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Abstract. In this article, we propose a notion of a semiconcept in the
framework of Yao’s object oriented concepts. A study of the algebra of
such ‘object oriented semiconcepts’ is carried out, in the line of the study
by Wille for the algebra of semiconcepts in formal concept analysis. Two
further unary operators, ‘semi-topological’ in nature, are introduced on
these structures. On abstraction, the properties of these operators lead
to the definition of a ‘semi-topological double Boolean algebra’, of which
the algebra of object oriented semiconcepts becomes an instance.
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1 Introduction

Rough set theory [10] and formal concept analysis (FCA) [4] provide two related
methodologies for data analysis. Both investigate the notion of concepts, albeit
from different perspectives. Classical rough set theory is developed based on an
equivalence relation on a domain of objects. Generalized formulations have been
proposed by using a binary relation on two domains, one a set of objects and
the other a set of properties – such a binary relation on two domains is called a
formal context in FCA. Many efforts have been made to compare and combine
the two theories [1,3,5,6,9,19].

The central notion in FCA is that of a concept lattice on a context K, denoted
B(K). Düntsch and Gediga, and Yao introduced two kinds of ‘rough concept
lattices’ in rough set theory, based on operators defined in [2]. The former defined
property oriented concept lattices [1], and Yao proposed object oriented concept
lattices [17]. Yao also studied the relationship between these two kinds of rough
concept lattices and concept lattices of FCA in [17]. It is shown that object
oriented concept lattices are dually isomorphic to concept lattices, while property
oriented concept lattices are isomorphic to concept lattices. Further algebraic
properties of rough concept lattices were investigated in [16].
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There is also a study of logic in the direction of FCA [13,14]. To formulate
what is called contextual logic, ‘negation of a concept’ has to be formalized
and Boole’s correspondence between negation and set-complement is taken as a
basis for the purpose. However, there turns out to be a problem of closure if set-
complement is used to define negation of a formal concept. So the latter notion
is generalized successively to that of semiconcept, protoconcept and preconcept
[13,15]. Our interest also lies in defining a negation, in the context of rough
concepts. This article does so in the framework of Yao’s object oriented concepts.
We define object oriented semiconcepts in Sect. 3, and follow the line of study in
[13]. An algebraic structure is developed on the set S(K) of all object oriented
semiconcepts. We show that it forms a dual of double Boolean algebra [13], and
contains two special Boolean subalgebras. In Sect. 4, two further unary operators
are defined on S(K), which turn out to be ‘semi-topological’ [11] in nature. The
properties of these operators lead us to define a semi-topological double Boolean
algebra, of which S(K) becomes an instance.

Considering Boole’s correspondence mentioned above, Wille defined another
(weak) negation in [13], which can be generated by the negations defined on
semiconcepts. This operator gives rise to a ‘concept algebra’, the abstraction of
which is a ‘dicomplemented lattice’. In [8], weakly dicomplemented lattices are
defined which constitute a superclass of the class of dicomplemented lattices. In
Sect. 4.1, we show that weakly dicomplemented lattices are different from the
double Boolean algebras considered in this work. Section 5 concludes the article.

In the next section, we give the preliminaries required for the work presented
in the rest of the paper.

2 Preliminaries

Definition 1 [4]. A formal context is a triple K := (G,M,R), where G,M are
sets of objects and properties respectively, and R ⊆ G × M . gRm is interpreted
as object g has property m. For A ⊆ G and B ⊆ M ,

A
′
:= {m ∈ M | gRmfor all g ∈ A},

B
′
:= {g ∈ G | gRmfor all m ∈ B}.

A concept of K is defined to be a pair (A,B) where A ⊆ G, B ⊆ M , A
′

= B
and B

′
= A. A is called the extent and B the intent of the concept (A,B). The

set of all concepts of K is denoted by B(K).
For concepts (A1, B1) and (A2, B2) in K an order is defined as:

(A1, B1) ≤ (A2, B2) if and only if A1 ≤ A2.

(B(K),≤) forms a complete lattice, and is called the concept lattice of K.

Definition 2 [1]. For a formal context K := (G,M,R), Kc := (G,M,−R), is
called a complement of K, where −R = {(x, y) ∈ G × M : (x, y) /∈ R}.
Example 1 [15]. The following table gives an example of a formal context.
Objects are family members, properties are genders and age variables (Table 1).
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Table 1. A formal context

Male (Ma) Female (Fe) Old Young

Father (Fa) * *

Mother (Mo) * *

Son (So) * *

Daughter (Da) * *

2.1 Semiconcept Algebra

As mentioned in Sect. 1, there is a problem of closure if set-complement is used
to define negation of a formal concept. More explicitly, if (A,B) is a formal
concept in a context (G,M,R), the complement G \ A (M \ B) of the extent
(intent) A (B) may not be an extent (intent). The notion of formal concept was
then generalized by defining a semiconcept.

