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Preface

The proceedings of the 2018 International Joint Conference on Rough Sets (IJCRS
2018) contain the results of the meeting of the International Rough Set Society held at
the International Centre for Interdisciplinary Science and Education (ICISE) and the
University of Quy Nhon in Quy Nhon, Vietnam, during August 2018.

Conferences in the IJCRS series are held annually and comprise four main tracks
relating the topic rough sets to other topical paradigms: rough sets and data analysis
covered by the RSCTC conference series from 1998, rough sets and granular com-
puting covered by the RSFDGrC conference series since 1999, rough sets and
knowledge technology covered by the RSKT conference series since 2006, and rough
sets and intelligent systems covered by the RSEISP conference series since 2007.
Owing to the gradual emergence of hybrid paradigms involving rough sets, it was
deemed necessary to organize Joint Rough Set Symposiums, first in Toronto, Canada,
in 2007, followed by symposiums in Chengdu, China in 2012, Halifax, Canada, 2013,
Granada and Madrid, Spain, 2014, Tianjin, China, 2015, where the acronym IJCRS
was proposed, continuing with the IJCRS 2016 conference in Santiago de Chile and
IJCRS 2017 in Olsztyn, Poland.

The IJCRS conferences aim at bringing together experts from universities and
research centers as well as from industry representing fields of research in which
theoretical and applicational aspects of rough set theory already find or may potentially
find usage. They also become a place for researchers who want to present their ideas to
the rough set community, or for those who would like to learn about rough sets and find
out if they can be useful for their problems.

This year’s conference, IJCRS 2018, celebrated the 20th anniversary of the first
international conference on rough sets called RSCTC, which was organized by Lech
Polkowski and Andrzej Skowron during June 22–26, 1998, in Warsaw, Poland. On this
occasion, we listened to a retrospective talk delivered by Andrzej Skowron, who
summarized the successes of this field and showed directions for further research and
development.

IJCRS 2018 attracted 61 submissions (not including invited contributions), which
underwent a rigorous reviewing process. Each accepted full-length paper was evaluated
by three to five experts on average. The present volume contains 45 full-length regular
and workshop submissions, which were accepted by the Program Committee, as well
as six invited articles.

The conference program included five keynotes and plenary talks, a fellow talk,
eight parallel sessions, a tutorial, the 6th International Workshop on Three-way
Decisions, Uncertainty, and Granular Computing, and a panel discussion on rough sets
and data science.

The chairs of the Organizing Committee also prepared the best paper award and the
best student paper award. From all research papers submitted, the Program Committee



nominated five papers as finalists for the award and, based on the final presentations
during the conference, selected the winners.

We would like to express our gratitude to all the authors for submitting papers to
IJCRS 2018, as well as to the members of the Program Committee for organizing this
year’s attractive program.

We also gratefully thank our sponsors: Vietnam National University in Ho Chi
Minh City, for providing the technical support and human resources for the conference;
the University of Quy Nhon, for sponsoring the reception and the conference facilities
during the first day and the last day; Ton Duc Thang University, for sponsoring the
pre-conference workshops on rough sets and data mining.

The conference would not have been successful without support received from
distinguished individuals and organizations. We express our gratitude to the IJCRS
2018 honorary chairs, Andrzej Skowron, Huynh Thanh Dat, and Do Ngoc My, for their
great leadership. We appreciate the help of Dinh Thuc Nguyen, Nguyen Tien Trung,
Quang Vinh Lam, Quang Thai Thuan, Thanh Tran Thien, Luong Thi Hong Cam,
Giang Thuy Minh, Phung Thai Thien Trang, Dao Thi Hong Le, Hung Nguyen-Manh,
and all other representatives of Vietnam National University in Ho Chi Minh City and
Quy Nhon University, who were involved in the conference organization. We would
also like to thank Marcin Szela̧g, Sinh Hoa Nguyen, and Dang Phuoc Huy, who
supported the conference as tutorial, workshop, and special session chairs. We
acknowledge the significant help from Khuong Nguyen-An, Tran Thanh Hai, Ly Tran
Thai Hoc, and Marcin Szczuka provided at various stages of the conference publicity,
website, and material preparation.

We are grateful to Tu Bao Ho, Hamido Fujita, Hong Yu, Andrzej Skowron, Piero
Pagliani, and Mohua Banerjee for delivering excellent keynote and plenary talks and
fellow talks. We thank Dominik Ślęzak and Arkadiusz Wojna for the tutorial. We are
thankful to Hong Ye, Mohua Banerjee, Mihir Chakraborty, Bay Vo, and Le Thi Thuy
Loan for the organization of workshops and special sessions.

Special thanks go to Alfred Hofmann of Springer, for accepting to publish the
proceedings of IJCRS 2018 in the LNCS/LNAI series, and to Anna Kramer for her help
with the proceedings. We are grateful to Springer for the grant of 1,000 Euro for the
best paper award winners. We would also like to acknowledge the use of EasyChair, a
great conference management system.

We hope that the reader will find all the papers in the proceedings interesting and
stimulating.

August 2018 Hung Son Nguyen
Quang-Thuy Ha

Tianrui Li
Małgorzata Przybyła-Kasperek
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Introducing Histogram Functions
into a Granular Approximate Database Engine

(Industry Talk)

Dominik Ślęzak1 and Arkadiusz Wojna2

1 Institute of Informatics, University of Warsaw, Poland
2 Security On-Demand, USA/Poland

Abstract. We discuss an approximate database engine that we started designing
at Infobright, and now we continue its development for Security On-Demand
(SOD). At SOD, it is used in everyday data analytics, allowing for fast
approximate execution of ad-hoc queries over tens of billions of data rows [1].
In our engine, queries are run against collections of histograms that represent
domains of single columns over groupings of consecutively loaded data rows
(so-called packrows). Query execution process corresponds to transformation of
such granulated summaries of the input data into summaries reflecting query
results [2].
We compare our algorithms that generate histogram descriptions of the

original data with data quantization methods that are widely used in data mining.
We also introduce a new idea of extending SQL with function hist(a) that
produces quantized representation of column a by means of merging a’s his-
tograms corresponding to particular packrows into a unified a’s histogram over
the whole data. We refer to our recent works on summary-based data visual-
ization [3] and machine learning [4] in order to illustrate several scenarios of
utilizing hist in practice.

Keywords: Big data analytics � Data granulation � Data quantization
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Abstract. Herd behavior depends on subjectivity and objectivity com-
bination. Usually the former over controls the latter and makes a special
distinction from others. Especially, herd could regard itself as objec-
tive thus sacrificing all differences. Getting insight of the subjectivity
appears more and more important in economics. However, the combina-
tion of subjectivity and objectivity varies with time evolution. To illus-
trate subjective analysis, we propose an inferential model to distinguish
special enterprises from price herds. It assumes public finance as intrinsic
self of subjectivity and the herding behavior as objective expectation of
majority then identifies subjective actions.

Keywords: Subjectivity · Price herd · Decision making
Dominance-based rough set · Induction

1 Introduction

In the stock market, the majority’s behavior represents the expectation of most
investors. Deviation from the majority often rises from subjective decision like
Fig. 1 where ph is a price herd which has two sets. One requires its elements to
move higher prices when the majority decline; the other behaves in the opposite
way when the majority increase their prices. Figure 1 presents subjective k or k

′

holds the pressure from majority and assumes a risk against majority’s wisdom.
For the judgment of rationality, subjectivity is usually assigned to non rational.
In this research, the subjectivity behaves against the majority, not mattering
about rationality. Contrarily, subjectivity can be objective if most expectations
are not rational.

Theoretically, ph can be expressed with the characteristics of financial infor-
mation. Its behavior is coded with expectation and hesitance cascading of most
investors. We are motivated to identify the subjective enterprises by taking

c© Springer Nature Switzerland AG 2018
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Fig. 1. The subjective actions vs a price herd’s behavior

advantage of price herd model (ph) [14,20]. It will identify the behavior of a
price herd through variables of Altman Z-Score. However, the timing points of
identifying subjective enterprises in Fig. 1 have a problem, i.e. too many choices.
To solve this, we propose a subjective clustering (SC) to distinguish special
enterprises from the price herd. To illustrate its operation, we will apply SC
on a solar industry through Taiwan Economic Journal (TEJ) database which
provides public information of financial market.

The context of this article includes the innovative notions of SC, the model of
SC, application of SC on a solar industry, discussion, and concluding remarks.

2 The Innovative Notions and Literatures of SC

In this research, SC is designed to identify the subjective enterprises distin-
guished from price herds. The induction of SC is updated from PH model [14]
which is extended from dominance-based rough set approach (DRSA), rough set
theory (RST). Its innovative notions and literatures are described below.

2.1 Subjectivity

Since “I think, therefore I am” [7,8] was proposed, subjectivity can be explored
with inference. Recently, it is divided into two categories [16]. One adopts frame-
work composed of conceptual consciousness to illustrate subjective behavior. The
other adopts self-organizing power to rethink about ethics. In the information
field, Bayesian probability is used in quantitative measures to construct a subjec-
tivity framework [17]. This also builds a conceptual model for inference. Its sub-
ject concept is defined to comprise true distribution, probability space, hypothe-
ses, observations, actions, and causal intervention [17]. The human behavior is
regarded as correspondence of subjective consciousness. The corresponding infer-
ence about subjectivity thus can be expressed with scientific languages. The
followings are its technical components.



Subjective Analysis of Price Herd Using Dominance Rough Set Induction 3

2.2 Variables of Altman Z-Score

The financial information is an intrinsic part of companies. Therefore, manage-
ment or decision underpinned by finance is a common sense. Altman’s Z-Score
has been playing a headship of discriminating survivals and failures, achieving
up thirteen thousand citations in Google survey on 29 April 2017 and 75%–90%
reliability [1,2]. The relevance between Altman variables and financial health
has a highly positive correlation [15]. One of Altman variable, market values of
equity (V ), provides another expression of price. It is used as the price of PH and
the price variation is treated as a herd behavior. Enterprises taking the opposite
direction from price herds is regarded as subjective in this paper.

2.3 Granule and Evidence of PH

The idea of PH originates from identifying objectivity composed of characteristic
granules. This paper designs a granule with three types of information: the infer-
ential relevance between prices and herds, the herd’s characteristic composed of
objects’ properties, and the decision preference [5]. The inferential relevance was
proposed by Keynes [13] who expresses a rational belief about the inferential
relevance based on the probability-relation. The objects’ properties proposed
by RST are expressed by indiscernibility [18], similarity [29], preference [10],
etc. These properties are further formulated by relations [19], approximations
(observable or unobservable) [19], classes (dominating or dominated) [10], etc.
The decision preference of stakeholders in this paper is expressed by classified
prices. Combining these three types of information can make the granules oper-
ated in mathematical sets to express a herding characteristic of objectivity, i.e.
the majority. A granule in approximations verified to have certain relevance is
defined as evidence, symbolized as ej,k in Eq. (1).

ej,k = 1 or 0 (1)

where 1 means a certain evidence, 0 means not a certain evidence, j indexes a
variable, and k indexes an object. ej,k will comprises the induced PH.

2.4 Approximations in RST

In general, the objects’ properties based on attributes cannot clearly specify
a vague set. Therefore, approximations are used to express and estimate the
vagueness by RST. The approximations are a pair of sets, i.e. P (X) and P (X)
[19]. In this paper, a vague set X is designed as a simple herd containing P (X)
and belonging to P (X), expressed in Eq. (2).

P (X) ⊆ X ⊆ P (X) where P (X) =
⋃

X∩Xk �=∅
Xk (2)

where P represents an inference function about the approximations of X based
on attributes, P (X) is named the lower approximation, and P (X) is named the
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upper approximation. According to RST, P (X) has the certain characteristic of
X by requiring all its elements in X. P (X) has the relevant characteristic of X
by requiring X ∩ Xk �= ∅ where Xk is an equivalence class of X.

The objective characteristics of PH is designed as a set based on P (X).
There are two types of estimations, i.e. the priori (hypothetical) S(X) and the
posteriori (resolved) S′(X). S(X) is same as P (X) before making an inference.
S′(X) is an induced S(X) by classifying X with the decision preference which is
the dominance set in DRSA. Technically, S′(X) satisfies Eq. (2) and dominance
induction next.

2.5 Induction of DRSA

PH is updated from DRSA. The induction of DRSA is a backward inference to
classify objects with the determined preference. DRSA can disclose the cause of
dominance thus able to support multi–criteria decision making (MCDM) [3,6,10,
11,21,22]. Its binary induction, i.e. dominance or non-dominance, is presented
in Eq. (3) which can resolve the certain objects in P (X) by the dominance set
Cl�t .

P (X) �→ Cl�t where P (X) = {x|x ∈ Cl�t ,D
+
P (x) ⊆ Cl�t } (3)

where t represents the number of the objects in the dominance set, P (X) is a
lower approximation of Eq. (2), P is an inferential function covering a set of
attributes, and D+

P (x) is a set having elements whose preferences are at least
as x. The induction of Eq. (3) can find out P (X) from Cl�t . The constrains of

induction contain membership ( |P (X)∩[x]|
|[x]| ), coverage ( |P (X)∩Cl

�
t |

|Cl
�
t | ), and accu-

racy (
P (X)
P (X)

) where | · | is the cardinality of a set and [x] is an equivalence

class. Mathematically, the membership and coverage degrees are expressed by
Bayesian’s conditional probabilities, like information cascade described next.

2.6 The Expectation of PH

In the information cascading, each cascade is predicted from an objective esti-
mation and an observable value; the preference decision appears like H or L
expressing high or low information about gain or loss; the observable value for
adoption or rejection appears like VH or VL. Its estimation probability takes an
action on the value, presented as e′

j,t for attribute j at time t. In another word,
e′

j,t is an indicator of ph. It has three expectant rates with H for adopting VH

formulated as, EH
j,2i (up cascade), Enon

j,2i (no cascade), and EL
j,2i (down cascade)

at the sequence positions 2i (i = 1, 2, ...). These expectancy formulas are pre-
sented as Eq. (4) where e′

j,t is an objective probability at initiation t of a price
herd. The reason lies in e′

j,t expresses the expectation of majority.
⎧
⎪⎪⎨

⎪⎪⎩

Enon
j,2i =

(
Enon

j,2

)i

EH
j,2i = EH

j,2 ×
(
1 + Enon

j,2 +
(
Enon

j,2

)2 + ... +
(
Enon

j,2

)i−1
)

EL
j,2i = EL

j,2 ×
(
1 + Enon

j,2 +
(
Enon

j,2

)2 + ... +
(
Enon

j,2

)i−1
) (4)
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where ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Enon
j,2 = e′

j,t(1 − e′
j,t)

EH
j,2 =

e′
j,t(1 + e′

j,t)
2

EL
j,2 =

(e′
j,t − 1)(e′

j,t − 2)
2

3 A Subjective Enterprises, {k}
The behavior of subjective herd is designed to satisfy Eq. (5) which signifies a
price herd through the objective probability (e′

j,t) where 0.4 < e′
j < 0.5, j indexes

an Altman variable, and t means a timing tag on years. The subjectiveness can
be distinguished due to its opposite direction from majority.

{
Price herd: {xk,t′−t |Vk,t′ ≈ Vk,t × EH

j,2}
Subjective k : xk,t′−t where Vk,t′ − Vk,t > 0

where 0.4 < e′
j,t < 0.5 (5)

where V means companies’ stock price, j means a herding attribute, k represents
a company, and t is the initial timing tags, and t′ indicates the equilibrium time
of herding movement. All companies satisfying Eq. (5) have unique subjectivity.
Usually they keep their way opposite to herding movement.

3.1 The Information Table of PH and SC

The information table of ESPH is a data set containing all companies of the
solar energy industry. It is mathematically defined as IS = {X,Q, f,R, VH},
where X = {y|y = 1, 2, ..., n} is a set of companies supposed to have securities’
interests same as investors, Q = {q1, q2, ..., qm} represents a set of variables
(defined by Altman in Table 1), m is the number of variables, f : X ×Q → R is
a function transforming a variable’s value of some company into a rank within

Table 1. Altman variables

Variables Formula

q1 Working capital/Total asset

q2 Retained Earnings/Total assets; q2 = q21 + q22 + q23 where q21 is
undistributed surplus earnings, q22 is special reserve, q23 is legal
reserve. These sub items are defined as income tax and owners’ equity
in Taiwan

q3 Earnings before interest and taxes/Total assets

q4 Market value of equity (V )/Book value of total debt;

q5 Sales/Total assets

V Market value of equity;

V = (unchanged) security price × outstanding shares
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Table 2. Data set and indicators of the price herd in 2010

k q1 q2 q3 q4 q5 V s
′
1 s

′
2(↓) s

′
3(↓) s

′
5

1 0.048 −0.032 −0.035 4.388 0.381 0.060 0 0 0 0

2 0.003 0.212 0.092 2.594 0.629 0.321 1 1 1 1

3 0.056 0.157 0.082 1.917 0.889 0.916 1 1 1 1

4 0.094 0.293 0.158 12.227 0.328 3.413 1 1 1 1

5 0.103 0.101 0.071 2.339 0.642 0.114 1 1 1 1

6 0.038 −0.154 −0.067 2.693 0.467 0.097 0 0 0 0

7 0.038 −0.030 −0.020 1.495 0.374 0.228 1 0 0 1

8 0.024 0.183 0.096 1.633 0.955 0.073 0 0 0 0

9 0.000 0.051 0.041 1.975 1.015 0.650 1 1 1 1

10 0.159 0.137 0.102 3.236 0.639 0.354 1 1 1 1

11 0.066 0.077 0.038 5.444 0.601 0.087 0 0 0 0

12 −0.019 −0.049 −0.018 3.721 0.454 0.022 0 0 0 0

13 −0.045 −0.439 0.001 0.571 0.097 0.005 0 0 0 0

14 0.053 0.155 0.099 4.376 0.414 0.074 0 0 0 0

15 −0.073 0.011 0.064 0.622 0.184 0.004 0 0 0 0

16 −0.055 0.213 0.088 2.655 0.521 0.040 0 0 0 0

17 0.006 0.153 0.075 3.043 0.956 0.118 1 1 1 1

18 0.122 0.230 0.123 4.373 0.791 0.166 1 1 1 1

19 0.134 0.095 0.097 7.042 0.396 0.180 1 1 1 1

20 0.036 −0.372 0.009 8.376 0.392 0.019 0 0 0 0

21 0.019 −0.025 0.015 1.185 1.710 0.009 0 0 0 0

22 0.243 0.052 0.053 5.922 0.350 0.100 1 1 1 1

23 0.011 −0.153 −0.141 1.136 0.989 0.119 1 0 0 1

24 0.234 0.226 0.190 3.843 1.151 0.269 1 1 1 1

25 0.059 0.300 0.133 5.759 1.154 0.126 1 1 1 1

26 0.088 0.108 0.081 1.809 0.746 0.188 1 1 1 1

27 −0.115 −0.655 −0.467 3.003 0.455 0.013 0 0 0 0

28 0.083 0.119 0.106 2.570 0.769 0.144 1 1 1 1

29 0.108 −0.119 −0.111 2.916 1.525 0.016 0 0 0 0

30 0.052 0.231 0.135 11.294 0.679 0.132 1 1 1 1

31 0.141 0.088 0.103 3.420 0.659 0.080 0 0 0 0

32 0.202 0.319 0.340 83.134 0.771 0.251 1 1 1 1

33 0.071 0.176 0.106 1.855 1.616 0.058 0 0 0 0

34 0.018 0.114 0.074 3.843 0.632 0.025 0 0 0 0

35 0.049 0.255 0.178 4.112 0.581 0.127 1 1 1 1

36 0.163 0.260 0.221 14.430 0.682 0.047 0 0 0 0

37 0.234 0.310 0.168 5.320 0.501 0.083 0 0 0 0

38 0.196 0.185 0.131 11.196 0.852 0.182 1 1 1 1

39 0.033 0.105 0.077 2.042 1.460 0.128 1 1 1 1

40 0.128 −0.673 −0.024 3.516 0.339 0.030 0 0 0 0

41 −0.113 −0.134 −0.132 6.100 0.418 0.005 0 0 0 0

42 0.103 0.216 0.133 4.462 0.704 0.120 1 1 1 1

43 0.047 0.007 0.006 0.784 0.609 0.016 0 0 0 0

44 −0.006 0.002 0.020 3.057 0.360 0.031 0 0 0 0

45 −0.365 0.114 0.108 12.823 2.102 0.127 0 1 1 1

Note: k means index of companies.
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the variable, R = {1st, 2nd, ..., nth} is a ranking set, the ranking orders follow
1st 
 2nd 
 ... 
 nth, and VH represents the higher prices at the upper half
securities such that |VH | ≈ 0.5 × |X|. Our design takes half-half classification to
estimate herding characteristics like pessimism, equilibrium, and optimism. IS
adopts all companies instead of individuals to reduce the interference from the
stock speculation of few companies.

