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Abstract
The population of HIV-infected adults is progressively aging, due to more
effective treatments that lower the viral load. Since aging and HIV disease each
have major detrimental effects on the immune system, it is possible that in older
persons who are infected with HIV-1, the immune changes due to the infection
combined with those that occur with age may synergize to exacerbate the disease.
Indeed, clinical studies have already documented older age as an independent risk
factor for more rapid HIV disease progression. Moreover, immunological recov-
ery in older individuals treated with antiretroviral drugs is less robust than in
younger adults, even with equivalent levels of viral suppression. The challenge to
future research will be to develop a detailed mechanistic understanding of
the interplay between HIV-related and age-related immunological changes. This
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information will advance our theoretical understanding of the immune system
and, at the same time, provide practical information regarding age-appropriate
approaches to therapy and prophylactic vaccines.
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Introduction

Chronic infection of young individuals with human immunodeficiency virus (HIV-1)
is associated with immunological changes reminiscent of those that occur during
normal aging. Indeed, HIV disease has even been proposed as a model of premature
immunosenescence (Appay and Rowland-Jones 2002). In young persons infected
with HIV-1, the pace of immunological change is accelerated. Compounding this
effect, the cohort of HIV-infected persons is actually aging chronologically as well.
Recent data from the US Centers for Disease control and Prevention indicate that the
cumulative number of AIDS cases in the USA in persons >50 years of age
quintupled during the last decade, with similar trends reported in Europe (Grabar
et al. 2006). In New York City, the epicenter of AIDS in the USA, 30% of
HIV-infected persons are over age 50. Aging of the baby boomers, the increased
sexual activity of elders in the era of erectile dysfunction drugs, and the prolonged
survival of those infected with HIV-1 are among the contributory factors to the
overall increase in age of the HIV-1-infected population.

HIV-1 infection and aging each have major effects on the immune system, raising
the possibility that in older persons who are infected with HIV-1, the immune
changes due to the infection combined with those that occur with age may synergize
to exacerbate the disease. Indeed, age is an independent risk factor for more rapid
disease progression, and immunological recovery after antiretroviral drug treatment
in older individuals is less robust than in younger adults, even with equivalent levels
of viral suppression (Rosenberg et al. 1994; Darby et al. 1996; Fordyce et al. 2002;
Egger et al. 2002; Shah and Mildvan 2006). It therefore becomes essential to develop
a detailed mechanistic understanding of the interplay between HIV-related and
age-related immunological changes. Efforts in this direction may ultimately lead to
novel age-appropriate therapies to enhance immune control over the virus. Immune-
based approaches to therapy may, in turn, reduce the need for drugs that target the
virus. This is important because one of the emerging issues with respect to the
elderly is that many of the antiviral therapies are not tolerated well in this group
(Casau 2005). Moreover, long term antiretroviral therapy (ART) may interfere with
certain medications or exacerbate age-related pathologies.

This chapter will review immune system changes that are common to human
aging and HIV disease, highlighting those areas that merit more detailed investiga-
tion. One of the fortuitous outcomes emerging from the confluence of research on
aging and HIV disease is that the two fields are mutually benefiting each other.
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Indeed, information on T cell changes that occur during normal aging, many of
which are due to untreated persistent infections, has caused HIV biologists to focus
on the immune consequences of the chronic antigenic stimulation. Conversely,
detailed analysis of immune reconstitution dynamics following ART, which lowers
the level of HIV-1, provides immunogerontologists with a unique model system to
test the hypothesis that reducing chronic antigenic stimulation retards age-related
deleterious changes within the human memory T cell compartment.

