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Abstract. Rule induction based on indiscernible classes from neigh-
borhood rough sets is described in information tables with continuous
values. An indiscernible range that a value has in an attribute is deter-
mined by a threshold on that attribute. The indiscernible class of every
object is derived from using the indiscernible range. First, lower and
upper approximations are described in complete information tables by
using indiscernible classes. Rules are obtained from the approximations.
A rule that an object supports, which is called a single rule, is short of
applicability. To improve the applicability of rules, a series of single rules
is put into one rule expressed in an interval value, which is called a com-
bined rule. Second, these are addressed in incomplete information tables.
Incomplete information is expressed in a set of values or an interval value.
Two types of indiscernible classes; namely, certainly and possibly indis-
cernible ones, are obtained from in an information table. The actual
indiscernibility class is between the certainly and possibly indiscernible
classes. The family of indiscernible classes of an object has a lattice struc-
ture. The minimal element is the certainly indiscernible class while the
maximal one is the possibly indiscernible class. By using certainly and
possibly indiscernible classes, we obtain four types of approximations:
certain lower, certain upper, possible lower, and possible upper approx-
imations. From these approximations we obtain four types of combined
rules: certain and consistent, certain and inconsistent, possible and con-
sistent, and possible and inconsistent ones. These combined rules have
greater applicability than single rules that individual objects support.
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1 Introduction

Rough sets, constructed by Pawlak [12], are used as an effective method for data
mining. The framework is usually applied to information tables with nominal
attributes and creates fruitful results in various fields. However, we are frequently
faced with attributes taking continuous values, when we describe properties of
an object in our daily life. Therefore, we describe rough sets in information tables
with continuous values.

Ways how to deal with attributes taking continuous values are broadly clas-
sified into two approaches. One is to discretize a continuous domain by dividing
it into a collection of disjunctive intervals. Objects included in an interval are
regarded as indistinguishable. From this indistinguishability the family of indis-
cernible classes is derived [1]. Results strongly depend on how discretization
is made. Especially, objects that are located in the proximity of the boundary
of intervals are strongly affected by discretization. This leads to that results
abruptly change by a little alteration of discretization. The other is a way using
neighborhood [7]. In this approach when the distance of an object to another
one on an attribute is less than or equal to a given threshold, two objects are
regarded as indistinguishable on the attribute. Results gradually change as the
threshold changes. So, we use the latter approach.

Rules are induced from lower and upper approximations. Concretely speak-
ing, when objects o and o′ are included in the approximations, let single rules
ai = 3.60 → aj = v and ai = 3.73 → aj = v be induced, where objects o and
o′ are characterized by values 3.60 and 3.73 of attribute ai and the set approxi-
mated is specified by value v of attribute aj . For example, value 3.66 of attribute
ai is not indiscernible with 3.60 and 3.73 under the threshold 0.05. Therefore,
we cannot say anything from these single rules for a rule supported by an object
with value 3.66 of attribute ai. This means that the single rules are short of
applicability. To improve such applicability, we consider a combined rule that is
derived from a series of single rules supported by individual objects.

In addition, we are frequently confronted with incomplete information in
daily life. We cannot sufficiently utilize information obtained from our daily life
unless we deal with incomplete information. We express incomplete information
in a partial value or an interval value. A missing value that means unknown in
an attribute is expressed in all elements over the domain of the attribute. For
example, the domain is given in the interval [1.23, 4.45], the missing value is
expressed in [1.23, 4.45].

Most of authors fix the indiscernibility of an object with incomplete informa-
tion with another object [3,16–18], as was done by Kryszkiewicz [4]. However,
object o characterized by a value with incomplete information has two possibili-
ties. One possibility is that the object o may have the same value as another one
o′; namely, the two objects may be indiscernible. The other possibility is that
o may have a different value from o′; namely, the two objects may be discernible.
To fix the indiscernibility is to take into account only one of the two possibili-
ties. Therefore, this treatment creates poor results and induces information loss
[9,15]. We do not fix the indiscernibility of objects with incomplete information
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and simultaneously deal with both possibilities. This can be realized by dealing
with objects having incomplete information from viewpoints of certainty and
possibility [10], as was done by Lipski in the field of incomplete databases [5,6].