4 Application of SC

The solar energy industry in Taiwan has been facing challenges like the global
crisis in 2008 [26], oversupply in 2010 [4,25], anti-dumping 2011–2016 [9], etc. On
the time line, the stock price involved a turnaround, downward before upward
during 2010–2014. Our case study empirically applies SC on TEJ to solve the
price herd ph and subjective enterprises.

4.1 The Evidential Evidence of ph

The left part of Table 2 contains the dataset from TEJ. It is used to check the
herding evidence composed of 1 or 0 in the right part. The first column repre-
sents the id (k) of companies. These evidence theoretically gives a quantitative
measure about herding. Its embedded knowledge is illustrated in the followings.

4.2 The Behavior of ph

Figure 2 displays ph with the macro behavior of a solar industry in Taiwan during
2010–2011. Figure 3 is the behavior of ph within 2010–2011. As seen, the real
prices were same as the expectation marked with circles, ◦.

7.84

9.37

5.35 6.25

8.74

8.67

0

3

6

9

2009 2010 2011 2012 2013 2014

(year)

(A) Total market value of equity

5.33 (0.99 of 5.35)
expectance

Fig. 2. The macro behavior of ph and its expectancy in 2011
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Fig. 3. The micro behavior of ph and their expectancy in 2011

4.3 The Behavior of a Subjective Enterprise, S

Figure 4 shows an subject deviated from ph in price variation. Because there is
only one subjective enterprise, we use S to represent it. S assumed risk pressure
and financial losses at the same time. With this result, no right or mistake is
available for herding. The revealed knowledge is that about half companies had
stock prices higher than their financial underpinning. Investors had no confidence
in the stock price and most of them were apt to sell stocks at lower price.

Fig. 4. The action of subjective enterprise during 2010–2011

5 Discussion

The subjective enterprises are very few in the analysis result. Their behav-
ior appears not only deviated from the majority but unique. Followings are
discussions.
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5.1 Subjective Arguments

The behavioral correspondence from individual nature is objectively rational
thus expressible by scientific languages. However, the behavior of individual
consciousness containing emotion, hesitance, etc. leans to expectation instead
of rationality. Therefore, Freud argues subjective psyche is composed of three
parts, i.e. Id comprises the intrinsic nature, Ego involves consciousness of a sub-
ject who has expectancy, experience, emotion, information, etc., and Superego
covers beyond Id and Ego [12,27].

By the inferential framework of Fig. 5, we argue that Ego part is dynamic and
variable with individual’s consciousness combinations; Its variation might make
Ego huge or nothing. For an individual company, evidential Ego is not suitably
expressed by Bayesian theory because there might be not enough evidence to
assure its subjectivity. Therefore, our research applies inference on Ego with all
companies then distinguishes special ones from the majority. Price herd is used
to disclose the subjective enterprises.

Fig. 5. A proposed inferential framework of subjectivity

5.2 Theoretical S in Herd Movement

We adopt financial information to comprise each companies as Freud’s Id. The
herd movement during 2010–2011 represents Ego behavior with expectant con-
sciousness which is regarded as objective due to covering majority. In this period,
only one company, i.e. S, in the solar industry is identified as unique and subjec-
tive. It is numbered as 35 in 45 companies. Its stock price from 2009 to 2014 is
presented in Fig. 4. Based on its price behavior, S seems confident not impacted
during herding movement.

5.3 Practical S in Herd Movement

S was one of twenty companies with the same financial health in 2010. Its busi-
ness mission is set as the provider of total solution. It emphasis on future predic-
tion and trust relationship [23]. In our observations, its actions during herding
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movement include reinvesting Topco Lancaster Investment in USA and DIO
Energy GmbH in Germany [24]. At the worst situation in the financial market,
it is still prominently subjective.

5.4 S Behavior After Herd Movement

The identified S is supposed to behave subjectively, i.e. not going down in price
with others’ expectation. In our trace on S during 2011 to 2018, it gradually
climbs up in the financial market as Fig. 6, captured from Yahoo website [28]. Its
price doubled in 6 years. Figure 6 has bar charts for each month with maximum
and minimum prices.

Fig. 6. The behavior after subjectivity identification during 2011–2018

5.5 The Subjective Strategy of S

S was established in Taiwan since 1990. From the very beginning, it continues
reinvesting in related companies as many as twelve times [24]. In average, it has
one reinvestment in two years, no matter economic environment bad or good.
Currently, it is not only a manufacturer but an equipment supplier.

6 Concluding Remarks

Herd behavior is analyzed by extending from a price herd model to disclose
subjective enterprises in this research [14]. Its result shows only one subjective
enterprise deviated from the majority declining their prices. This subject is the-
oretically identified with the proposed subjective clustering, SC. By practical
observations, it has a subjective characteristic, i.e. never stopping reinvestment
even the stock market seemed to be crashing down.

In this research, SC solves the subjective enterprise by financial inference
and discloses its characteristics with actions and observations. The former distin-
guishes the resulted enterprises with unique behavior. The latter gives supports
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about its subjectivity. Freud’s framework is applied as the base of inference.
With the herding expectations among companies, the subjectiveness is identi-
fied with clustering operations of Eq. (4). The dynamic and variable Ego thus
can be resolved indirectly.

The subjective analysis is bigger than the general imagination. In the future
work, it deserves more efforts and time to get deeper insight about subjective
intelligence.
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Abstract. A theory of three-way decisions is formulated based on the
notions of three regions and associated actions for processing the three
regions. Inspired by the theory of three-way decisions, some researchers
have further investigated the theory of three-way decisions and applied
it in different domains. After reviewing the recent studies on three-
way decisions, this paper introduces the three-way cluster analysis. In
order to address the problem of the uncertain relationship between an
object and a cluster, a three-way clustering representation is proposed to
reflect the three types of relationships between an object and a cluster,
namely, belong-to definitely, uncertain and not belong-to definitely. Fur-
thermore, this paper reviews some three-way clustering approaches and
discusses some future perspectives and potential research topics based
on the three-way cluster analysis.

Keywords: Three-way decisions · Three-way clustering · Uncertain
Soft clustering

1 Introduction

To model a particular class of human ways of problem solving and information
processing, Professor Yao [55] proposed a theory of three-way decisions. The
basic ideas of three-way decisions are to divide a universal set into three pair-
wise disjoint regions, or more generally a whole into three distinctive parts, and
to act upon each region or part by developing an appropriate strategy [57].

The essential ideas of three-way decisions are commonly used in everyday
life and widely applied in many fields and disciplines including medical decision-
making, social judgement theory, hypothesis testing in statistics, management
sciences and peer review process. In the last few years, we have witnessed a
fast growing development and applications of three-way approaches in areas of
decision making, email spam filtering, clustering analysis and so on [10,24,28,64].

The term “three-way decisions” embraces all aspects of a decision-making
process, including tasks such as data and evidence collection and analysis for
supporting decision making, reasoning, computing in order to arrive at a par-
ticular decision, justification and explanation of a decision. The unique feature
c© Springer Nature Switzerland AG 2018
H. S. Nguyen et al. (Eds.): IJCRS 2018, LNAI 11103, pp. 13–28, 2018.
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of three-way decisions is a type of three-way approaches (i.e., the division of
a whole into three parts) to problem solving and information processing. We
may replace “decisions” in “three-way decisions” by other words to have specific
interpretations such as three-way computing, three-way processing, three-way
classification, three-way analysis, three-way clustering, three-way recommenda-
tion, and many others [59].

2 Reviews on Three-Way Decisions

The main idea of three-way decisions is to divide a universe into three disjoint
regions and to process the different regions by using different strategies. By
using notations and terminologies of rough set theory [38,39,58], we give a brief
description of three-way decisions as follows [64].

Suppose U is a finite nonempty set of objects or decision alternatives and D
is a finite set of conditions. Each condition in D may be a criterion, an objective,
or a constraint. The problem of three-way decisions is to divide, based on the
set of conditions in D, U into three pair-wise disjoint regions by a mapping f :

f : U −→ {RI,RII,RIII}. (1)

The three regions are called Region I, Region II, and Region III, respectively.
Depending on the construction and interpretation of the mapping f , there are

qualitative three-way decisions and quantitative three-way decisions. In qualita-
tive three-way decision models, the universe is divided into three regions based
on a function f that is of a qualitative nature. Quantitative three-way decision
models are induced by that is of a quantitative nature. An evaluation-based
three-way decision model uses an evaluation function that measures the desir-
ability of objects with reference to the set of criteria.

It should be pointed out that we can have a more general description of
three-way decisions by using more generic labels and names. For example, in
an evaluation-based model of three-way decisions [55], we can use a pair of
thresholds to divide a universe into three regions. If we arrange objects in an
increasing order with lower values at left, then we can conveniently label the
three regions as the left, middle, or right regions, respectively, or simply L, M,
and R regions [64]. In a similar way, strategies for processing three regions can
be described in more generic terms [5,6,57].

Originally, the concept of three-way decisions was proposed and used to inter-
pret probabilistic rough set three regions. Further studies show that a theory of
three-way decisions can be developed by moving beyond rough set theory. In fact,
many recent studies go far beyond rough sets. In order to go further insights into
three-way decisions and promote further research, this paper gives a brief review
on the studies of three-way decisions from the following respects.

• Cost-sensitive sequential three-way decisions. Three-way decisions originate
from the studies on the decision-theoretic rough set (DTRS) model. The
DTRS presents a semantics explanation on how to decide a concept into
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positive, negative and boundary regions based on the minimization of the
decision cost, rather than decision error. Li et al. [11] incorporated the three-
way decisions into cost-sensitive learning and proposed a three-region cost-
sensitive classification. It is evident that the boundary decision may achieve
lower cost/risk than positive and negative decisions do, if available informa-
tion for immediate decision is insufficient, which is consistent with human
decision process [9,11]. Based on the DTRS, Ju et al. [26] constructed a gen-
eralized framework of cost-sensitive rough set with test cost and decision cost
simultaneously, and further introduced multi-granulation DTRS into this field
and proposed the cost-sensitive multi-granulation rough set model by consid-
ering two different costs [27], which enriches the semantics interpretation of
cost-sensitive models based on the DTRS.

In real-world applications, the available information is always insufficient,
or it may associate with extra costs to get available information, which leads
to frequent boundary decision. However, if the available information contin-
uously increases, the previous boundary decisions may be converted to posi-
tive or negative decisions, which forms a sequential decision process [54,56]. Li
et al. proposed a cost-sensitive sequential three-way decision strategy [12,15],
and introduced the method to handle the imbalance of misclassification cost
and the insufficient of image information [13], and further investigated deep neu-
ral networks based on sequential granular feature extraction [14]. Considering
the multilevel granular structure of real-world problems, Yang et al. proposed a
unified model of sequential three-way decisions and multilevel incremental pro-
cessing for complex problem solving [74].

• Determining the thresholds. Compared to two-way decisions approaches,
three-way decisions approaches introduce deferment decision through a pair
of thresholds (α, β). Therefore, for the three-way decision models, a great
challenge is acquirement of a set of pairs of thresholds (α, β). Thus, Shang
and Jia [23,25] studied this problem from an optimization viewpoint, in which
the thresholds and corresponding cost functions for making three-way deci-
sions can be learned from given data without any preliminary knowledge [17].
Zhang and Zou et al. [82] proposed a cost-sensitive three-way decisions model
based on constructive covering algorithm (CCA); Zhang and Xing et al. [83]
introduced CCA to the three-way decisions procedure and proposed a new
three-way decisions model based on CCA to obtain POS, NEG and BND
automatically.

Yao and his group explored the use of game-theoretic rough set (GTRS)
model to handle thresholds determination issue. Afridi et al. [1] constructed a
three-way clustering approach for handling missing data by introducing a method
of thresholds determination based on a tradeoff game between the properties of
accuracy and generality of clusters. Besides, Zhang and Yao applied GTRS in
multi-criteria based three-way classification problem [76]. By considering prob-
abilistic rough sets based models of game-theoretic rough sets for inducing
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three-way decisions, Rehman et al. [44] proposed an architecture of protein func-
tions classification with probabilistic rough sets based three-way decisions.

• Three-way decisions with DTRS. Considering that incomplete data with
missing values are very common in many data-intensive applications. Luo
et al. [32] proposed an incremental approach for updating probabilistic
rough approximations, with the variation of objects in an incomplete infor-
mation system. Yang et al. [71] proposed the notions of weighted mean
multi-granulation decision-theoretic rough set, optimistic multi-granulation
decision-theoretic rough set, and pessimistic multi-granulation decision-
theoretic rough set in an incomplete information system. Based on the DTRS,
Liu et al. [30] proposed a novel three-way decision model by defining a new
relation to describe the similarity degree of incomplete information.

Recently, Yao [60] have extended the theory of three-way decisions to the
framework of interval sets and the corresponding three-way concept analysis in
incomplete contexts. Li et al. [16] studied three-way cognitive concept learn-
ing via multi-granularity, and designed a three-way cognitive computing system
which is in fact a dynamic process to update three-way granular concepts. Li
et al. [13] simulated the human decision-making process, and proposed a dynamic
sequential three-way decision method for cost-sensitive face recognition, by con-
sidering available information increases continuously. To deal with the prob-
lem of incremental overlapping clustering, Yu et al. [65] designed a dynamic
three-way decision strategy to update the clustering when the data increase. Liu
et al. [29] considered the dynamic change of loss functions in the DTRS with
the time, and further proposed the dynamic three-way decision model. Zhang
et al. [80] introduced a new three-way decision model based on dynamic decision
making with the updating of attribute values.

• Three-way attribute reduction. The combination of three-way decisions and
attribute reducts has theoretical significance and applicable prospects. In this
regard, Chen et al. [3] discussed reduction issue based on three-way deci-
sions in neighborhood rough sets. By utilizing double-quantitative measure,
Zhang et al. [81] established a hierarchical reduct system, including qualita-
tive/quantitative reducts, tolerant/approximate reducts. Furthermore, Zhang
et al. [79] introduced three-way decisions into attribute reducts, and con-
structed a novel framework of three-way attribute reducts, aiming to directly
quantify the final reduction action. Ren and Wei [45] studied three-way con-
cept analysis, and proposed an approach for attribute reductions of three-way
concept lattices. Ma and Yao [36] gived a general definition of class-specific
attribute reducts, and thus, introduced the class-specific attribute reducts
framework on the perspective of three-way decision.

• Three-way decisions and other theories. There are lots of excellent results on
the combination of three-way decisions and other theories such as Dempster-
Shafer theory, fuzzy sets, formal concept analysis and so on.
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Wang et al. [51] proposed a Dempster-Shafer theory based intelligent three-
way group sorting method. Zhao and Hu [75]investigated fuzzy and interval-
valued fuzzy probabilistic rough sets and proposed their corresponding three-
way decisions models, which are appropriate for fuzzy events. Hu [21] established
the framework of three-way decisions spaces based on partially order sets and
studied three-way decisions based on hesitant fuzzy sets [21,22]. In order to
generate decision rules in incomplete information systems, Yang and Tan [72]
constructed the evaluation function by combining the intuitionistic fuzzy set
and the three-way decisions. To overcome the limitation of the existing three-
way decisions models in uncertainty environment, Zhai et al. [78] extended the
rough fuzzy set to tolerance rough set, thus, proposed the three-way decisions
model based on tolerance rough fuzzy sets. Based on linguistic information-based
decision-theoretic rough fuzzy sets, Sun et al. [49] established the corresponding
three-way decisions approach to solve multiple attribute group decision problem.
To mine three-way concepts to support three-way decisions in formal context, Li
et al. [16] studied three-way cognitive concept learning via multi-granularity. Qi
et al. [42] proposed the three-way concept analysis based on combining three-way
decisions [55] and formal concept analysis [7]. Besides, Ren and Wei investigated
the attribute reductions method over three-way concept lattices [45]. Aimed at
analyzing the uncertainty and incompleteness in single-valued neutrosophic set,
Singh [47] proposed three-way formal fuzzy concept lattice representation. With
the issue of three-way concept lattices construction, Qian et al. [43] proposed
approaches to create the three-way concept lattices based on the concept lattices
of Type I-combinatorial context and Type II-combinatorial context. Yu et al. [73]
made efforts on characterizing three-way concept lattices and three-way rough
concept lattices, which enriched the theory of three-way concept lattices.

• Applications on three-way decisions. Since the theory of three-way decisions
has been proposed, scholars have applied the idea to different applications. Yu
and her group studied overlapping clustering [61], determining the number
of clusters [62], incremental clustering [65] and so on, based on the three-
way decision theory. They also applied the idea to refine and detect social
community [66]. Min and his group applied three-way decisions to the incre-
mental mining of frequent itemsets [18,37]. Shang and Jia combined the
three-way decisions solution with text sentiment analysis to improve the per-
formance of sentiment classification [85]. Miao and his group applied three-
way decision into Chinese emotion recognition [50], and achieved an excellent
result. Zhang and Wang studied the issue of sentiment uncertainty analysis,
and applied three-way decisions to sentiment classification with sentiment
uncertainty [77], with considering the scenarios of context dependent senti-
ment classification and topic-dependent sentiment classification. In order to
solve multi-label sentiment classification, Ren and Wang [46] proposed the
method of three-way decisions to recognize the multi-label sentiment ori-
entation of Chinese text. Li and his group utilized cost-sensitive sequential
three-way decision to face recognition [13]. Miao and his group proposed
a novel algorithm for image segmentation with noise in the framework of
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decision-theoretic rough set model [8]. Three-way decisions also have been
adapted to solve group decision making problem, by combining with theories
of decision-theoretic rough sets [35], two universes fuzzy decision-theoretic
rough set [48], cloud model [20] and prospect theory [31]. Moreover, the the-
ory of three-way decisions has also been used in other fields such as email
spam filtering [84] and recommender system [19].

3 Clustering Approaches for Uncertain Relationships
Between Objects and Clusters

The task of cluster analysis or clustering is to group similar objects into the same
cluster and dissimilar objects into different clusters. Obviously, there are three
relationships between an object and a cluster: (1) the object certainly belongs
to the cluster, (2) the object certainly does not belong to the cluster, and (3)
the object might or might not belong to the cluster. It is a typical three-way
decision processing to decide the relationship between an object and a cluster.
Such relationships will inspire us to introduce the three-way decisions into the
cluster analysis problem.

In the existing clustering approaches, some approaches such as fuzzy cluster-
ing, rough clustering and interval clustering, have been proposed to deal with
this kind of uncertain relationship between objects and clusters. Sometimes, we
also say that these approaches are soft clustering or overlapping clustering based
on the meaning that an object can belong to more than one cluster. In other
words, soft clustering technologies aim to relax the hard boundary of clusters by
soft constraints, so that it can deal with problems such as overlapping clusters,
outliers and uncertain objects [41].

Fuzzy c-means (FCM) is a method of clustering which allows an object to
belong to more than one cluster. In the FCM, similarities between objects and
each cluster are described by membership degrees based on the fuzzy sets the-
ory, and all objects are assigned to k fuzzy clusters. However, it cannot get an
exact representation of clusters by fuzzy sets. To solve this issue, Lingras and
Peters [34] applied the rough sets theory to clustering, they presented a new
cluster representation that an object can belong to multiple clusters with the
concepts of lower and upper approximations. In rough clustering, every cluster
might have the fringe region (boundary region) to decrease cluster errors. Objects
in fringe regions need more information so that they can be assigned to certain
clusters eventually. Next, they combined rough sets to k-means and proposed the
rough k-means clustering which each cluster is described by a lower and upper
approximation. Since changes in general lead to uncertainty, the appropriate
methods for uncertainty modeling are needed in order to capture, model, and
predict the respective phenomena considered in dynamic environments, Peters
et al. [40] proposed the dynamic rough clustering to detect changing data struc-
tures. In addition, Lingras and Yan [33] developed fuzzy clustering by combining
rough clustering, in which a cluster is represented by a lower and upper approx-
imation and two thresholds α and β are used to divide the two approximations.
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Considering clusters presented as interval sets with lower and upper approxima-
tions in rough k-means clustering are not adequate to describe clusters, Chen
and Miao [2] proposed an interval set clustering based on decision theory.

