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Abstract
Many immunologists understand the importance of mucosal immunology, an area
that is distinctly regulated from its systemic counterpart. Despite extensive
current studies and their outcomes, it still remains for us to fill major gaps in
our knowledge of the mucosal immune system in the aged, often described as
mucosal immunosenescence. It is well established that pathogen-specific secre-
tory immunoglobulin A (SIgA) antibody (Ab) is the major player for host defense
from various pathogens at mucosal surfaces. Alterations in the mucosal immune
system occur in advanced aging which ultimately results in a failure to elicit
pathogen-specific SIgA Ab responses in order to protect the host from infectious
diseases. Symptoms of mucosal immunosenescence were initially detected in the
gastrointestinal (GI) immune system, especially in the gut-associated lymphoid
tissues (GALT), i.e., the Peyer’s patches (PPs). Thus, a diminished size of
PP tissues as well as reduced numbers of naïve CD4+ T cells, follicular dendritic
cells (DCs), and antigen (Ag) uptake or microfold (M) cells were noted during the
aging process. In contrast, immunological functions of nasopharyngeal-
associated lymphoid tissues (NALT) remain intact during aging with notable
signs of immunosenescence seen only in the elderly (2-year-old mice). To
overcome the effects of immunologic aging in mucosal immunity, it is essential
to develop novel immunologic strategies for health in the elderly including
vaccines and immune therapies to combat pathogens. In this regard, it has been
shown that stem cell transfer as well as several mucosal adjuvant and delivery
systems for activation of and deposition of Ag to mucosal DCs or targeting
M cells, respectively, are attractive and effective immunologic intervention
approaches.

Keywords
Mucosa · Vaccines · Aging · Stem cells · Adjuvants · Gastrointestinal tract ·
Upper respiratory tract

Introduction: The Mucosal Immune System

Mucosa-associated cells, lymphoid and effector molecules (e.g., antibody; Ab)
creates an integrated network as the mucosal immune system of higher mammals.
Immunoglobulin A (IgA) plays a central role in this sophisticated immune system.
Along with cytokines, chemokines and their receptors involved in IgA induction and
regulation, the IgA isotype appears to function in synergy with the innate immune
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system including epithelial cells, macrophages, innate lymphoid cells and their
derived cytokines, and anti-microbial peptides (Fujihashi et al. 2013; Kiyono et al.
2008). In order to induce antigen (Ag)-specific immune responses at these mucosal
barriers, one must consider the common mucosal immune system (CMIS), which
consists of functionally distinct but highly interconnected mucosal IgA inductive
and effector tissues (Fujihashi et al. 2013; Kiyono et al. 2008). In the mammalian
host, organized secondary lymphoid tissues have evolved in the upper respiratory
(UR) and gastrointestinal (GI) tracts to facilitate Ag uptake, processing, and presen-
tation for the initiation of Ag-specific immune responses. These tissues are termed
nasopharygeal-associated lymphoid tissue (NALT) and gut-associated lymphoid
tissue (GALT), respectively. Collectively, NALT and GALT in humans and mice
comprise a mucosa-associated lymphoid tissue (MALT) network. This MALTserves
as the major mucosal inductive sites. In general, individual components of MALTare
assumed to share the molecular and cellular characteristics of well-characterized
Peyer’s patches (PPs). PPs are covered by a follicle associated epithelium (FAE)
interspersed with Ag-sampling microfold (M) cells and well-organized micro-
architectures, such as a subepithelium (dome) containing Ag-presenting cells
(APCs) enriched in dendritic cells (DCs) and macrophages, and a B cell zone with
germinal centers (GCs), and adjacent T cell areas as well as high endothelial venules
(HEVs). We know that naïve, recirculating B and T lymphocytes enter MALT via the
HEVs (Fujihashi et al. 2013; Kiyono et al. 2008). For the initiation of Ag-specific
mucosal immune responses through MALT (or PPs and NALT), the FAE M cell
plays a crucial role by sampling Ags from the lumen of the gut or nasal passages and
transporting the intact form of Ag to the underlying APCs for subsequent processing
and presentation of the peptide Ag. Further, APCs (e.g., PP DCs) induce necessary
mucosal imprinting of the molecules CCR9 and α4β7 on Ag-specific lymphocytes
(Fujihashi et al. 2013; Kiyono et al. 2008). Following this Ag-presentation and
activation process, Ag-specific B and T cell populations then emigrate from the
mucosal inductive environment via lymphatic drainage, circulate through the blood-
stream, and home to mucosal effector sites where they conduct effector functions
including the differentiation of PP originating B cells into IgA producing plasma
cells. Effector sites for mucosal immune responses include the numerous subsets of
lymphoid cells in the lamina propria (LP) of the gastrointestinal (GI), upper respi-
ratory (UR), and reproductive tracts, as well as secretory glandular tissues (Fujihashi
et al. 2013; Kiyono et al. 2008). Resident in these mucosal effector sites, which are
characterized by more diffuse connective tissues, are the Ag-specific CD4-positive
(CD4+) Th1 cells, Th17 cells, and CD8+ cytotoxic T lymphocytes (CTLs) respon-
sible for cell-mediated immunity (CMI)/CTL functions, as well as CD4+ Th2 cells,
IgA-committed B lymphocytes, and IgA-producing plasma cells for humoral muco-
sal immunity. Mucosal surfaces are protected by SIgAwhich is mainly produced in
local effector tissues through the cellular cooperation between polymeric IgA pro-
ducing plasma cells and poly Ig receptor expressed by columnar epithelial cells
(Fujihashi et al. 2013; Kiyono et al. 2008). Since the effector sites of mucosal
surfaces play a central role as the first line of host defense, these tissues contain
relatively high numbers of activated T and B cells, expressing a memory phenotype

61 Mucosal Vaccination Challenges in Aging: Understanding. . . 1381



in order to be ready for an immediate immune responses to mucosally invading,
undesired pathogens (Fujihashi et al. 2013; Kiyono et al. 2008). Further, regulatory
T (Treg) cells and CD4+ Th17 cells, which control the suppression and protection/
inflammation phases of the GALT immune system, respectively, have been identified
in the intestinal LP region (Fujihashi et al. 2013; Kiyono et al. 2008). More recent
evidence showed that newly identified type 3 innate lymphoid cells (ILC3) in the
intestinal LP play key roles in the regulation of epithelial cell repair and glycosyl-
ation in order to assist mucosal protection (Goto et al. 2014).

