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Abstract. In this paper, the rule induction method STRIM, the clas-
sical Rough Sets (RS) theory and the notion of three-way decision rules
are summarized and their performance is examined by applying them
to a real-world dataset and a simulation dataset. From these experi-
mental studies, the problems inherent in the rule induction method by
the conventional RS theory based on the indiscernibility are pointed out
and a comparison is made with STRIM. Specifically, the rule induction
methods that are based on indiscernibility and do not consider the deci-
sion table which is only a sample of outcomes obtained by chance from
a population of interest are highly dependent upon the samples in the
decision table given. This paper states that such rule induction methods
are thus problematic and need to be improved to create a more robust
rule induction method.

1 Introduction

Extracting the properties and structures hidden in a large dataset is about dis-
covering knowledge and/or information, and that is important for making good
strategical decisions and acting consistently. For example, Rough Sets (RS) the-
ory proposed by Pawlak [1] in 1982 is used for reducting a dataset, creating a
decision table [2,3], and inducing if-then rules hidden in the decision table [4,5].
Here, the dataset is a set of objects each of which is featured by particular val-
ues: its condition attributes and its decision attribute. RS theory first focuses
on an indiscernibility property of these objects and provides inclusion relation-
ships of the target object set by defining lower and upper approximations. These
approximate expressions provide two representative rules with necessity (accu-
racy = 1.0) and possibility (accuracy > 0.0) respectively. However, the necessity
rule imposes a severe condition, i.e., accuracy = 1.0, on the rule induction.
Therefore, Ziarko [6] proposed a variable precision rough set model (accuracy
= 1.0 — ¢) with an admissible error (¢ € [0.0,0.5)).

Yao [7-9] divided the target set into positive, negative, and boundary regions
using the lower and upper approximations and proposed three-way decision rules
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corresponding to those regions. Yao also suggested that the boundary parame-
ters (a, 8) of the three-way decision rules should be determined by considering
accuracy as a type of conditional probability representation and introducing a
cost function from a Bayesian decision perspective. This consideration extends
Pawlak’s and Ziarko’s rule induction methods and corresponds to them in some
special cases. However, Yao does not propose a new reduction method or a new
rule induction method for the decision table and the new related algorithms.

As an alternative to RS theory, the statistical test rule induction method
(STRIM) which considers the decision table as a sample dataset obtained from
a population has been proposed [10-17]. STRIM uses a statistical reduct method
on the decision table [14] and a statistical rule induction method from the
reducted table [16]. Note that STRIM was studied independently of the con-
ventional RS methods and was not based on the approximation concept. Specif-
ically, STRIM recognizes the condition attributes and decision attributes of the
decision table as random variables and the decision table as their outcomes.
Moreover STRIM proposes a data generation model of the decision table by a
system which generates input sets of condition attribute values and transforms
them into the corresponding output of the decision attribute value through pre-
specified if-then rules and hypotheses with regard to the decision attribute value
based on causality. This system can also be used for confirming the validity of
any rule induction method by applying the method to the dataset generated
by the system and investigating whether the method can or cannot induce the
pre-specified rules.

In this paper, we first summarize STRIM and give an example of testing its
performance by applying it to a real-world dataset. We then state the basics of
the if-then rule induction method by STRIM from the viewpoint of proof by con-
tradiction in propositional logic. We then summarize the conventional RS theory
based on indiscernibility, and point up the problem of its rule induction method
based on indiscernibility in contrast to STRIM. We study this experimentally
by applying the LEM2 algorithm, implementing the classical RS theory to the
data generation model described above and comparing the results with those of
the same experiment using STRIM. Lastly, the idea of three-way decision rules
is summarized and we point out that the idea is fundamentally based on the
concept of indiscernibility and will cause the same problems as does the classical
RS theory. From three summarizations and studies of the conventional methods,
this paper points out that the rule induction method based on the concept of
indiscernibility of the given decision table needs to be improved as the decision
table is merely a sample obtained from the population.

