩©k

i=1A
wi
i and its combination with a prejudice Bx, x > 1.

Focal sets of m are of the form EI = ∩i∈IAi, I ⊆ {1, . . . k} with masses
m(EI) =

∏
i∈I(1 − wi)

∏
i�∈I wi (where we allow that some EI ’s may be iden-

tical). Combining this mass function with Ex
J yields a mass function m′ such

that m′(EJ ) = xm(EJ ) + (1 − x)(
∑

I⊆J m(EI))= xm(EJ) + (1 − x)Bel(EJ)
(where E∅ = Ω). So EI is erased from the focal sets of m by Ex

J if and only if

x = Bel(EJ )
Bel(EJ )−m(EJ )

=
∑

I⊆J m(EI)
∑

I⊂J m(EI)
= 1/(1 − ∏

i∈J(1 − wi)), which is clearly more
than 1. Note that we can erode a single focal set via retraction, while discount-
ing affects all focal sets to the same extent. Similarly, it can be checked that
if J ⊂ I, m′(EJ) = (

∏
i�∈I wi)

∏
i∈I\J(1 − wi)(1 − x + x

∏
i∈J(1 − wi)) = 0 if

and only if x = 1/(1 − ∏
i∈J(1 − wi)) again, while if J �⊂ I, m′(EI) = xm(EI),

which is provably less than 1. In other words, retracting the focal set EJ erases
all focal sets EI ⊂ EJ as well, namely all combinations between the merging of
information from sources indexed in J , with information from other sources.

So we can consider that any belief function comes from merging unreliable
elementary testimonies, with prejudices that weaken the weights pertaining to
the conjunctions of information items coming from sources. It is indeed natural
to consider that information we receive from the outside is challenged by our
prior information taking the form of stereotypes, or prejudices that one is often
unaware of. The receiver is reluctant to consider the result of such conjunction
valid. For instance, consider a variant of the Linda problem [3]. In this case,
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the bank teller Linda, depicted as a philanthropist, is found by participants
to a psychological experiment, more likely to be a philanthropist bank teller
than a bank teller, because the former looks more “representative” or typical of
persons who might fit the description of Linda. Here we consider the case when
we receive two testimonies, namely one (Bv) claiming that Linda is a banker
and another one Aw that she is a philanthropist. The fusion process leads us to
allocate a belief degree (1 − v)(1 − w) to the fact that she is a philanthropist
bank teller. However, a prejudiced individual would hardly believe that a bank
teller can be philanthropist, and would like to erode, possibly erase, this belief
by combining the result of the fusion with the generalized SSB (A ∩ B)u with
1 < u ≤ 1/(v+w−vw), which leads to a belief degree equal to 1−(u+v−vw)u,
that is all the lesser as the prejudice is strong.

5 Conclusion

This paper revisits the decomposition of a belief function into a combination of
generalized simple support functions proposed by Smets [2] showing that it can
be viewed as the merging of uncertain testimonies and of prejudices against the
results of their partial conjunctions. We have laid bare new formal properties of
the diffidence function w and shown how to reconstruct the BBA m from it via
Moebius-like transforms. Our results strengthen the approach to belief function
based on the merging of pieces of evidence, as opposed to the approach based on
upper and lower probability. Future research can be a study of the information
ordering based on diffidence functions, introduced by Denœux [4], on which our
results can shed more light.
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UMR 7253, Heudiasyc - CS 60 319 - 60 203, Compiègne Cedex, France
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Abstract. The paper studies the flight level assignment (FLA) prob-
lem and its robust variant. Our goal is reducing the total cost (and more
specifically the flight delay) induced by airspace congestion through an
appropriated FLA taking account of uncertainties such as weather condi-
tion, flight velocity, flight departure time, etc. Among these uncertainties,
we assume that the flight departure time, which follows a Mixture Gaus-
sian Distribution, is certainly one of the main uncertainty factors worthy
to deal with. The deterministic FLA problem is formulated through an
Integer Linear Programming (ILP) model, which becomes trickier when
the uncertainty aspect is considered. The FLA problem is strongly NP-
hard and solving it exactly is out of reach even for moderate realistic
instances. Hence, we propose an approximated optimization approach to
solve the robust FLA problem. The main idea is to decompose the prob-
lem by levels and solving it separately while handling the connecting
constraints between levels. Numerical results illustrate our findings.

Keywords: Robust optimization · Flight level assignment
Linear programming · Hoeffding’s inequalities
Monte-Carlo Simulation

1 Introduction

With the high increasing demand for commercial flights each year, the Air Traf-
fic Management (ATM) is becoming more and more complex and less efficient
in reducing air traffic congestion. With respect to air traffic congestion, two
main types can be identified corresponding to areas of airspace: terminal con-
gestion (around airports) and en-route congestion (between airports). We are
interested in reducing the en-route congestion and its induced cost while taking
into account uncertainties. The paper studies the flight level assignment (FLA)
problem and its robust variant. Our goal is reducing the total cost (and more
specifically the flight delay) induced by airspace congestion through an appro-
priated FLA taking account of uncertainties such as weather condition, flight
velocity, flight departure time, etc. We have shown in [7] that the FLA prob-
lem is NP-hard even for instances with only three altitude levels. It may also
c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 86–94, 2018.
https://doi.org/10.1007/978-3-319-99383-6_12
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be shown easily that for a single altitude level the problem of maximizing the
number of flights accommodated to this level is NP-hard by reduction to the
maximum independent set problem. This work is in continuation of [7,11].

This paper is organized as follows. After this introduction, in Sect. 2 we report
a short discussion on related works and position the problem with respect to
ATM. In Sect. 3 we present our approach and discuss in detail the FLA problem
for a single level. In Sect. 4, we firstly report a discussion on conflict probability
estimation based on the flight departure time and its induced cost, then compu-
tational results illustrate our findings. Finally, a conclusion is given in Sect. 5.

2 Context of the Work

Related Works. Optimization problems in ATM have been widely studied these
last decades. We focus on some works related to a certain extent to the flight
level assignment problem. Let us firstly refer to [6], Cook et al. have shown
that how uncertainty affects the ATM system is the key element to a proper
model and control it and improve its performance. The source of uncertainties
varies from aircraft velocity and weather condition to flight departure time,
etc. Based on uncertain predicted trajectories, Irvine presented in [10] a more
simplified geometrical calculation of conflict probabilities. Babak et al. in [1]
studied on the stochastic methods of conflict situation detection and conflict
probability evaluation. A more recent study which accounts for the effects of
wind uncertainties was presented in [8].

For a conflict resolution by rerouting, let us firstly cite Bertsimas and Stock
[3] who show how to optimally control aircraft by rerouting, delaying, or adjust-
ing the speeds of the aircraft in the ATC (Air Traffic Control) system to avoid
airspace regions with reduced capacities due to weather conditions. In [4], Bert-
simas et al. proposed a new ILP model for large-scale instances which covered all
the phases of each flight and solved it for an optimal combination of flow man-
agement actions, including rerouting decisions. Constans et al. have proposed
minimizing potential conflict quantity by dynamically imposing feasible modifi-
cations on the speeds of the aircraft in [5]. In [7,11] we have already presented
some work on FLA problem. This paper uses a similar mathematical model and
extends it for the case of aircraft departure time following Mixture Gaussian
distribution. New numerical results are also reported.

Problem Description. In real air traffic management, the airspace is regulated
by a certain number of rules, one of them is the “Semicircular Rule”. According
to this rule, an aircraft is not assigned consecutively one by one altitude levels
but two by two at least, as in the European airspace, and even four by four in
the USA since the European airspace is more restrictive than the American one.
The air traffic controllers classify the aircraft depending on the angle of motion
of the trajectories. So, they divide the set of aircraft under consideration in two
groups: the ones flying with an angle of motion between −π and 0 radians (for
instance) and the rest of aircraft (flying in the opposite direction). The aircraft
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in the first group are requested to fly only in the odd altitude levels and the ones
in the second group are requested to fly only in the even altitude levels, even
if they must change their altitude due to other conditions during the flight. In
order to provide more safety to the airspace, the air traffic controllers follow these
guidelines to reduce the number of conflict situations. So, if a conflict situation
takes place, at least one aircraft is requested to follow some maneuver as heading
angle or velocity changes, or in some situation climbing or descending to the
following altitude level in which it is allowed to fly according to the Semicircular
Rule. In our work we assume that during the planning phase, there will be a fixed
level assigned to each aircraft and the aircraft is supposed to stay to this level
for or the entire enroute flight period. We assume that for each aircraft there is a
most preferred flight level which is decided mostly by the type of the aircraft and
fuel consummation considerations. There are also some other alternative eligible
immediate upper or lower levels, which allow to deal with congestion, whereas
involving an additional cost. This paper deals with the problem of assigning a
set of flights with given flight paths to different levels such that potential costs
of conflict over all flights are minimized. We explore a stochastic version under a
robust optimization framework. Some numerical results based on a test instance
are also reported.

3 Mathematical Model and Solution Approach

We start with the mathematical formulation of the robust FLA problem with
probability constraints. We assume that each constraint has to be feasible with
some probability 1 − ε.

Notation:
– L gives the set of the flight levels l and F l groups all flights allowed to fly to

level l.
– xl

i is a binary variable that takes value 1 when the aircraft i flies on level l
and 0 otherwise;

– bl
i gives the profit associated with flight i when assigned at level l ;

– P l
i gives the admissible cost for a given flight i at level l ;

– Sl
i gives the set of flights j having a potential conflict with flight i when they

fly in the same level l ;
– pij is the induced cost associated with aircraft i when resolving a potential

conflict with aircraft j;
– Mi is a large number.
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Assuming separate probability conditions, the mathematical formulation of
the probabilistic FLA problem follows:

max
∑

i∈F l,l∈L

bixi (1a)

s.t. Pr(
∑

j∈Sl
i

pijxj + Mixi ≤ Mi + Pi) ≥ 1 − ε,∀i ∈ F l, l ∈ L (1b)

∑

l∈Li

xl
i = 1,∀i ∈ F, (1c)

xl
i ∈ {0, 1},∀i ∈ F, l ∈ Li. (1d)

Probability constraints (1b) ensure for each aircraft that the sum of experienced
costs/delays will not exceed some given admissible cost with a high probability
1 − ε. Constraints (1c) assigns each aircraft to some of its eligible levels, while
the objective function looks for a solution that assigns the aircraft to the most
preferred flight levels possible. Following the Bertsimas and Sim work [2], we can
deduce the robust variant of the above problem by converting the probability
constraints through some deterministic ones. This yields some ILP problem,
which is at least as difficult as the conventional deterministic problem. All this
justifies heading to approximated methods to deal with it. The main idea behind
the proposed approach is to decompose the problem by altitude levels and deal
with each of them separately. We handle the connections between levels through
a greedy algorithm described at the end of the Section. We report below a
detailed study of the problem associated to a single flight level called RP l.

3.1 The Problem Associated with a Single Flight Level (RP l)

Similarly to above, the mathematical formulation associated with the probabilis-
tic FLA restricted to level l follows:

max
∑

i∈F l

bixi

s.t. Pr

⎛

⎝
∑

j∈Sl
i

pijxj ≤ Mi(1 − xi) + Pi

⎞

⎠ ≥ 1 − ε,∀i ∈ F l

xi ∈ {0, 1},∀i ∈ F l

(2)

where for sake of simplicity we use bi, xi, Pi instead of bl
i, x

l
i, P

l
i . Note also that

pij stands here for a random variable.
The above program is known to be a very difficult one. One way to tackle it

is to use the Bertsimas and Sim model [2] which is used under some mild proba-
bility conditions not applied in our problem. Hence, to solve the above problem
we have opted to use the model introduced in [12]. Intuitively, we introduce a
parameter vector γ ∈ [0, 1]|F

l| which allows tuning the robustness of the solution
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in a convenient way. Applying this idea, we obtain the following model denoted
below RPlγ :

max
∑

i∈F l

bixi

s.t. Mixi + min

⎧
⎨

⎩
∑

j∈Sl
i

p̄ijxj , γi ·
∑

j∈Sl
i

p̄ij

⎫
⎬

⎭ ≤ Mi + Pi,∀i ∈ F l

xi ∈ {0, 1},∀i ∈ F l.

(3)

where p̄ij gives the maximal value that can be attained by pij . The above for-
mulation can be simplified a lot. Let us focus on the robust constraint i. Either
we consider the worst case (maximum conflict induced costs), or we have a con-
straint: Mixi + γi.

∑
j∈Sl

i
p̄ij ≤ Mi + Pi. In this latter case, two sub-cases occur:

when γi.
∑

j∈Sl
i
p̄ij > Pi, then xi = 0; when γi.

∑
j∈Sl

i
p̄ij ≤ Pi, we have a dummy

constraint which can be ignored.
These three cases are in fact summarized in the two following ones:

– either flight i has total conflict costs less than the admissible cost and no
constraint is necessary to model this situation;

– or flight i is associated with maximal conflict costs, that is constraint Mixi +∑
j∈Sl

i
p̄ijxj ≤ Mi + Pi represents this situation.

Hence, the analysis of the above robust model leads to a new one, which is
very simple. Indeed, for a given value of γi we know in advance if the constraint
corresponding to flight i is necessary to be put in the model or not. Let denote
with Ic ⊆ F l a subset of concerned flights with respect to a given vector γ. In
this way, instead of vector γ we use the subset Ic as a parameter enabling to
tune robustness. We denote the corresponding problem by RP l(Ic).

max
∑

i∈F l

bixi

s.t. Mixi +
∑

j∈Sl
i

p̄ijxj ≤ Mi + Pi,∀i ∈ Ic

xi ∈ {0, 1},∀i ∈ F l

(4)

With respect to vector γ considered, the size of the above LP varies between
a few constraints (for small values of γi) and all constraints (for γi = 1,∀i).

In the heuristic we use several parameters as pij , p̄ij , Pi for which we have
developed specific estimation methods not presented here because of lack of
space. The main idea behind the Algorithm 1 is to build the solution by taking
into account only the most restrictive constraints while the other flights are
set by default to their most preferred flight level. The feasibility of the obtained
solution is checked and if necessary new constraints are added in the ILP. Hence,
an important aspect studied in this work is the estimation of solution’s feasibility
probability as presented below.
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Algorithm 1. A heuristic approach for RP l

procedure SolveRPL
Set Ic ← ∅;
Select a few (say 5) number of flights i maximizing the

∑
j∈Sl

i
p̄ij − Pi value;

Set Ic ← Ic ∪ {i}; Solve RP l(Ic); Let x∗ be the initial solution found;
while True do

if feasibility probability of x∗ ≥ 1 − ε for all concerned flights then
An approximate robust solution is found ;Stop.

else
Select flight i such that Pr(

∑
j∈Sl

i
pijx

∗
j ≤ Pi) ≥ 1−ε is the most violated;

Set Ic ← Ic ∪ {i}; Solve RP l(Ic); Let x∗ be the optimal solution found.

3.2 Solution Feasibility Estimation

Note first that the main uncertain parameter that we have considered is the
departure time. Hereby we assume that the flight departure time follows a 4-
component Mixture Gaussian Distribution proposed in [14].

We discuss now the methods that estimate the feasibility of solution assuming
separated constraints for each flight: Pr(

∑
j∈Sl

i
pijxj +Mixi ≤ Mi +Pi) ≥ 1− ε.

As Pr(
∑

j∈Sl
i
pijxj + Mixi ≤ Mi + Pi) ≥ Pr(

∑
j∈Sl

i
pijxj ≤ Pi), we restrict

ourselves in ensuring that Pr(
∑

j∈Sl
i
pijxj ≤ Pi) ≥ 1 − ε for all xi = 1.

Conservative Robust Method : we consider first the Soyster model [13], which
looks for a solution robust to the worst case. This gives:

∑
j∈Sl

i
p̄ijxj ≤ Pi for

all xi = 1, which is equivalent to Pr(
∑

j∈Sl
i
pijxj ≤ Pi) = 1.

Probability Bound method : We apply the Hoeffding’s Inequality [9], which
gives:

Pr(
∑

j∈Sl
i

pijxj ≥ Pi) = Pr(
∑

j∈Sl
i

pijxj − E[
∑

j∈Sl
i

pijxj ] ≥ Pi − E[
∑

j∈Sl
i

pij ]xj)

≤ exp(−2(Pi −
∑

j∈Sl
i

E[pij ]xj)2/(
∑

j∈Sl
i

p̄2
ijxj)) = εi

(5)

However, when Pi ≤ ∑
j∈Sl

i
E[pij ]xj , by definition of Hoeffding’s Inequality,

the above formula can’t be applied, we thus set the probability Pr(
∑

j∈Sl
i
pijxj ≤

Pi) as zero. In case that Pi is bigger than the sum of all upper bounds of ran-
dom variables, then the probability is surely 1. Thus, we obtain a piece-wise
probability function as follows:

Pr(
∑

j∈Sl
i

pijxj ≤ Pi) =

⎧
⎪⎨

⎪⎩

0, if Pi ≤ ∑
j∈Sl

i
E[pij ]xj

1, if
∑

j∈Sl
i
p̄ijxj ≤ Pi

1 − εi, otherwise

(6)

Sampling Method : The last method tested is based on Monte-Carlo Simula-
tion. We have randomly generated a large number of scenarios where for each



92 A. Fundo et al.

flight the departure time is generated following the above mentioned Mixture
Gaussian distribution.

3.3 Putting All the Pieces Together

We describe now a heuristic approach for the Robust FLA problem, that is
deciding flight level assignment robust to uncertainties that can affect flights,
essentially due to fluctuation on departure time. The main idea behind the Algo-
rithm is to decompose the problem by altitude levels and deal with each of them
separately (as described above), while handling the connections between levels.

Algorithm 2. ApproxRobustFLA
Step 0:

Order levels in L following decreasing order of loads (estimated by the number
of concerned flights in their most preferred level)

Step 1:

Proceed with flight level assignment separately for each level (following the order
set in Step 0); solve problem RP l involving all flights with the most preferred flight
level l and other unassigned flights in F l; fix the level for flights assigned in the
obtained solution.
Step 2:

if All flights are assigned or the maximal number of iterations is exceeded, then
Stop;

else increase admissible cost for each unassigned flight and go to Step 1;

4 Implementation and Numerical Results

The code is realized with C++ with Cplex 12 under Ubuntu 16.04 LTS-64 bits,
i7-7820 HQ CPU @2.90GHz, 16G RAM. The test data corresponds to French
air traffic of August 12th, 1999. Table 1 presents the characteristics of test data.

Table 1. Test instance

Network Number of flights Used airports Used WayPoints

NET FR 1273 134 715

In Table 2, Pi is bounded in [0, 30], calculated by Pi=duration of flight i*coPi
(where CoPi indicates the percentage of flight time allowed for conflict resolu-
tion), and the maximal number of iterations in Algorithm 2 is set to 10. eps
stands for the infeasibility tolerance of solution, #CL indicates the number
of flight changes from their most preferred flight level to a feasible one, #UF
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Table 2. Numerical results

param RobustDet Hoeffding Monte-Carlo

Ins coPi eps #CL #UF #CM #ElaTi #CL #UF #CM #ElaTi #CL #UF #CM #ElaTi

B 0.05 0.05 276 13 13 24.18 260 11 13 20.89 165 4 11 2,267.90

0.10 27.75 230 12 12 12.62 155 3 1,874.15

0.15 26.11 218 10 12 18.60 147 3 1,627.20

0.20 26.06 193 9 12 20.31 149 4 1,586.39

0.25 25.69 206 8 12 11.08 142 3 1,560.20

0.10 0.05 128 3 11 8.83 118 2 11 7.93 96 1 11 1,428.87

0.10 9.88 114 2 8.11 67 0 808.32

0.15 8.98 114 1 9.15 53 0 578.40

0.20 8.27 115 1 8.27 40 0 348.89

0.25 8.86 113 1 8.55 39 0 368.84

0.15 0.05 72 0 11 2.55 62 0 11 3.13 22 0 11 193.63

0.10 1.98 42 1.77 19 180.00

0.15 1.68 39 1.75 15 156.91

0.20 1.86 37 1.41 11 97.80

0.25 1.62 35 1.76 10 95.71

I 0.05 0.05 272 15 14 29.91 261 9 16 25.70 178 2 14 2,217.22

0.10 30.76 241 13 14 18.51 173 3 2,624.45

0.15 31.64 233 4 14 12.96 157 2 2,055.12

0.20 30.49 215 9 14 12.05 156 1 2,680.39

0.25 31.53 211 8 14 12.63 156 1 2,363.03

0.10 0.05 137 2 14 10.79 126 2 14 9.03 69 0 14 994.31

0.10 9.95 126 1 8.99 52 771.11

0.15 9.94 123 0 9.38 49 673.50

0.20 10.00 111 0 6.70 46 577.38

0.25 9.46 116 1 9.55 42 468.15

0.15 0.05 74 1 14 9.82 53 0 14 1.75 25 0 14 296.24

0.10 10.55 52 2.38 21 246.30

0.15 9.72 43 1.55 17 256.52

0.20 10.20 43 1.72 14 205.04

0.25 10.50 39 1.48 12 192.00

denotes the number of unassigned flights, #CM specifies the maximal number
of potential conflict occurring for a flight in the given feasible solution, ElaTi
gives the elapsed time on seconds to get a robust feasible solution. We have tested
two types of instances: the B (basic) instances are these reported in Table 1 and
I (incremented) instances give the basic instances incremented with 15% addi-
tional flights among the existing ones but scheduled 5 hours later. The obtained
results show clearly that Monte-Carlo estimation method gives more satisfactory
results for all scenarios.

5 Conclusion

In our work, we deal with robust FLA problem assuming the flight departure
time as the main source of uncertainty [14]. We experiment several methods
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showing that the sampling method (Monte-Carlo Simulation) gives an accurate
solution when the distribution of flight-induced cost is hard to analyze, however,
the biggest inconvenience is that this method is expensive on computation time.
Therefore, an analytical approximate method will be in focus of our future work.
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Abstract. This paper presents new algorithms to process data
exchanged in vehicular networks. In previous works, a distributed data
fusion method using belief functions to model uncertainties has been pro-
posed for smart cars network. Since the origin of data coming from other
cars is unknown, this algorithm uses the idempotent cautious operator
in order to prevent data incest. This operator has been proved to be effi-
cient in the case of transient errors and ensures the fusion convergence.
However, since the cautious operator is idempotent, the quantity of con-
cordant sources does not change the result of fusion. Thus we propose
several schemes adding Dempster’s rule in order to improve the fusion
when we can ensure that data come from independent sources. We intro-
duce three new combinations layout of Dempster’s rule and cautious
operator and we compare them using real data coming from experiments
involving several communicating cars in the context of the COMOSEF
project.

1 Introduction

Most smart car perception system are based on data coming from embedded
sensors. However, despite technological improvements, their capabilities are lim-
ited. Thus, we propose to use information coming from other vehicles thanks to
wireless network. Two methods are possible. The first one, known as cloud com-
puting, uses a central server that gathers data from all the vehicles, then com-
putes interesting results and sends them back. Even if this method is currently
privileged, it has drawbacks. For instance, it introduces latency due to network
exchanges that can be a problem in a context of high topological dynamics.
Moreover, private data from users are sent to a third party and that can be an
invasion of privacy. The other method, studied in this paper consists of peer-to-
peer communication between vehicles (VANETs) [1]. By exchanging data with
the vehicle neighbors and with neighbors of neighbors it is possible to benefit of
other’s knowledge to complete our local sensors capacities. Trusting other cars
may not always be possible because their data can be wrong, intentionally or
not. Thus, the algorithm we will use must work even if some neighbors send
false data. Some research shows the possibility of hybrid VANETs and cloud
computing [2].
c© Springer Nature Switzerland AG 2018
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Vehicle networks are different from regular networks because the topology
can change at any time. A WIFI norm called 802.11p has been developed for
this kind of dynamics. In order to converge to a common value, a robust and
dynamic algorithm for distributed data fusion has been proposed in [3]. Each
node of the network takes its local value and fuses it using the cautious operator
[4] with data that neighbors sent to it. Then, it sends the result to all other cars
which do the same thing. Thus, a same value is fused at each hop and then we
have to be careful to not artificially increase the confidence due to cycle fusion.
This algorithm has limitations. Firstly the idempotent cautious operator gives
the same result if there is one car or multiple cars with the same local value.
Secondly it doesn’t fuse data over time. This paper compare alternatives of the
fusion process by combining Dempster’s rule with the cautious operator in order
to increase the importance of the result.

2 Distributed Data Fusion Algorithms

2.1 Belief Combination

Dempster’s rule shown in Eq. 1 is the most used fusion operator in the belief
function framework.

⎧
⎪⎨

⎪⎩

(m1 ⊕ m2)(∅) = 0
A �= ∅ (m1 ⊕ m2)(A) = 1

1−K

∑
B

⋂
C=A m1(B)m2(C)

where K =
∑

B
⋂

C=∅ m1(B)m2(C)
(1)

With Dempster’s rule, sources must be independent. In the car to car com-
munication context, the independence is not guaranteed, so the fusion operator
have to be idempotent. To fulfill this requirement, the cautious operator has been
proposed in [4]. This operator is applied on weight using the operator minimum
as shown in Eq. 2. Let be a variable ω, taking values in a finite set Ω called frame
of discernment, 2Ω the set of subsets of Ω and A ⊆ Ω a set. Let m(A) be the
mass function and w(A) the weigh function.

(w1 � w2)(A) = min(w1, w2) (2)

In order to maximize the truthfulness of the fusion, Dempster’s rule should
be used in priority if the sources are independent. If they are dependent, the
cautious operator must be used.

2.2 Original Algorithm

This paper is based on the smart cars data fusion algorithm proposed in [3]. Its
objective is to detect events using observations originated from multiple cars.
The knowledge about an event of the fleet of vehicles converges to a common
value (self-stabilization) using car to car communications. Algorithm 1 (INv[u]
and OUTv are mass functions), illustrated in Fig. 1 (� represents the cautious
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operator), shows that the combination is done using the cautious operator. The
following section will discuss possible improvement of this operator. Every loop,
every data represented by masses functions received from neighbor is fused with
the local BBA and the result is broadcasted. The r() function is a discounting
operation that reduces the importance of old and distant data and has been
discussed in [5]. In [6], the authors present a different algorithm that does not
need to use the cautious operator. In this method, instead of sending fused data,
local data is broadcasted. Since every local data is associated with the source
vehicle, there is no data incest, thus Dempster’s rule can be used. However, this
require a message to be sent for every observation therefore it can be network
intensive. Moreover every node knows personal data which can be a privacy
issue. Future work should compare the two approaches.

Algorithm 1. Distributed data fusion algorithm
1: Upon the arrival of a new message:
2: receive( dist mass ) from node u
3: INv[u] ← dist mass
4: Upon the expiration of the timer of the node v
5: OUTv ← compute local confidence()
6: for each u in INv do
7: OUTv ← OUTv � r(INv[u])
8: end for
9: send( OUTv ) in the neighborhood

10: Remove old messages in INv
11: Restart the timer

2.3 Modification of the Distributed Algorithm

We propose in this paper to study different scheme of distributed fusion. The
idea is to use Dempster’s rule that increase the knowledge when data come from
two independent sources. The cautious operator should be used otherwise.

Fig. 1. Cautious operator only Fig. 2. Dempster’s rule before sending

Indeed, local value is always independent of values coming from the network.
It is then possible to combine the with Dempster’s rule the local value and the
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result of the cautious operator applied to all values sent by other cars (distributed
values). Figure 2 (⊕ represents Dempster’s rule) shows the fusion diagram of this
proposition. As proposed in [7] and commonly done in dynamic data fusion, we
can add a temporal fusion of the local value with Dempster’s rule. This operation
is done before the network data fusion as shown in Fig. 3. Finally, we propose a
fourth fusion diagram in Fig. 4 that assumes that nodes send both distributed
and local values. Dempster’s rule can be used to combine neighbor local values
since independent local data are fused only once.

Fig. 3. Local temporal Dempster loop Fig. 4. By sending local values to
neighbors

3 Comparison of Fusion Scheme with Experimental Data

3.1 Dataset of Comosef Project

The European project CoMoSeF (Cooperative Mobility Service for the Future)
has been launched in July 2012 and ended in 2016 [8]. The goal of this project
is the creation of services and devices for cooperative application in transports.
An experimentation has been done in order to demonstrate the efficiency of
the algorithm in the French test site [9]. Heavy rains has been simulated by 10
vehicles in 3 different platoons by using wipers at given positions. The algorithm
has generated alerts that has been broadcast to other cars but also to RSU (Road
Side Unit). Live alerts generated by the distributed data fusion has been shown
on a website.

The original data of the Comosef experimentation has not been recorded.
Few days after an equivalent experimentation has been done with 4 cars. There
is 4 levels of wiper speed: off, alternate, moderate and fast. Only one car is able
to be in alternate mode. In this experimentation, cars follow each other and
start their wiper at the same place. The speed increases until the fast mode is
reached. The wipers are then stopped without going through intermediate levels.
The frame of discernment is Ω = {r, c, s} with r representing the event “heavy
rain”, c the event “Cloudy” and s the event “Sunny”. Masses are computed from
the wiper speed using Table 1. Figure 5 shows for each vehicle the mass on event
“heavy rain” with local data coming directly from wipers. The following of this
paper will use those data in order to show the importance of how data fusion
operators are combined.
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Table 1. BBA for Comosef data

Wiper speed ∅ {r} {c} {r, c} {s} {r, s} {c, s} Ω

Off 0 0 0 0 0.8 0 0 0.2

Alternate 0 0.1 0 0.5 0 0 0 0.4

Moderate 0 0.5 0 0.2 0 0 0 0.3

Fast 0 0.8 0 0 0 0 0 0.2

Fig. 5. Local data m(r) of the four cars during the Comosef experimentation

3.2 Comparison of Fusion Scheme

In this section we compare the different combinations of operators using Comosef
experimental data.

Comparison in the Original Scenario. Figure 6 shows the result of the fusion
using the 4 variants of the algorithm. The top left graph represents the fusion
using only the cautious operator. It shows only few changes with the local data.
It can be observed that the fusion warns cars of rain before it happens. Even if
the same measurement is done multiple time by all the cars, the result of the
fusion stays low. The top right and the bottom left graphs show the fusion with
the Dempster’s rule respectively added before and after the cautious operator.
They have similar behavior in this case. The Dempster’s rule enables the fusion
to rise to almost 1 when all cars agree on the same value. The last graph is even
closer to reach 1, even if the wipers are not at full speed.

Comparison with Altered Scenarios. As previously seen, data from the
Comosef experiment are almost perfect and every cars communicate without
issue. In this part we simulate some changes that could occur in other scenar-
ios. Figure 7 shows the 4 variants of the algorithm supposing that car #1 has



100 R. Guyard and V. Cherfaoui

Fig. 6. Comosef data fusion using different combination operators

Fig. 7. Comosef data fusion with error injected
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5% chance of getting wrong data from the CAN. We can see that the original
algorithm is less impacted by transient errors. This behavior comes from the
smoothing of Dempster’s rule. Errors are only present when cars do not have
any information. When the wipers are on, errors are negligible.

In order to compare the fusion on different scenarios, we have created a metric
called fusion error. The fusion error is the mean of the differences between the
real value and the pignistic probabilities of fused data computed at each time
divided by the number of cars. The ground truth is 1 if a wiper is turned on.
Table 2 shows the fusion errors of the four fusion algorithms in four scenarios.
In the original scenario, doing a fusion is better than not doing any fusion. As
previously seen adding Dempster’s rule at one hop is the best fusion in this case.
In the case of error injected in one car, the difference is lower but still present.
When all cars have errors, there is almost no benefit to perform fusion. Finally,
we can observe there is no changes in the case the WiFi allows communication
only with the vehicles just before and just after the car.

Table 2. Fusion errors: (Fusion 1 = cautious only, Fusion 2.1 = with Dempster after
cautious, Fusion 2.2 = with local Dempster loop and Fusion 3 = Fusion with Dempster
on neighbor local values)

No fusion Fusion 1 Fusion 2.1 Fusion 2.2 Fusion 3

Original scenario 0.381 0.365 0.300 0.298 0.275

Errors car #1 0.383 0.374 0.326 0.325 0.309

Errors all cars 0.387 0.395 0.368 0.375 0.364

Low WiFi range 0.382 0.365 0.300 0.297 0.276

4 Conclusion

In this paper we have studied different scheme to fuse data in a distributed
way. Three algorithms have been presented compared on experimental data.
The algorithm given the best result uses Dempster’s rule with the data that are
guaranteed coming from independent sources and cautious operator else. But this
data fusion architecture requires to send more data that could be considerate
as private. Future work should focus on testing these algorithms with more cars
and in more realistic scenarios.
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Abstract. Dempster-Shafer theory has proven to be one of the most
powerful tools for data fusion and reasoning under uncertainty. Despite
the huge number of frameworks proposed in this area, determining the
basic probability assignment remains an open issue. To address this
problem, this paper proposes a novel Dempster-Shafer scheme based
on Parzen-Rosenblatt windowing for multi-attribute data classification.
More explicitly, training data are used to construct approximate distri-
butions for each hypothesis, and per each data attribute, using Parzen-
Rosenblatt window density estimation. Such distributions are then used
at the classification stage, to generate mass functions and reach a con-
sensus decision using the pignistic transform. To validate the proposed
scheme, experiments are carried out on some pattern classification bench-
marks. The results obtained show the interest of the proposed approach
with respect to some recent state-of-the-art methods.

Keywords: Classification · Dempster-Shafer theroy · Multimodal data

1 Introduction

Data fusion improves decision making quality when heterogeneous sources of
data are available, mainly by exploiting redundancy and complementariness
among sources. One among the most flexible mathematical tools, the Dempster-
Shafer theory (DST) [21,22] generalizes the Bayesian theory by (i) allowing
each source to incorporate information in different levels of detail, which allows
for uncertainty handling (unsure, imprecise, unreliable or missing information);
and, (ii) offering a powerful mechanism for consensus decision making. Such
theory has then been extensively applied in many fields [3,9,11,13]. In spite of
this popularity, the crucial step which consists in defining the basic probability
assignments is still an open problem. Most approaches determine mass values
heuristically from data characteristics based on some measures like fuzzy mem-
bership degrees [30], distance to cluster centers [2] or probability densities [14].
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The contribution of this paper falls under this latter category and relies on the
use of DST for both mass functions construction and decision making.

Probabilistic frameworks for mass generation benefit from the rich litera-
ture of conventional probabilistic classifiers. Most of such approaches [1,14,20]
represent the information related to each data attribute through probability
density functions (PDFs), typically Gaussian. Such densities are then converted
into beliefs which can be fused later to reach a collaborative decision. Com-
pound hypotheses may be assigned masses by subtracting mass values related to
involved individual hypotheses [14,20] or through the mixture of distributions
associated to such hypotheses [1]. Let us point out that Gaussian densities have
been commonly considered for their easiness for most applications. When this
assumption does not hold, however, the decision making performance may be
significantly altered. More elaborated approaches overcome this limitation by
converting data features to an equivalent normal space [28].

In this paper, we propose to cope with this drawback more efficiently by
constructing PDFs that fit better original data histograms rather than projecting
them into to a new Gaussian-like space. More explicitly, a kernel-smoothing
estimation [4,26] is applied to training data to infer an approximate PDF for
each exclusive hypothesis, and per each data attribute. Hence, such PDFs can be
of any form. In particular, they may be nonGaussian. At the classification stage,
a given datum is assigned a set of masses generated, in some way, from the above
mentioned densities. Multi-attribute masses are then fused through Dempster’s
rule to reap a consensus mass. The classification decision is then inferred using
some rules like the “maximum of plausibility” or the “Pignistic transform” [24].
We will see that doing so, one may improve classification accuracy. Let us point
out that attributes are assumed independent here. Such assumption is usually
set especially when attributes correspond to experts’ opinions. For dependent
sources problem in DST, the reader may refer to [23].

The remainder of this paper is organized as follows: Sect. 2 recalls the basics
of DST and Parzen-Rosenblatt window density estimation. Section 3 describes
the proposed approach and explains its different steps. Experiments conducted
on some universal datasets are presented and discussed in Sect. 4. Finally, con-
cluding remarks and future improvements are given in Sect. 5.

2 Preliminaries

In this section, we briefly recall some basic notions of Dempster-Shafer theory
and Parzen Rosenblatt window density estimation.

2.1 Dempster-Shafer Theory

Let Ω = {ω1, ..., ωK}, and let P(Ω) = {A1, ..., AQ} be its power set, with
Q = 2K . A function M defined from P(Ω) to [0, 1] is called a “basic belief
assignment” (bba) if M(∅) = 0 and

∑
A∈P(Ω) M(A) = 1. A bba M defines then

a “plausibility” function Pl from P(Ω) to [0, 1] by Pl(A) =
∑

A∩B �=∅ M(B),
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and a “credibility” function Cr from P(Ω) to [0, 1] by Cr(A) =
∑

B⊂A M(B).
Also, both aforementioned functions are linked by Pl(A)+Cr(Ac) = 1. Further-
more, a probability function p can be considered as a particular case for which
Pl = Cr = p.

When two bbas M1 and M2 describe two pieces of evidence, we can fuse
them using the so called “Dempster-Shafer fusion” (DS fusion), which gives
M = M1 ⊕ M2 defined by:

M(A) = (M1 ⊕ M2)(A) ∝
∑

B1∩B2=A

M1(B1)M2(B2) (1)

Finally, an evidential bba M can be transformed into a probabilistic one
using Smets method, according to which each mass of belief M(A) is equally
distributed among all elements of A, leading to the so called “pignistic proba-
bility”, Bet, given by:

Bet(ωi) =
∑

ωi∈A⊆Ω

M(A)
|A| (2)

where |A| is the number of elements of Ω in A.

2.2 Parzen-Rosenblatt Density Estimation

In statistics, Parzen-Rosenblatt window method [18,19], also termed kernel den-
sity estimation, is a fundamental data smoothing where inferences about the
population are made, based on a finite data sample. It can be perceived as a
non-parametric technique aiming to construct the PDF f , of an unknown shape,
associated to a random variable X. Let (x1, x2, ..., xN ) be a sample of realiza-
tions of such a random variable. The problem is then to estimate f values at
several points of interest. Kernel smoothing is then a generalization of histogram
smoothing in which a window, of some predefined form, centred at each point
is used to estimate the density value at that point. For this purpose, the follow-
ing estimator is used: f̂h(x) = 1

Nh

∑N
i=1 K

(
x−xi

h

)
, where K(·) is the kernel - a

non-negative zero-mean function that integrates to one - and h > 0 is a smooth-
ing parameter called the “bandwidth” or “kernel width”. Also, a wide range of
kernel functions can be used.

3 Parzen-Rosenblatt Dempster-Shafer Classifier

In this section, we describe the theoretical fundament of the proposed classifi-
cation approach, which will be called Parzen-Rosenblatt Dempster-Shafer clas-
sifier (PR-DS). For this purpose, let us assume we have a sample of N prela-
beled multiattribute data (Z1, ..., ZN ) where each datum Zn = (Xn, Yn) with
Xn ∈ Ω = {ω1, ..., ωK} being the label, and Yn = (Y 1

n , ..., Y P
n ) ∈ RP being the

P -attribute observation. The problem is then to estimate the label of any new
observation Yn′ that is optimal with respect to some criterion.



106 A. Hamache et al.

In what follows, we first describe the training process conducted on the prela-
beled data sample (Z1, ..., ZN ). Then, we show how our classifier assigns a new
observation Yn′ to one of the K labels.

3.1 Training

Let us consider the above prelabeled multiattribute data (Z1, ..., ZN ). Accord-
ing to our PR-DS scheme, training consists in estimating for each class ωk ∈ Ω
and for each attribute p (1 < p < P ), the Parzen-Rosenblatt density f̂p

k as
described in Sect. 2. For further weighting sake, 5-fold cross-validation classifica-
tion is achieved based on each attribute (taken alone) using the above Parzen-
Rosenblatt PDFs according to maximum likelihood. F-measure is then evaluated
per each attribute p and per each hypothesis Aq ∈ P(Ω). To this end, the K ×K
confusion matrix is converted to a 2×2 one including only Aq and Ω \Aq. Then,
the F-measure value obtained is itself the weighting factor αp

q .

3.2 Supervised Classification

For a given new observation Yn′ , partial report about the identity of Xn′ can be
made at each individual attribute level through a mass function Mp, on P (Ω),
generated based on the Parzen-Rosenblatt PDF estimated at the training stage.
Such reports are then combined to reap a consensus report M . Final decision is
then be deduced through the Pignistic transform applied to M . In the following,
we describe our approach step by step.

Step 1: Generation of Mass Functions. To define the mass associated to
attribute p, let us consider the rank function δp defined from {1, ..,K} to Ω

such as δp(k) is the k−ranked element of Ω in terms of f̂p, i.e. f̂p
δp(1)

(Y p
n′) ≤

f̂p
δp(2)

(Y p
n′) ≤ ... ≤ f̂p

δp(K)(Y
p
n′). Then, Mp is derived as follows:

⎧
⎪⎨

⎪⎩

Mp(Ω) ∝ Kf̂p
δp(1)

(Y p
n′)

Mp({ωδp(k), ..., ωδp(K)})∝ (K − k + 1)
[
f̂p

δp(k)
(Y p

n′)− f̂p
δp(k−1)(Y

p
n′)

]
, for k > 1

(3)

Step 2: Weighting of Mass Functions. To adjust the definitive mass asso-
ciated to attribute p, we apply a weakening based on the weight αp

q associated
to each hypothesis Aq ∈ P (Ω) as follows:

⎧
⎨

⎩

Mp(Aq) = αp
qMp(Aq), for Aq � Ω

Mp(Ω) = 1 − ∑
Aq�Ω Mp(Aq)

(4)
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Step 3: Combination of Mass Functions. Mass functions associated to dif-
ferent attributes are then combined into one collaborative mass M =

⊕P
p=1 Mp:

M(B) ∝
∑

⋂P
p=1 Bp=B

[
P∏

p=1

Mp(Bp)

]

, for B,Bp ∈ P(Ω) (5)

Step 4: Decision Making. Based on M , the final decision is then taken accord-
ing to the Pignistic transform:

X̂n′ = arg max
ωk

∑

A	ωk

M(A)
|A| (6)

Remark 1: If for some datum Zn, observation at attribute p: Y p
n is missing,

this situation is handled by defining the mass function Mp as follows:
⎧
⎨

⎩

Mp(A) = 0; for A ∈ P(Ω) − {Ω}

Mp(Ω) = 1
(7)

Remark 2: In addition to missing data handling, our classifier benefits from
all other advantages of Dempster-Shafer theory and can handle situations where
information are unreliable or uncertain.

Remark 3: Mass generation through (3) is conceived in such a manner that
the Pignistic transform applied to the generated mass be proportional to the
original Parzen-Rosenblatt density values. Formula (3) can thus be perceived as
an intuitive reverse-Pignistic transform.

3.3 Unsupervised Classification

Our classifier can also be applied in the unsupervised context where no labeled
data are available for training. To this end, training is applied to the whole data
Y considering an initial coarse classification which is then updated iteratively
until an end criterion is reached. More explicitly, the unsupervised classification
runs as follows:

1. Perform a clustering X̂0 of Y (using K-means for instance);
2. i ← 0;
3. Derive Parzen-Rosenblatt PDFs from (Y, X̂i);
4. Infer X̂i+1 using steps 1, 3 and 4 of the supervised context;
5. if end criterion is not reached: i ← i + 1 and go to 3;

4 Experiments

In this section, we assess the performance of the proposed PR-DS approach with
respect to eleven state-of-the-art approaches: naive Bayes classifier (NBC) [12],
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Table 1. Description of experimental datasets

Dataset Items Classes Attributes Missing data

Iris 150 3 4 No

Heart 270 2 13 No

Wine 178 3 13 No

Australian 69 2 14 Yes

Hepatitis 155 2 19 Yes

Sonar 208 2 60 No

linear Bayes normal classifier (LDC) [16], K nearest neighbors classifier (K-NNC)
[7], nearest mean classifier (NMC) [25], quadratic discriminant classifier (QDC),
support vector machine (SVM, [6]), random forests (RF [5]) and four DS-based
approaches: normal distribution-based classifier (NDBC) [28], K-nearest neigh-
bor D-S theory (KNN-DST) [8], evidential calibration (EC) [29] and weighted
fuzzy Dempster-Shafer framework (WFDSF) [17]. To perform our comparative
analysis, we consider six datasets from the universal UCI machine learning repos-
itory [15]: Iris, Heart, Wine, Australian, Hepatitis and Sonar. The characteristics
of these datasets are provided in Table 1.

Classification performance of each method will be assessed in terms of overall
accuracy. More explicitly, a five-fold cross validation is applied to each method
per each dataset. The same process is repeated 100 times. The average of such
runs is then used for comparison. To produce results associated to state-of-the-
art methods, we acknowledge the use of Waikato Environment for Knowledge
Analysis (WEKA) [27] and Matlab Pattern Recognition toolbox (PRTools) [10].
As for the four DS-based approaches, we have adopted results reported in [17].

Training process of our proposed PR-DS classifier is conducted considering
a set of kernel functions. Then, the kernel exhibiting the best performance is
selected per each dataset. Also, the unsupervised version of our PR-DS (denoted
U-PR-DS) classifier has been compared to two clustering methods: K-means
(KM) and Fuzzy C-means (FCM). The end criterion considered here is the con-
vergence of an objective function Z defined as in Fuzzy C-means with fuzzy
membership degrees replaced by Pignistic probabilities. The results obtained
are illustrated in Table 2.