Aging and HIV Disease Progression

There is an extensive body of research suggesting that age constitutes a significant
risk factor for more rapid disease progression and a strong predictor of increased
AIDS-related mortality, both in the presence and absence of ART (Ferro and Salit
1992; Phillips et al. 1991; Kalayjian et al. 2003; Rosenberg et al. 1994; Blatt et al.
1995; Darby et al. 1996; Fordyce et al. 2002; Egger et al. 2002). Moreover, even
though virologic efficacy of ART may be equivalent in young and old persons,
immunological recovery is, nevertheless, often slower and blunted in older
HIV-infected adults (Shah and Mildvan 2006; Manfredi 2004). The negative effect
of older age has been observed in persons infected via blood transfusion as well as
intravenous drug use. A study on more than 6,000 HIV-infected persons documented
that those who were older than age 50 had a significantly increased risk of
contracting AIDS wasting syndrome and AIDS dementia and showed a shortened
survival time after AIDS diagnosis (Balslev et al. 1997). Even after adjusting for
patterns of complicating diseases, the effect of age persisted. Clearly, a more
comprehensive understanding of the effect of age on immune reconstitution within
multiple lymphoid compartments is critical in order to develop strategies to prevent
the increased incidence/severity of opportunistic infections and the poor responses to
vaccines.

Chronic HIV-1 infection is also associated with earlier onset of a number of
age-related diseases/pathologies, many of which involve the immune system.
Co-morbid conditions, such as cardiovascular disease and colon cancer, occur at
younger ages in HIV-1-infected patients, an observation that is beginning to affect
screening recommendations (Berretta and Tirelli 2006; Engels et al. 2006; Orlando
et al. 2006; Palella et al. 1998, 2003); Murphy et al. 2001; Guy-Grand et al. 1991).
Chronic immune activation, a signature feature of HIV-1 disease, is known to
contribute to bone loss (Arron and Choi 2000), which is already accelerated with
age. Indeed, one of the immune correlates of hip fracture in a group of uninfected
elderly women is the increased proportion of CD8+CD57+ T lymphocytes
(Pietschmann et al. 2001). This same cell subset, which has been shown to have
telomere lengths consistent with replicative senescence, is significantly increased in
HIV-infected persons (Brenchley et al. 2003).

It is well established that aging is associated with a dramatically increased risk of
developing cancer. Indeed, old age carries a cancer risk exceeding that of smoking.
The diminished immune surveillance associated with the general immune system
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deterioration has been assumed to play a significant role in the age-associated cancer
risk. Interestingly, chronic HIV infection is also associated with increased cancer
incidence, further implicating immune deficiency. A recent meta-analysis compared
cancers in HIV-infected with immunosuppressed transplant recipients (Grulich et al.
2007). Both populations showed increases in cancers with a known infectious cause,
such as EBV lymphomas, liver cancer, and human papilloma virus (HPV)-associated
cancers, including those of the mouth, penis, anus, liver, stomach, esophagus,
larynx, and eye. In cancers that are associated with persistent infections, such as
EBV, exhaustion of the relevant virus-specific CD8 T cell response is believed to be
one of the contributing factors (Effros 2004). Overall, the similarity in the patterns of
increased cancer risk in the elderly and in HIV-infected younger persons is consistent
with the notion that the immune deficiency, rather than other risk factors, is respon-
sible for the increased cancer incidence associated with chronic HIV disease. These
and other data predict that the combination of aging and HIV disease will further
increase the cancer risk, which would be consistent with the notion of synergy
between the immune effects of each separate condition.

In considering the combined effect of HIV and aging on immunosenescence, it
should be emphasized that there are two categories of older HIV-infected persons –
those who become infected during youth, but survive to old age due to successful
treatment, and those individuals who first become infected during old age. Most of
the data on aging and HIV are derived from the first category, with minimal
information on persons who become infected when they are already old. This latter
group of elderly persons may be at a distinct disadvantage, given that the initial
control over HIV-1 during the primary infection is so critical in terms of the long
term effect on the rate of disease progression. Since aging itself is associated with
suboptimal responses to acute infections, from this standpoint alone, the newly
infected elderly would be predicted to be at greater risk of more rapid progression
to AIDS. A second issue that affects disease progression in newly infected elderly
persons relates to the initial diagnosis. It is rare that physicians discuss sexual
activity or safe-sex with elderly persons, and even in the face of symptoms sugges-
tive of HIV, blood tests for the virus are rarely advised. Thus, HIV disease may be
diagnosed later in older persons, which will have an additional impact on the rate of
progression to AIDS.