The rough sets theory has played an important role in dealing with
uncertainty. Yao introduced the Bayes risk decision-making into rough sets and
proposed the decision-theoretic rough set model, then proposed the concept
of three-way decisions [53]. The theory of three-way decisions extends binary-
decisions in order to overcome some drawbacks of binary-decisions. Inspired by
the three-way decisions, Yu [68] proposed a framework of three-way cluster analy-
sis. The three-way clustering redefines the clustering representation and has been
applied to dealing with some problems such as overlapping incremental cluster-
ing [65], community detection [66] and high-dimensional data clustering [67].
Similar to rough clustering using a pair of lower and upper approximations to
represent a cluster, three-way clustering describes a cluster by a pair of sets.
Generally speaking, rough clustering usually restricts to the rough k-means and
its extension algorithms. The intersections between any two core regions do not
have to be empty in the three-way clustering, it is different to that the inter-
section between any two lower approximations is empty in rough clustering. For
example, we have shown some real-world cases in the reference [66], in which
some objects are core elements of two communities. Usually, uncertain objects
in fringe regions need further treatment in three-way clustering when further
information can be obtained.

In the above, we have discussed the existing approaches for dealing with
uncertain relationships. Rough clustering and interval clustering can also be
regarded as the approaches of three-way decisions in some sense, in which the
fringe objects are described well.

4 Three-Way Cluster Analysis

In cluster analysis, we need to solve two essential problems. One is how to rep-
resent a cluster. Another one is how to obtain the clusters, namely, how to
develop clustering algorithms. In this section, this paper will introduce a novel
framework of three-way cluster analysis. The basic idea of three-way cluster-
ing concludes two aspects: (1) the result of clustering is three-way, and (2) the
three-way decision strategy is used during the process of clustering.

4.1 Representation of Three-Way Clustering

Let U = {x1, · · · ,xn, · · · ,xN} be a finite set, called the universe or the reference
set. xn is an object which has D attributes, namely, xn = (x1

n, · · · , xd
n, · · · , xD

n ).
xd
n denotes the value of the d-th attribute of the object xn, where n ∈ {1, · · · , N},

and d ∈ {1, · · · ,D}.
The result of clustering scheme C = {C1, · · · , Ck, · · · , CK} is a family of

clusters of the universe, in which K means this universe is composed of K clus-
ters. According to Vladimir Estivill-Castro, the notion of a “cluster” cannot be
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precisely defined, which is one of the reasons why there are so many cluster-
ing algorithms [4]. There is a common denominator: a group of data objects.
In the existing works, a cluster is usually represented by a single set, namely,
Ck = {xk

1 , · · · ,xk
i , · · · ,xk

|Ck|}, abbreviated as C without ambiguous.
From the view of making decisions, the representation of a single set means,

that the objects in the set belong to this cluster definitely and the objects not
in the set do not belong to this cluster definitely. This is a typical result of two-
way decisions. For hard clustering, one object just belongs to one cluster; for
soft clustering, one object might belong to more than one cluster. However, this
representation cannot show which objects might belong to this cluster, and it
cannot intuitively show the influence degree of the object during the processing
of forming the cluster. Obviously, the use of three regions to represent a cluster
is more appropriate than the use of a crisp set, which also directly leads to
three-way decisions based interpretation of clustering.

In contrast to the general crisp representation of a cluster, we represent a
three-way cluster C as a pair of sets:

C = (Co(C), F r(C)). (2)

Here, Co(C) ⊆ U and Fr(C) ⊆ U . Let Tr(C) = U − Co(C) − Fr(C). Then,
Co(C), Fr(C) and Tr(C) naturally form the three regions of a cluster as Core
Region, Fringe Region and Trivial Region respectively. If x ∈ Co(C), the object
x belongs to the cluster C definitely; if x ∈ Fr(C), the object x might belong
to C; if x ∈ Tr(C), the object x does not belong to C definitely. These subsets
have the following properties.

U = Co(C) ∪ Fr(C) ∪ Tr(C),
Co(C) ∩ Fr(C) = ∅,
F r(C) ∩ Tr(C) = ∅,
T r(C) ∩ Co(C) = ∅.

(3)

If Fr(C) = ∅, the representation of C in Eq. (2) turns into C = Co(C); it
is a single set and Tr(C) = U − Co(C). This is a representation of two-way
decisions. In other words, the representation of a single set is a special case of
the representation of three-way cluster.

Furthermore, according to Formula (3), we know that it is enough to represent
expediently a cluster by the core region and the fringe region.

In another way, for 1 ≤ k ≤ K, we can define a cluster scheme by the
following properties:

(i) for ∀k, Co(Ck) 
= ∅;
(ii)

⋃K
k=1(Co(Ck) ∪ Fr(Ck)) = U.

(4)

Property (i) implies that a cluster cannot be empty. This makes sure that a
cluster is physically meaningful. Property (ii) states that any object of U must
definitely belong to or might belong to a cluster, which ensures that every object
is properly clustered.
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With respect to the family of clusters, C, we have the following family of
clusters formulated by three-way representation as:

C = ({Co(C1), F r(C1)), · · · , (Co(Ck), F r(Ck)), · · · , (Co(CK), F r(CK))}.
(5)

Obviously, we have the following family of clusters formulated by two-way
decisions as:

C = {Co(C1), · · · , Co(Ck), · · · , Co(CK)}. (6)

Under the representation, we can formulate the soft clustering and hard clus-
tering as follows. For a clustering, if there exists k 
= t, such that

(1) Co(Ck) ∩ Co(Ct) 
= ∅, or
(2) Fr(Ck) ∩ Fr(Ct) 
= ∅, or
(3) Co(Ck) ∩ Fr(Ct) 
= ∅, or
(4) Fr(Ck) ∩ Co(Ct) 
= ∅,

(7)

we call it is a soft clustering; otherwise, it is a hard clustering.
As long as one condition of Eq. (7) is satisfied, there must exist at least one

object belonging to more than one cluster.
Obviously, the representation of three-way brings the following advantages:

the representation of a single set is a special case of the representation of three-
way cluster; it intuitively shows that which objects are core of the cluster, and
which ones are fringe of the cluster; it diversifies the type of overlapping; and it
reduces the searching space when focusing on the overlapping/fringe objects.

4.2 An Evaluation-Based Three-Way Cluster Model

In this subsection, we will introduce an evaluation-based three-way cluster
model, which produces three regions by using an evaluation function and a
pair of thresholds on the values of the evaluation function. The model partially
addresses the issue of trisecting a universal set into three regions.

Suppose there are a pair of thresholds (α, β) and α ≥ β. Although evaluations
based on a total order are restrictive, they have a computational advantage. One
can obtain the three regions by simply comparing the evaluation value with a
pair of thresholds. Based on the evaluation function v(x), we get the following
three-way decision rules:

Co(Ck) = {x ∈ U |v(x) > α},
F r(Ck) = {x ∈ U |β ≤ v(x) ≤ α},
T r(Ck) = {x ∈ U |v(x) < β}.

(8)

Yao proposed an evaluation-based three-way decisions model in the
reference [57]. Naturally, an similar evaluation-based three-way cluster model
is depicted in Fig. 1. We can divide the universe U according to Eq. 8 and design
different strategies to process the three regions.
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Fig. 1. An Evaluation-based Three-way Cluster Model

Based on the model, we have to pay attention to the following three points.

– About the evaluation function v(x). It will be specified accordingly when an
algorithm is devised. In fact, in order to devise the evaluation function, we
can refer to the similarity measures or distance measures, probability, possibil-
ity functions, fuzzy membership functions, Bayesian confirmation measures,
subsethood measures and so on.

– About the three-way thresholds α and β. For an evaluation-based model, we
need to investigate ways to compute and to interpret a pair of thresholds. An
optimization framework can be designed to achieve such a goal. That is, a
pair of thresholds should induce a trisection that optimizes a given objective
function. By designing different objective functions for different applications,
we gain a great flexibility.

– The three-way decision strategy used during the process of clustering. Shortly,
it concludes two aspects such as how to get the three-regions of a cluster and
how to act on the three regions.

Of course, the previous two items serve to the third item. In other words, the
basic research issues of three-way clustering are about how to obtain the three
regions and how to act on the three regions, which is similar to the researches
on three-way decisions.

4.3 Some Researches on Three-Way Clustering

In this subsection, I will summarize and discuss some issues and research points
about the three-way clustering.

• Representation of three-way clustering. As discussed in Sect. 4.1, we can use
a pair of sets to represent a cluster in three-way representation. Some works
have been proposed in view of rough sets [34], interval sets [2], decision-
theoretic rough sets [62] and mathematical morphology [52]. We can also
represent the model of three-way clustering by using fuzzy set, shadow sets
and other models. Different interpretations of three-way clustering could give
different solutions to different kinds of clustering problems.
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• How to get the three-way clustering. It is a good way to extend from the
classical two-way decisions clustering approaches. The following properties
are important to the efficiency and effectiveness of a novel algorithm: how
to decide the thresholds, how to know the truth number of clusters. Yu et
al. [69] proposed a method to determine the thresholds automatically based
on gravitational search during the processing of clustering.

• Developing new clustering approaches for more uncertainty situations such
as dynamic, incomplete data or multi-source data. For example, we had pro-
posed a tree-based three-way clustering method for incremental overlapping
clustering [65], a three-way decisions clustering algorithm for incomplete data
based on attribute significance and miss rate [63], a semi-supervised three-way
clustering framework for multi-view data [70], a three-way decision clustering
approach for high dimensional data [67], and so on [68].

• Application of three regions. We can put forward the three-way clustering
strategy to the application fields such as social network services, cyber mar-
keting, E-commerce, recommendation service and other fields. Through the
further work on the fringe region, we can know the influence degree of the
object during the processing of forming the cluster, which is very helpful
in some practical applications. For example, Yu et al. [66] have presented
a method to detect and refine overlapping regions in complex networks by
three-way clustering.

5 Conclusions

The notion of three-way decisions was introduced for meeting the needs to prop-
erly explain three regions of probabilistic rough sets. The theory of three-way
decisions moves far beyond this original goal. We have seen a more general the-
ory that embraces ideas from many fields and disciplines. This paper introduces
most of recent studies on three-way decisions, in order to demonstrate the value
and power as well as the great potentials of three-way decisions. For purpose
of giving an example of researches related to three-way decisions, a three-way
cluster analysis approach is introduced in this paper, which mainly addresses
the problem that the uncertain relationship between an object and a cluster.
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Abstract. This paper aims to discuss about the reasons behind the wide
applicability of the rough set approach in real-life projects. The rough
set-based approximations of (vague) concepts is one among the most
central notions, available in the literature, for dealing with imperfect
data and/or information. Moreover, as the approach based on rough
sets is directly driven from data it turns out to be advantageous for
real life projects where data plays a crucial role. Besides, using rough
set approach one can deal efficiently with algorithmic issues, especially
in the context of searching for relevant computational building blocks
(granules) for approximation of complex vague concepts. In this paper,
we would focus on these few aspects of rough sets, in order to explain its
wide applicability in real-life projects.

1 Introduction

The rough set (RS) approach was proposed by Professor Zdzis�law Pawlak in
1982 [51,53]1 as a tool for dealing with imperfect knowledge and/or vague con-
cepts. Many applications and methods based on rough set theory, alone or in
combination with other approaches, have been developed.

The philosophy of rough set is grounded on the assumption that every object
of a universe of discourse is associated with some information (data, knowledge).
Objects characterized by the same information are indiscernible (similar) with
respect to the available data. The indiscernibility relation generated in this way
is the mathematical basis of rough set theory. A set of all indiscernible (similar)
objects is called an elementary set, and this forms a basic information granule
(atom) of knowledge about the universe. An arbitrary union of some elementary

1 For more information readers are referred to some survey papers [55–57,67], books,
e.g., [19,57,71] and to the rough set database rsds.univ.rzeszow.pl.
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sets, called definable set, is referred to as crisp (precise) set. If a set is not crisp
then it is called rough (imprecise, vague). A definable set is considered to be an
information granule.

Thus, each rough set has borderline cases (boundary–line), i.e., objects which
cannot be classified with certainty as members of either the set or its complement.
This means that borderline cases are those which cannot be properly classified
by employing available information. Rough set theory can be viewed as a specific
implementation of Frege’s idea of vagueness, i.e., imprecision in this approach is
expressed by a boundary region of a set.

So, the assumption that objects can be “seen” only through the information
available about them leads to the view that knowledge has granular structure.
Due to the granularity of knowledge some objects of interest cannot be dis-
cerned, and thus they appear as the same (or similar). As a consequence, vague
concepts, in contrast to precise concepts, cannot be characterized in terms of
(information about) their elements. Therefore, in the proposed approach, it is
assumed that any vague concept is replaced by a pair of precise concepts – called
the lower and the upper approximation of the vague concept. The lower approx-
imation consists of all objects which definitely belong to the concept and the
upper approximation contains all objects which possibly belong to the concept.
The difference between the upper and the lower approximation constitutes the
boundary region of the vague concept. These approximation operations are the
basic operations in rough set theory. Hence, rough set theory addresses vagueness
not by means of membership to a set/concept, but by employing a boundary
region to a set/concept. If the boundary region of a set is empty it means that the
set is crisp, otherwise the set is rough (inexact). A nonempty boundary region of
a set indicates the possibility that our knowledge about the set is not sufficient
to define the set precisely.

In the development of rough set theory and its applications, one can distin-
guish three main stages. (i) During the first stage, the focus was based on the
assumption that objects are perceived by means of partial information repre-
sented by attributes. (ii) In the second stage2, the focus changed to looking at
the strategies through which the concepts, given only on samples of objects, are
approximated; as the strategies are different, finding relevant attributes as well
as methods of selecting those attributes become the central notions of rough set
literature. During this stage, approximation spaces and searching strategies for
relevant approximation spaces have been considered to be the central point of
interest in the study of rough sets. Many important achievements both in the
theory and the applications were obtained. (iii) Nowadays, a new stage for rough
sets has emerged based on the notion of interactive granular computations, in
which how a relevant strategy for constructing an approximation space can be
learned through interactions is also emphasized. As an example, one can consider
perception based computing.

2 This stage started a few years after the first paper by Pawlak on rough sets was
published.
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The rough set approach seems to be of fundamental importance in artifi-
cial intelligence and cognitive sciences. Relationship of rough sets with many
other approaches such as fuzzy set theory, granular computing, evidence theory,
formal concept analysis, (approximate) Boolean reasoning, multicriteria deci-
sion analysis, statistical methods, decision theory, matroids have been clarified
by different researchers. There are reports on many hybrid methods obtained by
combining rough sets with other approaches such as soft computing, statistical
methods, natural computing, mereology, principal component analysis, singular
value decomposition and support vector machines.

The main advantage of rough set theory in data analysis is that it does
not necessarily need any additional information about data, other than some
properties of objects. Whereas one needs additionally probability distribution
function in statistics, basic probability assignments in evidence theory, a grade
of membership or the value of possibility in fuzzy set theory, which are basically
estimated from data. One can observe that the following application oriented
aspects have emerged as a natural outcome of the fact that the theory of rough
sets is grounded in data. Among many such a few are (i) introduction of efficient
algorithms for finding hidden patterns in data, (ii) determination of optimal sets
of data (data reduction) and evaluation of the significance of data, (iii) generation
of sets of decision rules from data, (iv) easy-to-understand formulation of decision
rules, (v) straightforward interpretation of obtained results, and (vi) suitability
of many of its algorithms for parallel processing.

This paper aims to explain why the rough set approach leads to so many real-
life applications. In this regard, we select the aspect related to ‘close association’
of the approach with data, and the basic notions of the approach for approx-
imating concepts, as important reasons behind its wide applicability. We have
already mentioned the importance of finding relevant searching strategies for the
process of constructing approximation space, in application. In this regard, in
Sect. 2, we would outline the rough set approach to searching for computational
building blocks for cognition (e.g., for approximation of vague concepts) based
on parametrized approximation spaces. Here, we would try to touch the issues
of the second and third stage of the development in the study of rough sets. An
illustrative example related to discovery of relationships of rough sets with other
approaches for dealing with uncertainty is presented in Sect. 3; the example, in
particular, concerns to Dempster-Shafer theory. In Sect. 4, some comments on
combination of rough sets with other soft computing approaches, such as fuzzy
sets or neural networks, leading to improving the quality of constructed com-
putational building blocks, are presented. Lastly, there is a concluding section
listing some further possibilities to be explored.

2 Parametrized Approximation Spaces

In this section, we would concentrate on the two other stages of development
in the rough set study mentioned in the introduction. One of them is the emer-
gence of parametrized approximation spaces, and the other is introduction of
interactions within a family of approximation spaces, parametrized by different
purposes, contexts, or constraints.
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In this regard, we put forward a discussion about importance of the rough set
approach in searching for computational building blocks for cognition, as consid-
ered by Leslie Valiant as a fundamental question for Artificial Intelligence3. We
emphasize on the necessity for a constructive search of the relevant components
of approximation spaces from a given family of approximation spaces. It should
be noted that these components need to be constructed from the available data.

The original approach by Pawlak was based on the notion of indiscernibility.
Any such indiscernibility relation, generated from an equivalence relation, defines
a partition of the universe of objects. Over the years, many generalizations of
this approach are introduced; some of them are based on coverings rather than
partitions (see, e.g., [67]).

One should note that for dealing with covering based rough set approach,
it first requires solving several new algorithmic problems, such as selection of
family of definable sets and/or selection of relevant definition of approximation
of sets among many possible ones. In the context of application, finding the
relevant definition/strategy for approximation space is important as it is not
given a priori, rather should be learned from data.

Let us first list down some of the foundational aspects for building the theory
based on rough sets that need to be focused on in the context of applications (i)
One of the key problems is that for a given problem (e.g., classification problem)
one needs to first discover the relevant covering for the target classification task.
In the literature, there are numerous papers dedicated to theoretical aspects of
the covering based rough set approach. However, still much more work should be
done on, rather hard, algorithmic issues for discovering the relevant covering for
a particular data. (ii) Another issue to be emphasized is related to inclusion mea-
sures. Parameters of such measures, for the purpose of application, sometimes
need to be tuned so that they can induce high quality approximations. Usually,
this is realized using the minimum description length principle (MDL) [63] for
the constraints of the measures. In particular, approximation spaces with rough
inclusion measures have been investigated. This approach was further extended
to rough mereological approach. More general cases of approximation spaces
with rough inclusion were also discussed in the literature including approxima-
tion spaces in Granular Computing (GrC). Finally, the approach for ontology
approximation, used in hierarchical learning of complex vague concepts [71], is
also worth to be mentioned here.

In the section below, we would show how different components of a gen-
eralized approximation space can be constructed from the perspective of
application.

2.1 Some Examples for Generalized Approximation Space
Parametrized by Different Constraints

Several generalizations of the classical rough set approach based on approxima-
tion spaces defined as pairs of the form (U,R), with an equivalence relation R,

3 Leslie Valiant: https://people.seas.harvard.edu/∼valiant/researchinterests.htm.

https://people.seas.harvard.edu/~valiant/researchinterests.htm
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have been reported in the literature. These generalizations have emerged focus-
ing on different application oriented views regarding the basic concepts used
in the definition of rough sets. Searching strategies for relevant approximation
spaces are crucial for real-life applications. They include discovery of uncertainty
functions, inclusion measures as well as selection of methods for approximations
of decision classes, and strategies for inductive extension of approximations from
samples to relatively larger sets of objects.

Let us consider some examples of generalizations of the notions such as indis-
cernibility relation, inclusion relation and approximation space, following the
requirements from the perspective of applications listed above.

A generalized approximation space [73] can be defined by a tuple AS =
(U, I, ν) where I is the uncertainty function defined on U with values in the
power set P(U) of U . I(x) is considered to be a neighborhood of x, and ν, the
inclusion function, is defined on the Cartesian product P(U)×P(U) taking values
in the interval [0, 1]; ν(X,Y ) represents the degree of inclusion of the set X to
the set Y . Then the lower and upper approximation operations are defined in
AS in the following way.

LOW (AS, X) = {x ∈ U : ν(I(x), X) = 1} and UPP (AS, X) = {x ∈ U : ν((I(x), X) > 0}.

In Pawlak’s original definition [51], for a given information system (U,A)4,
I(x) is equal to the equivalence class A(x) generated from the indiscernibility
relation IND(A) = {(x, y) ∈ U × U : a(x) = a(y) for all a ∈ A}, where
A(x) = {y ∈ U : xIND(A)y}. In case of tolerance (or similarity) relation
T ⊆ U × U one can consider I(x) = {y ∈ U : x T y}. That is, here I(x) is equal
to the tolerance class of x defined with respect to the relation T . For X,Y ⊆ U ,
the standard rough inclusion relation νSRI , available in the literature, is defined
as follows5.

νSRI(X,Y ) =

⎧
⎨

⎩

|X ∩ Y |
|X| , if X �= ∅,

1, otherwise.

For the purpose of applications it is important to have some constructive
definitions of I and ν.