Table 2. Classification rates of different classifiers on multimodal benchmarks

Dataset NBC LDC K-

NNC

NMCQDC KNN-

DST

NDBCEC WFDSFSVMRF PR-DS KM FCMU-PR-

DS

Iris 95.4897.9496.16 92.3497.39 95.33 94.00 94.6796.00 97.6594.72 96.23 89.3389.3389.33

Heart 84.1383.47 65.65 64.4281.99 76.30 82.59 83.7085.56 83.0782.47 80.42 57.5758.2460.60

Wine 97.2998.65 72.39 72.3998.9193.84 96.63 97.1798.32 95.6597.70 97.31 70.2268.5392.70

Australian77.1985.9768.64 64.9379.72 78.41 80.01 80.6085.20 85.2986.95 82.25 55.9456.0855.94

Hepatitis 83.5484.96 78.60 64.2582.21 80.57 79.40 79.8883.85 84.5084.83 86.58 74.1969.6779.35

Sonar 68.1974.11 80.99 66.2875.21 79.81 72.57 68.2677.02 77.4883.1776.61 55.2855.2855.77

Means 84.3087.52 77.07 70.7785.90 84.04 84.20 84.0487.65 87.2788.3186.57 67.0966.1972.28
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Overall, the results provided by our classifier are competitive compared to
the state-of-the-art ones. Among evidential approaches, our PR-DS classifier is
only outperformed by WFDSF which is based on the combination of more than
one DS-based approach [17].

On the other hand, our PR-DS classifier yields the best performance for
dataset Hepatitis. In the unsupervised context, the PR-DS performs significantly
better than the well-known K-means and Fuzzy c-means.

To show how important is step 2 of our PR-DS classifier in the supervised
context, let us consider the dataset Australian. During training, we have noticed
that attribute 14 is rather misleading. Indeed, applying our PR-DS scheme with-
out source weighting of step 2 yields 68.29% of accuracy. Doing the same while
ignoring attribute 14 leads to an accuracy of 83.52%. Applying the weakening
of step 2 reduces the impact of attribute 14 leading to an accuracy of 82.25%.

5 Conclusion

In this paper, we introduced a novel approach for multiattribute data classifica-
tion. The proposed approach is based on Parzen-Rosenblatt density estimation
for exclusive and compound hypotheses in accordance with Dempster-Shafer
theory. Final classification decisions are then inferred via Pignistic probabilities.
The novelty of our classifier with respect to other ones using similar architec-
tures relies in (i) considering more flexible likelihood densities which allows to
consider non-Gaussian distributions; and (ii) adopting a new mass generation
scheme from such densities. Our approach has been assessed against state-of-
the-art methods through experiments achieved on standard multimodal data
benchmarks. An interesting future direction would be to exploit the unsupervised
version of our classifier within evidential Markov models to improve their per-
formance. Another interesting extension would be to consider other combination
rules than Dempster’s one and further investigate other weighting mechanisms.
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Abstract. We introduce an extended Birnbaum component importance
measure considering epistemic and aleatory uncertainty adapted to non-
coherent systems. The belief function theory is proposed as a framework
for taking into account both types of uncertainty. The objective is to
rank components according to their importance in system working. This
importance measure was introduced for coherent systems; however, the
increasing complexity of modern systems introduces the case of non-
coherent systems. This is why we should consider these kinds of systems.
In this work, we propose a method to compute the importance measure
of the components of non-coherent systems in the framework of belief
functions theory.

Keywords: Birnbaum importance measure · Reliability analysis
Non-coherent systems · Belief function theory

1 Introduction

The Birnbaum importance measure was developed by Birnbaum (1968) [Bir68].
It was introduced for coherent systems where its computation is relatively
straightforward. It could be interpreted as the rate at which the system reliabil-
ity function increases as the reliability of the component increases. It could also
be interpreted as the difference between the conditional probability that the sys-
tem works knowing the component works, and the conditional probability that
the systems works knowing that the component fails. However, increasing com-
plexity of modern systems introduces the case of non-coherent systems. These
systems are defined as systems that not satisfying at least one of the coherency
condition: the monotony of the structure function of the system and the rel-
evancy of its components. Therefore, in this kind of systems the failure state
of a component could be as important as its working state. Andrews [And00]
demonstrated that in the case of multi-tasking systems the non-occurrence could
be important for the occurrence of the top event. In [CCR08], the authors listed
several non-coherent systems. Then, it became relevant to consider these sys-
tems and needs to then adequately. Thus, it is required to extend Birnbaum’s
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S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 112–120, 2018.
https://doi.org/10.1007/978-3-319-99383-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99383-6_15&domain=pdf


Birnbaum’s Importance Measure Extended for Non-coherent Systems 113

measure for non-coherent systems, all the while maintaining a straightforward
computation.

The first extension of Birnbaum importance measure was proposed in 1983
[Jac83]. However, Andrews and Beeson [AB03] showed, on one hand, that this
extension ranks components incorrectly. Andrews and Beeson retake the example
proposed by Jackson in [Jac83] and showed that the most important component
is not the one obtained by the method of Jackson. On the other hand, they
propose a new extension in which they consider separately the contribution of
component working state to the system working state, and the contribution of
component failing state to the system working state. The authors also noted
that, due to the consensus terms, this extension leads to several results because
of reliability functions could be syntactically different even if it is algebraically
equivalent. Recently, Aliee et al. [ABGT17] defined the criticality indicator vari-
able of component Ci, and showed that, if the consensus terms are explicitly
included in the Boolean structure function, then the criticality indicator vari-
able of a component Ci is equal to the Andrews’s extension. They showed also
that it is equal to Birnbaum importance measure when the system is coherent.

In this paper, the importance measure proposed in [ABGT17] is extended
to take into account aleatory and epistemic uncertainty in the framework of
belief functions theory. The rest of this paper is organized as follows: Sect. 2
introduces the theory of belief function. Section 3 reviews definitions and basic
concept in reliability assessment. Section 4 presents an algorithm to compute
components’ importance measure under epistemic uncertainty for non-coherent
systems. Finally, Sect. 5 concludes the paper.

2 Belief Functions Theory

The publication of the work of Dempster [Dem68] on upper and lower proba-
bilities as well as that of Shafer [SB79] on the theory of evidence describe what
is commonly called Dempster-Shafer theory. Afterwards, Smets [Sme92] reinter-
preted Shafer’s work and introduced belief functions theory.

This theory is a framework that enables the experts to represent and manipu-
late epistemic and aleatory uncertainties. It is a generalization of the probability
theory as it assigns probability to subsets instead of singletons.

2.1 Belief, Plausibility, and Mass Function

A finite set Ω of mutually exclusive elements is called a frame of discernment.
A subset A ∈ P(Ω) is called a proposition, where P(Ω) is the power set of Ω.
The mass function, denoted m, is defined as a mapping from P(Ω) in [0, 1]. It
assigns a mass value between 0 and 1 to each proposition A of P(Ω), such that

∑

A∈P(Ω)

m(A) = 1 (1)
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The mass of a subset A is interpreted as the degree of belief assigned to the
hypothesis that the truth lies in the proposition A. Such an assignment implies
total ignorance about the belief over all subsets of A. Every subset A such that
m(A) > 0 is called a focal set. The two important measures of uncertainty
provided by belief function theory are called belief function, and the plausibility
function. They are defined respectively by:

Bel(A) =
∑

B⊆A

m(B)

Pl(A) =
∑

B∩A �=∅
m(B)

The interval [Bel(A), P l(A)] represents the uncertainty about the state of A.

2.2 Combination, Marginalization, and Vacuous Extension

In order to perform inference operations, mass functions representing different
pieces of evidence need to be combined. Combination rules are an important
part of belief functions theory. Several types of combination rules within the
framework of belief functions [SF02]. In this section, we present the conjunctive
combination rule which is the rule used in this work.

The conjunctive combination rule, denoted ∩ , allows one to combine masses
that are defined over the same frame of discernment and are induced by distinct
bodies of evidence. The new mass obtained reflects a conjunctive combination of
the underlying evidence. The conjunctive rule corresponds to an AND operation.

More formally, let m1 and m2 be two mass functions defined on the same
frame of discernment, and induced by distinct pieces of evidence. The mass
function m1∩2 = m1 ∩ m2 obtained using the conjunctive rule ∩ is defined as
follows:

m1∩2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω (2)

The marginalization to Ωi of a mass mΩi×Ωj , defined on the Cartesian prod-
uct Ωi × Ωj , is defined as follows, ∀A ⊆ Ωi:

mΩi×Ωj↓Ωj (A) =
∑

B⊆Ωi×Ωj , Proj(B↓Ωi)=A

mΩi×Ωj (B) (3)

where Proj(B ↓ Ωi) = {a ∈ Ωi|∃b ∈ Ωj , (a, b) ∈ B}.
The inverse operation is called vacuous extension. It is done from Ωi to

Ωi × Ωj as follow:

mΩi↑Ωi×Ωj (A) =
{

mΩi(A) if A = B × Ωj

0 otherwise. (4)
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3 Reliability Assessment

In a system whose working state depends on the working state of its components,
some of these components contribute to system working state more than others.
Birnbaum was the first who introduce a quantitative definition of this concept
of importance [Bir68].

3.1 Basic Concept

For a system S with n components we assume that each component Ci can be in
one and only one of two states: a working state or a failing state. As the state of
a component Ci is aleatory, hence the state of each component Ci is described
by binary random variable Xi that take values in Ωi = {0, 1}. Xi is a Bernoulli
distributed random variable with success probability ri. ri = P (Xi = 1) is called
the reliability of the component Ci.

Additionally, we define the product space Θ as the Cartesian product of
components’ frames of discernments, that is, Θ = ×n

i=1Ωi. There are 2n possible
realizations of Θ that are called elementary event and denoted by X. They
correspond to every possible combination of the states taken by components.
In a similar way, the system S can be in one and only one of two states: a
working state 1S or a failing state 0S . The state of the system is described
by a binary random variable XS that take values in ΩS = {0, 1}. We further
define the reliability function of the system, defined from [0, 1]n to [0, 1], as
RS(r) = P (XS = 1).

Definition 1. The state of the system S is directly related to the states of
its components Ci. The relation between the state of the system XS and the
elementary event X is given by a binary function ϕ defined from {0, 1}n to 0, 1.
This function is called the structure function of the system:

XS = ϕ(X) =
{

1 if S works
0 if S fails

Definition 2. A system is called monotone if its structure function ϕ is increas-
ing i.e.

∀i ∈ {1, . . . , n},∀X ∈ Θ,ϕ(1,X−i) ≥ ϕ(0,X−i)

On another word, a system is monotone if its state cannot be improved when a
component fails. It means that if a system does not work it will not work when
a component fails.

Definition 3. A component Ci is called relevant if

∃X ∈ Θ,ϕ(1,X−i) 	= ϕ(0,X−i)

on other words, a component is relevant if there is at least one configuration in
which the state of the system is different according to the state of the compo-
nent Ci.
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Definition 4. A system is coherent if it is monotone and all its components
are relevant. A system is non-coherent if it does not satisfy at least one of the
coherency conditions.

Example. Let us consider an anomaly detection system. The system consists
of a component C1 that is supposed to activate a subsystem A when it works.
However, when C1 fails the system initiate an emergency procedure consisting
on a subsystem B. We consider that the system works if the subsystem A and
the component C1 work or if C1 fails and the subsystem B. According to the
previous explanation the Boolean structure function is given by the following
equation:

ϕ(X1,XA,XB) = (X1 ∧ XA) ∨ (X1 ∧ XB)

The example we propose is just an hypothetical one, a realistic examples is
proposed in [ZM87]. This system is not small (19 components) this is why we
do not use it in this paper.

Birnbaum Importance Measure. The quantitative definition introduced by
Birnbaum can just be applied to coherent and not repairable system. In order
to numerically rank the contribution components, the Birnbaum importance
measure quantifies the contribution of each component between 0 and 1 : 0
signifies the lowest level of importance.

The Birnbaum importance measure of a component Ci is calculated from the
reliability function of the system RS as follow:

Bi(r−i) =
∂RS

∂ri
(r) (5)

Bi(r−i) can be interpreted as the rate at which the system reliability increases
as the reliability of component Ci increases.

Birnbaum Importance Measure Extended for Non-coherent System.
Andrews and Beeson [AB03] generalized the Birnbaum importance measure to
both coherent and non-coherent systems by considering the contribution of com-
ponent working state and component failing state separately. Recently, Aliee
et al. [ABGT17] introduced a Boolean expression to represent the notion that
the component Ci is critical. It is called the criticality indicator variable of com-
ponent Ci, it is noted by ΨABGT

i , and it is defined as follow:

ΨABGT
i (X−i) = [ϕ(1,X−i) ∧ ϕ(0,X−i)] ∨ [ϕ(1,X−i) ∧ ϕ(0,X−i)] (6)

where X−i = (X1, . . . , Xi−1,Xi+1, . . . , Xn).
The expression of ΨABGT

i quantify the criticality of a component Ci either
when it is in a failing state or in a working state i.e. The authors showed, on one
hand, that if the component Ci is failure-critical the first term in (6) is equal to
1 and the second to 0. On the other hand, if Ci is repair-critical, then the first
term in (6) is equal to 0 and the second to 1.
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Therefore, the authors defined the importance measure IABGT
i as the prob-

ability that the criticality indicator variable of component Ci is equal to 1, i.e.

IABGT
i (r−i) = P (ΨABGT

i (X−i) = 1) (7)

where r−i = (r1, . . . , ri−1, ri+1, . . . , rn).
In other words, IABGT

i is the probability that the component Ci is failure-
critical or repair critical.

They showed that IABGT is equal to the Birnbaum importance measure
for coherent systems. They also showed that is equal to Andrews and Beeson’s
extension.

Example. let us retake the example given previously, and suppose that the
reliability of C1 is r1 = 0.99, the reliability of A is rA = 0.95, and the reliability
of B is rB = 0.97. Then,

IABGT
1 (r−1) = P ((XA ∧ XB) ∨ (XA ∧ XB) = 1) = rA + rB − 2rArB = 0, 077

IABGT
A (r−A) = P (X1 = 1) = 0, 99

IABGT
B (r−B) = P (X1 = 1) = 1 − r1 = 0, 01

Hence, according to this result A is the most important one, which is not sur-
prising because C1 is highly reliable.

3.2 Experts Assessment

To compute the importance of a component Ci, we have to focus, on one hand, on
the other components Cj (j = 1, . . . , i− 1, i+1, . . . , n) that have an impact on
the working state of S and, on the other hand, on the criticality indicator variable
of Ci. Then, we need to know the reliability of each component to compute
IABGT
i . For some components, we can only ask experts to give us their reliability,

according to their experiences. Particularly if these components are too expensive
or it is impractical to be observed them directly. In this case, experts should take
into account uncertainty and the sensitivity of their assessment.

The belief functions theory helps experts by giving them the opportunity
to quantify more adequately their uncertainties. In the context of this work,
when we ask experts to assess components reliability, they express their beliefs
by defining a mass function mi for each component Ci. Hence, knowing that
∀i = 1, . . . , n, mi(∅) = 0, the expert has to assess mi(1) (respectively mi(0) =
and mi(Ωi)) which represents the degree of belief on the occurrence of Ci (respec-
tively the degree of belief on the non-occurrence of Ci, and the ignorance about
the state Ci).

Equation (1) allows experts to give only their beliefs about two focal sets
among three, the belief about the third set is deduced from the two others.
Therefore, they are free to choose one of the following combinations:
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1. mi(1) and mi(0).
2. mi(1) and mi(Ωi).
3. mi(0) and mi(Ωi).

We can ask several experts to assess the mass function of the same component.
The paper [SF02] presents different combination rules to aggregate the masses
given by experts into a single one. This point is beyond scope of this paper.

On the other hand, we need to construct a mass function for ΨABGT
i , denoted

by mΨABGT
i

. As this structure is perfectly known, then the mass is categorical,
i.e. it has only one focal set. This focal set is given by:

A = {(X1, . . . , Xi−1,Xi+1, . . . , Xn,XS) ∈ Θ × ΩS , ΨABGT
i (X−i) = XS} (8)

where Xi is equal to 1 if Ci works, and it is equal to 0 if it fails.

4 Components’ Importance Under Epistemic Uncertainty

Given several pieces of evidence, we have to capitalize on these pieces of evidence
to construct our belief on the working state of S. Aguirre et al. proposed an
algorithm to compute the reliability of a system using components mass functions
and the configuration mass in [ASS15]. The purpose is to assert an uncertain
measure about the reliability of the system given by a mass function mS defined
from ΩS in [0, 1]. This algorithm is used to compute the importance measure of
a component using (6). The fundamental steps are given in the following and
summarizing in Fig. 1:

1. The mass function mj of a component Cj has to be extended to the same
space in which mΨABGT

i
is defined (c.f. Eq. (4)).

Fig. 1. Algorithm to compute mIABGT
i
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2. The extended mass function mj of a component Cj has to be combined with
mΨABGT

i
.

3. The mass obtained previously is marginalized to Ω1 × . . . × Ωi−1 × Ωi+1 ×
. . . × Ωn × ΩS\Ωj (c.f. Eq. (3)).

4. The first, the second, and the third steps are repeated, using the mass function
obtained in the third step instead of mΨABGT

i
, until the obtaining of a mass

function defined on ΩS . This mass function represents the mass mIABGT
i

.

This algorithm is justified by the axioms of local computations [SS08]. These
axioms indicate, inter alia, that the mass combination can be done in any order.
However, this algorithm is impractical, because the number of operations grows
exponentially according to the size of the system. Thus, the authors showed
that the reliability of a coherent system can be easily obtained using belief and
plausibility functions considered, respectively, as components reliability lower
and upper bounds. This is due to the monotony of the structure function in the
case of coherent system. However, in the case of non-coherent systems the brute
approach, described previously, should be used.

5 Conclusion

In this work, we have recalled basic concept of reliability analysis in the frame-
work of belief functions theory. This paper focuses on the concept of importance
measures, especially those adapted to non-coherent systems. We first studied
importance measures based on the criticality indicator variable.Then, we have
tried to extended them to make them compatible with belief functions theory in
order to take into account aleatory and epistemic uncertainty. For this purpose,
we have proposed an algorithm to compute the importance measure of compo-
nents of non-coherent systems. This paper is a preliminary work, it needs to
be more formalized. On the other hand, the method proposed is considered to
be a brute force approach. Thus, it has to be optimized to make it useful for
reliability researchers.
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Abstract. Detecting independent users in online social networks is an
interesting research issue. In fact, independent users cannot generally be
influenced, they are independent in their choices and decisions. Indepen-
dent users may attract other users and make them adopt their point of
view. A user is qualified as independent when his/her point of view does
not depend on others ideas. Thus, the behavior of such a user is inde-
pendent from other behaviors. Detecting independent users is interesting
because a part of them can be influencers. Independent users that are not
influencers can be directly targeted as they cannot be influenced. In this
paper, we present an evidential independence maximization approach for
Twitter users. The proposed approach is based on three metrics reflecting
users behaviors. We propose an useful approach for detecting influencers.
Indeed, we consider the independence as a characteristic of influencers
even if not all independent users are influencers. The proposed approach
is experimented on real data crawled from Twitter.

Keywords: Independence measure · Independence maximization
Theory of belief functions · Twitter social network · Influence

1 Introduction

Nowadays, most of web users are connected over online social networks (OSN )
like Facebook, Twitter, LinkedIn, etc. OSN Users are different and may have
distinguishable characteristics. Some of them are active and others are pas-
sive. Some of them are dependent on others, thus their choices, points of views
and ideas depend on others. Other users are independent and impose their own
choices and points of view. These users are independent from others and may be
influencing them. Therefore, in this paper, we assume that the independence is
a characteristic of influence users in the network. However, we cannot consider
all independent users as influencers.

c© Springer Nature Switzerland AG 2018
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Independent users are more active and they attract others with their activ-
ities on OSN. Detecting these users is an interesting task for many companies
to promote their business over OSNs. A part of independent users is influencers.
Independent users that are not influencers can be directly targeted as they cannot
be influenced. OSN provided a wide spread platform to promote new products
and services by several companies. To summarize, companies propagate their
new products throw influencers and may also target independent users who are
not targeted otherwise.

Previous researches were already interested in measuring the independence of
users in OSN. However, the independence was never studied from the influence
point of view. Kudelka et al. [4] proposed to quantify the dependence between
vertices of an OSN considered as a network in the aim of community detection.
Chehibi et al. [1] proposed a dependence measure for Twitter. Their proposed
approach is detailed in this paper from an independence point of view. Indeed,
our independence maximization approach uses their independence measure.

Twitter limits the access to its data, thus we cannot obtain all informa-
tion about all users. Therefore, we propose an approximate estimation using
the theory of belief functions [2,6]. It models uncertainty, imprecision, incom-
pleteness, total and partial ignorance. Besides the theory of belief functions pro-
vides a mathematical framework for combination [2,7]. Recently, the theory of
belief functions was used to estimate the influence on Twitter. In fact, Jendoubi
et al. [3] introduce an evidential influence measure for Twitter. Their measure
fuses three Twitter metrics to quantify the user’s influence: followers, mentions,
retweets.

In this paper, we study the independence in OSN from the influence point
of view. Then, we consider the influence of independent users in ONS. In fact,
the notions of independence and influence were never studied together in the
literature. Then, we propose an evidential independence maximization model
for Twitter users. The aim is to detect the most independent users that may be
influencers. Indeed, we consider the independence useful to characterize influence
users. In addition, this hypothesis validates the independence measure proposed
in [1] with regards to the influence maximization. Furthermore, we study the
independence of Twitter users through a set of experiments.

The sequel of the paper is organized as follows: We detail the approach of
estimating users independence in Sect. 2. Then, we detail the independence max-
imization model in Sect. 3. Finally, before concluding in Sect. 5, we detail exper-
imental results on real data collected from Twitter in Sect. 4.

2 Independence on Twitter

Twitter is an OSN that allows its users to connect to each others through an
explicit relation, i.e. follow and/or through many implicit relations, i.e. a retweet,
a mention or a citation.

In this paper, we propose to study the users behavior throw the implicit
relations. Thus, a retweet is an information tweeted by a user from the tweets of
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another user connected with him. The number of retweets reflects the amount
that a user adopts opinions of others. A mention is a message directly sent to
another specific user to communicate with him. Finally, a citation is the fact
that a user cites other users in their tweets.

Thus, retweets, mentions and citations reflect amounts of adoption of others
ideas by a specific user. In this paper, we propose to estimate degrees of indepen-
dence between Twitter users. A user of Twitter u is independent from another
user v when information provided by u are not affected by the information pro-
duced by v. When a user u is independent from v, the number of times that u
retweets, mentions and cites v is quite small.

Therefore, we propose to estimate the independence degrees of Twitter users
based on their numbers of follows, retweets, mentions and citations.

A user u of Twitter is independent from another user v if u is following v and
u does not frequently retweet tweets of v or/and, u does not frequently mention
v in his tweets.

Figure 1 summarizes the approach of user’s independence estimation on Twit-
ter proposed in [1]. The approach is in three steps:

Step 1. Weights estimation: w define a weight for each implicit relation: retweet,
mention and citation. Thus, we define 3 weights (wr, wm, wc), such that
wr is the weight of retweets, wm is the weight of mentions and wc is the
weight of citations.

Step 2. Mass functions estimation: a mass function is estimated from each
weight. Each mass function reflects the degree of belief on the users
independence from the 3 (incomplete) collected information. We define
3 mass functions (mr,mm,mc), such that mr, mm and mc reflect
the degree of belief on the users independence knowing the weight of
retweets, mentions and citations.

Step 3. Independence degree estimation: mass functions mr, mm and mc are
combined in order to deduce independence degrees by considering the 3
aspects of retweets, mentions and citations.

Fig. 1. Independence estimation
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2.1 Step 1: Weights Estimation

Let G = (V,E) be an OSN such that V is the set of nodes, E is the set of links,
u ∈ V is a follower of v ∈ V on Twitter. A user u following a user v can retweet,
mention or/and cite v. The number of retweets, mentions or/and citations may
indicate the independence or the dependence of u on v. Thus, a vector of weights
(wr, wm, wc) is assigned to each link (u, v) as shown in Fig. 1.

The weights wr, wm and wc of the link (u, v) ∈ E are computed as follows:

wi(u, v) =
Ni(u, v)
NTi(u)

(1)

such that i = {r,m, c}. Thus:

1. The retweet weight wr(u, v), is the number of times that u has retweeted v’s
tweets (Nr(u, v)) proportioned by the total number of u’s retweet (NTr(u)).

2. The mention weight wm(u, v), is the number of times that u has mentioned
v (Nm(u, v)) proportioned by the total number of mentions of u (NTm(u)).

3. The citation weight wc(u, v), is the number of times that u has cited v
(Nc(u, v)) proportioned by the total number of u’s citations (NTc(u)).

2.2 Step 2: Mass Functions Estimation

Weights computed in step 1 may induce to some degree of belief on the users
independence. Thus, a mass function is built from each weight. Let I = {D, I}
be the frame of discernment of the independence where D is the hypothesis that
users are dependent and I is the hypothesis that users are independent. Mass
functions are estimated as follows:

⎧
⎪⎨

⎪⎩

mI
i(u,v)

({D}) = αiu × wi(u, v)
mI

i(u,v)
({I}) = αiu × (1 − wi(u, v))

mI
i(u,v)

({D, I}) = 1 − αiu

(2)

such that i = {r,m, c}. Thus:

1. The mass function mI
r(u,v)

is deduced from the retweet weight wr(u, v). Note

that αru =
NTr(u)

Tu
is a discounting coefficient that takes into account the

total number of tweets Tu. The estimation of the mass function mI
r(u,v)

is
more reliable when the number of retweets is big enough in comparison with
the total number of tweets.

2. The mass function mI
m(u,v)

is deduced from the mention weight wm(u, v) and

αmu
=

NTm(u)
Tu

is a discounting coefficient that takes into account the total

number of tweets quoted by u with respect to the total number of tweets of u.
3. The mass function mI

c(u,v)
is deduced from the citation weight mc(u, v) and

where αcu =
NTc(u)

Tu
is a discounting coefficient that takes into account the

total number of tweets of u mentioning v with respect to the total number of
tweets of u.
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2.3 Step 3: Independence Degree Estimation

Mass functions mI
r(u,v)

, mI
m(u,v)

(D) and mI
c(u,v)

are combined with Dempster’s
rule of combination as follows:

mI
(u,v) = mI

r(u,v)
⊕ mI

m(u,v)
⊕ mI

c(u,v)
(3)

Finally, degrees of independence Ind(u, v) and dependence Dep(u, v) cor-
responds to pignistic probabilities computed from the combined mass function
mI

(u,v) such that:
{

Dep(u, v) = BetP (D)
Ind(u, v) = BetP (I) (4)

The independence degree Ind(u, v) is non-negative, it is either positive or
null. It lies in the interval [0, 1]. When Ind(u, v) = 1, u is totally independent
from v; Ind(u, v) = 0 implies that u is totally dependent of v. Decision is made
according to the maximum of pignistic probabilities. If Dep(u, v) ≥ Ind(u, v)
then u is dependent on v, in the opposite case, if Ind(u, v) > Dep(u, v), u is
independent from v.

3 Independence Maximization

The independence measure can be considered as an influence measure. In fact,
social influencers are characterized by their independence from the other users.
Then, we propose to validate the proposed independence measure by using it
to detect influencers, we call this task independence maximization. The maxi-
mization of the user’s independence in this paper is similar to the problem of
influence maximization presented in [3]. In fact, we can maximize the indepen-
dence through a maximization model that was defined for the influence, we just
need to replace the influence measure with an independence measure that has
the same mathematical properties which are the monotonicity and the submod-
ularity.

To maximize the independence in the network, we define the amount of inde-
pendence of a set of nodes, S, on the network. It is the total independence given
to S from all users in the network. First, we estimate the independence of S to
a user v as follows:

Ind (S, v) =

⎧
⎪⎨

⎪⎩

1 if v ∈ S
∑

u∈S

∑

x∈IN(v)∪v

Ind (u, x) × Ind (x, v) otherwise (5)

where Ind (v, v) = 1 and IN (v) is the set of in-neighbors of v, i.e. the set of
nodes linked to v through a directed link having v as destination. Next, we define
the independence spread function that estimates the amount of independence of
S on the network as follows:

σ (S) =
∑

v∈V

Ind (S, v) (6)
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We are looking for S on the network that maximizes σ (S), i.e. argmax
S

σ (S).

The independence maximization is an NP-Hard problem. Besides, the func-
tion σ (S), is monotone and sub-modular. Then, a greedy-based solution can
provide a good approximation of the optimal independence users set S. In this
case, the cost effective lazy-forward algorithm (CELF) [5] is adapted to maxi-
mize the independence. Furthermore, it is a two pass maximization algorithm
that is about 700 times faster than the greedy algorithm.

4 Experiments

In our experiments, we crawled the Twitter network using the streaming API on
20/01/2018. We obtained 54960 users, 686542 implicit relations between them
(retweet, mention and citation) and 352420 tweets. Next, we used the indepen-
dent maximization model introduced in the previous section to detect influencers
in the collected network. We fixed the number of the detected nodes (size of S)
to 100.

We study the independent maximization model according to for criteria of the
detected nodes which are the number of accumulated mentions #Mention, the
number of accumulated retweets #Retweet, the number of accumulated tweets
#Tweet and the number of accumulated citations #Citation. Indeed, these cri-
teria are considered as quality indicators of detected nodes. Then, higher their
values are, better the quality of detected nodes is.

Figure 2 presents the obtained results according to the four fixed criteria, i.e.
#Mention, #Retweet, #Tweet and #Citation receptively. According to Fig. 2,
the detected users (horizontal axis) have a good quality especially in terms of
#Mention, #Retweet and #Tweet. In fact, the detected users have more than
4500 accumulated mentions, about 1200 accumulated retweets and more than
1800 accumulated tweets. These observations mean that the detected users are
active in the network in terms of tweets. Also, their content is frequently prop-
agated (retweeted). Besides, they are frequently mentioned in others tweets.
Whereas, we notice a less important number of citations of the detected users.
In fact, we have 18 accumulated citation which is relatively small compared to
#Mention, #Retweet and #Tweet. We think that this is a result of weakness of
the proportion of the citations in the data.

These observations confirm the assumption introduced in the previous
section, then we can deduce that influencers are characterized by their inde-
pendence from the other users in the network. In fact, the detected users using
the proposed independence maximization model have a good quality according
to the chosen criteria which confirms that they are influencers in the network.

In this paper, the main purpose is to validate the independence measure
through detecting influencers. In fact, the independence is one important char-
acteristic of influencers. The experiments presented in this section confirm this
fact. Indeed, the detected users have a good quality according to the chosen cri-
teria. However, the independence itself is not sufficient as an influence measure
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and we can obtain better results by fusing it with other influence behaviors in
the network like the user’s position for example.

5 Conclusion

In this paper, we study the independence of Twitter users proposed in [1] from
the influence point of view. Furthermore, we propose an independence max-
imization model that can be useful to detect influencers. In fact, a common
property of social influencers is their independence from the other users in the
network. Then, we use an independence measure to estimate the user’s influ-
ence and to detect a set of influencers that maximizes the global independence
in the network. Next, we experiment the proposed solution on real world data
collected from Twitter and we study the quality of selected users according to
their #Mention, #Retweet, #Tweet and #Citation.

In future works, we will study in a more refined way the notions of influence,
dependence and independence to compare them. Besides, we will search to define
an influence measure that fuses the user’s independence with other influence
behaviors like the user’s activities and position.
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Abstract. The task of tree species recognition is to recognize the tree
species using photos of their leaves and barks. In this paper, we propose
an evidential k-nearest neighbors (k-NN) combination rule. The proposed
rule is adapted to classification problems where we have a large number of
classes with an intra-class variability and an inter-class similarity like the
problem of tree species recognition. Finally, we compare the performance
of the proposed solution to the evidential k-NN.

Keywords: Tree species recognition · Belief functions theory · k-NN

1 Introduction

The tree species recognition1 searches to identify the tree species through photos
of leaves and barks taken with a smartphone. The automation of this task is very
useful for non botanist users who want to learn more about trees. The idea is to
help a user and to teach him how to recognize tree species. Trees recognition is
a challenging classification problem.

The k-nearest neighbors (k-NN) classification is a fundamental and simple
technique. In fact, all we need to use it is a training set that contains a repre-
sentative labeled data sample of all possible classes in a given problem and a
distance metric. Then, to classify a new data point x, k-NN computes the point
distance with all points in the training set and selects the k-nearest neighbors.
Finally, k-NN chooses the class of x according to the majority vote principle.
The k-NN classifier is sensitive to the value of its main parameter k.

Denœux [6] introduced a k-NN decision rule based on the theory of belief
functions [9]. The advantage of this rule is that it considers the distances from
the nearest neighbors in the decision step (classification step) which leads to
more accurate results. In fact, Denœux ’s solution combines the evidence from
the nearest neighbors through the framework of the theory of belief functions.

1 This work has been supported by the French National Agency for Research with the
reference ANR-15-CES38-0004 (ReVeRIES project).
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The resulting decision rule is more robust to the conflicting information, i.e.
when the object to be classified is close to different classes, and information
sparsity, i.e. when the object to be classified is far from all patterns in the
training set.

The evidential k-NN (Ek-NN) is accurate in many existing classification
problems. However, when we have a large number of classes, this accuracy may
decrease. This problem becomes serious when we have an intra-class variability
and an inter-class similarity like the problem of tree species recognition. This
fact increases the conflict between species and leads to miss classification. This
limitation was addressed in the literature. In fact, [8,11] proposed variants of the
Ek-NN based on the Parametric Conjunctive t-Rules and an hybrid Dempster-
Yager Rule respectively.

The main contributions of this paper are the following: first, we propose
an evidential k-NN rule that is more adapted for the large number of classes
problem. Besides, the proposed solution deals with the conflict between species
and reduces it. In fact, we propose to use a modified version of the large number
of source combination algorithm introduced by Zhou et al. [13]. Second, we prove
the performance of the proposed solution through a set of experiments on the
trees recognition problem. Then, we show that the proposed solution is more
accurate than the Ek-NN.

This paper is organized as follows: Sect. 2 is dedicated to present the tree
species recognition problem. Section 3 details the Ek-NN trees recognition sys-
tem. Section 4 introduces the combination rule for large number of classes recog-
nition. Section 5 presents some experiments. Finally, Sect. 6 concludes the paper.

2 Tree Species Recognition

The trees species recognition is the problem of identifying trees from their leaves,
barks, flowers, etc. In this work, we are interested in recognizing trees from their
leaves and barks. In the nature, recognizing trees is not an easy task and it needs
a botanist. In these last years, many researches were conducted to automate this
task. However, this is not a simple task. Indeed, in the nature there is a large
variety of species. Besides, it is very common to find similarities between different
species and a variability of trees in the same species. Let take the example of
leaves in Fig. 1, the leaves (a) and (b) look different, but they belong to the holly
species. Besides, the leaves (b) and (c) are very similar, but they belong to two
different species (holly and oak).

In the literature, many solutions was proposed for this problem [1,3,7].
Besides, many smartphone applications are now available like Pl@ntNet and
Folia. Pl@ntNet [7] gives good recognition rates. However, it needs to be con-
nected to Internet. Moreover, it provides the results without any explanation.
Whereas, we want to provide the user with information to help him get in the
world of botany. In the other hand, we have Folia [3], this application does not
need Internet connection. In fact, it recognizes the tree through a limited number
of attributes extracted from leaves photos then it can be run on a smartphone.
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Fig. 1. Intra-species variability and interspecies similarity: (a) and (b) belong to the
holly species and (c) belongs to the oak species

Besides, this application explains to the user its results. However, the current
version of Folia recognizes only photos of leaves.

Ben Ameur et al. [1] introduced a model-based evidential solution that rec-
ognizes trees from leaves and barks. Their solution classifies the leaf and bark
photos of the tree using the random forest classifier. Then, they use the inverse
pignistic [12] operator to transform the classification results to a consonant mass
distribution. Next, they fuse the consonant masses of leaf and bark to obtain a
mass distribution that is used to recognize the tree. In this paper, we search
to improve the results of [1]. Furthermore, we want to avoid the random forest
classification step that is consuming in execution time.

In the next section, we detail the evidential k-NN species recognition system.

3 Evidential k-nearest Neighbors for Trees Recognition

To recognize tree species from leaves and barks, we follow the botanists strategy.
In fact, they identify the different morphological characteristics of leaves (apex,
shape, etc) and barks (color, gabor, etc). Then, we extract from each character-
istic a vector of attributes to characterize it. From each leaf photo, three vectors
are extracted. The first one characterizes the apex and the base of the leaf, the
second represents the margin and the last characterizes the polygonal model.
From each bark photo, four attributes vectors are extracted which characterize
respectively: (1) the color hue H of the HSV space, (2) the texture (gabor) space,
(3 & 4) vertical and horizontal orientation of the bark texture. Bertrand et al.
[2] detail these characteristics. We consider each characteristic as a source of
information.

We define a classification system as described in Fig. 2.This architecture is
useful to provide the user with classification results according to each character-
istic separately and with an explanation of the results. Next, to classify a new
leaf/bark photo, we extract the same characteristics. Then, we apply an eviden-
tial k-NN (Ek-NN) on each characteristics as presented in Fig. 2. The output of
each Ek-NN is a BBA distribution defined on the frame of all possible species.
Next, we combine the obtained BBAs to make a decision according to leaves,
barks and combined leaves and barks.

The Ek-NN [6] starts like the probabilistic k-NN by estimating the dis-
tance between an unclassified object x and all the elements in the training set.
Next, it takes the k neighbors having the least distances to x. At this step, the
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Fig. 2. Evidential k-NN based species recognition

probabilistic k-NN chooses the class of x according to the majority vote princi-
ple. Whereas, Ek-NN estimates a mass distribution for each nearest neighbor, i,
using its distance to x. Let us define the frame of discernment Ω = {c1, c2, ..., cn}.
The Ek-NN estimates the mass mΩ

i for each nearest neighbor i as follows:

mΩ
i (ci) = α0Φi (di) (1)

mΩ
i (Ω) = 1 − mΩ (ci) (2)

such that ci is the class of the neighbor i, di is the distance between x and i and
Φi is a decreasing function that may be defined as Φi (di) = e−γid

β
i where γi > 0

and β ∈ [0, 1]. Then, the Ek-NN combines the obtained mass functions from all
the neighbors in order to obtain a decision mass distribution. The combination
is done, generally, using the Dempster’s rule [5]. Finally, the decision may be
taken using the maximum pignistic.

The inter-species similarities and the intra-species variability make harder
the recognition task for the Ek-NN. These two facts lead to an imprecise and
uncertain environment for the Ek-NN. Besides, they generates an important
conflict between the species. Given the example presented in Fig. 3, we have
a leaf and we want to identify its species. The Ek-NN selects the k nearest
neighbors to the given leaf. In Fig. 3 we have many species that are near to the
unknown leaf. If we take a small k value (k = 3 for example), the true class (C6
in this case) will not appear in the nearest neighbors set (C1, C4, C5). Then,
we need to choose a big value of k in order to increase the probability that the
true class appears. In our experiments we fixed k to 20 according to an Akaike’s
information criterion (AIC) [4].

After selecting the nearest neighbors, the Ek-NN estimates a simple BBA for
each selected neighbor. Besides, the distances between the unknown leaf and its
nearest neighbors are small and almost equal. Then we will obtain k BBA with a
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Fig. 3. Inter-species similarities and intra-species variabilities effects on the selected
nearest neighbors

high amount of belief on the neighbor’s class (Ci). Combining these BBAs leads
to a high conflict value (mass of the empty set m (∅)) that tends to 1. This fact
leads to a miss classification even when we use the Dempster’s rule.

4 Proposed Evidential k-nearest Neighbors Combination
Rule

To better distribute the conflict and to resolve the combination problem intro-
duced in the previous section, we propose to combine the BBAs estimated from
the nearest neighbors using the large number of sources combination algorithm
(LNS) proposed in [13]. LNS takes as input a set of simple masses, i.e. a mass
with two focal elements among them Ω. Then, the LNS input is the set of mass
functions estimated from neighbors. In the first step, LNS clusters the masses
into θ clusters according to their focal element A �= Ω. Next, it combines each
cluster masses using a combination rule ([13] used the conjunctive rule of com-
bination (CRC) [10]).

After combining the cluster masses, we obtain θ masses, one by cluster. The
next step is the reliability-based discounting step. Then, the clusters are seen as
sources of information and the main purpose is to consider the reliability of each
cluster through the following hypothesis: the larger the number of masses in the
cluster θj is, the more reliable the cluster θj is. Then, we propose to estimate the
reliability coefficient of the jth cluster as εj = Card(θj)

k . Next, each cluster mass
is discounted using its reliability coefficient. The last step of the LNS algorithm
is to combine all discounted cluster masses using a combination rule ([13] used
the CRC).

The advantage of the LNS algorithm is that it offers the possibility to use
two different combination rules as it combines masses in two levels, i.e. intra
and inter-clusters. Then, we propose the disjunctive rule of combination (DRC)
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[10] to combine intra-cluster masses and the CRC to combine the inter clus-
ters masses. In the next section, we present a set of experiments on the tree
species recognition problem and we show the contribution of the DRC in the
LNS algorithm.

5 Experiments

To evaluate the proposed solution, we use a dataset from the ImageClef challenge.
The dataset contains photos of trees from mainland France. Those photos are
taken in the wild by non-professionals. Then, the photos in this dataset are
similar to those a user may take in the nature. The dataset contains 2572 leaves
photos and 895 barks photos for training and 820 couple of leaves and barks
photos for testing. In the dataset, we have 72 tree species to recognize. In the
experiments, we fixed the k parameter to 20 according to an AIC criterion,
α0 = 0.944, γi = 0.76 and β = 3.6. We note that the classifier returns the ten
most likely tree species. Then we compare LNS evidential k-NN rule (LNS Ek-
NN) with the Ek-NN according to the accuracy that the good species is among
the first ten returned species.

In a first experiment, we compare the proposed LNS Ek-NN with the Ek-NN
using the Dempster’s rule to combine the k masses. We used the conjunctive
combination rule to combine the classification results of leaves characteristics
and those of barks, and we used the disjunctive combination rule to combine the
results of leaves and barks. Figure 4 presents the classification results of the two
experimented classifiers according to leaves characteristics, barks characteristics
and combined leaves and barks. According to Fig. 4, the Ek-NN is not efficient
as it gives low classification rates. Whereas, the proposed solution gives good
classification rates. In fact, we have got an accuracy equals to 49.87% for the
first recognized species and 89.14% for ten species from the combined leaves and
barks classifiers.

Fig. 4. Comparison between the proposed LNS evidential k-NN and the Denœux ’s
evidential k-NN according to leaves, barks and combined leaves and barks accuracy
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In a second experiment, we study the impact of the combination rule on the
accuracy of the combined leaves and barks classifiers. Results of this experiment
are shown in Fig. 5. Then, we tested the Ek-NN with the Dempster’s rule, CRC
and DRC. We notice that the used combination rule has an important impact
on the accuracy of this classifier. In fact, the CRC and the DRC succeeded to
improve the accuracy of the Ek-NN.

We said in the previous section that the LNS algorithm allows the use of two
different combination rules to combine intra and inter-clusters masses. Then in
Fig. 5, we present the accuracy using the DRC to combine intra-cluster masses
and the CRC to combine the inter clusters masses compared to the accuracy
when we use the CRC for both of them as proposed by [13]. According to this
experiment, the DRC has a positive impact on the accuracy of the proposed LNS
evidential k-NN classifier. Then, we have 49.87% for the first species recognized
with the DRC (red curve) against 45.48% when we use only the CRC (blue
curve). Besides, we have 89.14% for ten species with the DRC (red curve) against
88.56% when we use only the CRC (blue curve). Furthermore, the effect of the
DRC is more important for the first eight detected species. In fact, when we
use the DRC combination rule to combine intra-clusters masses, the mass value
on the global ignorance, i.e. Ω, in the resulting distribution is more important
than its value when we use the CRC, and this fact, allowed the classifier to more
consider the uncertainty and to improve the results as shown in Fig. 5.

Fig. 5. Impact of the combination rule on the classifier accuracy: fusion of leaves and
barks classifiers

From the experiments, we can conclude that the LNS combination algorithm
is adapted to combine the estimated masses of the evidential k-NN. In fact, as
we see above the proposed LNS evidential k-NN classifier is more accurate in
recognizing tree species than the Ek-NN.
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6 Conclusion

To sum up, in this paper we focus on the problem of tree species recognition
which is a challenging task. We propose the LNS evidential k-nearest neighbors
classifier. This solution is more adapted for classification when we have a large
number of classes problem. In fact, the LNS combination algorithm is permanent
to combine evidence from large number of sources [13] and to deal with the
conflict which is the case of the problem in this paper.

In the future works, we will search to improve the achieved results in order to
give more accurate recognition to the end user. Then, we will search to optimize
the Ek-NN parameters according to [14]. Another good solution may be to use
an adapted classifier for each extracted characteristic from leaves and barks.
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Abstract. In this paper, a rule learning method based on the evidential
C-means clustering is proposed to efficiently design a compact belief
rule-based classification system. In this method, the evidential C-means
algorithm is first used to obtain credal partitions of the training set. The
clustering process operates in a supervised way by means of weighted
product-space clustering with the goals of obtaining both good inter-
cluster separability and inner-cluster pureness. Then the antecedent part
of a belief rule is defined by projecting each multi-dimensional credal
partition onto each feature. The consequent class and the weight of each
belief rule are identified by combing those training patterns belonging to
each hard credal partition within the framework of belief functions. An
experiment based on several real data sets was carried out to show the
effectiveness of the proposed method.