T Lymphocyte Changes During Aging

Changes in cellular immunity are considered to be the main factors responsible for
the well-documented increases in infection-related morbidity and mortality in the
elderly. CD4 T lymphocytes are key players in the immune response to pathogens
and vaccines, and during aging, the requisite helper functions with respect to both B
lymphocytes and CD8 T lymphocytes are diminished (Haynes and Swain 2006;
Haynes et al. 2002). In addition to the reduced number of recent thymic emigrants, as
determined by T cell excision circle (TREC) analysis (Douek et al. 1998), the naïve
CD4 T lymphocytes that are produced show specific functional decrements. For
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example, defective T cell help is responsible for the delay, reduced size, and
diminished number of B cell germinal centers in old mice (Zheng et al. 1997).
Similarly, alterations in CD4 T lymphocyte function have also been implicated in the
reduced level of B cell hypermutation (Yang et al. 1996) and in the failure to produce
high titer antibody in response to influenza vaccination (Swenson and Thorbecke
1997). CD4 T lymphocytes also provide help for CD8 T lymphocyte responses,
most notably in chronic diseases, and are required for the maintenance of CD8 T
lymphocyte memory after acute infections (Sun et al. 2004). Therefore, the
age-associated reduced numbers and quality within the naïve T cell pool affect
multiple facets of immunity.

The progressive reduction of naïve T lymphocytes with age is due to the com-
bined effects of thymic involution and the homeostatic pressure of the expanded
memory T cell population. The lower numbers of naïve T cells are associated with
blunted capacity to respond to neoantigens, such as those present in vaccines. The
reduced proportion of naïve T cells also has an impact on cancer, which, as noted
above, increases with age and during HIV disease. Interestingly, thymic output is
related not only the development of cancer, but also to tumor progression. Specif-
ically, in the most deadly form of brain tumor, glioblastoma multiforme, the number
of recent thymic emigrants within the CD8 T cell subset influences both tumor
antigen recognition and age-dependent mortality (Wheeler et al. 2003). Thus, a
variety of age-associated defects have been identified for the naïve T lymphocyte
subset, all of which may contribute to the phenomenon of immunosenescence, but
arguably to a lesser extent than changes that occur within the memory T lymphocyte
population, as will be discussed below.

Aging in humans is associated with significant changes within the memory CD8
T lymphocyte compartment, particularly in the cytotoxic T lymphocyte (CTL)
responses to viruses, where both delayed and diminished responses have been
documented (Deng et al. 2004; Po et al. 2002; Zhang et al. 2002). Within the
memory pool of elderly humans, there are clonal expansions of CD8 T lymphocytes
that often occupy a large proportion of “immunological space” and which are also
associated with a constriction of the available T cell repertoire (Ouyang et al. 2003).
A large proportion of the lymphocytes within the clonally expanded populations lack
expression of the CD28 costimulatory molecule.

Based on extensive cell cultures studies, it appears that the increased proportions
of CD28-negative (CD28�)T lymphocytes in the elderly may be the in vivo corre-
lates of cells that reach the end stage of irreversible cell cycle arrest in vitro following
multiple rounds of antigen-driven proliferation. These cells show permanent and
irreversible loss of CD28 expression (Effros et al. 1994). Similar to lymphocytes in
senescent culture, CD8+CD28� T lymphocytes tested ex vivo are resistant to
apoptosis (Spaulding et al. 1999; Posnett et al. 1999), show minimal proliferative
potential (Effros et al. 1996; Almanzar et al. 2005), and have shortened telomeres
(Monteiro et al. 1996; Effros et al. 1996). CD8 T lymphocytes that reach replicative
senescence in culture also produced high levels of two pro-inflammatory cytokines
(TNFα and IL-6) that are associated with a variety of age-related pathologies, and
whose concentration is increased in the serum of frail elderly individuals.
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Another modulatory effect on the process of replicative senescence is exerted by
adenosine deaminase (ADA), the enzyme that converts immunosuppressive adeno-
sine to inosine (Gessi et al. 2007; Hovi et al. 1976). Most of the research on ADA is
focused on its critical function in lymphoid development, where its absence results in
severe combined immunodeficiency disease (Hershfield 2005). As it happens, ADA
also plays a key role in the optimal function of mature T cells. It is present both
intracellularly and on the surface, as ecto-ADA that is bound to CD26 on antigen-
presenting cells (Kameoka et al. 1993). Recent studies in our lab have been the first
to document that ADA is key to upregulation of telomerase activity and that both
intracellular and ecto-ADA decrease with increasing population doublings in cell
culture. In addition, if exogenous adenosine is added to long term cell cultures, a
scenario mimicking the in vivo environment, the progression of CD8 T cells to
replicative senescence is accelerated, with more rapid loss of CD28 expression and
telomerase activity, ultimately reducing the overall proliferative potential (Parish
et al. 2010).