Definition 3 [12]. A semiconcept of a formal context K := (G,M,R) is defined
as a pair (A,B) with A ⊆ G and B ⊆ M such that A = B

′
or B = A

′
.

The set of all semiconcepts of K is denoted by H(K). The following algebraic
operations �,�,¬, �,⊥ and � are introduced on H(K):

(A1, B1) � (A2, B2) := (A1 ∩ A2, (A1 ∩ A2)
′
)

(A1, B1) � (A2, B2) := ((B1 ∩ B2)
′
, B1 ∩ B2)

¬(A,B) := (G \ A, (G \ A)
′
)

�(A,B) := ((M \ B)
′
,M \ B)

� := (G,φ)
⊥ := (φ,M)

H(K) with the operations �,�,¬, �,⊥ and � is called the algebra of semicon-
cepts of K, and denoted by H(K). The following sets of idempotent elements are
considered, and shown to form Boolean algebras in [12,13]:

H� := {(A,A
′
) ∈ H(K) : A ⊆ G} and H� := {(B

′
, B) ∈ H(K) : B ⊆ M}.

2.2 Object Oriented Concept Lattice

Let G and M be two non-empty sets, and R ⊆ G × M be a relation. For each
x ∈ G, the R-range of x is R(x) := {y ∈ M : xRy}. The converse R0 of R is
R0 := {(y, x) ∈ M × G : xRy}.

For a given formal context K := (G,M,R), �,♦ : 2G → 2M constitute a pair
of dual approximation operators defined as:

X♦ := {y ∈ M : X
⋂

R0(y) �= ∅}, X� := {y ∈ M : R0(y) ⊆ X}.
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On the other hand, �,♦ : 2M → 2G constitute another pair of dual approximation
operators defined as:

Y ♦ := {x ∈ G : Y
⋂

R(x) �= ∅}, Y � := {x ∈ G : R(x) ⊆ Y }.

♦ is called the possibility operator and � the necessity operator. Note that if we
take G = M and R to be an equivalence relation on G then the ♦,� operators
coincide respectively with the upper and lower approximation operators (on the
approximation space (G,R)) of rough set theory.

Now we list some properties of ♦,�. For proof we refer to [1,17,18].

Proposition 1. Let K := (G,M,R) be a context. For any X,X1,X2 ⊆ G and
Y, Y1, Y2 ⊆ M , the following hold.

1. G� = M and φ♦ = φ.
2. M♦ = G if and only if R(x) �= φ for all x ∈ G.
3. φ� = φ if and only if R0(y) �= φ for all y ∈ M .
4. if X1 ⊆ X2 then X�

1 ⊆ X�
2 and X♦

1 ⊆ X♦
2 .

5. if Y1 ⊆ Y2 then Y �
1 ⊆ Y �

2 and Y ♦
1 ⊆ Y ♦

2 .
6. X�♦ ⊆ X ⊆ X♦� and Y �♦ ⊆ Y ⊆ Y ♦�.
7. (X)�

R = (Xc)
′
−R and (Y )�

R = (Y c)
′
−R.

8. Xc� = X♦c and Y c� = Y ♦c.
9. X�c = Xc♦ and Y �c = Y c♦.

10. (X ∩ Y )� = X� ∩ Y �.
11. (X ∪ Y )♦ = X♦ ∪ Y ♦.
12. (X ∩ Y )�♦ ⊆ X�♦ ∩ Y �♦ and X♦� ∪ Y ♦� ⊆ (X ∪ Y )♦�.
13. X�♦� = X� and Y �♦� = Y �.
14. X♦�♦ = X♦ and Y ♦�♦ = Y ♦.

Proposition 2.

1. �♦ mapping X to X♦�, is a closure operator.
2. ♦� mapping X to X�♦, is an interior operator.

For a given set of objects A ⊆ G, the map � : 2G → 2M assigns to it a set of
properties A�, while the map ♦ : 2M → 2G assigns to a set of properties B ⊆ M ,
an object set B♦. For special pairs (A,B), we have the following.

Definition 4 [17,18]. An object oriented concept of the context K is defined
as a pair (A,B) with A ⊆ G, B ⊆ M such that A� = B and B♦ = A. A is
the extent and B the intent of the object oriented concept (A,B). The set of all
object oriented concepts of K is denoted by RO−L(K).