Despite extensive current studies and their outcomes which provide a better
understanding of mucosal immune system, we still do not have a clear view of the
age-associated alterations which occur in this sophisticated immune system, which is
termed mucosal immunosenescence. In this review, we will focus on the changes
exhibited in both GI and UR tracts with advanced aging and introduce potential
strategies for the restoration of mucosal immunosenescence in order to describe
progress toward development of effective mucosal vaccines which are most needed
in the elderly.

Rationale for Mucosal Immunization

The successful induction of mucosal immune responses has been shown to require
the use of mucosal adjuvants together with appropriate forms of Ag-delivery vehi-
cles displaying purified Ags (Fujihashi et al. 2013; Kiyono et al. 2008). Further, live,
attenuated viruses, bacteria, or their microbial substructures have been shown to be
effective immunization platforms. Co-administration of adjuvant offers the addi-
tional advantage of supporting and eliciting parenteral immune responses leading to
double layers of protective immunity against invasive mucosal pathogens. Two
bacterial enterotoxins (native cholera toxin [CT] from Vibrio cholerae and native
heat-labile toxin [LTx] from Escherichia coli) are well-established mucosal adju-
vants for the induction of both mucosal and systemic immunity (e.g., SIgA and
serum IgG, respectively) to co-administered protein Ags (Marinaro et al. 1995;
Xu-Amano et al. 1993) in experimental animal models. Attenuated pathogenic
bacteria such as recombinant Salmonella (rSalmonella) have also been used as an
effective mucosal delivery platform for the induction of SIgA Ab responses to
expressed recombinant Ags (Curtiss et al. 1988; Okahashi et al. 1996; VanCott
et al. 1996). The nature of the recombinant delivery system, as well as the route of
immunization, influences the type of CD4+ Th cell subsets induced and thereby
predisposes the host towards systemic or mucosal immunity, or both. For example,
oral administration of vaccine protein together with CT or nontoxic mutants of CT
(mCTs) tends to induce CD4+ Th2-type cells with characteristic plasma IgG1,
IgG2b, IgE, and IgA, as well as mucosal SIgA Ab responses (Marinaro et al.
1995; Xu-Amano et al. 1993). In contrast, oral immunization using recombinant
bacteria, e.g., rSalmonella-expressing proteins, tends to induce not only CD4+

Th1-type cells for CMI responses but also characteristic CD4+ T cells which produce
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cytokines such as IFN-γ and IL-10, which are thought to also support mucosal SIgA
Ab responses (Okahashi et al. 1996; VanCott et al. 1996).

Nasal delivery of Ag plus mucosal adjuvant has emerged as perhaps the most
effective route for induction of both mucosal and peripheral immunity. Again, most
studies can be divided into those which use soluble vaccine components with
mucosal adjuvants such as CT (as well as protein-CT-B conjugates) and those
which use attenuated microbial vectors such as rSalmonella. A bacterial protein
Ag given via the nasal route with or coupled to CT-B subunit induced Ag-specific
mucosal SIgA Ab responses (Wu and Russell 1994). Further, nasal immunization
with trivalent influenza vaccines in the presence of CT-B containing a trace amount
of CT provided cross-protection against a broad range of influenza viruses (Tamura
et al. 1992). It was also shown that nasal immunization with influenza vaccine
together with the B subunit of LTx (containing a trace amount of LTx) induced
Ag-specific immune responses in humans (Hashigucci et al. 1996). Since use of a
native enterotoxin-based adjuvant given nasally elicited induced central nervous
system (CNS) toxicity leading to Bell’s palsy syndrome, CT, and LTx are unaccept-
able for human use and native enterotoxin-based adjuvants have been withdrawn
from the market. In order to avoid potential toxicity of CT, mCTs have been
developed and nasal delivery with protein Ag showed significant enhancement of
Ag-specific SIgA Ab responses in the UR tract (Yamamoto et al. 1997, 1998).
Further, nasal vaccines containing tetanus toxoid (TT) and a nontoxic mCT spurred
the generation of tetanus toxin-specific neutralizing Abs, thereby affording protec-
tive immunity (Hagiwara et al. 2003; Kweon et al. 2002). These findings show that
an appropriate nasal vaccine can provide effective mucosal and systemic immunity
against infections. Indeed, different types of adjuvants, including ligands for toll-like
receptors, cytokines/chemokines, chemicals, nonliving systems, and plasmid DNA,
have been used in nasal vaccines. As with oral immunization, a rSalmonella delivery
system was also employed as a nasal immunization strategy. Nasal delivery of
rSalmonella encoding a hybrid form of the hepatitis B virus core Ag (HBc) induced
Ag-specific IgA Ab responses in external secretions including the UR tract (Hopkins
et al. 1995; Schodel et al. 1996). In addition, rSalmonella strains encoding
papillomavirus-like particles (Nardelli-Haefliger et al. 1997), urease A and B sub-
units of Helicobacter pylori (Corthesy-Theulaz et al. 1998), hepatitis B Ag
(Nardelli-Haefliger et al. 2001), and the protective Ag of anthrax toxin (Galen
et al. 2009) successfully elicited Ag-specific protective immunity. To this end,
nasal immunization with rSalmonella expressing PsaA, a conserved Ag important
for Streptococcus pneumoniae adhesion to and invasion into nasopharyngeal epi-
thelia, resulted in protection from nasal colonization by S. pneumoniae (Wang et al.
2010). In addition to this bacterial delivery system, viral vectors such as the
adenovirus have been commonly used in order to induce mucosal immunity in the
UR tract. For example, nasal or intratracheal delivery of the replication-deficient
adenovirus 5 (Ade5) vector induced elevated mucosal IgA Ab responses to adeno-
virus and β-galactosidase in the lungs, the lower respiratory lymph nodes and nasal
LP (Van Ginkel et al. 1995). Others showed that nasal delivery of adenovirus
expressing herpes simplex virus Ag induced long-lived, Ag-specific cytotoxic T
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lymphocyte memory in mucosal tissues (Gallichan and Rosenthal 1996). In addition,
a poxvirus and avipoxvirus vector system was developed and some of these vectors
were employed as a nasal delivery strategy (Rothenthal et al. 2015).