CD8 T Cell Replicative Senescence in HIV Disease

As in most viral infections, HLA class I-restricted CTL are a critical component of
immunological response to HIV-1. The decline in plasma viral RNA after the
appearance of HIV-specific CTL during acute infection (Koup 1994; Borrow et al.
1994) and the prognostic significance of vigorous CTL responses in disease pro-
gression (Carmichael et al. 1993; Connor et al. 1993) highlight the key role of CTL.
These observations in humans are further bolstered by experiments in rhesus
macaques, where depletion of CD8 T lymphocytes led to striking increases in
plasma SIV RNA (Schmitz et al. 1999; Jin et al. 1999). Thus, there is strong
indication that CTL are critical in HIV-1 immunopathogenesis, and it follows that
viral persistence and disease progression are due, at least in part, to the eventual
failure of CTL.

Similar to aging, chronic infection with HIV-1 is associated with reduced thymic
function. In HIV disease, the number of recent thymic emigrants, as determined by
TCR excision circle (TREC) analysis of both CD4 and CD8 naïve T cells, is reduced
(Nobile et al. 2004). There is also evidence suggesting that naïve T cells generated
during aging and/or HIV infection may be qualitatively different from those gener-
ated during youth. Telomere measurements on two populations of naïve CD4 T
lymphocytes, one that represents the most recent thymic emigrants and the other that
has lost expression of CD31 due to homeostatic proliferation (defined by the CD31
marker), show that both types of naïve cells undergo telomere shortening with age.
Indeed, the naïve CD4 T cells in young HIV-infected persons were shown to have
telomere lengths that were similar to uninfected persons 30 years their senior
(Rickabaugh et al. 2007). These cells also had reduced levels of telomerase activity
compared to uninfected controls.

Even the most antiretroviral successful treatment strategy does not eradicate the
virus, resulting in ongoing stimulation/replication of HIV-1-specific CD8 T
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lymphocytes over many years. Indeed, it is likely that the persistence of suboptimal
(i.e., low perforin) HIV-1-specific CD8 T cell responses despite prolonged therapeu-
tic viral suppression is associated with continuous proliferation and telomere short-
ening, which can eventually lead to the end stage cell cycle arrest known as
replicative senescence. Telomere shortening within the CD8 T cell subset in
HIV-1-infected persons has, in fact, been documented by several investigators
(Palmer et al. 1997; Effros et al. 1996; Wolthers et al. 1996). Conversely, robust,
continuous proliferation and CTL function of HIV-specific CD8 T lymphocytes has
been identified as a key biomarker of long-term nonprogressors (Migueles et al.
2002).

The importance of telomere maintenance in retarding the process of replicative
senescence is underscored by studies demonstrating that gene transduction of
HIV-specific CD8 T lymphocytes from infected donors with the human catalytic
component of telomerase leads to indefinite proliferation, increased suppression of
viral production by acutely infected CD4 T lymphocytes, and enhanced HIV-specific
IFN-γ secretion, consistent with the importance of telomere length maintenance in
anti-viral CTL (Dagarag et al. 2004). Gene transduction with hTERTalso retards loss
of CD28 expression, which is important, since chronic infection with HIV is
associated with increased proportions of CD28� T cells (Appay et al. 2002; Effros
et al. 1996; Brinchmann et al. 1994).

As with aging, in chronic HIV infection, the presence of CD8 T cells that are
CD28� is associated with deleterious outcomes. A recent study compared the
predictive value of CD28 on CD8 T cells between two carefully matched
HIV-infected cohorts: one that progressed to AIDS within 4 years and the second
that progressed more slowly (i.e.,> 8 years). The data show that the fast progressors
had significantly greater proportions of CD8+CD28� T lymphocytes at the start of
the study (Cao et al. 2009). Moreover, the telomere length of the CD8+CD28� T
cells in young (mean age 43) HIV-infected persons is the same as that of PBMC from
centenarians (Effros et al. 1996), consistent with the notion that HIV disease may
represent premature immunological aging (Appay and Rowland-Jones 2002). Inter-
estingly, CMV, which plays a key role in aging, is also important in HIV disease. It
has been shown that in HIV-infected persons who have progressed to AIDS,
detectible plasma CMV DNA was an independent predictor of death even after
adjusting for HIV-1 level and CD4 T cell counts (Wohl et al. 2005).