With this definition, it is shown in [18] that object oriented concepts are
described by disjunctions of properties, whereas formal concepts are described
by conjunctions of properties. The two theories together can thus give a more
complete picture of data.

An order is defined on the set RO − L(K) of object oriented concepts:

(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (which is equivalent to B1 ⊆ B2).
(RO − L(K),≤) forms a complete lattice. Moreover, we have

Theorem 1 [16]. RO−L(K) is dually isomorphic to B(Kc).



444 P. Howlader and M. Banerjee

3 Object Oriented Semiconcept

We are interested to study the notion of negation in the context of rough con-
cepts. In [13], Wille studied a negation in FCA, by separately negating the extent
and intent of a concept, using set-complement. In this work, we consider object
oriented concepts and introduce negation using Wille’s approach. For a given
object oriented concept we also have two negations, one by taking the comple-
ment of its extent and the other by taking the complement of its intent.

Example 2. Let us continue with the context given in Example 1. In Tables 2
and 3 below, we list for all A ⊆ G,B ⊆ M respectively, A�, A�♦ and B♦, B♦�.

Table 2. Subsets A of G giving object oriented semiconcepts (A, A�)

A ⊆ G A� A�♦

φ φ φ

{Fa} φ φ

{Mo} φ φ

{so} φ φ

{Da} φ φ

{Fa, Mo} {old} {Fa, Mo}
{Fa, So} {Ma} {Fa, So}
{Fa, Da} φ φ

{Mo, So} φ φ

{Mo, Da} {Fe} {Mo, Da}
{So, Da} {Y oung} {So, Da}
{Fa, Mo, So} {Old, Ma} {Fa, Mo, So}
{Fa, Mo, Da} {Fe, Old} {Fa, Mo, Da}
{Mo, So, Da} {Y oung, Fe} {Mo, So, Da}
{Fa, So, Da} {Ma, Y oung} {Fa, So, Da}
G M G

Consider the pair ({Mo,So,Da}, {Y oung, Fe}). It is clear from Table 2 that it is
an object oriented concept. The complement of the extent A = {Mo,So,Da} is
{Fa}, which is not the extent of any object oriented concept of K (cf. Table 3).
Now consider the pair ({So,Da}, {Y oung}), which is also an object oriented
concept. The complement of the intent B = {Y oung} is C = {Ma,Fe,Old}
and C is not the intent of any object oriented concept of K. Analogous to the
situation in FCA, simply taking the set-complement of the extent or intent of an
object oriented concept, may not result in an object oriented concept. One then
relaxes the requirement to consider pairs of the form (Ac, Ac�) and (Bc♦, Bc)
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Table 3. Subsets B of M giving Object oriented Semiconcepts (B♦, B)

B ⊆ M B♦ B♦�

φ φ φ

{old} {Fa, Mo} {old}
{Ma} {Fa, So} {Ma}
{Fe} {Mo, Da} {Fe}
{Y oung} {So, Da} {Y oung}
{Old, Ma} {Fa, Mo, So} {Old, Ma}
{Fe, Old} {Fa, Mo, Da} {Fe, Old}
{Y oung, Fe} {Mo, So, Da} {Y oung, Fe}
{Ma, Y oung} {Fa, So, Da} {Ma, Y oung}
{Ma, Fe} G M

{Old, Y oung} G M

{Ma, Fe, Old} G M

{Ma, Old, Y oung} G M

{Ma, Fe, Y oung} G M

{Fe, Old, Y oung} G M

M G M

to define negation, as Ac� collects properties of the objects of Ac only, while
Bc♦ contains all objects that have properties belonging to Bc. (Note that these
pairs still need not be concepts, as we shall see in an example below). This idea
is generalized to give the definition of an object oriented semiconcept.

Definition 5. Let K := (G,M,R) be a formal context. An object oriented semi-
concept of K is defined as a pair (A,B) with A ⊆ G,B ⊆ M such that A� = B
or B♦ = A. The set of all object oriented semiconcepts of K is denoted by S(K).

Thus object oriented semiconcepts of K are pairs of the form (A,A�) or (B♦, B).
Tables 2 and 3 in Example 2 give us all the object oriented semiconcepts of the
context (G,M,R). It may be then observed that an object oriented semiconcept
may not always be an object oriented concept: ({Fa}, φ) is an object oriented
semiconcept but not an object oriented concept.

Now is there any relation between semiconcepts of FCA and object oriented
semiconcepts defined above? The answer is given by

Proposition 3. For a context K, (A,B) ∈ S(K) if and only if (Ac, B) ∈ H(Kc),
the set of all semiconcepts of the complement of the context K.