1 Introduction

Pattern classification is an active field in machine learning and artificial intel-
ligence. Its main purpose is to assign the objects, represented by attribute (or
feature) vectors to predefined group of classes. In the past five decades, a vari-
ety of classification techniques, such as support vector machines (SVM), neural
networks (NN), naive Bayes (NB), K-nearest neighbors (K-NN), rule-based clas-
sification (RBC), decision trees (DT), have been proposed [1]. Among these
methods, RBC not only has its own advantage in classification result interpret-
ing, but also can be easily enhanced and complemented by adding new rules
from experts based on their domain knowledge. One of the most representa-
tive RBC methods is the fuzzy rule-based classification system (FRBCS) [4,6],
which is developed incorporating fuzzy sets. The FRBCS is widely employed
due to its capability of building a linguistic model interpretable to users. It has
been successfully applied to many real-world classification tasks where model
interpretability is important, including, but not limited to, terrain classification
[12], intrusion detection [10], fault classification [13], target recognition [14], and
disease diagnosis [2].

c© Springer Nature Switzerland AG 2018
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In [8], we have extended the FRBCS within the framework of Dempster-
Shafer theory or belief function theory [5,11], and developed a belief rule-based
classification system (BRBCS) to address imprecise or incomplete information in
complex classification problems. Compared with the fuzzy rule, the consequent
part of the belief rule is in a belief distribution form, which is more informative
to characterize different kinds of uncertain information existing in the training
set. In addition, in the reasoning process, the class label of a query pattern is
decided by combining the consequent parts of all the activated belief rules, which
can reduce the risk of misclassification in noisy conditions. In many situations,
this method is found experimentally to yield better accuracy and robustness
than FRBCS using the same information.

Rule learning is the most important issue in developing the BRBCS. In [8],
a heuristic belief rule base (BRB) learning method was developed by defining
belief rules based on individuals of the training patterns, and the resulting BRB
can provide an accurate mapping between the feature space and the class space.
However, with this method, a higher number of data generally induces the BRB
with larger size. This may lead to a large rule base for big data set, which affects
the interpretability of the classification model. Motivated by the above considera-
tion, in this paper, a compact belief rule-based classification system (CBRBCS)
is developed for a better trade-off between accuracy and interpretability. We
propose to learn a compact BRB based on partitions of the training set realized
with clustering techniques. The evidential C-mean (ECM) algorithm [9], which
extended the fuzzy C-mean algorithm within the framework of belief functions,
is used for its capability to address imprecise and partial information existed in
observed data. The clustering process operates in a supervised way by means of
weighted product-space clustering in order to take into account the class labels.
As belief rules are constructed based on credal partitions of the training set, this
method can reduce the number of generated rules greatly.

The rest of the paper is organized as follows. In Sect. 2, the basics of the
belief rule-based classification system and the evidential C-mean algorithm are
reviewed. The compact BRB learning with evidential clustering is developed in
Sect. 3 and then several benchmark data sets are used to evaluate the perfor-
mance of the proposed method in Sect. 4. At last, Sect. 5 concludes the paper.

2 Background

2.1 Belief Rule-Based Classification System (BRBCS)

A belief rule-based classification system is composed of two main conceptual
components, the belief rule base (BRB) and the belief reasoning method (BRM).
The BRB establishes a mapping between the space of pattern features and the
space of consequent classes, and the BRM provides a mechanism to classify a
query pattern based on the BRB [8].
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For an M -class (denoted as C = {c1, c2, · · · , cM}) classification problem with
P features, the BRB consists of a collection of belief rules defined as follows:

Rj : If x1 is Aj
1 and x2 is Aj

2 and · · · and xP is Aj
P ,

then class is Cj =
{

(c1, β
j
1), · · · , (cM , βj

M )
}

,

with rule weight θj , j = 1, 2, · · · ,

where x1, x2, · · · , xP represent the antecedent features and Aj = (Aj
1, A

j
2, · · · ,

Aj
P ) is the antecedent part of the belief rule Rj with each Aj

p belonging to fuzzy
partitions {Ap,1, Ap,2, · · · , Ap,np

} associated with p-th feature, p = 1, · · · , P .
βj

k is the belief degree that input data x = (x1, x2, · · · , xP ) belongs to ck,
k = 1, · · · ,M . In the belief structure, the consequence may be incomplete, i.e.,∑M

k=1 βj
k ≤ 1, and the left belief 1 −

∑M
k=1 βj

k denotes the degree of global igno-
rance about the consequence. The rule weight θj with 0 ≤ θj ≤ 1, characterizes
the certainty grade of the belief rule Rj .

The BRB can be learned from training data or derived from expert knowl-
edge [7]. In [8], we developed a heuristic BRB learning method within the frame-
work of belief functions. To generate the BRB, this method uses the following
steps.

Step1: Partition of the feature space.
The fuzzy grid-based method is used to divide the P -dimensional feature
space into

∏P
p=1 np fuzzy regions.

Step2: Generation of the consequent class for each fuzzy region.
Each training pattern is assigned to the fuzzy region with the greatest match-
ing degree, and the class labels of training patterns assigned to the same fuzzy
region are combined to get the consequent class.

Step3: Generation of the rule weights.
The rule weights are determined by two measures called confidence and sup-
port jointly.

Once the BRB is generated, the BRM is used to classify a query pattern by
combining the consequent parts of all the activated belief rules (refer to [8] for
details of this reasoning method).

2.2 Evidential C-Means (ECM)

In [9], the evidential C-means (ECM) algorithm was proposed to derive credal
partitions from object data. The class membership of an object xi is represented
by a mass function mi over a given frame of discernment Ω = {ω1, ω2, · · · , ωC}.
This representation is able to model all situations ranging from complete igno-
rance to full certainty concerning the class of the object.

The credal partitions of N observed data {x1,x2, · · · ,xN} ∈ RP are then
defined as the N -tuple M = (m1,m2, · · · ,mN ). For each object xi, the quantities
mij = mi(Aj)(Aj ⊆ Ω,Aj �= ∅) are determined in such a way that the mass of
belief mij is low (high) when the distance dij between object xi and focal set Aj
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is high (low). The distance between object xi and focal set Aj is calculated by
dij = ‖xi−vj‖, where vj is the barycenter of the centers associated to the classes
composing Aj . Denoting vk the center of the single cluster ωk, the barycenter
vj is calculated as

vj =
1

|Aj |

C∑
k=1

skjvk with skj =
{

1, if ωk ∈ Aj

0, otherwise . (1)

Finally, the objective function used to derive the credal partition matrix M
of size (2C × N) and the cluster center matrix V of size (C × P ) given by

JECM(M,V ) =
N∑

i=1

∑
j/Aj⊆Ω,Aj �=∅

|Aj |αmβ
ijd

2
ij +

N∑
i=1

δ2mβ
i∅, (2)

subject to
∑

j/Aj⊆Ω,Aj �=∅
mij + mi∅ = 1, ∀i = 1, · · · , N, (3)

where β > 1 is a weighting exponent that controls the fuzziness of the parti-
tion, δ > 0 controls the amount of data considered as outliers and mi∅ denotes
mi(∅), the amount of evidence that the class of object xi does not lie in Ω. The
weighting coefficient |Aj |α was introduced to penalize the subsets in Ω of high
cardinality and the exponent α ≥ 0 allows to control the degree of penalization.
The objective function is minimized using an iterative algorithm, which alterna-
tively optimizes the credal partition matrix M and the cluster center matrix V .

3 Compact BRB Learning with ECM

As reviewed in Sect. 2.1, in the traditional BRB learning method, belief rules are
defined based on individuals of the training patterns. This may lead to a large
rule base for big data set, which affects the interpretability of the classification
model. In this section, we propose to learn a compact BRB based on a partition of
the training set realized with clustering techniques. The ECM algorithm is used
here in order to incorporate the additional degrees of freedom and information
obtained from the derived credal partition, in the belief rule-based classification
system.

3.1 Credal Partition of the Feature Space

In typical classification problems, a set of N labeled patterns T = {(x1, c
(1)),

(x2, c
(2))}, · · · , (xN , c(N))} with input vectors xi ∈ RP and class labels c(i) ∈

{c1, c2, · · · , cM} are available, and the problem is to classify a query pattern
y based on the training set T . Different from unsupervised clustering problems
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which only consider the inter-cluster separability, a good partition of labeled pat-
terns should also take into account the inner-cluster pureness. For this purpose,
we cluster the N labeled patterns in the following weighted product space

z = (x × Wc), (4)

where W ≥ 0 controls the weight of class labels in clustering process. If W = 0,
it just reduces to the unsupervised clustering, and as W → ∞, the resulting
clusters are divided only based on the class labels. A suggested choice of W for
balancing the effects of feature values and class values is

W =

√∑P
p=1 σ2

p

σ2
c

, (5)

where σ2
p is the variance of p-th feature values, p = 1, 2, · · · , P , and σ2

c is the
variance of class values.

With given weight W and the number of clusters C, the ECM clustering
algorithm is used for the training set T to discover credal partitions of the
feature space. Noting that in ECM the training patterns assigned to empty set
are considered as outliers, which are adverse to classification, we only construct
belief rules based on 2C − 1 non-empty subsets of partitions obtained from the
clustering algorithm. From the obtained credal partition matrix M , whose ij-th
element mij → [0, 1] is the membership degree of the data xi in partition j, it
is possible to extract the fuzzy sets in the antecedent parts of the belief rules.

One-dimensional antecedent fuzzy sets Aj
p are obtained from the multidi-

mensional credal partition M by point wise projection [3] onto the space of the
antecedent features xp, p = 1, 2, · · · , P :

μAj
p
(xip) = projp(mij). (6)

With the above point-wise defined membership, a continuous membership func-
tion μAj

p
(x) for fuzzy sets Aj

p can be approximated. Several types of functions
such as triangular, trapezoidal or Gaussian, can be used. In this work we choose
the Gaussian membership function of the form

μAj
p
(x) = f(x; vjp, σjp) = e

(
− (x−vjp)2

2σ2
jp

)
, (7)

where vjp is the mean value calculated as Eq. (1), and σjp is the standard
variance to be estimated.

In this way, for each credal partition j, j = 1, 2, · · · , 2C − 1, a series of fuzzy
sets Aj

1, A
j
2, · · · , Aj

P can be defined on the antecedent features with Gaussian
membership functions, which constitute the antecedent part of belief rule Rj .

3.2 Generation of the Consequent Class

Based on the credal partition matrix M , the training set T can be divided into
2C groups by assigning each pattern to the partition with highest mass:

T j = {(xi, c
(i))|mij = max

k
mik, i = 1, · · · , N}, j = 1, 2, · · · , 2C . (8)
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The training subsets T j for j = 1, 2, · · · , 2C define a hard credal partition [9] of
the training set T . The subset T 2C

, which contains the outliers, is discarded. In
the following, we will derive the consequent class of belief rule Rj by combining
the class information of patterns in the reminder subset T j , j = 1, 2, · · · , 2C −1.

First, for any pattern xi ∈ T j , we calculate the matching degree with
antecedent part of belief rule Rj using the geometric mean operator as

μAj (xi) = P

√√√√
P∏

p=1

μAj
p
(xip), (9)

where μAj
p

is the membership function of the fuzzy set Aj
p defined in Eq. (7).

Then, assume the class label of pattern xi is ck, which takes value in class
set C. This can be regarded as a piece of evidence that increases the belief of
the consequent class belongs to ck. However, this piece of evidence does not
by itself provide full certainty. In belief function theory, this can be expressed
by saying that only some part of the belief (measured by the matching degree
μAj (xi)) is committed to ck. Because Class(xi) = ck does not point to any
other particular class, the rest of the belief should be assigned to the frame of
discernment C representing global ignorance. Therefore, this item of evidence
can be represented by a mass function mj(·|xi) verifying:

⎧
⎨
⎩

mj({ck}|xi) = μAj (xi)
mj(C|xi) = 1 − μAj (xi)
mj(A|xi) = 0, ∀A ∈ 2C \ {C, {ck}}

. (10)

Finally, the mass functions derived from all of the patterns in T j are com-
bined to obtain the consequent class of belief rule Rj . As the items of evidence
from different labeled patterns are collected independently, the Dempster’s rule
[5] is used in this work to synthesizing the final consequent class membership as

mj =
⊕

xi∈T j

mj(·|xi). (11)

Noting that all the sources of evidence have only one focal set except the global
set C, the computation of Dempster’s rule is quite efficient. The belief degrees
of the consequent class of rule Rj are then obtained as βj

k = mj({ck}), k =
1, 2, · · · ,M .

3.3 Generation of the Rule Weights

As in [8], the rule weights can be derived based on two concepts called confidence
and support, which are often used for evaluating association rules in data mining
fields. The confidence is a measure of the validity of one rule, which is defined as

c(Rj) = 1 − Kj , (12)
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where 0 ≤ Kj ≤ 1 is the average conflict factor, which measures the conflict
among those pieces of evidence used for building the consequent class of rule Rj :

Kj =

⎧
⎨
⎩

0, if |T j | = 1,
1

|T j |(|T j |−1)

∑
xp,xq∈T j ;

c(p) �=c(q)

μAj (xp)μAj (xq), otherwise. (13)

with |T j | donating the number of training patterns in j-th hard credal partition.
On the other hand, the support indicates the grade of the coverage by one

rule, which is defined as the ratio of the number of covered patterns to the total
pattern number:

s(Rj) =
|T j |
N

. (14)

Based on the above two measures, the rule weights are finally derived as

θj =
c(Rj)s(Rj)

max
j

{c(Rj)s(Rj), j = 1, · · · , 2C − 1} , j = 1, 2, · · · , 2C − 1. (15)

4 Experiment

In this experiment, four well-known benchmark data sets from UCI Repository
of Machine Learning Databases (http://archive.ics.uci.edu) are used to evaluate
the performance of the proposed compact belief rule-based classification system
(CBRBCS). The main characteristics of the four data sets are summarized in
Table 1.

Table 1. Statistics of the benchmark data sets used in the experiment.

Data set # of instances # of features # of classes

Diabetes 768 8 2

Letter 20,000 16 26

Segment 2,310 19 7

Vehicle 846 18 4

To develop the experiments, we consider the B-Fold Cross-Validation (B-CV)
model. Each data set is divided into B blocks, with B−1 blocks as a training set
and the remaining block as a test set. Therefore, each block is used exactly once
as a test set. We use the 5-CV here, i.e., five random partitions of the original
data set, with four of them (80%) as the training set and the remainder (20%)
as the test set. For each data set, we consider the average results of the five
partitions.

http://archive.ics.uci.edu
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The performance of the proposed classifier is compared with the traditional
BRBCS as well as several classical classification methods including K-NN, C4.5,
and naive Bayes (NBayes). For BRBCS the typical five partitions for each feature
are used. For CBRBCS, the default values of open parameters in ECM are used.
The number of clusters C is optimized by minimizing the validity index of credal
partitions defined in [9]. Besides, in order to reduce the complexity, we constrain
the focal sets to be either Ω, or to be composed of at most two classes. Table 2
shows the classification error rates of different methods as well as the numbers
of generated rules for BRBCS and CBRBCS (the numbers after virgule). It can
be seen that the performance of the two belief rule-base classifiers, i.e., BRBCS
and CBRBCS, is comparable with the classical methods. Compared with the
traditional BRBCS, the proposed CBRBCS obtains a better trade-off between
accuracy and interpretability (little accuracy is sacrificed with much smaller size
of rules).

Table 2. Classification performance of CBRBCS in comparison with other methods.

Data set K-NN C4.5 NBayes BRBCS CBRBCS

Diabetes 0.324(5) 0.270(4) 0.262(3) 0.218(1)/248 0.254(2)/37

Letter 0.068(3) 0.132(4) 0.529(5) 0.058(1)/3696 0.063(2)/121

Segment 0.077(2) 0.040(1) 0.265(5) 0.115(3)/827 0.130(4)/79

Vehicle 0.275(2) 0.266(1) 0.558(5) 0.278(3)/633 0.296(4)/46

5 Conclusions

In this paper, a compact belief rule-based classification system with evidential
C-mean clustering has been proposed to overcome the limitations of the tradi-
tional BRBCS in large data set conditions. Instead of defining belief rules for
individuals of the training patterns, belief rules are constructed based on credal
partitions of the training set. This method can discover the underling data struc-
ture, which can be successfully translated into belief rules. The experiment based
on benchmark data sets have shown that the proposed classifier is competitive
compared with the classical methods and can obtain a better trade-off between
accuracy and interpretability than the traditional one.
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Abstract. We define entropy of belief functions in the Dempster-Shafer
(D-S) theory that satisfies a compound distributions property that is
analogous to the property that characterizes Shannon’s definitions of
entropy and conditional entropy for discrete probability distributions.
None of the existing definitions of entropy for belief functions in the D-S
theory satisfy such a compound distributions property. We describe some
important properties of our definition.

1 Introduction

The main goal of this paper is to define entropy of belief functions in the
Dempster-Shafer’s theory [2,4] that satisfies a compound distributions prop-
erty analogous to the one that characterizes Shannon’s definitions of entropy
and conditional entropy for discrete probability distributions [6]. If PX,Y is a
probability mass function (PMF) of (X,Y ), and it is decomposed into PMF PX

for X, and conditional probability table PY |X so that PX,Y = PX ⊗ PY |X , then
Shannon’s definitions of entropy and conditional entropy satisfy Hs(PX,Y ) =
Hs(PX)+Hs(PY |X). Here, ⊗ denotes probabilistic combination, which is point-
wise multiplication followed by normalization.

In this paper, we provide definitions of entropy and conditional entropy of
belief functions, so that if mX,Y is a basic probability assignment (BPA) for
(X,Y ) that is constructed from a BPA mX for X, and a conditional BPA mY |X
for Y given X, such that mX,Y = mX ⊕mY |X , where ⊕ is Dempster’s combina-
tion rule, then our definitions satisfy H(mX,Y ) = H(mX) + H(mY |X). This is
the main contribution of this paper. Our definitions of entropy and conditional
entropy have several nice properties similar to corresponding properties of Shan-
non’s entropy. Here, we do not delve into philosophical discussions about what
entropy means. Our exposition focusses exclusively on mathematical properties
of entropy.

c© Springer Nature Switzerland AG 2018
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2 Shannon’s Definition of Entropy

In this section, we briefly review Shannon’s definition of entropy of PMFs of
discrete random variables, and its properties. Most of the material in this section
is taken from [6].

Definition 1. Suppose PX is a PMF of discrete variable X. The entropy of PX ,
denoted by Hs(PX), is defined as

Hs(PX) = −
∑

x∈ΩX

PX(x) log2 (PX(x)) . (1)

Suppose PX,Y is a joint PMF of (X,Y ). Then, the joint entropy of PX,Y is
as in Eq. (1), i.e.,

Hs(PX,Y ) = −
∑

(x,y)∈ΩX,Y

PX,Y (x, y) log2 (PX,Y (x, y)) .

Suppose PX,Y is a PMF of (X,Y ) with PX as its marginal PMF for X.
Suppose we observe X = a for some a ∈ ΩX such that PX(a) > 0. This
observation is represented by the PMF PX=a for X such that PX=a(a) = 1.
Let PY |a = (PX,Y ⊗ PX=a)↓Y denote the posterior PMF of Y , where ⊗
denotes pointwise multiplication followed by normalization, the combination
rule in probability theory. The posterior entropy of PY |a is as in Eq. (1), i.e.,
Hs(PY |a) = −∑

y∈ΩY
PY |a(y) log2(PY |a(y)).

Shannon [6] derives the expression for entropy of PX axiomatically using four
axioms as follows:

1. Axiom 1 (Existence): H(PX) exists.
2. Axiom 2 (Continuity): H(PX) should be a continuous function of PX .
3. Axiom 3 (Monotonicity): If we have an equally likely PMF, then H(PX)

should be a monotonically increasing function of |ΩX |.
4. Axiom 4 (Compound distributions): If a PMF is factored into two PMFs, then

its entropy should be the sum of entropies of its factors, e.g., PX,Y (x, y) =
PX(x)PY |x(y), then H(PX,Y ) = H(PX) +

∑
x∈ΩX

PX(x)H(PY |x).

Shannon [6] proves that the only function Hs that satisfies Axioms 1–4 is of
the form Hs(PX) = −K

∑
x∈ΩX

PX(x) log (PX(x)), where K is a constant that
depends on the choice of units of measurement.

Let PY |X : ΩX,Y → [0, 1] be a function such that PY |X(x, y) = PY |x(y) for
all (x, y) ∈ ΩX,Y . As PY |x(y) is only defined for x ∈ ΩX such that PX(x) > 0,
we will assume that PY |X is only defined for x ∈ ΩX such that PX(x) > 0. PY |X
is not a PMF, but can be considered as a collection of PMFs, and it is called
a conditional probability table (CPT) in the Bayesian network literature. If we
combine PX and PY |X , we obtain PX,Y , i.e., PX,Y = PX ⊗ PY |X .



148 R. Jiroušek and P. P. Shenoy

Definition 2. Suppose PY |X is a CPT of Y given X for all x ∈ ΩX such that
PX(x) > 0. Then the conditional entropy of PY |X is defined as

Hs(PY |X) =
∑

x∈ΩX

PX(x)Hs(PY |x). (2)

It follows from Axiom 4 that

Hs(PX,Y ) = Hs(PX ⊗ PY |X) = Hs(PX) + Hs(PY |X). (3)

3 Basic Definitions of the D-S Belief Functions Theory

In this section we review the basic definitions in the D-S belief functions theory,
including functional representations of uncertain knowledge, and operations for
making inferences from such knowledge.

Belief functions can be represented in four different ways: basic probability
assignments (BPAs), belief functions, plausibility functions, and commonality
functions. Here, we focus only on BPAs and commonality functions.

BPAs. Suppose X is a random variable with state space ΩX . Let 2ΩX denote the
set of all non-empty subsets of ΩX . A BPA m for X is a function m : 2ΩX → [0, 1]
such that ∑

a∈2ΩX

m(a) = 1. (4)

The non-empty subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements
of m. We say m is consonant if the focal elements of m are nested, i.e., if
a1 ⊂ . . . ⊂ am, where {a1, ..., ar} denotes the set of all focal elements of m.
We say m is quasi-consonant if the intersection of all focal elements of m is
non-empty. A BPA that is consonant is also quasi-consonant, but not vice-versa.
Thus, a BPA with focal elements {x1, x2} and {x1, x3} is quasi-consonant, but
not consonant. If all focal elements of m are singleton subsets of ΩX , then we
say m is Bayesian. In this case, m is equivalent to the PMF P for X such that
P (x) = m({x}) for each x ∈ ΩX . If ΩX is a focal element, then we say m is
non-dogmatic, and dogmatic otherwise. Thus, a Bayesian BPA is dogmatic.

Commonality Functions. The information in a BPA m can also be represented
by a corresponding commonality function Qm that is defined as follows.

Qm(a) =
∑

b∈2ΩX : b⊇a

m(b) (5)

for all a ∈ 2ΩX . Qm is a non-increasing function in the sense that if b ⊆ a, then
Qm(b) ≥ Qm(a). Finally, Qm is a normalized function in the sense that

∑

a∈2ΩX

(−1)|a|+1Qm(a) =
∑

b∈2ΩX

m(b) = 1. (6)
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Thus, any non-increasing, non-negative function that satisfies Eq. (6) qualifies
as a commonality function.

Next, we describe two main operations for making inferences.

Dempster’s Combination Rule. In the D-S theory, we can combine two BPAs
m1 and m2 representing distinct pieces of evidence by Dempster’s rule [2] and
obtain the BPA m1 ⊕ m2, which represents the combined evidence.

Let X denote a finite set of variables. The state space of X is ×X∈X ΩX .
Thus, if X = {X,Y } then the state space of {X,Y } is ΩX × ΩY .

Projection of states simply means dropping extra coordinates; for example, if
(x, y) is a state of (X,Y ), then the projection of (x, y) to X, denoted by (x, y)↓X ,
is simply x, which is a state of X.

Projection of subsets of states is achieved by projecting every state in the
subset. Suppose b ∈ 2ΩX,Y . Then b↓X = {x ∈ ΩX : (x, y) ∈ b}. Notice that
b↓X ∈ 2ΩX .

Vacuous extension of a subset of states of X1 to a subset of states of X2, where
X2 ⊇ X1, is a cylinder set extension, i.e., if a ∈ 2X1 , then a↑X2 = a × ΩX2\X1 .
Thus, if a ∈ 2ΩX , then a↑{X,Y } = a × ΩY .

Suppose mX is a BPA for X, and X is such that X ∈ X . Then the vacuous
extension of m to X , denoted by m↑X

X , is the BPA for X such that m↑X
X (a↑X ) =

mX(a), for all a ∈ 2ΩX , i.e., all focal elements of m↑X
X are vacuous extensions of

focal elements of mX to X , and they have the same corresponding values.
We will define Dempster’s rule in terms of commonality functions [4]. Suppose

m1 and m2 are BPAs for X1 and X2, respectively. Suppose Qm↑X
1

and Qm↑X
2

are commonality functions corresponding to BPAs m↑X
1 and m↑X

2 , respectively,
where X = X1 ∪ X2. The commonality function Qm1⊕m2 corresponding to BPA
m1 ⊕ m2 is

Qm1⊕m2(a) = K−1Qm↑X
1

(a)Qm↑X
2

(a), (7)

for all a ∈ 2ΩX , where the normalization constant K is

K =
∑

a∈2ΩX

(−1)|a|+1Qm↑X
1

(a)Qm↑X
2

(a). (8)

The definition of Dempster’s rule assumes that the normalization constant K is
non-zero. If K = 0, then the two BPAs m1 and m2 are said to be in total conflict
and cannot be combined. If K = 1, we say m1 and m2 are non-conflicting.

Marginalization. Marginalization in D-S theory is addition of values of BPAs.
Suppose m is a BPA for X . Then, the marginal of m for X1, where X1 ⊆ X ,
denoted by m↓X1 , is a BPA for X1 such that for each a ∈ 2ΩX1 ,

m↓X1(a) =
∑

b∈2ΩX : b↓X1= a

m(b). (9)

Conditional belief functions. Consider a BPA mX for X such that mX({x}) > 0.
Suppose that there is a BPA for Y expressing our belief about Y if we know
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that X = x, and denote it by mY |x. Notice that mY |x : 2ΩY → [0, 1] is such that∑
a∈2ΩY mY |x(a) = 1. We can embed this BPA for Y into a conditional BPA for

(X,Y ), which is denoted by mx,Y , such that the following four conditions hold.
First, mx,Y tells us nothing about X, i.e., m↓X

x,Y (ΩX) = 1. Second, mx,Y tells
us nothing about Y , i.e., m↓Y

x,Y (ΩY ) = 1. Third, if we combine mx,Y with the
BPA mX=x for X such mX=x({x}) = 1 using Dempster’s rule, and marginalize
the result to Y we obtain mY |x, i.e., (mx,Y ⊕ mX=x)↓Y = mY |x. Fourth, if we
combine mx,Y with the BPA mX=x̄ for X such mX=x̄({x̄}) = 1 using Dempster’s
rule, and marginalize the result to Y we obtain the vacuous BPA for Y , i.e.,
(mx,Y ⊕mX=x̄)↓Y (ΩY ) = 1. One way to obtain such an embedding is suggested
by Smets [7] (see also [5]), called conditional embedding, and it consists of taking
each focal element b ∈ 2ΩY of mY |x, and converting it to a corresponding focal
element of mx,Y (with the same mass) as follows: ({x}×b)∪ ((ΩX \{x})×ΩY ).
It is easy to confirm that this method of embedding satisfies all four conditions
mentioned above.

This completes our brief review of the D-S belief function theory. For further
details, the reader is referred to [4].

4 A Decomposable Entropy for the D-S Theory

In this section, we provide a new definition of entropy of belief functions in the
D-S theory, and describe its properties. This new definition is designed to sat-
isfy a compound distributions property analogous to the compound distribution
property that characterizes Shannon’s entropy of PMFs.

Definition 3. Suppose mX is a BPA for X with state space ΩX , and suppose
QmX

denotes the commonality function corresponding to mX . Then the entropy
of mX , denoted by H(mX), is defined as follows:

H(mX) =
∑

a∈2ΩX

(−1)|a|QmX
(a) log2(QmX

(a)). (10)

If QmX
(a) = 0, we will follow the convention that QmX

(a) log2(QmX
(a)) = 0 as

limθ→0+ θ log2(θ) = 0.
This is a new definition of entropy that has not been proposed earlier in the

literature. The closest definition is due to Smets [8], where H(m) is defined as

H(m) = −
∑

a∈2ΩX

log2 (Qm(a)) ,

but only for non-dogmatic BPAs m. Our definition holds for all BPAs. Also, our
sum is an alternating weighted sum, whose sign depends on the cardinality of
non-empty subset a.

Suppose mX,Y is a joint BPA for (X,Y ). Then the joint entropy of mX,Y is
as in Eq. (10), i.e.,

H(mX,Y ) =
∑

a∈2ΩX,Y

(−1)|a|QmX,Y
(a) log2(QmX,Y

(a)).
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Suppose mX,Y is a BPA for (X,Y ) with mX as its marginal BPA for
X. Suppose we observe X = a for some a ∈ ΩX such that mX({a}) > 0.
This observation is represented by the BPA mX=a such that mX=a({a}) = 1.
Let mY |a = (mX,Y ⊕ mX=a)↓Y denote the posterior BPA for Y , and its
posterior entropy is as in Eq. (10), i.e., H(mY |a) =

∑
a∈2ΩY (−1)|a|QmY |a(a)

log2(QmY |a(a)).
The following theorem says vacuous extension of a BPA does not change its

entropy.1

Theorem 1. If m is a BPA for X with ΩX = {x, x̄}, and m′ is a vacuous exten-
sion of m to (X,Y ), where ΩY = {y, ȳ}, then H(m′) = H(m).

Definition 4. Suppose mX is a BPA for X such that mX(x) > 0. Let mx,Y

denote a BPA for (X,Y ) representing a conditional BPA of Y given X = x. We
define entropy of conditional BPA mx,Y as follows:

H(mx,Y ) =
∑

a∈2ΩX,Y

(−1)|a|Q
m

↑{X,Y }
X

(a)Qmx,Y
(a) log2(Qmx,Y

(a)). (11)

The definition in Eq. (11) is analogous to Eq. (2) for the probabilistic case.
We have the following result about conditional entropy.

Theorem 2. Suppose mX is a BPA for X such that ΩX = {x, x̄} and
mX({x}) > 0. Suppose Y is such that ΩY = {y, ȳ}, and mY |x is a BPA for
Y given X = x. Let mx,Y denote a conditional BPA for (X,Y ) obtained from
mY |x by conditional embedding. Then,

H(mx,Y ) = mX({x})H(mY |x). (12)

If ΩX = {x, x̄} and assuming mX(x̄) > 0, it follows from Eq. (11) that

H(mx̄,Y ) =
∑

a∈2ΩX,Y

(−1)|a|Q
m

↑{X,Y }
X

(a)Qmx̄,Y
(a) log2(Qmx̄,Y

(a)).

Also, from Theorem 2, it follows that:

H(mx̄,Y ) = mX({x̄})H(mY |x̄).

As the contexts in mx,Y and mx̄,Y are disjoint, and the beliefs of the contexts
are described by the same BPA mX such that mX(x) > 0 and mX(x̄) > 0, we
have the following result.

1 For lack of space, proofs of all theorems and properties are omitted, and can be
found in a working paper that can be downloaded from http://pshenoy.faculty.ku.
edu/Papers/WP334.pdf.

http://pshenoy.faculty.ku.edu/Papers/WP334.pdf
http://pshenoy.faculty.ku.edu/Papers/WP334.pdf
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Theorem 3. Suppose X and Y are such that ΩX = {x, x̄}, and ΩY = {y, ȳ}.
Suppose that we have non-vacuous conditional BPAs mY |x, and mY |x̄ for Y
such that mX({x}) > 0, mX({x̄}) > 0, and after conditional embedding, these
are represented by conditional BPAs mx,Y and mx̄,Y for (X,Y ). Then,

H(mY |X) = H(mx,Y ⊕ mx̄,Y ) = H(mx,Y ) + H(mx̄,Y ). (13)

Notice that the result in Eq. (13) is analogous of the definition of conditional
entropy in Eq. (2) in the probabilistic case.

Next, we state the main result of this paper.

Theorem 4. Suppose X and Y are such that ΩX = {x, x̄}, and ΩY = {y, ȳ}.
Suppose mX is a BPA for X such that mX > 0 and mX(x̄) > 0, and mY |X =
mx,Y ⊕ mx̄,Y is a conditional BPA for Y given X. Let mX,Y = mX ⊕ mY |X .
Then,

H(mX,Y ) = H(mX) + H(mY |X). (14)

Next, we show that a probability model for (X,Y ) can be replicated exactly
in the DS theory. Furthermore, our definition of entropy for all BPAs will coincide
with Shannon’s entropy of the corresponding probabilistic function.

Theorem 5. Suppose X and Y are such that ΩX = {x, x̄}, and ΩY = {y, ȳ}.
Suppose PX is a PMF for X such that PX(x) > 0, and PX(x̄) > 0, and PY |X is
a CPT for Y given X, i.e., PY |X(x, y) = PY |x(y), where PY |x is the conditional
PMF for Y given X = x for all (x, y) ∈ ΩX,Y . Let PX,Y = PX ⊗ PY |X . Let mX

denote the Bayesian BPA corresponding to PX , let mY |x and mY |x̄ denote the
Bayesian BPAs for Y corresponding to PMFs PY |x and PY |x̄ for Y . Let mx,Y and
mx̄,Y denote the conditional BPAs for (X,Y ) obtained by conditional embedding
of mY |x and mY |x̄. Let mY |X = mx,Y ⊕ mx̄,Y , and let mX,Y = mX ⊕ mY |X .
Then, mX,Y is a Bayesian BPA for (X,Y ) corresponding to PMF PX,Y ,

H(mX,Y ) = Hs(PX,Y ), (15)
H(mX) = Hs(PX), and (16)

H(mY |X) = Hs(PY |X). (17)

Notice that mx,Y , mx̄,Y , and mY |X , are not Bayesian BPAs.

5 Other Properties

Some further properties of our definition in Eq. (10) are as follows.

Non-negativity . Suppose m is a BPA for X and suppose |ΩX | = 2. Then,
H(m) ≥ 0. For |ΩX | > 2, H(m) does not satisfy the non-negativity property.
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Example 1. Consider a BPA m for X with ΩX = {a, b, c} such that m({a, b})
= m({a, c}) = m({b, c}) = 1

3 . Then Qm is as follows: Qm({a}) = Qm({b}) =
Qm({c}) = 2

3 , Qm({a, b}) = Qm({a, c}) = Qm({b, c}) = 1
3 , and Qm({a, b, c}) =

0. Then, H(m) = −3 · 2
3 log2(

2
3 ) + 3 · 1

3 log2(
1
3 ) = log2(

3
4 ) ≈ −0.415. �

We conjecture that H(m) ≥ log2(
n

2(n−1) ), where n = |ΩX |. This is based
on a BPA where each of

(
n
2

)
doubleton subsets has a mass of 1/

(
n
2

)
. If the

conjecture is true, H(m) would be on the scale from [log2(
n

2(n−1) ), log2(n)].
limn→∞ log2(

n
2(n−1) ) = −1. Lack of non-negativity is not a serious drawback.

Shannon’s definition of entropy for continuous random variables characterized
by probability density functions can be negative [6].

Quasi-consonant . Suppose m is a BPA for X. If m is quasi-consonant, then
H(m) = 0. As consonant BPAs are also quasi-consonant, H(m) = 0 for con-
sonant BPAs. This property suggests that H(m) is a measure of “dissonance”
in m.

Maximum entropy . Suppose m is a BPA for X with state space ΩX . Then,
H(m) ≤ log2(|ΩX |), with equality if and only if m = mu, where mu is the
Bayesian equiprobable BPA for X. This is similar to the corresponding property
of Shannon’s definition for PMFs.

6 Summary and Conclusion

The most important property of our definition of entropy is the compound dis-
tributions property. Such a property is not satisfied by any of the past definitions
of entropy reviewed in [3], nor by the definition proposed there. The compound
distributions property is fundamental to Shannon’s definition of entropy as it
constitutes the main property that characterizes Shannon’s definition.

We should also note that the compound distributions property only applies
to belief functions that are constructed from marginals and conditional belief
functions. Given an arbitrary joint belief function, it is not always possible to
factor it into marginals and conditionals that produce the given joint. Thus, our
new definition is of particular interest for the class of joint belief functions that do
factor into marginals and conditionals. In particular, it applies to graphical belief
functions that are constructed from directed acyclic graphs models, also known
as Bayesian networks, but whose potentials are described by belief functions [1].

This is work in progress. Although we have stated Theorems 1–5 for the case
where X and Y are binary, we believe these theorems hold more generally, and
are currently in the process of proving them.

References

1. Almond, R.G.: Graphical Belief Modeling. Chapman & Hall, London (1995)
2. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.

Ann. Math. Stat. 38(2), 325–339 (1967)
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Abstract. The evidential K nearest neighbor classifier is based on dis-
counting evidence from learning instances in a neighborhood of the pat-
tern to be classified. To adapt the method to partially supervised data,
we propose to replace the classical discounting operation by contextual
discounting, a more complex operation based on as many discount rates
as classes. The parameters of the method are tuned by maximizing the
evidential likelihood, an extended notion of likelihood based on uncertain
data. The resulting classifier is shown to outperform alternative methods
in partially supervised learning tasks.

Keywords: Belief functions · Dempster-Shafer theory · Classification
Machine learning · Partially supervised learning · Soft labels

1 Introduction

Since its introduction in [2], the evidential K-nearest neighbor (EKNN) classifier
has been used extensively and several variants have been developed (see, e.g.,
[5–8,14] for some applications and recent developments). The EKNN classifier
is based on the following simple ideas: (1) each neighbor of the pattern x to be
classified is considered as a piece of evidence about the class of x, represented
by a mass function; (2) each mass function is discounted based on its distance
to x; and (3) the discounted mass functions induced by the K nearest neighbors
of x are combined by Dempster’s rule.

In [2], the parameters used to define the discount rate as a function of dis-
tance were fixed heuristically, and the method was shown to outperform other
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K-nearest neighbor rules. In [15], the authors showed that the performances
of the method could be further improved by learning the parameters through
minimizing the mean squares error (MSE) between pignistic probabilities and
class indicator variables. In [4], the EKNN rule was extended to the case where
the class label of training patterns is only partially known, and described by a
possibility distribution. However, the learning procedure defined in [15] cannot
be straightforwardly extended to the partially labeled setting because (1) the
discount rate defined in the procedure depends on the class of the neighboring
pattern, and (2) combining arbitrary mass functions and computing pignistic
probabilities has exponential complexity in the worst case.

In this paper, we revisit the EKNN classifier by exploiting some recent
developments in the theory of belief functions: (1) The discounting operation
is replaced by contextual discounting [9], allowing us to define one discount rate
parameter per class even in the partially labeled case; and (2) instead of the
MSE and pignistic probabilities, we propose to use the conditional evidential
likelihood criterion [3,11], which allows us to account for partial class labels in
a natural way, and can be computed in linear time as a function of the number
of classes.

The rest of this paper is organized as follows. The EKNN classifier and classi-
cal discounting operation are first recalled in Sect. 2. The Contextual-Discounting
Evidential K-NN (CD-EKNN) classifier is then introduced in Sect. 3, and exper-
imental results are reported in Sect. 4. Section 5 concludes the paper.

2 Background

In this section, we provide a reminder of the main notions needed in the rest
of the paper. The EKNN classifier will first be recalled in Sect. 2.1, and the
contextual discounting operation will be presented in Sect. 2.2.

2.1 Evidential K-NN Classifier

Consider a classification problem with c classes in Ω = {ω1, . . . , ωc}, and a
learning set L = {(xi, yi)}n

i=1 of n examples (xi, yi), where xi is a p-dimensional
feature vector describing example i, and yi ∈ Ω is the class of that example. Let
x be new pattern to be classified, and NK(x) the set of its K nearest neighbors
in L, according to some distance d (usually, the Euclidean distance when the p
features are numerical). In [2,15], it was assumed that each neighbor xj ∈ NK(x)
induces a simple mass function m̂j defined as

m̂j({ωk}) = βk(dj)yjk, k = 1, . . . , c (1a)
m̂j(Ωk) = 1 − βk(dj), (1b)

where yjk = 1 if yj = ωk and yjk = 0 otherwise, dj = d(x, xj) and βk is a
decreasing function, usually taken as βk = α exp(−γkd2j ), where α is a coefficient
in [0, 1] and the γk’s are strictly positive scale parameters. By pooling mass
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functions m̂j induced by the K nearest neighbors of x using Dempster’s rule, we
get the combined mass function m̂, which summarizes the evidence about the
class of x based on its K nearest neighbors.

In [15], it was proposed to leave parameter α fixed and to learn parameter
vector γ = (γ1, . . . , γc) by minimizing the following error function,

C(γ) =
n

∑

i=1

c
∑

k=1

(̂Betpi(ωk) − yik)2, (2)

where ̂Betpi is the pignistic probability distribution computed from mass func-
tion m̂i obtained from the K nearest neighbors of xi. Because this classifier is
based on c learnable parameters γk, k = 1, . . . , c, it will be later referred to as
the γk-EKNN classifier.

The idea of applying the EKNN procedure to partially labeled data L =
{(xi,mi)}n

i=1, where mi is an arbitrary mass function that represents partial
knowledge about the class of example xi was already suggested in [2] and
explored further in [4]. Indeed, mass function m̂j in (1) can be seen as the
discounted version of the certain mass function mj({yj}) = 1, with discount
rate 1 − βk(dj) if yj = {ωk}. The same discounting notion can be applied what-
ever the form of mj , but the discount rate can no longer depend on yj when it
is unknown. Consequently, the extension is not straightforward. Also, the com-
bination by Dempster’s rule and the calculation of the pignistic probabilities in
(2) have exponential complexities for arbitrary mass functions mi, which makes
the method less attractive unless c is very small. These issues will be addressed
in Sect. 3, based on the notion of contextual discounting recalled hereafter.

2.2 Contextual Discounting

Let m be a mass function on Ω = {ω1, . . . , ωc} and β a coefficient in [0, 1].
The discounting operation [12] with discount rate 1 − β transforms m into the
following mass function:

αm = βm + (1 − β)m?, (3)

where m? is the vacuous mass function defined by m?(Ω) = 1. This operation
can be justified as follows [13]. Assume that m is provided by a source that may
be reliable (R) or not (¬R). If the source is reliable, we adopt its opinion as ours,
i.e., we set m(·|R) = m. If it is not reliable, then it leaves us in a state of total
ignorance, i.e., m(·|¬R) = m?. Furthermore, assume that we have the following
mass function on R = {R,¬R}: mR({R}) = β and mR(R) = 1 − β, i.e., our
degree of belief that the source is reliable is equal to β. Then, combining the two
mass functions m(·|R) (after deconditioning) and mR yields precisely αm in (3),
after marginalizing on Ω.

In [9], the authors generalized the discounting operation using the notion of
contextual discounting. In the corresponding refined model, m(·|R) and m(·|¬R)
are defined as before, but our beliefs about the reliability of the source are now
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defined given each state in Ω, i.e., we have c conditional mass functions defined
by mR({R}|ωk) = βk and mR(R|ωk) = 1 − βk, for k = 1, . . . , c. Combining
m(·|R) with mass functions mR(·|ωk) after deconditioning yields the following
discounted mass function,

βm(A) =
∑

B⊆A

m(B)

⎛

⎝

∏

ωk∈A\B

(1 − βk)
∏

ωl∈A

βl

⎞

⎠ (4)

for all A ⊆ Ω, where β = (β1, . . . , βc), and a product of terms is equal to 1 if
the index set is empty. The associated contour function is

βpl(ωk) = 1 − βk + βkpl(ωk), k = 1, . . . , c, (5)

where pl is the contour function corresponding to m.

3 Contextual-Discounting Evidential K-NN Classifier

An alternative to the γk-EKNN classifier based on contextual discounting will
first be defined in Sect. 3.1, and learning the parameters in this model will be
addressed in Sect. 3.2.

3.1 Extending the EKNN Classifier to Partially Labelled Data

As the EKNN classifier is based on discounting, it can be readily generalized
using contextual discounting. More precisely, let us assume that we have a
partially labeled learning set L = {(xi,mi)}n

i=1. (The fully supervised case is
recovered when all mass functions mi are certain). Let x be a pattern to be
classified, and xj one of its K nearest neighbors. In [4], it was proposed to gen-
eralize (1) by discounting each neighbor mass function mj with discount rate
1 − β(dj) = 1 − α exp(−γd2j ). We then have two learnable parameters: coeffi-
cient α and a single scale parameter γ. This rule will later be referred to as the
(α, γ)-EKNN classifer.

In this paper, we propose to use contextual discounting (4) instead of classical
discounting. The resulting rule, called Contextual Discounting Evidential K-
nearest neighbor (CD-EKNN) is based on c coefficients βk(dj) defined by

βk(dj) = α exp(−γkd2j ), k = 1, . . . , c, (6)

and there are c + 1 learnable parameters α ∈ [0, 1] and γk ≥ 0, k = 1, . . . , c.
Whereas the discounted mass function m̂j may have a complicated expres-

sion, its contour function can be obtained from (5) as

̂plj(ωk) = 1 − βk(dj) + βk(dj)plj(ωk), k = 1, . . . , c, (7)

and the combined contour function after pooling the evidence of the K nearest
neighbors is

̂pl(ωk) ∝
∏

xj∈NK(x)

[1 − βk(dj) + βk(dj)plj(ωk)] , k = 1, . . . , c. (8)
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We note that ̂pl can be computed, up to a multiplicative constant, in time
proportional to the number K of neighbors and the number of c of classes. The
contour function is all we need to make decisions and, as we will see in the next
section, to train the classifier by maximizing the evidential likelihood criterion.