Chronic Antigenic Stimulation by CMV: Impacts on Aging
and HIV/AIDS

The clinical relevance of age-related changes within the T cell compartment is
underscored by data from longitudinal studies in humans, which have identified a
cluster of T cell parameters, the so-called “immune risk phenotype” (IRP) that is
predictive of early mortality in the very old. These include an inverted CD4/CD8
ratio, poor proliferative responses, and high proportions of CD8+CD28� T lympho-
cytes. The IRP is significantly associated with latent viral infections, particularly
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CMV, and to lesser extent with Epstein-Barr virus (EBV) and varicella zoster
(Ouyang et al. 2002). Interestingly, immune control over CMV is also relevant
with respect to HIV-1 disease: in patients with AIDS, detectible plasma CMV
viremia is an independent predictor of death even after adjusting for HIV-1 level
and CD4 T cell counts (Wohl et al. 2005). The above mortality data from both aging
and HIV-1 disease suggest that the continuous antigenic stimulation of CD8 T cells
involved in maintaining the latent status of persistent viruses plays a major role in the
accumulation of dysfunctional virus-specific lymphocytes, resulting in the
reconfiguration of the aging immune system (Pawelec et al. 2004; Effros 2016).

Although the total number of T cells in the peripheral blood remains stable
throughout life in the very healthy elderly (Pawelec et al. 2005), there are marked
changes in the relative distribution of T lymphocyte subsets. In particular, there is a
significant decrease in the proportion of naïve CD8 T lymphocytes, which is
accompanied by increased proportions of memory CD8 T lymphocytes. Most of
these memory cells are part of clonal expansions that are specific for persistent
viruses, mainly CMV, but also EBVand VZV (Pawelec et al. 2005). Although these
viruses do not necessarily re-emerge or cause disease, it is becoming increasingly
evident that maintaining control over persistent infections over many decades is
“costly” in terms of overall immune function (Pawelec et al. 2004). Thus, it seems
that chronic antigenic stimulation of CD8 T lymphocytes plays a central role in
age-related reconfiguration of the human immune system.

In the elderly, replicative senescence within the CD8 T lymphocyte population is
associated with a variety of deleterious clinical outcomes. For example, one of the
key immune correlates of reduced vaccine responses is the presence of high pro-
portions of CD8 T cells that lack CD28 expression. Furthermore, clonal expansions
of CD8 T cells that are CD28� are part of a so-called “immune risk phenotype”
(IRP), which is predictive or early mortality in the very old (Wikby et al. 2002). As
mentioned above, the IRP is significantly associated with latent viral infections,
particularly CMV. High proportions of senescent CD8 T lymphocytes are also
associated with osteoporotic fractures in older women (Pietschmann et al. 2001),
and with accelerated disease progression in the autoimmune disease, ankylosing
spondylitis (Schirmer et al. 2002). Finally, in patients with head and neck tumors,
the CD8+CD28� T cell subset undergoes expansion during the period of tumor
growth, but is reduced following tumor resection (Tsukishiro et al. 2003),
underscoring the putative role of chronic antigenic stimulation in the generation of
senescent CD8 T cells.

It has been proposed that persistent herpes virus infection may cause CD8 T
lymphocyte replicative senescence in vivo. The persistent nature of these infections
is believed to periodically stimulate T cell responses, resulting in considerable
proliferation and clonal expansion of virus-specific CD8 T cells over time (Appay
et al. 2002). Most of these infections are acquired during youth and establish chronic
infection with latency and reactivation, so that by old age there is a cumulative effect
of chronic periodic antigenic stimulation of CD8 T cells causing accumulation of
senescent cells (Pawelec et al. 2004). Chronic infection with CMV seems to be
important with respect to HIV disease as well. During the primary (acute) phase of
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HIV infection, CMV-specific CD8 T cells in the blood become activated (Doisne
et al. 2004), and once the infection becomes chronic, a large proportion of the CD8 T
cell pool is directed at CMV.