2 The Conventional STRIM

In RS theory, the decision table is expressed as: S = (U, A = C U{D},V,p).
Here U = {u(i)|i = 1,...,|U| = N} is a sample set, A is an attribute set, C =
{C(H|j =1,...,|C|} is a condition attribute set C(j), a condition attribute, is a
member of C'; and D is a decision attribute. V is a set of attribute values denoted
V' = Uaca Va and characterized by the information function p: U x A — V.
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Fig. 1. Data generation model: The rule box contains if-then rules R(d, k): if CP(d, k)
then D=d (d=1,2,....,.k=1,2,...).

Table 1. Hypotheses with regard to decision attribute value.

Hypothesis 1| u (i) coincides with R(k), and u® (i) is uniquely determined as
D = d(k) (uniquely determined data)

Hypothesis 2 | u€ (i) does not coincide with any R(d), and u” (i) can only be
determined randomly (indifferent data)

Hypothesis 3 | u© (i) coincides with several R(d) (d = d1,d2,...), and their
outputs of u® (7) conflict with each other. Accordingly, the
output of 4 (7) must be randomly determined from the
conflicted outputs (conflicted data)

Generally, inducing if-then rules from a decision table implicitly assumes
a causal relationship between the condition attributes and decision attributes.
Therefore, in STRIM, we propose a model in which S is derived from the
input/output relationships shown in Fig.1. In other words, STRIM considers
the decision table to be a sample dataset obtained from an input—output sys-
tem that includes a rule box as shown in Fig.1 and hypotheses regarding the
decision attribute values, as shown in Table 1. A sample u(4) consists of its con-
dition attribute values u“ (i) and decision attribute values u”(i). Here, u® (i)
is an input to the rule box and is transformed to the output u” (i) using the
rules (generally unknown) contained in the rule box and the hypotheses. The
hypotheses consist of three cases corresponding to the nature of the input. The
three cases are: uniquely determined, indifferent, and conflicted (see Table1).
In contrast, u(i) = (u®(i),u” (7)) is measured by an observer (Fig. 1). The exis-
tence of NoiseC and NoiseD causes missing values in u“ (i) and changes u” (i) to
create another u” (i) value. These noises bring the system closer to a real-world
system. Differing from the conventional RS theory, STRIM includes the data
generation model shown in Fig. 1. This data generation model suggests that the
values (u®(i),u”(i)), i.e., a decision table is the outcome of the random variables
(C,D) = ((C(1),...,C(]C]), D) observing the population. Therefore, in STRIM,
p(u(i), C(j)) are the outcome of the random variables C(j). Note that there is
no concept of the information function in STRIM, i.e., S = (U, A = CU{D},V)
is the decision table and V' is the sample space in STRIM.
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Table 2. STRIM rule induction results for Rakuten Travel dataset.

CP(d,k)|C(1)C(2) |D|p-value (z) Accuracy |Coverage| f = (n1,n2,n3,n4,m5)
...C(6)
(51) 005050 |5 0.0 (64.08) 0.876  0.629 (11, 12, 9, 146, 1258)
(5,2) 005005 5 0.0 (58.31) 0.915 0.486 (17, 6, 5, 62, 972)
(1,1) 000010 |1 0.0 (57.78) 0.766  0.639 (1277, 346, 40, 4, 1)
(4,1) 040040 4 10.0 (40.37) 0.719 0.348 (16, 37, 90, 695, 129)
(3,1) 030030 310.0 (38.12) 0.633 0.392 (73, 203, 784, 170, 9)
(2,1) 020000 2 |3.0E—168 (27.62)0.494 0.348 (303, 695, 351, 51, 6)