One can consider another way to define I(x). Usually together with AS we
can associate a set F of formulae describing sets of objects of the universe U
of AS; AS basically gives the semantics (‖ · ‖AS) such that for any formula
α, ‖α‖AS ⊆ U6. Now, one can consider the following set NF (x) = {α ∈ F :
x ∈ ‖α‖AS}, and construct I(x) = {‖α‖AS : α ∈ NF (x)}. Hence, more gen-
eral uncertainty functions having values in P(P(U)) can be defined, and as a
consequence different definitions of approximations can come up. For example,

4 where U is a finite set and A is a set of attributes (i.e., for any a ∈ A, a : U −→ Va,
where Va is the set of values of a).

5 |X| denotes the cardinality of the set X.
6 If AS = (U, A) then we will also write ‖α‖U instead of ‖α‖AS .
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one can consider the following definitions of approximation operations over this
approximation space AS:

LOW (AS,X) = {x ∈ U : ν(Y,X) = 1 for some Y ∈ I(x)} and
UPP (AS,X) = {x ∈ U : ν(Y,X) > 0 for any Y ∈ I(x)}.

An illustrative example of a set of formulas F can be based on a tolerance relation
τ over U. Formulas from F defined over vectors of attribute values (or signatures
of objects [40]) are used for defining tolerance classes. Then I(x) consists of all
tolerance classes of τ including the objects x. The family {τ(x) : x ∈ U} is
a covering of U. Another example of covering of U can be obtained if, for a
given tolerance relation τ over U , we take a family C(τ) of all maximal (with
respect to set theoretical inclusion) sets Y ⊆ U satisfying the following condition:
∀x, y ∈ Y (y ∈ τ(x)). Then one can assign to x ∈ U a family {Y ∈ C(τ) :
x ∈ Y }. Certainly, I(x) can be tuned by selecting relevant attributes taken for
the definition of tolerance relation and/or parameters used to specify closeness
of values and value vectors of attributes. It should be noted that the above
presented scheme of approximation is not unique. In particular, the relationships
(e.g., degrees of inclusion) of neighborhoods from I(x) with the concept X and
its complement may lead to other forms of approximation. Let us consider an
illustrative example related to inducing classifiers. We assume that (U,A) is an
information system and X ⊆ U is a concept over U. However, we have only a
partial information about this concept, i.e., we have a training set in the form of
a decision system7 (Utr, Atr, d), where Utr ⊆ U, Atr = {a : a ∈ A}, a(x) = a(x)
for x ∈ Utr, and d(x) = 1 if x ∈ Xtr = X ∩ Utr, and d(x) = 0 if x ∈ Utr \ Xtr.
On the basis of this partial information an approximation of X over U should
be induced. One of the approaches can be based on decision rules generated
from (Utr, Atr, d). Let us assume that such a set Rule, of decision rules (for the
decision 1 and 0, in our example), is obtained in the form of so called minimal
decision rules [39,55]8. Now, for an arbitrary object x from U one can define
I(x) as a family of subsets of Utr from (Utr, Atr, d) defined by the left hand sides
of some rules belonging to the set Rule. For each such rule the object x should
match the left hand side of the rule. In this way we obtain a subset of rules
from Rule. The sets of objects from Utr which satisfy the left hand sides of the
selected rules create I(x). We calculate the degrees of inclusion of sets from this
family into X and its complement. The obtained degrees are used as arguments
‘for’ and ‘against’ membership of x ∈ U to X. At this point, generally, a voting
strategy is selected for resolving conflicts between these arguments to assign the
tested object to the lower approximation of X or to the lower approximation
7 Let us recall that a decision system is a triplet (U, A, d), where (U, A) is an informa-

tion system and d : U −→ Vd is the decision attribute with the set of values Vd such
that d /∈ A [51].

8 A rule of the form lh(r) −→ d = i, where lh(r) is a conjunction of descriptors of the
form a = v for some a ∈ Atr and i ∈ {0, 1} is minimal if this rule is true in Utr but if
we drop an arbitrary descriptor from lh(r) the obtained rule will be no longer true
in Utr [39,55].
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of its complement. In the case, when the ‘difference’ between votes ‘for’ and
‘against’ is very ‘small’ the object is assigned to the boundary region.

The neighborhoods are defined relative to a given set of attributes (features)
which can be tuned in the process of searching for more relevant features for
the classification (e.g., using different reducts (see, e.g., [9,21,22]). For more
complex vague concepts, this can be realized by hierarchical learning used for
the ontology approximation discussed shortly below.

There are also different forms of rough inclusion functions. Let us consider
two such examples. In the first example of a rough inclusion function, a threshold
t ∈ (0, 0.5) is used to relax the degree of inclusion of sets. The rough inclusion
function νt is then defined by

νt (X,Y ) =

⎧
⎪⎨

⎪⎩

1 if νSRI (X,Y ) ≥ 1 − t,
νSRI(X,Y )−t

1−2t if t ≤ νSRI (X,Y ) < 1 − t,

0 if νSRI (X,Y ) < t.

Now, considering νt in place of ν in the above definitions of lower and upper
approximations, one can obtain the approximations considered in the variable
precision rough set approach (VPRSM) where Y is assumed to be a decision
class and I(x) = B(x) for any object x and a given set of attributes B. Another
example of application of the standard inclusion was developed by using prob-
abilistic decision functions. The rough inclusion relation can be also used for
approximation of functions and relations [73].

Based on inclusion functions the rough mereological approach has also been
generalized [61]. The inclusion relation xμry with the intended meaning that x
is a part of y to a degree at least r, has been taken as the basic notion of the
rough mereology, a generalization of Leśniewski’s notion of mereology [26].

As we already know, there can be families of approximation spaces for a par-
ticular purpose. We can think of that these families of approximation spaces are
labeled by some parameters. Examples of a few such parameters are conditional
attributes or formulas over these attributes, parametrized similarity relations
used for description of neighborhoods, as well as different thresholds used to
specify inclusion degrees of neighborhoods among different approximated con-
cepts etc. By tuning such parameters, according to the chosen criteria (e.g.,
MDL principle), one can search for the optimal approximation space for describ-
ing/approximating concepts.

Thus, our knowledge about the approximated concepts is constrained by
different parameters, and hence it is often partial and uncertain. So, it is rea-
sonable to consider approximation of a concept based on both examples and
counterexamples for the concepts [17] from the universe of objects. Hence, con-
cept approximations constructed from a given sample of objects are extended,
using inductive reasoning, on objects which are not yet observed. The rough set
approach for dealing with concept approximation under such partial knowledge
is now well developed.
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2.2 Parametrized Approximation Space in a Complex Environment
of Interacting Agents

Approximations of concepts should also take care of the constraints pertaining to
dynamically changing environments. This leads to a more complex situation where
the boundary regions are not crisp sets. This is also consistent to the postulate of
the higher order vagueness considered by the philosophers (see, e.g., [25]).

It is worthwhile to mention that a rough set approach for approximation of
compound vague concepts has also been developed. For such concepts, it is hardly
possible to expect that they can be approximated with high quality using the
traditional methods [7,75]. In this context one first needs to consider the approx-
imation of the domain-ontology of the concepts based on hierarchical learning.
In several papers, the problem of ontology approximation (see, e.g., [5]) has been
discussed together with the possible applications in approximation of compound
concepts or in knowledge transfer. In this case, a hierarchy of approximation
spaces may need to be discovered for approximation of different concepts from
the domain ontology. It is to be noted that in this approach different kinds of
computational building blocks, called information granules, [70] work together,
in parallel or in association. This involves interactions among different parts of
the complex network of information granules. In any ontology [72], (vague) con-
cepts and local dependencies between them are specified. Global dependencies
can be derived from local dependencies. Such derivations can be used as hints in
searching for relevant compound patterns (information granules) in approxima-
tion of more compound concepts from the ontology. The ontology approximation
problem is one of the fundamental problems related to approximate reasoning.
One should construct (in a given language that is different from the language
in which the ontology is specified) not only approximations of concepts from
ontology but also vague dependencies specified in the ontology. It is worthwhile
to mention that an ontology approximation should be induced on the basis of
incomplete information about concepts and dependencies specified in the ontol-
ogy. Any method of approximation of vague dependency between two concepts
X and Y should allow us to induce the arguments “for” and “against” that an
object belongs to the concept Y on the basis of the arguments “for” and “against”
that the object belongs to the concept X. Information granule calculi based on
rough sets are capable to solve such problems. The approach towards approxi-
mation of a vague dependency between two concepts X and Y , based on only
degrees of closeness (estimated from samples of objects) of X with Y and their
extensions with respect to the approximation, is not satisfactory for approximate
reasoning. Hence, more advanced approach should be developed. For complex
vague dependencies, this can be performed in hierarchical way rather than in
one step. Any argument can be thought of as a compound information granule
(compound pattern). Arguments are fused by local schemes (production rules)
discovered from data. Further fusions are possible through composition of local
schemes, called approximate reasoning schemes (AR schemes) [49]. To estimate
the degree to which (at least) an object belongs to a concept from ontology,
the arguments “for” and “against” the membership to that concept are col-
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lected. Then a conflict resolution strategy is applied to aggregate the “for” and
“against” degrees.

There are some other well established or emerging domains, not covered
in this paper, where some generalizations of rough sets are proposed as the
basic tools. These are often used in combination with other existing approaches.
Among them rough sets based on (see references in [71]): (i) incomplete informa-
tion and/or decision systems, (ii) non-deterministic information and/or decision
systems, (iii) rough set model on two universes, (iv) dynamic information and/or
decision systems, (v) dynamic networks of information and/or decision systems,
are a few to name.

We know that rough sets play a crucial role in the development of gran-
ular computing (GrC) [58]. As in a complex network of information granules
interactions play a natural role, Interactive Granular Computing (IGrC) comes
in. So, in the study of parametrized approximation space one more dimension
is added. The extension to IGrC [20] requires generalization of the basic con-
cepts such as information and decision systems as well as methods for inducing
hierarchical structures of information and decision systems interacting among
themselves as well as with the environment. In the existing rough set approach,
we assume that the results of computations of attribute values are given and
are represented in data tables. In IGrC it is important also to resolve problems
related to the process of perceiving values of attributes, e.g., how these values
of attributes are acquired through interaction with the environment and how to
control this process to obtain data relevant for the target goals. Understanding
interactive computations is one of the key problems for developing high quality
intelligent systems working in complex environments [16]. In IGrC, computa-
tions are based on interactions of complex granules (c-granules, for short). Any
c-granule consists of a physical part and a mental part linked in a special way
[20]. IGrC is treated as the basis for (see, e.g., [71] and references in this book):
(i) Wistech Technology, in particular for approximate reasoning, called adaptive
judgment, about properties of interactive computations, (ii) context inducing,
(iii) reasoning about changes, (iv) process mining (this research was inspired by
[54]), (v) perception based computing (PBC), (vi) risk management in compu-
tational systems [20] etc.

3 Rough Sets and Dempster-Shafer Theory

We know that the Dempster-Shafer theory [64,77] (see also http://www.science
direct.com/journal/international-journal-of-approximate-reasoning/special-
issue/10BG01ZSM7P) is widely used in decision support. In this section, our
aim is only to give an illustrative example showing how the basic component of
the Dempster-Shefer theory can be designed using the rough set notions [64–66]9.
9 The readers are referred to the literature for other relationships of rough sets and

Dempster-Shafer theory (see, e.g., [11,12,76,79], [10]). For example, new methods of
inducing rules were developed for searching rules with the large support for unions
of few decision classes and eliminating many other decision classes (see, e.g., [33]).

http://www.sciencedirect.com/journal/international-journal-of-approximate-reasoning/special-issue/10BG01ZSM7P
http://www.sciencedirect.com/journal/international-journal-of-approximate-reasoning/special-issue/10BG01ZSM7P
http://www.sciencedirect.com/journal/international-journal-of-approximate-reasoning/special-issue/10BG01ZSM7P
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In order to do that, first from the available data in the form of decision (infor-
mation) systems the basic concepts of rough set theory such as generalized deci-
sion, lower approximation, upper approximation, and boundary region as well as
aggregation of decision systems are defined. Next, on the basis of that one can
define in a very simple way the basic concepts of the Dempster-Shafer theory.

Let us first recall the basic functions used in Dempster-Shafer theory [64].
By Θ we denote a nonempty finite set called the frame of discernment.
A function m : P(Θ) −→ [0, 1], where P(Θ) is the powerset of Θ, is called

the mass function if m(∅) = 0 and
∑

Δ⊆Θ m(Δ) = 1.
There are two more functions important in this theory. These are the belief

function Bel : P(Θ) −→ [0, 1] and the plausibility function Pl : P(Θ) −→ [0, 1].
They are defined as follows.

Bel(Δ) =
∑

Γ⊆Δ

m(Γ ) and Pl(Δ) =
∑

Γ∩Δ �=∅
m(Γ ), where Δ ⊆ Θ.

These functions have a simple intuitive interpretation in the rough set frame-
work over decision systems [66].

Let A = (U,C, d) be a decision system [51,53,57]. We associate with the
decision system A an approximation space AS = (U, I, νSRI), where I(x) =
C(x) for x ∈ U. We identify the set of decisions Vd with the frame of discernment
Θ. By ∂A we denote the generalized decision of A, i.e., ∂A(x) = d(C(x)) = {v ∈
Vd : ∃y∈C(x)d(y) = v}. Now we can define the mass function mA of the decision
system A by

mA(Δ) =
|{x ∈ U : ∂C(x) = Δ}|

|U | ,

where Δ ⊆ Vd. In fact, one can easily check that the function mA satisfies the
requirements for the mass function.

Now, one can obtain the following two facts for the belief function BelA and
the plausibility function PlA defined on the basis of the mass function mA [66]:

BelA(Δ) =

∣
∣LOW (AS,

⋃
i∈Δ : Xi)

∣
∣

|U | and PLA(Δ) =

∣
∣UPP (AS,

⋃
i∈Δ : Xi)

∣
∣

|U | ,

where Xi = {x ∈ U : d(x) = i} is the decision class related to the decision i, and
Δ ⊆ Vd.

In this way we obtain a very intuitive interpretation of the functions BelA
and PlA in terms of the lower approximation and the upper approximation of
unions of (relevant for Δ) decision classes.

Moreover, one can also obtain an interpretation of the so called Dempster-
Shafer rule of combination using a relevant operation on decision tables. The
Dempster-Shafer rule of combination aggregates two mass functions m1 and m2
to a new mass function m1 ⊗ m2 defined by

m1 ⊗ m2(∅) = 0 and m1 ⊗ m2(Δ) =

∑
A∩B=Δ m1(A)m2(B)

1 − ∑
A∩B=∅ m1(A)m2(B)

, where ∅ �= Δ ⊆ Vd.
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In the case when the mass functions m1 and m2 are defined by the decision
systems A1 and A2, respectively, one can define a natural operation � on these
decision systems such that [66] mA1 ⊗ mA2 = mA1�A2 .

The presentation of the above basic notions of Dempster-Shafer theory
appears natural using the basic concepts of rough sets. The presented approach
allows us to design these definitions on the basis of the available data and to
ground the basic concepts of Dempster-Shafer theory on data.

4 Combination of Rough Sets with Soft Computing
Approaches Improving the Quality of the Constructed
Granules

The main reason behind the success in developing methods with a high quality of
approximating concepts is that these are based on combination of the rough set
approach with other approaches. Relevant combinations of different languages
for dealing with borderline cases, which these methods are using, lead to the
improvement of their performance in searching for relevant granules as compu-
tational building blocks for approximation of complex vague concepts, especially
the boundary regions.

Both fuzzy and rough set theory represent two different approaches to vague-
ness. Fuzzy set theory addresses gradualness of knowledge, expressed by the
fuzzy membership, whereas rough set theory addresses granularity of knowledge,
expressed by the indiscernibility relation. Both the theories are not competing
but are rather complementary. In particular, the rough set approach provides
tools for approximate construction of fuzzy membership functions.

Let us mention briefly two simple cases illustrating possible combination of
methods based on rough sets and fuzzy sets.

In the first example, one can consider the rough-set methods for generation
of decision rules for preliminary recognition of some regions (corresponding to
some decisions). The left hand sides of obtained decision rules define crisp sets
of objects. To resolve membership conflicts for objects close to boundaries of
these sets one can use more ‘elastic’ approach based on fuzzy sets. In this elastic
approach, fuzzy sets are spread over these crisp sets defined using the rough set
approach.

In the second example, let us consider a situation when a fuzzy membership
function μX for a concept X is given and we would like to modify this function
to cover the fact that objects are perceived using attributes from a set C. This
leads to considering for each indiscernibility class C(x), its image obtained by
μX , i.e., the set μX(C(x)) = {μX(y) : y ∈ C(x)}, instead of the particular value
μX(x). So, μX(C(x)) represents the possible set of values, that x and all elements
similar to it with respect to the set of attributes C, can assume under μX . Then
one can consider a pair of two fuzzy sets obtained by combination of the rough
set and fuzzy set approaches. The combination is based on a rough-fuzzy model
including μX and the approximation space AS = (U, IND(C). Now, the pair,
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called the rough-fuzzy set, can be defined consisting of the lower approximation
defined by the following fuzzy membership function:

LOW (AS, μX)(x) = inf μX(C(x)),

and the upper approximation defined by the following fuzzy membership
function

UPP (AS, μX)(x) = sup μX(C(x)).

These two simple strategies of combination of rough sets and fuzzy sets are
only illustrations of numerous other successful strategies in applications. More
detailed discussion on relationships of rough sets and fuzzy sets, the reader can
find, e.g., in [8,13,52,60,62,78]. Rough sets and fuzzy sets can work synergisti-
cally, often with other soft computing approaches. The developed systems exploit
the tolerance for imprecision, uncertainty, approximate reasoning and partial
truth under soft computing framework, and is capable of achieving tractability,
robustness, and close resemblance with human like (natural) decision making
for pattern recognition in ambiguous situations [69,80]. The developed meth-
ods have found applications in different domains such as bioinformatics and
medical image processing. The objective of the rough-fuzzy integration is to
provide a stronger paradigm of uncertainty handling in decision-making. Over
the years, many methods and applications, in particular in pattern recognition,
were developed on the basis of rough sets, fuzzy sets, and on their combination.
The methods based on combination of the approaches exploit different abilities
of the mixed languages used for generation as well as expressing patterns. This
makes it possible to discover patterns of the higher quality, and have better
approximation of the boundary region of a vague concept, in comparison to the
situations when they are used in isolation. One should note that in this case the
searching space for relevant patterns becomes larger in comparison to the cases
when single approach is used. Similarly, developing efficient heuristics for search-
ing relevant patterns is more challenging. These methods concern discovery of
patterns such as decision rules, clusters and processes of feature selection. Read-
ers can find more details in the literature (see, e.g., [29,38,68]) for the rough set
based methods and [6,14,15,22,24,30–32,41,44,48,50,59,69]) for the methods
based on combination of rough sets and fuzzy sets.

The characteristics of rough-fuzzy granulation have been further exploited in
designing various neural network models for their efficient and speedy learning,
and enhanced performance (see, e.g., [3,4,15,28,35,36,42,46,47,49]). This seems
to be strongly promising to big data analysis. There are hybrid methods combin-
ing rough sets with methods using others statistical tools, e.g., kernel functions,
case-based reasoning, wavelets, EM method, independent component analysis,
principal component analysis etc. (see, e.g., [1,2,18,27,34,37,43,45,74]). We end
this section, emphasizing the opinion, envisaged by other researchers [23] too,
that the theoretical foundations of soft computing should be based on combina-
tion of rough sets, fuzzy sets genetic algorithm, and neural networks.
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5 Conclusions

In this paper, we have discussed some aspects of the rough set approach which
lead to its wide applicability in real-life projects. There are some other issues to
be discussed such as the relevance of the rough set approach to the development
of the foundations of different areas including machine learning, data mining,
and data science. In particular, the role of the rough set approach in further
development of IGrC as the basis for perception based computing, seems to be
promising. Moreover, more work on extending the existing tools of mathemati-
cal logic should be done towards satisfying the requirement of ‘a reconciliation
between two contradictory characteristics–the apparent logical nature of reason-
ing and the statistical nature of learning’ as formulated by Leslie Valiant10.

Acknowledgments. The authors would like to thank Professor Mihir Chakraborty
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1 Towards a Position Paper

1.1 What’s a Granulation and What’s an Approximation?

Granulation can be though of as a conceptual grid based on given knowledge,
while approximation is the process of forming new knowledge through an avail-
able conceptual grid. In a wider sense, approximating is an operation required
when a “scale” is used to determine something which does not fit exactly with
the “precision” enabled by that scale. One can find instances of this dialectic
between granulation and approximation in different fields spanning from data
mining to story understanding, from pattern recognition to machine learning.
We use the term “scale” in a general sense. Granulation is a sort of “concep-
tual scale”. Granules are groups of items (or points) of a given universe of dis-
course formed by means of knowledge which has been acquired or hypothesized
and stored, that is, an established knowledge. From now on, we use the terms
“granule” and “neighbourhood”, as well as “granulation” and “neighbourhood
system”, interchangeably.