The herpesviruses CMV/EBV/VZV establish latency with intermittent
reactivation causing chronic intermittent antigenic stimulation leading to replicative
senescence. The effect is even more dramatic effect during chronic infection with
HIV-1, which persists with exuberant ongoing viral replication and therefore vigor-
ous chronic antigenic stimulation of the CD8 T lymphocyte pool. This accelerated
process of stimulation and senescence would therefore be an ideal model to study, in
a short time frame, the aging-associated immune dysfunction caused by ongoing
significant antigenic stimulation. HIV-1 provides an additional experimental
advantage in that it is a chronic viral infection for which viral replication is
easily quantitated and blunted by antiviral treatment. Asymptomatic chronic
CMV/EBV/HSV infections, in contrast, are not typically monitored for viral repli-
cation or treated due to their predominantly latent state. Thus, studies comparing
age-matched treated and untreated HIV-1-infected persons might provide novel
insights into the role of chronic antigenic stimulation on the process of replicative
senescence.

Why CMV?

Cytomegalovirus (CMV) is a member of the herpesviridae family, which contains
more than 100 viruses. Vertebrate species, including humans, have been infected by
various herpesviridae family members for millions of years. Due to the intricate
strategies developed by these viruses that allow them to escape the immune system,
once infected, humans develop lifelong persistent infections, starting early in life
(Gianella et al. 2015). Seroprevalence varies according to the geographic locale, but
it has been estimated to range from 45–100%. CMV is notable for having the largest
genome of all viruses that infect humans. Studies using over 200 protein-spanning
peptide pools tested on a human cohort of mixed HLA backgrounds suggest that at
least 150 proteins of the virus can be recognized. This may actually be an underes-
timate, since the CMV genome actually provides more than 700 protein open
reading frames (Terrazzini and Kern 2014; Stern-Ginossar et al. 2012; Holtappels
et al. 2009). Although there is some genetic and antigenic heterogeneity among
CMV isolates, the persistence of CMV within the human population is generally
assumed to be due to its complex strategies of immune evasion, rather than rapid
mutation of target proteins (Sijmons et al. 2015).

The interactions between and CMVand humans have occurred over millions of
years, suggesting possible beneficial effects, given the overall high presence of the
virus worldwide. This notion is based on evolutionary theory, which posits that
certain beneficial effects during youth are positively selected, since this is the
period associated with the need for reproductive success. Indeed, studies compar-
ing CMV infection in different age groups have documented several positive
immunological effects during youth, including elevated circulating levels of IFN
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gamma, increased antibody response to influenza vaccination, and increased CD8
T cell sensitivity (Furman et al. 2015). Mouse studies accord with the human
observations, showing such beneficial effects as cross-protection against a bacte-
rial infection in young, but not old, animals (Barton et al. 2007). An interesting
suggestion regarding the fact that the humans harbor CMV and other latent
herpesvirus infections is that the term “normal” immune system be refined to
take into account these persistent infection modulatory effects on the immune
system (White et al. 2012).

The Ying-Yang of CMV beneficial effects during youth versus its deleterious
effects during old age is consistent with one of the major theories of aging, namely,
antagonistic pleiotropy. This theory posits that certain biological features are posi-
tively selected during youth due to certain favorable effects, but turn out to be
harmful in old age, i.e., during a stage of life that is neutral in terms of evolutionary
natural selection. There are numerous examples of how this notion is consistent with
biological observations. For instance, high levels of estrogen favor reproductive
success early in life, but may enhance the growth of breast tumors in older women.
The process of replicative (cellular) senescence – which suppresses tumor formation
during youth, but plays a key role in many-age-related pathologies – is a second
example of antagonistic pleiotropy.

Gut-Associated Lymphoid Tissue (GALT): The Missing Link
in Aging Research

In humans, essentially all the information on the immune system has been derived
from studies on peripheral blood, which contains approximately 2% of total body
lymphocytes. As noted above, a salient finding from those studies is the profound
alteration in function and composition of the memory CD8 T lymphocyte pool, due,
in large part, to the progressive accumulation of cells with features of replicative
senescence. There are no data on the age-related changes in CD8 T lymphocytes in
the human gastrointestinal tract, the major reservoir of lymphocytes, and an ana-
tomical region of high antigenic exposure.

