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Abstract. Recently, hybrid approaches, which combine an FP-tree-like data
structure with an interaction-based approach, are efficient approaches for mining
frequent itemsets. However, applying those approaches for sequential pattern
mining arose some challenges. In this paper, we introduce a hybrid approach for
a specific version of sequential pattern mining, clickstream pattern mining, with
our proposed B-List structure and SMUB algorithm. The SMUB algorithm
exploited the B-List structure that is generated from the SPPC tree and the B-
List intersection are used to discover all sequential patterns in the given
sequence database. Via our experiments on various databases, SMUB has been
shown to be more efficient than the current state-of-the-art algorithm, CM-
Spade, in terms of runtime, and scalability, especially on huge databases with
very small thresholds.
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1 Introduction

The problem of sequential pattern mining was first brought up by Srikant and Agrawal
in 1995 [2]. Since then, there have been quite a lot of approaches and algorithms
proposed to solve this problem. However, finding an effective method is still chal-
lenging. Recently, hybrid approaches using DiffNodeSets [10], N-List [9] data struc-
tures are reported as very efficient for mining frequent itemsets. But can those
approaches be applied for mining pattern with a sequential order? To the best of our
knowledge, there have not any work that was based on the hybrid approaches using
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those data structures. Itemset patterns are easier to deal with because each item only
appears once at most in each transaction of the database, and the order of items in the
itemsets can be assigned by users. On the other hand, sequential patterns consist of
multiple transactions in sequential or timely order. Thus, each item can appear more
than one in a sequence, in various transactions, and in an order that users cannot
predict.

In this paper, we propose the SMUB algorithm to tackle a part of sequential pattern
mining problem by solving clickstream pattern mining, a special version of sequential
pattern mining. SMUB is a hybrid-based approach algorithm, based on B-List, an
extension of N-List data structure. B-Lists are generated from an SPPC tree. Via our
experiments on various datasets have shown that SMUB was more efficient than the
recent state-of-the-art algorithm, CM-Spade [11], with respect to runtime, especially on
huge datasets with low minimum support thresholds.

We organized this paper as follows. In Sect. 2, we describe the basic concepts. In
Sect. 3, we introduce related work. In Sect. 4, we introduce SPPC tree and definitions.
In Sect. 5, we present our B-List and SMUB algorithm for clickstream pattern mining.
In Sect. 6, we present our experiments. In Sect. 7, we conclude our study and present
our future work.

2 Basic Concepts

Let I = {il, 0y ij} be a set of distinct elements, each element is called an item.
A sequence is a list of items that are ordered. A clickstream sequence S is denoted as
<sl K T sq>, where 5, € § (1 <p<gq) is an item. The number of items in clickstream
is called the size or length of the clickstream. A clickstream sequence having length k is
denoted as k-sequence. A clickstream sequence S, = (aj, az, . . .,a,) is a subsequence
of another clickstream sequence S, = (b1, b, . . ., by), denoted by S,CSp, if there exist
integers x; <xp < --- <x, that a, = b, with all of . In other words, S, is called a
super sequence of S,,.

A clickstream sequence database SDB is a collection of clickstream and each
sequence has a unique id (called sid). Support of a clickstream pattern P is defined as
the number of clickstreams in SDB that are the super sequences of P. Given a threshold,
a clickstream sequence is a frequent clickstream pattern if its support is more than or
equal to the given threshold. The clickstream pattern mining task is discovering all
frequent clickstream patterns in SDB.

Table 1. A clickstream sequence database

E Clickstream
100 | <2,5,1>
200 | <2,5,1,5,1>
300 | <2,3>

400 | <1,5,1,5,1>
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3 Related Work

Several algorithms have been proposed for sequential pattern mining such as AproriAll
[2], GSP [3] and SPADE [5]. All of them find all sequential patterns by using “generate
and test candidate” approach which consumes a lot of time and memory. PrefixSpan
[6], FUSP [7] and Sequential Pattern Tree [8] does not generate any candidate
sequences, but the structure of the tree is complex; thus, they create lots of projected
databases and in order to find new sequential patterns, they need to completely scan the
projected databases.