Given a dataset created by the data generation model in Fig. 1, five processes
are carried out: (1) STRIM extracts significant pairs of condition attributes
and their values, e.g., C(j) = vj,, for rules of D = d using the local reduct
[14,16,17]; (2) STRIM constructs a trying condition part of the rules, e.g.,
CP(d,k) = N;j(C(jr) = v;), using the reduct results; (3) STRIM investigates
whether U(CP(d, k)) has caused a bias at ng in the frequency distribution of the
decision attribute Valuesf (n1,n2, ..., npry ). Here, ny, = |[U(CP(d, k))NU (m)|
(m ,|Vb| = Mp), (CP(d k)) = {u( NuC= cp(d, #) (i), i.e., u® (i) sastifies
C’P(d k:)} and U(m) = {u(i)|uP=™(i)} since the u® (i) coinciding with C P(d, k)
in the rule box is transformed to u® (i) based on hypothesis 1 or 3 (Table1). In
other words, CP(d, k) coinciding with one of the rules in the rule box creates
bias in f = (n1,ng, ...,narp ). Specifically, STRIM uses a statistical test method
for the investigation of the bias specifying a null hypothesis HO: f does not have
any bias, i.e., CP(d, k) is not a rule; the alternative hypothesis is H1: f has a
bias, i.e., CP(d, k) is a rule and has a proper significance level. Here, HO is tested
using the sample dataset, i.e., the decision table and the proper test statistics;

for example,

5

where pg = P(D = d), n = ) n;, z obeys the standard normal distribution
j=1

under a proper condition [18] and is considered an index of the bias of f; (4) If

HO is rejected, the assumed CP(d, k) becomes a candidate for the rules in the

rule box; (5) STRIM repeats processes (1-4) to obtain a set of rule candidates,

then arranges the rule candidates and induces the final results [16,17].

Figure2 shows a STRIM algorithm that includes a reduct function. Here,
line nos. (LN) 8 and 9 are the reduct part of process (1), process (2) is executed
at LN 10, where the dimension rule[] is used as the rule candidate, process (3)
is executed at LN 25 in the rule_check() function, process (4) is executed at LN
26, and process (5) is executed from LN 7 to LN 11 and LN 12.

A rule induction example obtained by applying STRIM to the Rakuten Travel
dataset, which is maintained by the Rakuten Institute of Technology follows
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Line Algorithm to induce if-then rules by STRIM with a reduct function

int main(void) {

int rdct-max[|CV|]={0,...,0}; //initialize maximum value of C(j)

int rdct[|CV|]={0,...,0}; //initialize reduct results by D=1

int rule[|C|]={0,...,0}; //initialize trying rules

int tail=-1; //initialize value set

input data; // set decision table

for (di=1; di<=|D|; di++) {// induce rule candidates every D=l

attribute_reduct(rdct_-max)

set rdet[ck] ; // if (rdct-max[ck]==0) {rdct[ck]=0; }else {rdct[ck]=1; }

rule_check(rcdct, redct_max, tail, rule); // the first stage process

}// end di

arrange rule candidates // the second stage

}// end main

int attribute_reduct(int rdct_-max[]) {

make contingency table for D=1 vs. C(j)

Test HO(j,1);

if HO(j,1) is rejected then set rdct-max[j,l]]=jmax else rdct-max[j,1]=0; //

jmax:the attribute value of the maximum frequency

18 }// end of attribute_reduct

19 int rule_check(int rdct[], int rdct_-max[], int tail,int rule[]) {// the first stage
process

20 for (ci=tail41; ¢j<|C|; ci++) {

21 for (cj=1; cj<=rdct[ci]; cj++) {

22 rule[ci]=rdct-max][cj]; // a trying rule set for test

23 count frequency of the trying rule; // count nl, n2, ...

24 if (frequency>=N0) {//sufficient frequency ?

25 if (]z|>3.0) {//sufficient evidence ?

26 add the trying rule as a rule candidate

27 }// end of if |z|

28 rule_check(ci,rule)

29 }// end if frequency

30 }// endcj

31 rule[ci]=0; // trying rules reset

32 }// end ci

33 }// end rule_check

e e el el Z
Qoo Empro@®IR TN R

Fig.2. STRIM algorithm with reduct function.