3.2 Learning

To learn the parameters θ = (α, γ1, . . . , γc) of the CD-EKNN classifier defined in
Sect. 3.1, we propose to maximize the evidential likelihood function introduced
in [3]. Before, we introduce the evidential likelihood for this model, let us recall
the expression of the “classical likelihood” in the case of fully supervised data
L = {(xi, yi)}n

i=1. Let ̂pli the contour function computed for instance i based
on its K nearest neighbors using (8), and let p̂i be the probability distribution
obtained from ̂pli by normalization. The conditional likelihood (given feature
vectors x1, . . . , xn) after observing the true class labels y1, . . . , yn is

Lc(θ) =
n

∏

i=1

c
∏

k=1

p̂i(ωk)yik . (9)

In the partially supervised learning case, the learning set is of the form L =
{(xi,mi)}n

i=1, where mi is a mass function that represents our partial knowledge
of the class of xi. An extension of the likelihood function for such uncertain
data was introduced and justified in [3]. Basically, the term

∏c
k=1 p̂i(ωk)yik in

(9) is replaced by the expected plausibility
∑c

k=1 p̂i(ωk)pli(ωk). The evidential
likelihood is then defined as

Le(θ) =
n

∏

i=1

c
∑

k=1

p̂i(ωk)pli(ωk), (10)

We note that the evidential likelihood (10) boils down to the classical likelihood
(9) when all mass functions mi are certain, i.e., when pli(ωk) = yik for all i and
k. The evidential log-likelihood log Le(θ) can be maximized using an iterative
optimization procedure such as Newton’s method.

4 Numerical Experiments

In this section, we present some results with one simulated and two real datasets,
in which label uncertainty was simulated by corrupting labels with noise and
representing uncertainty using suitable mass functions. The simulated data were
generated from c = 2 Gaussian distributions with densities N (μk, σ2

kI), where
μ1 = (0, 0)T , μ2 = (1, 0)T , σ2

1 = 0.1I, σ2
2 = 2I, and I is the identity matrix.

Each simulated dataset had 100 vectors from each class. The real data were the
Ionosphere data (n = 351 instances, p = 34 features and c = 2 classes) and the
Sonar data (n = 204, p = 60, c = 2), both from the UCI Machine Learning
Repository1.
1 Available at http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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Fig. 1. Leave-one-out error rates vs. number K of neighbors for fully supervised (a, c,
e) and partially supervised (b, d, f) datasets. The methods are: the CD-EKNN classifier
(solid lines), the (α, γ)-EKNN classifier (dashed lines), the original γk-EKNN classifier
(dotted lines) and the voting K-NN rule (dash-dotted lines).
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Figure 1 shows the leave-one-out error rates as functions of the number K of
neighbors, in two learning situations: with true class labels (Figs. 1(a), (c) and
(e)), and with uncertain (soft) class labels (Figs. 1(b), (d) and (f)). To generate
the uncertain labels mi, we proceeded as in [1,11]: for each instance i, a number
pi was generated from a beta distribution with mean μ = 0.5 and variance 0.04.
Then, with probability pi, the class label yi of instance i was replaced by y′

i

picked randomly from Ω. Otherwise, we set y′
i = yi. Contour function pli was

then defined as pli({y′
i}) = 1 and pli({ω}) = pi for all ω �= y′

i. This procedure
guarantees that the soft label pli is all the more uncertain that the label with
maximum plausibility has the more chance of being incorrect.

For each dataset and each learning situation, we considered four classifiers:
(1) the (α, γ)-EKNN rule based on classical discounting and criterion (10); (2)
the CD-EKNN rule with c scale parameters γ1, . . . , γc trained with criterion (10);
(3) the original γk-EKNN rule recalled in Sect. 2.1, trained with criterion (2);
and (4) the voting K-NN rule. As the γk-EKNN and voting K-NN classifiers can
only handle fully supervised data with certain labels, we used the noisy labels
y′

i with these classifiers, instead of the soft labels mi.
As can be seen from Figs. 1(a), (c) and (e), the original γk-EKNN and CD-

EKNN rules have similar performances in the fully supervised case, and they
perform better than the (α, γ)-EKNN rule. On the simulated data, the (α, γ)-
EKNN rule does not even outperform the voting K-NN rule (Fig. 1(a)), whereas
it performs much better on the Sonar data (Fig. 1(e)).

When applied to data with soft labels, the CD-EKNN classifier clearly has the
best performances. In contrast, the γk-EKNN and voting K-NN classifiers, which
use noisy labels, perform poorly. This result confirms similar findings reported in
[1,3,11] for parametric classifiers. The CD-EKNN classifier also performs better
than the (α, γ)-EKNN rule, except on the Sonar data, for which they achieve
similar error rates.

5 Conclusions

The EKNN classifier introduced in [2] and perfected in [15] has proved very
efficient for fully supervised classification. Because it applies different discount
rates to neighbors from different classes, the method cannot be readily extended
to the partially supervised learning situation, in which we only have uncertain
information about the class of learning instances. Also, it is not clear how the
MSE criterion used in [15] could be generalized in the case of partially labeled
data. In this paper, we have proposed a solution to this problem by replacing
classical discounting with contextual discounting introduced in [9]. The underly-
ing idea is that the reliability of the information from different neighbors depends
on the class of the pattern to be classified. We also replaced the MSE by the
conditional likelihood, which has already been generalized to uncertain data in
[3]. The resulting CD-EKNN classifier was shown to perform very well with par-
tially supervised data, while performing as well as the original EKNN classifier
with fully supervised data.
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In contrast with the original EKNN classifier, which assigns masses only to
singletons and the whole frame of discernment, the CD-EKNN classifier gen-
erates more general mass functions, as a result of applying the contextual dis-
counting operation. In future work, it will be interesting to study how masses
assigned to various subsets of classes can be interpreted, and to find out if this
richer information can be exploited for, e.g., classifier combination. Beyond dis-
counting, other contextual mass correction mechanisms such as introduced in
[10] could also be investigated.
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Abstract. Globally operating suppliers face the rising challenge of who-
lesale pricing under scarce data about retail demand, in contrast to better
informed, locally operating retailers. At the same time, as local busi-
nesses proliferate, markets congest and retail competition increases. To
capture these strategic considerations, we employ the classic Cournot
model and extend it to a two-stage supply chain with an upstream sup-
plier who operates under demand uncertainty and multiple downstream
retailers who compete over quantity. The supplier’s belief about retail
demand is modeled via a continuous probability distribution function F .
If F has the decreasing generalized mean residual life property, then the
supplier’s optimal pricing policy exists and is the unique fixed point of
the mean residual life function. We evaluate the realized Price of Uncer-
tainty and show that there exist demand levels for which market performs
better when the supplier prices under demand uncertainty. In general,
performance worsens for lower values of realized demand. We examine
the effects of increasing competition on supply chain efficiency via the
realized Price of Anarchy and complement our findings with numerical
results.

Keywords: Nash equilibrium · Generalized mean residual life
Continuous beliefs · Price of Uncertainty · Price of Anarchy

1 Introduction

The increasingly present trend of geographically distributed markets affects sup-
ply chain performance in unexpected ways. Internationally operating suppliers
procure retailers via internet platforms or intricate networks with information
latency. Consumer data that is easily accessible to the retailers due to their
proximity to the market, may often not be available to their international sup-
pliers. Concurrently, and aided by new technologies, local retail businesses are
sprouting at a rapid pace. These trends give rise to new information and com-
petition structures between downstream members (retailers) and their upstream
contemporaries (suppliers) in modern supply chains.
c© Springer Nature Switzerland AG 2018
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The questions that rise in this changing environment, mainly concern the
issues of market efficiency. How does the market perform when the supplier prices
without knowing the retailers willingness-to-pay for his product? Do competing
retailers have incentives to reveal private information to the supplier that they
may have about retail demand? To capture these considerations and study this
emerging phenomenon, in [7,8], we employ the classic Cournot model of compe-
tition and extend it to the following two-stage game: in the first-stage (acting
as a Stackelberg leader), a revenue-maximizing supplier sets the wholesale price
of a product under incomplete information about market demand. Demand or
equivalently, the supplier’s belief about it, is modeled via a continuous probabil-
ity distribution. In the second-stage, the competing retailers observe wholesale
price and realized market demand and engage in a classic Cournot competition.
Retail price is determined by an affine inverse demand function.

Classic models, see e.g., [4,5,9,10], study market efficiency when demand
is realized after the strategic decisions of all supply chain members – wholesale
pricing and retailers’ orders. In contrast, performance of markets in which uncer-
tainty is resolved at an intermediate stage, has not been yet properly understood.

Contributions – Outline: Based on the equilibrium analysis in [7], the present
paper aims to fill this gap by following the methodology of [5]. To measure the
effects of demand uncertainty and second-stage competition on market perfor-
mance and efficiency, we modify the tools of Price of Anarchy, as defined in [11]
and Price of Uncertainty, c.f. [1], to account for realized values of demand. In
Sect. 2, we provide the model description and in Sect. 3, the existing results from
[7] on which the current analysis is based. Our findings, both analytical and
numerical are presented in Sect. 4 and summarized in Sect. 5.

2 The Model

An upstream supplier (or manufacturer) produces a single homogeneous good at
constant marginal cost, normalized to 0, and sells it to a set of N = {1, 2, . . . , n}
downstream retailers. The supplier has ample quantity to cover any possible
demand and his only decision variable is the wholesale price r. The retailers
observe r and the market demand α and choose simultaneously and indepen-
dently their order-quantities qi (r | α) , i ∈ N . They face no uncertainty about
the demand and the quantity that they order from the supplier is equal to the
quantity that they sell to the market (in equilibrium). The retail price is deter-
mined by an affine demand function p = (α − q (r))+, where α is the demand
parameter or demand level and q (r) :=

∑n
i=1 qi (r). Contrary to the retailers, we

assume that at the point of his decision, the supplier has incomplete information
about the actual market demand.

Game-Theoretic Formulation: This supply chain can be represented as a
two-stage game, in which the supplier acts in the first and the retailers in the
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second stage. A strategy for the supplier is a price r ≥ 0 and a strategy for
retailer i is a function qi : R+ → R+, which specifies the quantity that retailer i
will order for any possible cost r. Payoffs are determined via the strategy profile
(r,q (r)), where q (r) = (qi (r))n

i=1. Given cost r, the profit function πi (q (r) | r)
or simply πi (q | r), of retailer i ∈ N , is πi (q | r) = qi (α − q)+−rqi. For a given
value of α, the supplier’s profit function, πs is πs (r | α) = rq (r) for 0 ≤ r < α,
where q (r) depends on α via πi (q | r).

Continuous Beliefs: To model the supplier’s uncertainty about retail demand,
we assume that after his pricing decision, but prior to the order-decisions of
the retailers, a value for α is realized from a continuous distribution F , with
finite mean Eα < +∞ and nonnegative values, i.e. F (0) = 0. Equivalently, F
can be thought of as the supplier’s belief about the demand parameter and,
hence, about the retailers’ willingness-to-pay his price. We will use the notation
F̄ := 1 − F for the survival function and αL := sup {r ≥ 0 : F (r) = 0} ≥ 0,
αH := inf {r ≥ 0 : F (r) = 1} ≤ +∞ for the support of F respectively. The
instance αL = αH corresponds to the reference case of deterministic demand.
In any other case, i.e., for αL < αH , the supplier’s payoff function πs becomes
stochastic: πs (r) = Eπs (r | α). All of the above are assumed to be common
knowledge among the participants in the market (the supplier and the retailers).

3 Existing Results

We consider only subgame perfect equilibria, i.e. strategy profiles (r,q (r)) such
that q (r) is an equilibrium in the second stage and qi (r) is a best response
against any r. The equilibrium behavior of this market has been analyzed in [7].
In the reference case of deterministic demand, i.e., for αL = αH , each retailer i =
1, 2, . . . , n orders quantity q∗

i (r | α) = 1
n+1 (α − r)+. Hence, the supplier’s payoff

on the equilibrium path becomes πs (r | α) = rq∗ (r | α) = n
n+1r (α − r)+, for

0 ≤ r. Maximization of πs with respect to r yields that the complete information
two-stage game has a unique subgame perfect Nash equilibrium, under which
the supplier sells with optimal price r∗ (α) = 1

2α and each of the retailers orders
quantity q∗

i (r) = 1
n+1 (α − r)+, i = 1, 2, . . . , n. To proceed with the equilibrium

representation in the stochastic case, we first introduce some notation.

Generalized Mean Residual Life: Let α ∼ F be a nonnegative random vari-
able with finite expectation Eα < +∞. The mean residual life (MRL) function
m (r) of α is defined as

m (r) := E (α − r | α > r) =
1

F̄ (r)

∫ ∞

r

F̄ (u) du, for r < αH

and m (r) := 0, otherwise, see, e.g., [3]. In [7], we introduced the generalized mean
residual life (GMRL) function � (r), defined as � (r) := m(r)

r , for 0 < r < αH ,
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in analogy to the generalized failure rate (GFR) function g (r) := rh (r), where
h (r) := f (r) /F̄ (r) denotes the hazard rate of F and the increasing generalized
failure rate (IGFR) unimodality condition, defined in [5] and studied in [2,6]. If
� (r) is decreasing, then F has the (DGMRL) property. The relationship between
the (IGFR) and (DGMRL) classes of random variables is studied in [7].

Market Equilibrium: Using this terminology, we can express the supplier’s
optimal pricing strategy in terms of the MRL function and formulate sufficient
conditions on the demand distribution, under which a subgame perfect equilib-
rium exists and is unique.

Theorem 1 ([7]). Assume that the supplier’s belief about the unknown, non-
negative demand parameter, α, is represented by a continuous distribution F ,
with support inbetween αL and αH with 0 ≤ αL < αH ≤ ∞.

(a) If an optimal price r∗ for the supplier exists, then r∗ satisfies the fixed point
equation

r∗ = m(r∗) (1)

(b) If F is strictly DGMRL and Eα2 is finite, then in equilibrium, the optimal
price r∗ of the supplier exists and is the unique solution of (1).

4 Supply Chain Efficiency

To study the degree in which demand uncertainty affects the realized market
profits, we fix a realized demand level α and compare the individual realized
profits of the supplier and each retailer between the scenario in which the supplier
prices before demand realization and the scenario in which the supplier prices
after demand realization. For clarity, the results are summarized in Table 1.

Table 1. Wholesale price in equilibrium and realized profits when the supplier prices
under demand uncertainty (left column) and under deterministic demand (right col-
umn).

Upstream demand for supplier

Uncertain α ∼ F Deterministic α

Equilibrium wholesale price r∗ = mF (r∗) α/2

Realized profits in equilibrium

Supplier ΠU
s = n

n+1
(α − r∗)+ ΠD

s = n
n+1

(α/2)2

Retailer i ΠU
i = 1

(n+1)2

(
(α − r∗)+

)2
ΠD

i = n
(n+1)2

(α/2)2

Aggregate ΠU
Agg = ΠU

s +
∑n

i=1 ΠU
i ΠD

Agg = ΠU
s +

∑n
i=1 ΠU

i
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4.1 Price of Uncertainty

By Table 1, for each retailer, we have that 1
(n+1)2

(
(α − r∗)+

)2

≥ 1
(n+1)2

(
α
2

)2 for
all values of α ≥ 2r∗. This implies that for larger values of the realized demand,
the retailers are better off if the supplier prices under demand uncertainty. In
contrast, the supplier is never better off when he prices under demand uncer-
tainty, as is intuitively expected. Indeed n

n+1r∗ (α − r∗)+ ≤ n
n+1 (α/2)2 for all

values of α, with equality if and only if α = 2r∗. The ratio of the supplier’s

Fig. 1. Ratio of the supplier’s realized
profits with and without demand uncer-
tainty for α ∼ Weibull (1, 2).

realized profit in the scenario with
demand uncertainty to the scenario
without demand uncertainty is equal
to 4 · r∗

α

(
1 − r∗

α

)
and hence it has the

shape shown in Fig. 1, independently
of the underlying demand distribution.

Similar findings are obtained when
we compare the market’s aggregate
realized profits (supplier and retailers)
between these two scenarios. This is
accomplished via the ratio of aggregate
realized market profits under stochas-
tic demand to the aggregate realized
market profits under deterministic demand, which we term the realized Price of
Uncertainty (PoU), motivated by a similar notion that is studied in [1]. Specifi-
cally,

PoU := sup
F∈G

sup
α

{
ΠU

Agg

ΠD
Agg

}

= sup
F∈G

sup
α

{
ΠU

s +
∑n

i=1 ΠU
i

ΠD
s +

∑n
i=1 ΠD

i

}

in which we restrict attention to the class G of nonnegative DGMRL random
variables to retain equilibrium uniqueness. Intuitively, one expects the system to
perform worse under demand uncertainty which translates to PoU being bounded
above by 1. However, this is not the case as the next Theorem states.

Theorem 2. The realized PoU of the stochastic market is given by PoU = 1 +
O (

n−2
)
, independently of the underlying demand distribution. The upper bound

is attained for realized demand α∗ = n
n−1 · 2r∗.

Proof. By Table 1, a direct substitution yields that the inner ratio is equal to

ΠU
s +

∑n
i=1 ΠU

i

ΠD
s +

∑n
i=1 ΠD

i

=
n

n+1r∗ (α − r∗)+ + n
(

1
n+1 (α − r∗)+

)2

n
n+1

(
α
2

)2 + n
(n+1)2

(
α
2

)2

Hence, PoU = supF∈G supα

{
4

(n+2)α2 (α − r∗)+ (α + nr∗)
}

. For realized
demand α < r∗, there is a stockout and the market operates worst under demand
uncertainty. However, for realized demand values α > r∗, the aggregate market
profits of the supplier and the retailers may be larger if the supplier prices under
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demand uncertainty. To see this, we take the partial derivative of the previous
ratio with respect to α

∂

∂α

(
4

(n + 2) α2
(α − r∗)+ (α + nr∗)

)

=
4r∗

(n + 2) α3
(2nr∗ − α (n − 1))

which shows that the ratio is increasing on [r∗, 2n
n−1r∗), and decreasing thereafter.

The ratio is maximized for α = 2n
n−1r∗, yielding a value of 1+ 1

n2+2n , which does
not depend on the underlying distribution F and which is larger than 1 for any
number n of competing second-stage retailers. �	
The values for which the ratio exceeds 1, depend on n. Specifically, for n ≥ 3, we
have that 4

(n+2)α2 (α − r∗)+ (α + nr∗) ≥ 1 for values of α in [2r∗, 2n
n−2r∗]. In this

case, the upper bound decreases to 2r∗ as n → ∞. For n = 2, the upper bound
is equal to infinity, i.e., the range of α for which the ratio exceeds 1 is equal to
[2r∗,+∞). In all cases, the lower bound is independent of n. Finally, by taking
the partial derivative with respect to n, we find that the PoU is nondecreasing
in n for realized values of α in [r∗, 2r∗] and decreasing in n thereafter, again
independently of the underlying demand distribution. This is illustrated in Fig. 2.

Fig. 2. Ratio of the aggregate market realized profits with and without demand uncer-
tainty for n = 2 to n = 10 with α ∼ Gamma (2, 2). The dashed curve in the left panel
passes through the points α∗ = n

n−1
· 2r∗ on which the PoU is attained for each n. The

curves are decreasing in n, i.e. the highest curve corresponds to n = 2 and the lowest
to n = 10. The right panel shows the behavior of the curves in a neighborhood of their
intersection point, 2r∗ ≈ 5.657. Prior to the intersection, the ratio is increasing in n,
whereas after the intersection the ratio is decreasing in n.

4.2 Price of Anarchy

As a benchmark, we will first determine the equilibrium behavior and perfor-
mance of an integrated supply chain. The integrated firms’ decision variable is
now the retail price r, and hence its expected profit πInt is given by πInt (r) =
rE (α − r)+ = rm(r) F̄ (r). By the same argument as in the proof of Theorem1,
πInt is maximized at r∗ = m(r∗). In particular, the equilibrium price of both the
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integrated and non-integrated supplier is the same. Hence, the integrated firm’s
realized profit in equilibrium is equal to ΠU

Int (r∗ | α) = r∗ (α − r∗)+ (Table 2).
In a similar fashion to [11], we define the realized Price of Anarchy (PoA) of

the system as the worst-case ratio of the realized profit of the centralized supply
chain, ΠU

Int, to the realized aggregate profit of the decentralized supply chain,
ΠU

Dec := ΠU
s +

∑n
i=1 ΠU

i . Again, to retain equilibrium uniqueness, we restrict
attention to the class G of nonnegative DGMRL random variables. If the realized
demand α is less than r∗, then both the centralized and decentralized chains
make 0 profits. Hence, we define the PoA as: PoA := supF∈G supα>r∗

{
ΠU

Int
ΠU

Dec

}
.

We then have

Table 2. Realized profits for the integrated firm under the two scenarions. The equi-
librium wholesale prices remain the same as in the decentralized market, cf. Table 1.

Realized profits in equilibrium

Uncertain demand α ∼ F Deterministic demand α

Integrated firm ΠU
Int = r∗ (α − r∗)+ ΠD

Int = (α/2)2

Theorem 3. The realized PoA of the stochastic market is given by PoA = 1 +
1/n independently of the underlying demand distribution. The upper bound is
asymptotically attained for α ↘ r∗.

Proof. By a direct substitution in the definition of PoA, the inner term equals
(n+1)2

n · (n + α
r∗

)−1. Since
(
n + α

r∗
)−1 decreases in the ratio α/r∗, the inner sup

is attained asymptotically for α ↘ r∗. Hence,

PoA = sup
F∈G

{
(n + 1)2

n
· (n + 1)−1

}

= 1 +
1
n

(2)

Fig. 3. Ratio of the integrated firm’s to the decen-
tralized market’s aggregate profits for n = 2, . . . , 20
with α ∼ Gamma (2, 2). For each n the realized PoA
is attained as α ↘ r∗ ≈ 2.83. For n (α − 2r∗) ≤ α, the
curves are nonincreasing in n, which results in the non-
linearity (with respect to n) for values of α in [2r∗, 3r∗].

Theorem 3 implies that
the market becomes less
efficient in the worst-case
scenario, i.e., for a real-
ized demand α ↘ r∗, as
the number of downstream
retailers increases. In gen-
eral, as can be directly
inferred by partial differen-
tiation with respect to n,
for realized values of α <
2r∗, the inner term of the
sup expression in (2) is
decreasing in n. For real-
ized values of α ≥ 2r∗, the
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ratio is increasing in n when n ≥ α/ (α − 2r∗) and decreasing in n otherwise.
These findings are shown graphically in Fig. 3.

Finally, a similar calculation yields that the PoA of the deterministic market
is equal to 1 + O (

n−2
)
. The realized demand α simplifies in the inner ratio

and hence this upper bound is constant and independent of the demand level.
Notably, the PoA in the deterministic market is equal to PoU in the stochastic
market, cf. Theorem 2.

5 Conclusions

The present study complements the findings of [7,8], by focusing to the effects
of demand uncertainty on market efficiency. Based on the realized market prof-
its, we measured the effects of uncertainty via the realized Price of Uncertainty.
Counterintuitively, there exist demand levels for which the retailers’ and the
market’s aggregate profits are higher when the supplier prices under demand
uncertainty. This is achieved in expense of the supplier’s welfare who is always
better off under deterministic demand. The realized Price of Anarchy revealed
that for any demand level, the integrated chain performs better – in terms of
efficiency – as the number of competing retailers increases. Upper bounds of inef-
ficiency are attained for lower values of realized demand. Despite these intuitions,
the present analysis is limited in extent. Price differentiation and mechanisms
that will incentivize retailers to honestly reveal their private information about
demand, constitute promising lines of ongoing research.
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Abstract. The conflict measures induced by the conjunctive and dis-
junctive combining rules are studied in this paper in the framework of
evidence theory. The coherence of conflict measures with combining rules
is introduced and studied. In addition, the structure of conjunctive and
disjunctive conflict measures is studied in the paper. In particular, it is
shown that the metric and entropy components can be distinguished in
such measures. Moreover, these components are changed differently after
combining of the bodies of evidence.

Keywords: Conflict measure · Evidence theory · Combining rule

1 Introduction

Various factors must be considered when deciding about using of combining
rules in the framework of evidence theory [3,15]. The value of a conflict measure
between bodies of evidence is the important characteristic when deciding about
expediency of use a particular rule. In the recent years, the study of a conflict
measures has been increasingly developing into an independent research area.
Axiomatics and various approaches to the evaluation of the conflict between
the bodies of evidence (external conflict) were considered in [1,4,8,12,13]. The
notion of internal conflict of evidence studied in [2,10,11,14]. But we are con-
sidering only the external conflict in this paper. The choice of a specific measure
for estimation of a conflict depends on a solvable problem. For example, if we
estimate conflict between bodies of evidence with the aim of decision making
about combining of evidence, then the conflict measure must be agreed in some
sense with the combining rule. So Dempster’s rule of combination agrees natu-
rally with a conjunctive conflict measure. The conditions of agreement for the
other combining rules are not obvious. In the given paper we study the conflict
measures that are induced by conjunctive and disjunctive combining rules. The
link of consistency conditions with axioms of conflict measure is studied.

In addition, the structure of conjunctive and disjunctive conflict measures
studied in this paper too. In particular, we showed that it is possible to allocate
the metric and entropic components in such measures. Moreover, these compo-
nents are changed in different ways when the bodies of evidence are aggregated.
c© Springer Nature Switzerland AG 2018
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The main aim of this paper consists in the study of some factors (the choice of
a conflict measure, the consistency conditions with combining rules, the entropy
of evidence, etc.) that should be considered when we make a decision on com-
bining of bodies of evidence.

The structure of the remainder of the paper is as follows. First, in Sect. 2, we
shall recall the basic concepts of evidence theory. Axioms of a conflict measure
will be discussed in Sect. 3. The conflict measures that are induced by conjunctive
and disjunctive combining rules are considered in Sect. 4. The notion of coherence
of conflict measures and combining rules is introduced in Sect. 5. In Sect. 6,
we showed that the metric and entropic components can be allocated in the
conjunctive and disjunctive conflict measures. The change of metric and entropic
components after combination bodies of evidence is discussed in Sect. 7. Finally,
some conclusions are presented in Sect. 8.

2 Basic Definitions and Notations of Evidence Theory

We shall recall the basic concepts of evidence theory [3,15]. Let X be a finite set
and 2X be a powerset of X. The mass function m : 2X → [0, 1] is considered and∑

A⊆X m(A) = 1. The value m(A) characterizes the relative part of evidence
that the actual alternative from X belongs to set A ∈ 2X . The subset A ∈ 2X is
called a focal element, if m(A) > 0. Let A = {Ai} be a set of all focal elements
of evidence. The pair F = (A,m) is called a body of evidence. Let F(X) be a
set of all body of evidence on X.

If A = {A}, then FA = (A,m) = (A, 1) is called a categorical body of evi-
dence. In particular FX is called a vacuous body of evidence. If Fj = (Aj ,mj) ∈
F(X), 0 ≤ αj ≤ 1, j = 1, ..., n and

∑n
j=1 αj = 1, then F = (A,m) ∈ F(X),

where A =
⋃n

j=1 Aj , m(A) =
∑n

j=1 αjmj(A). In this case, we will write
F =

∑n
j=1 αjFj . In particular, any body of evidence F = (A,m) can be repre-

sented as F =
∑

A∈A m(A)FA.
Let we have two bodies of evidence F1 = (A1,m1) and F2 = (A2,m2) which

represent two information sources. The different combining rules R are consid-
ered in evidence theory: R : F(X) × F(X) → F(X). For example, the non-
normalized conjunctive rule D0(F1, F2) is considered

mD0(A) =
∑

B∩C=A
m1(B)m2(C), A ∈ 2X .

The value KD(F1, F2) = mD0(∅) characterizes the amount of conflict between
two sources of information (but not only, see [12]) described by the bodies of
evidence F1 and F2. We call the value KD(F1, F2) = mD0(∅) the conjunctive
conflict measure. If KD �= 1, then the classical Dempster rule for combining of
two evidence can be defined: mD(A) = 1

1−KD mD0(A), A �= ∅, mD(∅) = 0. The
conflict management in conjunctive rule was discussed in [9].

Dubois and Prade’s disjunctive consensus rule is a dual rule to Dempster’s
rule in some sense. This rule is defined by a formula [6]:

mDP (A) =
∑

B∪C=A
m1(B)m2(C), A ∈ 2X .

In [7] a mixed conjunctive and disjunctive rule was discussed.
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The negation (or complement) F̄ = (Ā, m̄) of a body of evidence F = (A,m)
is defined as Ā = {Ā : A ∈ A} and m̄(A) = m(Ā) ∀A ∈ Ā, where Ā denotes
the complement of A [5]. Note that if we have F =

∑
A∈A m(A)FA, then we

have F̄ =
∑

A∈A m(A)FĀ. The duality relation is true for the non-normalized
conjunctive rule and disjunctive consensus rule by analogy with De Morgan’s
law [5]:

D0(F1, F2) = DP (F̄1, F̄2). (1)

We shall consider also the dual body of evidence F (−) = (Ā,m(−)) with respect
to body of evidence F = (A,m), where m(−)(Ā) = 1

N−1 (1 − m(A)) ∀A ∈ A,
N = |A| > 1.

3 Axioms of Conflict Measures

In general, it is desirable that the conflict measure K(F1, F2) between bodies of
evidence satisfies the following conditions (axioms) [1,4,13]:

A1: 0 ≤ K(F1, F2) ≤ 1 for all F1, F2 ∈ F(X) (non-negativity and normaliza-
tion);

A2: K(F1, F2) = K(F2, F1) for all F1, F2 ∈ F(X) (symmetry);
A3: K(F, F ) = 0 for all F ∈ F(X) (nilpotency);
A4: K(F ′, F ) ≥ K(F ′′, F ), if F ′ = (A′,m), F ′′ = (A′′,m), where A′ = {A′

i},
A′′ = {A′′

i } and A′
i ⊆ A′′

i for all i and F ∈ F(X) (antimonotonicity with
respect to imprecision of evidence);

A5: K(FX , F ) = 0 for all F ∈ F(X) (ignorance is bliss [4]);
A6: K(FA, FB) = 1, if A ∩ B = ∅.

Furthermore, if we assume that the empty set can be a focal element (the value
m(∅) can be interpreted as the degree of confidence in the fact that the true
alternative x /∈ X), then we assume that the axioms A3 and A5 are satisfied for
all F ∈ F(X)\{F∅} and we will also consider the following axiom:

A7: K(F∅, F ) = 1 for all F ∈ F(X)\{F∅}.

The other axioms for conflict measures are also considered (see, e.g., [4]). We note
that some axioms (for example, A4 and A6) are consistent with the conjunctive
combining rule (see Sect. 5).

4 Conflict Measures Induced by Conjunctive
and Disjunctive Combining Rules

Let us assume that the information from the two sources is described by means
of two bodies evidence F1 = (A1,m1) F2 = (A2,m2). Then KD(F1, F2) can
be considered as a conflict measure induced by conjunctive rule. This measure
satisfies the axioms A1, A2, A4–A7.

Various conflict measures induced by the disjunctive consensus rule can be
considered. These measures can satisfy certain axioms of the conflict measure.
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Below we consider the following conflict measures induced by a disjunctive rule
(we will call them disjunctive conflict measures):

KDP
1 (F1, F2) =

∑

B∪C=X
m1(B)m2(C), KDP

2 (F1, F2) = 1 − KDP
1 (F1, F2).

Note that the measure KDP
1 (F1, F2) satisfies only axioms A1, A2 and A7

(and the particular case of condition A6: K(FA, FĀ) = 1). But the measure
KDP

2 (F1, F2) satisfies axioms A1, A2, A4, A5. The following relationship between
conjunctive and disjunctive conflict measures is true. This relationship reflects
the duality relation (1).

Proposition 1. KDP
1 (F1, F2) = KD(F̄1, F̄2).

The simple relations are true for the conjunctive and disjunctive conflict
measures on the disjoint belief structure.

Proposition 2. If F1 = (A,m1) and F2 = (A,m2), where A′ ∩ A′′ = ∅
∀A′, A′′ ∈ A (A′ �= A′′), then: (1) KDP

1 (F1, F
(−)
2 ) = 1

N−1KD(F1, F2); (2)
KDP

2 (F1, F̄2) = KD(F1, F2).

Proposition 3. If F1 = (A1,m1), F2 = (A2,m2) and A1 = Ā2, then
KD(F1, F2) = 1 implies KDP

1 (F1, F2) = 1.

5 The Coherence of Conflict Measures and Combining
Rules

The value of a conflict measure is an important factor for decision making about
using of combining rules for aggregation of information from a few sources. In
this case, the conflict measure serves as a priori characteristic of the applicability
of the combining rule. The great value of a conflict measure means that we should
not do the aggregation of these bodies of evidence. It is clear that the choice of
a combining rule and a conflict measure must be coordinated to a certain degree
in such problems. Let us consider the following matching conditions.

Definition 1. A combining rule R and a conflict measure K are called positively
agreed if K(F1, F2) ≤ K(R(F1, F2), Fi), i = 1, 2 for all F1, F2 ∈ F(X). The pair
R and K is called negatively agreed if the opposite inequality holds.

The positive (negative) coherence means that the value of a conflict measure
between the resulting body of evidence and any operand will not decrease (will
not increase) with respect to the value of a conflict measure between operands
after application of combining rule.

Proposition 4.

(1) A conjunctive (non-normalized) combining rule D0 and a conflict measure
KD are positively agreed;



176 A. Lepskiy

(2) a disjunctive combining rule DP and a conflict measure KDP
1 are positively

agreed;
(3) a disjunctive combining rule DP and a conflict measure KDP

2 are negatively
agreed.

It is easy to see that the coherence of the conflict measure with the combining
rule makes some axioms dependent or contradictory. For example,

(1) if a conflict measure is positively agreed with a conjunctive combining rule
or a disjunctive combining rule, then axiom A5 follows from axiom A3
because K(FX , F ) ≤ K (D(FX , F ), F ) = K(F, F ) = 0 and K(FX , F ) ≤
K (DP (FX , F ), FX) = K(FX , FX) = 0;

(2) if a conflict measure is positively agreed with a conjunctive combining rule,
then axiom A6 implies that K(F∅, FA) = 1 for all A �= ∅ (particular case of
axiom A7) because 1 = K(FA, FĀ) ≤ K (D(FA, FĀ), FA) = K(F∅, FA);

(3) if a conflict measure is positively agreed with a disjunctive combining rule,
then A5 and A6 axioms are contradictory as well as A3 and A7 axioms
because 1 = K(FA, FĀ) ≤ K (DP (FA, FĀ), FA) = K(FX , FA) = 0 and
1 = K(F∅, F ) ≤ K (DP (F∅, F ), F ) = K(F, F ) = 0;

(4) if a conflict measure is negatively agreed with a conjunctive combin-
ing rule, then axiom A5 implies axiom A3 because 0 = K(FX , F ) ≥
K (D(FX , F ), F ) = K(F, F );

(5) if a conflict measure is negatively agreed with a conjunctive combining rule,
then axiom A7 implies that K(FA, FĀ) = 1 for all A �= ∅ (particular case of
axiom A6) because K(FA, FĀ) ≥ K (D(FA, FĀ), FA) = K(F∅, FA) = 1.

Thus, if we are talking about the desired conditions of conflict measure, then
we must take into consideration the problem being solved, the used combining
rule and, consequently, the type of their coherence.

6 Metric and Entropic Components of a Conflict Measure

When we take a decision on combining of bodies of evidence we pay attention
not only on the value of a conflict measure. Consider the following example.

Example 1. Let us assume that there are three candidates X = {x1, x2, x3}
for a certain position. Three experts expressed their preference to these can-
didates as three bodies of evidence F1 = 1

3F{x1} + 1
3F{x2} + 1

3F{x3}, F2 =
1
3F{x1,x2} + 2

3F{x3}, F3 = 7
8F{x2} + 1

8F{x2,x3}. The conjunctive conflict mea-
sures are equal KD(F1, F2) = 5/9, KD(F1, F3) = 5/8 and KD(F2, F3) = 7/12,
i.e. KD(F1, F2) < KD(F2, F3) < KD(F1, F3). We will choose for combin-
ing a couple of bodies of evidence F1 and F2 with the lowest measure of
conflict. We get the new body of evidence after combining by Dempster’s
rule: D(F1, F2) = 1

4F{x1} + 1
4F{x2} + 1

2F{x3}. The preference is given to a
third candidate in this case. At the same time, the evidence F1 is irrelevant
because first expert did not give preference to any of the candidates. If we
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find a combination of the second and third bodies of evidence, then we get
D(F2, F3) = 4

5F{x2} + 1
5F{x3}, i.e. the preference is given to a second candidate

in this case. The situation is similar when we use a disjunctive conflict measure
and a disjunctive rule: KDP

1 (F1, F2) = 1
9 > KDP

1 (F1, F3) = KDP
1 (F2, F3) = 1

24 ;
DP (F1, F3) = 7

24F{x2} + 7
24F{x1,x2} + 9

24F{x2,x3} + 1
24F{x1,x2,x3}; DP (F2, F3) =

7
24F{x1,x2} + 2

3F{x2,x3} + 1
24F{x1,x2,x3}. We obtain approximately equal values of

the mass function for three focal elements after combining the F1 and F3. On
the contrary, the combination of the second and third sources gives us that the
preferred candidate is in the pair {x2, x3}. This example can be explained by
the fact that the first body of evidence has a uniform probability distribution.
It has high Shannon entropy and it is better not to use for combining. However,
the entropic and metric components can be isolated in the conflict measure.

Conjunctive conflict measure for two bodies of evidence F1 = (A1,m1) and
F2 = (A2,m2) can be rewritten as follows

KD(F1, F2) =
∑

B∈A1,C∈A2,B∩C=∅
m1(B)m2(C) = 1 −

∑

B∩C 	=∅
m1(B)m2(C)

= 1
2

⎛

⎝2 − 2
∑

B,C

qB,Cm1(B)m2(C)

⎞

⎠ −
∑

B,C

(tB,C − qB,C) m1(B)m2(C), (2)

where Q = (qB,C) is a symmetric positive definite matrix which satisfies the
conditions: (1) qB,C ∈ [0, 1] ∀B,C ∈ 2X ; (2) qB,C = 0, if B ∩ C = ∅; (3)

qB,B = 1 ∀B ∈ 2X ; T = (tB,C), tB,C =
{

1, B ∩ C �= ∅,
0, B ∩ C = ∅.

Let R = (rB,C),

rB,C = tB,C − qB,C . For example, Jaccard index, qB,C = |B∩C|
|B∪C| , ∀B,C �= ∅ is an

example of coefficients qB,C . We will consider a scalar product (x,y)Q := xTQy
and corresponding norm ‖x‖Q :=

√
xTQx in the real vector space A2|X|−1.

In particular, if qB,C is Jaccard index, then dJ(F1, F2) = 1√
2

‖m1 − m2‖Q is
Jousselme distance [8] that is widely used in evidence theory.

Let SX =
{
t = (tk)2

|X|−1
k=1 : tk ∈ [0, 1] ∀k,

∑
k tk = 1

}
is a simplex. We con-

sider a functional EQ : SX → [0, 1],

EQ(F ) = EQ(m) = 1 − ‖m‖2Q =
∑

B

m(B)

(

1 −
∑

C

qB,Cm(C)

)

, F = (A,m).

This functional is close to an entropy functional in some of its properties:
t(max) = arg max

SX

EQ(t) = arg min
SX

‖t‖2Q, t(min) = arg minEQ(t), if ∃j : t
(min)
j =

1 and t
(min)
k = 0 ∀k �= j (categorical evidence), EQ(t(min)) = 0. The next Propo-

sition follows from (2).
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Proposition 5. We have for the conjunctive conflict measure

KD(F1, F2)=1
2

(
EQ(m1)+EQ(m2)+‖m1−m2‖2Q

)
−

∑

B,C

rB,Cm1(B)m2(C). (3)

The formula (3) shows that the conjunctive conflict measure can be repre-
sented as a sum of average value of entropy-type functionals of bodies of evidence,
the distance between bodies of evidence and a last summand that characterizes
the interaction of weakly intersecting focal elements.

Corollary 1. If F1 = (A,m1) and F2 = (A,m2), where A′ ∩ A′′ = ∅ ∀A′, A′′ ∈
A, then

KD(F1, F2) = 1
2 (EI(m1) + EI(m2)) + 1

2 ‖m1 − m2‖2I , (4)

where I is the identity matrix and ‖x‖I :=
√
xTx is the Euclidean norm.

Note that functional EI(t) =
∑

B t(B)(1 − t(B)) is defined on the simplex
SX and satisfies the conditions: t(max) = arg max EI(t), if t

(max)
k = 1

2|X|−1
∀k

(uniform distribution), EI(t(max)) = 1 − 1
2|X|−1

; t(min) = arg min EI(t), if ∃j :

t
(min)
j = 1 and t

(min)
k = 0 ∀k �= j (categorical evidence), EI(t(min)) = 0. In

addition, we have EI(t) ≤ S(t) := −∑
k tklog2tk (Shannon entropy). Thus, the

conjunctive conflict measure is equal in this case the average value of the entropy-
type functionals and the square of the distance between the mass functions of
the two bodies of evidence.

Note that the conjunctive conflict measure satisfies the triangle inequality on
the disjoint belief structures.

Proposition 6. If Fi = (A,mi), i = 1, 2, 3, where A′ ∩ A′′ = ∅ ∀A′, A′′ ∈ A,
then KD(F1, F3) ≤ KD(F1, F2) + KD(F2, F3).

Proposition 2 implies that we have the following representation for a disjunc-
tive conflict measure and a special case of belief structures F1 = (A,m1) and
F2 = (A,m2), where A′ ∩ A′′ = ∅ ∀A′, A′′ ∈ A, N = |A| > 1:

KDP
1 (F1, F

(−)
2 ) = 1

2(N−1) (EI(m1) + EI(m2)) + 1
2(N−1) ‖m1 − m2‖2I ,

KDP
2 (F1, F̄2) = KD(F1, F2) = 1

2 (EI(m1) + EI(m2)) + 1
2 ‖m1 − m2‖2I .

7 Changing of Metric and Entropic Components
of a Conflict Measure after Combining

By definition, we have that a conflict measure is not decreased after combining of
bodies of evidence in the case of positive compatibility. On the other hand, metric
and entropic components can be isolated in the conjunctive conflict measure.
We have the question about changing of these parts when bodies of evidence are
combined.
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Proposition 7. If F1 = (A,m1) and F2 = (A,m2), where ∅ /∈ A and A′ ∩A′′ =
∅ ∀A′, A′′ ∈ A, then the metric component of a conjunctive conflict measure does
not decrease after application of a conjunctive rule.

The entropic component of a conjunctive conflict measure can be increased
or decreased after application of a conjunctive rule.

Proposition 8. If F1 = (A,m1) and F2 = (A,m2), where ∅ /∈ A and A′ ∩A′′ =
∅ ∀A′, A′′ ∈ A, then EI(DP (F1, F̄2)) ≥ EI(F̄2).

By other words, the value of entropy-type functional does not decrease after
combining of bodies of evidence F1 and F̄2 with the help of disjunctive rule with
respect to value of entropy-type functional of body F̄2.

The metric component of a disjunctive conflict measure can be increased or
decreased after application of a disjunctive rule.

8 Conclusions

Conflict measures induced by the conjunctive and disjunctive combining rules
were studied in this paper. In particular, some of the consistency conditions
between the combining rules and conflict measures were discussed. The relation-
ship of consistency conditions and the axiomatic of a conflict measure is shown.

In addition, it is shown that the metric and entropic components can be
isolated into the conjunctive conflict measures. It is shown that the entropic
component of evidence is an important characteristic (together with the value
of a conflict measure) in decisions about the choice of the bodies of evidence for
combining. It is shown in some special cases (disjoint belief structures) that the
metric component of conjunctive conflict measure is not decreased after applying
of conjunctive combining rule. In addition, it is shown that the value of entropic
component is not decreased after combining of bodies of evidence with the help
of disjunctive rules.
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Abstract. This paper studies the application of linear belief functions
to both classic and Bayesian statistic data analysis. In particular, it
explores how to combine direct observations with/without distributional
assumptions as linear belief functions for estimating population mean,
how to combine system equations and measurement equations with direct
observations in time series models and Bayesian linear regressions. It
illustrates the use of Linear Model Operating Systems (LMOS).

1 Introduction

Linear belief functions are an extension of the Dempster-Shafer theory to the
case where the variables of interest are Gaussian [3]. The notion manifests a wide
range of linear models such as linear regressions, linear equations, and ignorance,
as well as marginal and conditional multivariate normal distributions of linear
combinations of variables, which can all be uniformly represented as matrices
and combined as the addition of the matrices via the Dempster’s rule [4,5].

This paper studies the application of linear belief functions to the estimation
of population means, time series analysis, and linear regressions. Although these
analyses can be done without belief functions, this study is important in three
perspectives. First, it illustrates the applicability of belief functions to these prob-
lems. Considering that evidence involved in the analyses, including equations,
distributional assumptions, and observations are all special cases of belief func-
tions, uniformly expressed as matrices, and combined as matrix additions, the
belief function approach is more elegant. Second, in Bayesian analysis, ignorance
will have to be expressed using improper priors, the belief function approach is
free from such a burden. Third, the big data analytics aims at using population
data to predict the behavior of individuals, but often we cannot wholly load
a data set into computer memory for analysis. Since the combination of belief
functions is commutative and associative, the belief function approach has the
potential to meet the challenge by slicing the population data.