The Potential Regulation of Mucosal Immunosenescence by
the Intestinal Microbiota

The density of bacteria in mammalian large intestine can reach up to 1012 bacteria
per gram of intestinal contents (Macpherson et al. 2008; Tsuji et al. 2008). In this
regard, 50 genera/several hundred species which represent more genes in the gut
microflora than is seen in the human genome, was found in the human gut
microbiota (Kurokawa et al. 2007). In order to maintain appropriate homeostatic
conditions, the normal microbiota protects from potential pathogenic bacteria
colonization by producing antimicrobial peptides. Further, this intestinal micro-
biota provides energy in the form of short-chain fatty acids and nutrients (vitamin
K and B12) (Tremaroli and Backhed 2012; Tsuji et al. 2008). Furthermore, mucosal
tissue development and the host immune system development including SIgA Ab
synthesis were closely regulated by the intestinal microbiota (Cebra 1999; Mac-
pherson et al. 2008; Suzuki and Fagarasan 2008). For example, hypoplasia of PPs,
reduced numbers of IgA plasma cells, and CD4+ T cells have been reported in germ
free (GF) mice (Cebra 1999; Macpherson and Harris 2004; Macpherson et al.
2008). When GF mice were exposed to normal mice or mice monoassociated with
E. coli, these mice developed a mature mucosal immune system (Klaasen et al.
1991; Shroff et al. 1995). Although GF mice failed to establish tolerance to orally
fed Ags, oral treatment with lipopolysaccharide converted GF mice to sensitivity to
oral tolerance induction (Wannemuehler et al. 1982). Further, IgA2 subclass
switching was preferentially supported by bacterial stimulation of human intestinal
epithelial cells (He et al. 2007). Conversely, the absence of mucosal IgA Abs
induced dysbiosis in the intestine by allowing bacterial population changes to
occur. Thus, activation-induced cytidine deaminase (AID)-deficient mice which
lack an appropriate molecular environment for IgA class switching showed aber-
rant expansion of segmented filamentous bacteria (Suzuki et al. 2004). Further,
opportunistic bacteria, largely Alcaligenes species, specifically inhabit GALT and
isolated lymphoid follicles (ILFs), with the associated preferential induction of
Ag-specific SIgA Abs in the GI tract (Obata et al. 2010; Sato et al. 2015). Recent
studies showed that diverse and select IgA Abs contribute to the maintenance of a
diversified and balanced microbiota, which in turn facilitates the expansion of
Foxp3 T cells, induction of GCs, and SIgA Ab responses in the gut through a
symbiotic regulatory loop (Kawamoto et al. 2014). Based upon these findings, one
could predict that alterations in the intestinal microflora may lead to a
dysregulation of the immune system in the GI tract as major age associated-
changes occur. Indeed, it has been reported that significant changes in the intestinal
microflora were noted in the elderly (>65 years old) (Claesson et al. 2011;
Woodmansey 2007). In addition, other human microbiome analyses showed that
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the centenarians exhibited increased inflammatory cytokine responses
(“inflammaging,” see discussion below) associated with significant changes in
their microbiota when compared with those seen in young adults (Biagi et al.
2010).

Alterations in the GI Tract Immune System

Immunologic analyses of the GI tract during aging have provided extensive evidence
for dysregulation and an overall decline in mucosal immunity (Fujihashi and Kiyono
2009). The most common method for assessing mucosal immune responses is perhaps
to test external secretions for the presence of SIgA Abs. It has been shown that total
IgA Ab levels in mucosal secretions in humans were either increased or remained
unchanged in aging. Thus, studies have shown that elderly subjects had significantly
higher concentrations of salivary SIgAAbs than did younger ones (Arranz et al. 1992).
The same report also showed that whole gut lavages of aged and young subjects
contained similar Ab levels (Arranz et al. 1992). Others have also reported similar total
IgA Ab responses in the serum of aged humans (Ammann et al. 1980; Buckley et al.
1974). Further, studies in aged mice and rats also revealed total IgA Ab levels
resembling those seen in humans (Ebersole et al. 1985; Finkelstein et al. 1984;
Kawanishi and Kiely 1989; Senda et al. 1988). Similarly, our previous study showed
that fecal extracts from 1-year-old mice contained essentially the same levels of IgA
Abs as those seen in young adult mice (Koga et al. 2000). These results indicate that
age does not impair total IgA Ab responses in external secretions. To support these
findings, when B cells from the PPs of aged mice were stimulated with autoreactive T
cell hybridoma-derived B cell stimulatory factors, significantly higher levels of IgA
Abs were produced than were noted in identically treated PP B cells from young adult
mice (Kawanishi et al. 1989). In contrast, in vitro Ab production in B cells from aged
PPs andMLNs were depressed when Tcell-dependent B cell mitogens were employed
(Kawanishi and Kiely 1989). These findings suggest that T cells which are involved in
the induction of Ag-specific immune responses are more susceptible than B cells to
immunosenescence in the mucosal compartment. Furthermore, it is possible that
natural IgA Ab responses in aged mice could be due to increased levels of low affinity,
T cell-independent IgA Ab production.

Ag-specific IgA B cell responses are known to play a central role in the induction
of mucosal immunity to infectious diseases (Kiyono et al. 2008). The GI tract in the
elderly is particularly susceptible to infectious diseases, suggesting that Ag-specific
mucosal immunity is also affected in aging (Powers 1992; Schmucker et al. 1996).
Indeed, despite intact overall IgA Ab levels in aging, Ag-specific immunity in the
elderly and in experimental animals are significantly diminished when compared
with their younger counterparts. For example, intestinal lavages from aged rats given
oral CT were shown to contain significantly lower titers of anti-CT-B IgA Abs than
did those from identically immunized young rats (Schmucker et al. 1988). Further-
more, the numbers of Ag-specific IgA Ab forming cells (AFCs) in the intestinal LP
were also reduced in aged rats (Schmucker et al. 1988; Thoreux et al. 2000) and

61 Mucosal Vaccination Challenges in Aging: Understanding. . . 1385



rhesus macaques (Taylor et al. 1992) given oral CT. When aged mice were orally
immunized with the hemagglutinin (HA) from influenza virus along with CT as
mucosal adjuvant, reduced levels of HA-specific SIgA Ab responses were noted
when compared with those seen in young adult mice (Enioutina et al. 2000). These
results clearly indicate that Ag-specific mucosal SIgA Ab responses are diminished
in aged animals, especially those associated with the GALT immune system. Of
importance, our previous studies showed that age-associated dysregulation of the GI
tract mucosa existed as early as 12–14-months of age in mice (Koga et al. 2000)
(Fig. 1). Thus, when 1-year-old mice were orally immunized with ovalbumin (OVA)
plus CT, reduced levels of OVA- and CT-B-specific mucosal and peripheral immune
responses were noted which resembled those seen in aged (2-year old) mice given
the same oral vaccine (Koga et al. 2000). In contrast, 1-year-old mice given OVA
plus CT via the subcutaneous route failed to reveal CT adjuvanticity (essentially no
OVA-specific Ab responses) but maintained its antigenicity for Ab responses to
CT-B (Koga et al. 2000). It has been shown that CT enhanced CD86 expression by
APCs and these effects were not influenced by CD40-CD40L interactions. Thus,
age-associated alterations in CD40L expression by splenic CD4+ T cells could be the
reason for impaired OVA-specific immunity, which require CD40-CD40L interac-
tions. Based upon these studies, one could suggest that the parenteral immune
system in 1-year-old mice may be in a transitional stage between a normal and
age-associated deficiency. Thus, we would conclude that age-associated alterations
may arise in the mucosal immune system of the GI tract earlier (1 year of age) than in
the parenteral immune compartment.