3.1 Algebra of Object Oriented Semiconcepts

An order ≤ and algebraic operations �,�,¬, �,� and ⊥ are considered on S(K):
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Definition 6. For (A1, B1), (A2, B2) ∈ S(K),

(a) (A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 and B1 ⊆ B2,
(b) (A1, B1) � (A2, B2) := ((B1 ∩ B2)♦, B1 ∩ B2),
(c) (A1, B1) � (A2, B2) := (A1 ∪ A2, (A1 ∪ A2)�),
(d) ¬(A,B) := (G \ A, (G \ A)�),
(e) �(A,B) := ((M \ B)♦,M \ B),
(f) � := (G,M),
(g) ⊥ := (φ, φ).

The meet (�) and join (�) operations taken in RO−L(K) are extended to S(K).
It is clear from Definition 5 and Proposition 1(1) that S(K) is closed with respect
to all the operations defined above. The tuple (S(K),�,�,¬, �,�,⊥) is called
the algebra of object oriented semiconcepts of K and is denoted by S(K).

Proposition 4. (A1, B1) � (A2, B2) is a lower bound of (A1, B1) and (A2, B2),
and (A1, B1)�(A2, B2) is an upper bound of (A1, B1) and (A2, B2) in (S(K),≤).

Proof. (A1, B1) � (A2, B2) := ((B1 ∩ B2)♦, B1 ∩ B2) and (A1, B1) � (A2, B2) :=
(A1 ∪ A2, (A1 ∪ A2)�). We have the following cases.

Case I: Suppose A1 = B♦
1 and A2 = B♦

2 . Then (B1 ∩ B2)♦ ⊆ B♦
1 = A1 and

(B1 ∩B2)♦ ⊆ B♦
2 = A2 by (5) of Proposition 1. Now (A1 ∪A2)� = (B♦

1 ∪B♦
2 )�.

Using Proposition 1(11) on the rhs, we have (A1 ∪ A2)� = (B1 ∪ B2)♦� and
using Proposition 1(6), we have B1, B2 ⊆ (B1 ∪ B2)♦� = (A1 ∪ A2)�.
Case II: A�

1 = B1 and A�
2 = B2. This case is dealt similarly by replacing � with

♦ as Case I.
Case III: Now let A�

1 = B1 and A2 = B♦
2 . We have (B1 ∩ B2)♦ ⊆ A�♦

1 ⊆ A1

and (B1 ∩ B2)♦ ⊆ B♦
2 = A2, using Proposition 1(5) and (6). From Proposition

1(4) and (6), we have B1 = A�
1 ⊆ (A1 ∪ A2)� and B2 ⊆ B♦�

2 ⊆ (A1 ∪ A2)�. ��
Are these the greatest and least upper bounds? Not necessarily so. In Example 2,
consider the two elements ({Mo,Da}, {Fe}) and ({So,Da}, {Y oung}) in S(K).
({Mo,Da}, {Fe})�({So,Da}, {Y oung}) = (φ, φ) is a lower bound but is not the
greatest lower bound as ({Da}, φ) is also a lower bound of the two object oriented
semiconcepts. On the other hand, we can consider ({Fa}, φ) and ({Mo,Fa}, φ),
for which ({Fa}, φ) � ({Mo,Fa}, φ) = ({Fa,Mo}, {old}), which is an upper
bound but not least as ({Mo,Fa}, φ) is an upper bound of the two object ori-
ented semiconcepts.

Following the approach of Wille, we now consider the set of idempotent
elements in S(K) with respect to the operations � and �.

S(K)� := {(A,B) ∈ S(K) : (A,B) � (A,B) = (A,B)}, and
S(K)� := {(A,B) ∈ S(K) : (A,B) � (A,B) = (A,B)}.

It can be easily observed that

S(K)� = {(A,B) ∈ S(K) : (A,A�) = (A,B)} = {(A,A�) : A ⊆ G}, and

S(K)� = {(A,B) ∈ S(K) : (B♦, B) = (A,B)} = {(B♦, B) : B ⊆ M}.
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Note: For two object oriented semiconcepts (A1, B1), (A2, B2), if the pair with
componentwise set-theoretic intersection, viz. (A1∩A2, B1∩B2), belongs to S(K)
then it must be the greatest lower bound of (A1, B1), (A2, B2). A similar obser-
vation holds for (A1 ∪ A2, B1 ∪ B2) and least upper bound of (A1, B1), (A2, B2).

We obtain in a straightforward manner, the following results for any context K.

Proposition 5.