We have an approach based on possible world from the viewpoints of certainty
and possibility. This way creates possible tables. Unfortunately, infinite possible
tables can be derived from an information table with continuous values. Another
way uses possible classes of an object, in which the object is possibly indiscernible
with anyone [8]. The number of possible classes grows exponentially, as the
number of values with incomplete information increases. However, this difficulty
can be avoided by using minimum and maximum possible classes in the case
of nominal attributes [10]. In this work, we apply this approach to information
tables with continuous values.

The paper is organized as follows. In Sect. 2, an approach using indiscernible
classes is addressed in complete information tables. In Sect. 3, we develop the
approach in incomplete information tables. This is described from two viewpoints
of certainty and possibility. In Sect. 4, conclusions are addressed.

2 Rough Sets by Using Indiscernible Classes in Complete
Information Systems with Continuous Values

A data set is represented as a two-dimensional table, called an information table.
In the information table, each row and each column represent an object and
an attribute, respectively. A mathematical model of an information table with
complete information is called a complete information system. The complete
information system is a triplet expressed by (U,AT, {D(ai) | ai ∈ AT}). U is a
non-empty finite set of objects, which is called the universe. AT is a non-empty
finite set of attributes such that ai : U → D(ai) for every ai ∈ AT where D(ai)
is the domain of attribute ai.

Indiscernible class [o]ai
for object o on ai is:

[o]ai
= {o′ | |ai(o) − ai(o′)| ≤ δai

}, (1)

where ai(o) is the value for attribute ai of object o and δai
is a threshold that

denotes a range in which ai(o) is indiscernible with ai(o′). The indiscernible
class is a tolerance class. Using the tolerance class, rough sets are generalized
[14]. And recently it is used in decision rule induction [13].

Family Fai
of indiscernible classes on ai is:

Fai
= {[o]ai

| o ∈ U}, (2)

where ∪i[o]ai
= U . Using indiscernible classes, lower approximation apr

ai
(O)

and upper approximation aprai
(O) of set O of objects for ai are:

apr
ai

(O) = {o | [o]ai
⊆ O}, (3)

aprai
(O) = {o | [o]ai

∩ O �= ∅}. (4)
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Proposition 1. If δ1 ≤ δ2, then aprδ1
ai

(O) ⊇ aprδ2
ai

(O) and aprδ1
ai

(O) ⊆
aprδ2

ai
(O), where aprδ1

ai
(O) and aprδ1

ai
(O) are lower and upper approximations

under threshold δ1 of attribute ai and aprδ2
ai

(O) and aprδ2
ai

(O) are lower and
upper approximations under threshold δ2 of attribute ai.

For object o in the lower approximation of O, all objects with which o is indis-
cernible are included in O; namely, [o]ai

⊆ O. On the other hand, for an object
o in the upper approximation of O, some objects with which o is indiscernible
are in O; namely, [o]ai

∩ O �= ∅. Thus, apr
ai

(O) ⊆ aprai
(O).

Rules are induced from lower and upper approximations. Let O be specified
by restriction aj = x. Object o ∈ apr

ai
(O) consistently supports a single rule

ai = ai(o) → aj = x. Object o ∈ aprai
(O) inconsistently supports a single rule

ai = ai(o) → aj = x. The degree of consistency, called accuracy, is |[o]ai
∩O|/|O|.

Since attribute ai has the continuous domain, the antecedent part of single
rules that individual objects support is usually different. We obtain lots of single
rules, but they have a drawback for applicability. For example, let two values
ai(o) and ai(o′) be 3.65 and 3.75 for objects o and o′ in apr

ai
(O). When O is

specified by restriction aj = x, o and o′ support single rules ai = 3.65 → aj = x
and ai = 3.75 → aj = x, respectively. By using these rules, we can say that a
object having value 3.68 of ai, indiscernible with 3.65 under δai

= 0.03, supports
ai = 3.68 → aj = x. However, we cannot at all say anything for a rule supported
by an object with value 3.70 discernible with 3.65 and 3.75. This shows that a
single rule is short of applicability.