SPADE algorithm [5] identifies all frequent items (viz., l-sequences) at the
beginning, converts the database to the vertical database format and identify the rest of
sequential pattern by BFS or DFS based on lattice decomposition concept. Though
experiments, it is more efficient than the GSP algorithm. However, SPADE needs to
convert database from horizontal to the vertical format, so the memory usage for
storing the databases increased and it is even bigger than the original databases.

In 2008, Lin et al. proposed FUSP-tree [7] data structure and its maintenance
algorithm for mining sequential patterns in incremental databases. FUSP-tree consists
of one root node and a set of prefix subtrees as the children branches of the root. Each
node in the prefix subtrees contains three values: item — name represents the node
contains that item, count is the number of sequences represented by the section of the
path reaching the node and node — link links to the next node of the same item in
another branch of the FUSP-tree. The FUSP-tree contains a Header-Table which stores
frequent items, their count and the link to the first occurrence in the tree corresponding
to the item. This table assists on finding appropriate items or sequences in the tree.

Fournier-Viger et al. proposed CM-Spade in 2014 [11]. In their work, they proposed
the CMAP data structure to store co-occurrence information of items and used the
CMAP to produce a candidate pruning mechanism. Basically, CM-Spade integrates
CMAP data structure into the SPADE algorithm. It was reported to have better perfor-
mance than previous algorithms, SPADE and SPAM. But CM-Spade still suffers from
spending much time evaluating candidates that do not exist in the sequence database.

There have been quite a few several efficient algorithms recently for mining fre-
quent itemset from transaction databases [1] such as FP-growth [4], N-List [9] and
DiffNodeSets [10].
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In 2012, Deng proposed PrePost [9] algorithms. PrePost was based on the N-List
structure that was generated from PPC-tree, which was a new structure for representing
transaction databases. This data structure saves all information of itemsets. By com-
bining the approach of candidate-generation-and-test and the approach of mining
sequence itemset directly without candidate generation, PrePost was reported as an
efficient algorithm for mining frequent itemsets. PPC-tree structure includes a root node
and a set of children nodes, the structure of each node includes five properties: item-
name, count, children-list, pre-order, and post-order. Item-name registers which item
this node represents, count registers the number of transactions presented by the portion
of the path reaching this node, children-list registers all children of the node, pre-order
is the pre-order rank of the node and post-order is the post-order rank of the node. PPC-
tree structure is like an FP-tree [4].

4 SPPC-Tree Structure

Definition 1. SPPC-tree is a tree data structure. The tree consists of a root and a set of
item prefix subtrees as the children of the root. Each node of the tree consists of eight
fields: item-name, count, first-child, first-father, right-sibling, label-sibling, pre-order,
post-order. Item-name is the item that the current node represents. Count is the number
of sequences that have the same path reaching to the current node. First-child is a list
that contains the first children of the node. First-father is the first previous node that is
reached from the root node. Right-sibling is the first sibling node of the current node.
Label-sibling is a list of nodes that have the same item-name even they may be in
different branches of the tree. Pre-order is a list of pre-order ranks that were generated
by pre-order traversal of the tree. Post-order is a list of post-order ranks that were
generated by post-order traversal of the tree. SPPC-tree is derived from PPC-tree [9].
However, there are two differences between SPPC-tree and PPC-tree:

1. The support of frequent item is not the sum of all counts of nodes with same item
name on SPPC-tree.

2. The item-name of an item can appear more than in one node in the same branch of
SPPC tree.
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Based on Definition 1, an SPPC-tree can be built by the following algorithm.

Algorithm 1 (Building an SPPC-tree)

Input: A sequence database SDB and a minimum support &.
Output: An SPPC-tree and the set of frequent items FI.
Procedure: Construct-SPPC-tree (SDB, &)

[Finding frequent items in the database]

1: Scan SDB once to find F1, the set of frequent items,
with their supports > &.