1. S(K)� ∩ S(K)� = RO − L(K).
2. S(K)� ∪ S(K)� = S(K).
3. (A1, B1)�(A2, B2) = (A1, B1)�(A1, B1) and (A1, B1)�(A2, B2) = (A2, B2)�

(A2, B2) if and only if (A1, B1) ≤ (A2, B2).

As done for semiconcepts, we define two operations on S(K):

x ∨ y :=�(�x��y), and x ∧ y := ¬(¬x � ¬y), for all x, y ∈ S(K).

Theorem 2. The following equations are valid in S(K):

(1a) (x � x) � y = x � y
(2a) x � y = y � x
(3a) x � (y � z) = (x � y) � z
(4a) �(x � x) =�x
(5a) x � (x � y) = x � x
(6a) x � (y ∨ z) = (x � y) ∨ (x � z)
(7a) x � (x ∨ y) = x � x
(8a) ��(x � y) = x � y
(9a) x��x = ⊥

(10a) �⊥ = � � �
(11a) ¬⊥ = �

(1b) (x � x) � y = x � y
(2b) x � y = y � x
(3b) x � (y � z) = (x � y) � z
(4b) ¬(x � x) = ¬x
(5b) x � (x � y) = x � x
(6b) x � (y ∧ z) = (x � y) ∧ (x � z)
(7b) x � (x ∧ y) = x � x
(8b) ¬¬(x � y) = x � y
(9b) x � ¬x = �

(10b) ¬� = ⊥ � ⊥
(11b) �� = ⊥

(12) (x � x) � (x � x) = (x � x) � (x � x).

Observe that the equations stated in Theorem 2 are dual with respect to � and �
in the equations defining a double Boolean algebra [13].

In our next result, we prove that S(K) is dually isomorphic to H(Kc). In
other words, we show the following for the algebraic structure H∂(Kc) that is
obtained from H(Kc) by replacing � with � and � with �.

Theorem 3. For a context K, S(K) is isomorphic to H∂(Kc).

Proof. We define a map h : S(K) → H(Kc) such that h((A,B)) := (Ac, B),
where (A,B) ∈ S(K). This map is well-defined and onto by Proposition 3. It is
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trivially one-one. To show h is a homomorphism, we check the case for �.

h((A,B) � (A1, B1)) =h((B ∩ B1)♦, B ∩ B1)

=((B ∩ B1)♦c, B ∩ B1)

=((B ∩ B1)
′
−R, B ∩ B1) (by Proposition 1(4) and (5))

=(Ac, B) � (Ac
1, B1) in H(Kc)

=(Ac, B) � (Ac
1, B1) in H∂(Kc)

=h((A,B)) � h((A1, B1))

h((G,M)) = (φ,M) = ⊥, which is the top element of H∂(Kc) and h((φ, φ)) =
(G,φ) = �, the bottom element of H∂(Kc). The case for � is similar. ��
Recall the algebras of idempotent elements of semiconcepts defined in Sect. 2.1.
We get the following relationships.

Corollary 1.

1. S(K)� is dually isomorphic to H(Kc)�.
2. S(K)� is dually isomorphic to H(Kc)�.

Proof. (1) Let (A,B) ∈ S(K) then (Ac, B) ∈ H(Kc). Using definitions of �,� in
algebras of object oriented semiconcepts and semiconcepts respectively, we have

(A,B) � (A,B) = (B♦, B) and (Ac, B) � (Ac, B) = (B|′−R, B).
Therefore (A,B) = (A,B) � (A,B) if and only if (A,B) = (B♦, B), i.e. if and
only if Ac = B♦c.

On the other hand, (Ac, B) = (Ac, B) � (Ac, B) if and only if (Ac, B) =
(B|′−R, B), i.e. if and only if Ac = B|′−R. From Proposition 1(7), we have
B♦c = B|′−R and hence (A,B)�(A,B) = (A,B) if and only if (Ac, B)�(Ac, B) =
(Ac, B). Similarly one can show that (A,B) � (A,B) = (A,B) if and only if
(Ac, B) � (Ac, B) = (Ac, B). Therefore image of S(K)� under h defined in
Theorem 3 is equal to H(Kc)� and it is also clear that h is an isomorphism
from S(K)� to H∂(Kc)�.
Proof of (2) is similar. ��

4 Semi-topological Operators on S(K)

Rough concept analysis deals with the necessity and possibility operators � and
♦. As mentioned in Proposition 2, �♦ is a closure operator and ♦� is an interior
operator. We use this idea and define two unary operators C, I on the set S(K)
of object oriented semiconcepts. As we shall see, the two operators turn out to
have semi-topological properties [11].