Involvement of GALT in GI Tract Immunosenescence

As indicated above, since PPs are the major mucosal inductive tissues in the GI
tract, lack of PPs can result in impaired Ag-specific-SIgA Ab responses when oral
CT adjuvant or rSalmonella delivery systems are employed (Hashizume et al.
2008; Yamamoto et al. 2000). Thus, one could easily predict that this impaired
Ag-specific Ab response was due to age-associated alteration in the PPs. Indeed, a
substantial senescence-associated decline in numbers of lymphoid cells was
found in the GALT, specifically in PPs and mesenteric lymph nodes (MLNs)
(Kawanishi and Kiely 1989). Further, a significant size reduction in PPs was seen
in 1-year-old mice along with reduced Ag-specific mucosal Ab responses (Koga
et al. 2000) (Fig. 1). Although the ratio of CD4+ and CD8+ T cells and B cells
were unchanged (Kato et al. 2003; Koga et al. 2000), the actual numbers of
lymphocyte counts in PPs of 1-year-old mice were significantly lower than those
seen in young adult mice (6–8 weeks old) (Kato et al. 2003; Koga et al. 2000)
(Fig. 1). Indeed, Ag-stimulated CD4+ T cells from 1-year-old mice given oral
OVA plus CT resulted in reduced Th2-type cytokine (e.g., IL-4) production
(Koga et al. 2000). Further, it was reported that Ag-specific T cell regulatory/
helper functions in PPs were diminished by aging (Kato et al. 2003; Kawanishi
and Ajitsu 1991). These findings clearly suggest that the development of effector
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T cells is influenced by senescence. Indeed, it has been shown that age-associated
alterations closely parallel increases in memory type and loss of the naïve T cell
phenotype during aging (Fujihashi and Kiyono 2009). In this regard, when the
actual cell numbers of naïve CD4+ T cells between young adult (6–8 weeks old)
and aging (1-year old) mice were compared, PPs of aging mice showed signifi-
cant reductions in CD4+, CD45RB+ naïve T cell frequencies in addition to total
cell numbers (Hagiwara et al. 2003) (Fig. 1).

Potential Roles for M Cells in Gut Aging

M cells play a central role in an Ag-sampling system which takes up luminal Ags from
the gut lumen into the GALT (Kiyono et al. 2008). M cells have different morpho-
logical features when compared with normal intestinal epithelial cells. In this regard,
their apical sides show relatively short-irregular microvilli and their basolateral
sides form a pocket structure which containing enfolds of lymphocytes and APCs.

Nasal Immunosenescence in Mice

Intact Ag-Specific SIgA Abs

Maintained 
•Naïve CD4+ T Cells
•Dendritic Cells
Intact Th Activity

Same or Larger size

Continuous Support for the induction of 
Ag-Specific SIgA Responses 

Reductions in: 
•Naïve CD4+ T Cells
•Dendritic Cells
•M Cells
Impaired Th Cell Activity
Low Ag-Specific SIgA Ab Responses

Intestinal Immunosenescence in Mice

Impaired Ag-Specific SIgA Abs
Continuous Support for the induction of 
Ag-Specific SIgA Responses 

6-8 Weeks Old One Year Old

Reduced size

> 2 Year Old

Impaired Ag-Specific SIgA Abs

Inflammaging ?

Fig. 1 Mucosal aging effects on GALT versus NALT. Reduced induction of Ag-specific
intestinal SIgA Ab responses were noted in 1-year-old mice. Peyer’s patches (PPs) exhibited a
reduced size and lower numbers of PPs were present. Reduced numbers of naïve CD4+ T cells and
follicular dendritic cells (FDCs) were already seen in PP of 1-year old mice. In contrast, NALT
functions remained intact during aging with notable signs of mucosal immunosenescence (loss of
Ag-specific SIgA Ab responses) seen only in 2-year-old mice
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To this end, M cells can effectively transport luminal Ags from the gut lumen to
underlying MALT lymphocytes (Kiyono et al. 2008). Based upon this evidence, M
cell-targeting strategies have been developed and successfully used to elicit muco-
sal immunity. It has been shown that reovirus protein sigma one (pσ1) specifically
bind to M cells (Wu et al. 2001). In this regard, M cell-targeting DNA vaccine
complexes consisting of plasmid DNA and the covalently attached reovirus pσ1 to
poly-L-lysine (PL) induced significant mucosal SIgA Ab responses in addition to
systemic immunity (Wu et al. 2001). Further, it has been shown that a novel M cell-
specific monoclonal antibody (NKM 16-2-4) which recognizes the unique glyco-
sylation moiety of the M cells conjugated with botulinum toxoid as a M cell-
targeting mucosal vaccine provided significant protection when challenged with a
lethal dose of botulinum neurotoxin (Nochi et al. 2007). Oral delivery of Ag
combined with the M cell-targeting peptide ligand (Co1, selected from a phage
display library panning against the in vitro M-cell co-culture system) resulted in
enhanced Ag-specific immune responses (Kim et al. 2010). Since no in vitro M cell
systems have been developed, only limited information is available about how Ag
sampling actually occurs. However, glycoprotein 2 (GP2) expressed by M cells has
been reported to be M cell-specific molecule which acts as a binding receptor for
FimH-expressed E. coli and Salmonella spp. to elicit effective uptake of and
induction of specific immune responses (Hase et al. 2009; Terahara et al. 2008).
Of interest, it was also reported that a transition of FAE enterocytes into M cells
was induced by Salmonella enterica serovar Typhimurium (S. Typhimurium) type
III effector protein SopB (Tahoun et al. 2012).