[17] (for another example, see [16]). The dataset concerned contains approxi-
mately 6,200,000 questionnaire surveys of ratings A = { C(1) = “Location,”
C(2) = “Room,” C(3) = “Meal,” C(4) = “Bath (Hot Spring),” C(5) = “Ser-
vice,” C(6) = “Amenity,” and D = “Overall” } of approximately 130, 000 travel
facilities by using a set of categorical values V, = { “Dissatisfied (DS(1)),”
“Somewhat dissatisfied (SD(2)),” “Neither satisfied nor dissatisfied (NN(3)),”
“Satisfied (ST'(4)),” and “Very Satisfied (VS(5))” }, where Va € A, ie.,
|Va=p| = |Mp| = |Va—c(| = Mc() = 5. We constructed a decision table
of N = 10,000 questionnaire surveys by randomly selecting 2,000 samples, each
of D =m (m = 1,...,5), from approximately 400,000 surveys from the 2013-
2014 dataset, choosing these surveys because they contained heavy biases with
respect to the frequency of D = m. We applied STRIM to this decision table
and obtained Table 2, which represents the following:

(1) CP(d =5,k =1) represents a rule stating that if (C'(3) = V.S(5)) A(C(5) =
VS(5)) then D = V.S(5), and its accuracy and coverage are 0.876 and 0.639,
respectively.
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Table 3. Examples of rules induced by LEM2 for the first simulation dataset (Casel).

Rule | Rule (accuracy, =
no. coverage) (n1,n2,ns,
N4,M5,M6)
1 [(C1=1)&(C2=1)& (C4=6) = >(D =1) (1.0, 0.0206) | (15,0,0,0,0,0)
2 (Cl=4)&(C3=1)& (C4=1)=>(D=1) (1.0, 0.0355) | (18,0,0,0,0,0)
3 (Cl=1)&(C2=1)& (C3=1)=>(D=1) (1.0, 0.0197) | (10,0,0,0,0,0)
4 Cl=5)& (C2=6) & (C3=1) & (C4 = 1) (1.0,0.0138) | (7,0,0,0,0,0)
=>D=1)

é“ (Cl =1) & (C2=1) & (C3 =5) & (C5 = 6) (10 0.0099) ké;o,o,o,o,o)

24 | (C1=5)& (C2=6) & (C3 =5) & (C4 =4) | (1.0,0.002) | (1,0,0,0,0,0)

27 (C =2) & (03 =2) & (C4 = 5) & (C5 = 6) (10 0.002) .(.1;070,0,0,0)

(2) This rule implies the frequency f = (11,12,9,146,1258) of the decision
attribute values, and the bias at D = 5 is z = 64.08 as calculated by Eq. (1)
corresponding to the p-value= 0.0.

(3) STRIM suggests that C(1) = “Location” and C(4) = “Bath (Hot Spring)”
can be reducted because no rules use those attributes.

3 Considerations on a Rule Induction Method by STRIM
from the Viewpoint of Proof by Contradiction

In propositional logic, a logical expression @ is often derived from several logical
expressions Py, Ps, ..., P,. It can be proved that @ is also true (T) from the
interpretation that all P; (j = 1,...,n) is T. Simultaneously, if Py AP>A... AP, =
P, P — @ is valid. Here, @ is referred to as a logical consequence from P. If
P — @ is shown to be true, a reasoning result Ql for arbitrary P’ can be obtained
using reasoning rules by modus ponens. In propositional logic, to demonstrate
that P — @ is true, the proof by contradiction is often used to indicate that
PA ~ @ = false (F) because P - Q =~ PV Q =~ (PA~ Q) =T.