To improve the applicability of rules, we combine a series of single rules
into one rule, which is called a combined rule. Let objects in U be aligned in
ascending order of ai(o) and be attached the serial superscript with 1 to NU

where |U | = NU . apr
ai

(O) and aprai
(O) consist of collections of objects with

serial superscripts. For example, apr
ai

(O) = {· · · , oh, oh+1, · · · , ok−1, ok, · · · }
(h ≤ k). Let ol in apr

ai
(O) support a single rule ai = ai(ol) → aj = x. Then,

single rules derived from collection (oh, oh+1, · · · , ok−1, ok) can be put into one
combined rule ai = [ai(oh), ai(ok)] → aj = x.

Next, when aj is an attribute with the continuous domain, O is specified by
a restriction with an interval value. The interval value has the lower and the
upper bounds that are existing values of attribute. Let the objects be aligned
in ascending order of values of aj and be attached the serial superscript with
1 to NU . For example, using the ordered objects, O is specified like O = {o |
aj(o) ≥ aj(om) ∧ aj(o) ≤ aj(on)} with m ≤ n; in other words, O is specified
by restriction aj = [ai(om), ai(on)]. In the case, the combined rule, derived from
collection (oh, oh+1, · · · , ok−1, ok), is expressed with ai = [ai(oh), ai(ok)] → aj =
[ai(om), ai(on)]. The accuracy of the combined rule is minh≤s≤k |[os]ai

∩ O|/|O|.
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Proposition 2. Let r and r be sets of combined rules obtained from apr
ai

(O)
and aprai

(O), respectively. If (ai = [l, u] → W ) ∈ r, then ∃l′ ≤ l,∃u′ ≥ u (ai =
[l′, u′] → W ) ∈ r, where O is specified by restriction W .

Example 1. Information tables are depicted in Fig. 1. T0 is the original infor-
mation table. U is {o1, o2, · · · , o18, o19}. T1, T2, and T3 are derived from T0,
where some attributes are projected and objects are aligned in ascending order
of values of attributes a1, a2, and a3, respectively.

Fig. 1. T0 is the original information table. T1, T2, and T3 are derived from T0.

Let threshold δa1 be 0.05. Indiscernible classes of objects are:

[o1]a1 = {o1, o10, o14}, [o2]a1 = {o2, o11, o16, o17}, [o3]a1 = {o3}, [o4]a1 = {o4},

[o5]a1 = {o5}, [o6]a1 = {o6, o10, o15}, [o7]a1 = {o7}, [o8]a1 = {o8}, [o9]a1 = {o9},

[o10]a1 = {o1, o6, o10, o14, o15}, [o11]a1 = {o2, o11, o16}, [o12]a1 = {o12},

[o13]a1 = {o13, o19}, [o14]a1 = {o1, o10, o14}, [o15]a1 = {o6, o10, o15},

[o16]a1 = {o2, o11, o16}, [o17]a1 = {o2, o17}, [o18]a1 = {o18}, [o19]a1 = {o13, o19}.

When O is specified by restriction a4 = b, O = {o1, o2, o5, o9, o11, o14, o16, o19}.
Let O be approximated by objects on attribute a1 with continuous values.
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Using formulas (3) and (4), lower and upper approximations are:

apr
a1

(O) = {o5, o9, o11, o16},

apra1
(O) = {o1, o2, o5, o9, o10, o11, o13, o14, o16, o17, o19}.

Information table T1 is derived from information table T0, where objects are
aligned in ascending order of values of attribute a1 and are attached the serial
superscript from 1 to 19. The above approximations are described using the
serial superscript as follows:

apr
a1

(O) = {o7, o8, o14, o15},

apra1
(O) = {o5, o6, o7, o8, o11, o12, o13, o14, o15, o16, o17},

where

o5 = o17, o6 = o2, o7 = o16, o8 = o11, o11 = o10, o12 = o1,

o13 = o14, o14 = o9, o15 = o5, o16 = o19, o17 = o13.