Recently, it has been shown that Spi-B, which is one of the E26 avian leukemia
oncogene transformation-specific (Ets) family transcription factors, is required for
the functional and structural differentiation of M cells (de Lau et al. 2012; Kanaya
et al. 2012; Sato et al. 2013). M cells differentiate from leucine rich repeat
containing G protein coupled receptor 5-positive (Lgr5+) intestinal epithelial
stem cells as with all other intestinal epithelial cell lineages (de Lau et al. 2012).
Receptor activator of nuclear factor-κB ligand (RANKL) signal stimulation from
the subepithelial stromal cells in the FAE region (Knoop et al. 2009), triggers the
expression and activation of Spi-B in M cell precursors, and subsequently
upregulate several Spi-B-target genes including glycoprotein 2 (GP2), which is
considered to be a mature M cell marker (Hase et al. 2009). Importantly, aged mice
have significantly decreased numbers of GP2+, mature GALT M cells (Kobayashi
et al. 2013) (Fig. 1). Through an unknown mechanism, the numbers of Spi-B-
positive cells are significantly reduced in the FAE region of aged mice although the
expression of RANKL and RANK and their signaling pathways are intact in aged
mice. In agreement with reduced numbers of mature M cells, aged mice failed to
transport latex particles into the PPs. Furthermore, T cell activation by orally
delivered S. Typhimurium is markedly reduced due to the absence of M cell-
intrinsic Spi-B (Kanaya et al. 2012). Therefore, reduced numbers of M cells may
be one of the causes of impaired GI tract immunity in the elderly. Forced Spi-B
activation and/or expression may be a potential target strategy for the development
of effective mucosal vaccines in the elderly.
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Mesenchymal Stem Cells for Restoration of Ag-Specific SIgA Ab
Responses in the GI Tract

Adipose tissue-derived mesenchymal stem cells (AMSCs) are attractive candidates for
cell replacement therapies since they can be obtained and expanded relatively easily. It
has been shown that AMSCs can differentiate into adipocytes, chondrocytes, and
osteoblasts (Tobita et al. 2011). In addition, various clinical trials have shown the
regenerative capacity of AMSCs (Garcia-Olmo et al. 2008; Miyahara et al. 2006;
Psaltis et al. 2008). Previous studies suggested a therapeutic potential for AMSCs for
treatment of Alzheimer’s syndrome (Katsuda et al. 2013) and periodontal disease
(Tobita et al. 2013). In this regard, the potential of AMSCs to restore mucosal
immunosenescence in the GI tract was investigated by adoptively transferring
AMSCs into aged mice. Both OVA and CT-B-specific SIgA Ab responses were
significantly increased in aged mice (12–14 months old and over 18 months of age)
adoptively transferred with AMSCs when orally immunized with OVA and CT (Aso
et al. 2016) (Fig. 2). The induction of Ag-specific SIgA Ab responses was supported
by increased levels of IL-4 production in mucosal tissues of aged mice which was
achieved by pretreatment with AMSCs (Aso et al. 2016). Of importance,
Ag-specific SIgA Abs in aged mice restored by AMSC transfer were functional.
Thus, fecal extracts containing CT-B-specific SIgA Abs exhibited neutralizing
activity against CT intoxication (Aso et al. 2016) (Fig. 2). This finding contrasts
with previous studies generally showing that MSCs downregulate various immu-
nocompetent cells. For example, MSCs inhibited both CD4+ and CD8+ T cell
proliferation following co-culture and polyclonal stimulation (Cuerquis et al.
2014; Dorronsoro et al. 2014; Malcherek et al. 2014). Other in vitro studies showed
reduced Abs in mixed lymphocyte cultures (Comoli et al. 2008) as well as reduced
B cell proliferation and Ab synthesis in the presence of MSCs (Corcione et al.
2006). Finally, co-culture of MSCs with splenic B cells induced regulatory B cells
producing IL-10 that ameliorated autoimmunity and aberrant Ab synthesis (Park
et al. 2015). The major difference between these opposite studies is that one
assessed AMSC functions by adoptive transfer in vivo in a mouse model instead
of in vitro systems. Since adoptively transferred AMSCs were generated by serum-
free medium, adoptively transferred AMSCs and their soluble products may totally
differ from the in vitro studies by others and result in upregulation of various
immune competent cells.

One of the features of immunosenescence is an increased threshold of inflamma-
tion known as “inflammaging” (Franceschi et al. 2007). Thus, chronic inflammatory
responses may hamper induction of Ag-specific immune responses when active
immunization is initiated, since it is essential to induce a transient inflammatory
innate immune response in order to elicit subsequent acquired immunity (Iwasaki
and Medzhitov 2015). It has been shown that MSCs exhibited potential roles
for anti-inflammatory functions (Ho et al. 2015). Thus, MSCs have been employed
as therapeutic strategies for various immune disorders including graft-versus-host
disease (GVHD) (Le Blanc et al. 2008; Perez-Simon et al. 2011), organ
transplantation (Casiraghi et al. 2013), autoimmune diseases (Figueroa et al. 2012),
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and inflammatory bowel diseases (Forbes et al. 2014; Knyazev et al. 2013). Indeed,
MSCs interact with T cells to reduce their pro-inflammatory cytokines (Di Nicola
et al. 2002; Krampera et al. 2003), while increasing their production of anti-
inflammatory cytokines, including IL-4 and IL-10 (Kong et al. 2009; Prevosto
et al. 2007). In this regard, it is possible that adoptive transfer of AMSCs into
aged mice could reduce inflammaging and facilitate the subsequent restoration of
Ag-specific immune responses when mice were orally immunized with OVA and CT
(Fig. 2). Of importance, AMSC adoptive transfer studies revealed increased numbers
of IL-4 producing CD4+ T cells with increased levels of OVA-induced IL-4 produc-
tion by CD4+ T cells in PPs (Aso et al. 2016). Since IL-4 is an essential Th2-type
cytokine for adjuvant activity of CT (Okahashi et al. 1996; Vajdy et al. 1995), these
results clearly indicate that AMSCs enhanced IL-4 production in aged mice, which
could also potentially down-regulate inflammatory responses and simultaneously
allow CT to enhance OVA-specific Ab responses (Fig. 2). Taken together, the AMSC
transfer system would be a potent novel strategy in order to overcome mucosal
immunosenescence.
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Fig. 2 Potential mechanisms for stem cell transfer to overcome GALT aging. One of the
features of immunosenescence is an increased threshold of inflammation known as “inflammaging.”
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Distinct Features of NALT Versus GALT