2 Combining Direct Observations

Normal distribution X ∼ N(μ,Σ) is represented in the matrix form of a linear
belief function as M(X) = [μ Σ ]T or fully swept form M(

−→
X ) = [μΣ−1 −Σ−1 ]T .

c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 181–189, 2018.
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As special cases, M(X) = [x 0 ]T repreents certainty X = x with 0 being zero
covariance matrix, and M(

−→
X ) = [0 0 ]T full ignorance on X. Assume we made n

independent direct observations on X: X = x1, X = x2, ..., X = xn. They can
be combined as belief functions. First, we represent each observation as Mi(X) =
[xi 0 ]T , i = 1, 2, ..., n. Then, we fully sweep each matrix using imaginary extreme
numbers e = 1/0 [6]: Mi(

−→
X ) = [xie −Ie ]T . The combination is simply the sum

of their fully swept matrices [5], and so the combination of the observations is
M(

−→
X ) = [ (

∑n
i=1 xi)e −nIe ]T . Doing a full reverse sweeping (or unsweep) on

M(
−→
X ) results in M(X) = [

∑n
i=1 xi

n 0 ]T .

Theorem 1. The combination of independent direct observations on the same
variables is the sample mean of the observations.

Next assume each observation xi has an error term εi ∼ N(0, Σi). Then we
can represent observation i as X = xi + εi, εi ∼ N(0, Σi), both of which are
linear belief functions: the first is a linear equation of X and εi with constant
xi, and the second is a normal distribution.

M1i(X,−→εi ) =

⎡

⎣
xi 0
0 1
1 0

⎤

⎦ ,M2i(εi) =
[

0
Σi

]

Note M1i(X,−→ε ) is M1i(X, εi) being partially swept on εi. In general, the follow-
ing defines how to sweep M(X,Y ) on X into M(

−→
X,Y ):

⎡

⎣
μX μY

ΣXX ΣXY

ΣY X ΣY Y

⎤

⎦ =⇒
⎡

⎣
μX(ΣXX)−1 μY − μX(ΣXX)−1ΣXY

−(ΣXX)−1 (ΣXX)−1ΣXY

ΣY X(ΣXX)−1 ΣY Y − ΣY X(ΣXX)−1ΣXY

⎤

⎦

M(
−→
X,Y ) contains linear regression Y = a + bX + ε with coefficient b =

(ΣXX)−1ΣXY and intercept a = μY − μX(ΣXX)−1ΣXY . Also, μX(ΣXX)−1

and −(ΣXX)−1 constitute M(
−→
X ), and ε ∼ N(0, ΣY Y −ΣY X(ΣXX)−1ΣXY ). As

a special case, linear equation Y = a + bX has ignorance on X and no white
noise, and so in M(

−→
X,Y ), the last terms vanish.

To combine belief functions M1i and M2i, we need to sweep M2i from εi since
εi is a common variable between M1i and M2i [5]. M2i(−→εi ) = [0 −(Σi)−1 ]T is
then added to M1i(X,−→εi ) to obtain the combination as

Mi(X,−→εi ) =

⎡

⎣
xi 0
0 1
1 −(Σi)−1

⎤

⎦

Doing a reverse sweeping on Mi(X,−→εi ) from εi produces

Mi(X, εi) =

⎡

⎣
xi 0
Σi 1 × Σi

Σi × 1 Σi

⎤

⎦
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Marginalizing Mi(X, εi) to X, or removing variable εi, we have Mi(X) =
[xi Σi ]T , which is a compact representation of observation i: X ∼ N(xi, Σi).
Because combination is commutative and associative. we can just fully sweep
each Mi(X): Mi(

−→
X ) = [xi(Σi)−1 −(Σi)−1 ]T and sum the swept matrices.

M(
−→
X ) =

n∑

i=1

Mi(
−→
X ) =

[∑n
i=1 xi(Σi)−1

−∑n
i=1(Σi)−1

]

Doing a reverse sweeping obtains

M(X) =

[∑n
i=1 xi(Σi)−1

[∑n
i=1(Σi)−1

]−1

[∑n
i=1(Σi)−1

]−1

]

Theorem 2. Assume x1, x2, ..., xn are n independent observations on random
vector X with white noise error term εi ∼ N(0, Σi), i = 1, 2, ..., n. Then the com-
bined linear belief function of X has mean value

∑n
i=1 xi(Σi)−1

[∑n
i=1(Σi)−1

]−1

and error ε ∼ N(0,
[∑n

i=1(Σi)−1
]−1).

Corollary 1. Assume x1, x2, ..., xn are n independent observations on vari-
able X with errors εi, which has standard deviation σi, i = 1, 2, ..., n. Then the
combined linear belief function of X has mean value

x1
(σ1)2

+ x2
(σ2)2

+ ... + xn

(σn)2

1
(σ1)2

+ 1
(σ2)2

+ ... + 1
(σn)2

and variance 1
1

(σ1)2
+ 1

(σ2)2
+...+ 1

(σn)2
< min(σ1, σ2, ..., σn).

Corollary 2. Assume x1, x2, ..., xn are n independent observations on variable
X with identical error ε with standard deviation σ. Then the combined linear
belief function of X is N(x̄, σ2

n ).

Corollary 2 is a familiar result; the combined linear belief function of X is
identical to the Bayesian posterior distribution of population mean μ with a
known standard deviation σ and an improper uniform prior (improper because
the prior is not a probability distribution):

p(μ|x1, x2, ..., xn) =
1√

2πσ/
√

n
e
− 1

2 (
μ−x̄

σ/
√

n
)2

One may also verify that Corollary 1 is identical to the Bayesian posterior dis-
tribution of μ with a improper uniform prior p(μ) and known but different stan-
dard deviations σ1, σ2, ..., σn by carrying out some tedious operations according
to Bayes rule:

p(μ|x1, x2, ..., xn) =
p(μ)

∏n
i=1

1√
2πσi

e
− 1

2 (
xi−μ

σi
)2

∫
p(μ)

∏n
i=1

1√
2πσi

e
− 1

2 (
xi−μ

σi
)2

dμ
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According to the corollary, the combined mean for X is the inverse-variance
weighted average of the original observations. This result makes an intuitive
sense; the larger the error, the less reliable the observation. The formula discounts
each observation by the inverse variance of its error term. Therefore, only when
all the measurements have independent, identical error terms, e.g., obtained by
using the same stable measurement device, the combined mean is the arithmetic
average of the observations.

3 Dynamic Linear Models

Dynamic linear models are a general class of non-stationary time series models.
A simple case is an autoregressive model, where the current value of a variable
is predicted against its previous values, e.g., stock price pt at time t is predicted
by the prices of the three prior closings: pt = β0 +β1pt−1 +β2pt−2 +β3pt−3 + εt,
where εt is the associated error term. More sophisticated models include terms
to model trends, seasonality, covariates, and autoregressive components. Kalman
filters are a special case [1]. Let Xt be the state of the system at time t, ut be
the control input, and wt the noise. Then the dynamics of the system may
be described by the linear equation Xt+1 = AtXt + Btut + wt with At and
Bt being the coefficient matrices, and t = 0, 1, 2, ... The state of the system
may be observed with errors at each time. Let Zt be the observed result of the
system at time t and Vt be the measurement error. Then the measurements
may be expressed by another linear equation Zt = CtXt + Vt with Ct being
the coefficient matrix. Assume all the noises and errors are independent. The
problem is to estimate Xt+1 by using the observations X0, Z1, Z2, ..., Zt.

Dynamic linear models can be more complex than Kalman filters can han-
dle. Just like stock prices, Xt+1 may depend not only on Xt and ut but also
earlier states and controls; e.g., economic policies ut often take many years to be
effective in affecting the state of economy Xt. Similarly, measurement Zt may
depend not only on Xt but also earlier measurements or states. For example, the
measurement of temperature outside the combustion chamber of a rocket (Zt)
depends on both the current and previous internal temperatures (Xt,Xt−1) of
the chamber due to the lag of heat diffusion: Zt = CtXt + Ct−1Xt−1 + Vt.

Regardless how complex general dynamic linear models are, the dynamic
system and measurement equations are linear equations, and noises and mea-
surement errors are Gaussian. Observations, linear equations, and Gaussian dis-
tributions are all special cases of linear belief functions, and they can be dynam-
ically combined to propagate existing evidence to predict the current state or
estimate model parameters. Here I will use a numerical example via LMOS to
illustrate the idea. Suppose we want to monitor a voltage between two points,
which is a constant subject to a random noise: Xt = Xt−1 + Wt with X0 = 120,
Wt ∼ N(0, 10−5), and t = 1, 2, .... The measurements Zt are subject to errors
Vt: Zt = Xt + Vt with Vt ∼ N(0, 0.01). The problem is to estimate Xt+1 based
on Z1, Z2, ..., Zt. Each linear belief function may be graphically represented by
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a hyperedge containing the variables of the function. Using triangulation and
maximum cardinally search, we assemble the variables into a join tree [4,8]:

Attached to each node in the join-tree is a matrix, which may be the combi-
nation of several original models or may be vacuous if there exists no knowledge
bearing on the variables. Here at node {X0,X1,W1} is the combination of lin-
ear model X1 = X0 + W1, W1 ∼ N(0, 0.00001), and X0 = 12 and represented
by Matrix (a). At each leaf node {Xi, Zi, Vi} is combination of three models:
Zi = Xi + Vi, Vi ∼ N(0, 0.01), and a direct observation on Zi. At each node
{Xi,Xi+1,W+1} is the combination of linear equation Xi+1 = Xi + Wi+1 and
Wi+1 ∼ N(0, 10−5). To illustrate the calculation, let us assume direct observa-
tions Z1 = 11.09 and Z2 = 12.05 and combine the corresponding belief functions
for {X1, Z1, V1}, {X1,X2,W2), and {X2, Z2, V2} as shown in Matrix (b–d).

(a) (b)

(c) (d)

(e) (f)

Since this is a real time dynamic system, propagation must be in chronological
order, i.e., using the information in the past to update the current system status.
Propagation starts from a leaf node, and each node waits to send its message
to a next neighbor until it has received messages from all of its other neighbors.
The message to be sent is the combination of the received messages and the
matrix stored at the node. Since knowledge on variables not contained in the
receiving node is irrelevant to the receiver, we marginalize the combination to the
intersection between the sender and the receiver. {X1, Z1, V1} is the leaf node
to start propagation. Its message to {X0,X1,W1} is the marginal of Matrix
(b) to X1: M1→2(X1) = (11.09, 0.01)T , which is combined with Matrix (a) at
{X0,X1,W1} to produce Matrix (e).

The message to be sent from {X0,X1,W1} to {X1,X2,W2} is M2→3(X1) =
(11.70, 0.0033)T , which is the marginalization of Matrix (e), and the message
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from {X2, Z2, V2} to {X1,X2,W2} is M4→3(X2) = (12.05, 0.01)T , which is the
marginalization of Matrix (d). These messages are combined with Matrix (c) to
produce Matrix (f), and so X2 ∼ N(11.86, 0.0045), which is then passed on to
Node {X2,X3,W3} to continue the propagation.

4 Bayesian Linear Regression

Bayesian linear regression is essentially the combination of two equations:
Y = BA + ε and Y = y along with the assumption of a normal distribution
ε ∼ N(0, Σ) [2,7]. Here Y is a row vector of n response variables, B is a 1 × m
vector representing unknown coefficients, A is a m×n matrix made of the obser-
vations of the independent variables, ε is a row vector of n noise variables, y is
a vector of direct observations on Y . Assuming Σ is known, then we have:

M1(Y,
−→
A,−→ε ) =

⎡

⎢
⎢
⎣

0 0 0
0 AT I
A 0 0
I 0 0

⎤

⎥
⎥
⎦ ,M2(Y ) =

[
y
0

]

,M3(ε) =
[

0
Σ

]

First we combine M1(Y,
−→
A,−→ε ) with M3(ε). Since ε is a common variable, we

need to sweep the later into M3(−→ε ) =
[
0 −Σ−1

]T and then add it with the
former per the new matrix addition rule [5]:

M12(Y,
−→
B,−→ε ) =

⎡

⎢
⎢
⎣

0 0 0
0 AT I
A 0 0
I 0 −Σ−1

⎤

⎥
⎥
⎦

Doing a reverse sweeping on M12(Y,
−→
B,−→ε ) from ε produces

M12(Y,
−→
B, ε) =

⎡

⎢
⎢
⎣

0 0 0
Σ AT Σ
A 0 0
Σ 0 Σ

⎤

⎥
⎥
⎦

Now Y is common between M12(Y,
−→
B, ε) and M2(Y ), so we weep each from Y :

M12(
−→
Y ,

−→
B, ε) =

⎡

⎢
⎢
⎣

0 0 0
−Σ−1 Σ−1AT I
AΣ−1 −AΣ−1AT −A

I −AT 0

⎤

⎥
⎥
⎦ ,M2(

−→
Y ) =

[
ye

−eI

]

which are then added together to obtain

M123(
−→
Y ,

−→
B, ε) =

⎡

⎢
⎢
⎣

ye 0 0
−Σ−1 − eI Σ−1AT I

AΣ−1 −AΣ−1AT −A
I −AT 0

⎤

⎥
⎥
⎦
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Next we reversely sweep M(
−→
Y ,

−→
B, ε) from Y and get rid of the extreme numbers

involving e because (Σ−1 +eI)−1 = Σ( 1eI +Σ)−1 1
e = 0, and e(Σ−1 +eI)−1 = I:

M(Y,
−→
B, ε) =

⎡

⎢
⎢
⎣

y yΣ−1AT y
0 0 0
0 −AΣ−1AT −A
0 −AT 0

⎤

⎥
⎥
⎦

Finally, doing a reverse sweeping from B will produce the final belief function:

M(Y,B, ε) =

⎡

⎢
⎢
⎣

y (yΣ−1AT )(AΣ−1AT )−1 y − (yΣ−1AT )(AΣ−1AT + Λ−1)−1A
0 0 0
0 (AΣ−1AT )−1 −[(AΣ−1AT )−1A
0 −AT (AΣ−1AT )−1 AT (AΣ−1AT )−1A

⎤

⎥
⎥
⎦

which implies that the unknown coefficients B has an estimated posterior dis-
tribution N [(yΣ−1AT )(AΣ−1AT )−1, (AΣ−1AT )−1]. In the following, I will use
a synthetic sample of six observations on two independent variables and one
response variable Y to illustrate the result.

X1 X2 Y

1.2 2.4 2.3
1.1 2.5 2.6
1.9 3.2 3.2
2.5 4.8 4.5
1.2 2.3 1.9
1.3 2.9 2.8

LMOS Free Format LMOS Free Format LMOS Matrix
1.2a + 2.4b + c + e1 = y y = 2.3 e1 ˜ N(0,4)
1.1a + 2.5b + c + e2 = y y = 2.6 e2 ˜ N(0,4)
1.9a + 3.2b + c + e3 = y y = 3.2 e3 ˜ N(0,4)
2.5a + 4.8b + c + e4 = y y = 4.5 e4 ˜ N(0,4)
1.2a + 2.3b + c + e5 = y y = 1.9 e5 ˜ N(0,4)
1.3a + 2.9b + c + e6 = y y = 2.8 e26 ˜ N(0,4)

Assume the linear regression model to be estimated is Y = aX1 + bX2 + c+ ε
with ε being assumed to be a white noise with known error: ε ∼ N(0, 4). There are
a few alternative methods to specify the models in LMOS. We can represent each
sample observation (xi1, xi2, yi) by two linear equations Yi = axi1 + bxi2 + c+ εi,
Yi = yi and a normal distribution εi ∼ N(0, 4). Then plugging in the sample
data, we will create 6 identical distributions ei ∼ N(0, 4) and 12 linear equations.
If one is familiar with the matrix representation of linear regression models,
he can further simplify the data entry by combining each linear equation with
distributional assumption directly. For example, 1.2a + 2.4b + c + e1 = 2.3 (or
c = 2.3 − 1.2a − 2.4b − e1) and e1 ∼ N(0, 4) can be represented directly as

M(c,−→a ,
−→
b ,−→e1) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 2.3 0
0 0 −1.2 0
0 0 −2.4 0

−1.2 −2.4 0 −1
0 0 −1 −4−1

⎤

⎥
⎥
⎥
⎥
⎦

To combine the models, we should avoid combining a joint distribution to a
linear equation directly. So we first combine the twelve linear equations into
a joint linear system model and then combine the joint linear system with the
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distribution of one random variable at a time, and after the combination, conduct
a reverse sweeping of the result from the random variable. Then we combine the
result with the next marginal distribution, and so on. The final result, after
removing response variables, is shown below:

Therefore, the regression coefficients have an estimated posterior distribution

(a, b, c) ∼ N [

⎛

⎝
−0.11985
1.0163

0.0013816

⎞

⎠ ,

⎛

⎝
32.192 −18.242 5.6682

−18.242 11.248 −5.9616
5.6682 −5.9616 9.9597

⎞

⎠]

and the estimated residuals are ε̂1 = 0.0034112, ε̂2 = 0.18980, etc.

5 Conclusion

This paper studies the application of linear belief functions to statistic analy-
sis. When combining multiple independent measurements without errors over
the same variables as linear belief functions, the result is the sample mean of
the observations. When errors are assumed to be white noises, the result is
the Bayesian posterior distribution of the population mean (without imposing
improper priors). When combining the measurements over the variables with
the linear regression equation that links the variables, the result is the Bayesian
posterior distribution of regression coefficients. Again, there is no need to assume
an improper prior over the coefficients as in Bayesian linear regression.

This paper also introduced Linear Model Operating System (LMOS, devel-
oped and made available to the public at lmos.org by the author) as the tool to
represent and combine linear models. LMOS allows one to enter distributions as
matrices and direct measurements and/or linear equations as free-entry equa-
tions. The paper carried out two extended examples. Using a numerical example
of monitoring voltages between two points, the paper shows how to perform
the Kalman filter estimation as the combination of dynamic system equations,
measurement equations, and observations over a Markov tree. Using synthetic
data of measurements, the paper shows how to obtain posterior distributions of
population mean and regression coefficients.

http://lmos.org
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Abstract. We investigate the problem of outer approximating a coher-
ent lower probability with a more tractable model. In particular, in this
work we focus on the outer approximations made by belief functions.
We show that they can be obtained by solving a linear programming
problem. In addition, we consider the subfamily of necessity measures,
and show that in that case we can determine all the undominated outer
approximations in a simple manner.

1 Introduction

Coherent lower probabilities are one of the most prominent models within impre-
cise probability theory [1]. They can be given a behavioural interpretation in
terms of acceptable betting rates, thus extending Bruno de Finetti’s work on
subjective probability theory; at the same time, they are also equivalent to con-
vex sets of probability measures (credal sets), meaning that they can be regarded
as an epistemic model of imprecise information.

In spite of this, coherent lower probabilities also have a number of drawbacks
that hinder their use in the practice. For instance, their associated credal sets
do not possess a straightforward representation in terms of extreme points; and
their extension to lower previsions of gambles is not unique in general. For these
reasons, it becomes interesting to approximate a coherent lower probability by
a more tractable model. In a previous contribution [2], we did so by means
of 2-monotone lower probabilities, that overcome some of the issues mentioned
above: there is a simple procedure to determine the number of extreme points
of their associated credal sets [3], and they can be uniquely extended to gambles
by means of the Choquet integral [4].

Although our previous results are promising, the use of 2-monotone capac-
ities is not without issues; the most important one, in our view, is the lack
of a compelling interpretation of 2-monotonicity. This has led us to study the
approximation of coherent lower probabilities by means of completely monotone
lower probabilities, or belief functions. They have a number of advantages: first,
they have a clear interpretation from Shafer’s Evidence Theory [5]; they can be
equivalently represented by means of multi-valued mappings [6]; and still they
c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 190–198, 2018.
https://doi.org/10.1007/978-3-319-99383-6_24
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are sufficiently general to include as particular cases many interesting models
from imprecise probability theory, such as probability boxes [7] or possibility
measures [8].

The rest of the contribution is organized as follows: after giving some prelim-
inary concepts in Sect. 2, in Sect. 3 we deal with the problem of outer approxi-
mating a coherent lower probability. We recall our results for 2-monotone lower
probabilities in Sect. 3.1, investigate the problem for belief functions in Sect. 3.2
and consider the particular case of possibility measures in Sect. 3.3. Some addi-
tional comments are given in Sect. 4. Due to space limitations, several results,
comments as well as proofs have been omitted.

2 Preliminaries

Let X = {x1, . . . , xn} denote a finite universe with cardinality n. A lower proba-
bility on P(X ) is a function P : P(X ) → [0, 1]. Under an epistemic interpretation,
P (A) may be understood as a lower bound for the unknown probability P0(A)
of the event A. In that case, the available information about the probability
measure P0 is given by the credal set associated with P :

M(P ) = {P probability measure | P (A) ≥ P (A) ∀A ⊆ X}.

The minimum requirement on P we shall consider in this paper is that the bounds
it provides for every event can be attained by some probability in M(P ).

Definition 1. [1] A lower probability P on P(X ) is called coherent when its
credal set M(P ) is non-empty and P (A) = minP∈M(P ) P (A) for every A ⊆ X .

The conjugate of a lower probability P , denoted by P , is called upper probability
and it is given by P (A) = 1 − P (Ac) for every A ⊆ X . P (A) can be interpreted
as an upper bound for the unknown probability of A. When P is coherent, P
can also be computed by P (A) = max{P (A) | P ∈ M(P )} for every A ⊆ X .

One very interesting property that a coherent lower probability may satisfy
is that of k-monotonicity.

Definition 2. [4] A lower probability P : P(X ) → [0, 1] is k-monotone if for
every p ≤ k, and for every A1, . . . , Ap ⊆ X it holds that:

P
( ∪p

i=1 Ai

) ≥
∑

∅�=I⊆{1,...,p}
(−1)|I|+1P

( ∩i∈I Ai

)
.

In particular, 2-monotone lower probabilities possess a number of interesting
properties: for instance, the extreme points of their associated credal set can
be easily determined using the permutations of the possibility space [3]; more-
over, they have a unique extension as an expectation operator that preserves
2-monotonicity: their Choquet integral [9].

If P is k-monotone for every k, it is called completely monotone. It corre-
sponds to a belief function within evidence theory, and we shall denote it Bel in
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this paper. The conjugate upper probability of a belief function is called plausi-
bility function and we shall denote it Pl. A belief function can be equivalently
expressed in terms of its Möbius inverse, which is given by [5]:

m(A) =
∑

B⊆A

(−1)|A\B|Bel(B) ∀A ⊆ X .

This function m satisfies
∑

A⊆X m(A) = 1 and m(A) ∈ [0, 1] for every A ⊆ X .
Conversely, m determines the belief function by:

Bel(A) =
∑

B⊆A

m(B).

Given the Möbius inverse m, those events A with strictly positive mass, m(A) >
0, are called focal events.

A particular case of plausibility functions are the possibility measures. They
are connected to the theory of fuzzy sets.

Definition 3. [10] A possibility measure Π : P(X ) → [0, 1] is a function sat-
isfying Π(∅) = 0, Π(X ) = 1 and Π(A ∪ B) = max{Π(A),Π(B)} for every
A,B ⊆ X .

A possibility measure is an instance of plausibility function, while its conjugate
necessity measure is a belief function. They correspond to the particular case
when the focal events are nested by set inclusion, meaning that for every two
focal events E1, E2, either E1 ⊆ E2 or E2 ⊆ E1.

Notation: We shall denote by C2, C∞ and CΠ the classes of 2-monotone lower
probabilities, belief functions and possibility measures on P(X ), respectively.

3 Outer Approximations of Coherent Lower Probabilities

In a recent paper [2] we investigated how to approximate a coherent lower proba-
bility P by a 2-monotone lower probability Q that at the same time (a) does not
introduce new information; (b) is as close as possible to the original model. In
this way, if C denotes a class of coherent lower probabilities, we said that Q ∈ C
is an outer approximation of P in C if Q ≤ P , and it is called undominated if
there is no Q′ ∈ C such that Q � Q

′ ≤ P .

3.1 Outer Approximations in C2

One important issue is that of determining how close the outer approximation
is to the original model. In [2], in addition to discussing other possibilities, we
proposed to use the distance put forward by Baroni and Vicig in [11], given by

d(P ,Q) :=
∑

E⊆X
(P (E) − Q(E)). (1)
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If we interpret P (E) − Q(E) as the additional imprecision introduced on E
when replacing P (E) with Q(E), then d(P ,Q) can be understood as the total
imprecision added by the outer approximation Q.

In [2], we obtained undominated outer approximations in C2 by using a lin-
ear programming problem and minimizing the distance (1). Next proposition
summarizes some of our results.

Proposition 1. [2] Let P be a coherent lower probability, and let C′
2(P ) denote

the class of undominated outer approximations of P in C2.

1. C′
2(P ) is non-empty, and may have infinite cardinality.

2. Q({x}) = P ({x}) for every x ∈ X and every Q ∈ C′
2(P ).

3. P (A) = maxQ∈C′
2(P ) Q(A) for every A ⊆ X .

3.2 Outer Approximations in C∞

In this section, we outer approximate a coherent lower probability by means of a
belief function. Similarly to our work in [2], we propose to obtain outer approx-
imations that minimize the distance (1) between the initial lower probability P
and the belief function: d(P ,Bel) =

∑
E⊆X (P (E) − Bel(E)). In terms of the

Möbius inverse, this can be equivalently expressed as:

d(P ,Bel) =
∑

E⊆X

⎛

⎝P (E) −
∑

B⊆E

m(B)

⎞

⎠ . (2)

Let C′
∞(P ) denote the class of undominated outer approximations of P in C∞.

Proposition 2. Let P : P(X) → [0, 1] be a coherent lower probability, and
consider the problem of minimizing (2) where m is subject to the following
constraints:

∑

B⊆X
m(B) = 1, m(B) ≥ 0 ∀B ⊆ X . (LP-bel.1)

∑

B⊆E

m(B) ≤ P (E) ∀E ⊆ X . (LP-bel.2)

1. The feasible region of this linear programming problem is non-empty.
2. Any optimal solution of the linear programming problem belongs to C′

∞(P ).
3. If for a fixed event A we add the constraint

∑

B⊆A

m(B) = P (A), (LP-bel.3A)

then the feasible region of the new linear programming problem is non-empty,
any optimal solution Bel belongs to C′

∞(P ) and satisfies Bel(A) = P (A).
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4. If C′′
∞(P ) denotes the union, for every A ⊆ X, of the sets of belief functions

that minimize (2) subject to (LP-bel.1)–(LP-bel.3A), then for any event E it
holds that P (E) = maxQ∈C′′

∞(P ) Q(E).

This result parallels much of our work in [2]: it tells us that we can obtain undom-
inated outer approximations by means of linear programming, and that we can
guarantee the equality Bel(A) = P (A) for a fixed event A just by adding the
constraint (LP-bel.3A). Some detailed comments about the complexity asso-
ciated with solving the linear programming problem (LP-bel.1)–(LP-bel.2) in
Property 2 can be found in [12].

The main difference with Property 1 is that undominated outer approxima-
tions in C′′

∞(P ) may not agree with P on singletons, and also they may not deter-
mine the same order on X . Since belief functions are in particular 2-monotone,
any outer approximation in C∞ is also an outer approximation in C2. However, we
do not have the inclusion C′

∞(P ) ⊆ C′
2(P ): an undominated outer approximation

in C∞ may be dominated in C2, as we shall see in Example 1.

3.3 Outer Approximations in CΠ

We focus now on the subfamily of belief functions given by necessity measures.
Taking conjugacy into account, a necessity measure N∗ outer approximates a
coherent lower probability P if and only if its conjugate possibility measure Π∗

outer approximates the conjugate upper probability P of P , in the sense that
P (A) ≤ Π∗(A) for every A ⊆ X . Since possibility measures appear more fre-
quently in the literature than necessity measures, we shall formulate the problem
in this equivalent manner.

Let C′
Π(P ) denote the class of possibility measures Π∗ that outer approximate

P and are non-dominating in CΠ(P ), meaning that there is no other Π ′ in CΠ(P )
such that P ≤ Π ′ � Π∗. Our next result characterizes this class.

Proposition 3. Let P : P(X ) → [0, 1] be a coherent upper probability satisfying
P ({xi}) > 0 for any xi ∈ X . For any permutation σ of {1, . . . , n}, define Πσ :
P(X ) → [0, 1] by:

Πσ({xσ(1)}) = P ({xσ(1)}) and

Πσ({xσ(i)}) = max
A∈Aσ(i)

P
(
A ∪ {xσ(i)}

)
, where for every i > 1:

Aσ(i) =
{

A ⊆ {xσ(1), . . . , xσ(i−1)} | P
(
A ∪ {xσ(i)}

)
> max

x∈A
Πσ({x})

}
,

and let Πσ(A) = maxx∈A Πσ({x}) for every other A ⊆ X . Then:

1. C′
Π(P ) = {Πσ : σ ∈ Sn}, where Sn is the set of permutations of {1, . . . , n}.

2. For every event A ⊆ X , P (A) = minσ∈Sn
Πσ(A).

This result provides us with a simple constructive method for obtaining the
undominated outer approximations of P in CΠ . We also deduce that there are at
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most n! different undominated outer approximations. It is not difficult to show
that this bound is tight.

In this result, we are assuming that P ({xi}) > 0 for every xi ∈ X . This
assumption is not restrictive: if we consider the set X ∗ = {x ∈ X | P ({x}) > 0},
that is bound to be non-empty due to the coherence of P , there exists a one-to-
one correspondence between the credal sets M1 := {P : P (A) ≤ P (A) ∀A ⊆ X}
and M2 := {P : P (A) ≤ P (A) ∀A ⊆ X ∗}, because any P ∈ M1 satisfies
P (X \ X ∗) = 0. As a consequence, any non-dominating outer approximation
Π∗ of the restriction of P to P(X ∗) can be extended to a non-dominating
outer approximation Π ′ of P , simply by making Π ′({x}) = Π∗({x}) if x ∈
X ∗,Π ′({x}) = 0 if x ∈ X\X ∗ and Π ′(A) = maxx∈A Π ′({x}) ∀A ⊆ X .

Remark 1. A somewhat related procedure to that in Property 3 was considered
by Dubois and Prade in [13] and [14, Sect. 3.3] with the name of Optimal Mass
Allocation Procedure; they used it to deal with the problem of outer approximat-
ing belief functions by means of possibility measures. In their formulation, given a
permutation σ, they consider the nested family of events Eσ

j = {xσ(1), . . . , xσ(j)}
for j = 1, . . . , n. If A1, . . . , Ak are the focal events of the initial belief func-
tion to be outer approximated, for every i = 1, . . . , k they define the value
fσ(i) = min{j | Ai ⊆ Eσ

j }, and from it they define the mass of Eσ
j by:

mσ(Eσ
j ) =

∑

i:fσ(i)=j

m(Ai), ∀j = 1, . . . , n.

It holds that mσ(Eσ
1 )+. . .+mσ(Eσ

n) = 1 and Eσ
1 ⊆ . . . ⊆ Eσ

n , so mσ defines a pos-
sibility measure by means of the formula Π(A) =

∑
Eσ

j ∩A �=∅ mσ(Eσ
j ). Although

this possibility measure does not coincide with the one we have denoted Πσ

in Property 3, in the end both procedures give rise to all elements in C′
Π(P ).

Note, nevertheless, that the procedure in [14] may, unlike ours, also produce
dominating outer approximations. �

Although Property 3 provides a procedure for determining non-dominating
outer approximations in CΠ , we should be aware that the non-dominating outer
approximations in CΠ may be conjugate to necessity measures that are domi-
nated in C∞, as our next example shows:

Example 1. Let us consider a four-element space X and the lower probability
P given in Table 1. To see that it is coherent, note that it is the lower enve-
lope of the probabilities (0.1, 0, 0.4, 0.5), (0.4, 0.1, 0.2, 0.3) and (0.3, 0.3, 0, 0.4).
If we minimize Eq. (2) with constraints (LP-bel.1)–(LP-bel.2), we obtain the
optimal solutions Bel1 and Bel2 as well as their convex combinations. If we add
the additional constraint (LP-bel.3A) with A = {x3, x4}, we obtain a linear pro-
gramming problem with infinite solutions; one of them is Bel3. Table 1 also gives
an undominated 2-monotone lower probability Q that outer approximates P . It
holds that Bel2 is dominated by Q, whence we see that Bel2 is an undominated
outer approximation of P in C∞, but not in C2.
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Let us now apply the procedure in Property 3 to obtain the possibility mea-
sure associated with the permutation σ1 = (1, 2, 3, 4). First of all, we define
Πσ1({x1}) = P ({x1}) = 0.4. Then:

A2 = {A ⊆ {x1} | P (A ∪ {x2}) > max
x∈A

Πσ1({x})} = {∅, {x1}}, and

Πσ1({x2}) = max{P (∅ ∪ {x2}), P ({x1} ∪ {x2})} = P ({x1, x2}) = 0.6.

Iterating the procedure,

A3 = {A ⊆ {x1, x2} | P (A ∪ {x3}) > max
x∈A

Πσ1({x})} = {∅, {x1}, {x1, x2}},

whence Πσ1({x3}) = P ({x1, x2, x3}) = 0.7, and finally, Πσ1({x4}) = 1. The
associated possibility measure is depicted in Table 1. Its conjugate necessity mea-
sure Nσ1 is dominated by Bel3. �

Table 1. Coherent lower probability from Example 1 and its outer approximations.

A P (A) P (A) Q Bel1 Bel2 Bel3 Πσ1 Nσ1

{x1} 0.1 0.4 0.1 0.1 0.1 0.1 0.4 0

{x2} 0 0.3 0 0 0 0 0.6 0

{x3} 0 0.4 0 0 0 0 0.7 0

{x4} 0.3 0.5 0.3 0.3 0.3 0.3 1 0.3

{x1, x2} 0.1 0.6 0.1 0.1 0.1 0.1 0.6 0

{x1, x3} 0.3 0.6 0.3 0.2 0.3 0.1 0.7 0

{x1, x4} 0.6 0.7 0.5 0.6 0.5 0.6 1 0.3

{x2, x3} 0.3 0.4 0.2 0.3 0.2 0.2 0.7 0

{x2, x4} 0.4 0.7 0.4 0.3 0.4 0.3 1 0.3

{x3, x4} 0.4 0.9 0.4 0.3 0.3 0.4 1 0.4

{x1, x2, x3} 0.5 0.7 0.5 0.5 0.5 0.4 0.7 0

{x1, x2, x4} 0.6 1 0.6 0.6 0.6 0.6 1 0.3

{x1, x3, x4} 0.7 1 0.7 0.7 0.7 0.7 1 0.4

{x2, x3, x4} 0.6 0.9 0.6 0.6 0.6 0.6 1 0.6

X 1 1 1 1 1 1 1 1

This example also shows that the non-dominating outer approximations in
CΠ do not preserve the order between the events, in the sense that P (A) =
P (B) � Π(A) = Π(B) and P (A) < P (B) � Π(A) ≤ Π(B). To see this, it
suffices to compare P and Πσ1 on singletons. A procedure for defining non-
dominating outer approximations in CΠ that preserve the ordered preferences
between the events can be found in [11, Sect. 6.3].
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4 Conclusions

In this paper, we have investigated the problem of outer approximating a coher-
ent lower probability by means of belief functions. We have focused on those
belief functions that are at the same time as close as possible to the initial model,
while not adding new information, and we have shown that we can obtain these
by means of a linear programming problem, and that they allow us to retrieve
the initial coherent lower probability.

In the particular case of possibility measures we have provided a constructive
procedure for obtaining the non-dominating outer approximations, proving thus
that their number is upper bounded by n!. Our procedure is related to the
optimal mass allocation procedure of Dubois and Prade.

As future lines of research, we would like to consider other particular families
of belief functions, such as probability boxes, and to look at the representation
in terms of multi-valued mappings. In addition, we would like to investigate how
to elicit an outer approximation among all of the possible ones.

Acknowledgements. We acknowledge the financial support by project TIN2014-
59543-P.
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Abstract. We propose a family of measures of consistency (and induced
conflict) derived from a definition of consistent belief functions intro-
duced previously. Besides satisfying the desired properties of monotonic-
ity, boundedness, and extreme values, the novel family encompasses the
existing probabilistic and logical consistency measures which are shown
to correspond to two extremes of the family (lower sharp bound and
upper asymptotic limit respectively). We illustrate the definitions and
measures of consistency within an example of vessel destination estima-
tion with inconsistent sources.

1 Introduction

In maritime security, the measurement of inconsistency may reveal maritime
anomalies such as vessels deviating from normalcy (e.g., “off-route vessels”, “too
fast vessels”) and those possibly spoofing the Automatic Identification System
(AIS) signal (by, e.g., changing their actual type, concealing their current posi-
tion, hiding their actual destination) to hide suspect behaviour [1,2]. Having a
sound and proper measurement of inconsistency or, equivalently, consistency is
thus of paramount importance for such intelligent systems.

Theoretical research on (in)consistency was pioneered by the artificial intel-
ligence community working on knowledge bases over logical languages. Classical
logic is explosive, i.e., everything is a consequence of an inconsistency, so solv-
ing inconsistent knowledge bases is a major challenge. A variety of approaches
have been proposed in the literature. Hunter and Konieczny [3] introduced the
minimal inconsistent sets, while some other authors [4,5] proposed to attach
probabilities or degrees of beliefs to propositions rather than truth values.

The consistency notion plays also a central role in the belief function set-
ting [6,7] as it is directly related to the way conflict between pieces of evidence
may be defined: as the inconsistency yielded by their conjunctive combination [8].
The two notions of inconsistency and conflict have been subject to studies whose
starting point was often the logical interpretation of belief functions. Cuzzolin [9]
provided a definition of consistent belief functions as a counterpart of consistent
c© Springer Nature Switzerland AG 2018
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knowledge bases [10]. Destercke and Burger [8] proposed an axiomatic approach
to conflict which extends the properties of conflict between sets. Recently, Pichon
et al. [11] revisited and extended some of Destercke and Burger’s results. In par-
ticular, they proposed a novel family of consistency definitions that encompasses
the so-called probabilistic and logical definitions proposed in [8].

In this paper, we pursue this work and propose a new parametrised family of
consistency (and their associated conflict) measures, study their properties and
illustrate their use and interest on a vessel destination estimation problem. It is
organized as follows. Necessary concepts of belief function theory as well as clas-
sical consistency and conflict notions and measures are first recalled. In Sect. 3,
a parameterised family of consistency (and their associated conflict) measures
is unveiled and its special cases and properties are discussed. We conclude and
sketch the steps for future work in Sect. 4.

2 Background

In this section, we provide a brief reminder of necessary concepts on belief func-
tions and recall the existing consistency definitions and measures in this setting.

2.1 Uncertainty Representation with Belief Functions

Preliminaries. Let the belief about the actual value of an uncertain variable
x defined over a frame X be represented by a mass function which is a mapping
m : 2X → [0, 1] such that

∑
A⊆X m(A) = 1. M denotes the set of mass functions

defined over X . The set of focal sets of m is denoted F(m) and its cardinality
is denoted F := |F(m)|. We allow m(∅), the mass associated to the empty set,
to be strictly positive, which captures the fact that the true value of x may be
outside the frame of discernment.

Example 1. We denote by X = {Imperia,Savona,Genova,La Spezia, Livorno} =
{d1, d2, d3, d4, d5} the set of possible destinations of a vessel. A cleaning-matching
algorithm that “cleans” the AIS reported destination by formatting it in the stan-
dard format and matches it to a standard database (the World Port Index) of port
names is applied. The algorithm identifies “SAVONA” as the closest name in the
World Port Index with a confidence degree of 0.8, and identifies “SAVOONGA”
(Alaska region) as a possible match, with a confidence of 0.2. This can be encoded
by the following mass function: m1(d2) = 0.8;m1(∅) = 0.2.

Information encoded in a mass function m can be equivalently represented
by different set-measures among which the plausibility Pl and the commonality
q measures defined for every A ∈ 2X by:

Pl(A) =
∑

A∩B �=∅
m(B); q(A) =

∑

B⊇A

m(B). (1)

The contour function pl is defined over X by:

pl(x) = Pl({x}) = q({x}). (2)
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When two mass functions provided by two sources inform on the same entity,
their combination can be performed in several ways. In particular, if the sources
are independent, the combination is performed using the conjunctive operator:

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C) ∀A ⊆ X ,

The commonality function satisfies:

q1 ∩©2(A) = q1(A)q2(A) ∀A ⊆ X . (3)

Conflict and Consistency. Different definitions of (total) consistency have
been proposed in the belief function literature, among which the so-called prob-
abilistic and logical definitions [8]:

Definition 1 (Logical consistency [8]). A mass function m is logically con-
sistent iff

⋂
A∈F A �= ∅.

Definition 2 (Probabilistic consistency [8]). A mass function m is proba-
bilistically consistent iff m(∅) = 0.

Two desirable properties of consistency measures for a mass function m are also
provided in [8]:

1. Property 1 (Bounded): A measure of consistency should be bounded.
2. Property 2 (Extreme consistent values): A measure of consistency should

reach its maximal value if and only if m is totally consistent (according to
the considered definition of total consistency), and its minimal value if and
only if m is totally inconsistent, i.e., m(∅) = 1.

Two consistency measures satisfying these properties for, respectively, Defini-
tions 1 and 2 of total consistency, are [8]:

φπ(m) = max
x∈X

pl(x); φm(m) = 1 − m(∅). (4)

Other measures have been proposed in the literature, such as Yager’s [12]:

φY (m) =
∑

A∩B �=∅
m(A)m(B). (5)

A conflict measure κx : M × M → [0, 1] between two mass functions can be
defined from a consistency measure by:

κx(m1,m2) := 1 − φx(m1 ∩©2), (6)

where x ∈ {m,Y, π}. These three conflict measures have been proved in [8,11]
to satisfy a set of desirable axioms for a conflict measure proposed in [8].
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2.2 N-consistency Definition and Measures

Probabilistic and logical consistency definitions require, respectively, each of the
focal sets, and the intersection of all focal sets, to be non-empty. In-between
properties of the focal sets may also be useful to capture as illustrated by the
following example.

Example 2. We consider two other sources that inform about the destination
of the vessel: a Track-to-Route algorithm (S2) which associates a vessel to pre-
computed maritime routes based on its kinematics features, and a Vessel Traffic
Service (VTS) operator (S3) who is monitoring the marine traffic for some port
authority, and who based on experience provides a subjective assessment of the
vessels destination. S2 and S3 provide the following assessments: m2({d3}) = 0.2;
m2({d1, d2, d3}) = 0.6; m2({d1, d2}) = 0.2, and m3({d4}) = 0.1; m3({d3}) = 0.1;
m3({d1, d2}) = 0.8.

Both mass functions are equally consistent according to the probabilistic and
logical measures as we can see that they satisfy: φm(m2) = φm(m3) = 1 and
φπ(m2) = φπ(m3) = 0.8. We can therefore not compare the two assessments
in terms of internal consistency using these measures. However, if we refine the
analysis and consider for instance the pairwise intersection of the focal sets, m2

appears “less inconsistent” than m3 since its focal sets are “more” (pairwise)
intersecting. This suggests the definition of other measures of internal consistency
that can capture refined notions of consistency based on the degree of intersection
of the focal sets.

To this aim, we proposed recently in [11] a family of definitions of consistency:

Definition 3 (N-consistency [11]). A mass function m is said to be consistent
of order N (N -consistent for short), with 1 ≤ N ≤ F, iff its focal sets are N -wise
consistent, i.e., if ∀FN ⊆ F s.t. |FN | = N , we have:

⋂

A∈FN

A �= ∅.

In addition, we proposed in [11] an associated family of consistency measures
φN from M to [0, 1] defined for any m ∈ M and 1 ≤ N ≤ F by:

φN (m) = 1 − m(N)(∅), (7)

where m(N) denotes the result of the conjunctive combination of m with itself
N times (m(1) = m).

The family satisfies the following properties [11]:

– For every N ∈ [1,F], φN satisfies Properties 1 and 2 in the case where total
consistency is understood according to the N -consistency definition.

– Probabilistic and Yager consistency (definition and measure) coincide, respec-
tively, with 1-consistency and 2-consistency.

– m is logically consistent iff it is F-consistent.
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– The family is monotonic in N for any given mass function m:

φ1(m) = φm(m) ≥ φ2(m) ≥ · · · ≥ φF(m).

Example 3. Going back to the previous example, we have:
φ1(m2) = 1 > φ2(m2) = 0.92 > φ3(m2) = φF(m2) = 0.88 > φπ(m2) = 0.8; and
φ1(m3) = 1 > φπ(m3) = 0.8 > φ2(m3) = 0.66 > φ3(m3) = φF(m3) = 0.514.
Using these measures, it becomes possible to compare m2 and m3 in terms of
internal consistency: in particular, the intuition that m2 appears less inconsistent
than m3 when considering pairwise consistency is captured by measure φ2.

It appears that the measure φπ does not belong to and can not be ordered
within the φN family. In particular, it is not possible to compare the two mea-
sures that capture the same notion of logical consistency: φπ and φF. In the
following, we show that such a comparison becomes possible through a simple
transformation of the φN family.

3 Monotonically Ordered Consistency Measures

In the following, we first propose a new family of consistency measures derived
from the φN family (Sect. 3.1), and then show that the probabilistic φm and
logical φπ consistency measures belong to the family and can be ordered within
it (Sect. 3.2).