Definition 7. For any (A,B) ∈ S(K),

C((A,B)) := (A♦�, A♦��),

I((A,B)) := (B�♦♦, B�♦).
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Note. Using the algebraic operations on object oriented semiconcepts, we get
for any x ∈ S(K), C(x) = ¬(¬x � ¬x), and I(x) =�(�x��x).

Lemma 1. Let x, y ∈ S(K). I has the following properties.

1. If x ≤ y then I(x) ≤ I(y).
2. II(x) = I(x).
3. I(x) � x = I(x) = I(x) � I(x) and x � I(x) = x � x.
4. I(�) =�(⊥ � ⊥).
5. I(x � y) ≤ I(x) � I(y).

Proof. (1) Let x, y ∈ S(K) = S(K)� ∪ S(K)� such that x ≤ y.

Case I: Suppose x, y ∈ S(K)�. Without loss of generality, we assume that x =
(A♦, A) and y = (B♦, B) where A,B ⊆ M. Then

I(x) =�(�(A♦, A)��(A♦, A)) =�(Ac♦, Ac♦�) = (Ac♦�c♦, Ac♦�c).
Similarly we deduce that I(y) = (Bc♦�c♦, Bc♦�c). Now x ≤ y implies that A ⊆
B, which implies that Ac♦�c ⊆ Bc♦�c and from this we have Ac♦�c♦ ⊆ Bc♦�c♦

and hence I(x) ≤ I(y).
Case II: If x, y ∈ S(K)� then let x = (A,A�) and y = (B,B�), A,B ⊆ G. Then

I(x) = (A�c♦�c♦, A�c♦�c) and I(y) = (B�c♦�c♦, B�c♦�c).
As x ≤ y, A� ⊆ B�, which implies that A�c♦�c ⊆ B�c♦�c. So A�c♦�c♦ ⊆
B�c♦�c♦ and we get I(x) ≤ I(y).
Case III: If x ∈ S(K)� and y ∈ S(K)�, we assume that x = (A,A�) and
y = (B♦, B). Then I(x) = (A�c♦�c♦, A�c♦�c) and I(y) = (Bc♦�c♦, Bc♦�c).
x ≤ y implies that A� ⊆ B, which gives A�c♦�c ⊆ Bc♦�c. From this we have
A�c♦�c♦ ⊆ Bc♦�c♦ and hence I(x) ≤ I(y).

(2) Let x ∈ S(K).

I(I(x)) =�(��(�x��x)���(�x��x))
=�(((�x��x) � (�x��x)) � ((�x��x) � (�x��x)))
=�(((�x��x) � (�x��x)) � ((�x��x) � (�x��x)))
=�((�x��x) � (�x��x))
=�(�x��x) = I(x).

(3) Let x ∈ S(K) = S(K)� ∪ S(K)�.
Case I: Let x ∈ S(K)�. Without loss of generality we assume that x =
(A,A�), for some A ⊆ G. I(x) = (A�c♦�c♦, A�c♦�c) and from this we get
I(x) � x = (A�c♦�c♦, A�c♦�c) � (A,A�) = ((A�c♦�c ∩ A�)♦, A�c♦�c ∩ A�).
Now A�c ⊆ A�c♦� for any subset A of G. So A�c♦�c ⊆ A� and hence
I(x) � x = (A�c♦�c♦, A�c♦�c) = I(x).
Case II: If x ∈ S(K)�, let x = (B♦, B) for some B ⊆ M. Then I(x) =
(Bc♦�c♦, Bc♦�c) whence I(x) � x = (Bc♦�c♦, Bc♦�c) � (B♦, B) = ((Bc♦�c ∩
B)♦, (Bc♦�c ∩ B)) = (Bc♦�c♦, Bc♦�c) = I(x), as Bc♦�c ⊆ B.
Since for any x ∈ S(K) say x = (A,B), I(x) = (Bc♦�c♦, Bc♦�c) = (D♦,D),
where D = Bc♦�c, we have I(x) ∈ S(K)� for all x ∈ S(K)). Thus I(x)� I(x) =
I(x) and so I(x) � x = I(x) = I(x) � I(x).
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Now we will show that x � I(x) = x � x. Let x ∈ S(K) = S(K)� ∪ S(K)�.

Case I: If x ∈ S(K)�, say x = (A,A�) for some A ⊆ G.

(A,A�) � I((A,A�)) = (A,A�) � (A�c♦�c♦, A�c♦�c)

= (A ∪ A�c♦�c♦, (A ∪ A�c♦�c♦)�)

= (A,A�) because A�c♦�c♦ ⊆ A�♦ ⊆ A

= (A,A�) � (A,A�) = x � x.