The data from animal studies suggest that aging is associated with significant
alterations within the GALT, underscoring the need for similar studies in humans.
Significantly, changes in the distribution of CD8 T lymphocytes in the GALT have
been observed in aged rats (Daniels et al. 1993). Mucosal immune system studies in
mice have documented age-related reduced frequencies of naïve CD4 T lympho-
cytes and dendritic cells in Peyer’s patches (Fujihashi and McGhee 2004). Defects in
mucosal IgA secretion (Taylor et al. 1992) as well as in helper T cells, CTL function,
and mucosal vaccine responses have been described for old mice (Fayad et al. 2004).
Finally, the reported age-associated reduction in immune responses to cholera toxin
and E. coli enterotoxin, which are adjuvants frequently used in mucosally delivered
vaccine preparations, may have broad implications for vaccine success in the elderly
(Schmucker et al. 1996). Based on these animal studies, it has been proposed that
age-associated alterations arise in the mucosal immune system of the gastrointestinal
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tract earlier than in the peripheral immune compartment (Koga et al. 2000). These
data underscore the need for detailed characterization of the effect of aging on the
human GALT.

HIV disease, which, as noted above, shows many immunological parallels with
aging, provides a unique opportunity to elucidate changes within the GALT that are
due to chronic antigenic stimulation. In fact, it is becoming increasingly recognized
that most of the immunological “action” during HIV-1 infection occurs in the gut.
Regardless of the route of transmission, the HIV-1 virus selects CD4 T lymphocytes
that also express CCR5 receptors, most of which reside in the gut, with enhanced
per-cell CCR5 expression as compared to the blood (Anton et al. 2000). Indeed,
treatment strategies based on peripheral blood measurements of CD4 T lymphocytes
or level of viremia have been described as “misguided,” since these values are often
an underestimate of the profound and continuous loss of CD4 T lymphocytes in the
gut (Veazey and Lackner 2005).

The importance of early and persistent immune responses within the gut
mucosa is highlighted in comparisons between long-term nonprogressors and
those with high levels of viremia, in which the former show prolonged mainte-
nance of mucosal T lymphocytes, enhanced virus-specific responses and distinct
gene expression profiles (Sankaran et al. 2005). Once the infection has become
chronic, the CD8 T cell response in the gut is “too little, too late,” with a
magnitude that is <5% of that seen in any other lymphoid organ (Reynolds
et al. 2005). Indeed, the ultimate failure of the immune system has been suggested
to occur when CD4 and CD8 T lymphocytes are unable to sustain sufficient
frequencies of effectors in both lymphoid and extra-lymphoid tissues, particularly
the gut (Grossman et al. 2006).

There is accumulating evidence that HIV-1 may continue to replicate in mucosal
tissues, despite being undetectable in the blood. A recent study, which compared the
viral burden of DNA and RNA in lymphocytes from the gastrointestinal tract to
lymphocytes from the blood, concluded that the GI mucosal lining carries a dispro-
portionately high viral burden (Comi et al. 2001). In fact, quantifiable levels of
HIV-1 can be detected in rectal mucosa-associated tissue despite years of
undetectable levels of plasma HIV-1 RNA (Anton et al. 2003). Also, in some
women, levels of HIV-RNA are higher in the genital mucosa compared to the
blood (Neely et al. 2006).

Peripheral blood studies may also fail to reflect the level of immune reconstitution
in the gut. In a 7-year study of HIV-1-infected individuals who began ART shortly
after infection, it was observed that although the blood population of CD4 T
lymphocytes rebounded to normal levels, a subset of lymphocytes within the gut
remained depleted in 70% of the subjects. After 3 years of intensive drug therapy that
suppresses HIV-1 replication very effectively, most patients still had only half the
normal number of CD4 effector memory T lymphocytes in their gastrointestinal
tracts (Mehandru et al. 2006). All of these data from studies on HIV disease
underscore the need for increased research on the human gut mucosal immune
compartment, which has, for various reasons, heretofore been ignored in human
immunological studies.
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Translational Implications

