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Abstract. Attribute reduction is one of the hottest topics in rough set
data analysis. This paper extends the concept of a boundary region to
a relation system and studies the boundary region reduction for a given
relation system and a fixed set. We present the discernibility matrix and
obtain the judgment theorem of such a type of reduction. The discerni-
bility matrix based boundary reduction algorithm for a relation system
is established.
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1 Introduction

Attribute reduction in information systems is a fundamental aspect of rough set
theory. A reduction is a subset of attributes which reserves the same informa-
tion for classification purposes as the entire set of attributes. Attribute reduc-
tion has been successfully applied in many fields, such as pattern recognition,
machine learning and data mining. There are many different types of attribute
reductions [1,8,11,12,19], for example, positive region reduction [14], variable
precision reduction [18], distribution reduction [10], partial reduction [7], three-
way decision based reduction [9] and so on. Jia et al. [2] gave a brief description
of twenty-two kinds of existing reduction approaches. Pawlak [13,14] was the
first to propose the concept of attribute reduction, Skowron and Rauszer [15,16]
proposed discernibility matrix based attribute reduction algorithms for find-
ing all reduction sets in information systems. Recently, Ma and Yao [9] studied
class-specific attribute reductions in a decision table from the three-way decision
perspective. We [3–7] extended some existing reduction approaches to general
relation systems or relation decision systems. For a relation system (U,A) and a
fixed non-empty subset X ⊆ U , the universal set U is partitioned into the pos-
itive, boundary and negative regions via the lower and upper approximations
of X. This partition is the theoretical basis of three-way decisions. In fact, we
considered the positive and negative region reductions [7] for relation systems.
This paper considers the boundary region reduction for a given relation system
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and gives the corresponding reduction algorithm for finding all reduction sets.
We also discuss the relationship among positive, boundary and negative region
reductions.

The remainder of the paper is organized as follows. In Sect. 2, we briefly
recall some basic concepts and properties of binary relations, rough sets and
relation systems. In Sect. 3, we present the definition of boundary reduction
for a given relation system and a given subset and give a boundary reduction
algorithm. Section 4 discusses the relationship among positive, boundary and
negative region reductions. Finally, Sect. 5 concludes the paper.

2 Preliminaries

Relationships between numbers, sets and many other entities can be formalized
in the idea of a binary relation. This section reviews briefly some basic notations
and notions based on binary relations, rough sets and relation systems.

Let U = {x1, x2, · · · , xn} be a finite universal set and P (U) be the power set
of U . Suppose that R is an arbitrary binary relation on U . The left and right
R-relative sets of an element x in U are defined as

lR(x) = {y|y ∈ U, yRx} and rR(x) = {y|y ∈ U, xRy},

respectively. The left and right R-relative sets are a common generalization of
equivalence classes. Recall the following terminology: (1) R is reflexive if xRx
for each x ∈ U ; (2) R is symmetric if lR(x) = rR(x) for each x ∈ U ; (3)
R is transitive if, for each x, y, z ∈ U , y ∈ rR(x) and z ∈ rR(y) imply z ∈
rR(x); and (4) R is an equivalence relation if R is reflexive, symmetric, and
transitive. Based on the right R-relative set, for subset X ⊆ U , the lower and
upper approximations [13,14,17] of X are defined as

R(X) = {x|x ∈ U, rR(x) ⊆ X} and R(X) = {x|x ∈ U, rR(x) ∩ X �= ∅},

respectively.

Definition 2.1 [5]. Let U be a finite universal set and A be a family of binary
relations on U , then (U,A) is called a relation system.

If A consists of equivalence relations on U , then (U,A) is just a usual informa-
tion system. Thus a relation system is a generalization of an information system.
Let (U,A) be a relation system, with respect to a subset ∅ �= B ⊆ A, we always
associate a relation RB, which is defined as RB = ∩R∈BR.

For a given information system, Pawlak [14] defined the concept of positive,
negative and borderline regions of X ⊆ U . We extend his definition.

Definition 2.2. Let (U,A) be a relation system and ∅ �= X ⊆ U , then the
positive region POSA(X), the boundary region BNDA(X) and the negative
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region NEGA(X) of X are respectively defined as follows:

POSA(X) = RA(X),

BNDA(X) = RA(X) − RA(X),

NEGA(X) = U − RA(X).