3.1 A New Family of Consistency Measures

Definition 4. Let m be a mass function of M. The ψN measure of N -
consistency of m, for N ∈ N>0, is the measure ψN : M → [0, 1] defined for
any m ∈ M by:

ψN (m) := (1 − m(N)(∅))
1
N . (8)

Note that the new proposed family is simply the N -th root of the probabilistic
consistency of the family of mass functions m(N), N ∈ N>0, since:

ψN (m) = (ψ1(m(N)))
1
N . (9)

It encompasses the probabilistic consistency measure which is retrieved when
N = 1 and ψ1(m) = φm(m). However, contrary to the φN family, the 2-
consistency measure ψ2 does not coincide anymore with Yager’s φY . We however
have that ψ2 =

√
φY .

Proposition 1. ψN measures satisfy Properties 1 and 2 for the N -consistency
definition.

Proof Sketch. This stems from the result that the measure φm, or equivalently
ψ1, satisfies both properties and the relation (9) between the measures ψN

and ψ1.
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Although it is obvious that the family φN is monotonic in N for all m ∈ M, the
equivalent result for the family ψN still holds but is less trivial, as stated by the
proposition below and following proof.

Proposition 2. For all m ∈ M and N ≥ 1:

ψN (m) ≥ ψN+1(m).

Proof Sketch. For any two mass functions m1 and m2 in M we have:

m1 ∩©2(∅) ≥ 1 − (1 − m1(∅))(1 − m2(∅)).

The right-hand value is reached when the non-empty focal sets of both mass
functions intersect, in which case there is no creation of empty focal sets in
the combination, and m1 ∩©2(∅) is solely due to the propagation of the masses
of the empty sets of both mass functions. When m1 = m2, it is easy to prove
by recursion and using the previous inequality that the following relation holds
between m(∅) and m(N)(∅):

m(N)(∅) ≥ 1 − (1 − m(∅))N , which is equivalent to φ1(m) ≥ (φN (m))
1
N .

When m1 = m and m2 = m(N), the first inequality yields: m1 ∩©2(∅) =
m(N+1)(∅) ≥ 1 − (1 − m(N)(∅))(1 − m(∅)). Since m(∅) and m(N)(∅) are related
by the recursive relation, we can deduce that:
m(N+1)(∅) ≥ 1 − (1 − m(N)(∅)(1 − m(N)(∅))

1
N , i.e., ψN+1(m) ≤ ψN (m).

In the following, we study the relation between the existing and the new
measures.

3.2 Relation with the Existing Measures

We are interested in studying the relation between the logical consistency mea-
sure φπ and the proposed family, in particular ψF since, we recall, ψF captures
the same definition of total consistency as φπ.

We start by reporting a result on the relation between the first term of the
family, i.e., the probabilistic consistency measure, and the logical one φπ.

Lemma 1. Every mass function m ∈ M with F focal sets satisfies:

ψ1(m) ≥ φπ(m) ≥ ψ1(m)
F∗ ,

where F∗ denotes the number of non-empty focal sets of m.

Proof Sketch. The left-hand side of the inequality is a known result [8]. The
right-hand part stems from observing that:

φπ(m) ≥ max
A∈F

(m(A)) ≥ 1 − m(∅)
F∗ .
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Actually, the result in Lemma 1 holds between measures φπ and ψN for all
N ≥ 1:

Proposition 3. For every m ∈ M with F focal sets, and for every N ≥ 1:

ψN (m) ≥ φπ(m) ≥ ψN (m)
(F∗

N )
1
N

,

where F∗
N denotes the number of non-empty focal sets of m(N). Also, the series

ψN (m) converges asymptotically to φπ(m):

lim
N→∞

ψN (m) = φπ(m).

Proof Sketch. The inequalities stem from Lemma 1 applied to the mass function
m(N), together with Eq. (9) and the relation: φπ(m(N)) = (φπ(m))N which
stems from Eqs. (3) and (2). For the second part of the proposition, ψN (m) is a
decreasing bounded series, so it converges. Since the number of focal sets of m(N)

stops increasing after F auto-combinations of m, then lim
N→∞

(F∗
N ) is a constant

and lim
N→∞

(F∗
N )

1
N = 1.

By combining Propositions 2 and 3, it appears that the logical consistency
measure corresponds to the upper asymptotic limit of the ψN family:

Proposition 4. For every mass function m defined over X with F focal sets:

φm(m) = ψ1(m) ≥ ψ2(m) ≥ . . . ≥ ψF(m) ≥ φπ(m) = lim
N→∞

ψN (m).

and for every pair m1 and m2:

κm(m1, m2) ≤ κ2(m1, m2) ≤ . . . ≤ κF12(m1, m2) ≤ κπ(m1, m2) = lim
N→∞

κN (m1, m2).

where κN (m1,m2) = 1 − ψN (m1 ∩©2) and F12 the number of focal sets of m1 ∩©2.

The analysis of the internal consistency of the belief function resulting from
the conjunctive combination of the belief functions issued by some sources, i.e.,
of their conflict, can be used in several ways to improve the estimation confi-
dence on the fusion output. This can be done by discounting or discarding the
most conflicting sources [13], or re-questioning those that are inconsistent with
a certain reference source. A deep analysis of the conflict is therefore necessary
as illustrated hereafter.

Example 4. To estimate the destination of the vessel, both the Track-to-Route
and VTS operator rely on some extra contextual information (S4) encoded by
a mass function m4. The mass functions m2 and m3 are actually the results of
the conjunctive combination of some mass functions m2b and m3b encoding the
specific sources knowledge and m4: m2 = m2b ∩©4;m3 = m3b ∩©4. We are inter-
ested in determining which of the sources is more in conflict with the contextual
knowledge which is highly reliable and trusted. The conflict values are, using
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κN (m2b,m4) = 1 − ψN (m2) and κN (m3b,m4) = 1 − ψN (m3):
κm(m2b,m4) = 0;κ2(m2b,m4) = 0.041;κ3(m2b,m4) = 0.042;κπ(m2b,m4) = 0.2;
κm(m3b,m4) = 0;κ2(m3b,m4) = 0.187;κ2(m3b,m4) = 0.198;κπ(m3b,m4) = 0.2.
The probabilistic and logical conflict measures do not allow one to identify which
of S2 and S3 is more in conflict with S4, while the in-between conflict measures
do, and suggest that S3 is more conflicting with S4 than S2.

4 Conclusions and Future Work

In this paper, we proposed a parametrised family of consistency measures and
illustrated its properties and interest with an example of multi-source vessel
destination estimation problem. The family satisfies desired consistency mea-
sures properties such as boundedness and extreme values, and is monotonic. In
addition, it subsumes the probabilistic and logical measures as, respectively, the
lower sharp bound and the upper asymptotic limit.

In a future work, we will investigate the geometric interpretation of the pro-
posed family of measures as well as the partial order induced by the vector
(ψ1, ..., ψF) on the mass functions space. It will also be interesting to know
whether the new conflict measures introduced in this paper satisfy the conflict
axioms of [8]. Other open questions such as the choice of the “best” measure (or
level of consistency) will also be addressed considering theoretical and practical
aspects such as the computational cost or some user’s expectations about the
measures semantics.

Acknowledgements. This research was supported by NATO Allied Command Trans-
formation (ACT).
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Abstract. Evidential calibration methods of binary classifiers improve
upon probabilistic calibration methods by representing explicitly the cal-
ibration uncertainty due to the amount of training (labelled) data. This
justified yet undesirable uncertainty can be reduced by adding training
data, which are in general costly. Hence the need for strategies that, given
a pool of unlabelled data, will point to interesting data to be labelled,
i.e., to data inducing a drop in uncertainty greater than a random selec-
tion. Two such strategies are considered in this paper and applied to an
ensemble of binary SVM classifiers on some classical binary classification
datasets. Experimental results show the interest of the approach.

Keywords: Belief functions · Evidential calibration · Active learning

1 Introduction

Probabilistic calibration methods, such as isotonic and logistic (Platt scaling)
regressions, allow to learn from training data how to transform classifier outputs
into probabilities that an instance belongs to each of the classes [1]. They are
useful for the many applications where it is important to provide such probabil-
ities rather than mere crisp decisions and where the available classifiers output
scores, such as SVMs, or inaccurate probabilities, such as Naive Bayes [1,2].
Besides, they have been mainly designed so far for binary classification.

A limitation of these methods is that they do not take into account the
uncertainty due to the amount of training data in their probability estimates
and, in particular, the less training data, the more uncertain the probability
estimates [3]. To address this issue, the calibration problem has been considered
recently in the framework of belief function theory, yielding so-called eviden-
tial calibration methods (see [3] for the calibration of a single binary classifier
and [4] for the calibration of an ensemble of binary classifiers). These latter meth-
ods are able to represent explicitly the uncertainty due to the amount of training
data, which is important in critical application domains and also leads to bet-
ter classification performance than probabilistic calibration methods as shown
in [3,4].

c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 208–216, 2018.
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While it is important to represent the aforementioned uncertainty, it is even
better if this uncertainty is as small as possible. In order to reduce it, one needs
to bring in additional training (labelled) data, which may be costly and hence
must be done in an efficient manner, i.e., such that for any given number of
added labelled data the uncertainty is reduced as much as possible. It is a similar
problem to that of active learning [5], except that the primary focus is not on
improving accuracy but rather on reducing uncertainty, and it is the problem
tackled in this paper.

Specifically, we consider the following setting: we assume an initial set of
labelled data from which some classifiers can be evidentially calibrated, and
then we consider that it is possible to ask iteratively an oracle to label some
data from a pool of data with missing labels. We study two strategies to decide
which instances from the pool should be given to the oracle. These strategies
are in the spirit of the so-called uncertainty sampling strategy framework from
active learning [5], where instances in the pool are ordered according to how
much the current classifier is the most unsure about.

This paper is organized as follows. Section 2 recalls the necessary background
on the evidential calibration of binary classifiers. Then, Sect. 3 presents two
strategies for the active evidential calibration of such classifiers and reports
experimental results when these strategies are applied to binary SVM classi-
fiers. Finally, Sect. 4 concludes the paper.

2 Evidential Calibration

Evidential calibration of binary classifiers, as introduced in [3] for the case of a
single classifier and further developed in [4] for an ensemble of classifiers, relies
on some recent results by Kanjanatarakul et al. [6,7] concerning the prediction
of a Bernoulli random variable, which are recalled in the next section.

We will assume that the reader has some basic knowledge of the theory of
belief functions (a reminder can be found in [7]).

2.1 Prediction of a Bernoulli Random Variable

Kanjanatarakul et al. [6,7] proposed a general approach which, given some
knowledge about some parameter θ obtained by observing a realization x of
some random quantity X with distribution fθ(x) and represented by a belief
function BelΘx

1, makes it possible to make statements in the form of a belief
function BelYx about some random quantity Y ∈ Y whose conditional distribu-
tion gx,θ(y) given X = x depends on θ.

1 BelΘx must be induced by a source [7]. It may be obtained by a number of evidential
methods to statistical inference, and in particular the likelihood-based evidential
method [8] in which case BelΘx is the consonant belief function whose contour func-
tion is the normalized likelihood function given the observed data x.
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In particular, if Y is a binary random variable (Y = {0, 1}) with associated
Bernoulli distribution B(θ), θ ∈ [0, 1], and if BelΘx is a consonant belief function
whose associated contour function plΘx is unimodal and continuous, we have [6]:

BelYx ({1}) = θ̂ −
∫ θ̂

0

plΘx (u)du, P lYx ({1}) = θ̂ +
∫ 1

θ̂

plΘx (u)du, (1)

where θ̂ maximizes plΘx . The degree of belief BelYx ({1}) represents the amount
of evidence strictly supporting Y = 1 while the plausibility PlYx ({1}) = 1 −
BelYx ({0}) is the amount of evidence not contradicting it. Besides, the difference
PlYx ({1}) − BelYx ({1}), which is equal to the mass mY

x({0, 1}) assigned to the
ignorance, is merely the area under the contour function plΘx and the size of this
area tends to 0 if, e.g., X follows a binomial distribution with parameters n and
θ, BelΘx is obtained using the likelihood-based method and n tends to infinity [6].

2.2 Evidential Calibration Methods

Let C = {(s1, y1), . . . , (sn, yn)} be some training data in a binary classification
problem, where si ∈ S for some domain S is the output provided by a pre-
trained classifier for the i-th training sample with label yi ∈ {0, 1}. For a test
sample of output s ∈ S and unknown label y ∈ {0, 1}, any evidential calibration
method proposed in [3] returns two values: the belief BelYC,s({1}) and plausi-
bility PlYC,s({1}) that y = 1. These methods obtain these two values by seeing
the label y of the test sample as the realization of a random variable Y with a
Bernoulli distribution B(θ) given knowledge about θ represented by some con-
sonant belief function BelΘC,s with contour function plΘC,s depending on C and s,
and by applying then to Y the prediction approach recalled in Sect. 2.1.

The only difference between the evidential calibration methods in [3] is thus
the way plΘC,s is defined. There are indeed several ways to define plΘC,s: it depends
on which probabilistic calibration method is extended and on which evidential
approach to statistical inference is used (see [3, Sect. 4] for details). In this paper,
we focus on the evidential calibration methods where plΘC,s is obtained using
the likelihood-based evidential approach to statistical inference, as Xu et al. [3]
showed that this is the approach presenting overall the best performances.

More precisely, let us consider two cases: S = {0, 1} and S = R. The case S =
{0, 1} corresponds to a classifier returning binary outputs and it will allow us to
investigate in Sect. 3 the behaviours of our active evidential calibration strategies
in a simple setting. The case S = R corresponds to a classifier returning scores,
such as a SVM classifier, and it will allow us to recall shortly and progressively
the arguably most involved and best evidential calibration method considered so
far to deal with an ensemble of classifiers – the behaviours of our active strategies
with respect to this latter calibration scheme of an ensemble of classifiers will
also be investigated in Sect. 3.
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The case S = {0, 1} can be handled using the likelihood-based evidential
extension of the binning calibration method [3], in which case we have2:

plΘC,s(θ) =
θks(1 − θ)ns−ks

θ̂ks
s (1 − θ̂s)ns−ks

, ∀s ∈ S, (2)

with ks = |{(si, yi) ∈ C|si = s, yi = 1}|, ns = |{(si, yi) ∈ C|si = s}| and θ̂s =ks/ns.
The case S = R can be handled using the likelihood-based evidential exten-

sion of the logistic regression [3], in which case plΘC,s is defined as:

plΘC,s(θ) = sup
σ1∈R

plΣC (ln(θ−1 − 1) − σ1s, σ1), ∀s ∈ S, (3)

with plΣC (σ) = L(σ)
L(σ̂) , ∀σ = (σ0, σ1) ∈ Σ = R

2, where L(σ) =
∏n

i=1 pti
i (1−pi)1−ti ,

with pi = 1
1+exp(σ0+σ1si)

and ti = N1+1
N1+2 if yi = 1, ti = 1

N0+2 if yi = 0, with
Nj = |{(si, yi) ∈ C|yi = j}|, and σ̂ maximizing L.

Of particular interest is that using plΘC,s defined by (2) or by (3) in Eq. (1),
PlYC,s({1}) − BelYC,s({1}) = mY

C,s({0, 1}) decreases as n increases [3]. In other
words, mY

C,s({0, 1}) reflects the amount of training data, and in particular the
less training data there are, the more ignorance or uncertainty there is.

Let us now consider a somewhat more complex problem, where we have
an ensemble of m classifiers such that given a test sample of unknown label
y ∈ {0, 1}, we obtain a vector of outputs s = (s1, ..., sm) ∈ R

m with sj the output
of the j-th classifier. In order to be able to interpret s with respect to y, a solution
proposed in [4] consists in calibrating jointly the classifiers. A joint calibration
proceeds similarly as the calibration of a single classifier: the label y is seen as the
realization of a random variable with a Bernoulli distribution B(θ) and a belief
function BelYC,s is derived using the prediction approach (1) from knowledge on
θ represented by a contour function plΘC,s depending on s and a training set
C = {(s1, y1), . . . , (sn, yn)} where si is the output vector provided by the m
classifiers for the i-th training sample with label yi ∈ {0, 1}. More specifically,
Minary et al. [4] proposed an evidential joint calibration corresponding to the
likelihood-based evidential extension of the multiple logistic regression, which
is a generalization of the evidential logistic regression recalled above and, in
particular, the definition of plΘC,s derived in [4] is a straightforward multivariate
generalization of (3) (due to lack of space, we refer the reader to [4] for the
detailed definition of plΘC,s).

3 Active Evidential Calibration

As we have seen, evidential calibration methods return for a test sample with
classifier output s a degree of belief BelYC,s({1}) and a plausibilityPlYC,s({1})

2 Equation (2) corresponds to a degenerate binning approach with only two bins. It
can be derived rigorously without referring to the evidential binning calibration, by
following a similar reasoning to the one used in [3] to obtain this latter calibration.
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representing, respectively, the amount of evidence strictly supporting that the
label y of the sample is 1 and the amount of evidence not contradicting it. Hence,
the greater the interval [BelYC,s({1}), P lYC,s({1})], the more uncertain one is about
the actual support that should be given to y = 1. It is thus clear that while it
is important that uncertainty induced by the training data be represented, this
uncertainty should be small enough otherwise no useful conclusion about y may
be drawn, that is, the calibrated classifier is not useful.

In order to reduce the uncertainty, one needs to add some training (labelled)
data. It is generally possible and relatively easy to obtain some unlabelled data
but, depending on the domain, labelling it may be costly. Besides, it may be
the case that not all training data are equivalent with respect to the drop in
uncertainty that they induce. Hence, it seems useful to devise some strategies
that, given a pool of unlabelled data, will point to interesting data to be labelled,
that is, to data that will induce a drop in uncertainty greater than selecting
at random data in the pool. We refer to such strategies as active evidential
calibration strategies, or active strategies for short, in opposition to the passive
strategy, which is the selection at random. We propose two such strategies in
Sect. 3.1, which we then test on a single classifier and on an ensemble of classifiers
in Sects. 3.2 and 3.3, respectively.

3.1 Active Strategies

In pool-based active learning [5], an active learner asks queries in the form of
unlabelled instances (taken from the pool) to be labeled by an oracle, and the
labeled instances are then moved to the learning set, with the aim that classifica-
tion accuracy will improve faster than with a random selection strategy. Several
query strategy frameworks have been proposed [5]. In particular, uncertainty
sampling for a classifier with probabilistic outputs selects the unlabelled pool
instance for which the classifier output has the greatest (Shannon) entropy.

Since our aim is to reduce the uncertainty represented by the quantity
mY

C,s({0, 1}) for any given test instance of score s ∈ S, a natural query strategy
is to select from a pool P = {sP

1 , . . . , sP
p } of unlabelled instances with classifier

outputs sP
k , k = 1, . . . , p, the instance s∗ ∈ P that has the greatest uncer-

tainty mY

C,s∗({0, 1}). We note that an uncertainty measure for a mass function
mY is the generalized Hartley measure [9], which evaluates its nonspecificity
and is defined as GH(mY) :=

∑
A⊆Y

mY(A) log2 |A|; if Y = {0, 1}, we have
GH(mY) = mY({0, 1}). Hence, this strategy is similar to that of uncertainty
sampling in active learning, except that it uses another uncertainty measure
(the generalized Hartley measure instead of the Shannon entropy), and may
thus be called Hartley Sampling (HS). It selects the instance s∗

HS ∈ P such that

s∗
HS = arg max

sP∈P
GH(mY

C,sP ). (4)

In addition to the HS strategy, we consider for comparison purposes another
query strategy, which is closer to uncertainty sampling of active learning: this
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second strategy, called Pignistic Sampling (PS), selects the instance s∗
PS ∈ P

whose associated pignistic probability distribution [10] denoted BetP (mY

C,s∗
PS

)
has the greatest (Shannon) entropy:

s∗
PS = arg max

sP∈P
H(BetP (mY

C,sP )), (5)

with H(P ) the Shannon entropy of probability distribution P . Note that since
uncertainty sampling is designed to improve accuracy, one might expect that PS
will improve accuracy, but it is not clear whether it will improve uncertainty.

Let us remark that the generalized Hartley measure and the Shannon entropy
of the pignistic transformation have previously shown their interest in improving
classification accuracy in the context of active classification [11].

3.2 Active Evidential Calibration of a Classifier with Binary
Outputs

The active strategies described in the previous section are first tested with
respect to a single classifier with binary outputs, i.e., S = {0, 1}, in which case
the classifier is calibrated using (2). The test is conducted using simulated data.

Specifically, let P (S = s, Y = y), s ∈ S, y ∈ Y, denote a given bivariate
Bernoulli distribution for the pair (S, Y ) of binary random variables S and Y ,
where S represents the classifier output and Y the true class. Such a distribution
is completely characterized by the marginal probabilities P (S = 1) and P (Y = 1)
and the covariance σ between S and Y [12].

In our experiment, we chose P (S = 1) = P (Y = 1) = 0.5 and considered
all possible joint distributions P (S = s, Y = y), s ∈ S, y ∈ Y, having those
marginals: these are all the distributions that are obtained by choosing σ ∈
[−0.25, 0.25], which is the range of possible values for σ given these marginals.

We drew randomly 106 samples in each of these joint distributions. We used
a 1000-fold cross-validation procedure over these samples: the samples are ran-
domly split into 1000 folds. Each fold (which contains 1000 samples) is in turn
considered as the test set, and the other folds are combined to obtain a dataset
which is randomly split into two parts: the first part composed of 10 instances
is used as initial training data set C for the evidential calibration of the classi-
fier, and the second part composed of the remaining instances acts as the pool.
The maximal number of queries for each query strategy (HS, PS and Random
Sampling (RS)) was set to 120. For each fold used as test set and for each
query strategy, we computed the average of the uncertainty, i.e., ignorance with
respect to the label after calibration, of the test instances as the number of
queries increases. Finally, we averaged these latter averages over the 1000 test
folds.

Figure 1 shows the performances in terms of uncertainty reduction achieved
by the active strategies HS and PS with respect to the passive one (RS) used as
reference. HS performs globally better than RS (up to 12% better) – it becomes
equivalent to RS when σ gets closer to 0 and the number of queries increases, as
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Fig. 1. Comparison of active strategies for a classifier with binary outputs.

well as when σ gets closer to −0.25 and 0.25, which are all extreme dependence
situations between S and Y . PS is beneficial with respect to RS for roughly the
same zones as HS, albeit to a slightly lesser extent, but clearly detrimental (up to
55% worse) as the number of queries increases and as we get closer to σ = 0.
Let us note that similar figures are obtained when other marginal probabilities
P (S = 1) and P (Y = 1) are used (the figures are then somewhat distorted
versions of the ones presented here).

3.3 Active Evidential Joint Calibration of Binary SVM Classifiers

The active strategies are now tested with respect to an ensemble of 3 SVM
classifiers (trained with the LIBSVM library), which are jointly calibrated using
the evidential multiple logistic regression described in Sect. 2.2. We used 6 binary
classification datasets from the UCI repository: Australian, Heart, Ionosphere,
Sonar, WDBC, Diabetes. Each dataset was randomly partitioned into 6 subsets:
3 subsets of 20 instances each to train each SVM, one subset of 100 instances
to act as test set (except for Sonar, for which we used only 50 test samples due
to its relatively small size), one subset of 10 instances to train the initial joint
calibration of the classifiers, one subset containing the remaining instances and
acting as the pool. Over the test set, we computed the average uncertainty of the
strategies RS, HS and PS, as well as their Brier score (mean squared error), which
is a standard performance (accuracy-like) measure for probabilistic calibration
methods [1,2] (to compute this score, we transformed the belief functions yielded
by the evidential calibration into probability distributions using the pignistic
transformation). We limited the number of queries to 20. The whole process
was repeated for 100 rounds of random partitioning, and the obtained results
were averaged over the rounds and then over the 6 datasets. These averages
are presented in Fig. 2. As in the previous experiment, HS is better than PS to
improve uncertainty, and this time PS is always better uncertainty-wise than
RS. In addition, HS is better with respect to the Brier score than PS, which in
turn improves upon RS. Overall, this experiment indicates that both strategies
HS and PS may improve the uncertainty as well as the Brier score in comparison
to RS, and that HS may be a better choice than PS.
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Fig. 2. Comparison of strategies HS (solid blue), PS (dash-dot red) and RS (dotted
green) for an ensemble of SVM classifiers. (Color figure online)

4 Conclusions

In this paper, the benefits of two active strategies with respect to reducing the
uncertainty (and also improving the performance) of the evidential calibration of
binary classifiers were investigated. Preliminary experiments showed that while
the Pignistic sampling strategy may be beneficial, it may be surpassed by Hartley
sampling. Future works include conducting more extensive experiments (with
other classifiers, datasets, calibration methods, training sets and pool sizes) to
refine these conclusions, finding theoretical explanations for them in the spirit of
those existing in active learning [5] and applying the approach to a driver state
detection system whose calibration data are costly.
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Abstract. Beliefs, preferences and constraints occur together in many
real world problems. However, reasoning with such intertwinement is
rather unexplored in the AI literature. In this paper, we introduce a
model whereby agents seek for decisions that satisfy their preferences
based on their beliefs subject to certain constraints by extending the
soft constraints framework to the belief function theory. Constraint-based
solving machinery are then adapted for solving such kind of problems.
A specific branch and bound algorithm is introduced.
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1 Introduction

Motivation. In our everyday tasks, decision-making stems from the interplay
of beliefs, preferences and constraints. In spite of its importance, such inter-
twinement is rather unexplored in the AI literature. In this paper, we propose
a BPC1 model whereby agents seek for decisions that satisfy their preferences
based on their beliefs subject to certain constraints. Under the assumptions
that the agents act with full external and internal information, beliefs are often
ignored or confounded with preferences. Far from being primitive, agents’ pref-
erences should depend on their beliefs about the properties and the outcomes of
the alternatives especially in those situations in which an agent may only have
partial information about alternatives, i.e., ill-defined alternatives. In addition,
even if information is available, it can be ambiguous, contradictory or exces-
sive. Thus, belief modeling separately from preferences is needed, so an agent
can express his hesitation. Accordingly, the notion of belief-based preference
is introduced. Once preferences are fixed, decisions can be inferred given the
constraints that determine which alternatives are feasible. The belief function

1 BPC stands for Beliefs, Preferences and Constraints.
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theory [4,10,11] offers a sound mathematical basis that faithfully recognizes all
our belief states. Moreover, by considering its Transferable Belief Model (TBM)
interpretation [11], we introduce a two-level preference perspective: the belief
base and the preference derived from it. Soft constraints [3], equipped with a
powerful solving machinery, provide an interesting way to model and reason with
quantitative preference relations and constraints. Our purpose in this paper is to
bring into sharper focus the interesting interplay between beliefs, preferences and
constraints by introducing an extended soft constraint formalism to the belief
function theory.

Related Work. While intertwined preferences and constraints is thoroughly
studied in the AI literature, beliefs and preferences are rarely considered except
some studies of the logic of preference [7,8] investigating preference dynamics
under belief change. To the best of our knowledge, in the constraint satisfac-
tion field, this work provides the first connection between the belief function
theory and soft constraints machinery. Nevertheless, a variety of proposals has
been introduced to extend soft constraints framework to deal with imperfect
preferences without referring to the imperfection origin. The work in [5] con-
siders incomplete soft constraint problems where some of the preferences may
be allowed to be missing as long as it is feasible to find an optimal solution,
otherwise, the agent will be required to add some preferences. In this work,
incompleteness is interpreted as temporary inability or unwillingness to provide
preferences over some alternatives. In our approach, we consider incompleteness
as a decisive undesirability to compare some alternatives with regard to the
available evidence, thus, we do not require the agent to supply further informa-
tion. Another proposal considers preference intervals [6] to model imprecision in
preference intensity. In our work, we assume that the preference intensities are,
precisely, stated. However, we permit ties in the preference list. Other work that
addresses uncertainty in soft constraints using the possibility theory is shown
in [9] where some alternatives may be ill-defined, i.e., one cannot decide their
values. In our work, we, thoroughly, address uncertainty in the case where the
alternatives may be ill-defined so the agent cannot express his preferences in the
form of “yes/no” but he could reply “I somewhat prefer this alternative”, i.e.,
preference intensity, or he may hesitate to express his hesitation by replying “I
am not sure”, or he may simply say “I do not know” to express his ignorance.

The remainder of this paper is organized as follows: Sect. 2 reviews some
preliminaries. We present the BPC model and its basic components in Sect. 3.
In Sect. 4, reasoning with preferences and constraints to construct solutions are
discussed and a specific branch and bound algorithm is introduced. Conclusions
and further researches are drawn in Sect. 5.

2 Preliminaries

2.1 Belief Function Theory

The belief function theory was first initiated by [4] and then extended by [10].
Several interpretations have been introduced such as the well known TBM
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established by [11]. Let Θ be a frame of discernment representing a finite set
of elementary alternatives. A basic belief assignment (bba) m is the mapping
from elements of the power set 2Θ to [0, 1] such that

∑
θ∈2Θ m(θ) = 1.

The basic belief mass (bbm) m(Θ), assigned to some subset θ of Θ, is a
positive finite amount of support that is derived from the available pieces of
evidence and exactly given to the set θ and not to any specific subset of θ by
lack of evidence. While constraining m(∅) = 0 corresponds to a closed-world
assumption [10], allowing m(∅) ≥ 0 corresponds to an open world assumption
[11] where the empty set bbm is considered as the internal conflict within an
individual bba [1].

Given a set of alternatives Θ and a given bba m, we want to establish an
ordering over Θ based on m. Many decision-making criteria have been developed
in the literature. We are interested in decision based on maximum of pignistic
probability (BetP) that offers a compromise between pessimistic and optimistic
strategies, where higher probability degree indicates more preferred alternative.
Hence, The bba m is reformed to a subjective probability measure BetP as
follows: BetP(A) = 1

1−m(∅)

∑
θ⊆Θ

|A∩θ|.m(θ)
|θ| ;∀A ∈ Θ.

2.2 Soft Constraints

Soft constraints framework, namely Semiring-based CSP (SCSP)[3] is a generic
framework to quantitative preferences covering many specific others. Given a
c-semiring S = 〈A,+,×, 0 , 1 〉, a finite set D , and an ordered set of variables V ,
a soft constraint is a pair 〈def , con〉 where con ⊆ V and def : D |con| −→ A. The
associated degree from A with each alternative indicates to which extent it is
preferred. The operations (+) and (×) are respectively used for comparing and
combining preference degrees in order to select the best solution. We refer the
reader to [2] for details.

3 Beliefs, Preferences and Constraints Model

A BPC model ℘ is a tuple (X ,D ,B − Pref ,Cons), involving a finite set of vari-
ables X , its associated finite domains D and a finite set of belief-based pref-
erences B − Pref . A belief-based preference b − pref is a belief-soft constraint
defined by the tuple (S ,A,B ,R), where, S ⊆ X is the scope of the preference
delimiting the set of variables That b − pref involves , A ⊆ D |S | is the set of the
alternatives on which the preference relation is established, B is the belief base
on A and R is the derived preference relation from B .

Example 1. Peter is buying an evening outfit (Dress-Shoes-Bag) for his wife
Alice on an e-commerce shop for their first wedding anniversary. The shop pro-
vides tailored recommendations to their costumers based on their belief-based
preferences and constraints. We have X = {Dr(dress),S (shoes),B(bag)} with
D(Dr) = {Db(black dress) $1000; Dr (red dress) $650}, D(S ) = {Sw (white shoes)
$300; Sr (red shoes) $185 }, D(B) = {Bb(black bag) $100; Br (red bag) $60}.
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Each item is associated with its equivalent price. As the outfit is for his wife, Peter
has some beliefs about his preferences. Due to budget constraints, Peter cannot
afford more than $1250 for the outfit.

3.1 Belief Modeling

Given the scope of the preference S and the related set of alternatives A, the
agent’s beliefs B over A are modeled in terms of a partial order � induced by
the bba m on {ai ∪ ∅} to [0,1], such that,

⋃k
(i=1) ai = A: � = {(θ1, θ2)|m(θ1) ≥

m(θ2)}. The instance θ1 � θ2 stands for “the betterness of θ1 is at least as
supported as the betterness of θ2”, � giving the evidence held by the agent is
reflexive, transitive and antisymmetric as its associated strict component � (“is
strictly supported to”) is irreflexive, transitive and asymmetric, its indifference
component ≡ (“is as supported as”) is reflexive, symmetric and composed of
(θ, θ) pairs only, and its associated incomparability relation �� (“is incomparable
to”) is irreflexive, not transitive and symmetric. In Example 1., The belief bases
of Peter is shown in Table 1.

Table 1. The belief bases induced from Example 1.

b − pref1 b − pref2 b − pref3

S {Dr} {Dr, S} {S, B}
A {Db, Dr} {(Db, Sw), (Db, Sr), {(Sw, Bb), (Sw, Br),

(Dr, Sw), (Dr, Sr)} (Sr, Bb), (Sr, Br)}
B Db:0.7 (Dr,Sw):0.6 (Sr, Bb):0.4

Dr:0.3 (Db,Sw),(Db,Sr):0.4 (Sw, Bb),(Sw, Br):0.3

(Dr,Sr):0 (Sr, Br):0.2

∅:0.1

� instances Db � Sr (Dr, Sw) �� (Db, Sw)
a (Sr, Bb) ≡ (Sr, Bb)

a (Dr, Sw) is incomparable to (Db, Sw)because we do not know the exact
associated bbm to (Db, Sw) as it is tied with (Db, Sr) by lack of evidence.

By means of our two-level preference approach, we have been able to capture
all the epistemic states of the agent towards his preferences: full knowledge
(e.g., well-informed agent); partial ignorance (e.g., b − pref2 in Table 1 where
some alternatives are tied); total ignorance if the only supported element is A;
hesitation where the agent may want to express his beliefs about his preferences
with some degree of hesitation (e.g., the bbm associated with the empty set in
b − pref3 ) instead of expressing his total ignorance; null support where the agent
has no evidence to believe that an alternative can be somehow good or bad.
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3.2 Preference Deriving

As the agent belief base is outlined, his preference relations are derived as a
total preorder �B induced by the BetP measures over A, the set of alternatives:
�B= {(a1, a2)|(BetP (a1) ≥ BetP (a2)}.

The relation �B is reflexive, complete and transitive. Given the belief-based
preference relation �B and two alternatives a1, a2 ∈ A, we distinguish between
two relations over a1 and a2:

– a1 is strictly preferred to a2, denoted by a1 �B a2, when a1 �B a2 holds but
a2 �B a1 does not. �B is irreflexive, transitive and asymmetric.

– a1 is indifferent to a2 denoted by a1 ≈B a2, when both a1 �B a2 and a2 �B a1

hold. ≈B is reflexive, transitive and symmetric.

The derived preference relations from belief bases in Example 1 are shown in
Table 2.

Table 2. The derived preference induced from Example 1.

b − pref1 b − pref2 b − pref3

R Db:0.7 (Dr, Sw):0.6 (Sr, Bb):0.44

Dr:0.3 (Db, Sw):0.2 (Sw, Bb):0.17

(Db, Sr):0.2 (Sw, Br):0.17

(Dr, Sr):0 (Sr, Br):0.22

�B instances Db �B Dr (Dr, Sw) �B (Dr, Sr) (Sw, Bb) ≈B (Sw, Br)

3.3 Constraints Modeling

Constraints represent limitations that winnow the set of alternatives we can opt
for in a given situation. In Example 1. Peter has one constraint c1(

∑
i=1..3 pi ≤

$1250), where p1, p2 and p3 are respectively the prices of the dress, the shoes and
the bag. Once preferences and constraints are given, decisions are determinative.

4 Reasoning with Preferences and Constraints

Let S be a set of variables, we will use the notation ωS to denote an outcome
resulting from assigning a value to each variable in S from its equivalent domain.
We will say that an outcome is complete iff it is defined on X , otherwise it
is said to be partial. Consider a b − prefi defined on the set of variables Si,
δ(i, ωSi

) = BetPi(ωSi
) will denote the satisfaction degree of b − prefi by some

outcome ωSi
∈ Ai. b − prefi is said to be satisfied by ωSi

, noted ωSi
|= b − prefi ,

iff δ(i, ωSi
) > 0. Solving a BPC problem consists in finding a complete outcome

ω∗
X , if it exists, that satisfies all the constraints in Cons and is optimal with

respect to the preferences in B − Pref .
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4.1 Operations on Preferences

Given a b − prefi defined on Si and some outcome ωS such that Si ⊆ S ⊆ X,
then δ(i, ωS) = δ(i, ω ↓S

Si
)2 will be the local satisfaction degree of b − prefi by

ωS . Hence, The global degree of joint satisfaction of the set of n belief-based
preferences B − Pref defined on the set of variables X by a given complete
outcome ωX is obtained by combining the local satisfaction degrees as follows:
δ(B − Pref, ωX) = ⊗δ(i, ωX) = ⊗δ(i, ω ↓X

Si
),∀i = 1..n.

Different combination operators ⊗ can be used that reflect various attitudes
towards preferences satisfaction such as Min, Max, Product and Average com-
binations. Due to limited space, we will only adopt the product combination
approach that offers more discriminating ordering than the Min and Max com-
binations and does not tolerate the falsification of any preference at variance
with the average combination.

Given a b − prefi defined on Si and some outcome ωS such that S ⊆ Si ⊆ X,
then the estimated satisfaction degree of b − prefi by ωS will be δe(i, ωS) =
Max{δ(i, ωSi

)|ωSi
∈ Ω

ω↑Si
S

}3.

4.2 Constructing Solutions

Given a BPC problem ℘(X ,D ,B − Pref ,Cons), every feasible complete outcome
with respect to Cons that jointly satisfies B − Pref to a global satisfaction degree
greater than 0 (whatever the used approach), is considered as a solution: ωX ∈
S(P ) ⇔ ωX |= Cons ∧ δ(B − Pref, ωX) > 0.

The global satisfaction degree induces a total preorder over the set of feasible
outcomes, so that the best outcome will be the one that, maximally, satisfies B-
Pref: ω∗

X = argmax
ωX∈S(P )

δ(B − Pref, ωX).

4.3 PDBB Algorithm

Commonly, when solving such constrained optimization problems, Branch and
Bound (BB) algorithm is the most widely used. It incrementally builds, by
assigning a variable with a value selected from its domain, outcomes prospected
to be solutions, where it early on aborts every partial outcome that cannot
be extended to construct a better solution than the one found so far using
some upper (B) and lower (b) bounds. At each level, instead of assigning one
variable with a value from its domain, we propose to assign multiple variables
with values from the preference relation covering those variables, hence, the
Preference-Directed BB (PDBB: see Algorithm 1). We illustrate, in Fig. 1, the

2 ω ↓S
Si
= ωSi = {(vi1, .., vim)|vik = vj if xik = xj} such that S = {x1, .., xl} and

Si = {xi1, .., xim}.
3 Ω

ω↑Si
S

is the set of outcomes resulted from the extension of ωS from S to Si.
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PDBB execution to solve the problem described in Example 1. in Sect. 3. In
Fig. 1, the outcomes having a red (X) are discarded because they are unfeasible,
however, the outcomes with green (X) are aborted because they cannot lead to
a better solution. For the Example 1, the best outfit for Peter’s wife is { Dress:
black; Shoes: red; Bag: red}.

Algorithm 1. PDBB Algorithm
input : (X, Rc, Cons, S, ωS , B, b)
/* Rc = {Ri| ⋃m

(i=1) Si = X} is minimal; S = ∅;ωS = ∅; B = 0; b = 1 */

output: (ω∗
X , B)

while Rc is not empty do
select and remove a relation Ri ∈ Rc ;
S ← S ∪ Si;
while Ai is not empty do

select and remove best a ∈ Ai;
ωS ← ωS ∪ a;
if ωS |= Cons then

Compute a lower bound b for ωS ;
/* b = δ(B − prefa, ωS) ⊗ δe(B − prefa, ωS) such that B-Prefa

is the set of preferences activated by the current

assignment and B-Prefa is the rest of B-Pref that are

not yet implied. */

if b > B then
if S = X then

B ← b;
ω∗

X ← ωS ;
Print (ω∗

X , B);
if B = 1 then

return “Finished”;

else
PDBB(X, Rc, Cons, S, ωS , B, b);

else
PDBB(X, Rc, Cons, S, ωS − a, B, b);

else
PDBB(X, Rc, Cons, S, ωS − a, B, b);
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Fig. 1. PDBB for the problem in Example 1.

5 Conclusion and Further Work

We have introduced a decision making model whereby agents seek for decisions
that satisfy their preferences based on their beliefs subject to certain constraints.
Due to space limit, we could not report the experimental results, however it was
proven that the PDBB is less costly than the classical BB w.r.t the number
of visited nodes. The outlined PDBB search could be improved by introduc-
ing heuristics for the order of checking the preferences. Further research targets
exploiting the expressiveness offered by the belief-based preferences model in
order to enlarge the scope of the issues that can be tackled such as priori-
tized preferences, preference change using the belief revision process. We can
also address the bipolar preferences exploiting the negative and positive belief
notions. We also intend to introduce the weak preference relation using thresh-
olds. Finally, we plan to explore how our model can be employed in decision
support applications like recommender systems and combinatorial auctions.
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Abstract. We study the problem of a vector space over R whose
Euclidean scalar product is unknown. From piece of evidence given by
certain experts, we are able to build suitable belief and plausibility func-
tions on the space of scalar products. We pay special attention to study
contradictions and degrees of conflict. As a possible application, for a
random variable of the vector space, we are able to get the related belief
and plausibility functions for its variance.

1 Introduction

There exist real situations where the problem is to determine a scalar product
which a vector space is endowed with. The first example is quite evident: the
calibration of several cameras (here calibration means obtaining the measure of
our Euclidean space in a fixed units -as meters-) (see, for instance, [10]). The
second example comes from the fact that any ellipse can be written as the ball
of unitary radius for an appropriate scalar product; regard that a wide variety of
statistical approaches have been considered in the literature for finding a suitable
ellipse (see [5] for instance and references therein). The third example comes from
investments. In this setting, some risks are modeled with several variables, where
the variances are interpreted as uncertainty (see [13] for instance). Regarding
such variables as (the coordinates of) a multivariate one, the scalar product of
the joint sample space determines the weights of such variables (see Sect. 4).
The last example is more theoretical. Recall that a copula determines the joint
probability distribution of two random variables in terms of their marginals.
Moreover, this copula summarizes the possible dependence between the variables.
When no precise information is available, a natural approach consists on getting
suitable bounds and/or considering stochastic orders (see, for instance, [8,9] or
[14] and references therein). We also refer to [2,6] for related questions (besides
[3,11,12], which are the main references).

For these geometric problems, we desire to get an appropriate approach from
the Dempster-Shafer theory. Then, our main objective is to develop that theory
in this direction.
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Our starting framework here is a finite-dimensional vector space V endowed
with an unknown scalar product. However, we assume that there exists a set of
experts which provide some partial information about the scalar product (see
next section).

We need an extra object which can serve to join evidence. That object is a
canonical, natural, geometrical order in our space of discernment.

By means of this order, we are able to consider a very wide class of evidence,
enlarging the class of information that experts can provide. This order will split
our problem into two main questions: (i) how big at most the real scalar product
is? and (ii) how small at least the real scalar product is?

In this setting, we find the focal sets. The problem is its complexity. We
are able to solve it in the following sense: it is possible to find unique scalar
products which bound from above and from below that focal sets (see Theorem
1 and compare with [1], for instance). We interpret them as the global consensual
measurements for any geometrical or statistical element.

This work is organized as follows: in Sect. 2, we set the finite-dimensional
space of discernment and the main mathematical tools related to the order.
Section 3 is aimed to consider all distinguished points as the Dempster-Shafer
theory provides. Finally, in Sect. 4, we get an important application for the study
of the variance of a random variable.

2 A Finite-Dimensional Space of Discernment Endowed
with an Order

Let V be an n-dimensional vector space over R. Recall that an Euclidean scalar
product is a non-degenerate positive-definite bilinear form g : V × V → R.
Though we can consider the space of Euclidean scalar products, we will take
instead a bigger space. We define

G := {g : bilinear form, g(x, x) ≥ 0,∀x ∈ V} .

That is, we allow to have null directions. This fact is motivated mainly by the
following reason: one expert may have a lack of information about measures
along a direction. Therefore, no extra charge of mathematics is needed to get a
suitable framework (see next section).

Clearly, G is a convex subset of the space of all bilinear forms of V, L (V,V).
Recall that L (V,V) has also a structure of a vector space over R. Latter, we
introduce a canonical order in G: we will say that g0 is bigger than g1, written
g0 ≥ g1, if g0(x, x) ≥ g1(x, x) for any x ∈ V. At the same time, we will say
that g1 is smaller than g0. The interpretation is clear: a measurement from g0
provides a value as least as it provides from g1. Particularly, if X is a random
variable of V, its variance is bigger (or equal) in (V, g0) than in (V, g1). This
order will play a fundamental role in our problem.

Without a doubt, the order ≥ is reflexive, antisymmetric and transitive.
However, it is not complete. To illustrate it, consider {e1, e2} a basis of a vector
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space V and take g0 and g1 defined by g0(e1, e1) = 1, g1(e1, e1) = 2, g0(e1, e2) =
g1(e1, e2) = 0, g0(e2, e2) = 2, g1(e2, e2) = 1. Then, neither g0 ≥ g1 nor g0 ≤ g1.