Case II: If x ∈ S(K)�, let x = (B♦, B) for some B ⊆ M.

(B♦, B) � I((B♦, B)) = (B♦, B) � (Bc♦�c♦, Bc♦�c)

= (B♦ ∪ Bc♦�c♦, (B♦ � Bc♦�c♦)�)

= (B♦, B♦�) because Bc♦�c ⊆ B

= (B♦, B) � (B♦, B) = x � x.

(4) I(�) =�(�����) =�(⊥ � ⊥).
(5) Let x, y ∈ S(K) = S(K)� ∪ S(K)�.
Case I: Let x ∈ S(K)� and y ∈ S(K)�. Without loss of generality we assume
that x = (A,A�) and y = (B♦, B), where A ⊆ G and B ⊆ M. Then I(x) =
(A�c♦�c♦, A�c♦�c) and I(y) = (Bc♦�c♦, Bc♦�c).
I(x) � I(y) = ((A�c♦�c ∩ Bc♦�c)♦, A�c♦�c ∩ Bc♦�c) and I(x � y) = I((A� ∩
B)♦, A� ∩ B) = ((A� ∩ B)c♦�c♦, (A� ∩ B)c♦�c). Now A�c ⊆ (A� ∩ B)c and
Bc ⊆ (A� ∩ B)c. From this inequality we have, A�c♦� ⊆ (A� ∩ B)c♦� and
Bc♦� ⊆ (A� ∩ B)c♦�. This implies that (A� ∩ B)c♦�c ⊆ A�c♦�c and (A� ∩
B)c♦�c ⊆ Bc♦�c. So (A� ∩ B)c♦�c ⊆ A�c♦�c ∩ Bc♦�c and (A� ∩ B)c♦�c♦ ⊆
(A�c♦�c ∩ Bc♦�c)♦ and hence I(x � y) ≤ I(x) � I(y).
Case II: If x, y ∈ S(K)�, let us assume that x = (A,A�) and y = (B,B�).

Then I(x) � I(y) = ((A�c♦�c ∩ B�c♦�c)♦, A�c♦�c ∩ B�c♦�c) and I(x � y) =
I((A∩B)�♦, (A∩B)�) = ((A∩B)�c♦�c♦, (A∩B)�c♦�c). Now (A∩B)� ⊆ A�

and (A ∩ B)� ⊆ B�. From this we have,

A�c ⊆ (A ∩ B)�c ⇒ A�c♦� ⊆ (A ∩ B)�c♦�

⇒ (A ∩ B)�c♦�c ⊆ A�c♦�c.

Similarly, one can prove that (A ∩ B)�c♦�c ⊆ B�c♦�c. From this inequality
we have (A ∩ B)�c♦�c ⊆ A�c♦�c ∩ B�c♦�c and (A ∩ B)�c♦�c♦ ⊆ (A�c♦�c ∩
B�c♦�c)♦. Hence I(x � y) ≤ I(x) � I(y).
Case III: If x, y ∈ S(K)�, the proof is similar to Case II. ��
Dually, one can prove the following for the operator C on S(K).

Lemma 2. For all x, y ∈ S(K),

1. If x ≤ y then C(x) ≤ C(y)
2. CC(x) = C(x)
3. C(x) � x = C(x) = C(x) � C(x) and x � C(x) = x � x
4. C(⊥) = ¬(� � �)
5. C(x) � C(y) ≤ C(x � y).
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4.1 Semi-topological Double Boolean Algebra

Recall our observation after Theorem 2 that S(K) satisfies the dual of all equa-
tions defining a double Boolean algebra [13]. In this section, we deal with such
an abstract ‘dual double Boolean algebra’, and for the sake of simplicity, retain
the name double Boolean algebra for the structure. More precisely, we have the
following definition.

Definition 8. A double Boolean algebra (A,�,�,¬, �,�,⊥) is an abstract alge-
bra which satisfies the following properties: For any x, y, z ∈ A.