This paper studies the boundary region reduction for relation systems. The fol-
lowing proposition gives some basic properties of the boundary region BNDA(X)
of X.

Proposition 2.1. Let (U,A) be a relation system, ∅ �= X ⊆ U and ∅ �= B ⊆ A,
then the following conditions are equivalent:

(1) BNDA(X) = BNDB(X).
(2) RA(X) = RB(X) and RA(X) = RB(X).
(3) (RA(X), RA(XC)) = (RB(X), RB(XC)), where XC = U − X is the com-

plement of X.

Proof. (2) ⇒ (1) is clear. By using the negative property (RA(X))C = RA(XC),
(2) ⇔ (3) is also clear.

(1) ⇒ (2): Since RA ⊆ RB, we have RA(X) ⊆ RB(X) and RB(X) ⊆ RA(X).
BNDB(X) = RB(X) − RB(X) = RA(X) − RA(X) ⊆ RB(X) − RA(X) ⊆
RB(X) − RB(X) implies RA(X) − RA(X) = RB(X) − RA(X), thus RA(X) =
RB(X). Similarly, RA(X) = RB(X). �

3 Boundary Region Reductions

Ma and Yao [9] considered a boundary reduction from the three-way decision
perspective on special decision classes for a decision table. Now we extend their
definition to a given relation system (U,A) and a given non-empty subset X ⊆ U .
This section studies such a type of reduction, which keeps BNDA(X) unchanged,
we call such a type of reduction a boundary reduction. We first give its definition.

Definition 3.1. Let (U,A) be a relation system and a given subset ∅ �= X ⊆ U .
∅ �= B ⊆ A, B is called an X-boundary reduction of (U,A) if B satisfies the
following conditions:

(1) BNDA(X) = BNDB(X).
(2) For any ∅ �= B′ ⊂ B, BNDA(X) �= BNDB′(X).

By Proposition 2.1, an X-boundary reduction of (U,A) keeps both RA(X) and
RA(X) unchanged. We [7] considered two types of reductions that keep RA(X)
and RA(X) unchanged, respectively. Now, via the strict mathematical proofs,
we give an X-boundary reduction algorithm for a given relation system (U,A)
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and a given non-empty subset X ⊆ U . Suppose that U = {x1, x2, · · · , xn}, we
define the discernibility matrix M = (mij)n×n as follows:

mij =

⎧
⎨

⎩

{a|a ∈ A, (xi, xj) /∈ a}, if xi ∈ RA(XC) and xj ∈ X
or xi ∈ RA(X) and xj /∈ X

∅, otherwise
.

Where XC denotes the complement of X. We need a technical lemma.

Lemma 3.1. Let (U,A) be a relation system and ∅ �= X ⊆ U , if xi and xj

satisfy one of the following conditions:

(1) xi ∈ RA(XC), xj ∈ X.
(2) xi ∈ RA(X), xj /∈ X.

Then mij �= ∅.

Proof. Suppose that xi ∈ RA(XC) and xj ∈ X, if mij = ∅, then xiRAxj , so
xj ∈ rRa

(xi) ⊆ XC , that is, xj /∈ X, which contradicts xj ∈ X. Similarly, if
xi ∈ RA(X), xj /∈ X, then mij �= ∅. �

Theorem 3.1. Let (U,A) be a relation system, ∅ �= X ⊆ U , and ∅ �= B ⊆ C.
Then the following conditions are equivalent:

(1) BNDA(X) = BNDB(X).
(2) If mij �= ∅, then B ∩ mij �= ∅.

Proof. (1) ⇒ (2): By Proposition 2.1, we have RA(XC) = RB(XC) and
RA(X) = RB(X). Suppose that mij �= ∅ and B ∩ mij = ∅, then

(i) xi ∈ RA(XC) and xj ∈ X or
(ii) xi ∈ RA(X) and xj /∈ X.

B ∩ mij = ∅ implies xiRBxj and xj ∈ RRB
.