Typically, items are grouped together if their share to some extent some well-
established properties. But they could be grouped together also as a result of
empirical evidences with little reference to any (at least apparent) rule. There-
fore, the way in which granules are formed spans from the application of well-
defined relations, up to “anarchical” grouping. To put it in another way, on the
one extreme we deal with well-defined granules in which the logical structure
is recognizable (for instance equivalence or order relations), while on the other
extreme one deals with the breakup of the universe in parts which cannot be
interpreted as neighbourhoods induced by any kind of relation, that is, non-
structured granules in which it might be even difficult to understand why items
are linked together.

However, pointless topology and the logical structure underlying its basic
concepts, enable us to zoom-in and zoom-out different modes of granulation and
understand their logical and geometrical properties even in some apparently
unstructured cases.

1.2 What’s in a Relation?

In the original formulation of Rough Set Theory, granules are formed by means
of equivalence relations, that are very structured relations: reflexive, transitive
c© Springer Nature Switzerland AG 2018
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and symmetric. Immediately from inception, other kinds of binary relations have
been used, such as preorders (reflexive and transitive), partial orders (antisym-
metric preorders) and tolerance relations (reflexive and symmetric). Also arbi-
trary binary relations have been taken into account.

Arbitrary granulations resulting in coverings of the universe of discourse, were
pioneered by Zakowski and Pomika�la. But since the beginning of the XXI century
researches on covering-based rough sets started growing rapidly (we suggest to
search on the Internet for an appropriate bibliography; a non-exhaustive list of
works can be found in the References of [10]).

We call a granulation pre-topological respectively topological, if it induces
approximation operators with properties close, respectively equal, to those of
topological interior and closure operators. Since the adverb “close” means many
a thing, we shall deal, actually, with different notions of “pre-topological” oper-
ators. The starting point is any relation R ⊆ U × U ′, where the elements of
the sets U and U ′ receive a variety of interpretations. If U = U ′ then R simply
connects items on the basis of some criteria which is not embedded in the triple
〈U,U,R〉 itself, or are recoverable from it just formally, but not semantically. We
denote this structure by 〈U,R〉 and call it a square relational system, SRS.

In this case and in other cases in which a binary relation is acting to form
granules, a number of results are provided for free by topology and/or Modal
Logic, because approximation operators are modal operators.

In a sense, this is the classical approach in Rough Set Theory and we shall
see that it is a special case of more general approaches. Consider a relational
system 〈U,U ′, R〉1.

– Property system interpretation: U is a set of items and U ′ a set of prop-
erties, so that the relational structure is called a property system. This is a
classical interpretation. If a property system is given, the elements of U can
be grouped on the basis of the properties they fulfil, in order to form granules
of knowledge. The geometry of the set of granules will depend on R. In other
terms, R will induce one or more relations R∗ on U with particular properties.

– Pointless (or formal) topology interpretation: U is a set of points and
U ′ a set of formal (or abstract) neighbourhoods. Otherwise stated, U ′ is a set
of abstract granules. In this case one point of interest are the relations R∗

which are induced by R between abstract neighbourhoods.
– Concrete neighbourhood interpretation: an intermediate case is given

when U ′ = ℘(U), so that U ′ is a set of “real” granules of elements of U , that
is, U ′ is a set of subsets of U . Modal Logic semantic based on neighbour-
hoods systems deals with similar relational structures. Moreover, covering-
based approximations come from this situation.

Therefore, given a relational space 〈U,U ′, R〉, granules are formed in different
ways. Basically, there are an indirect way and two direct ways.

1 In formal topology, it is called a basic pair or a Chu space.
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– Indirect way: 〈a, b〉 ∈ R∗ because both 〈a, u′〉 and 〈b, u′〉 are in R, for some
u′ ∈ U ′, where the meaning of “some” must be specified further. This means,
for instance, that a and b are in the same granule because they share some
property.

– Direct way 1: when A ⊆ U and 〈a,A〉 ∈ R then A is a granule associated to
a. Anyway, notice that A can be considered as (the extension of) a property,
so that also in this case one can form granules in the indirect way. Actually,
it is a two-face case.

– Direct way 2: when U ′ = U , so that the granule associated to a is the set
of all the b ∈ U such that 〈a, b〉 ∈ R. We denote it by R(a) and call it the
R − neighbourhood of a. The indirect way leads to this direct way by means
of an induced relation R∗.

One main point of interest is to study the relationships between the properties of
R and those of the induced relations R∗ between items or between granules. Clas-
sical and generalised approximation operators from SRSs are within this case.
Another point to be investigated concerns the relations between the operators
definable within the concrete neighbourhood interpretation and those definable
within the formal approach provided by pointless topology. We shall see that in
some particular cases the three approaches give exactly the same result. That is,
although one can think to deal with different situations, actually the inner logic
is the same. However, the formal and the concrete approaches do not correspond
exactly. Their ability to describe the properties of granulations are different and
sometimes the language of one approach does not have any equivalent in the
other language. The main aim of this survey is introducing a logical and math-
ematical tool-kit to be used in the researches about approximations and Rough
Set Theory at large. Therefore, we will mention just a few new results (namely
those in Sect. 3) but discuss a set of open problems.

2 Galois Adjunctions and Galois Connections

We shall study all the above cases starting with a small set of operators pro-
vided by pointless topology. These operators are defined by means of combina-
tions of logical operators. Their inner logical structure make them into Galois
adjunctions. From that, a number of result are easily deduced for free2. Assume
A = 〈A,≤A〉 and B = 〈B,≤B〉 are partially ordered sets and let ι : A �−→ B
and σ : B �−→ A be two monotonic functions such that the following holds:

ι(x) ≤B y if and only if x ≤A σ(y) (1)

2 In Rough Set Theory the following operartors have been introduced by [4] and
independently in [11].
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We say that 〈ι, σ〉 is a Galois adjuntion between A and B, where ι is the lower
adjoint of σ and σ is the upper adjoint of ι. The pair 〈ι, σ〉 is also called an
axiality. The following facts are well-known:

Proposition 1. If 〈ι, σ〉 is a Galois adjunction between two partially ordered
sets A and B, then: (a) σι(x) ≥A x, any x ∈ A; (b) ισ(y) ≤B y, any y ∈
B; (c) ισ and σι are monotonic; (d) ισισ = ισ and σισι = σι. Therefore:
(e) ισ is an interior operator; (f) σι is a closure operator.

However, they both fail to be topological, because ισ fails to be multiplicative
and co-normal and σι fails to be additive and normal (where co-normal means
ισ(
) = 
 and normal σι(⊥) =⊥, for 
 the maximal element of B and ⊥ the
minimal element of A). In other terms, they are pre-topological operators.

A Galois connection is the antitone version of a Galois adjunction:

ι(x) ≤B y if and only if x ≥A σ(y) (2)

In this case 〈ι, σ〉 is called a polarity3.
In a Galois connection, both ισ and σι are pre-topological closure operators.

Given a relational system, constructors which form Galois adjunctions and Galois
connections can be defined by means of straightforward logical definitions:

Definition 1. Let 〈U,U ′, R〉 be a relational system. Then:

– 〈e〉 : ℘(U ′) �−→ ℘(U); 〈e〉(Y ) = {a ∈ U : ∃b(b ∈ Y ∧ a ∈ R�(b))};
– [e] : ℘(U ′) �−→ ℘(U); [e](Y ) = {a ∈ U : ∀b(a ∈ R�(b) =⇒ b ∈ Y )};
– 〈i〉 : ℘(U) �−→ ℘(U ′); 〈i〉(X) = {b ∈ U ′ : ∃a(a ∈ X ∧ b ∈ R(a))};
– [i] : ℘(U) �−→ ℘(U ′); [i](X) = {b ∈ U ′ : ∀a(b ∈ R(a) =⇒ a ∈ X)};
– [[e]] : ℘(U ′) �−→ ℘(U); [[e]](Y ) = {a ∈ U : ∀b(b ∈ Y =⇒ a ∈ R�(b))};
– [[i]] : ℘(U) �−→ ℘(U ′); [[i]](X) = {b ∈ U ′ : ∀a(a ∈ X =⇒ b ∈ R(a))}.

R� is the inverse of R. Therefore b ∈ R(a) if and only if a ∈ R�(b), so that the
reader may interpret the above definitions according to her/his own intuition.
The decorations “e” and “i” means extensional and, respectively, intensional.
Formally, they just remember the direction, R or R�, of the relation, but in
many applications U ′ is a set of properties which may be fulfilled by the elements
of a set U of objects. For this reason we keep the above decorations.

Further, the symbols 〈e〉 and 〈i〉, or collectively 〈·〉, remind us that these are
possibility operators. For instance, if X = 〈e〉(Y ) and b ∈ Y then it is possible
that b is in relation R (more precisely R�) with the elements of X because there
is at least one b′ ∈ Y such that aRb′ for some a ∈ X. In turn, the symbol [e]
and [i], or collectively [·], denote necessity: for instance, if X = [e](Y ) then in
order to be in relation R with an element a ∈ X, it is necessary to be in Y
because at most all the elements of Y are in relation with the elements of X.
Notice, incidentally, that this is the “correct” relational reading of the clauses
for possibility and necessity in Kripke models for modal logic, while the usual

3 Sometimes this term denotes what we call a relational system.
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reading runs in the opposite direction. For instance, Y is necessary in a if all the
elements R-related to a belongs to Y .

Finally, [[i]] and [[e]] means sufficiency: for instance, if X = [[e]](Y ) and
a ∈ X, then it is sufficient to belong to Y to be in relation R� with a, because
at least all the members of Y are in relation with all the elements of X.

Moreover, it is worth noticing that the logical core of the constructors ♦-
shaped is the pair 〈∃,∧〉 (set-theoretically: they are built by means of non empty
intersection), while that of �-shaped constructors is 〈∀ =⇒〉 (set-theoretically
they are built by means of the inclusion). Finally, because of their very logical
core, these constructors fulfil the strategic properties we are looking for. In fact,
〈〈i〉, [e]〉 and 〈〈e〉, [i]〉 form Galois adjunctions, while 〈[[e]], [[i]]〉 forms a Galois
connection between 〈℘(U),⊆〉 and 〈℘(U ′),⊆〉. Hence, from Proposition 1 one
obtains that 〈i〉[e] and 〈e〉[i] are pre-topological interior operators, while [i]〈e〉,
[e]〈i〉, [[i]][[e]] and [[e]][[i]] are pre-topological closure operators, on ℘(U) and
℘(U ′), respectively. Thus we set:

Definition 2. Let 〈U,U ′, R〉 be a relational system. Then:

– int : ℘(U) �−→ ℘(U); int(X) = 〈e〉([i](X)) (logical structure: ∃∀).
– cl : ℘(U) �−→ ℘(U); cl(X) = [e](〈i〉(X)) (logical structure: ∀∃).
– A : ℘(U ′) �−→ ℘(M);A(Y ) = [i](〈e〉(Y )) (logical structure: ∀∃).
– C : ℘(U ′) �−→ ℘(M); C(Y ) = 〈i〉([e](Y )) (logical structure: ∃∀).
– IT S : ℘(U ′) �−→ ℘(U ′); IT S(Y ) = [[i]][[e]](Y ) (logical structure: ∀∀).
– est : ℘(U) �−→ ℘(U); est(X) = [[e]][[i]](X) (logical structure: ∀∀).

Obviously, the symbols int and cl mean “interior” and “closure”, respectively
(A and C are their counterparts on the “formal” - that is, pointless - side)4.
We have seen that this use is justified by the theory of adjointness relations.
IT S and est give the intensional and, respectively, extensional sides of formal
concepts in Formal Concept Analysis (see [17]). Moreover, int and cl fit the
usual topological definitions. In fact, we know that for any subset X of U , a
point a belongs to the interior of X if and only if there is a neighbourhood of a
included in X. If the members of U ′ are interpreted as formal neighbourhoods
(pointless neighbourhoods) we cannot verify directly if a neighbourhood b of a is
included in a set of points X. However, we can check: first whether b is a formal
neighbourhood of a, that is, whether b ∈ R(a) or, equivalently, a ∈ 〈e〉(b); second,
whether the extension of b, that is, R�(b) or, equivalently, 〈e〉(b), is included in
X. From the adjunction property (1), 〈e〉(b) ⊆ X if and only if {b} ⊆ [i] (X). The
conclusion is that a belongs to the formal interior of X if and only if a ∈ 〈e〉(b),
for b belonging to [i] (X). To sum up, the interior of X is given by:

{a : ∃b(a ∈ 〈e〉(b) & b ∈ [i](X))} = 〈e〉([i] (X)) = int(X) (3)

Similarly for closure. In fact for any subset X of U , a belongs to the closure
of X if and only if the extension of any neighborhood of a has non empty
4 The combination of quantifiers suggests an investigation of the relationships between

the formal properties of the above operators and those in the hexagon of opposition
which are obtained by similar combinations (see [2]).
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intersection with X. Thus a belongs to the closure of X if and only if for all
b ∈ 〈i〉(a), 〈e〉(b)∩X �= ∅. That happens if 〈i〉(a) is included in 〈i〉(X), but from
the adjunction property (1), 〈i〉(a) ⊆ 〈i〉(X) if and only if {a} ⊆ [e]〈i〉(X) if and
only if a ∈ [e]〈i〉(X). Finally, one can easily observe that

int(X) ⊆ X ⊆ cl(X), any X ⊆ U. (4)

Therefore, Galois adjunctions make it possible to define a pair of approximation
operators which are mathematically sound and with a fair intuitive meaning.
Symmetrically for A and C. Anyhow, we again underline that int and cl are not
topological, in general. If R(U) = U ′ and R�(U ′) = U , then int is co-normal
and cl is normal (in this case we shall say that the property system is normal5).
But generally int fails to be multiplicative because 〈e〉 is just granted to be
additive, and cl fails to be additive because [e] is just multiplicative.

In the next section we shall analyse the properties of SRSs, property sys-
tems and neighbourhood systems (both formal and concrete) which progressively
make a plain set into a topological space, in order to identify their connections.

3 Granulation and Approximations

Given a relational system 〈U,U ′R〉, X ⊆ U and Y ⊆ U ′, the relational definition
of the constructors and operators are:

〈e〉(Y ) = {u : u ∈ R�(Y )}; 〈i〉(X) = {u′ : u′ ∈ R(X)} (5)
[e](Y ) = {u : R(u) ⊆ Y }; [i](X) = {u′ : R�(u′) ⊆ X} (6)

A(Y ) = {u′ : R�(u′) ⊆ R�(Y )}; cl(X) = {u : R(u) ⊆ R(X)} (7)

C(Y ) =
⋃

{R(u) : R(u) ⊆ Y }; int(X) =
⋃

{R�(u′) : R�(u′) ⊆ X} (8)

From now on we usually will deal with [·], int and C. The results for the other
constructors and operators come by duality.

So, let us consider the classical definition of upper and lower approximation.
Given an indiscernibility space 〈U,E〉 with E an equivalence relation6:

(lE)(X) =
⋃

{E(Z) : E(Z) ⊆ X}, (uE)(X) =
⋃

{E(Z) : E(Z) ∩ X �= ∅} (9)

When we come to arbitrary binary relations R, the definitions turn into:

(lR)(X) =
⋃

{Z : R(Z) ⊆ X}, (uR)(X) =
⋃

{Z : R(Z) ∩ X �= ∅} (10)

which are formally different from the literal translation of 9:

(lR)(X) =
⋃

{R(Z) : R(Z) ⊆ X}, (uR)(X) =
⋃

{R(Z) : R(Z)∩X �= ∅} (11)

5 If R(U) = U ′ then R is said to be right-total, or surjective, or that R� is serial.
R�(U ′) = U means that R is left-total or serial.

6 From now on the interested reader is addressed to [12] and its bibliography.
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Indeed, (10) coincides with (11) only under certain conditions. Since u ∈ R�(Y )
if and only if R(u) ∩ Y �= ∅ and R-neighbouring is additive, one immediately
notices that in a SRS the constructor [e] coincides with the operator (lR) of
(10), while the operator C coincides with the operator (lR) of (11).

Therefore we come to a couple of questions with the same answer: (i) when
the definitions (10) and (11) coincide? (ii) when C and [e] coincide? The latter
question amounts also to the following row of questions: when A and 〈e〉, int
and [i], cl and 〈i〉 coincide, respectively? The answer is: when R is a preorder.

But when the above coincidences occur, a particular property emerges.
Indeed, we know that C is an interior operator, which, however, is not mul-
tiplicative. But [e] do is multiplicative (it is an upper adjoint). Similarly, the
additivity of the lower adjoint 〈e〉 meets the closure properties of A. The overall
result must be split in two parts. In what follows given two operators op1 and
op2 we set op1 = op2 if and only if for any argument x, op1(x) = op2(x). If
the operator op is defined by means of a relation R, we eventually write opR, if
needed.

Proposition 2. Let 〈U,R〉 be a SRS. The following are equivalent: (i) R is a
preorder, (ii) [e]R = CR, [i]R = intR, 〈e〉R = AR, clR = 〈i〉R.

Proposition 3. Let 〈U,R〉 be a SRS. If R is a preorder, then intR, [i]R, CR and
[e]R are topological interior operators; clR, 〈i〉R, AR and 〈e〉R are topological
closure operators.

The converse of Proposition 3 holds just partially:

Corollary 1. Let 〈U,R〉 be a SRS. If [·]R and 〈·〉R are topological interior,
respectively closure, operators, then R is a preorder.

The proof follows from Proposition 2. However, the converse of Corollary 1
does not hold for int, cl, A and C. This is an important point which means
that, for instance, there are relations R which are not preorders but such that
CR is a topological interior operator, nevertheless. Similarly for the topological
properties of the other operators7.

This means that not only LintR
(U) = {intR(X) : X ⊆ U} and LAR

(U ′) =
{AR(Y ) : Y ⊆ U ′}, LclR(U) = {clR(X) : X ⊆ U} and LCR

(U ′) = {CR(Y ) : Y ⊆
U ′} but also L〈e〉R

(U) = {〈e〉R(X) : X ⊆ U} and L[i]R(U ′) = {[i]R(Y ) : Y ⊆
U ′}, L[e]R(U) = {[e]R(X) : X ⊆ U} and L〈i〉R

(U ′) = {〈i〉R(Y ) : Y ⊆ U ′} are
distributive lattices of sets.

About this fact, we have proved that if 〈U,R〉 is such that, say, CR is a
topological interior operator, then there is a transformation of 〈U,R〉 into a
preorder 〈U,R∗〉 which amounts to a permutation of the rows R(x), for some
x ∈ U . Moreover, this transformation can be described by means of the operation
of residuation between binary relations. An open issue is determining R∗ by
means of Galois connections and unities (see [1]). Some hints come from the fact
that for u ∈ U , x ∈ est(u) if and only if u ∈ cl(x).
7 Proposition 3 amends point (iv) of Corollary 1 of [9] and point (ii) of Facts 3 of [10],

which state also the converse implication, erroneously.
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Another open issue is determining the properties of intR (in particular its pre-
topological or topological ones) from the features of a property system 〈U,U ′, R〉.
About this issue, we know that if 〈U,U ′, R〉 is a dichotomic system then clR
induces an equivalence relation, hence a topological interior operator of a 0-
dimensional topological space, that is, a space in which the elements are both
closed and open (or clopen) - see [12]. However, this is just a first step and a
more comprehensive understanding of the topic is required.

4 Concrete and Formal Neighbourhood Systems

Under the formal topology interpretation, in a relational system 〈U,U ′, R〉 the
members of U ′ are formal neighbourhoods. Thus, a first move towards a concrete
neighbourhood interpretation is replacing any formal neighbour u′ with the set
R�(u′) of points associated with it. One obtains what follows:

Proposition 4. Let 〈U,U ′, R〉 be a relational system, Z = {R�(u′) : u′ ∈ U ′}.
Then, for all A ⊆ U,B ⊆ U ′:
(1) int(A) =

⋃
{X ∈ Z : X ⊆ A}, (2) C(B) =

⋃
{Y ∈ W : Y ⊆ B},

(3) cl(A) =
⋂

{−X ∈ Z : X ∩ A = ∅}, (4) A(B) =
⋂

{−Y ∈ W : Y ∩ B = ∅}.