As described in Sect. 2, rules hidden in the decision table are derived by
evaluating the condition part CP(d, k) = A; (C(jr) = v;) of the if-then rule for
D = d by a hypothesis test. We propose an algorithm to estimate rule candidates
by rejecting HO: f does not have any bias and CP(d, k) is not a rule. Now,



208 T. Saeki et al.

let P; = T when C(ji) = v and let P; = F when C(ji) # vi. In addition, let
@ =T when D =d and @Q = F when D # d. For example, in CP(d =5,k = 1)
in Table 2, the number of samples of U where P = T is 11 + 12 + 9 + 146 +
1,258 = 1,436, and among them the number of samples where D # 5 (Q = F,
ie, ~Q =T)is 11 + 12 + 9 + 146 = 178. Therefore, under HO, the number
of samples for PA ~ @ = T is 178. Note that (C, D) = ((C(1),...,C(|C])), D)
are random variables. Under P(D = 5) = 1/5 and the judgment model in
Table 1, the occurrence probability of such a distribution shows that the p-value
is equal to or less than 0.0. Thus, HO is rejected in this case, i.e., it is determined
statistically that PA ~ @ = F. Therefore, it can be seen that P — @ = T is
shown with critical p-value = 0.0. Here, since (C, D) are random variables it
is necessary to consider the problem that the if-then rule induction method
(Sect. 2) is rooted in the fact that the propositional logic P — @ is judged to be
statistically true or false using proof by contradiction.

4 Considerations on Conventional RS Theory
and Its Application to a Rule Induction Problem

Conventional RS theory focuses on the following equivalence relation and the
equivalence set of indiscernibility within the decision table S of interest:

Ip = {(u(i), u(5)) € U?|p(uli),a) = p(u(j),a),Ya € B C C}.

Here, I is an equivalence relation in U and derives the quotient set, U/I, =
{lwilgli = 1,2,..,|U| = N}, and [wi]p = {u(i) € U|(u(j),u;) € Ip,u; € U}.
[u;] B is an equivalence set with the representative element u;. Let it be that
VX C U, then X can be approximated as B,(X) C X C B*(X) using the
equivalence set:

B.(X) = {u € Ullu]s € X}, (2)

BY(X) = {u; € Ulfuils N X # ¢}. 3)

B, (X) and B*(X) are the lower and upper approximations respectively of X by
B. Note that the pair (B, (X), B*(X)) is typically referred to as a rough set of
X by B.

Specifically, we let X = {u(i)|p(u(i), D) = d} = U(d) = {u(i)|uP=4(i)}, and
define a set of u(i) as U(CP) = {u(i)|[u®=F(i)}. If U(CP) C U(d), then, with
necessity, C' P can be used as the condition part of the if-then rule of D =d. In
other words, the following expression of if-then rules with necessity is obtained:

Rule(d, k) : if CP = A;(C(jr) =vj,) then D =d. (4)

Similarly, with possibility, C*(X) derives the condition part C'P of the if-then
rule of D = d. However, the approximations B.(X) C X C B*(X) of U(d) by
lower /upper approximation are too severe or too loose, respectively, and, in many
cases, it is impossible to induce effective rules due to the inclusion relationship.
Ziarko then expanded the original RS by introducing an admissible error in two
ways:

B,(U(d)) = {u(i)|ace > 1 -}, (5)

—€
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Table 4. Examples of rules induced by STRIM for the first simulation dataset (Casel).

CP(d,k)|C(1) D|p-value(z) Accuracy|Coverage|f = (n1,n2,n3, na, ns, ne)
...C(6)