It has been shown that PPs and NALT share common features; however, it is also
clear that both tissues possess unique features reflecting their local environments.
For example, a compartmentalization occurs between the GALT and NALT immune
systems for the induction of Ag-specific immune responses (Holmgren and
Czerkinsky 2005; Kiyono et al. 2008). Thus, oral immunization mainly elicits
Ag-specific immune responses in the small intestine, in the proximal part of the
large intestine, mammary, and salivary glands, whereas nasal immunization induces
mucosal immunity in the UR tract, nasal, and oral cavities as well as in the
cervicovaginal mucosa (Holmgren and Czerkinsky 2005). Further, NALT and
GALT organogenesis and lymphocyte trafficking are distinctly regulated (Kunisawa
et al. 2008). For example, PPs develop during embryonic days 14–17 in an IL-7-IL-
7Rα- and LTα1β2-LTβR-dependent manner, whereas NALT organogenesis occurs
postnatally without involvement of either of these cytokine pathways (Fukuyama
et al. 2002; Kunisawa et al. 2008). In addition, Peyer’s patch inducer cells require
both Id2 and RORγt transcripts for their development; however, NALT inducer cells
only require Id2 (Fukuyama et al. 2002). It has been shown that activated T and B
cells in GALT preferentially express α4β7 and CCR9 as gut-homing receptors which
help guide their migration back into the intestinal LP (iLP) (Fujihashi et al. 2013;
Kiyono et al. 2008). In contrast, CD62L, α4β1 and CCR10 preferentially regulate the
trafficking of T and B cells from NALT into the UR tract effector tissues (Csencsits
et al. 2001; Kunisawa et al. 2008; Pascual et al. 2008). Finally, others and our recent
studies have shown that the NALT immune system represents a unique CMIS
compartment which supports the induction of SIgA Ab responses in the subman-
dibular glands (SMGs) and saliva (Csencsits et al. 2001; Sekine et al. 2008). These
findings clearly show some common as well as distinct compartmentalization occurs
in GI and UR tract immune systems in an otherwise framework of the CMIS.

Advantages of a Delayed NALT Aging Process That Differs
from GALT

In addition to the progression during organogenesis and lymphocyte trafficking, the
aging process in NALT is also distinctly regulated when compared with that of GALT.
When the frequencies of naïve CD4+ T cells in NALT and GALT (i.e., the PPs) were
compared in young adult and 1-year-old mice, reduced frequencies of CD4+,
CD45RB+ T cells were seen in aged mice (Fujihashi and Kiyono 2009; Hagiwara
et al. 2003). On the other hand, the actual cell counts of naïve CD4+ Tcells in NALTof
1-year-old mice were higher than those seen in young adult mice (Fig. 1). The size as
well as total lymphocyte count in NALT increases approximately fivefold to ninefold
during the aging process through the first year (Fujihashi and Kiyono 2009; Hagiwara
et al. 2003) (Fig. 1). Although the total lymphocyte count is reduced by 2 years of age,
NALT contains approximately twice the number of total lymphocytes (Fujihashi and
Kiyono 2009; Hagiwara et al. 2003). Thus, the overall numbers of naïve CD4+,
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CD45RB+ T cells in the NALTwere comparable between aged and young adult mice.
These results suggest that the continuous generation of this naïve T cell populations in
NALT plays a pivotal role in maintaining young adult mouse levels for the induction of
both systemic and mucosal immune responses to nasally administered Ags in aged
mice. Based upon these findings, one could easily predict that nasal immunization of
1-year-old mice would reveal an intact mucosal immune response. In contrast to oral
immunization, nasal immunization with OVA plus CT indeed effectively induced
Ag-specific mucosal and systemic immune responses in 1-year-old mice (Hagiwara
et al. 2003) (Fig. 1). Thus, equivalent levels of OVA-specific Ab responses in plasma
and external secretions and Ag-specific Ab forming cells (AFCs) in the nasal cavity
were seen (Hagiwara et al. 2003). These results clearly show that both mucosal and
systemic immunity occurred in 1-year-old mice following nasal immunization (Fig. 1).
Further, 1-year-old mice given nasal tetanus toxoid vaccine were protected from
tetanus intoxication (Hagiwara et al. 2003). These results suggest that a distinct
immune aging process is occurring in NALT versus GALT that mediates Ag-specific
Ab induction accounting for differences in the induction of Ag-specific mucosal SIgA
and parenteral IgG Ab responses (Fig. 1).

It is generally agreed that experimental mice should be at least 18 months of
age or older to be suitable and equivalent models for evaluating immunological
aging effects in order to provide useful information for the understanding of
immunosenescence in humans. In this regard, when 2-year-old mice were thus
immunized nasally with OVA and CT as adjuvant, the mice failed to undergo
induction of Ag-specific SIgA Ab responses (Fukuiwa et al. 2008; Hagiwara et al.
2003). However, these mice underwent OVA-specific, peripheral immune
responses which were essentially identical to the responses seen in young adult
mice (Fukuiwa et al. 2008; Hagiwara et al. 2003). Similarly, OVA-specific CD4+

T cell proliferative as well as Th1 and Th2 cytokine responses in spleens of
2-year-old mice were comparable to those of young adult mice when CT was
used as nasal adjuvant (Hagiwara et al. 2003). These results further agree with the
findings that mucosal immunosenescence takes place prior to systemic immune
dysregulation (Koga et al. 2000), even though the process of NALT immunose-
nescence was less than that seen in GALT in 2-year-old mice (Hagiwara et al.
2003).

To consider the control of infectious diseases in the elderly, one must overcome
this mucosal immunosenescence and seek to develop novel immune modulators
which can maintain appropriate mucosal immunity in 2-year-old mice. Further, as
we described above, although the numbers of M cells in GALT were reduced in
aged mice, a change in the density of mature M cells in NALT FAE with aging has
not been reported (Sato et al. 2015). Thus, it remains possible that one of the
reasons for the slower process of immunosenescence in NALT of aged mice could
be due to intact numbers of mature and functional M cells on NALT FAE.
The evidence indicates another advantage of using the NALT immune system
for eliciting mucosal immunity in aging. Thus, an M cell-targeting nasal
delivery system would be a potent strategy for inducing mucosal immunity in
the elderly (Fig. 3).
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Compensation for Immunosenescence

Humans of advanced age significantly more sensitive to infection and mortality
caused by influenza virus and the bacterial pathogen S. pneumoniae (the pneumo-
coccus) (Thompson et al. 2004; Webster 2000). Although vaccines which can
prevent these two respiratory pathogens are available, they are less effective in the
elderly and thus a need exists to develop safe and improved vaccines (Fujihashi and
Kiyono 2009). Thus far, it has been shown that adjuvant systems are required in
order to improve influenza vaccines in the elderly (Galli et al. 2009; Jackson et al.
2012). Thus, when MF59 was employed as adjuvant for an H5N1 vaccine, broadly
cross-reactive Abs and long-lived memory B cells were rapidly elicited (Galli et al.
2009). Further, immune responses to inactivated 2009 H1N1 influenza vaccine in
both healthy adults (18–64 years) and older adults (> 65 years) were successfully
enhanced by the AS03 adjuvant system (Squalene, DL-a-tocopherol and polysorbate
80, GlaxoSmithKline) (Jackson et al. 2012). In addition to these injectible influenza
vaccines, poly I:C as an adjuvant enhanced the effectiveness of an influenza
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virus-like particle nasal vaccine in aged mice (Schneider-Ohrum et al. 2011). Despite
these successful reports, one must carefully consider adjuvant selection as well
as vaccine and delivery method since mice given detergent split-influenza Ag
[A/Uruguay716/2007 (H3N2)] plus purified monophosphoryl lipid A (MPL) in
liposomes via the nasal route showed transient weight-loss which was induced by
Th17-mediated immune responses (Maroof et al. 2014).