More in general, let us now consider an association between points from a set U
and subsets from ℘(U) (possibly the elements of Z)8. Thus, we work with the
following ingredients:

Definition 3. Let N = 〈U,℘(U), R〉 be a relational system, X ⊆ U and u ∈ U .
Let x ∈ N ∈ R(u). Then R(u) is called a concrete neighbourhood family of u;
N is called a concrete neighbourhood of u; x is called a concrete neighbour of
u; N (U) = {R(u) : u ∈ U} is called a concrete neighbourhood system; the pair
〈U,N (U)〉 is called a concrete neighbourhood space.

Given a concrete neighbourhood space, the following operators are definable:

G(X) = {u : X ∈ R(u)}, F (X) = −G(−X) = {u : −X /∈ R(u)}. (12)

G is called a core map and F a vicinity map (induced by N (U)).
The properties of these operators depends on the properties satisfied by the

neighbourhood system. Indeed, consider the following conditions on N (U), for
any x ∈ U , A,N,N ′ ⊆ U :
1. U ∈ R(x); 0. ∅ /∈ R(x); Id. if x ∈ G(A) then G(A) ∈ R(x);
N1. x ∈ N , for all N ∈ R(x);
N2. if N ∈ R(x) and N ⊆ N ′, then N ′ ∈ R(x);
N3. if N,N ′ ∈ R(x), then N ∩ N ′ ∈ R(x);
N4. there is an N �= ∅ such that R(x) =↑ N (the ⊆ order filter of N).

8 Notice that if U ′ �= U and one substitutes ℘(U ′) for ℘(U) then a more general picture
is obtained. However, the result of the more specific case can be translated into the
more general case by means of a map from U to U ′.
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Lemma 1. For any X,Y ⊆ U , x ∈ U the following correspondences hold:

Condition Equivalent properties of G Equivalent properties of F

1 G(U) = U F (∅) = ∅
0 G(∅) = ∅ F (U) = U

Id G(X) ⊆ G(G(X)) F (F (X)) ⊆ F (X)

N1 G(X) ⊆ X X ⊆ F (X)

N2 X ⊆ Y � G(X) ⊆ G(Y ) X ⊆ Y � F (X) ⊆ F (Y )

G(X ∩ Y ) ⊆ G(X) ∩ G(Y ) F (X ∪ Y ) ⊇ F (X) ∪ F (Y )

N3 G(X ∩ Y ) ⊇ G(X) ∩ G(Y ) F (X ∪ Y ) ⊆ F (X) ∪ F (Y )

But 〈U,℘(U), R〉 is a relational system, too so that we can define also the
(abstract) operators int and cl alongside the (concrete) operators G and F .
Therefore, a first question arises as to the conditions which make int and G
(cl and F ) coincide. We can immediately notice that if one substitutes int for
G and cl for F , it is possible to verify that in any property system int and cl
satisfy the equivalent properties of conditions Id, N1 and N2. Moreover, int
satisfies the equivalent property of 0 and cl the equivalent property of 1. If the
property system is normal, then int satisfies the equivalent property of 1 and cl
satisfies that of 0. Systems satisfying these conditions will be classified as N2Id

neighbourhood systems. Indeed, we have a precise result consistent with this
scrutiny9:

Proposition 5. Let 〈U,℘(U), R〉 be a relational system. Then, for all X ∈
℘(U), G(X) = int(X) if and only if N (U) is of type N2Id.

Notice that according to (8), int(X) = {a ∈ U : ∃X ′(X ′ ∈ R(a) ∧ R�({X ′}) ⊆
X)}. Since R�({X ′}) = G(X), Proposition 5 shows when the recursive equation

G(X) = {a : ∃X ′(X ′ ∈ R(a) ∧ G(X ′) ⊆ X)}

has a solution.
From the table above, we see that topological spaces are N2Id spaces which

fulfil N3 in addition.
If an operator op depends on a system S, we shall eventually write opS.
Let now P = 〈U,U ′, R〉 be a formal neighbourhood system and PR�

=
〈U,Z,∈〉, where Z is the concrete counterpart of U ′ as defined in Proposition 4.
Since 〈u, u′〉 ∈ R if and only if u ∈ R�(u′) the relation R coincides with ∈ if we
replace u′ with R�(u′). It follows that for any X ⊆ U , intP(X) = intP

R�

(X).

9 Details may be found in [12]. Pay attention that in that book R(x) is denoted as
Nx and property systems are called “basic neighbourhood pairs”, in the context of
pre-topological formal spaces. A simplified proof can be found in [9].



What’s in a Relation? Logical Structures of Modes of Granulation 55

Moreover, Z and ∈ induce a concrete neighbourhood system by putting for
any u ∈ U , N R�

u = {X ∈ Z : u ∈ X} = {R�(u′) : u′ ∈ R(u)}. The family
NR�(P) = {N R�

u : u ∈ U} will be called the normal neighbourhood system,
NNS, induced by P. Clearly Z =

⋃
(NR�(P)).

Since 〈U,N (U)〉 where N (U) = {∈ (u) : u ∈ U} is a concrete neighbour-
hood system, an obvious question arises as to the connection between intP (i.e.
intP

R�

) and the operator GNR� (P). The answer is: “no connections”, because
in a NNS only the properties 0, N1 and the following weaker form of Id:

if N ∈ Nx, then∃N ′ ∈ Nx such that for any y ∈ N ′, N ∈ Ny (τ)

are granted. Thus, NNSs are poorly structured and one has:

GNR� (P)(X) =

{
∅ if ¬∃u s. t. X ∈ N R�

u

X otherwise

To obtain more structure, another class of concrete neighbourhood systems has
to be defined out of P:

Definition 4. Let N ↑R�

g =
⋃

{↑ R�(m) : m ∈ R(g)}. The family N↑R�(P) =
{N ↑R�

g : g ∈ U} will be called principal neighbourhood system, PNS, induced
by P. Let us set P↑R�

= 〈U,
⋃

(N↑R�(P)),∈〉.

PNSs enjoy more properties: 0, N1, N2 and Id (indeed, N2 plus τ give Id). As
a consequence of this fact and Proposition 5, one obtains that for any X ⊆ U ,
intP(X) = intP

R�

(X) = GN↑R� (P)(X).
On the contrary, intP

↑R�

has a poor behaviour:

intP
↑R�

(X) =

{
X if ∃u′ s. t. X ⊇ R�(u′)
∅ otherwise

Other concrete neighbourhood systems defined on the basis of a relational sys-
tem can be found in [10]. Notice that associating an item with more then one
neighbourhood, is a way for describing the points of view of different knowledge
subjects or different points of view of the same knowledge subject10.

5 An Application: Covering-Based Rough Sets

The set Z of subsets of U defined in Proposition 4 is a covering of U , provided
R� is serial. If Z is induced by a relational system P, we denote it by C(P).
Conversely, one can transform a covering of a set U into a relational system:

10 This approach was pioneered in [5]. In [8] neighbourhood systems result from families
of relational systems and two approximation operators “according to n relations”
were introduced. Neighbourhood systems not fulfilling N1 were investigated in [6].
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Definition 5. Let C = {Ki}i∈I be a covering of a set U , with both U and C at
most countable. Let us set for all x ∈ U, 〈x,Ki〉 ∈ R iff x ∈ Ki. The resulting
relational system P(C) = 〈U,C, R〉 will be called the covering relational system,
CRS, induced by C.

Clearly, P(C) is a concrete neighbourhood system. Moreover, C =⋃
(NR�(P(C))) so that C = C(P(C)). In [3,7,15] the following lower approx-

imation operator is defined from a covering C of a set U : (lC)1(X) =
⋃

{Ki :
Ki ⊆ X} (in [3] it is denoted by CL, in [7] by L5 and in [15] by C1.

It is a natural way to define a lower approximation. What are its properties?
If we work on the covering relational system P(C) we easily obtain: for any X ⊆
U , (lC)1(X) = int(X). From this equation one immediately has that (lC)1 is
decreasing, monotone and idempotent. It is neither multiplicative, nor additive.
Therefore, it cannot have either a lower or an upper adjoint. However, it has a
dual upper approximation operator, which is (uC)1(X) =

⋂
{−Ki : Ki∩X = ∅}.

To my knowledge, this operator has not been taken into account in the literature
on rough sets, but in [10].

A different approximation operator is the following: (lC)0(X) =
⋃

{n(x) :
n(x) ⊆ X}, where n(x) =

⋂
{Ki : x ∈ Ki}. It has been introduced in [7] with

the symbol L. In order to understand its properties it must be noticed that for
any x ∈ U , n(x) = RC(x), where RC is a preorder defined as: RC(x) = {〈x, y〉 :
∀Ki ∈ C(x ∈ Ki =⇒ y ∈ Ki)}. Therefore, now we have to work on the relational
system P(RC) = 〈U,U,RC〉. Using the above machinery, it is not difficult to
show that (lC)0(X) = [e](X) = C(X). Therefore, (lC)0 is a topological interior
operator. Moreover it coincides with the operators CL of [3], L1 of [7] and C1

of [15]. Further, the dual operator of (lC0) is (uC)2(X) = {x : n(x) ∩ X �= ∅},
simply because (uC)2(X) = 〈e〉(X) = A(X). The operator (uC)2 has been
introduced as XH in [3], U1 in [7] and C2 in [15].

Since (lC)0 is multiplicative, it has a lower adjoint, which is (uC)0(X) =⋃
{n(x) : x ∈ X}. It has been introduced as U in [7]. So we see that U is not the

dual of L (which is U1), but its lower adjoint. It is U4 in [7] and IH in [3].

6 Granulation, Relations and Intuitionistic Formal Spaces

The concepts of granulation and approximation are strictly connected to the
topological notion of an adherence and a closure. Therefore, let X be e set and K
any increasing, monotone and idempotent (i.e. closure) operator on ℘(X). Then
we can introduce a sort of covering relation � between points x and subsets A,
by setting x � A if and only if x ∈ K(A), and extend this definition to subsets
of X: A � B if and only if all x ∈ A are such that x � B. We, therefore, arrive
at the following definition:

Definition 6. Let 〈U,U ′, R〉 be a relational system. Then for any b ∈ U ′ and
Y, Y ′ ⊆ U ′, the following relation is called a formal semi-cover or, shortly, a
semi-cover:

(basis) b � Y iff b ∈ A(Y ) �, (step) Y � Y ′ iff ∀y ∈ Y, y � Y ′.
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The relation � is called “formal semi-covering” because, in view of the sym-
metry of A and cl, � is the formal counterpart of the “concrete” concept of
“adherence”. Remember that the elements of U ′ now are to be thought of as for-
mal neighbourhoods. Since concrete neighbourhoods can be combined by means
of the set-theoretical intersection, we need a formal counterpart of this opera-
tion. So, let us assume that U ′ is equipped with a binary operation “·” which
is associative, commutative and with a unity 1. Otherwise stated, 〈U ′, ·, 1〉 is
a commutative monoid. Now we lift the operation · from U ′ to ℘(U ′) in the
following way: X · Y = {x · y : x ∈ X ∧ y ∈ Y }, for X,Y ⊆ U ′.

Since A is pre-topological, so is �. Let ⊥ be any subset of U ′. Then we call
〈U ′, ·, 1,�,⊥〉 a pre-topological formal system.

The difference between pre-topological formal systems and topological formal
systems may be described as follows. Let us put ΩA(U ′) = {X ⊆ U ′ : A(X) =
X}. We call the members of ΩA(U ′), A-saturated sets. Since the operation ·
does not preserve saturation, let us set X • Y = A(X · Y ). A pre-topological
formal system is topological if 〈ΩA(U ′), •,∨, U ′,A(⊥)〉, is a complete lattice
with complete distributivity and ordering ⊆. Since ∨ is ∪, • coincides with ∩,
thus.

In terms of the covering relation � the following properties are fundamental
to obtain topological formal systems:

(left)
b � Y

b · b′ � Y
; (right)

b � Y b � Y ′

b � Y · Y ′ .

In general, both principles fail to hold even if · is idempotent. The same happens
for the following important property:

(stability)
b � Y b � Y ′

b · b′ � Y · Y ′

Proposition 6. A pre-topological formal system is topological if (left) and
(right) hold.

Definition 7. A pre-topological formal system in which the operation · is idem-
potent is called a quasi-topological formal system11.

Quasi-topological formal systems are abstraction of concrete neighbourhood sys-
tems. Indeed, we can build quasi-topological formal systems in the following way:

Definition 8. Let 〈U,℘(U), R〉 be a relational system. Set ⊥= {X ∈ ℘(U) :
〈e〉(X) = ∅}. Then 〈℘(U),∩, U,�,⊥〉 is called a formal neighbourhood system.

Proposition 7. Any formal neighbourhood system is a quasi-topological formal
system.
11 Cf. [12], where a more complete notion of a pre-topological formal system is defined,

together with a classification of such systems.
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But from 〈U,℘(U), R〉 one obtains N (U) = {R(x)}x∈U which is a concrete neigh-
bourhood system. Indeed, it is another double-face system. Therefore, we say
that then above formal neighbourhood system and this concrete neighbourhood
system are homogeneous. Thus, the final question is obvious: is there any connec-
tion between the properties 1, 0, Id, N1, N2, N3 and N4, which are definable on
a concrete neighbourhood systems and the properties (left) and (right) definable
on its homogeneous formal neighbourhood system? The answer is just partial:

Proposition 8. Let 〈℘(U),∩, U,�,⊥〉 be a formal neighbourhood system
induced by a relational system 〈U,℘(U), R〉. If {R(x)}x∈U fulfils N3, then (right)
holds.

But the converse does not hold. On the contrary N2 and (left) are equivalent:

Proposition 9. Let 〈℘(U),∩, U,�,⊥〉 be a formal neighbourhood system
induced by a relational system 〈U,℘(U), R〉. Then, {R(x)}x∈U is a neighbourhood
system fulfilling N2 if and only if (left) holds.

The above results is what has been established in [12]. Further achievements
are not known to the author. In particular it is likely that there are no formal
properties representing N1 and Id. In a sense, it is hard to find the formal
counterpart of these two conditions because they are defined by means of the
membership relation between elements of U and subsets of U , which does not
have any role in the formal, that is, pointless, framework. On the contrary, N2,
N3 and N4 are defined by means of relations between subsets of U .

However, in a sense Id and N1 are embedded in �, via the closure properties
of A. In particular they lead to the following properties of �:

b ∈ Y

b � Y
(reflex); (i)

b � Y Y � Y ′

b � Y ′ , (ii)
b � b′ b′ � Y

b � Y
(trans) (13)

We know that we can substitute any closure operator K on ℘(U ′) for A in
Definition 6. Conversely, if � is a relation between a set X and its powerset
℘(X) such that transitivity and reflexivity hold, than the operator K defined by
K(Y ) = {x : x � Y } is a closure operator on ℘(X) (see [16]).

About quasi-topological formal systems (hence formal neighbourhood sys-
tems) we know what follows: (i) (stability) gives (right), hence (ii) (stability)
plus (left) implies that the system is topological.

Further investigations are required in order to better understand the con-
nections between the formal and the concrete frameworks and the precision and
accuracy of the descriptions enabled by the two approaches.

A case in point is the “dissonance” between topological formal systems and
topological concrete spaces. For instance, the following cases are notable: (i)
Topological formal neighbourhood systems in which N3 does not hold. Actu-
ally, it is curious but not really a surprise because N3 implies (right) but the
opposite does not hold. (ii) Topological formal neighbourhood systems in which
N1 does not hold. Also this case is not really a surprise, in view of the above dis-
cussion. (iii) Formal neighbourhood systems such that Lint(U) and LA(℘(U))
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are distributive lattices of sets, hence topological spaces, but in which (left)
fails, so that they are not topological formal systems. This case is really tricky,
actually, also because (left) and N2 are equivalent. Thus, are there connections
between the relations R such that R are not preorders but LintR

(U) are dis-
tributive lattices (see Sect. 3) and the properties of the formal neighbourhood
systems induced by the concrete neighbourhood systems NR�(P) or N↑R�(P)?
Or are the formal and concrete approaches non commensurable, in a sense?
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Abstract. It is known that different parameters used in Gaussian ker-
nel will provide us different granularities of information granulations.
Therefore, kernel based fuzzy rough set has the characteristic of multi-
granularity. From this point of view, a multi-granularity attribute reduc-
tion strategy is developed in this paper. Different from traditional reduc-
tion process that produces reduct by a fixed granularity, our strategy
aims to derive reduct which is suitable for fuzzy rough approximations
in terms of multi-granularity. To reduce the time consumption in reduc-
tion process and to avoid the consideration of all granularities may lead
to the difficulty in eliminating attributes, the fuzzy rough approxima-
tions derived from the coarsest and the finest granularities are used to
design constraint in multi-granularity attribute reduction. The experi-
mental results show that compared with the traditional approach, not
only the multi-granularity reduct may bring us almost the same perfor-
mances for characterizing uncertainties, but also the multi-granularity
reduction process is faster since only one reduct is required to be obtained
for a set of the fuzzy rough approximations.

Keywords: Approximation quality · Attribute reduction
Conditional entropy · Fuzzy rough set · Multi-granularity

1 Introduction

Attribute reduction [10] plays a crucial role in the development of the rough
set theory [1,4,17]. Different from the feature selections, most of the attribute
reductions have clear semantic explanations with respect to different require-
ments. Presently, to derive reducts from data, exhaustive searching [19,20] and
heuristic searching have been widely explored. Nevertheless, note that though
the exhaustive searching can find all reducts in a given data, it is time-consuming
and then the heuristic searching captures our attention. In the following, some
state of the art results will be addressed, which aim to further speed up the
reduction process in heuristic searching.
c© Springer Nature Switzerland AG 2018
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1. Chen et al. [2] proposed an algorithm for computing reducts through a parallel
way. Such approach can be interpreted as a “divide-and-conquer” strategy, it
follows that less time is required for deriving a reduct.

2. Qian et al. [14–16] proposed an accelerator in the iteration of the heuris-
tic searching. Such approach is based on the theoretical result: the rank of
attributes will be preserved if some samples have been eliminated [16] through
using the accelerator. Therefore, not only the process of computing reduct is
accelerated, but also less memory is required.

3. Xu et al. [18] developed a heuristic algorithm based on sample selection tech-
nique. Different from the traditional heuristic searching on the whole data,
the data is compressed by sample selection and then the efficiency of searching
can be significantly improved.

Though the above methods have been demonstrated to be useful in speeding
up the reduction process, they are only suitable for the definitions of attribute
reductions constructed by one and only one granularity, i.e., those attribute
reductions are defined by the rough sets based on one fixed information gran-
ulation. For example, neighborhood rough set attribute reduction is frequently
designed with a given radius, such radius only provides a fixed result of neighbor-
hood system or the so-called information granulation in Granular Computing.

Nevertheless, compared with single granularity, multi-granularity is more
worthy to be addressed in many real-world applications. For instance, to eval-
uate the data distribution in a spatio-temporal space, Ji et al. [9] proposed a
hierarchical entropy which is derived by different spatio-temporal granularities;
the pseudo amino acid composition and the position-specific scoring matrix [21]
provide us two different views of granularities for evaluating the performances of
predictions; multi-granulation rough sets have been widely studied in References
[3,8,11–13,22], the relationship among these different sizes of information gran-
ulations can be reflected by a multi-granularity technique. All of these results
tell us that multi-granularity is commonly seen and then the re-consideration of
the attribute reduction from multi-granularity is possible to provide us a new
direction.

Take the model of fuzzy rough set as an example, the multi-granularity can be
naturally formed if a set of the Gaussian kernel parameters is used [5,7]. A lesser
parameter will generate a finer information granulation while a greater parameter
may derive a coarser information granulation. The sizes of these different infor-
mation granulations offer us the multi-granularity based results of fuzzy rough
approximations. Therefore, to explore the multi-granularity attribute reduction,
the constraint should be re-designed by using a set of the Gaussian kernel param-
eters instead of only one single parameter.

A simple way to design a multi-granularity attribute reduction is to fuse
all the constraints in terms of all the considered parameters. However, it will
bring us two challenges: 1. the complexity of the fused constraint will lower the
speed of reduction process; 2. too many constraints will result in the difficulty
of eliminating attributes. Therefore, we will develop a quick reduction process
which is based on the computation of the coarsest and the finest granularities.
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2 Preliminary Knowledge

2.1 Fuzzy Rough Set

Without loss of generality, a decision system is represented as DS = <U,A, d>,
in which U is the set of samples, A is the set of condition attributes, and d is a
decision attribute. ∀x ∈ U , a(x) denotes the value of x over condition attribute
a ∈ A, and d(x) shows the label of x.

Given a decision system, an equivalence relation over d can be defined as
IND(d) = {(x, y) ∈ U × U : d(x) = d(y)}. Immediately, a partition is obtained
such that U/IND(d) = {X1,X2, · · · ,Xq}, Xk ∈ U/IND(d) can be called the k-th
decision class. Specially, the decision class which contains sample x is denoted
by [x]IND(d).