[Start building SPPC-tree]

2: Create an SPPC node, called §,, and assign it as a
root node.

3: for each sequence Seq in SDB do

4: Remove the infrequent items from Seq and let p be
the remnants of Seq. Thus, p is a sequence that only con-
tains frequent items.

[Start inserting the sequence into the tree]

5 for each item in p do

6: if S, has a child N such that N.item-name =
p.item-name then

7 N.count++;

8
9

else
create a new node N with the default val-

ue;
10: if N.right-sibling == null then
11: add new node N to first-child list of §,;
12: else
13: add new node N to right-sibling list of
Sy:
14: end if
15: end for

16: end for

[Adding Pre-Post code after building the tree]

17: Traverse the SPPC-tree with pre-order and post-order
traversals to generate the pre-order and the post-order
values for each node.

For example, assuming that we use an example sequence database SDB in Table 1
with minimum support threshold & = 0.5. First, we convert the value of minimum
support from a double value to an integer value: 4 * 0.5 = 2. Then, we scan SDB to find
the frequent items with their support count greater than or equal to &. The final set is
SP1 = {<1>,<2>,<5>} with their support counts. With all infrequent items eliminated,
we have a newly transformed sequence database as in Table 2.
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Table 2. The new sequence database with infrequent items already removed

SID | Clickstream
100 | <2,5,1>
200 | <2,5,1,5,1>
300 | <2>

400 | <1,5,1,5,1>

Based on the newly transformed database, we build an SPPC-tree by the following
steps. First, we create an empty node and assign it as a root node, then we add sequence
100 to the tree. The adding process starts at the root node. From there, each item in the
sequence will have a node created and appended to the tree in a sequential order. The
first item of the sequence will be appended to the root, the second will be appended to
the first node and so on. The tree will look like in Fig. 1a the sequence 100 is added.
After which, we add sequence 200 to the tree. Because the subsequence <2,5,1> was
previously added into the tree during adding sequence 100, so we increase the count of
each same node, the process for the rest of the items the same as adding sequence 100.
After the sequence 200 is added, the tree will be like Fig. 1b and so on. However, the
sequence 400 does not start with the same start item with other previous sequences.
Thus, we create a new branch and add each item in this sequence into the tree like what
we did to 100. The tree then will be like in Fig. 1d. Considering the node 2:2, it means
that this is the node of item 2 and its support count is 2.

After adding all sequences in SDB in Table 2 into the tree, we travel the tree using
depth-first search (DFS) algorithm to add pre-order and post-order for each node. The
tree looks like in Fig. le, which depicts the final result tree from SDB in Table 2 after
executing the Algorithm 1. The node (0,4)2:3 mean this is the node of item 2, the count
is 3, and the pre-order and post-order of the node is 0 and 4 respectively.

5 Sequential Pattern Mining Using B-Lists

In this section, we describe the idea and step by step of our proposed SMUB algorithm
(sequential clickstream mining using B-List). SMUB is a hybrid approach for mining
frequent sequences. Main steps of SMUB algorithm include: (1) build SPPC-tree and
identify all frequent 1-sequences (2) based on SPPC-tree, conduct the B-List for each
frequent 1-sequence (3) mine the remaining frequent k-sequences (k > 1). The details
of the algorithm are presented in Sect. 5.2.

Definition 2 (SPP-code). Given an SPPC-tree S, and a node N € S,,, an SPP-code of
N is an element represented in the form of (N.pre-order, N.post-order):.count.