If xi ∈ RA(XC) and xj ∈ X, by condition (1), xi ∈ RB(XC) and xj ∈ X, so
xj ∈ rRB

(xi) ⊆ XC , which contradicts xj ∈ X.
If xi ∈ RA(X) and xj /∈ X, then xi ∈ RB(X) and xj /∈ X, thus xj ∈

rRB
(xi) ⊆ X, which contradicts xj /∈ X.
(2) ⇒ (1): We first show that RA(X) = RB(X). Note that RB(X) ⊆ RA(X)

is clear. If RA(X) �= RB(X), let xi ∈ RA(X) − RB(X), by definition of a lower
approximation, we have rRA

(xi) ⊆ X, and rRB
(xi) � X. Let xj ∈ rRB

(xi) and
xj /∈ X, by Lemma 3.1, mij �= ∅, and from condition (2), B ∩ mij �= ∅. Thus
(xi, xj) /∈ RB, which contradicts xj ∈ rRB

. This shows that RA(X) = RB(X).
Similarly, we can show that RA(X) = RB(X). �

From Theorem 3, we have the following corollary.
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Corollary 3.1. Let (U,A) be a relation system, ∅ �= X ⊆ U , and ∅ �= B ⊆ C,
then B is an X-boundary reduction of A if and only if it is a minimal subset
satisfying mij ∩ B �= ∅ for any mij �= ∅.

According to Corollary 3.1, we propose an X-boundary reduction algorithm
for a given relation system (U,A) and a given subset ∅ �= X ⊆ U as follows.

Algorithm. An X-boundary reduction for a given relation system.
Input: A given relation system (U,A) and ∅ �= X ⊆ U .
Output: All X-boundary reduction sets.

(1) Compute a discernibility matrix M = (mij)n×n.
(2) Transform the discernibility function f from its conjunctive normal

form (CNF)
f = Πmij �=∅,mij �=A(Σmij)

into the disjunctive normal form (DNF) f = Σs
t=1(ΠBt), (Bt ⊆ A).

(3) All reduction sets are B1, B2, · · · , Bs and the core is ∩s
t=1Bt.

End the algorithm.
We illustrate the algorithm introduced previously with a simple example.

Example 3.1. Let (U,A) be a relation system, where U = {1, 2, 3, 4, 5}, A =
{R1, R2, R3, R4, R5} and X = {1, 3, 5}. Each Ri(i = 1, 2, · · · , 5) is given by its
Boolean matrix MRi

.

MR1 =

⎛
⎜⎜⎜⎜⎝

0 1 1 1 0
0 1 1 0 1
1 0 0 0 0
1 1 0 1 1
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

,MR2 =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0
0 1 1 0 1
1 1 0 1 0
1 1 0 1 0
0 1 1 1 0

⎞
⎟⎟⎟⎟⎠

,MR3 =

⎛
⎜⎜⎜⎜⎝

1 1 0 1 0
0 0 1 0 1
1 0 1 0 0
1 0 0 1 1
0 1 1 1 0

⎞
⎟⎟⎟⎟⎠

,

MR4 =

⎛
⎜⎜⎜⎜⎝

0 1 0 1 0
1 0 1 1 1
1 0 1 0 1
1 0 0 1 0
1 1 1 1 0

⎞
⎟⎟⎟⎟⎠

, and MR5 =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0
0 1 1 1 1
1 1 0 1 1
1 0 0 1 1
0 1 0 1 1

⎞
⎟⎟⎟⎟⎠

. Clearly, MRA =

⎛
⎜⎜⎜⎜⎝

0 1 0 1 0
0 0 1 0 1
1 0 0 0 0
1 0 0 1 0
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

.

By direct computation, RA(X) = {2, 3, 4}, RA(X) = {2, 3} and
BNDA(X) = RA(X) − RA(X) = {4}. The following Table 1 gives the discerni-
bility matrix of the boundary region reduction. Since 1 ∈ RA(XC) and 1 ∈ X, it
follows that both R1 and R4 are in the entry (1, 1) of Table 1, because (1, 1) /∈ R1

and (1, 1) /∈ R4. The discernibility function

f = (R1 + R3)(R1 + R4)(R1 + R5)(R3 + R4)
= (R1 + R3R4R5)(R3 + R4)
= R1R3 + R1R4 + R3R4R5.