One of the shared features of immunosenescence and AIDS is the accumulation of
memory CD8 T lymphocytes with features of replicative senescence. In both aging
and HIV disease, the driving force seems to be chronic antigenic stimulation by
persistent viruses. Clearly, prevention of primary infection with these viruses would
be the most efficient strategy to prevent replicative senescence. However, it is highly
unlikely that prophylactic vaccines against CMVand HIV-1 will be developed in the
foreseeable future. Another possible approach is to reduce the antigenic burden by
treatments directed against the virus itself. Anti-CMV therapy is usually reserved for
situations of extreme immunosuppression, such as in organ transplant patients or the
final stages of HIV disease, but it is possible that expanding the criteria for treatment
to include all CMV seropositive individuals may lead to improved immune function
during aging and AIDS. Antiretroviral therapy (ART) against HIV does, in fact,
reduce the antigenic burden and should theoretically also retard the generation
of senescent HIV-specific CD8 T cells, but no studies have actually addressed this
question.

An alternative to reducing the antigenic burden is to augment the function of the
virus-specific CD8 T cells by retarding replicative senescence. For example, since
senescent CD8 T cells no longer express the CD28 co-stimulatory molecule, one
approach that has been used is gene transduction with CD28. Indeed, the
re-expression of an intact signaling CD28 molecule in CMV- or HIV-specific
CD8 T cells that had lost CD28 expression led to the restoration of IL-2 production
and autocrine-induced proliferation in response to antigen recognition (Topp et al.
2003). Another approach to modulating replicative senescence is based on the
enzyme telomerase, which is upregulated in T cells during primary and secondary
antigenic stimulation, but becomes undetectable by the third and all subsequent
stimulations. Transduction of HIV-specific CD8 T cells isolated from HIV-infected
persons with the gene for hTERT (the catalytic telomerase component) results in
increased proliferative potential, telomere length stabilization, and enhanced abil-
ity to control viral replication (Dagarag et al. 2003, 2004). These proof-of-princi-
ples demonstrate that telomerase-based immunomodulatory strategies may be
practical approaches to enhancing antiviral CD8 T cell function in both aging
and AIDS. Indeed, preliminary studies show that exposure of CD8 T cells to
certain small molecule telomerase activators leads to increased proliferation and
antiviral function (Fauce et al. 2005).

If replicative senescence can be retarded, the result would be a reduction in the
proportion of senescent T cells, and presumably the associated deleterious clinical
effects noted above. Thus, more detailed studies on the process of T lymphocyte
replicative senescence may lead to improved prognosis for both aging and HIV
disease. An additional benefit of immune-based approaches to therapy may be a
reduced need for drugs that target HIV-1. Many of the current drug treatments are
associated with metabolic changes normally associated with aging, including
lipodystrophy, dyslipidemia, and insulin resistance, all of which increase the risk
of cardiovascular disease (Morse and Kovacs 2006). Thus, HIV disease is associated
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not only with premature immunosenescence, but also in treatment-associated accel-
eration in the appearance of many other physiological features of aging (Morse
et al. 2007).

Concluding Remarks

Treatment advances have resulted in increased life expectancy for persons infected
with HIV, which is leading to the “graying” of this cohort (Hinkin et al. 2001). In
addition, the age of primary infection with HIV-1 is increasing, due to the greater
levels of high risk behavior in older adults. The question of whether the immuno-
logical changes associated with HIV-1 infection synergize with those that occur
during chronological aging has not been addressed. Elucidation of the underlying
immune system basis for the relationship between age and HIV-1 disease progres-
sion will have far-reaching translational/treatment implications for the progressively
increasing elderly population of HIV-1-infected persons. If it turns out that older
HIV-infected persons have less immunological reserve, the timing of treatment
initiation may require modification. Indeed, many of the current guidelines have
been derived from correlations between CD4 T cell counts and opportunistic infec-
tion incidence in younger persons. In addition, since HIV-1 persists with exuberant
ongoing viral replication and therefore vigorous chronic antigenic stimulation,
particularly of the CD8 T cell pool, this infection constitutes an ideal model to
study the effects of chronic antigenic stimulation on immune dysfunction. It is
anticipated that the convergence of immunological studies in the areas of HIV
disease and aging will undoubtedly lead to new paradigms for medical care and
vaccine strategies for both situations.
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