(6,1) 660000 6 5.91E—98(20.97)/0.938  0.1883 (1,2, 1, 2, 0, 90)
(3,1) 330000 |3 |1.94E—97(20.92)|0.978 0.1778 (0, 0, 88,1, 1, 0)
(2,1) 002200 |2 [2.70E—89(20.00)0.942  (0.1698 |(,1 81,1, 1,1, 1)
(5,1) 550000 |5 |1.71E—81(19.08)|0.987 0.1477 |(0, 0, 0, 0, 78, 1)
(6,2) 006600 |6 2.99E—81(19.05)0.889  0.1674 (6, 1, 1, 0, 2, 80)
(5,2) 005500 |5 |9.91E—81(18.99)|0.964 0.1515 |(0, 1, 1, 1, 80, 0)
(1,1) 001100 |1 |2.42E—79(18.82)|0.920 0.1578 (80, 1, 2,0, 3, 1)
(3,1) 003300 |3 |8.65E—77(18.50)|0.888 0.1596 (3,2, 79, 2,2, 1)
(4,1) 1004400 |4 1.50E—76(18.48)/0.949  0.1456 (1,0, 1, 75, 1, 1)
(1,2) 110000 |1 |4.86E—74(18.17)/0.959 0.1381 (70,1, 1,0, 1, 0)
(2,2) 220000 |2 |9.07TE—68(17.35)|0.938 0.1279 |(0, 61,1, 0, 2, 1)
(4,2) 440000 |4 1.45E—65(17.06)0.918  0.1301 (1, 1,0, 67, 2, 2)
(6,3) 600600 |6 6.82E—24(10.01)0.532  0.1046 (8, 9, 11, 6, 10, 5)
(5,3) 500500 |5 7.14E—08(7.08) 0.464  0.0739 (10, 10, 11, 5, 39, 9)
(3,3) 030300 |3 |2.33E—08(5.46) 0.390  |0.0606 (11, 6, 30, 12, 10, 8)

Table 5. Comparison of the number of induced rules by rule length derived by using

LEM2 and STRIM.

Case no. | Method | Number of rules by rule length
1/ 2| 3 4| 56| Total
Casel LEM2 0| 0/82|1073 /6230|1778
STRIM |0 15| 0 0| 0 15
Case2 LEM2 0| 0722|1108 5560|1736
STRIM |0|14| 0 0| 0/0| 14
Case3 LEM2 0| 0|74|1106 6160|1796
STRIM |0 13| 0 0| 0/0| 13

B.(U(d)) = {u(i)|acc > e},

(6)

where acc = |U(d) N U(CP(k))|/[U(CP(k))| = na/n, € € [0,0.5). The pair

(B

—€

(U(d)),Be(U(d))) is called an e-lower and e-upper approximation that

satisfies the properties B,(U(d)) C B.(U(d)) C B.(U(d)) C B*(U(d)),
B._,(U(d)) = B.(U(d)), and B.—o(U(d)) = B*(U(d)). The e-lower and/or
e-upper approximations induce if-then rules with admissible errors in the same
manner as the lower and/or upper approximations.
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As described above, in conventional RS theory, an equivalence relation Ip
at a given U is first focused on. Then, based on this relation, an equivalence
set at a given U is derived, and the target set is approximated by the equiv-
alence set. Using these approximated sets, if-then rules are induced respec-
tively, as described above. However, the outcome p(u(i),C(k)) of the ran-
dom variable C(k) is used for the equivalence relation Ip = {(u(i),u(j)) €
U?|p(u(i),a) = p(u(j),a), Va = VC(k) € B C C}. Therefore, the equivalence
event Ip is a probability event controlled by the conditional joint probability
P(C(k) = p(u(i), C(k)), C(k) = p(u(3), C(k))lo(uli), C(k)) = p(u(j), C(k)),
YC(k) e BC ().

Here, we confirm the rule induction performance using the conventional RS
theory in a simulation experiment. First, we set the following rule in the Rule
Box in Fig. 1:

R(d): if Rgthen D=d, (d=1,...,Mp =56) (7)

Ri=(C)=d)AN(C2)=d)V(CB)=d) A (C4) =d).