Thus all boundary region reduction sets are {R1, R3}, {R1, R4}, and
{R3, R4, R5}.
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4 The Relationship Among Positive, Boundary
and Negative Region Reductions

This section will illustrate the relationship among positive, boundary and nega-
tive region reductions. Let (U,A) be a relation system and X ⊆ U , recall that
an X-positive region reduction keeps RC(X) unchanged. Its formal definition is
as follows.

Table 1. The discernibility matrix of the reduction

1 2 3 4 5

1 {R1, R4} ∅ {R3, R4} ∅ A

2 ∅ {R3, R4} ∅ {R1, R2, R3} ∅
3 ∅ {R1, R3, R4} ∅ {R1, R3} ∅
5 {R1, R2, R3, R5} ∅ {R1, R5} ∅ {R1, R2, R3, R4}

Definition 4.1. Let (U,A) be a relation system and a given subset ∅ �= X ⊆ U .
∅ �= B ⊆ A, set B is called an X-positive reduction of (U,A) if B satisfies the
following conditions:

(1) POSA(X) = POSB(X).
(2) For any ∅ �= B′ ⊂ B, POSA(X) �= POSB′(X).

Similarly, an X-negative region reduction keeps U − RC(X) = RC(XC)
unchanged, however, we omit its formal definition. The discernibility matrices
M = (mij)s×(n−t) and N = (nij)u×t of an X-positive region and X-negative
region reduction are given as follows:

mij =
{{a|a ∈ A, (xi, xj) /∈ a}, xi ∈ RA(X), xj /∈ X

∅, otherwise
, and

nij =
{{a|a ∈ A, (xi, xj) /∈ a}, xi ∈ RA(XC), xj ∈ X

∅, otherwise
,

respectively. Where s = |RA(X)| denotes the cardinality of RA(X), t = |X| and
u = |RC(XC)|.

Using the matrices M and N , we can calculate all positive and negative
region reduction sets, respectively. Moreover, we can also derive the boundary
region reduction from the positive and negative region reductions. This provides
another boundary region reduction algorithm. We use the example below to show
the detailed method.
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Example 4.1. Let (U,A) and X ⊆ U be as in Example 3.1, the discernibility
matrices M = (mij)s×(n−t) of the X-positive region reduction and N = (nij)u×t

of the X-negative region reduction are shown in Tables 2 and 3:

Table 2. The discernibility matrix of an X-positive reduction

2 4

2 {R3, R4} {R1, R2, R3}
3 {R1, R3, R4} {R1, R3}

Table 3. The discernibility matrix of an X-negative reduction

1 3 5

1 {R1, R4} {R3, R4} A

5 {R1, R2, R3, R5} {R1, R5} {R1, R2, R3, R4}

Since the discernibility function of the X-positive region reduction f1 =
R3 + R1R4, so that all the X-positive region reduction sets are {R3} and
{R1, R4}, similarly, the discernibility function of the X-negative region reduction
f2 = R1R3 + R1R4 + R4R5, so that all the X-negative region reduction sets are
{R1, R3}, {R1, R4} and {R4, R5}. The discernibility function of the X-boundary
region reduction is

f = f1f2 = (R3 + R1R4)(R1R3 + R1R4 + R4R5)
= R1R3 + R1R4 + R3R4R5.

Thus all boundary region reduction sets are {R1, R3}, {R1, R4}, and
{R3, R4, R5}.

Remark 1. Let B,C and D be respectively X-positive, boundary and negative
region reductions of a relation system (U,A), then

(1) B ∩ C keeps the negative region unchanged,
(2) C ∩ D keeps the positive region unchanged, and
(3) B ∩ D keeps the boundary region unchanged.

5 Conclusions

The boundary region consists of hesitation objects. In other words, for these
objects, we can neither accept nor reject and, hence, make a non-commitment
decision. Naturally, it is an interesting problem to consider the reduction that
keeps the boundary region unchanged. Thus we propose the concept of the



Boundary Region Reduction for Relation Systems 425

boundary region reduction for relation systems and obtain a corresponding
reduction algorithm for finding all reduction sets. We have also established a
relationship among the positive, boundary and negative region reductions. We
have provided a way to derive the boundary region reduction sets from the posi-
tive and negative region reduction sets. The future work is to apply the reduction
model given in this paper to discover knowledge in real life data sets.
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