As a more general approach, CpG ODN as vaccine adjuvant has been shown to
restore Ag-specific immune responses to OVA, diphtheria toxoid, hepatitis B, pneu-
mococcal polysaccharides, amyloid β, and tumor cells in aged mice and rats
(Fujihashi and Kiyono 2009). Oral immunization with OVA (considered tobe a
weak immunogen) plus CpG ODN induced equally increased levels of Ag-specific
SIgA and IgG Ab responses in mucosally normal (3 month old) as well as mucosally
aged (18 month old) mice (Alignani et al. 2005). These studies clearly show the
potential of CpG ODN as adjuvant to compensate for the reduced immune responses
seen in aging.

In addition, strategies to restore the ratio of naïve to memory CD4+ T cell subsets
have successfully compensated for the altered immune responses in aging since
increased numbers of memory-type cells and decreased numbers of naïve CD4+ T
cells are associated with immunosenescence (Fujihashi and Kiyono 2009). In this
regard, aged Fas-CD2 transgenic mice (overexpressing the Fas gene regulated by the
CD2 promoter) resulted in reduced numbers of memory-type T cells and rejuvenated
immune responses which resembled those of young adult mice (Zhou et al. 1995).
Further, exogenous IL-2 delivery effectively restored development of effector cells
from naïve precursors in aged mice (Haynes et al. 1999). Similarly, mucosal IL-2
treatment reversed age-impaired mucosal immune responses by enhancing mucosal
immunity or by abrogating tolerance in aged mice (Fayad et al. 2004). Additional
studies showed that keratinocyte growth factor or IL-7 treatment prevented thymic
atrophy and thus resulted in a continuous supply of naïve T cells (Henson et al. 2004;
Min et al. 2007). These studies suggest that continuous supply of naïve T cell
populations is a critical factor for the maintenance of an appropriate immunological
state including the induction of Ag-specific immunity in aged mice. Both IL-2 and
IL-7 are common γ chain cytokine receptor-related interleukins, therefore IL-15
treatment also restored impaired DC function in mesenteric lymph nodes of aged
mice (Moretto et al. 2008).

A DC-Targeting Mucosal Immunization Strategy for Restoring
Immunity in Aging

It has been shown that mice can survive an otherwise lethal challenge of influenza
virus by production of pathogen-specific systemic IgG without mucosal IgA
responses; however, these mice became sick and showed significant weight loss
(Harriman et al. 1999). Similarly, since new adjuvant systems for influenza vaccines
for the elderly described above would fail to induce protective SIgA Ab responses at
the UR tract mucosa, it is possible that influenza virus infection would still elicit flu
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symptoms and delay recovery of elderly patients. Indeed, it is essential to have
pathogen-specific SIgA Ab responses in order to provide a first line of defense
against major respiratory pathogens (i.e., influenza virus and S. pneumoniae) at their
entry site (Asanuma et al. 2012; Fukuyama et al. 2010). These findings clearly
suggest that Ag-specific SIgA Abs are the most important component for effective
protection. However, as we have discussed thus far, Ag-specific mucosal SIgA Ab
responses are diminished in aged animals and presumably in humans despite slower
development of immunosenescence in the UR tract (Fujihashi and Kiyono 2009;
Fujihashi and McGhee 2004). To explore new avenues for effective mucosal immu-
nization strategies which can induce pathogen-specific protective SIgA Ab
responses, investigators have begun to target mucosal tissues and immune cells for
vaccine delivery. To this end, mucosal DC-targeting Ag delivery systems have been
shown to induce Ag-specific SIgA responses (Fukuiwa et al. 2008; Kataoka et al.
2004; Sekine et al. 2008).

The unmethylated CpG motifs are recognized by the innate immune system via
the toll-like receptor 9 (TLR9), expressed by B cells and plasmacytoid DCs (pDCs)
(Hemmi et al. 2000). Thus, CpG DNA induced the maturation and stimulation of
professional pDCs as well as the subsequent Ag-specific Th1 cell and CTL responses
(Klinman et al. 2004; Wagner 1999). Further it has been show that CpG ODN acts as
an effective adjuvant for the induction of Ag-specific immunity (Klinman et al.
1999). Indeed, CpG ODN enhanced both Ab and CMI responses to OVA in mice
(Klinman 1998). Further, when viral or toxoid vaccines were given with CpG ODN,
significantly increased levels of Ag-specific Ab and CTL responses were seen
(Brazolot Millan et al. 1998; McCluskie and Davis 1998; Moldoveanu et al.
1998). Mucosal delivery of CpG ODN plus formalin-inactivated influenza virus or
hepatitis B virus surface Ag successfully induced Ag-specific Ab responses in both
external secretions and plasma of mice (McCluskie and Davis 1998; Moldoveanu
et al. 1998). In addition, mice given nasal recombinant protective antigen (PA) of the
anthrax lethal toxin plus CpG ODN exhibited high levels of PA-specific IgG2a and
IgA Ab responses in both plasma and external secretions (Boyaka et al. 2003).
Importantly, these PA-specific Abs neutralized the lethal toxin in vitro (Boyaka et al.
2003).

The Flt3 ligand (FL), which binds to the fms-like tyrosine kinase receptor Flt3/
Flk2, is a growth factor that dramatically increases the numbers of DCs in vivo
without inducing their activation (Brasel et al. 1996; Maraskovsky et al. 1996).
Treatment of mice by systemic FL injection induced marked increases in the
numbers of DCs in both systemic (i.e., spleen) and mucosal lymphoid tissues
(i.e., intestinal LP, PPs and MLNs) (Viney et al. 1998). Other studies have now
shown that FL treatment also favors the induction of immune responses after
mucosal (Williamson et al. 1999), systemic (Pisarev et al. 2000), or cutaneous
(Baca-Estrada et al. 2002) vaccine delivery. In addition, plasmid DNA encoding
FL (pFL) has been systemically co-administered with plasmids encoding protein
Ags or linked to the Ag itself. These studies support the use of FL as adjuvant to
induce both IgG Ab- and CMI-responses (Hung et al. 2001; Moore et al. 2002).
When pFL was employed as a nasal adjuvant, it induced significant expansion of
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mature-type CD8+ DCs in NALT which contributed to IL-4 production by CD4+ T
cells and enhancement of co-administered Ag-specific SIgA Ab responses (Kataoka
et al. 2004).