(1a) (x � x) � y = x � y
(2a) x � y = y � x
(3a) x � (y � z) = (x � y) � z
(4a) �(x � x) =�x
(5a) x � (x � y) = x � x
(6a) x � (y ∨ z) = (x � y) ∨ (x � z)
(7a) x � (x ∨ y) = x � x
(8a) ��(x � y) = x � y
(9a) x��x = ⊥

(10a) �⊥ = � � �
(11a) ¬⊥ = �

(1b) (x � x) � y = x � y
(2b) x � y = y � x
(3b) x � (y � z) = (x � y) � z
(4b) ¬(x � x) = ¬x
(5b) x � (x � y) = x � x
(6b) x � (y ∧ z) = (x � y) ∧ (x � z)
(7b) x � (x ∧ y) = x � x
(8b) ¬¬(x � y) = x � y
(9b) x � ¬x = �

(10b) ¬� = ⊥ � ⊥
(11b) �� = ⊥

(12) (x � x) � (x � x) = (x � x) � (x � x),

where ∨ and ∧ are defined as x ∨ y :=�(�x��y), and x ∧ y := ¬(¬x � ¬y).
¬ is called the negation and � the opposition.

Corollary 2. S(K) is a double Boolean algebra.

A quasi-order (reflexive and transitive relation) on a double Boolean algebra
may be defined [7] for all x, y ∈A as:

x � y if and only if x � y = x � x and x � y = y � y.

Remark. As we mentioned in Sect. 1, the algebraic structure of a weakly dicom-
plemented lattice [8,15] also emerged in the context of defining negations in
FCA. We now compare this structure with the double Boolean algebra of
Definition 8. Note that these are algebras of the same type (2,2,1,1,0,0). However,
it can be seen that these are different with respect to the defining axioms. Firstly,
in a weakly dicomplemented lattice (L,∨,∧,� ,� , 1, 0), the reduct (L,∨,∧, 1, 0)
is a lattice, while a double Boolean algebra (A,�,�,¬, �,�,⊥) need not be a
lattice with respect to the �,� operations, as shown in Sect. 3.1. Secondly, to
force another comparison, suppose the lattice meet and join in a weakly dicom-
plemented lattice are relaxed to be lower and upper bound operations �,� sat-
isfying the axioms 1a-b, 2a-b, 3a-b, 5a-b and 12 in Definition 8. The remaining
defining axioms of the negations �,� (cf. [8]) in a weakly dicomplemented lattice
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are retained. Will a double Boolean algebra then be a special case of such a struc-
ture? We find that the negations in the two structures behave differently as well.
In particular, it can be shown that the axiom (x ∧ y) ∨ (x ∧ y�) = x for � need
not hold in a double Boolean algebra, irrespective of whether � is taken as the
negation (¬) or opposition (�) of the double Boolean algebra. Indeed, consider
Example 1: take two object oriented semiconcepts x := ({Fa,Da}, φ) and y :=
(φ, φ). (x � y) � (x � ¬y) = (φ, φ) �= x. If we take x := (G, {Ma,Fe}) and y :=
({Fa}, φ) then (x�y)�(x��y) = (G,M) �= x. On the other hand, if we force �,�
in a double Boolean algebra to be infimum and supremum operators respectively,
we get the equations ��x = x and ¬¬x = x from (8a) and (8b) of Definition 8.
However, these do not hold in general for the negations �,� in a weakly dicom-
plemented lattice, so that the latter is not an example of such a special case of
a double Boolean algebra either.

Now we define a semi-topological double Boolean algebra.

Definition 9. A semi-topological double Boolean algebra is an abstract algebra
A := (A,�,�,¬, �,�,⊥, I,C), where (A,�,�,¬, �,�,⊥) is a double Boolean
algebra, and the unary operators I and C satisfy the following equations for any
x, y ∈ A.

(sa)1 I(x) � x = I(x) � I(x) and
x � I(x) = x � x

(sa)2 I(x � y) � I(x) � I(y)
(sa)3 I(I(x)) = I(x)

(sb)1 C(x) � x = C(x) � C(x) and
C(x) � x = x � x

(sb)2 C(x) � C(y) � C(x � y)
(sb)3 C(C(x)) = C(x)

Theorem 4. S(K) := (S(K,�,�,¬, �,�,⊥, I1, C1) is a semi-topological double
Boolean algebra.

Proof. Follows from Theorem 2 and Lemmas 1, 2. ��

5 Conclusion

This work introduces the notion of negation in the framework of object oriented
concepts in rough concept analysis, and object oriented semiconcepts are defined.
The algebra that these semiconcepts form is shown to be (a dual of) double
Boolean algebra. Moreover, two unary operators are introduced in this algebra,
leading to the definition of a semi-topological double Boolean algebra.

The proposal opens up several directions of further work, including possible
applications. The definition of a new algebraic structure warrants some imme-
diate algebraic investigations, such as investigation for representation theorems.
Definition of a negation can now facilitate studies in the direction of contextual
logic for rough sets. Besides, one can follow up the entire study in the framework
of property oriented concepts.

Acknowledgments. We are grateful to the anonymous referees for their suggestions
and valuable remarks.
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