Moreover, ∀B ⊆ A, a Gaussian kernel based fuzzy relation [7] is denoted
by Rσ

B, where σ is the Gaussian kernel parameter. By Rσ
B , ∀x, y ∈ U , the

similarity between x and y is characterized as Rσ
B(x, y) = exp

(
− ||x−y||2B

2σ2

)
, in

which ||x − y||B is the Euclidean distance between x and y, i.e., ||x − y||B =√∑
a∈B (a(x) − a(y))2. Consequently, the fuzzy rough set of Xk ∈ U/IND(d) is

defined as follows.

Definition 1. Given a decision system DS = <U,A, d>, ∀B ⊆ A, the fuzzy
rough lower and upper approximations of Xk are denoted by Rσ

B(Xk) and
Rσ

B(Xk), respectively. ∀x ∈ U , the memberships that x belongs to them are

Rσ
B(Xk)(x) = min{1 − Rσ

B(x, y) : ∀y /∈ Xk}, (1)

Rσ
B(Xk)(x) = max{Rσ

B(x, y) : ∀y ∈ Xk}. (2)

2.2 Some Measurements

Approximation quality is a measurement in rough set theory, which reflects the
percentage of the samples that belong to one of the decision classes determi-
nately. The corresponding definition in fuzzy rough set [5] is presented as follows.

Definition 2. Given a decision system DS = <U,A, d>, ∀B ⊆ A, the approx-
imation quality with respect to B is defined as

γσ
B(d) =

|⋃q
k=1 Rσ

B(Xk)|
|U | =

∑
x∈U max{Rσ

B(Xk)(x) : ∀Xk ∈ U/IND(d)}
|U | , (3)

where |X| denotes the cardinality of the set X.



64 S. Liang et al.

Conditional entropy is another measurement which characterizes the discrim-
inating ability of B ⊆ A relative to d. Presently, many definitions of conditional
entropies have been proposed in terms of different requirements [6,7]. A typical
representation of conditional entropy is shown in Definition 3 [23].

Definition 3. Given a decision system DS = <U,A, d>, ∀B ⊆ A, the condi-
tional entropy with respect to B is defined as

ENTσ
B(d) = − 1

|U |
∑

x∈U
|[x]Rσ

B
∩ [x]IND(d)| log

|[x]Rσ
B

∩ [x]IND(d)|
|[x]Rσ

B
| , (4)

in which [x]Rσ
B

=
∑

y∈U Rσ
B(x, y)/y is the fuzzy information granule of x.

3 Attribute Reduction

3.1 Heuristic Algorithm

By the above measurements, we can present the corresponding definitions of
attribute reductions.

Definition 4. Given a decision system DS = <U,A, d>, ∀B ⊆ A,
(1) B is an approximation quality reduct (γ-reduct) if and only if γσ

B(d) =
γσ

A(d) and ∀C ⊂ B, γσ
C(d) �= γσ

B(d);
(2) B is a conditional entropy reduct (CE-reduct) if and only if ENTσ

B(d) =
ENTσ

A(d) and ∀C ⊂ B, ENTσ
C(d) �= ENTσ

B(d).

Approximation quality reduct and conditional entropy reduct are minimal
subsets of A, which preserve the approximation quality and conditional entropy,
respectively. These semantic explanations show the constraints of attribute
reductions.

To derive reducts by heuristic algorithm [10], different significance functions
are required for different measurements.

Definition 5. Given a decision system DS = <U,A, d>, if B ⊂ A, then ∀a ∈
A\B, its significances with respect to different measurements are

Sigσ
γ (a,B, d) = γσ

B∪{a}(d) − γσ
B(d); (5)

Sigσ
ENT(a,B, d) = ENTσ

B(d) − ENTσ
B∪{a}(d). (6)

Sigσ
γ (a,B, d) and Sigσ

ENT(a,B, d) reflect the variation of approximation qual-
ity and the variation of conditional entropy when attribute a is added into set B,
respectively. Therefore, the higher the value of the significance function is, the
more significant the condition attribute a will be in terms of the corresponding
measurement.
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Take approximation quality reduct as an example, it can be generated by
Algorithm 1.

Algorithm 1. Heuristic Algorithm to Compute γ-reduct

Inputs: DS =< U,A, d >, Gaussian kernel parameter σ, threshold ε ∈ [0, 1);
Outputs: An approximation quality reduct B.
1. B ← ∅;
2. Compute γσ

A(d);
3. Do

1) ∀a ∈ A\B, compute Sigσ
γ (a,B, d); // γσ

∅ (d) = 0
2) Select b such that Sigσ

γ (b,B, d) = max {Sigσ
γ (a,B, d) : ∀a ∈ A\B};

3) B ← B ∪ {b};
4) Compute γσ

B(d);
Until γσ

A(d) − γσ
B(d) ≤ ε · γσ

A(d);
4. Return B.

In Algorithm 1, the most significant attribute b is selected and added into
set B in each iteration until the constraint is satisfied. To avoid that the strict
constraint may cause that no attribute can be eliminated, the threshold ε is
employed.

In addition, in order to obtain the similarities between each two samples, we
need to previously compute the Euclidean distance between each two samples
that cost O(|AT | × |U |2). And the overall time complexity of Algorithm 1 is at
most O(|AT |2 × |U |2).

3.2 Multi-granularity Heuristic Algorithm

In real-world applications, it is not rare that several Gaussian kernel parameters
should be considered instead of only one [8]. Without loss of generality, T =
{σ1, σ2, · · · , σm} contains all the considered Gaussian kernel parameters, and
they have been sorted in ascending order. In this case, Algorithm 1 will be
executed m times to generate all the reducts.

It is time-consuming to generate m reducts. To solve the problem, a solution
is to reduce the times of computing reducts. Therefore, the following definition
of multi-granularity attribute reductions will be proposed.

Definition 6. Given a decision system DS = <U,A, d>, ∀B ⊆ A,
(1) B is a multi-granularity approximation quality reduct (MG-γ-reduct) if

and only if ∀σ ∈ T , γσ
B(d) = γσ

A(d) and ∀C ⊂ B, γσ
C(d) �= γσ

B(d);
(2) B is a multi-granularity conditional entropy reduct (MG-CE-reduct) if

and only if ∀σ ∈ T , ENTσ
B(d) = ENTσ

A(d) and ∀C ⊂ B, ENTσ
C(d) �= ENTσ

B(d).
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Take the multi-granularity approximation quality reduct as an example, it
can be generated by the multi-granularity heuristic algorithm presented below.

Algorithm 2. Heuristic Algorithm to Compute MG-γ-reduct

Inputs: DS =< U,A, d >, T = {σ1, σ2, · · · , σm}, threshold ε ∈ [0, 1);
Outputs: A multi-granularity approximation quality reduct B.
1. B ← ∅;
2. Compute γσ1

A (d) and γσm

A (d);
3. Do

1) ∀a ∈ A\B, Sigσ
γ (a,B, d) = 1

2 · (
Sigσ1

γ (a,B, d) + Sigσm
γ (a,B, d)

)
;

// γσ1
∅ (d) = 0, γσm

∅ (d) = 0
2) Select b such that Sigσ

γ (b,B, d) = max {Sigσ
γ (a,B, d) : ∀a ∈ A\B};

3) B ← B ∪ {b};
4) Compute γσ1

B (d) and γσm

B (d);
Until γσ1

A (d) − γσ1
B (d) ≤ ε · γσ1

A (d) and γσm

A (d) − γσm

B (d) ≤ ε · γσm

A (d);
4. Return B.

In Algorithm 2, the following two cases should be carefully noticed.

1. If all of the constraints in Definition 6 are considered, e.g., all of the approx-
imation qualities in terms of all parameters should be preserved, then it
will take too much time to generate the reduct. And the time complexity
of such strategy is O(m×|AT |2 ×|U |2). This is consistent with our intuition:
more constraints indicate more attributes are required, which will increase
the iteration times. From this point of view, only two constraints are used in
Algorithm 2, they are derived by the fuzzy rough approximations coming
from the coarsest and the finest granularities, i.e., the approximation quali-
ties derived by the maximal and the minimal parameters should be preserved.
Therefore, the time complexity of Algorithm 2 is at most O(|AT |2 × |U |2).

2. In Algorithm 2, the most significant attribute b is determined by the mean
value of the significances derived from σ1 and σm. Then, b is added into set
B in each iteration. Finally, when B satisfies γσ1

A (d) − γσ1
B (d) ≤ ε · γσ1

A (d)
and γσm

A (d) − γσm

B (d) ≤ ε · γσm

A (d), B is considered as the multi-granularity
approximation quality reduct.

4 Experiments

To verify the effectiveness of our proposed algorithm, 12 data sets from UCI
machine learning repository have been employed. Table 1 illustrates the details
of them.
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Table 1. Data set description

ID Data sets Samples Attributes Classes

1 Breast Cancer Wisconsin (Diagnostic) 569 30 2

2 Contraceptive Method 1473 9 3

3 Dermatology 366 34 6

4 Forest Type Mapping 523 27 4

5 Glass Identification 214 9 6

6 Libras Movement 360 90 15

7 Parkinsons 195 23 7

8 Pima Indians Diabetes 768 8 2

9 QSAR Biodegradation 1055 41 2

10 SPECTF Heart 267 44 2

11 Statlog (German Credit Data) 1000 24 5

12 Wine 178 13 3

The experiments are conducted on a personal computer with Intel i7-6700HP
CPU (2.60 GHz) and 8 GB memory. In addition, the adopted software is Matlab
R2014b.

4.1 Experimental Results and Discussions

Two groups of experiments have been designed. In these experiments, the
threshold ε is set by ε = 0.05, and Gaussian kernel parameters σ are set by
σ = 0.60, 0.65, 0.70, 0.75, 0.80. Then Algorithm 1 and Algorithm 2 can be exe-
cuted for generating reducts, respectively. Though Algorithms 1 and 2 have been
presented for computing approximation quality reducts in this paper, they can
also be used to compute conditional entropy reduct if the significance function
is changed.

4.1.1 Time Consumptions of Reducts
In this experiment, the four reducts (see Definitions 4 and 6) are all calculated
based on the whole samples. The time consumptions of these reducts are com-
pared. The experimental results are shown in Table 2, in which better perfor-
mances are highlighted in italic.

In Table 2, γ-reduct and CE-reduct are derived from Algorithm 1; MG-γ-
reduct and MG-CE-reduct are derived from Algorithm 2. Note that 5 kernel
parameters have been considered in this experiment, the time consumptions
of γ-reduct/CE-reduct refer to the sum of time consumptions of computing 5
different reducts.
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Table 2. Comparisons of time consumptions of reducts (seconds)

ID γ-reduct MG-γ-reduct CE-reduct MG-CE-reduct

1 39.2302 16.4294 58.5751 14.7688

2 29.2140 11.2767 23.3273 8.1779

3 16.5307 13.9467 16.1756 7.0508

4 28.5197 13.1976 25.2555 8.1192

5 0.4278 0.1716 0.3744 0.1118

6 99.5611 92.8676 137.4301 49.3479

7 2.0364 1.0152 1.9538 0.6087

8 5.2655 2.0594 5.3891 1.7293

9 239.2054 89.9737 294.0404 71.2781

10 5.3244 3.3556 11.3215 3.7685

11 50.7762 28.8793 71.2355 25.1949

12 0.3801 0.1941 0.5713 0.1868

With a careful observation of Table 2, it is not difficult to observe the
following.

1. The computation of MG-γ-reduct requires less time than that of γ-reduct.
For example, for the 9-th data set, 239.2054 s is required to generate γ-reduct
while only 89.9737 s is needed to generate MG-γ-reduct.

2. The computation of MG-CE-reduct requires less time than that of CE-reduct.
For example, for the 11-th data set, it takes 71.2355 s to generate CE-reduct,
while it takes only 25.1949 s to generate MG-CE-reduct.

4.1.2 Performances of Reducts
Although the reducts can be generated faster by Algorithm 2, the performances
of the obtained reducts are more important and should be deeply compared.

In this experiment, 10–fold cross validation is employed, which means the
following progress is repeated 10 times: 90% of the samples in data are considered
as the training samples for computing reducts, and the rest of the 10% samples
are regarded as the test samples for evaluations, i.e., use reducts to compute
approximation quality or conditional entropy over test samples, respectively.

Finally, the mean values of approximation quality and conditional entropy
are recorded, which are displayed in Tables 3 and 4, respectively.

In Table 3, with a careful observation, we can detect the following. Com-
pared with the approximation quality reduct, the multi-granularity approxima-
tion quality reduct may bring us similar values of approximation qualities. Take
the 6-th data set as an example, if σ = 0.70, then by Algorithm 1, the approx-
imation quality is 0.8139 over test data, whereas the approximation quality is
0.8181 for test data when Algorithm 2 is executed.
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Table 3. Comparisons of approximation qualities

ID Algorithms σ = 0.60 σ = 0.65 σ = 0.70 σ = 0.75 σ = 0.80

1 Algorithm 1 0.4770 0.4330 0.3977 0.3622 0.3304

Algorithm 2 0.4829 0.4376 0.3973 0.3617 0.3301

2 Algorithm 1 0.2007 0.1774 0.1576 0.1408 0.1264

Algorithm 2 0.2007 0.1774 0.1576 0.1408 0.1264

3 Algorithm 1 0.9100 0.8892 0.8672 0.8469 0.8233

Algorithm 2 0.9295 0.9063 0.8807 0.8531 0.8240

4 Algorithm 1 0.2897 0.2581 0.2306 0.2071 0.1869

Algorithm 2 0.2903 0.2581 0.2306 0.2072 0.1870

5 Algorithm 1 0.1517 0.1374 0.1225 0.1097 0.0987

Algorithm 2 0.1550 0.1374 0.1225 0.1097 0.0987

6 Algorithm 1 0.8734 0.8448 0.8139 0.7817 0.7489

Algorithm 2 0.8821 0.8510 0.8181 0.7842 0.7499

7 Algorithm 1 0.3187 0.2839 0.2554 0.2297 0.2077

Algorithm 2 0.3205 0.2856 0.2557 0.2299 0.2077

8 Algorithm 1 0.1388 0.1203 0.1052 0.0927 0.0822

Algorithm 2 0.1388 0.1203 0.1052 0.0927 0.0822

9 Algorithm 1 0.3510 0.3183 0.2910 0.2657 0.2432

Algorithm 2 0.3530 0.3202 0.2913 0.2658 0.2432

10 Algorithm 1 0.5893 0.5465 0.5079 0.4717 0.4393

Algorithm 2 0.5913 0.5475 0.5079 0.4722 0.4399

11 Algorithm 1 0.8663 0.8371 0.8021 0.7645 0.7286

Algorithm 2 0.8745 0.8402 0.8038 0.7663 0.7286

12 Algorithm 1 0.5903 0.5358 0.4856 0.4460 0.4100

Algorithm 2 0.5972 0.5425 0.4930 0.4486 0.4090

With a careful observation of Table 4, we can detect the following.
Compared with the conditional entropy reduct, the multi-granularity condi-

tional entropy reduct may bring us similar values of conditional entropy. Take
the 11-th data set as an example, if σ = 0.70, then by Algorithm 1, the condi-
tional entropy is 0.6986 over test data, whereas the conditional entropy is 0.6973
for test data when Algorithm 2 is executed.
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Table 4. Comparisons of conditional entropies

ID Algorithms σ = 0.60 σ = 0.65 σ = 0.70 σ = 0.75 σ = 0.80

1 Algorithm 1 3.9835 4.7708 5.5784 6.3019 7.0091

Algorithm 2 3.9835 4.7386 5.4837 6.2068 6.8996

2 Algorithm 1 10.9398 13.1812 15.1799 17.1674 19.1134

Algorithm 2 10.9398 12.9029 14.8963 16.8817 18.8287

3 Algorithm 1 0.1795 0.2684 0.3805 0.5176 0.6852

Algorithm 2 0.1762 0.2642 0.3774 0.5176 0.6852

4 Algorithm 1 7.7454 8.6768 9.4487 10.1994 10.8798

Algorithm 2 7.7687 8.6103 9.3760 10.0695 10.6958

5 Algorithm 1 4.4620 4.7047 4.9680 5.1669 5.3244

Algorithm 2 4.4643 4.7017 4.9106 5.0944 5.2561

6 Algorithm 1 0.1672 0.2358 0.3227 0.4223 0.5358

Algorithm 2 0.1672 0.2349 0.3177 0.4155 0.5278

7 Algorithm 1 1.8201 2.0586 2.2946 2.5323 2.7413

Algorithm 2 1.8201 2.0586 2.2886 2.5084 2.7168

8 Algorithm 1 14.0660 15.0780 15.9568 16.7202 17.5897

Algorithm 2 14.0660 15.0780 15.9568 16.7202 17.3845

9 Algorithm 1 10.5192 11.9243 13.3234 14.6432 15.8110

Algorithm 2 10.5296 11.9327 13.2680 14.5264 15.7034

10 Algorithm 1 1.5783 1.8406 2.0706 2.3034 2.5020

Algorithm 2 1.5787 1.8220 2.0516 2.2663 2.4661

11 Algorithm 1 0.3171 0.4841 0.6986 0.9742 1.3033

Algorithm 2 0.3203 0.4831 0.6973 0.9676 1.2962

12 Algorithm 1 1.6547 2.0331 2.4072 2.7064 2.9819

Algorithm 2 1.6547 1.9916 2.3131 2.6143 2.8927

5 Conclusions

In this paper, we proposed the concept of multi-granularity attribute reduction
in terms of fuzzy rough set. Such multi-granularity is realized by considering the
multi-granulation generated by a set of Gaussian kernel parameters instead of
only one parameter. Furthermore, to compute the multi-granularity reduct, tra-
ditional heuristic algorithm is modified by using the information provided by the
coarsest and the finest granularities. Compared with traditional approach, the
revised algorithm to compute multi-granularity reduct can significantly reduce
the time consumptions, while the performance of characterizing uncertainties is
preserved.
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The following topics deserve our further investigations.

1. It may not be optimal to only use the coarsest and the finest granularities
to determine the most significant attribute. Whether the multi-granularity
heuristic algorithm can be further improved will be carefully analyzed.

2. Multi-granularity reducts will be employed in the classification learning task,
and then the classification performance will be explored.

3. The quick reduct processes shown in Sect. 1 can also be introduced into the
computations of multi-granularity reducts.
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Abstract. This article introduces a novel approach to graph clustering
based on tolerance spaces. From a graph theory perspective, a community
is considered as a group or cluster of nodes with interconnections between
them. The proposed approach to community detection uses a tolerance
relation which provides a mechanism for clustering objects (nodes or
vertices of a graph) into groups termed as tolerance classes inspired
by near set theory. The proposed tolerance-based community detection
(TCD) algorithm uses the shortest path as the distance function for cre-
ating tolerance classes, where a tolerance class represents members of the
same community. For parameter selection, an objective function based
on two well-known quality functions, modularity and coverage, is used.
To demonstrate the robustness of the proposed method, sensitivity anal-
ysis of the parameters is given. The effectiveness of the TCD algorithm
has been demonstrated by testing it on four real-world data sets. Exper-
imental results include the comparison of the TCD algorithm with four
other methods. TCD was able to achieve the best results with two data
sets. The contribution of this work is a new tolerance-based method for
community detection in social networks.

Keywords: Community detection · Graph clustering
Near set theory · Tolerance spaces

1 Introduction

Research in discovering community structures has a deep and rich history and is
of tremendous importance in sociology, biology and computer science disciplines
where systems are often represented as graphs [6]. In most studies, a commu-
nity is found by analyzing connections (edges) of the network, but other studies
also include node attributes [17]. From a graph theory perspective, a commu-
nity is considered as a group or cluster of nodes with interconnections between
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them. A popular real-world application of community detection can be found in
social networks, where networked communities are fundamental structures for
understanding social behavior [20].

There is intense interest in community detection algorithms based on net-
work structures both in overlapping and non-overlapping communities, as evi-
denced by the most recent work found in [8]. In [25], overlapping communities
are detected by a local-expansion-based method using rough set theory. Fuzzy
granular theory was used to represent a social network where a vertex (node) can
be part of several communities with different memberships of their association
with each community [10].