From the lower approximation, consistent combined rules are

a1 = [2.95, 2.97] → a4 = b, a1 = [3.22, 3.42] → a4 = b,

from collections {o7, o8} and {o14, o15}, respectively, where a1(o7) = 2.95,
a1(o8) = 2.97, a1(o14) = 3.22, and a1(o15) = 3.42. From the upper approxi-
mation, inconsistent combined rules are

a1 = [2.89, 2.97] → a4 = b, a1 = [3.07, 3.91] → a4 = b,

from collections {o5, o6, o7, o8} and {o11, o12, o13, o14, o15, o16, o17}, respectively,
where a1(o5) = 2.89, a1(o11) = 3.07, and a1(o17) = 3.91.

Next, we consider the case where O is specified by a3 with the continu-
ous domain. Information table T3 is derived from T0, where the objects are
aligned in ascending order of values of a3 and are attached the serial superscript
from 1 to 19. Using lower bound a3(o5) = a3(o15) = 3.22 and upper bound
a3(o10) = a3(o8) = 3.49, O = {o5, o6, o7, o8, o9, o10} = {o2, o3, o8, o15, o16, o17}.
We approximate O by attribute a2. Information table T2 where the objects are
aligned in ascending order of values of a2 is derived from T0. Let δa2 be 0.05.
Indiscernible classes of objects are:

[o1]a2 = {o1, o4, o7, o8}, [o2]a2 = {o2, o3, o16}, [o3]a2 = {o2, o3, o13, o16},

[o4]a2 = {o1, o4, o7, o8}, [o5]a2 = {o5}, [o6]a2 = {o6}, [o7]a2 = {o1, o4, o7},

[o8]a2 = {o8}, [o9]a2 = {o9}, [o10]a2 = {o10}, [o11]a2 = {o11, o18}, [o12]a2 = {o12},

[o13]a2 = {o3, o13}, [o14]a2 = {o14}, [o15]a2 = {o15}, [o16]a2 = {o2, o3, o16},

[o17]a2 = {o17}, [o18]a2 = {o11, o18}, [o19]a2 = {o19}.

Using formulas (3) and (4), lower and upper approximations are:

apr
a2

(O) = {o2, o8, o15, o16, o17}, apra2
(O) = {o1, o2, o3, o4, o8, o13, o15, o16, o17}.
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Using information table T2 where objects are aligned in ascending order of values
of attribute a2 and are attached the serial superscript from 1 to 19, the above
approximations are described as follows:

apr
a2

(O) = {o6, o7, o9, o10, o11}, apra2
(O) = {o4, o5, o6, o7, o9, o10, o11, o12, o13},

From the lower approximation, consistent combined rules are

a2 = [3.11, 3.29] → a3 = [3.22, 3.49], a2 = [3.51, 3.65] → a3 = [3.22, 3.49],

where a2(o6) = 3.11, a2(o7) = 3.29, a2(o9) = 3.51, and a2(o11) = 3.65. From
the upper approximation, inconsistent combined rules are

a2 = [2.98, 3.29] → a3 = [3, 22, 3.49], a2 = [3.51, 3.71] → a3 = [3.22, 3.49],

where a2(o4) = 2.98 and a2(o13) = 3.71.
This example shows that a combined rule is more applicable than single

rules. For example, using the above consistent combined rule a2 = [3.11, 3.29] →
a3 = [3.22, 3.49], we can say that an object with 3.20 for a value of attribute a2

supports this rule, because 3.20 is included in interval [3.11, 3.29]. On the other
hand, using single rules a2 = 3.11 → a3 = [3.22, 3.49] and a2 = 3.29 → a3 =
[3.22, 3.49], we cannot say what rule the object supports under a threshold 0.05.