Definition 3 (B-List of a frequent item; viz., frequent 1-sequence). Given an SPPC-
tree, the B-List of a specified frequent item is an ordered set of all the SPP-codes of
nodes having the same item-name with respect to the frequent item. The SPP-codes are
sorted in an ascending order based on their pre-order values and the B-List is repre-
sented in the form of (x;,y1) : 21 — - -+ — (Xn, Yn) : zu- For each SPP-code in a B-List,
there should always be a node in SPPC-tree that is registered with the SPP-code.
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Fig. 1. Step by step SPPC-Tree construction: (a) after adding sequence 100 (b) after adding
sequence 200 (c) after adding sequence 300 (d) after adding sequence 400 (e) after adding pre-
order and post-order

Definition 4 (Support count of a B-List). Given a B-List BL = (x|,y) : g1 — -+ —
(%n,¥n) : 7us and  BL, = BL\{(x,y) : z € BL|3(x;,¥:) : z € BL : x)x; N\y<y;}. The
support of BL can be calculated via BL,, by the sum of all z; with (xx,yx) : zx € BLy,.
For example, consider the B-List of the frequent 1-sequence <1> in Table 3, its BL,, is
(2,2):2 — (5,9):1. So the support count would be 3.

Table 3. The B-Lists of frequent 1-sequences

Frequent 1-sequence | B-List

1 (2,2)2 — (4,001 — (5,9):1 — (7,7):1 — (9,5):1
2 0,4):3

5 (1,3):2 — (3,1):1 — (6,8):1 — (8,6):1

5.1 B-List Generation for k-Sequences

Let BL1 and BL2 be the B-Lists of two k-frequent sequences Py = (iy, iz, .. ., ik—1,X)
and P, = (i, iy, .. .,ix—1,Y), P1 and P, share the same (k — 1) prefix, the B-List of (k +
1)-sequence P3 = (iy,...,ik_1,X,Y) is formed by following the procedure in Algorithm
2. In other words, BL_intersection only works between two frequent k-patterns that
share (k — 1) prefix. A special case is that frequent 1-sequences are considered sharing
an empty prefix.
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Algorithm 2 (BL intersection)

Input: BL1 = (x11,¥11):211 = = = (X1 Y1m): Z1m and
BL2 = (x21,¥21): 221 = = (Xan, Y2n) Zan -

Output: BL3, the B-List of P3.

Procedure: BL intersection (BL1, BL2)

1: 1« 1; j « 1;

2: while i < m && j < n do
3: if (x; < xj) then

4: if (y;; > y,;) then
5: Insert (Xgj,Y,j) :Zz; into BL3; j++;
6: else

7 Jt+;

8: end if

9: else

10: 1++;

11: end if

12: end while

For example, assuming that we have frequent 1-sequence <5> and we want to
generate the B-List of 2-sequence <5,5> . As shown in Table 3, the B-List of <5> is
(1,3):2 — (3,1):1 — (6,8):1 — (8,6):1. The generation of the B-List of <5,5> is done
by combining the B-List of <5> with itself. First, we check (1,3):2 with every element
in the B-List of itself. However, the pre-order of the SPP-code (1,3):2 is 1, which is not
greater than the pre-order of (1,3):2 itself. So we move to (3:1):1. The pre-order of
(3:1):1 is 3, which is higher than pre-order of (1,3):2. The post-order of (3:1):1 is 1,
which is less than post-order of (1,3):2. So (3:1):1 is added to the B-List of <5,5> .
Finishing the BL_intersection, we have the B-List of <5,5>, which is
(3,1):1 — (8,6):1.

5.2 Mining Clickstream Sequential Patterns

Based on previous definitions, Algorithm 3 illustrates the process of SMUB with high-
level pseudocodes.
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Algorithm 3 (Mining frequent clickstream patterns)
Input: the minimum support §, the sequential patterns 1-
sequences SP; and set of all frequent l-sequence B-List
BL,.

Output: The set of all sequential patterns SP.