Assume that random variables C(j) (j = 1, ..., |C| = 6) are distributed uniformly
and generate inputs u“ (i) = (ve 1) (i), ..., vee) (i) (@ = 1,..., N = 10000). Then,
using the pre-specified rule (7) and the hypothesis in Table 1, the output u? (i)
is generated to create a decision table. We randomly selected samples by Np =
3,000 from the decision table and formed a new decision table. Table 3 shows
some of the 1,778 rules obtained by applying the LEM2 algorithm implementing
the lower approximation in ROSE2 [18] to this decision table. In Table 3, by
focusing on the rule for D = 1 as an example, two or three rules are shown for
rule lengths 3 4, and 5. Table 4 shows the results of analyzing the same decision
table by STRIM. This simulation experiment was repeated three times, and the
numbers of rules induced by each method were arranged and compared according
to the rule length in Table 5. We observe the following from these tables.

(1) LEM2 induced all rules for accuracy = 1. Some of the induced rules with
rule length 3 or 4 shown in Table3 are sub-rules of the pre-specified rules.
If specifying admissible error € for accuracy and estimating rules by use of
VPRS, it is possible to induce the pre-specified rules shown in Table 4. How-
ever, in VPRS neither an induction algorithm nor a specifying method for ¢
has been proposed.

(2) As shown in Table4, STRIM induced all 12 pre-specified rules and three
extra rules. Statistical evidence (p-value or z-value) is shown in these rules.
Although it seems that the pre-specified rules can be estimated using appro-
priate € and VPRS, the main component of the induction in STRIM is the
statistical test The induced rules are based on evidence, i.e., a sufficient num-
ber of data that can be used by the statistical test. On the other hand, the
coverages of the rules induced in LEM2 are only small percentages, i.e., they
include rules of length 5, and by any criterion that is not sufficiently restrictive
to be accepted as a rule.
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(8) The decision table can be considered a collection of many unarranged if-
then rules. LEM2 and STRIM summarize those rules so that human beings
can grasp and use the structure and/or features of the rules. From conducting
the rule induction experiment three times by LEM2 and STRIM (Table 5), we
see that LEM2 summarizes 3,000 rules in somewhat more than 1,700 rules;
however, it is clear that LEM2 cannot adequately deal with the given decision
table. On the other hand, STRIM induces all pre-specified rules (generally
unknown). Note that STRIM induces several additional rules; however, the
difference between STRIM and LEM2 can be clearly observed from the accu-
racy coverage and z-value (Table4). The validity of the analyzed result by
STRIM for the real-world dataset in Table2 can be inferred to some extent
from this simulation result. In any case, we can infer that the rule induction
method by the conventional RS based on stochastically varying equivalence
relations derives different rules for each decision table, and that the lower
approximation rule based on such an equivalence relation cannot fully sum-
marize the decision table.

5 Three-Way Decision Rules and Their Application
to the Classification Problem

Yao proposed the concept of three-way decision rules as a new rule induction and
decision-making method based on a new interpretation of the classical RS theory
[7-9]. Specifically, using a classical RS, Yao proposed to divide U into three
regions of X, i.e., the positive region POS(X), the boundary region BN D(X),
and the negative region NEG(X):

POS(X) = B,(X), (8)

BND(X) = B*(X) — B.(X), 9)
NEG(X) =U — POS(X)UBND(X) =U — B*(X) = (B*(X))°.  (10)

Any element z € POS(X) certainly belongs to X, and any element x €
NEG(X) does not belong to X. One cannot decide with certainty whether or
not an element x € BN D(X) belongs to X. Similar to the conventional RS the-
ory, we let X = U(d) and can obtain the following decision rules corresponding
to (8), (9), and (10):

Des([z]) —p Des(U(d)), for [x] C POS(U(d)), (11)
Des([z]) —p Des(U(d)), for [x] € BND(U(d)), (12)
Des([z]) —n Des(U(d)), for [x] C NEG(U(d)). (13)

Here, Des([x]) denotes the logic formula defining the equivalence class [z]. For
example, [z] is defined by A; (C(jr) = vj,.)-
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Yao links (11), (12), and (13) to the rule accuracy (or confidence) based on
the probability measure as follows:

acc(Des([x]) —a Des(U(d))) = Pr(U(d)|[z]) = Hi (14)