For formulas on sets A and B of attributes,

[o]A = ∩ai∈A[o]ai
, (5)

apr
A
(O) = {o | [o]A ⊆ O}, (6)

aprA(O) = {o | [o]A ∩ O �= ∅}. (7)

3 Rough Sets by Indiscernible Classes in Incomplete
Information Systems with Continuous Domains

An information table with incomplete information is called an incomplete infor-
mation system. In incomplete information systems, ai : U → sai

for every
ai ∈ AT where sai

is a set of values over domain D(ai) of attribute ai or an
interval on D(ai). Single value v with v ∈ ai(o) or v ⊆ ai(o) is a possible value
that may be the actual one as the value of attribute ai in object o. The possible
value is the actual one if ai(o) is a single value.

In an incomplete information system1, an indiscernible class is a possible
class that may be the actual indiscernible class. We have lots of indiscernible
classes. Family F [o]ai

of indiscernible class is:

F [o]ai
= {C[o]ai

∪ e | e ∈ P(P [o]ai
\C[o]ai

)}, (8)

1 For the sake of simplicity and space limitation, We describe the case of an attribute,
although our approach can be easily extended to the case of more than one attribute.
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where P(P [o]ai
\C[o]ai

) is the power set of P [o]ai
\C[o]ai

, and certainly indis-
cernible class C[o]ai

and possibly one P [o]ai
on attribute ai of object o are:

C[o]ai
= {o′ | o′ = o ∨ (∀u ∈ ai(o)∀v ∈ ai(o′)|u − v| ≤ δai

)}, (9)
P [o]ai

= {o′ | o′ = o ∨ (∃u ∈ ai(o)∃v ∈ ai(o′)|u − v| ≤ δai
)}. (10)

The family of indiscernible classes has a lattice structure. The minimal element is
the certainly indiscernible class and the maximal one is the possibly indiscernible
class. In other words, C[o]ai

is the minimum indiscernible class and P [o]ai
is the

maximum indiscernible class. Objects in the certainly indiscernible class of o are
certainly indistinguishable with o. Objects in the possibly indiscernible class of
o are possibly indistinguishable with o.

We can derive not the actual, but certain and possible approximations from
the viewpoint of certainty and possibility, as Lipski obtained in query processing
under incomplete information [5,6]. We cannot definitely obtain whether or not
an object belongs to the actual approximations, but we can know whether or
not the object certainly and/or possibly belongs to approximations. Therefore,
we show certain approximations (resp. possible approximations) whose object
certainly (resp. possibly) belongs to the actual approximations.

Let O be a set of objects. Using certainly and possibly indiscernible classes,
certain lower approximation Capr

ai
(O) and possible one Papr

ai
(O) for ai are:

Capr
ai

(O) = {o | P [o]ai
⊆ O}, (11)

Papr
ai

(O) = {o | C[o]ai
⊆ O}. (12)

Similarly, Certain upper approximation Caprai
(O) and possible one Paprai

(O)
are:

Caprai
(O) = {o | C[o]ai

∩ O �= ∅}, (13)
Paprai

(O) = {o | P [o]ai
∩ O �= ∅}. (14)

As with the case of nominal attributes [10], the following proposition holds.

Proposition 3. Capr
ai

(O) ⊆ Papr
ai

(O) ⊆ O ⊆ Caprai
(O) ⊆ Paprai

(O).

Using four approximations denoted by formulae (11)–(14), lower and upper
approximations are expressed in interval sets, as is described in [11]2, as fol-
lows:

apr•
ai

(O) = [Capr
ai

(O), Papr
ai

(O)], (15)

apr•
ai

(O) = [Caprai
(O), Paprai

(O)]. (16)

Certain and possible approximations are the lower and upper bounds of the
actual approximation. The two approximations apr•

ai
(O) and apr•

ai
(O) depend

2 Hu and Yao also say that approximations describes by using an interval set in infor-
mation tables with incomplete information [2].
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on each other; namely, the complementarity property apr•
ai

(O) = U −apr•
ai

(U −
O) linked with them holds, as is so in complete information systems.