1: Initialize SP and assign SP =SP;

2: Call mining L(SP;,BL,)

Procedure: mining L (SP,, BLy)

3: Initialize SPyy =0 and BLy, =0

4: for each pattern P, in SP, do

5: for each pattern P, in SP, that share (k—1) pre-
fix with P, do

6: Assuming P, =<y, iy, ..., i-1, X > and

Py, =<iy,iy, ., ig-1,¥Y >, create P, =<y, iy, ., lp, X,y >

7: Create B-List of P, by calling BL intersection
for B-Lists of P, and P,

8: if support count of B-List of P, = {then

9: Put P, into SP and SPyyq

10: Put B-List of P, into BLyg,q

11: end if

12: end for

13: end for
14: Call mining L (SPgy1,BLygyq)

For example, considering the minimum support & = 3, we have SP; as the set of
frequent 1-sequences <5>, <2> and <1> mined from the example database SDB and
their respective B-List set BL;. Running 3, we first join <5> with <5>, <2> and <I>
to form 2-sequence candidates <5,5>, <5,1> and <5,2> . By generating B-Lists for
aforementioned candidates, we can use them to check for support count of each can-
didate. Only <5,5> and <5,2> have their support counts higher than &, so they are
frequent 2-sequences and are added into the set of frequent 2-patterns SP,. In the same
way, <2>1is joined with <5>, <2> and <1>, and <I>is joined with <5>, <2>
and <1>. The resultant frequent 2-patterns are added into SP, and their respective B-
Lists are added into BL,. Recursively, we re-run mining_L procedure with SP, and BL,
and so on, until no candidate can be generated. Figure 2 illustrates the full set of
frequent clickstream patterns.
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Fig. 2. The tree of frequent clickstream patterns

6 Experimental Evaluation

In this section, we performed experiments to assess the performance of the proposed
algorithm. We performed experiments on a computer running Intel Core i7 2.2 GHz
CPU, 16 GB memory, and macOS Sierra 10.12.6 operating system. We configured
JVM with the flags of -Xmx10G -Xms10G (viz., the maximum memory allowed was
10 GB). The state-of-art algorithm, CM-Spade, for sequential pattern mining that was
proved more efficient than previous algorithms, which were GSP, PrefixSpan and
FUSP in [11]. So, in this paper we just compared the proposed algorithm, SMUB, with
CM-Spade. We use Kosarak, FIFA, MSNBC, and BMS2 datasets (Table 4) for testing
performance. We implemented the SMUB in Java 8. The experiments are conducted on
each database by decreasing the minimum support thresholds until algorithm took too
long time to execute (more than 2000s) or ran out of memory. The running time is the
total execution time of the algorithm.

Table 4. Database description

Database | Sequences | Unique items | Average sequence length
Kosarak 990,002 |41,270 8.1

FIFA 20,450 2,990 34.74

MSNBC | 989,818 |17 4.75

BMS2 |77,512 3,340 4.62

Figure 3 shows the running time of SMUB and CM-Spade on Kosarak, FIFA,
MSNBC, and BMS2 correspondingly. Generally, SMUB ran faster than CM-Spade
and the gap kept getting bigger at smaller minimum support. Thus, we can see that
SMUB is more efficient than CM-Spade at low minimum support threshold.
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Fig. 3. Runtime of SMUB and CM-Spade

7 Conclusions and Future Work

In this paper, we proposed a novel data structure, B-List, for compressing and storing
information for clickstream patterns. Based on B-Lists, we developed an algorithm,
SMUB, for fast mining clickstream patterns in clickstream databases. The advantages
of the SMUB algorithm compared to other previous algorithms are as follow: First, it
uses a compact data structure, B-List, which is usually substantially smaller than the
original databases, and thus avoids costly database scans in the subsequent mining
processes. Second, counting the support of sequence is transformed into the intersec-
tion of B-Lists and it employs an efficient strategy with the complexity of O(m + n) for
intersecting two B-Lists, where m and n are the cardinalities of the two B-Lists
respectively. We have implemented the SMUB algorithm and studied its performance
in comparison with CM-Spade, a well-known sequential pattern mining algorithm, on a
variety of real and synthetic datasets. Our performance study shows that the SMUB
algorithm is more efficient than CM-Spade.

In future work, we will further explore our method to fully work with sequential
pattern mining problem (viz., there is more than one element in itemsets). We also
consider using the parallel approach for SMUB so that it can work even bigger
databases.
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