Assume that we are given a collection {gi}n
i=1, gi ∈ G. We could con-

sider the (non-linear) functionals ψ+
{g1,...,gn}(x, x) := max1≤i≤n gi(x, x) and

ψ−
{g1,...,gn}(x, x) := min1≤i≤n gi(x, x). The great advantage of consider these

functionals is to get more precise values for the different statistical parameters
(see Sect. 4). As disadvantages, none of them is a scalar product, and compu-
tations will be difficult. Consequently, we desire to find a scalar product bigger
(or smaller) than the gi with certain property of minimality (resp. maximality).
For these purposes, we introduce the following sets

G+ (g1, . . . , gn) := {g ∈ G : g ≥ gi,∀i ∈ 1, . . . , n} ,

G− (g1, . . . , gn) := {g ∈ G : g ≤ gi,∀i ∈ 1, . . . , n} .

That is, G+ (resp. G−) contains all the scalar products which are bigger (resp.
smaller) than any gi. Note that G+ is nonempty:

∑
i gi ∈ G+. The set G− is also

non-empty: the null scalar product 0g (defined by 0g(x, x) = 0, for any vector x)
belongs to G−. The main properties of these sets appear in the following result,

Lemma 1. Let {gi}n
i=1 be a finite collection of elements of G. Then,

(i) G+ (g1, . . . , gn) and G− (g1, . . . , gn) are convex sets.
(ii) G+ (g1, . . . , gn) = G if and only if g1 = . . . = gn = 0g.
(ii’) G− (g1, . . . , gn) = 0g if and only if there exists a basis {ej} of V such that

min1≤i≤n gi(ej , ej) = 0 for any j.
(iii) g ∈ G+ (g1, . . . , gn) if and only if g(x, x) ≥ ψ+

{g1,...,gn}(x, x) for any vector x.
(iii’) g ∈ G− (g1, . . . , gn) if and only if g(x, x) ≤ ψ−

{g1,...,gn}(x, x) for any vector x.
(iv) G+ (g1, . . . , gn) ⊆ G+ (g1, . . . , gn−1); and G+ (g1, . . . , gn) = G+(g1, . . . ,

gn−1) if and only if gn(x, x) ≤ ψ+
{g1,...,gn}(x, x) for any vector x. In partic-

ular, G+ (g1, . . . , gn) = G+ (g1, . . . , gn, 0g) = G+ (g1, . . . , gn, gn).
(iv’) G− (g1, . . . , gn) ⊆ G− (g1, . . . , gn−1); and G− (g1, . . . , gn) = G−(g1, . . . ,

gn−1) if and only if gn(x, x) ≥ ψ−
{g1,...,gn}(x, x) for any vector x. In partic-

ular, G− (g1, . . . , gn) = G− (g1, . . . , gn,
∑n

i=1 gi) = G− (g1, . . . , gn, gn).
(v) G+ (g1, . . . , gn) = G+ (g1, . . . , gl) ∩ G+ (gl+1, . . . , gn), 1 ≤ l < n.
(v’) G− (g1, . . . , gn) = G− (g1, . . . , gl) ∩ G− (gl+1, . . . , gn), 1 ≤ l < n.
(vi) For any permutation σ of {1, . . . , n}, G+ (g1, . . . , gn) = G+(gσ(1), . . . , gσ(n))

(idem for G−).
(vii) G+ (g1, . . . , gn) ∩ G− (g1, . . . , gn) = ∅ unless g1 = . . . = gn, in which case

G+ (g1, . . . , gn) ∩ G− (g1, . . . , gn) = {g1}.
We will say that g is an optimum scalar product in G+ if for any scalar

product g′ such that g′ ≤ g, g′ 
= g, it holds g′ /∈ G+. Analogously, we will
say that g is an optimum operator in G− if for any scalar product g′ such that
g′ ≥ g, g′ 
= g, it holds: g′ /∈ G−. An optimum scalar product of G+ will
provide a minimum of the upper bounds of a dispersive parameter; equivalently,
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an optimum scalar product of G− will provide a maximum of lowers bounds of
a dispersive parameter.

It is clear that uniqueness is of a great interest. The following result guaran-
tees this fact,

Theorem 1. There exists a unique optimum scalar product in G+ (g1, . . . , gn);
there exists a unique optimum scalar product in G− (g1, . . . , gn).

Proof (Sketch for first statement). Assume that there are two optimum scalar
products, ga, gb in G+ (g1, . . . , gn). By assumptions, neither g ≤ g′ nor g ≥ g′.
Endow V with ga as scalar product. Then there exists a ga-orthonormal basis
where the Gram’s matrix of gb is diagonal (gb is the identity matrix). Comparing
eigenvalues one arrives to a contradiction due to the fact that ga and gb are
optimum scalar products.

Then, given g1, . . . , gn, we denote by g+ and g− the optimum scalar product
in G+ and G−, respectively.

3 Setting Mass, Belief and Plausibility Functions

We need to establish what kind of information an expert shall provide. It seems
quite restrictive assuming that a expert gives a set of G where the real scalar
product can be. Note that the power set of the set of scalar products is too big
to be considered. Moreover, we would find serious problems when two different
experts provide disjointed sets. To avoid these problems, we split our problem
into two propositions: (i)(i)(i) how big at most the scalar product is? (ii)(ii)(ii) how small
at least the scalar product is? Then, we structure the original problem into the
knowledge of (i) and (ii). Observe that this framework is appropriate to simplify
complex information that an expert can give. In particular, reasoning as in the
proof of Theorem 1, it can be proved: if an expert gives a set of G as possible
scalar products, a maximal (and a minimal) scalar product can always be found
(that is, we can simplify that information into two scalar products; hence, we
find no loss of generality but precision in this framework).

Definition. A mass function for (i) (or for (ii)) is a finite collection of elements
of G endowed with a mass; that is, {(g1,m1), . . . , (gn,mn)}, gi ∈ G, mi ∈ (0, 1],
with

∑n
i=1 mi = 1. We will denote a mass function for (i) by M+, for (ii) by

M−, and jointly by (M+,M−).
The interpretation is clear: for (i), an expert shows a mass mi to be the

real scalar product smaller than gi. A similar interpretation is provided for (ii).
We will do computations for how big (resp. small) at most (resp. at least) is a
dispersive parameter taking into account uniquely the mass function(s) related to
(i) (resp. (ii)). Equivalently, we can present our conclusions in terms of intervals.
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The set G+(gi), gi ∈ M+ can be thought as a focal set1 -as named in
Dempster-Shafer theory. On the other hand, if the scalar products of M+ (resp.
M−) are totally ordered (i.e., we can write in any case g1 ≤ g2 ≤ . . . gn), we
would say that M+ (resp. M−) is consonant. This property simplify our study
cases.

Modeling Exact Information. An expert asserts that the real scalar product
is g if and only if her/his mass functions are M+ = {(g, 1)} and M+ = {(g, 1)}.

Modeling Lack of Information. If an expert has no information about (i),
he/she can provide M+ = {(0g, 1)}. Similarly, if an expert has no informa-
tion about (ii), he/she can provide the algebraic sum of the scalar products of
his/her partners; that is, M+ = {(

∑
n gn, 1)}, where any gn belongs to a mass

function for (ii) of a partner. Note that Lemma 1.(iv) − (iv′) assures that this
lack of information does not modify the computation of a scalar product which
all experts can agree on.

For (i), if an expert only knows how big the scalar product is when restricted
onto a closed subspace L, let us say g|L, via the inclusion map of L into V,
he/she can establish a scalar product of V: g|L +

∑
n gn, where any gn belongs

to a mass function for (i) of a partner. For (ii), a similar argument can be
applied. Again, the reason for these considerations is to provide suitable scalar
products on V which do not modify the information where there is a lack. Note
that this procedure can be applied even in the case of partial lack of information.
That is, if a lack appears only on an assignment with mass m, that information
should be considered as a scalar product making use of the previous procedure,
while the other assignments remain.

Contradictions. An expert can provide contradictory information. Let us
illustrate it. Consider that {e1} is a basis of V. An expert could establish
g0 : g0(e1, e1) = 1 with mass 1 for (i), and g1 : g1(e1, e1) = 2 for (ii). That
is, when asked how big at most the real scalar product is, he/she says a smaller
quantity than when asked how small it is. Observe that this kind of contradiction
cannot appear if we only take a framework for (i) or (ii) disjointedly.

To clarify the different kind of information that an expert can provide, we
propose the following classification: a mass function (M+,M−) is said to be
clear if the optimum for G+ is smaller than the optimum for G−; is said to be
contradictory when the optimum for G+ is greater than the optimum for G−;
otherwise, is said to be unclear. The terminology is obvious: when considering
a random variable of V, if the pair of mass functions is clear, we will obtain a
maximum value for a dispersive parameter which is bigger than its minimum; if
it is contradictory, it happens the opposite; and if it is unclear, any case could
occur.

Projecting. Let {e1, . . . , em} be a basis of a vector space V. Eventually, we
desire to study the projection onto a closed subspace L, let us say the linear
subspace generated by {e1, . . . , el}, l < m. If the original information is given

1 Analogously for G−(gj).
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by a scalar product g of V, we can consider its restriction onto L, g|L. Then, we
can operate intrinsically on L. Observe that projecting onto a closed subspace
represents a marginalization.

Finally, we are able to introduce a suitable Belief and Plausibility function,

Belief Function. Given a mass function for (i), M+ = {(g1,m1), . . . , (gn,mn)},
the total degree of evidence for A ≡ ‘the real scalar product is g as maximum’
is the total amount of evidence which implies A,

Bel+(A) :=
∑

i:gi≤g

mi.

Analogously, given a mass function for (ii), M−, we define Bel−(B), B ≡ ‘the
real scalar product is g as minimum’.

We have: Bel+(0g) = 0 (except in the pathological case gi = 0g for any i);
Bel−(0g) = 1; Bel+(g+) = 1, Bel−(g−) = 1.

Plausibility Function. Given a mass function for (i), M+, the total degree of
evidence which does not contradict A ≡ ‘the real scalar product g as maximum’ is

Pl+(g) :=
∑

gi:gi�g

mi.

Analogously we define Pl−(g) for (ii).
We have: Pl+(0g) = 0 (unless in the pathological case gi = 0g for any i);

Pl−(0g) = 1; Pl+(g+) = 1, Pl−(g−) = 1; Bel+(g) ≤ Pl+(g); Bel−(g) ≤ Pl−(g).
The interpretations are quite straightforward. For instance, Pl−(0g) = 1 is

equivalent to: the real scalar product g satisfies g(x, x) ≥ 0 for any vector x
with degree of belief 1.

Observe that the belief and plausibility functions defined above can be
extended to functions taking values on the Borel σ-algebra of G (recall that
G is finite-dimensional). However, we prefer to pay attention to it concisely in
another future work.

To close comments on these definitions, note that the negation of the propo-
sition A ≡ ‘the real scalar product is big at most g’ does not lie uniquely in M+,
but also in M−. For this reason, we refrain from mixing Bel+, Bel−, Pl+ and
Pl− -like the classical formula Pl(A) = 1 − Bel(A).

Combination Rule (see [7,16], for instance). Now, we assume there exist r
experts with mass functions

(M+
i ,M−

i

)
, 1 ≤ i ≤ r. Initially, we put a weight

for each expert.
Observe that, although any expert is clear in his/her mass functions, it may

exist a degree of conflict when all the information is mixed. We will say that
there exists no degree of conflict at all when g+ ≥ g−. This fact implies always,
directly, the existence of an interval I of R with the following property: all experts
coincide in the fact that the real value of a dispersive parameter belongs to I,
whatever the random variable is.
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Now, let us quantify the degree of conflict for two experts A and B with
equal weight,

2K =
∑

gi∈M+
a ;gj∈M−

b ;gi≤gj

ma
i (gi)ma

j (gj) +
∑

gi∈M−
a ;gj∈M+

b ;gi≥gj

ma
i (gi)ma

j (gj).

That is, it represents the total amount of belief that must be rejected if we desire
an agreement among A and B. The previous formula can be naturally extended
to the case of several experts endowed with certain weights.

Assuming that the weights are fixed, from the information provided by r
experts with mass functions

{(M+
i ,M−

i

)}r

i=1
, we can build a global mass func-

tion
(M+

T ,M−
T

)
. Summing up, g ∈ M+

T with mass m if there exist l ≥ 1
experts with weights αi such that each of them assigns mi (> 0) to g for (i)
and m =

∑l
i=1 αimi. Analogously for M−

T . At the end, we get an unique global
mass function, reducing the problem of several experts to only one.

4 An Application to Study Variance

Let X be a random variable of a vector space V. Then, its expected value -when
it exists-, E [X] does not depend on the scalar product of V. However, this fact is
not longer true for any dispersive parameter. In this setting, let V

∗ be the dual
vector space of V. Recall the symmetric covariance-variance bilinear form: C[X] :
V

∗ × V
∗ → R, C[X](x∗, y∗) = E [(x∗(X)) · (y∗(X))] − (E [x∗(X)]) · (E [y∗(X)]).

Only by means of a scalar product g, we can obtain its metric trace2, that is, its
variance. The variance of X is then Var [X] = trg C[X]. In a practical context,
this computation can be done in terms of matrices. Although we restrict ourselves
to the variance, this procedure can be applied to other parameters.

Following literature (see, for instance, [4,15]), we will understand as solution
for our original problem (i), a Belief function which assigns, to a non-negative
real x, the total amount of evidence for A ≡ ‘the variance is at most x’. That
is, given a finite set of experts with global mass functions M+

T ,

BEL (Var[X] ≤ x) :=
∑

i

mi(gi) |i : gi ∈ M+
T , trgi

C[X] ≤ x.

With obvious changes, we can write BEL+ (Var[X] < x) and BEL (Var[X] ≥ x).
The question now is how to write BEL (x0 ≤ Var[X] ≤ x1) assuming now that
we have

(M−
T ,M+

T

)
. By an equity axiom, we get,

BEL (x0 ≤ Var[X] ≤ x1) = 0.5 [BEL (Var[X] ≤ x1) + BEL (Var[X] ≥ x0)] .

For the case of plausibility, longer formulas can be written.

2 A non-negative scalar which is invariant under change of basis.
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Making use of Lemma 1: for a random variable X of a vector space V and a
finite set of experts,

BEL (x0 ≤ Var[X] ≤ x1) ≤ BEL (x2 ≤ Var[X] ≤ x3)

where x2 ≤ x0 ≤ x1 ≤ x3 and x1 ≤ x3.
To finish this work, let us observe that, when all the experts accord g to be

the real scalar product, then BEL (x0 ≤ Var[X] ≤ x1) = 1 if trg C[X] ∈ [x0, x1]
and 0 otherwise.
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Abstract. This paper aims to propose an Evolutionary version of Evi-
dential C-Mean (E2CM) clustering method based on a Variable string
length Artificial Bee Colony (VABC) algorithm. In the E2CM, the cen-
ters of clusters are encoded in form of a population of strings with vari-
able length to search optimal number of clusters as well as locations
of centers based on the VABC, by minimizing objective function non-
specificity, in which the assignment of objects to the population of cluster
centers are performed by the ECM. One significant merit of the E2CM
is that it can automatically create a credal partition without requiring
the number of clusters as a priority. A numerical example is used to
intuitively verify our conclusions.

Keywords: Dempster-Shafer theory · Belief functions
Evidential clustering · Swarm intelligent algorithm

1 Introduction

Evidential clustering describes uncertainty in the membership of objects to clus-
ters using a Dempster-Shafer mass functions [11]. Roughly speaking, a mass
function can be seen as a collection of sets with corresponding masses. A collec-
tion of such mass functions for n objects is called a credal partition. In recent
decade, evidential clustering shows its powerful ability to reveal data structure
and attracts more and more attentions in artificial intelligent societies [2].

In [5], an evidential clustering algorithm called EVCLUS was first proposed to
deal with partition of relational data. After this, Masson and Denoeux proposed
an evidential version of Fuzzy C-Mean clustering algorithm, called Evidential
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C-Means (ECM), for attribute data in [9] and relational data in [10]. In prac-
tice, there usually exist must-link and/or cannot-link pairwise constraints among
objects. To solve this problem, a constrained version of ECM (CECM) was pro-
posed consequently in [1]. Notice that in either the ECM or CECM, the strategy
to derive the barycenters sometimes leads to uninformative composite clusters.
To overcome this drawback, Liu et al. proposed respectively a Belief and Credal
C-Means clustering algorithm [7,8] by redefining the distance between an object
and prototype of a meta-cluster.

However, all the aforementioned evidential clustering requires the number of
clusters as a priority. Furthermore, the locations of centers are found by mini-
mizing a cost function based on an alternate optimization algorithm. In a more
recent work [3], Denoeux and Kanjanatarakul proposed a new evidential clus-
tering method, called EK-NNclus, based on the Evidential k -nearest neighbor
(EK-NN) classification rule [4]. The EK-NNclus can automatically determine
the number of clusters without requiring any priori. Nevertheless, in contrast to
other evidential clusterings, EK-NNclus creates a credal partition consisting of
only singletons and the whole frame of discernment. Therefore, it is interesting
to propose a new evidential clustering that can create a credal partition with
more or full focal sets and without requiring the number of clusters as priori.

Motivating from above considerations, this paper aims to propose an Evolu-
tionary version of ECM algorithm (E2CM) based on an evolutionary algorithm
rather than an alternate optimization algorithm, i.e., the Variable string length
Artificial Bee Colony (VABC) algorithm proposed in our previous work [12]. It
will be interestingly seen that the proposed E2CM algorithm can automatically
create a credal partition consisting of full focal sets without requiring as prior
the number of clusters.

The rest of the paper is organized as follows. In the Sect. 2, the ECM algo-
rithm is briefly recalled. Section 3 introduces the E2CM algorithm. The perfor-
mance of E2CM is briefly validated by an numerical example in Sect. 4. The last
section concludes the paper.

2 Background: Evidential C-Mean Clustering

We suggest that readers are familiar with some basic concepts of theory of belief
functions [11] by considering the length of paper.

For a given dataset X = {x1, x2, ..., xn}′ ∈ Rn×p and a class of clusters Ω =
{ω1, ω2, · · · , ωc}, deriving a credal partition M = {m1,m2, · · · ,mn}′ ∈ Rn×2c

from X implies determining the quantities mΩ
ij = mΩ

i (Aj), Aj ⊆ Ω for each
object xi in such a way that mΩ

ij is high (respectively, low) when the distance
dij between xi and the focal set Aj is small (respectively, large). Suppose that
each cluster ωk is represented by prototype vk ∈ Rp. The barycenter for the
nonempty composite cluster (i.e., focal set) Aj can be defined as

v̄j = |Aj |−1
∑c

k=1
skjvk, (1)
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where skj = 1 if ωk ∈ Aj , skj = 0 otherwise; | · | denotes the cardinality of a
set or a string/sequence. Hence, the Euclidean distance dij can be calculated
by d2ij = ‖xi − v̄j‖2. ECM proposes to create the credal partition M and the
cluster center matrix V = {v1, v2, ..., vc}′ ∈ Rc×p by minimizing

JECM (M,V) =
∑n

i=1

∑
j:∅�=Aj⊆Ω

|Aj |αmβ
ijd

2
ij +

∑n

i=1
δ2mβ

i∅, (2)

s.t.
∑

j:∅�=Aj⊆Ω
mij + mi∅ = 1 ∀i = 1, 2, · · · , n, (3)

where mi∅ denotes the mass allocated to the empty set for object xi; the weight-
ing coefficient α aims at penalizing focal sets with high cardinality; the exponent
β controls the fuzziness of the partition, and distance δ2 controls the number of
objects that assumed to be outliers.

With fixed V, the masses in M can be obtained for i = 1, 2, · · · , n, j : ∅ �=
Aj ⊆ Ω as ⎧

⎨

⎩
mij =

|Aj |−α/(β−1)d
−2/(β−1)
ij

∑
Ak �=∅ |Ak|−α/(β−1)d

−2/(β−1)
ik +δ−2/(β−1)

,

mi∅ = 1 − ∑
Ak �=∅ mik.

(4)

Once the credal partition is fixed, the cluster centers matric V can be updated
by solving the following equality

HV = B, (5)

with two matrices Bc×p and Hc×c defined by Blq =
∑n

i=1 xiq

∑
ωl∈Aj

|Aj |α−1mβ
ij ,

Hlk =
∑n

i=1

∑
ωl,ωk⊆Aj

|Aj |α−2mβ
ij , l, k = 1, 2, · · · , c, q = 1, 2, · · · , , p.

Finally, a validity index is needed to determine a suitable number of clusters.
The non-specificity is such a popular choice defined by

N(c,M) =
1

n log2(c)
×

n∑

i=1

⎡

⎣
∑

j:∅�=Aj⊆Ω

mi(Aj) log2 |Aj | + mi∅ log2(c)

⎤

⎦ . (6)

3 Evolutionary Evidential C-Means Clustering

3.1 Motivations and the Basic Idea

The VABC is a generalized variant of the Artificial Bee Colony algorithm (ABC)
[6] with variable length of genotypes. In the VABC, each solution to the problem
under consideration is called a food source and represented by a real-valued string
with variable length. This variable length of representation allows to find number
of and locations of genotypes simultaneously. As the ABC, VABC algorithm
classifies the foraging artificial bees into three groups, namely, employed bees,
onlookers and scouts. A bee that is currently exploiting a food source is called
an employed bee. A bee waiting in the hive for making decision to choose a food
source is named as an onlooker. A bee carrying out a random search for a new
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food source is called a scout. The fitness of a solution corresponds to the nectar
amount of this food source, and therefore the highest fitness induces optimal
solution(s). The VABC is an iterative process, starting with a population of
randomly generated solutions or food sources, and repeats following four steps:

1. Send the employed bees onto the food sources and then measure their nectar
amounts (i.e., the fitness).

2. Select the food sources by the onlookers after sharing the information of
employed bees and determine the nectar amount of the food sources.

3. Determine the scout bees and send them onto the possible food sources.
4. Perform mutation operations on food sources to guarantee convergency.

With above interpretations in mind, the ECM can be viewed as an optimiza-
tion problem aiming to find a suitable number and locations of genotypes as well
as assignments of data objects to these genotypes, by minimizing non-specificity
instead (rather than (2)). This motives us to solve such optimization problem
via the VABC algorithm, and thus to propose an evolutionary version of ECM.

The basic idea of E2CM is interpreted as follows. A population of strings (i.e.,
food sources) with variable length are randomly initialized to represent possible
number of clusters and locations of centers among data objects. By taking a
p−dimensional clustering task as an example, a string Si = {vi′

1 , vi′
2 , · · · , vi′

c } ∈
R1×cp indicates number c of clusters locating respectively at centers vi

k ∈ Rp, k =
1, 2, · · · , c. For each string in the population, a credal partition can then be
created by the ECM algorithm (i.e., according to the (4)). Therefore, a set of
credal partitions can be derived. Each credal partition is evaluated according
to the non-specificity (6). The strings minimizing the non-specificity will be
considered as the optimal solutions in the current iteration, and all strings will
forage and mutate to search the better objective in the coming iterations. The
E2CM will be terminated when meeting some terminations, and outputs the
optimal string(s) including optimal number of clusters and locations of centers
as well as corresponding credal partition.

3.2 Realization of the E2CM

Given an upper bound for the number of clusters, i.e., Cmax, a population of N
strings/food sources, representing the possible number of clusters and locations
of centers, are initialized according to

Sij = Sj + rand[0, 1] × (S̄j − Sj), i = 1, 2, · · · , N, j ∈ {1, 2, · · · , Li}, (7)

where Sij is the jth dimension of string Si, and Sj and S̄j are respectively the
lower and upper bounds of the jth attribute of Si; rand[0, 1] denotes a uniform
random number in the range [0, 1]; Li, the length of string Si, is defined as Li :=
p × [round (rand [0, 1] × (Cmax − 2)) + 2] with a function round(·) rounding a
number to its nearest integer.

Note that each food source Si can be decoded into number Li/p of cluster
centers Vi = {vi

1, v
i
2, · · · , vi

Li/p}′. Therefore, the jth dimension of Si is exactly
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the rth dimensional space of objects xi, where r is the remainder of division
j
p if remainder exists, r := p otherwise. We have Sj := min1≤i≤n{xij} and
S̄j := max1≤i≤n{xij}. Furthermore, for a given Vi, a credal partition Mi can
be derived according to (4). Then, the nectar amount of food source Si can be
evaluated by

fiti = 1/Objective(Si), (8)

where Objective(Si) := N(Li/p,Mi) is the objective function of E2CM.
On the employed bee stage, the employed bees foraging on food sources Si

are first to search candidate new food source positions from precious ones in
order to achieve more nectar amounts according to

Snew
ij = Sij + ∅ij(Sij − Skq), (9)

where k ∈ {1, 2, · · · , N} and k �= i; ∅ij is a uniformly random number in [−1, 1];
j and q denote resp. the jth and qth dimension of Si and Sk. If Lk ≥ Li, integer
j is randomly generated in [1, Li] and then is assigned to q, i.e., q = j; otherwise,
it can first randomly generate the integer q in [1, Lq] and then set j = q.

On the onlooker stage, by sharing information (e.g., fitness of food sources)
with employed bees, onlookers then begin to explore new food sources according
to (9) in the neighborhood of food sources selected. Whether a food source can
be selected or not depends upon the following probability

pi = fiti/
∑n

i=1
fiti. (10)

Obviously, the higher fitness fiti is, the more probability the food source Si can
be selected by an onlooker.

On the scout stage, the food source whose nectar is abandoned by the
employed and/or onlooker bees is replaced with a new food source by the scouts.
This is simulated by randomly producing a food source position according to (7)
and replacing it with the abandoned one. In addition, if a food source position
cannot be improved further through a predetermined number of cycles denoted
by limit, then that food source is assumed to be abandoned.

Finally, to guarantee convergency of the length of strings (i.e., food sources),
some mutation operations are defined as follows:

– If the length of a string is equal to that of the string holding the best fitness,
not any mutation operation will be required.

– If the length of a string is longer than that of the string holding the best fit-
ness, a sequence of successive p dimensions are randomly selected and removed
from the string; otherwise, one object in X is randomly selected and added
at the end of the string.

The probability to perform mutations on a string is defined as

pm
i =

{
k1

fitmax−fiti

fitmax−fitavg
, iffiti > fitavg,

k2, otherwise,
(11)
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where k1 and k2 are positive constants and both are set to 0.5; fitmax and fitavg

are respectively the maximum and average fitness values of the population of all
food sources. Note that, the higher pm

i is (e.g., than a given threshold P0), more
opportunity the mutation operation will be performed on Si.

According to above interpretations, the E2CM is summarized as follows.

Algorithm 1. E2CM clustering algorithm
Input: N, Cmax, P0, α, β, δ, limit, termination threshold itermax, and

data objects {xi ∈ Rp, i = 1, 2, · · · , n}.
Output: centers in form of Sbest and associated credal partition M.
Encode a population of possible cluster centers Si according to (7);
iterations = 0, limiti = 0;
while iterations < itermax do

for i=1 to N do % Employed bee stage
Decode food sources Si and calculate Mi according to (4);
Evaluate fitness fiti for Si according to (8);
Update food sources Si by (9) and revaluate their fitnewi ;
If fitnewi > fiti, then limiti ← 0, else limiti ← limiti + 1;

for i=1 to N do % Onlooker bee stage
Calculate probabilities pi for the updated Si using (10);
if rand[0, 1] < pi then

Explore new ones from Si by (9) and revaluate
fitnewi ;

If fitnewi > fiti, then limiti ← 0, else limiti ← limiti + 1;
for i=1 to N do % Scout bee Stage

if limiti > limit then
Initialize Si by (7) and reset limiti = 0;

for i=1 to N do % Mutation stage
Calculate probabilities pmi for Si by (11);
if pmi > P0 then

Perform mutation operations on Si;

Record the best string/solution as Sbest achieving the highest fitness;
iterations = iterations + 1;

Using notations in Algorithm 1, the time complexity of E2CM is analyzed
as follows. At each iteration, the time complexity on the employed bee stage is
smaller than O(2CmaxN + N log N), and is about O(N log N) on the onlooker
stage the scout stage and mutation operations consumes computation O(NCmax)
and O(N), respectively. Therefore, the total time complexity is about O(itermax ·
N · (2Cmax + log N)).

4 An Numerical Example

In this section, just an numerical example is used to intuitively verify the per-
formance of E2CM due to the restriction on the length of paper.
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Fig. 1. The objective function (a) and number of clusters (b) corresponding to the best
string(s)/solution(s) in each iteration via the E2CM for the four-class dataset

The numerical example considers the four-class dataset [9], consisting of
equal size 100 data objects in each class. Given itermax = 100, N = 100, Cmax =
6, P0 = 0.4, limit = 50, α = 2, β = 2 and δ2 = 20. Some experimental results in
one study case are presented in Figs. 1 and 2.
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Fig. 2. Contours of credal partition for the four-class dataset via the E2CM where
symbol “+” indicates locations of cluster centers and ωjk means {ωj , ωk}
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From Fig. 1a, we can see that the E2CM converges to the minimal non-
specificity, and the number of clusters finally evolves to the optimal one, i.e.,
the four, as shown in Fig. 1b. This verifies that the optimal number of clusters
as well as locations of centers can be found by the E2CM without knowing any
priori on the cluster centers. Furthermore, E2CM reveals the data structure in
a more meaningful way than hard and fuzzy partitions, as shown in Fig. 2

5 Conclusion

This paper proposes an Evolutionary version of Evidential C-Mean (E2CM)
based on a Variable string length Artificial Bee Colony (VABC) algorithm. The
E2CM algorithm can simultaneously find optimal number of clusters as well as
locations of centers without requiring the number of clusters as priori. Further-
more, as the ECM, the E2CM can also derive a credal partition with ability to
reveal data structure in a more meaningful way than classic partitional cluster-
ings. A numerical example is used to show the performance of E2CM.

Some practical issues as well as more simulations did not be presented and
will be discussed in near future. Furthermore, there are some further works. The
first one is to extend the E2CM to deal with instance constraints. The second one
is to consider more than one objective functions by the E2CM so as to achieve
much more appropriate performance.

References

1. Antoine, V., Quost, B., Masson, M.-H., Denoeux, T.: CECM: constrained evidential
C-Means algorithm. Comput. Stat. Data Anal. 56(4), 894–914 (2012)

2. Denoeux, T., Kanjanatarakul, O.: Evidential clustering: a review. In: 5th Interna-
tional Symposium on Integrated Uncertainty in Knowledge Modelling and Decision
Making (IUKM), Da Nang, 2 December 2016, pp. 24–35 (2016)

3. Denoeux, T., Kanjanatarakul, O., Sriboonchitta, S.: EK-NNclus: a clustering pro-
cedure based on the evidential K-nearest neighbor rule. Knowl. Based Syst. 88,
57–69 (2015)

4. Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)

5. Denoeux, T., Masson, M.-H.: EVCLUS: evidential clustering of proximity data.
IEEE Trans. Syst. Man Cybern. Part B 34, 95–109 (2004)

6. Karaboga, D., Basturk, B.: On the performance of Artificial Bee Colony (ABC)
algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

7. Liu, Z.-G., Dezert, J., Mercier, G., Pan, Q.: Belief C-Means: an extension of fuzzy
C-Means algorithm in belief functions framework. Pattern Recogn. Lett. 33(3),
291–300 (2012)

8. Liu, Z.-G., Pan, Q., Dezert, J., Mercier, G.: Credal C-Means clustering method
based on belief functions. Knowl. Based Syst. 74(1), 119–132 (2015)

9. Masson, M.-H., Denoeux, T.: ECM: an evidential version of the fuzzy C-Means
algorithm. Pattern Recogn. 41(4), 1384–1397 (2008)

10. Masson, M.-H., Denoeux, T.: RECM: relational evidential C-Means algorithm.
Pattern Recogn. Lett. 30(11), 1015–1026 (2009)



242 Z. Su et al.

11. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

12. Su, Z.-G., Wang, P.-H., Shen, J.: Automatic fuzzy partition approach using Vari-
able string length Artificial Bee Colony (VABC) algorithm. Appl. Soft Comput.
12(11), 3421–3441 (2012)



Contrasting Two Laws of Large Numbers
from Possibility Theory

and Imprecise Probability

Pedro Terán(B) and Elisa Pis Vigil

Departamento de Estad́ıstica e I.O. y D.M., Universidad de Oviedo, Oviedo, Spain
teranpedro@uniovi.es, epis1@alumno.uned.es

Abstract. The law of large numbers for coherent lower previsions
(specifically, Choquet integrals against belief measures) can be applied
to possibility measures, yielding that sample averages are asymptotically
confined in a compact interval. This interval differs from the one appear-
ing in the law of large numbers from possibility theory. In order to under-
stand this phenomenon, we undertake an in-depth study of the compat-
ibility of the assumptions in those results. It turns out that, although
there is no incompatibility between their conclusions, their assumptions
can only be simultaneously satisfied if the possibility distributions of the
variables are 0–1 valued.

1 The Problem

This contribution is part of a systematic analysis of the relationships between
the laws of large numbers in different uncertainty frameworks (plausibility/belief
measures, upper/lower probabilities, upper/lower previsions, sublinear expecta-
tions) in the particular case that they are applied to possibility measures. The
main part of that analysis is [13].

In [11, Theorem 2.6], the first author obtained the following law of large
numbers for possibilistic variables.

Theorem 1. Let X be a bounded variable in a possibility space (Ω,A,Π) such
that the possibility distribution πX of X is upper semicontinuous. Let {Xn}n be
a sequence of variables such that

(i) Xn are product related,
(ii) Xn are identically distributed as X.

Then, for any fixed ε > 0,

N

(
M[X] − ε < n−1

n∑
i=1

Xi < M[X] + ε

)
→ 1.
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Here A is a σ-algebra, Π : A → [0, 1] a possibility measure with N its dual
necessity measure, πX is given by πX(x) = Π(X = x), and M[X],M[X] are the
infimum and supremum, respectively, of the 1-cut of πX . The requirement that
Xn are product related means

Π(X1 = x1, . . . , Xn = xn) = Π(X1 = x1) . . . Π(Xn = xn)

for all n ∈ N and xi ∈ R. Indeed, Theorem 1 in its original presentation also
considers the more general situation that the product is generalized to a contin-
uous Archimedean triangular norm. This law of large numbers is in line with
previous results in the literature of possibility measures [5,6,8,10]. However, it
must be compared to the law of large numbers of De Cooman and Miranda [2,
Theorem 2] developed in the context of coherent lower previsions as a general-
ization of the law of large numbers for belief measures [7] (see also [9]) in which
a similar limit interval appears but involves Choquet integrals instead. For more
information on Choquet integrals and lower previsions, the reader is referred to
Denneberg and Walley’s books, respectively [3,14].

Indeed, by observing that the Choquet integral against a necessity measure
is a coherent lower prevision, and also rewriting their result in a way closer to
Theorem 1 for ease of comparison, we obtain the following.

Theorem 2 (De Cooman and Miranda). Let X be a bounded variable in a pos-
sibility space (Ω,P(Ω),Π). Let {Xn}n be a sequence of variables such that

(i’) (X1, . . . , Xn) is forward factorizing for the Choquet integral EN , for each
n ∈ N,

(ii’) Xn are uniformly bounded and such that EN [Xn] = EN [X] and EΠ [Xn] =
EΠ [X] for all n ∈ N.

Then, for any fixed ε > 0,

N

(
EN [X] − ε < n−1

n∑
i=1

Xi < EΠ [X] + ε

)
→ 1.

We emphasize that this version is weaker than [2, Theorem 2] in several
respects, but will be better suited to our purpose. In it, EN and EΠ denote
the Choquet integrals with respect to N and Π, respectively. Condition (ii’)
is obviously satisfied if Xn are identically distributed as X, i.e. if (ii) holds.
The restriction to the σ-algebra of parts P(Ω) is inessential. Therefore, the
substantial difference in the assumptions is condition (i’) of forward factorization,
namely the property that

EN [g(X1, . . . , Xn−1)(h(Xn) − EN [h(Xn)])] ≥ 0 (1)

for all n ∈ N and bounded functions g : Rn−1 → [0,∞) and h : R → R.
Condition (i’) is rather different from condition (i), and any relationship

between them is not obviously visible. In this communication, we aim at clarify-
ing their relationships or lack thereof, in view of the fact that different conclusions
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appear in Theorems 1 and 2. Both results claim that the averages n−1
∑n

i=1 Xi

tend to be asymptotically confined inside a compact interval, but each yields
a different interval: [M[X],M[X]] in Theorem 1 and [EN [X], EΠ [X]] in
Theorem 2.

There are three important remarks to be made. Firstly, both intervals have
a special significance in fuzzy and possibility theory, making their study par-
ticularly relevant. Indeed, if the possibility distribution πX is a fuzzy interval
then [M[X],M[X]] is its core and [EN [X], EΠ [X]] is its mean value in the sense
of Dubois and Prade [4] (as follows immediately from the fact that EN [X] and
EΠ [X] are the infimum and the supremum of all expectations of X against
probability measures dominated by Π, see [1, Lemma A.2] or [12, Proposition
3.5]).

Secondly, there is no incompatibility between both conclusions, since it is
always the case that [M[X],M[X]] ⊂ [EN [X], EΠ [X]]. Therefore the task of
contrasting (i) and (i’) is not a trivial one.

And thirdly, it may happen that [EN [X], EΠ [X]] is significantly larger than
[M[X],M[X]], which is reduced to a point if there is a unique point x ∈ R such
that Π(X = x) = 1.

We will proceed by analyzing a specific type of function depending on two
events, which eventually leads to 625 systems of equations and inequations, at
least one of which must be satisfied if (i,i’) hold simultaneously. Patient work
reduces those systems to 14, which are finally shown to have solutions only under
restrictive conditions, yielding the result stated in the abstract (see Corollary 5
below).

2 Forward Factorization and Product Relatedness

In this section we will prove that conditions (i) and (i’) are compatible only under
very special circumstances. To that end it is enough to consider the situation of
a couple of variables X,Y instead of a whole sequence.

Our first result shows that certain functions of X and Y must have Choquet
integrals of opposite signs under those conditions. Below, IA and IB denote the
indicator functions of events A,B. We also use the notation ∨ for the maximum.

Proposition 3. Let X,Y be bounded variables in a possibility space
(Ω,P(Ω),Π). Then, for any A,B ⊂ Ω,

(a) If (X,Y ) is forward factorizing for the Choquet integral EN , then

EN [IA(X)(IB(Y ) − N(Y ∈ B))] ≥ 0.

(b) If X and Y are product related, then

EN [IA(X)(IB(Y ) − N(Y ∈ B))] ≤ 0.
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Proof. Part (a) follows directly from (1), taking g = IA and h = IB and
observing

EN [IB(Y )] = EN [I{Y ∈B}] = N(Y ∈ B).

As regards part (b), set

κ = EN [IA(X)(IB(Y ) − N(Y ∈ B))]

and the variable

Z =

⎧⎪⎨
⎪⎩

1, X ∈ A, Y ∈ B

N(Y ∈ B), X 	∈A

0, X ∈ A, Y 	∈B.

Now we work towards expressing κ in terms of possibilities:

κ = EN [IA(X)IB(Y ) + N(Y ∈ B)IAc(X) − N(Y ∈ B)]
= EN [Z] − N(Y ∈ B)
= N(Y ∈ B)N({X ∈ A, Y ∈ B} ∪ {X 	∈A})

+ (1 − N(Y ∈ B))N(X ∈ A, Y ∈ B) − N(Y ∈ B)
= N(Y ∈ B)N({X ∈ A, Y ∈ Bc}c)

+ (1 − N(Y ∈ B))N(X ∈ A, Y ∈ B) − N(Y ∈ B)
= −N(Y ∈ B)(1 − N({X ∈ A, Y ∈ Bc}c))

+ (1 − N(Y ∈ B))N(X ∈ A, Y ∈ B)
= − (1 − Π(Y ∈ Bc))Π(X ∈ A, Y ∈ Bc)

+Π(Y ∈ Bc)(1 − Π({X ∈ A, Y ∈ B}c)).

Let a, b, c, d be the possibilities of the events involved as summarized in the
following table:

With that notation,

κ = −(1 − (b ∨ d)) · b + (b ∨ d)(1 − (b ∨ c ∨ d)).

Since X and Y are product related,

b = Π(X ∈ A, Y ∈ Bc) = sup
x∈A,y∈Bc

Π(X = x, Y = y)

= sup
x∈A,y∈Bc

πX(x)πY (y) = Π(X ∈ A)Π(Y ∈ Bc) = (a ∨ b)(b ∨ d),

whence

κ = − (1 − (b ∨ d)) · (a ∨ b) · (b ∨ d) + (b ∨ d)(1 − (b ∨ c ∨ d))
=(b ∨ d)[1 − (b ∨ c ∨ d) − (1 − (b ∨ d))(a ∨ b)].

(2)
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Observing
1 = Π(Ω) = a ∨ b ∨ c ∨ d,

there are two possibilities:
CASE 1. If a = 1, then

κ = (b ∨ d)[(b ∨ d) − (b ∨ c ∨ d)] ≤ 0.

CASE 2. If b ∨ c ∨ d = 1, then

κ = −(b ∨ d)(1 − (b ∨ d))(a ∨ b) ≤ 0.

Hence κ ≤ 0 and the proof is complete. �

It is clear from Proposition 3 that forward factorization and product related-
ness can occur simultaneously only if, in the notation of its proof, κ = 0. That
has definite consequences for the possible distributions of X and Y , as our main
result shows that at least one of them must be uniform, i.e. there is a set A such
that πX = IA or πY = IA.

Theorem 4. Let X and Y be bounded variables in a possibility space
(Ω,P(Ω),Π). Conditions

(I) (X,Y ) is forward factorizing for the Choquet integral EN

(II) X and Y are product related

cannot be simultaneously met unless at least one of the variables is uniform.

Proof. Let A,B ⊆ R. By Proposition 3, if both (I) and (II) hold then it must be

EN [IA(X)(IB(Y ) − N(Y ∈ B)] = 0

and therefore for a, b, c, d in the notation of (2) we have

(b ∨ d)[1 − (b ∨ c ∨ d) − (1 − (b ∨ d))(a ∨ b)] = 0, (3)

whence
b ∨ d = 0 (i.e. b = d = 0)

or
1 − (b ∨ c ∨ d) = (1 − (b ∨ d))(a ∨ b).

Since a ∨ b ∨ c ∨ d = 1, there are 3 possibilities for the latter equation:

. If a = 1, it becomes 1 − (b ∨ c ∨ d) = 1 − (b ∨ d) i.e. c ≤ b ∨ d.

. If b = 1 or d = 1, then it always holds.

. If c = 1, it becomes 0 = (1 − (b ∨ d))(a ∨ b), whence b ∨ d = 1 or a = b = 0.
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The solution c = 1, b∨d = 1 is already included in either case b = 1 or d = 1,
whence (3) is rewritten as

b = d = 0 or a = 1, c ≤ b ∨ d or b = 1
or c = 1, a = b = 0 or d = 1.

(4)

The same reasoning applies to the pairs of events (Ac, B), (A,Bc) and
(Ac, Bc), from which the analogous conditions

d = b = 0 or c = 1, a ≤ d ∨ b or d = 1
or a = 1, c = d = 0 or b = 1;

(5)

a = c = 0 or b = 1, d ≤ a ∨ c or a = 1
or d = 1, b = a = 0 or c = 1;

(6)

c = a = 0 or d = 1, b ≤ c ∨ a or c = 1
or b = 1, d = c = 0 or a = 1.

(7)

are derived. Thus conditions (4) through (7) might simultaneously be satisfied
in 54 = 625 different ways. Since a, b, c, d come from a possibility measure we
have the restrictions

0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, a ∨ b ∨ c ∨ d = 1 (8)

as well as, by the product relatedness,

a = (a ∨ b)(a ∨ c), b = (a ∨ b)(b ∨ d),
c = (a ∨ c)(c ∨ d), d = (b ∨ d)(c ∨ d).

(9)

The task of finding a, b, c, d is thus tantamount to solving these 625 systems
of 13 to 17 equations and inequations in 4 unknowns.

We start by combining restrictions (4) through (7), adding one at a time
and always using (8) to simplify the obtained conditions if convenient (thus, for
example, a = b = 0 would replace a ∨ b = 0).

Conditions (4) and (5) can be satisfied in 25 ways, of which the following
6 contain all others:

1. b = d = 0
2. a = c = 1, b ∨ d = 1
3. c = d = 0, a = 1
4. b = 1
5. a = b = 0, c = 1
6. d = 1
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Merging these with (6), conditions (4) through (6) can be satisfied in 30 ways,
of which the following 14 contain all others:

1. b = d = 0, a = 1
2. b = d = 0, c = 1
3. a = b = 1
4. a = c = 1, b ∨ d = 1
5. c = d = 0, a = 1
6. a = c = 0, b = 1
7. b = 1, d ≤ a ∨ c
8. b = c = 1
9. a = b = 0, c = 1

10. a = c = 0, d = 1
11. b = d = 1, a ∨ c = 1
12. a = d = 1
13. a = b = 0, d = 1
14. c = d = 1

Merging these with (7), conditions (4) through (7) can be satisfied in 70 ways,
of which the following 14 contain all others:

1. b = d = 0, a = 1
2. b = d = 0, c = 1
3. a = b = 1
4. a = c = 1, b ∨ d = 1
5. c = d = 0, a = 1
6. a = c = 0, b = 1
7. b = d = 1, a ∨ c = 1
8. b = c = 1
9. c = d = 0, b = 1

10. a = b = 0, c = 1
11. a = c = 0, d = 1
12. a = d = 1
13. a = b = 0, d = 1
14. c = d = 1

With a direct inspection of (9) in each of the fourteen cases, after eliminating
redundancies and imposing (8) on the range of the variables we finally arrive at
the following ten families of solutions:

1. a = 0, b = 0, c = 1, d ∈ [0, 1].
2. a = 0, b = 0, c ∈ [0, 1], d = 1.
3. a = 0, b = 1, c = 0, d ∈ [0, 1].
4. a = 0, b ∈ [0, 1], c = 0, d = 1.
5. a = 1, b = 0, c ∈ [0, 1], d = 1.
6. a ∈ [0, 1], b = 0, c = 1, d = 0.
7. a = 1, b ∈ [0, 1], c = 0, d = 0.
8. a ∈ [0, 1], b = 1, c = 0, d = 0.
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9. a = 1, b = 1, c = d ∈ [0, 1].
10. a = b ∈ [0, 1], c = 1, d = 1.