When objects in O are specified by attribute aj with incomplete information,
O is specified by using an element in domain D(aj). In the case where O is
specified by restriction aj = x with x ∈ D(aj), four approximations: certain
lower, possible lower, certain upper, and possible upper ones, are:

Capr
ai

(O) = {o | P [o]ai
⊆ COaj=x}, (17)

Papr
ai

(O) = {o | C[o]ai
⊆ POaj=x}, (18)

Caprai
(O) = {o | C[o]ai

∩ COaj=x �= ∅}, (19)
Paprai

(O) = {o | P [o]ai
∩ POaj=x �= ∅}, (20)

where

COaj=x = {o ∈ O | aj(o) = x}, (21)
POaj=x = {o ∈ O | aj(o) ⊇ x}. (22)

For rule induction, we can say as follows:

– o ∈ Capr
ai

(O) certainlyandconsistently supports ruleai = ai(o) → aj(o) = x.
– o ∈ Caprai

(O) certainly and inconsistently supports rule ai = ai(o) →
aj(o) = x.

– o ∈ Papr
ai

(O) possibly and consistently supports ai = ai(o) → aj(o) = x.
– o ∈ Paprai

(O) possibly and inconsistently supports ai = ai(o) → aj(o) = x.

We create combined rules from them.
Let UC

ai
and U I

ai
be sets of objects having complete information and incom-

plete information for ai. o ∈ UC
ai

is aligned in ascending order of ai(o) and
is attached the serial superscript with 1 to NC

i
where |UC

ai
| = NC

i . Objects
o ∈ (Capr

ai
(O) ∩ UC

ai
), o ∈ (Caprai

(O) ∩ UC
ai

), o ∈ (Papr
ai

(O) ∩ UC
ai

),
and o ∈ (Paprai

(O) ∩ UC
ai

) are aligned in ascending order of ai(o). And
then they are expressed by a sequence of collections of objects with a serial
superscript like {· · · , oh, oh+1, · · · , ok−1, ok, · · · } (h ≤ k). From collection
(oh, oh+1, · · · , ok−1, ok), four types of combined rules expressed with ai = [l, u] →
aj = x are derived. For a certain and consistent combined rule,

l = min(ai(oh),min
Y

e) and u = max(ai(ok),max
Y

e),

Y =

⎧
⎨

⎩

e < ai(ok+1), for h = 1 ∧ k �= NC
i

ai(oh−1) < e < ai(ok+1), for h �= 1 ∧ k �= NC
i

ai(oh−1) < e, for h �= 1 ∧ k = NC
i

with e ∈ ai(o′) ∧ o′ ∈ X, (23)

where X is (Capr
ai

(O) ∩ U I
ai

).
For certain and inconsistent, possible and consistent, possible and incon-

sistent combined rules, X is (Caprai
(O) ∩ U I

ai
), (Papr

ai
(O) ∩ U I

ai
), and

(Paprai
(O) ∩ U I

ai
), respectively.
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Proposition 4. Let Cr and Pr be sets of combined rules obtained from
Capr

ai
(O) and Papr

ai
(O), respectively. When O is specified by restriction W ,

if (ai = [l, u] → W ) ∈ Cr, then ∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → W ) ∈ Pr.

Proposition 5. Let Cr and Pr be sets of combined rules obtained from
Caprai

(O) and Paprai
(O), respectively. When O is specified by restriction W ,

if (ai = [l, u] → W ) ∈ Cr, then ∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → W ) ∈ Pr.

Proposition 6. Let Cr and Cr be sets of combined rules obtained from
Capr

ai
(O) and Caprai

(O), respectively. When O is specified by restriction W ,
if (ai = [l, u] → W ) ∈ Cr, then ∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → W ) ∈ Cr.

Proposition 7. Let Pr and Pr be sets of combined rules obtained from
Papr

ai
(O) and Paprai

(O), respectively. When O is specified by restriction W ,
if (ai = [l, u] → W ) ∈ Pr, then ∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → W ) ∈ Pr.