Although DC-targeting adjuvants have shown promising outcomes, conflicting
reports concerning functional DC subsets in aged mice have been put forth (Kovacs
et al. 2009; Shaw et al. 2010; Tesar et al. 2006). Those suggesting impaired DC
effects have included the reduced expression of CCR7 involved in cell tracking,
interferon (IFN)-α production after herpes simplex virus-2 infection and IFN regu-
latory factor-7 (IRF-7) synthesis following CpG ODN activation (Kovacs et al.
2009; Shaw et al. 2010). In contrast, myeloid type DCs were shown to exhibit intact
APC functions and TLR expression in aging (Tesar et al. 2006). Nevertheless, in
order to broadly stimulate potentially weakened DC functions in aging and to avoid
polarized Th1 (inflammatory)- or Th2 (allergic)-type immune responses in the
elderly, a double adjuvant system has been developed using a combination of pFL
and CpG ODN. In this regard, it has been shown that aged mice given nasal OVA
plus a combined nasal adjuvant consisting of a plasmid encoding the Flt3 ligand
cDNA (pFL) and CpG ODN showed significantly increased levels of Ag-specific,
mucosal SIgA and plasma IgG Ab responses (Fukuiwa et al. 2008). It is important to
note that a balanced Th1- and Th2-type cytokine response with essentially no
potential inflammatory IL-17 responses were induced by this double adjuvant
system (Fukuiwa et al. 2008) (Fig. 3).

In order to assess whether this double adjuvant system could successfully induce
bacterial Ag-specific SIgA Ab responses in the UR tract mucosa for prevention of
both S. pneumoniae carriage and infection in the elderly, aged mice were nasally
immunized with pneumococcal surface protein A (PspA) plus a combination of pFL
and CpG ODN. Vaccinated aged mice showed elevated levels of PspA-specific SIgA
Ab responses in external secretions and plasma which were comparable to those seen
in young adult mice (Fukuyama et al. 2011) (Fig. 3). Significant levels of PspA-
induced CD4+ T cell proliferative and PspA-induced Th1- and Th2- but not Th17-
type cytokine responses were noted in NALTand cervical lymph nodes of aged mice
(Fukuyama et al. 2011). In addition, increased numbers of mature-type CD8- or
CD11b-expressing DCs were detected in mucosal tissues of aged mice as a result of
the DC-targeting pFL and CpG ODN delivery (Fukuyama et al. 2011). Importantly,
aged mice given PspA plus a combination of pFL and CpG ODN showed protective
immunity against nasal S. pneumoniae colonization (Fukuyama et al. 2011) (Fig. 3).
In contrast, both aged and young adult mice given nasal PspA alone failed to provide
sufficient protection after nasal challenge. Thus, high numbers of S. pneumoniae
CFUs were seen in nasal washes (NWs) and nasal passages (NPs) of both groups of
mice when compared with mice nasally immunized with PspA plus the double
adjuvant. Further, aged mice given PspA plus pFL or CpG ODN (single nasal
adjuvant regimen) revealed high numbers of bacterial CFUs in both NWs and
NPs. The numbers of S. pneumoniae CFUs were essentially the same as seen in
mice given PspA alone (Fukuyama et al. 2011). These results demonstrate that nasal
delivery of a combined DNA adjuvant offers an attractive possibility for the induc-
tion of necessary Ag-specific immune responses (e.g., PspA-specific SIgA and
plasma IgG) for protection against S. pneumoniae in the elderly (Fig. 3).
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As we have emphasized above, influenza virus is a major human respiratory
pathogen in addition to S. pneumoniae and a significant cause of morbidity and death
in the elderly. To this end, our study was next designed to assess whether a nasal
influenza vaccine together with our double adjuvant system pFL and CpG ODN
would enhance influenza virus-specific immunity for the prevention of influenza
virus infection in aged mice. A double adjuvant system plus A/Puerto Rico/8/34
(PR8)-HA induced increased numbers of CD11b+ CD11c+ DCs and both CD4+ Th1-
and Th2-type responses in mucosal inductive tissues and subsequently elicited
PR8-HA-specific SIgA Ab responses in the UR tract of aged mice (Asanuma et al.
2012) (Fig. 3). Thus, when mice were challenged with PR8 virus via the nasal route,
both aged and young adult mice given the double adjuvant nasal vaccine exhibited
complete protection (Asanuma et al. 2012) (Fig. 3). It should be emphasized that the
influenza vaccine given with the double adjuvant system induced high titers of
influenza-specific SIgA and plasma IgG Ab responses which provided protective
immunity in fully aged mice. These results support the potential use of a double
adjuvant system for future human studies (Fig. 3).

Future Prospects for Mucosal Vaccines for the Elderly

In addition to oral and nasal delivery systems, one should consider targeting other
mucosal inductive tissues which would potentially induce mucosal immune
responses. To this end, it has been shown that vaccine delivery through eye-drops
effectively induced Ag-specific SIgA Ab responses (Nagatake et al. 2009; Seo et al.
2010). Further, sublingual application of influenza virus vaccine successfully
elicited protective mucosal immunity (Park et al. 2012; Song et al. 2008). It was
demonstrated that a nanometer-sized hydrogel (nanogel) consisting of a cationic
cholesteryl group-bearing pullulan (cCHP) is also an effective nasal vaccine deliv-
ery vehicle for the induction of protective immunity without co-administration of a
biologically active adjuvant (Kong et al. 2013; Nochi et al. 2010). Although these
alternative mucosal immunization routes and nasal delivery vehicles have been
shown to be effective for the induction of Ag-specific immune responses in both
mucosal and systemic compartments, it remains to be determined whether they are
also applicable to and effective under immunosenescence situations. Conversely, it
would be of great benefit to the aged population if one could use an innate adjuvant
system alone, without Ag to enhance mucosal SIgA responses, since the elderly
should possess preexisting, pathogen-specific memory responses against past
respiratory infections. Nevertheless, we still need to understand the precise cellular
and molecular mechanisms for mucosal immunosenescence in order to develop
novel mucosal vaccines for the elderly which can overcome their age-associated
immunodeficiency.
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