Here, Pr(U(d)|[z]) is the conditional probability of U(d) given [z]. In other
words, the probability that the element of [z] exists in U(d) is estimated by
the cardinal number. According to accuracy, the positive, boundary, and neg-
ative rules are defined by the conditions: acc = 1, 0 < acc < 1, and acc = 0,
respectively. However, like the idea of VPRS, such approximation based on acc
is impractical because the condition is too severe to handle real-world datasets.
Therefore, Yao introduced tolerance, similar to VPRS, and proposed rules for
the classification problem as follows:

(P1) If Pr(U(d)|[z]) > a, decide [z] € POS(U(d)),
(B1) If 3 < Pr(U(d)|[z]) < «, decide [x] € BND(U(d)),
(N1) If Pr(U(d)|[z]) < B, decide [z] € NEG(U(d)).

Here, 0 < 8 < a < 1. As described above, Yao associated the accuracy of the
induced rule with the conditional probability. Furthermore, when applying this
induced rule to the classification problem, Yao proposed determining boundary
parameters (a, ) in accordance with a criterion that minimizes the costs and/or
losses by errors based on Bayesian statistics [19]. A detailed discussion is given
in the literature [8].

Ziarko did not report a method to specify a reasonable admissible error €.
Yao specified error ¢ based on Bayesian statistics and included previous studies
as a special case. For example, Eqs. (5) and (6) correspond to o = 1 — ¢ and
B = e, respectively. However, Yao did not propose a specific rule induction
method and/or algorithm, such as the decision matrix method [4] or LEM2 [5].
In addition, the three-way decision rules constructing three regions, i.e., the
positive, boundary, and negative regions are based on the equivalence relation,
which depends on the given decision table and will induce different rules for
each sample dataset obtained from the same population similar to the results in
classical RS theory.

6 Conclusion

This paper has summarized the concept and validity of a STRIM algorithm that
induces rules without using RS theory but by using a statistical test. Further-
more, the rule induction performance of STRIM has been demonstrated through
a real-world dataset analysis and a simulation experiment. STRIM has the fol-
lowing features.

(1) There is a data generation model in which the roles of input, output,
input/output converting mechanism, observation, and noise generation are
clear.
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(2) The condition attributes (input) and the decision attribute (output) are
considered random variables. Therefore, for example, p(u(i), C(k)) in the
decision table are the outcomes of the random variables C'(k). In other
words, the decision table is the set of outcomes randomly obtained from
the population with condition attributes and decision attribute.

(3) The if-then rule is an input/output converting mechanism that causes bias
in the output distribution under the decision attribute value hypothesis
(Table1).

(4) The judgment of bias in the output distribution is determined by a statistical
test using a given decision table. Therefore, although STRIM uses a sample
dataset, it has an objective criterion that satisfies the criteria for statistical
testing with a significance level.

(5) The statistical test is rooted in the proof by contradiction, which is often
used when demonstrating the logical consequences of propositional logic.

We have also summarized the conventional RS theory and the associated rule
induction method, and pointed out problems there with shown by the results
of the simulation experiment. Corresponding to points (1) to (4) above, the
conventional RS theory and the rule inducing method are described as follows.

(i) There is no data generation model. Thus, there is no alternative to studying
the given decision table at the starting point.

(ii) As there is no data generation model, such as the information function
p(u(i),C(k)), p(u(i), D) is needed for convenience. The information func-
tion is such that the function value is different for each sample for the same
attribute C'(k).

(iii) The criterion for adopting a rule is accuracy, and the adoption criteria are
not clear (coverage is very small e.g. only one sample satisfies the rule).

(iv) The induced rules are established using only the given decision table, and
different rules are derived from different decision tables obtained from the
same population because the equivalence class and lower and upper approx-
imation sets differ for each decision table.

From the above, it is considered that the indiscernibility based on the equiv-
alence class is not the essence of a good rule induction method and an improved
rule induction method is needed.
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