Example 2. Let O be specified by restriction a4 = b in IT of Fig. 2.

Fig. 2. Information table IT with incomplete information

COa4=b = {o2, o5, o9, o11, o14, o16},

POa4=b = {o1, o2, o5, o9, o11, o14, o16, o17, o19}.
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Each C[oi]a1 for i = 1, . . . , 19 is, respectively,

C[o1]a1 = {o1, o10}, C[o2]a1 = {o2, o11, o16, o17}, C[o3]a1 = {o3},

C[o4]a1 = {o4}, C[o5]a1 = {o5}, C[o6]a1 = {o6, o10, o15}, C[o7]a1 = {o7},

C[o8]a1 = {o8}, C[o9]a1 = {o9}, C[o10]a1 = {o1, o6, o10, o14, o15},

C[o11]a1 = {o2, o11, o16}, C[o12]a1 = {o12}, C[o13]a1 = {o13, o19},

C[o14]a1 = {o10, o14}, C[o15]a1 = {o6, o10, o15}, C[o16]a1 = {o2, o11, o16},

C[o17]a1 = {o2, o17}, C[o18]a1 = {o18}, C[o19]a1 = {o13, o19}.

Each P [oi]a1 for i = 1, . . . , 19 is, respectively,

P [o1]a1 = {o1, o6, o10, o14, o15}, P [o2]a1 = {o2, o9, o11, o16, o17}, P [o3]a1 = {o3},

P [o4]a1 = {o4}, P [o5]a1 = {o5}, P [o6]a1 = {o1, o6, o10, o15}, P [o7]a1 = {o7},

P [o8]a1 = {o8}, P [o9]a1 = {o2, o9, o11, o16, o17}, P [o10]a1 = {o1, o6, o10, o14, o15},

P [o11]a1 = {o2, o9, o11, o16, o17}, P [o12]a1 = {o12}, P [o13]a1 = {o13, o19},

P [o14]a1 = {o1, o10, o14}, P [o15]a1 = {o1, o6, o10, o15},

P [o16]a1 = {o2, o9, o11, o16, o17}, P [o17]a1 = {o2, o9, o11, o16, o17},

P [o18]a1 = {o18}, P [o19]a1 = {o13, o19}.

Four approximations are:

Capr
a1

(O) = {o5},

Papr
a1

(O) = {o2, o5, o9, o11, o16, o17},

Capra1
(O) = {o2, o5, o9, o10, o11, o14, o16, o17},

Papra1
(O) = {o1, o2, o5, o6, o9, o10, o11, o13, o14, o15, o16, o17, o19}.

UC
a1 = {o2, o3, o4, o5, o6, o7, o8, o10, o12, o13, o14, o15, o16},

U I
a1 = {o1, o9, o11, o17, o18, o19}

Objects in UC
a1 are aligned in ascending order of values of attribute a1 as follows:

o3, o12, o7, o2, o16, o6, o15, o10, o14, o5, o13, o8, o4

A series of superscripts is attached to these objects:

o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12, o13,

where o1 = o3, o
2 = o12, . . . , o

13 = o4. Using objects with the superscript, the
four approximations are expressed as follows:

Capr
a1

(O) = {o10},

Papr
a1

(O) = {o4, o5, o10, o9, o11, o17},

Capra1
(O) = {o4, o5, o8, o9, o10, o9, o11, o17},

Papra1
(O) = {o4, o5, o6, o7, o8, o9, o10, o11, o1, o9, o11, o17, o19}.
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where objects with a superscript and with a subscript have complete and incom-
plete information for attribute a1, respectively; namely,

Capr
a1

(O) ∩ UC
a1

= {o10}, Capr
a1

(O) ∩ UI
a1

= ∅,
Papr

a1
(O) ∩ UC

a1
= {o4, o5, o10}, Papr

a1
(O) ∩ UI

a1
= {o9, o11, o17},

Capra1
(O) ∩ UC

a1
= {o4, o5, o8, o9, o10}, Capra1

(O) ∩ UI
a1

= {o9, o11, o17},
Papra1

(O) ∩ UC
a1

= {o4, o5, o6, o7, o8, o9, o10, o11}, Papra1
(O) ∩ UI

a1
= {o1, o9, o11, o17, o19}.