Reasoning by contradiction, assume now that X and Y were both not uniform.
By definition, there would exist x, y ∈ R such that

p := Π(X = x) ∈ (0, 1), q := Π(Y = y) ∈ (0, 1).

Taking A = {x} and B = {y} above, using (8) and (9) we obtain the table

representing a solution which nonetheless is not in any of the ten families above,
a contradiction. Therefore, indeed X or Y must be uniform. �

As a consequence, for sequences of variables we obtain the following corollary.

Corollary 5. Let {Xn}n be a sequence of identically distributed variables in a
possibility space (Ω,P(Ω),Π). If both forward factorization and product related-
ness, i.e. conditions (i) and (i’), hold, then the Xn must have uniform possibility
distributions.

3 Discussion

It is interesting that the conditions studied here are barely compatible, in the
sense that a sequence of identically distributed variables satisfying both must
have distributions giving possibility 0 or 1 to every event. Thus Theorems 1 and
2 are complementary as regards those assumptions.

The original laws of large numbers from which they have been simplified are
also complementary in that both have content not covered by the other. The
law from Possibility Theory covers the situation that the marginals of the Xn

are linked by a triangular norm more general than the product, whereas the one
from Imprecise Probability is of course applicable beyond possibility measures
and also shows that the speed of the convergence is exponential.

It would be tempting to conclude that this ‘almost incompatibility’ is the
explanation of the fact that both laws exhibit different limit intervals, specially
since [M[X],M[X]] = [EN [X], EΠ [X]] when both conditions apply (as follows
from [13]).

However, it must be emphasized that such a conclusion is not warranted, i.e.
it is unclear whether the larger interval in Theorem 2 is actually optimal under
condition (i’) when applied to possibility measures.
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Abstract. EK-NNclus is an evidential clustering method based on the
evidential K-nearest neighbors classification rule. Its one significant
merit is that it does not require any priori on the number of clusters.
However, the EK-NNclus suffers from the influence of number K. In other
words, the performance of EK-NNclus is sensitive to K: if the number K
is too small, the natural cluster may be split into two or more clusters;
otherwise, two or more natural clusters may be merged into one cluster.
In this paper, we indicated that tuning the parameters (such as α in the
discounting function) can take full advantage of the distances between
the object and its nearest neighbors, which can prevent natural clusters
from being merged. Some numerical experiments were conducted and the
experimental results suggested that the performance of EK-NNclus can
be improved if appropriate α is selected.

Keywords: EK-NNClus · Evidence theory · Clustering performance

1 Introduction

Clustering algorithm has been widely used in all kinds of fields, such as image
processing [1,2], process control [3] and fault diagnosis [4,5]. Fuzzy c-means
(FCM) [6], proposed by Dunn, is one of the most popular clustering algorithm
so far. However, FCM has two disadvantages: Firstly, its robustness is poor;
secondly, it cannot well capture the imprecise information in the objects since
it is based on the probabilistic framework. To overcome these disadvantages,
Masson and Denoeux [7] proposed a new version of fuzzy c-means algorithm,
named evidential c-means algorithm (ECM). ECM is based on the evidential
theory, which is good at modelling both uncertainty and imprecision. In ECM,
a mass belief, the counterpart in FCM, is not only allocating to a single cluster,
but also to a meta cluster(containing two or more single clusters). In addition,
the robustness will be improved since the noise can be distinguished by a null
cluster.

c© Springer Nature Switzerland AG 2018
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In all those clustering methods mentioned above, the cluster number, which
is difficult to be determined, should be fixed in advance. To encompass the
problem, Denoeux [8] proposed a novel clustering algorithm named evidential
K-nearest neighbors clustering method (EK-NNclus). It is a decision-directed
approach to clustering, the classifier, based on the evidential K-nearest neigh-
bors rule, is used to label the objects. After each object is labelled, the process
will be repeated until no changes take place in the labels. With the help of
Hopfield neural network [9,10], Denoeux proved that the clustering algorithm
could converge to a fixed point. After convergence, the mass belief of both single
and meta cluster could be obtained. Therefore, it is a robust clustering method.
However, the number of nearest neighbors K should be fixed in EK-NNclus. If
the K is too small, a natural cluster will be split into two or more clusters; if
the K is too large, two or more natural clusters will be merged into one cluster.
When K is relatively large, the parameter α in the discounting function could
prevent natural clusters from being merged if it is appropriately selected.

Therefore, K and α are two key parameters in the EK-NNclus algorithm.
The performance of EK-NNclus algorithm will be improved if these parameters
are appropriately selected. The objective of our paper is to improve the cluster-
ing performance by selecting the suitable parameters. The rest of the paper is
organized as follows. In Sect. 2, EK-NNclus algorithm will be recalled. Param-
eter selection and experiments are conducted in Sect. 3, concluded remarks are
presented in Sect. 4.

2 Background

2.1 Belief Function Theory

Let Ω = {ω1, ω2, ..., ωn} be the frame of discernment, a collectively exhaustive
and mutually exclusive set of c hypotheses or propositions. The mass function
m is defined on the power set 2Ω = {A : A ⊆ Ω} → [0, 1], it is said to be
basic belief function (BBA) if the following equation satisfies:

∑
A⊆Ω m(A) = 1.

A BBA is normal if m(∅) = 0 otherwise it is subnormal. Any subset A of Ω
such that m(A) > 0 is called a focal element. From the BBA, an evidential
function called plausibility function can be defined in Eq. (1). Another function
pl : Ω → [0, 1] such that pl(ωi) = Pl({ωi})(ωi ∈ Ω) is called contour function.
pl is a probability function which can be calculated from a belief function by
smets method [11].

Pl(A) =
∑

A∩B �=∅
m(B); ∀A ⊆ Ω (1)

If two BBA’s m1 and m2 are both independent, the standard way of combin-
ing them is through conjunctive fusion of them, defined in Eq. (2). The conjunc-
tive fusion may produce subnormal belief assignment, and then we can convert
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the subnormal one into a normal one by Dempster’s rule [12] (m∗ = m1

⊕
m2),

defined in Eq. (3).

m(C) =
∑

A∩B=C

m1(A)m2(B); ∀C ⊆ Ω (2)

m∗(C) =
m(C)
(1 − κ)

; ∀C ⊆ Ω (3)

where κ =
∑

A
⋂

B=∅ m1(A)m2(B)
The full combination of two mass functions is quite time-consuming in very

large frames of discernment. To solve this problem, combination of contour func-
tion is introduced in Eq. (4).

pl1
⊕

pl2 =
pl1pl2
1 − κ

(4)

2.2 EK-NNclus Algorithm

Let us consider a classification problem, a training set X = {x1, x2, ..., xn} should
be grouped into a set of classes. dij represents the distance between object xi, to
be classified, and the object xj , one of the K-nearest neighbor of xi. If the object
xj belongs to the class ωk the distance dij can generate a piece of evidence which
can be represented by the following mass function in Eqs. (5)–(7). According to
Eqs. (5)–(7), the mass function only has two focal elements [8,13]. The function
ϕ in Eqs. (5) and (6) is a decreasing function represented in Eq. (8).

mij(ωk) = αϕ(dij) (5)

mij(Ω) = 1 − αϕ(dij) (6)

mij(A) = 0; ∀A ⊆ 2Ω \ {ωk, Ω} (7)

ϕ(dij) = e(−γdβ
ij) (8)

where α, β and γ are tuning parameters.
The object xi can obtain K pieces of evidence from the K nearest neighbors.

A combined mass function can be yielded after these evidences are combined by
DS rule. To make a decision, the mass function m does not need to be calculated
explicitly. The contour function pli corresponding to mi is

pli(ωk) = (1 − αϕ(dij))(1−sjl) (9)

where l = 1, 2, · · · , c. If l = k, sjl = 1; otherwise, sjl = 0.
From Eq. (4), the combined result of contour function is

pl(ωk) ∝
K∏

j=1

(1 − αϕ(dij))(1−sjl) (10)
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Let us take logarithm on both sides of Eq. (10)

ln(pl(ωk)) =
K∑

j=1

(sjlvj) + C (11)

where vj = −ln(1 − αϕ(dij)) and C is a constant.
The process of EK-NNclus algorithm is introduced briefly as follows:
Initialization: The cluster number is assumed to be n − 1 and the objects

are labelled randomly.
Iteration: By ignoring the constant term, we calculate uik the logarithms

of the plausibilities of belonging to the each cluster from the Eq. (11) as

uik =
K∑

j=1

sjlvj , k = 1, 2, ..., c. (12)

The object xi will be assigned to the cluster with the highest plausibility. The
variable sik can be updated as

{
uik = 1 if uik = max

l=1,2,...c
uil

uik = 0 otherwise
(13)

After each iteration, the cluster number will become smaller since some clusters
are disappeared. The objects are randomly re-labelled and a new iteration is
started.

Decision: After the iterative process has converged, we can calculate the
final mass function for every object through DS rule. Every object will be
grouped into a cluster according to its mass function.

3 Parameter Selection and Experiments

Although the cluster number does not need to be fixed in the EK-NNclus algo-
rithm, the number of nearest neighbors K is difficult to be determined. If the K
is too large, some natural clusters may be merged together; if the K is too small
one natural cluster may be split into two or more clusters. The α in Eq. (6) is
a key parameter in the EK-NNclus algorithm, since it greatly affects the plau-
sibility which determines the object’s cluster. For example, if α is chosen to be
0.95 as reference [13] did, the maximum of vj in Eq. (11) is -ln(0.05). When K is
relatively large, for the object xi, the vj belong to two adjacent natural clusters
may be very close and become distinguishable. The object xi may obtain wrong
class label since the two adjacent natural clusters may be merged. To decrease
the possibility that the natural clusters to be merged, α should be chosen to be
very close to 1 for it can enlarge the maximum of vj .
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To illustrate the two key parameters’ (K and α) affection on the clustering
performance, some examples are shown as follows:

Example 1. X = [51, 1;2, 52;8, 8;222, 250;305, 355;309, 359;1101, 1001;955,
1005;1002, 1102;2057, 2107;1908, 2008;2009, 2009;-20, 6;7, -20;357, 317;250,
310;1026, 1106;1110, 1060;2112, 2052;2213, 2113]; Y = [1;1;1;2;2;2;3;3;3;4;4;4;1;1;
2;2;3;3;4;4];

X, plotted in Fig. 1, contains 20 objects described by two attributes. Y is the
true clustering result of the dataset X. The number of nearest neighbor K is 19.

The vj of first object (51,1) is shown in Fig. 2 when α is 0.9, 0.95, 0.99
and 0.999999, respectively. As shown in Fig. 2, when α is 0.9, 0.95 and 0.99, vj

belongs to class 1 is very close to that belongs to class 2(The first four nearest
neighbors belong to class1 and the fifth to ninth nearest neighbors belong to
class 2). Therefore, the objects in class 1 and class 2 will be merged easily on
this occasion. However, when α is 0.999999,vj in class 1 is quite different from
that in class 2. Therefore, class 1 and class 2 will not be merged easily.

The vj of last object (2213,2113) is shown in Fig. 3 when α is 0.9, 0.95, 0.99
and 0.999999, respectively. When α is 0.9, vj belongs to class 4 is close to that
belongs to class 3, therefore, objects belong to the two classes are easy to be
merged. However, the parameter α is closer to 1, vj belongs to class 4 is more
distinguishable to that belongs to class 3.

We do N = 50 trials on the dataset X when α is 0.9, 0.95, 0.99 and 0.999999,
respectively. And then we define probability of clustering number (c) as p =
nc/N , where nc is the number of obtaining the clustering number (c). The results
are shown in Table 1. With the increasing of parameter α, the probability of
clusters merged is decreasing. Furthermore, when α is 0.999999, the probability
of obtaining the right clustering number is 0.6 while it is 0 in other cases.
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Fig. 1. X dataset
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Fig. 3. vj of the last object

Table 1. Probability of clustering number c

Clustering number α

0.90 0.95 0.99 0.999999

1 0.2 0.12 0 0

2 0.68 0.62 0.36 0

3 0.12 0.26 0.64 0.4

4 0 0 0 0.6

Example 2. Take the “Fourclass” dataset as an example, it contains 400 objects
described by two attributes. The dataset can be divided into four classes, which
is shown in Fig. 4.

When K changes from 20 to 400 with the interval 20, and the last K is
399, we do N = 50 trials on every K. And we choose p = nr/N as the index
of clustering performance. nr is the number of obtaining the right clustering
number(c) among N trials. p vs. K is shown in Fig. 5.
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As shown in Fig. 5, in the case α = 0.9, p is more than 50% when K varies
from 100 to 240, and its interval is 140; in the case α = 0.95, p is more than
50% when K varies from 120 to 240 and its interval is 120; in the case α = 0.99,
p is more than 50% when K varies from 120 to 260, and its interval is 140; in
the case α = 0.999999, p is more than 50% when K varies from 140 to 380 and
its interval is 240. Therefore, in the case α = 0.999999, K is the easiest to be
determined. Moreover, when K is large than 200, the case α = 0.999999 shows
the best clustering performance among the four cases.

Example 3. Take the “R15” dataset as an example, it is composed of 600 objects
described by two attributes. The dataset can be divided into 15 classes. R15
dataset is shown in Fig. 6. The same as the Example 2, when K changes from 20
to 600 with the interval 20, and the last K is 599. We do N = 50 trials on every
K. p vs. K is shown in Fig. 7.

As shown in Fig. 7, in the case α = 0.9, p is more than 50% when K varies
from 60 to 80, and its interval is 20; in the case α = 0.95, p is more than 50%
when K varies from 60 to 120 and its interval is 60; in the case α = 0.99, p is
more than 50% when K varies from 80 to 140, and its interval is 60; in the case
α = 0.999999, p is more than 50% when K varies from 80 to 280 and its interval
is 200. When α is equal to 0.999999, K is the easiest to be chosen among the four
cases. Moreover, when K is more than 100, the case α = 0.999999 shows the best
clustering performance. Compared with the Example 2, K, in the Example 3, is
difficult to be determined since its interval is more narrow. The reason is the
dataset in the Example 3 is more complex: some clusters are close to each other,
some are far from each other.

Remark 1. When K is relatively large (more than 200 in Example 2), enlarg-
ing the maximum of vj , by selecting an α close to 1, will get better clustering
performance.
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4 Conclusion

The parameter α in discounting function is a key parameter in EK-NNClus. It
can improve the clustering performance if α is well chosen, especially when K
is relatively large, since it can take full advantage of the distances between the
object and its nearest neighbors. However, it cannot guarantee that the right
clustering number will be found, since it just could prevent natural clusters from
being merged. Therefore, further study should be done to improve the clustering
performance.
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Abstract. Ek-NNclus is a clustering algorithm based on the evidential
k-nearest-neighbor rule. It has the advantage that the number of clusters
can be detected. However, the parameter k has crucial influence on the
clustering results, especially for the number of clusters and clustering
quality. Thus, the determination of k is an important issue to optimize
the use of the Ek-NNclus algorithm. The authors of Ek-NNclus only give
a large interval of k, which is not precise enough for real applications.
In traditional clustering algorithms such as c-means and c-medöıd, the
determination of c is a real issue and some methods have been proposed
in the literature and proved to be efficient. In this paper, we borrow some
methods from c determination solutions and propose a k determination
strategy based on an empirical study.

Keywords: Ek-NNclus · k determination · Clustering

1 Introduction

In cluster analysis, choosing the optimal number of clusters is a well-known
problem [1,7]. For many clustering algorithms (such as c-means, c-medoids, etc.),
the number of clusters noted by c must be pre-defined1. The correct choice of
c is not simple, needing most of the time a subjective interpretation of some
criterion directly linked with the structure of data and the wanted clustering
resolution.

The Ek-NNclus method, proposed by [3], does not need the pre-definition of
the parameter c and is able to detect the number of clusters. However, as Ek-
NNclus is based on the k-nearest neighbors, the parameter k, given the size of
neighborhood, should be set. Different k may result in various clustering results
and often with different number of clusters. Therefore, Ek-NNclus has replaced
the problem of c determination by the problem of finding a proper value for k.
In [3], the authors concluded that the results of clustering are mostly conducted

1 In many articles, the number of clusters is denoted by k. To avoid ambiguity with
another parameter k of k-nearest neighbors in Ek-NNclus algorithm, we use c in this
article.
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by the parameter k. Following the rule of thumb, such as the determination k in
the k-nearest neighbors classifier, the authors also give an empirical suggestion
on the determination of k, which is two or three times

√
n where n denotes the

number of all objects. The range between two or three times
√

n is sometimes
too wide and even within this range, the clustering results are still quite dif-
ferent. Besides, in Ek-NNclus, the existence of some random processes makes
the method not perfectly reproducible (i.e. on one dataset, with identical k,
clustering results may not be even close).

Moreover, the optimal k varies with the scale of the data, making the deter-
mination of k necessary for every clustering analysis problem. The determination
of k is two-fold. An optimal k in Ek-NNclus should:

1. Cluster the data into the correct number of clusters;
2. Return a result with high quality, close to the real partitions of objects.

There are already some often-applied methods to determine c, such as evaluation
criteria (e.g. silhouette coefficient [10]) optimization, elbow method and infor-
mation criterion approach. In this article, we borrow and test these methods to
evaluate if they are still applicable for the determination of k in Ek-NNclus. We
also propose a determination strategy based on these methods.

In the following parts, we briefly introduce the Ek-NNclus algorithm as well
as some criteria for c determination in c-means in Sects. 2 and 3. In Sect. 4, we
introduce the proposed k determination strategy. We illustrate this strategy on
synthetic data and real-world data in Sect. 5 and give a conclusion in Sect. 6.

2 Ek-NNclus Algorithm

Ek-NNclus is a clustering algorithm based on the evidential k-nearest-neighbor
classifier. It requires only the pairwise metric for k-nearest-neighbor searching.
Ek-NNclus starts from an initial random partition, and reassigns objects to clus-
ters iteratively using Ek-NN classifier [2]. The algorithm converges to a stable
partition. For each object, its membership to clusters is described by a mass func-
tion in a framework of each cluster and the whole set of clusters (i.e. ignorance).
Given a matrix of pairwise distances D = (dij), where dij denotes the distance
between object oi and object oj , according to [3], the procedure of EkNNclus
can be briefly divided into the following parts:

– Preparation. Calculate the mass value αij of the event: oj is in the k-nearest
neighbors of oi based on dij by a non-increasing mapping function φ(dij).
Naturally, αij = 0 if oj does not belong to the k-nearest neighbors of oi.

– Initialization. Initialize the labels of each object randomly. The authors of
[3] suggest that the number of clusters c can be set to the number of objects
n if n is not too large.

– Iteration. Randomly reorder all objects. Then, for every object oi′ in the
new order, calculate the plausibility of belonging to each cluster. Assign oi′

to the cluster with the highest plausibility.
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– Convergence condition. The iterations stop when the labels of all objects
are stable.

In this procedure, the number of k at the preparation step has a vital impact on
the clustering results. If k is too small, the matrix of α becomes sparse. In this
case, the number of iterations is small and the clustering result highly depends
on the initialization step, which is usually random. If k is too large, two objects
far away from each other may be considered as in the same neighborhood. This
may have two consequences:

1. The computation time becomes important;
2. Objects naturally in different clusters may be targeted as in the same one,

causing an underestimation of number of clusters.

Therefore, the determination of k is important to guarantee a good quality of
clustering.

3 Some Methods in c Determination

Some solutions from c determination for c-means algorithm are borrowed to help
the determination of k in Ek-NN algorithm. In this section, we introduce how
Adjusted Rand Index (ARI), silhouette coefficient and elbow method are applied
for the determination of optimal c.

Adjusted Rand Index (ARI)
Rand index (RI) [8] is a measure of similarity between two data clustering.
Developed from RI, Adjusted RI (ARI) is adjusted for chance grouping of objects
in clusters [8,12]. We use ARI as the priority criterion for the evaluation of the
clustering result with the knowledge of the ground truth given. Thus, the cluster
number c that returns the highest ARI value is determined as the optimal one.

Silhouette coefficient
Silhouette coefficient is useful in determining the natural number of clus-
ters [1,10]. The silhouette coefficient is an evaluation criterion, in which the
calculation is only based on the intra-class and inter-class distances of each
object pair. A higher silhouette coefficient score relates to a model with better
defined clusters. Thus, the problem of optimal c determination can be transferred
to a silhouette coefficient maximization problem [1]. Another advantage of sil-
houette coefficient is that only pairwise distances are needed and the calculating
of centers is avoided. Indeed, independent to centroid is a good property. For
some metrics where only pairwise distances are given, the calculation of centroid
is a metric k-center problem, proved to be NP-hard [4].

Elbow method
The elbow method [11] applies the distortion as a criterion for clustering result.
The rule is simple: among different number of clusters C, one should choose a
number c ∈ C, such that c+1 clusters do not give a much better modeling of the
data. Given n objects in c clusters, we denote the objects by x1, x2, . . . , xn and
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the center of clusters by μ1, μ2, . . . , μc. The quality of the modeling is measured
by the distortion J of the clustering, calculated by:

J(c, μ) =
1
n

n∑

i=1

(
c

min
j=1

(xi − μj)2) (1)

Therefore, c can be subjectively determined with the help of a distortion plot
helps, illustrated in the experiment part of Sect. 5.2.

A disadvantage of this method is that the “elbow” cannot always be unam-
biguously identified [5]. The observation of the “elbow” is subjective because “a
cluster that does not give a much better modeling of the data” cannot be justified
quantitatively. Another inconvenience of the elbow method is that the calcula-
tion of distortion is based on the centroid of each cluster. This jeopardizes the
property that Ek-NNclus is independent of the calculation of centroid.

4 A k Determination Strategy

The idea of k determination is simple: an optimal k in EkNNclus should return
a high quality clustering result. Given a dataset, the quality of clustering can be
easily evaluated if knowledge of ground truth is provided. A high value of ARI
between clustering result and the ground truth implies a good clustering quality.
However, in most cases, the ground truth is absent. The results of clustering are
often evaluated by how well different clusters are separated. Silhouette coefficient
is such a criteria and it is often strongly correlated with ARI. The correlation
is plotted in the Sect. 5.1. However, to determine k only by silhouette coefficient
is still risky. Fewer clusters may sometimes return a higher silhouette coefficient
(example illustrated in Sect. 5.1 and Fig. 4b). Thus, other conditions are needed.
Elbow method is used as the second criterion to avoid that too few clusters
are detected. The strategy is straightforward. From the intersection of the set
of k (Kc) corresponding to the best c and the set of k (Ksil) corresponding to
relatively high silhouette coefficient, the interval of values of k is obtained. We
denote a set of all possible k by K. A proper subset of k is therefore refined by:
Krefine = Kc ∩ Ksil. We define a silhouette efficient function fsc(k), implying
the silhouette coefficient of the clustering result with k in Ek-NNclus algorithm.
Thus, the optimal k is given by:

k = arg max
k∈Krefine

(fsc(k)). (2)

Note that the elbow method is subjective and that “relatively high silhouette
coefficients” are also subjectively defined, both Kc and Ksil are not definite sets.
Thus, if Krefine = ∅, we can extend Kc by softer condition or Ksil by lower
threshold to obtain a non empty Krefine.
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5 Experimentation Results

In this section, we study the correlation between ARI and silhouette coefficient,
and then applied our strategy on toy datasets. The synthetic data are generated
by Gaussian distributions. For the sake of better visualization, the synthetic data
are always generated in a 2 dimensional space.

5.1 Correlation Between ARI and Silhouette Coefficient

We generate synthetic datasets for this experiment. The procedure is as follows:

1. Given a set of standard deviation (noted std) and the number of clusters
denoted by nclus, we generate a set of datasets Sdata = {X1,X2, . . . , XD}
with ground truth. Datasets with 8 clusters and with std = 0.5, 1.0, 2, 2.5
are illustrated in Fig. 2.

2. On one dataset Xd ∈ Sdata, given a set of parameter values
K = {k1, k2, . . . , k|K|}, calculate ARI and silhouette coefficient of each k ∈ K.
A set of ARIs and silhouette coefficients are obtained corresponding to differ-
ent k, respectively denoted as SARI and Ssil. The Pearson correlation coeffi-
cient [9] ρ(SARI ,SARI) is calculated for dataset Xd, denoted by ρd.

Fig. 1. Pearson correlation coefficient between ARI and silhouette vs data sets with
different std.

Figure 1 illustrates the variation of the correlation between ARI and silhou-
ette coefficient via different standard deviations. We observe that the correlation
declines while data are distributed more sparsely. From a certain standard devi-
ation, the correlation has a tendency to increase. These are datasets used in
the experiment of Fig. 1. While std is small, data are obviously clustered. Thus
a clustering result regrouping objects nearby is consistent with the knowledge
of the ground truth, which returns a high correlation. With std increasing, dif-
ferent clusters overlap and the correlation decreases. When std is high enough
that data distribution converges to random, the clustering returns lows values
on both ARI and silhouette coefficient, making them “correlated” again.

However, the strong correlation cannot guarantee that silhouette coefficient
is enough for k determination. The ARI and silhouette coefficient obtained from
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Fig. 2. Data distributions with different values of standard deviation.

different k on data in Fig. 2 are respectively plotted in Fig. 3. We observe that a
high silhouette coefficient does not always correspond to a high ARI when value
of k is large, even if objects in different clusters are naturally well separated
(e.g. dataset with std = 0.5). This has been explained in Sect. 2 that a high
value on k may cause underestimation of the number of clusters c, which may
result in a satisfying silhouette coefficient. Elbow method determining the c helps
to provide a constraint condition.

Fig. 3. ARI and Silhouette coefficient via k on different datasets.

5.2 Optimal k Determination Strategy on Real Toy Datasets

We applied the strategy in Sect. 4 on real toy datasets: Iris and Wine datasets
from UCI2 to help to refine the interval of k.
2 Iris: https://archive.ics.uci.edu/ml/datasets/Iris.

Wine: https://archive.ics.uci.edu/ml/datasets/wine.

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/wine
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Toy dataset Iris: Fig. 4 illustrates the plot supporting k determination strategy
for Iris toy data. Results are obtained with a cross validation of 10 experiments.
We still observe that the values of ARI, silhouette coefficient and number of
clusters have large fluctuation, which proves that the determination of k is risky.

Fig. 4. Results on Iris dataset.

Without knowledge of c, from the silhouette coefficient plot in Fig. 4b, one
may conclude that k ∈ [30, 50] is the best value. With elbow method, we can
figure that c = 2 or 3 is a reasonable value, so k ∈ [15, 40] is more reasonable.
Taking the intersection of both intervals, we focus on a refined interval k ∈
[30, 40]. In this interval, k = 35 returns the highest silhouette coefficient (given
by the abscissa of Fig. 4b). Thus, finally we determine k = 32 by Eq. (2). With
the ARI plot (given by the ordinate of Fig. 4b), we can verify that k ≈ 35 is the
proper value, so the proposed strategy is adapted.

Toy dataset Wine: The elbow method and clustering criteria plot are illus-
trated in Fig. 5. It is tricky to determine the number c of clusters by Elbow
method for this dataset. Different observers may give different decisions on the
best number of clusters. Therefore, 3 or 4 can both be concluded as c. According
to Fig. 5b, c ∈ {3, 4} corresponds approximately to k ∈ [20, 50]. A high silhouette

Fig. 5. Results on Wine dataset.
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coefficient value corresponds to the interval k ∈ [40, 70]. By taking the intersec-
tion of both intervals, we conclude that a proper k should be in the interval
[40, 50] and we obtain k = 49 such as the optimal value by Eq. (2).

According to Fig. 5b, with only silhouette coefficient, we may arbitrarily
choose a high value k ∈ [60, 70]. However, this value gives an underestimation
of the c value. The elbow method fixing a proper number of clusters helps to
determine a k that returns the highest ARI.

6 Conclusion

In this article, we discuss a practical problem encountered in the application of
EkNNclus algorithm: the determination of the optimal number of nearest neigh-
bors k. Based on some methods borrowed from determination of the number c
of clusters in c-means, we proposed a combined strategy. In this strategy, silhou-
ette coefficient is applied to evaluate the clustering quality and elbow method
is used as an extensive procedure for over-fitting. Comparing with an empirical
suggestive interval for k determination given by [3], the proposed strategy gives
a more refined selection of k and guarantees a relative high quality of clustering.

The strategy has some short-comings conducted by elbow method. Firstly,
the determination of c by elbow method is subjective and can be sometimes
ambiguous. Besides, the distortion requires the calculation of centroids of clus-
ters, which neutralizes an advantage of Ek-NNclus: Ek-NNclus is centroid inde-
pendent. In the future, we can replace elbow method by centroid-independent c
determination method, making the strategy more adaptable.

References

1. De Amorim, R.C., Hennig, C.: Recovering the number of clusters in data sets with
noise features using feature rescaling factors. Inf. Sci. 324, 126–145 (2015)

2. Denoeux, T.: A k-nearest neighbor classification rule based on dempster-shafer
theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)

3. Denoeux, T., Kanjanatarakul, O., Sriboonchitta, S.: Ek-NNclus: a clustering pro-
cedure based on the evidential k-nearest neighbor rule. Knowl. Based Syst. 88,
57–69 (2015)

4. Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discret.
Appl. Math. 1(3), 209–215 (1979)

5. Ketchen Jr., D.J., Shook, C.L.: The application of cluster analysis in strategic
management research: an analysis and critique. Strateg. Manag. J. 17, 441–458
(1996)

6. Llet́ı, R., Ortiz, M.C., Sarabia, L.A., Sánchez, M.S.: Selecting variables for k-means
cluster analysis by using a genetic algorithm that optimises the silhouettes. Anal.
Chim. Acta 515(1), 87–100 (2004)

7. Pham, D.T., Dimov, S.S., Nguyen, C.D.: Selection of k in k-means clustering. Proc.
Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 219(1), 103–119 (2005)

8. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971)



268 Y. Zhang et al.

9. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coeffi-
cient. Am. Stat. 42(1), 59–66 (1988)

10. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

11. Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953)
12. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings

comparison: variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)



Evidential Community Detection Based
on Density Peaks

Kuang Zhou1(B), Quan Pan1, and Arnaud Martin2

1 Northwestern Polytechnical University,
Xi’an 710072, Shaanxi, People’s Republic of China

kzhoumath@163.com, quanpan@nwpu.edu.cn
2 DRUID, IRISA, University of Rennes 1, Rue E. Branly, 22300 Lannion, France

Arnaud.Martin@univ-rennes1.fr

Abstract. Credal partitions in the framework of belief functions can
give us a better understanding of the analyzed data set. In order to find
credal community structure in graph data sets, in this paper, we propose
a novel evidential community detection algorithm based on density peaks
(EDPC). Two new metrics, the local density ρ and the minimum dissimi-
larity δ, are first defined for each node in the graph. Then the nodes with
both higher ρ and δ values are identified as community centers. Finally,
the remaining nodes are assigned with corresponding community labels
through a simple two-step evidential label propagation strategy. The
membership of each node is described in the form of basic belief assign-
ments, which can well express the uncertainty included in the community
structure of the graph. The experiments demonstrate the effectiveness of
the proposed method on real-world networks.

Keywords: Community detection · Theory of belief functions
Density peaks · Evidential clustering

1 Introduction

Community structure is one of the primary features in graphs which can gain
us a better understanding of organizations and functions in the real networked
systems. As a result, community detection, which can extract specific structures
from complex networks, has attracted considerable attention in many areas.

In 2014, Rodriguez and Laio have proposed a density peak clustering method
(DPC) in Science [6]. It is an effective and powerful tool for the task of clustering,
as neither optimization nor iteration is required in the algorithm. DPC only
provides us with a hard partition of the analyzed data set. However, many real-
world networks contain uncertain community structure, such as bridge nodes
and outliers. Credal partitions in the framework of belief functions can give us a
better understanding of the uncertain class structures of the analyzed data set.

In Ref. [7], an evidential label propagation algorithm was introduced, where
only the whole frame is used to express the uncertainty of the class structure but
c© Springer Nature Switzerland AG 2018
S. Destercke et al. (Eds.): BELIEF 2018, LNAI 11069, pp. 269–277, 2018.
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the partial ignorance is not considered. In this paper, an algorithm for detecting
credal community structure, which can well describe both the total and partial
ignorance about nodes’ community, is proposed based on the concept of density
peaks. Two new metrics, the local density ρ and the minimum dissimilarity δ, are
first defined for each node in the graph. Then the nodes with both higher ρ and δ
values can be identified as community centers. Finally, the rest of the nodes are
assigned with corresponding community labels with a simple two-step evidential
label propagation strategy. The experiments show that meaningful partitions of
the graph could be obtained by the proposed detection approach and it indeed
could provide us more informative information of the graph structure.

The remainder of this paper is organized as follows. The density peak based
clustering is briefly introduced in Sect. 2. The proposed community detection
approach is presented in detail in Sect. 3. Some experiments on graph data sets
are conducted to show the performance in Sect. 4. Conclusions are drawn in the
final section.

2 Density Peak Based Clustering

Rodriguez and Laio [6] proposed a fast clustering approach by finding density
peaks, denoted by DPC. The idea is that cluster centers are characterized by
a higher density than their neighbors and by a relatively large distance from
any points with higher densities [6]. From this point of view, the cluster center
selection problem can be converted into the problem of detecting outliers through
a defined decision graph using two delicately designed measures:

ρi =
∑

j

χ(dij − dc) (1)

and

δi =

⎧
⎨

⎩

max
j

(dij), if ρi = max
k

(ρk)

min
j:ρj>ρi

(dij), otherwise
(2)

The value ρi is called the local density of point i. In Eq. (1), dij is the distance
between points i and j, dc is a cut-off distance. χ(x) is an indicator function
which equals to 1 when x < 0, and 0 otherwise.

The decision graph is then generated by taking ρi as x axis and δi as y axis.
Those points with both relatively large ρi and δi, which are located in the upper
right corner of the graph and far away from other points, are chosen as the
centers of classes. The rest patterns can be assigned into the same cluster as its
nearest neighbor of higher density in a single step.

3 Evidential Density-Based Community Detection

Inspired by the idea of density peaks, in this section we will introduce a fast evi-
dential community detection approach based on density peaks of graphs (denoted
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by EDPC). Consider the network G(V,E), where V = {n1, n2, · · · , nN} is the
set of N nodes, and E is the set of edges. Denote the adjacency matrix by
A = (aij)N×N , where aij = 1 indicates that there is a direct edge between
nodes ni and nj . Let aii = 1.

3.1 The Dissimilarity Between Nodes

In the task of community detection, the available information is often the adja-
cency matrix, representing the topological structure of the graph. The similarities
or dissimilarities between nodes can be determined based on the graph structure.

In this work, the dissimilarity measure based on signaling propagation pro-
cess in the network is adopted, as it can map the topological structure into
N -dimensional vectors in the Euclidean space [4]. For a network with N nodes,
every node is viewed as an excitable system which can send, receive, and record
signals. Initially, a node is selected as the source of signal. Then the source node
sends a signal to its neighbors and itself first. Afterwards, the nodes with signals
can also send signals to their neighbors and themselves. After a certain T time
steps, the amount distribution of signals over the nodes could be viewed as the
influence of the source node on the whole network.

Naturally, compared with nodes in other communities, the nodes of the same
community have more similar influence on the whole network. Therefore, dissim-
ilarities between nodes could be obtained by calculating the differences between
the amount of signals they have received.

3.2 The Density Peaks

In DPC clustering, the local density of point i describes the number of points
which is very close to this pattern (with a distance to pattern i smaller than
dc). In social networks, the person who is the center of a community may have
the following characteristics: she/he has relation with most of the members of
the group; she/he may directly contact with other persons who also play an
important role in their own communities. Therefore, the centers of communities
should be such nodes that not only with high degree, but also with neighbors
who also have high degree. Thus we can define the local degree of node ni as:

ρ
(d)
i = ki +

∑

{j:aij=1}
kj , (3)

where ki denotes the degree of node ni, which can be defined as:

ki =
N∑

j=1

aij . (4)

In graphs, some bridge nodes which have connections with many groups
may also have high degree centrality. In order to distinguish these bridge nodes
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with the centers, we propose a new local density measure to consider both the
dissimilarities with neighbors and the centralities:

ρi = exp

⎛

⎝− 1
ki

∑

j:aij=1

d2ij

⎞

⎠ + ρ
(d)
i . (5)

For some networks with fuzzy community structure, the local density measure
and the minimum dissimilarities can be regularized to distinguish cores more
accurately [5]:

ρ∗
i =

ρi

max
i

{ρi} , δ∗
i =

δi

max
i

{δi} . (6)

The minimum dissimilarity of nodes defined as Eq. (2) is adopted to measure
the degree of dispersion among center nodes. Similar to the idea of DPC clus-
tering, the initial centers of the graph can be set to the nodes with high ρi and
large δi. Through the 2-dimensional decision graph where one dimension is ρi

and the other is δi, nodes that are located right upper in the decision graph are
figured out as the centers.

3.3 Allocation of Other Nodes

Assume that the set of centers obtained in the last step is Vc ⊂ V . Thus
there are c communities in the graph, and let the frame of discernment be
Ω = {ω1, ω2, · · · , ωc}. The credal partition defined on the power set allows
to gain a deeper insight into the community structure. The nodes located in
the overlapping areas between communities will be grouped into some imprecise
classes such as {ω1, ω2}, which indicates the indistinguishability of the member-
ship. The outliers will be assigned to a special class O∗. We use O∗ instead of Ω
in order to distinguish between the total ignorance class in an open world and
the imprecise class Ω = {ω1, ω2, · · · , ωc} for overlapping nodes. The communi-
ties of the nodes can be determined by the label propagation process, which can
be implemented as follows.

Initialization. All the center nodes are assigned with one unique community
label. As there is not any uncertainty for the communities of these centers, the
Bayesian categorical mass function can be adopted to describe its membership.
For example, if the center node ni ∈ Vc is assigned to community ωj , we can get:

mi(A) =

{
1, if A = {ωj}
0, otherwise

(7)

For the rest of nodes, as there is no information about their membership at this
time, the total ignorant mass function can be used to show their membership:

mj(A) =

{
1, if A = O∗

0, otherwise
(8)
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One Round Expansion. In this step, the nodes sharing a direct link with only
one center node will be first considered. Suppose that node ni has only linked
with center nj ∈ ωt, and does not link with any other centers. Similar to the
principle of the label determination process in EK-NNclus [1], the mass function
of the node ni’s membership can be constructed as:

mi(A) =

⎧
⎪⎨

⎪⎩

α, if A = {ωt}
1 − α, if A = O∗

0, otherwise
(9)

where α is the discounting parameter such that 0 ≤ α ≤ 1, and it can be
determined by the dissimilarity between nodes ni and nj . If the dissimilarity
between the two nodes is small, that is to say, the two nodes are very close, they
are most probably in the same community. Thus α can be set as a decreasing
function of dij . In this work, we suggest to use:

α = exp
{

−γdβ
ij

}
, (10)

where parameter β can be set to be 2 as default, and γ can be set to:

γ = 1/median
({

dβ
ij , i = 1, 2, · · · , n, j ∈ Ni

})
. (11)

If one node shares a direct edge with more than one center nodes, it may be
located in the overlap between/among these communities. Suppose that node
ni links with centers nj1 , nj2 , · · · , njt , and the communities of the t centers are
ωj1 , ωj2 , · · · , ωjt respectively. The mass function for node ni can be defined as:

mi(A) =

⎧
⎪⎨

⎪⎩

w if A = {ωj1 , ωj2 , ωjt}
1 − w, if A = O∗

0, otherwise
(12)

where w should be in inverse proportion to the variation of dissimilarities
between nodes ni and the corresponding centers. If the variation is small, it
indicates that there is a large amount of uncertainty for the membership of node
ni and the belief assigned to the imprecise class is large. In this paper, we use:

w = exp {−Var(dij1 , · · · , dijt)} . (13)

Diffusion in the Whole Network. The unlabeled nodes will be assigned to
the existing communities based on their neighbors. The labeled nodes in the
neighbors can be seen as a source of evidence. The more labeled neighbors, the
more information for the node’s membership. Therefore, the update order of the
unlabeled nodes should be determined by labeled rate [2], which is defined as:

ψi =
|NL

i |
|Ni| , (14)



274 K. Zhou et al.

where |Ni| denote the number of neighbors of node ni, and |NL
i | denote the

number of labeled neighbors. The unlabeled node with highest ψi are first chose
for assigning a community label. Suppose that node ni is the one with highest
labeled rate, the evidence provided by its |Ni| neighbors are in the form of
BBAs, mi

1,m
i
2, · · · ,mi

|Ni|, the BBA for node ni’s community membership can
be obtained by combining the Ni pieces of evidence from its neighbors.

The combination process can be proceeded in two steps. The first step is to
divide the BBA into different groups based on the focal element except O∗, and
then to combine the BBAs in each group. As there is no conflict at all among
these BBAs in the same group, we can use the Dempster’s rule directly for the
inner group combination. The next step is to combine the fused BBA in different
groups. Each group can be regarded as a source for the outer combination. The
reliability of one source is related to the proportion of BBAs in this group. The
larger the number of BBAs in one group, the more reliable the source is. Then
the reliability discounting factor can be defined as:

αk =
sk∑

i

si

, (15)

where sk denotes the number of BBAs in each group. The discounted BBAs in
different groups are combined using the Dubois and Prade rule [3] to represent
the partial ignorance. Finally, after the mass functions for all the nodes’ credal
membership are determined, each node can be partitioned into the community
with maximal mass assignment among all the focal elements.

4 Experiments

Experiment 1. In order to show the process of EDPC algorithm clearly, in
the first experiment, we will consider a small illustrative graph with 11 nodes
displayed in Fig. 1-a. As can be seen from the figure, there are obviously two
communities in the graph, and nodes 5 and 10 are the cores of the group, and
node 11 serves as a bridge between two communities. From the decision graph
in Fig. 1-b, we can see that both center nodes can be easily detected.

Table 1. The BBAs for the 11 nodes after the first round expansion.

Node ω1 ω2 Ω = {ω1, ω2} O∗

1,2,3,4 0.6065 0 0 0.3935

5 1 0 0 0

6,7,8,9 0 0.6065 0 0.3935

10 0 1 0 0

11 0 0 0 1
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Fig. 1. An illustrative graph with 11 nodes.

In the first round expansion, according to the principle to determine the
BBA, the membership for nodes 1, 2, 3, 4 and 6, 7, 8, 9 can be identified using
Eq. (9). After the expansion, the BBA for 10 nodes in the graph have already be
determined, which can be found in Table 1.

From this table we can see, nodes 1–4 are partitioned into the community
of center node 5, while nodes 6–9 are grouped into the community of center
node 10. As node 11 has no connection with both center nodes, we have not any
information for its membership after the first round expansion. Thus the total
ignorance mass function is still used to expression its membership.

In the diffusion process, the BBA for node 11 can be determined. The evi-
dence for updating the membership of node 11 is from its neighbors, node 3 and
node 6. Using the combination rule presented in Sect. 3, we can get the BBA for
node 11 which is listed in Table 2.

As can be seen from the table, node 11 is assigned with the largest belief
to imprecise class {ω1, ω2}. It reflects the indistinguishability of its membership
and its bridge role between the two communities.

Table 2. The BBA for node 11 after the diffusion.

Node ω1 ω2 Ω = {ω1, ω2} O∗

11 0.2387 0.2387 0.3678 0.1548

Experiment 2. To further test our proposed method, EDPC was applied to
four real networks1: Karate Club, American college football, Dolphin and Books
about US politics, which have been widely used as test networks. Two commonly
1 http://www-personal.umich.edu/∼mejn/netdata/.

http://www-personal.umich.edu/~mejn/netdata/
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used community detection methods, the label propagation algorithm (LPA), the
modularity-based optimization method and the median evidential c means clus-
tering (MECM) based approach, are used for comparison. The parameters in
EDPC are all set as default. The NMI values of the obtained community struc-
ture by different methods are reported in Table 3. It is noted here for EDPC,
each node is partitioned into the specific community with maximal belief assign-
ment among all the singleton focal elements. The results show EDPC performs
best in most of the data sets. It is noted that MECM based community detection
method also provides credal partitions. The behavior of MECM and EDPC is
similar, but EDPC is more efficient as it does not require iterative optimization.

Table 3. Comparison of EDPC and other algorithms by NMI in UCI graphs.

Karate Football Dolphins Books

EDPC 1.0000 0.9346 1.0000 0.6428

MMO 0.6873 0.8550 0.4617 0.5121

LPA 0.8255 0.9095 0.8230 0.5485

MECM 1 0.9042 1 0.7977

5 Conclusion

In this paper, a novel evidential community detection approach, named EDPC,
was presented inspired from the idea of density peak based clustering. The local
density of each node was defined based on its centrality and the dissimilarities
with its neighbors. The centers were identified according to the density and the
minimum dissimilarity with the nodes with larger densities. A simple two-step
evidential label propagation strategy was designed for grouping the rest of nodes.
EDPC can provide us the credal community structure of the network, which
enables us to gain a better insight into the graph structure. The experimental
results have shown the effectiveness of the proposed method.
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