From these expressions, four types combined rules are derived. For certain and
consistent rules,

a1 = 3.42 → a4 = b.

For possible and consistent rules,

a1 = [2.89, 2.97] → a4 = b, a1 = [3.22, 3.42] → a4 = b.

For certain and inconsistent rules,

a1 = [2.89, 2.97] → a4 = b, a1 = [3.07, 3.42] → a4 = b.

For possible and inconsistent rules,

a1 = [2.89, 3.92] → a4 = b.

Last, we describe the case where o ∈ O is specified by numerical attribute
aj with incomplete information. o ∈ UC

aj
is aligned in ascending order of aj(o)

and is attached with the serial superscript with 1 to NC
j where |UC

aj
| = NC

j . We
specify O by aj(om) ∈ UC

aj
and aj(on) ∈ UC

aj
with m ≤ n.

Capr
ai

(O) = {o | P [o]ai
⊆ CO[aj(om),aj(on)]}, (24)

Papr
ai

(O) = {o | C[o]ai
⊆ PO[aj(om),aj(on)]}, (25)

Caprai
(O) = {o | C[o]ai

∩ CO[aj(om),aj(on)] �= ∅}, (26)
Paprai

(O) = {o | P [o]ai
∩ PO[aj(om),aj(on)] �= ∅}, (27)

where

CO[aj(om),aj(on)] = {o ∈ O | aj(o) ⊆ [aj(om), aj(on)]}, (28)
PO[aj(om),aj(on)] = {o ∈ O | aj(o) ∩ [aj(om), aj(on)] �= ∅}. (29)

o ∈ UC
aj

is aligned in ascending order of aj(o) and is attached the serial super-
script with 1 to NC

j . Now, O is specified by attribute values aj(om) and aj(on)
with om ∈ UC

aj
and on ∈ UC

aj
. o ∈ UC

ai
is aligned in ascending order of ai(o) is

attached the serial superscript with 1 to NC
i . Also, four types of combined rules

with ai = [l, u] → aj = [aj(om), aj(on)] are obtained: certain and consistent,
certain and inconsistent, possible and consistent, and possible and inconsistent
combined rules.

These types of combined rules are obtained in incomplete information table
IT in Fig. 2. For example, let O be specified by numerical attribute a3 with
incomplete information. When O is approximated on numerical attribute a2

with incomplete information, the four types of combined rules are derived.
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4 Conclusions

We have described rough sets and rule induction from them in information
tables with continuous domains. First, we have dealt with complete information
tables. Rough sets are obtained from indiscernible classes. Individual objects
that belongs to the rough sets support single rules. The single rules are short of
applicability. To improve the applicability of rules, we have put a series of single
rules derived from the rough sets into one combined rule. The combined rule is
expressed by using intervals.

Second, we have dealt with incomplete information tables. Incomplete infor-
mation is depicted in a disjunctive set of values or an interval of values. We have
dealt with it from viewpoints of certainty and possibility, as was introduced
by Lipski in the field of incomplete databases. Lots of indiscernible classes are
derived. The family of indiscernible classes is expressed by a lattice having the
minimal and maximal elements. The number of indiscernible classes increases
exponentially as the number of attribute values with incomplete information
grows. However, approximations are obtained by using the minimal and the
maximal indiscernible classes. Therefore, we have no difficulty of computational
complexity. By using the minimal and the maximal indiscernible classes, four
types approximations: certain lower, certain upper, possible lower, and possible
upper approximations are obtained, as is so in incomplete information tables
with nominal attributes. From these approximations, we have derived four types
of combined rules that are expressed by using interval values: certain and consis-
tent, certain and inconsistent, possible and consistent, and possible and incon-
sistent combined rules. The combined rules are more applicable than single ones.
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