In this paper, the focus is on discovering non-overlapping community struc-
tures in graphs with a novel approach based on tolerance spaces [24]. Also, only
the edges of the network are considered for detecting communities. The proposed
tolerance-based community detection (TCD) algorithm was inspired by near set
theory [16]. The tolerance relation [21] provides us with a mechanism for clus-
tering objects (nodes or vertices of a graph) into groups referred to as tolerance
classes. The motivation for using tolerance classes is that the tolerance relation
defines similarity rather than equivalence where nodes of the same community
are highly similar, while nodes between communities have lower similarity. In
case of graphs, community detection is considered as identifying subgraphs of a
graph which are more densely connected within the subgraph than to the rest
of the graph [13]. The TCD Algorithm uses the shortest path as the distance
function for forming the tolerance classes in an undirected graph.

The effectiveness of our method has been demonstrated by testing it on four
real-world data sets and benchmarked with four well-known algorithms. TCD
was able to achieve the best results on two data sets. Also, sensitivity analysis
has been performed to demonstrate the robustness of the proposed method.
The contribution of this work is a new tolerance-based method for community
detection in social networks.

This paper is organized as follows: We present research related to non-
overlapping community methods in Sect. 2 due to space limitations. The the-
oretical framework for this research is given in Sect. 3. In Sect. 4 we present our
method for combining graph theory and tolerance classes as well as defining the
objective function to assess the quality of clustering. Tolerance-based Commu-
nity Detection (TCD) algorithm is described in Sect. 5. In Sect. 6, the description
of the four data sets, sensitivity analysis and the results is presented. Finally, in
Sect. 7 suggestions for future work are given.

2 Related Works

In [7], the property of community structures was first explored in the context
of social and biological networks. A divisive algorithm that uses edge between-
ness as a metric to identify the boundaries of communities rather than on the
cores was proposed. Subsequently, the authors proposed a new set of algorithms
and an objective measure to choose the number of communities to partition



Tolerance Methods in Graph Clustering 75

the network in [13]. The Louvain Method is a heuristic method that is based
on modularity optimization [1]. In 2014, a generalized version of this method
was introduced that utilizes other quality functions for optimization instead of
the original modularity function [2]. The Infomap Method is based on an infor-
mation theoretic approach that reveals community structures in weighted and
directed networks [19]. The Label Propagation method (LPA) detects a commu-
nity of a node based on the labels of its neighbors. The algorithm first assigns
a unique label to each node. Subsequently, these labels are propagated based
on the majority labels of its neighbors. The latest version of the LPA algorithm
is the Semi Synchronous Constrained Label Propagation Algorithm (SSCLPA)
introduced by Chin and Ratnavelu in [3]. The Fluid Communities method uses
the idea of expansion and contraction of fluids interacting in an environment [14].

3 Preliminaries: Tolerance Classes and Graphs

The algorithms presented in this paper are based on the concepts of neighbor-
hoods and tolerance classes. Here, we recall their definitions.

Definition 1 Tolerance Relation [15,22,24]. Let O be a set of sample
objects, and let τ be a binary relation (called a tolerance relation) on O
(τ ⊆ O×O) that is reflexive (for all x ∈ O, xτx) and symmetric (for all x, y ∈ O,
if xτy, then yτx) but transitivity of τ is not required.

Definition 2 Tolerance Space [15,22,24]. Then a tolerance space is defined
as 〈O, τ〉.
In this work, the sample space O is comprised of nodes and edges of the graph.
Based on Zeeman [24], every pseudometric space determines tolerance relations
with respect to some positive real threshold ε.

Definition 3 Neighbourhood. A neighborhood is defined as:

N(x) = {y ∈ O : p(x, y) < ε}.

In other words, all objects satisfy the tolerance relation with a single object in a
neighborhood. Note that we do not use the τp,ε neighborhood of x which is just
an open ball in the pseudometric space 〈O, p〉 with the center x and radius ε [5].

Definition 4 Pre-class. A set A ⊆ O is a τ -preclass (or briefly preclass when
τ is understood) if and only if for any x, y ∈ A, (x, y) ∈ τ .

Definition 5 Tolerance Class. The family of all preclasses of a tolerance
space is naturally ordered by set inclusion and preclasses that are maximal with
respect to a set inclusion are called τ -classes or just classes, when τ is under-
stood. A maximal pre-class with respect to inclusion is called a tolerance class.

In other words, tolerance class is a pre-class where no additional element can be
added to the pre-class.
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Definition 6 Undirected Graph. A graph G is defined as a pair of (V,E),
in which V is a set of vertexes, and E ⊆ V × V is a set of edges and in case of
undirected graphs this pair is unordered or if edge (u, v) ∈ E then (v, u) ∈ E.

The degree of a vertex v is defined as the number of edges containing v. Two
vertexes are adjacent when they are both in a common edge.

Definition 7 Path. A path is a sequence of vertexes P = (v1, v2, ..., vn) ∈ V n

where ∀i, 1 < i < n vi is adjacent to vi+1.

The length of the path P is defined as the number of vertexes in the sequence
minus one, n − 1. The shortest path P between vertex s and z is the path with
minimum length which v1 = s and vn = z. This concept is utilized for defining
a distance function for finding tolerance classes.

4 Combining Graph Theory and Tolerance Classes

In this research, tolerance classes are derived from graph components such as
vertexes (nodes) or edges. Using Definition 5 for tolerance classes, we partition
the graph to the final clusters. For applying the concept of tolerance classes, we
will define a metric space in graphs as follows:

Consider a graph G(V,E), where V is the set of vertexes, E is the set of edges
and d : V 2 −→ R is defined as the number of edges in the shortest path (SP)
between two vertexes v, u ∈ V . The metric space (V, d) in graph G is defined as:

d(v, u) =
{∞ if no SP exists

|SP | else (1)

where |SP | denotes the number of edges in the shortest path between vertex v
and u.

Next consider A and B as two non empty subset of V , and ℘(V ) as the
power set of V , the closeness measure c : (℘(V ))2 −→ [0, 1] between A and B is
defined as:

c(A,B) =
|A ∩ B|

min(|A|, |B|) (2)

This parameter represents the percentage of members that the smaller set shares
with the larger set.

Parameter β used in merging tolerance classes and clusters is defined as:

Definition 8 Merge Minimum Closeness Parameter (β). The minimum
value of closeness measure (c) between a tolerance class (T) and a cluster (C)
so that they can be merged together or:

c(T,C) > β ⇒ C = T ∪ C
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Another parameter used for controlling the sizes of the clusters is α which is
defined as:

Definition 9 Minimum Cluster Size Parameter (α). This parameter is
defined as the minimum size of each cluster (C) in the set of all clusters (L), to
ensure that cluster size will not go below α or:

∀C ∈ L ⇒ |C| > α

The intuition behind this parameter is that if this condition is not met by a
cluster member, then this member will join a different community based on
majority voting of the cluster members. We now define the objective function
for assessing the quality of clusters. This new objective function (O) introduced
in Eq. 5 is a combination of a modularity function (Q) (given in Eq. 3) and a
regularization parameter (S) (given in Eq. 4).

4.1 Objective Function

One of the challenges of TCD algorithm is to find a proper way for parameter
selection. This problem is addressed by using an objective function based on two
widely used quality functions introduced here. The first one (Q) is based on the
well known modularity function introduced in [13]. Let L, w and v represent the
set of clusters, number of edges inside the ith cluster, and total amount of edges
where at least one end of the edge is inside the ith cluster respectively. Then:

Q(L) =
1

2|E|
|L|∑
i=1

(wi − v2
i

2.|E| ), Q : ℘(V ) −→ [
−1
2

, 1) (3)

The second quality function (C) is based on the notion of coverage which is
defined as the ratio of edges within clusters and the total number of edges or:

C(L) =
∑|L|

i=1 wi

|E| , Q : ℘(V ) −→ [0, 1] (4)

Finally, the objective function (O) is defined as follows:

O(L) = η0.Q + (1 − η0).C, O : ℘(V ) −→ [
−η0
2

, 1] (5)

with constant η0 which is used to weight Q and C. In our case we set η0 = 0.5
for balancing the weights. This objective function is used later in Sect. 5.6 for
parameter selection.

5 Tolerance-Based Community Detection (TCD)
Algorithm

In this section, we describe the proposed novel method for community detection
based on tolerance classes given in Algorithm 4 which has three main functions.
We begin the presentation by giving a detailed walk-through of each of these
functions which form the basis of the TCD algorithm.



78 V. Kardan and S. Ramanna

5.1 Get Tolerance Class Function

The pseudo code for the first function is given in Algorithm1. This function
has three inputs: G the graph, v the seed vertex for forming the tolerance class,
and ε the maximum distance parameter (or distance threshold), and three vari-
ables: root representing the vertex which the Breadth-First Search (BFS) will
be applied to, T the tolerance class, and set N containing the vertexes reached
during the BFS.

In lines 2 and 3, root and T variables are initialized. Starting in line 4, the
neighborhood (see Definition 3) of the root is found by doing a BFS on the
root, and returning the set of vertexes in the range of distance threshold ε. It
is important to note that the depth of BFS performed is not higher than ε.
Therefore, all the vertexes are not visited during the BFS. Then the root node
will be marked so that it will not get selected later as the root for subsequent
Breadth-First Searches.

In lines 7 to 10, in the first iteration, T will be set to N since the variable T
is empty. However, in subsequent iterations, T will be set to the intersection of
T and N . In other words, after the first iteration, the vertexes which are not in
the intersection will be removed from the set T. When all the remaining vertexes
in T are selected as root, the loop will terminate resulting in the formation of a
tolerance class.

Algorithm 1. Get Tolerance Class Function
1: procedure getToleranceClass(G, v, ε )
2: root ← v
3: T ← ∅
4: while root �= NULL do
5: N ← BFS(G, root, ε)
6: root.selected ← true
7: if T �= ∅ then
8: T ← T ∩ N
9: else

10: T ← N
11: root ← NULL
12: for each node u in T do
13: if u.selected = false then
14: root ← u
15: break

return T

5.2 Get Close Clusters Function

The pseudo code for the second function is given in Algorithm 2. This function
has three inputs: L the set of the current clusters, T the tolerance class for which
we are seeking to find the close clusters, and β the merge minimum closeness
parameter. The output H represents the set of close clusters. In the for loop, the
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closeness measure of all current existing clusters in L with the tolerance class
T will be calculated based on the Eq. 2. If the closeness measure satisfies the
minimum threshold β, then the cluster will be added to the output H.

Algorithm 2. Get Close Clusters Function
1: procedure getCloseClusters(L, T, β )
2: H ← ∅
3: for each cluster C ∈ L do
4: m ← calcCloseness(T, C)
5: if m > β then
6: H.add(C)
7:

return H

5.3 Find Nearest Cluster Function

The pseudo code for the third function is given in Algorithm3. This function
has four inputs: G the graph, L the set of detected clusters, C the intended
cluster where the number of members in the cluster is less than parameter α,
and ε the maximum distance parameter. The goal of this function is to find the
nearest cluster to C as a candidate for merging in later steps. Furthermore, it
is based on majority voting of all vertexes with respect to their neighborhoods.
The variable label is the label of the nearest cluster. Also, array counter keeps
track of the frequency of members of each cluster in the neighborhood of C.

Algorithm 3. Find Nearest Cluster Function
1: procedure findNearestCluster(G, L, C, ε )
2: label ← NULL
3: array counter[L.size()]
4: for each a in counter do
5: a ← 0
6: for each node v in C do
7: N ← BFS(G, v, ε)
8: for each node u in N do
9: lb ← u.clusterLabel
10: if lb �= C.label then
11: counter[lb] ← counter[lb] + 1
12: if counter[lb] > counter[label] then
13: label ← lb
14:

return L.getClusterByLabel(label)

In lines 4 and 5 all the frequencies are set to zero. Next, in lines 6 to 13,
for every member of cluster C, first we find the vertexes in the neighborhood
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of that member by calling BFS function with the maximum depth of ε. Then
for every vertex in the neighborhood N which is not a member of cluster C,
based on the cluster membership label, the corresponding frequency in counter
will be incremented. Next, if the new frequency is larger than the current cluster
label with the largest frequency, the variable label will be updated to the new
cluster’s label. Finally, the corresponding cluster of label will be returned by this
function.

5.4 TCD Function

We now discuss the main function TCD presented in Algorithm 4. This function
has 4 inputs: G the graph, ε the maximum distance parameter, β the merge
minimum closeness parameter and α the minimum cluster size. Also, variable L
will contain the set of all the clusters when the algorithm is finished.

In line 2, we first sort the vertexes of the graph based on the degree of a
vertex. By this step, we ensure that vertexes with a lower degree are accessed
first to form the tolerance classes. The intuition here is that these vertexes have
a lower chance of connecting with two different clusters. In other words, these
vertexes are more likely to be inside a cluster rather than on the border.

Starting in line 4, for each vertex v in G, which is not yet clustered, we first
find the corresponding tolerance class by calling the getToleranceClass function
discussed in Sect. 5.1. Therefore, in line 5, variable T will contain the tolerance
class of v.

In line 6, we have to find the set of clusters that can be merged with T. This
is done by calling getCloseClusters function presented previously in Sect. 5.2.
Then in lines 7 to 9, all of these clusters and T will be merged together to form
a new cluster. Finally, in line 10, the new cluster will be added to the set L.

In the final stage of this algorithm starting from line 11, clusters with size
less than α will be merged into the nearest cluster, which is found by calling
findNearestCluster function discussed in Sect. 5.3.

5.5 Time Complexity

For the graph G(V, E) and Algorithm4, the sorting will take O(|V |.log(|V |))
where |V | represents the number of vertexes. In case of the getToleranceClass
function given in Algorithm1, the number of iterations in the while loop will not
exceed the number of vertexes in the output of first Breadth-First Search (BFS).
This number is not higher than bε where b represents the branching factor of
the graph and ε is the maximum depth of BFS. Also, time complexity of a BFS
with limited depth ε, is O(bε). Therefore, the overall time complexity for this
function will be O(b2ε). For the getCloseClusters function given in Algorithm2,
since the number of clusters can not go beyond the number of vertexes the time
complexity will be O(|V |). Finally, for the findNearestCluster function given in
Algorithm 3, since the intended cluster size is less than parameter α, the time
complexity will be O(α.bε). But considering that α is a small number (in this
paper it is less than 14), time complexity can be assumed as O(bε). The overall
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Algorithm 4. Tolerance Community Detection
1: procedure TCD(G, ε, β, α )
2: sort(G)
3: L ← ∅
4: for each node v ∈ V do
5: T ← getToleranceClass(G, v, ε)
6: H ← getCloseClusters(L, T, β)
7: for each cluster C ∈ H do
8: T ← T ∪ C
9: L.remove(C)

10: L.add(T )

11: for each cluster C ∈ L do
12: if C.size() < α then
13: K ← findNearestCluster(G, L, C, ε)
14: K ← K ∪ C
15: L.remove(C)
16:

return L

time complexity of the function given in Algorithm4 is given in Eq. 6 where |C|
represents the number identified clusters:

O(|V |.log(|V |)) + |V |.(O(b2ε) + O(|V |)) + |C|.(O(bε)) = O(|V |2 + |V |.b2ε) (6)

5.6 Parameter Selection

As mentioned in the earlier sections, for parameter selection a new objective
function was introduced in Eq. 5. The value of this function will be calculated for
different instances of each parameter. In other words, all possible combinations
will be examined. In our experiments, the values of maximum distance ε vary
between 2 to 5. The range of merge minimum closeness parameter β is [0.25, 0.95]
and we increment this parameter by 0.05 in each iteration. In case of minimum
cluster size α, the range is from 3 to 14. All possible combinations of these
parameters are used. Then, the set of parameters with the highest value of the
objective function is selected. In Sect. 6.1 the method’s output sensitivity for
parameters ε, α and β are discussed.

6 Results and Analysis

In this paper, we have compared the quality of our method with the latest version
of Louvain [2], Infomap [19], Asynchronous Fluid Communities (AFC) [14] and
Semi-Synchronous Label Propagation Algorithm (SSLPA) [4]. For comparison,
four real data sets are used. The descriptions of these data sets are presented in
Table 1.

For comparing the results obtained by different algorithms,two entropy-based
measures are used; Normalized Mutual Information (NMI) which is a well known



82 V. Kardan and S. Ramanna

Table 1. Summary of the real-world networks considered in this study.

Networks Nodes Edges Clusters

Zachary [23] 34 78 2

Dolphins [12] 62 159 2

Pol-books [9] 105 441 3

Football [7] 115 613 12

measure and V-measure which is based on two concepts: completeness and homo-
geneity. Readers can refer to [18] for more information on these measures.

6.1 Parameter Sensitivity Analysis

For showing the robustness of our method, a generated graph with 2000 vertexes,
15045 edges and 99 clusters is used. This graph is generated by the benchmark
generator described in [11]. The input parameters used for this generator were:
N = 2000, k = 15, kmax = 50, γ = −2, β = −1, smin = 5, smax = 50, and
μ = 0.1. We have used the parameters with the best objective function score
as the reference. These parameters are ε = 2, β = 0.9, and α = 7. In other
words, for each parameter, all the other parameters will be fixed with the values
selected based on the objective function.

In Fig. 1 from left to right, the scores of NMI measure for different values of
minimum cluster size (α), merge minimum closeness (β), and maximum distance
parameter (ε) are given. It is observed that in all cases the fluctuation of NMI
measure is insignificant and it is around 0.9.

Fig. 1. NMI scores for different values of minimum cluster size (α), merge minimum
closeness (β) and maximum distance (ε) parameters, based on the clusters obtained
from the generated graph.

6.2 Complete Results

We now present the complete set of results for all the four data sets starting
from Tables 2, 3, 4 and 5. In all of the experiments, parameters ε, β and α were
selected by utilizing the parameter selection method discussed in Sect. 5.6.
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Since AFC and Louvain methods generate different results for each run, we
have used average and standard deviation over 100 runs to show the results.
Also, for the AFC method, the number of clusters should be set as the input
parameter. In our experiments, this parameter is set to the actual number of
clusters for each data set.

In Table 2, the values for different quality measures with Zachary data set are
presented. In Fig. 2, a visual comparison of the two main measures of NMI and
V-Measure is shown. Also, Fig. 3 shows the clusters obtained by our method.
This experiment shows that TCD obtains the second best result after AFC. It
is worth noting that the AFC method will generate different results on different
runs and number of clusters has to be set as the input parameter in advance.
The parameters used in TCD are: ε = 2, β = 0.5 and α = 3.

Table 2. Completeness (c), Homogeneity (h), V-measure, and NMI scores for different
algorithms based on the clusters obtained on Zachary network.

Method Measure No. Clusters

c h V NMI

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

TCD 0.58 0.00 0.58 0.00 0.58 0.00 0.58 0.00 2.00 0.00

AFC 0.69 0.21 0.69 0.22 0.69 0.22 0.69 0.22 2.00 0.00

SSLPA 0.22 0.00 0.17 0.00 0.19 0.00 0.19 0.00 3.00 0.00

Louvain 0.41 0.04 0.77 0.07 0.54 0.05 0.56 0.05 4.00 0.00

Infomap 0.48 0.00 0.69 0.00 0.57 0.00 0.58 0.00 3.00 0.00

Fig. 2. Comparing V-measure, and NMI
scores for Zachary network.

Fig. 3. TCD on Zachary network, ground-
truth clusters are shown by different shapes

In Table 3, the values for different quality measures with Dolphins data set
are presented. Also, in Fig. 4, NMI and V-Measure is illustrated visually, while
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Fig. 5 shows the clusters obtained by our method. Here, our method got the best
results by a large margin in comparison to the 4 other methods. It is interesting
to note that the proposed TCD method gets the best scores in three out of four
measures. Also, the homogeneity measure values with TCD is close to the best
score acquired by Louvain method. The input parameters values for TCD are:
ε = 5, β = 0.25 and α = 3.

Table 3. Completeness (c), Homogeneity (h), V-measure, and NMI scores for different
algorithms based on the clusters obtained in Dolphins network.

Method Measure No. Clusters

c h V NMI

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

TCD 0.80 0.00 0.83 0.00 0.81 0.00 0.81 0.00 2.00 0.00

AFC 0.61 0.21 0.64 0.21 0.62 0.21 0.62 0.21 2.00 0.00

SSLPA 0.32 0.00 0.91 0.00 0.48 0.00 0.54 0.00 7.00 0.00

Louvain 0.37 0.03 0.89 0.05 0.52 0.03 0.57 0.03 5.03 0.26

Infomap 0.48 0.00 0.69 0.00 0.57 0.00 0.58 0.00 6.00 0.00

Fig. 4. Comparing V-measure, and NMI
scores for Dolphins network.

Fig. 5. TCD on Dolphins network,
ground-truth clusters are shown by dif-
ferent shapes

In Table 4, the values for different quality measures with College Football
data set are presented. The input parameters values for TCD are: ε = 2, β = 0.7
and α = 7.

In Table 5, the values for different quality measures with Pol-books data set
are presented. For this data set the proposed TCD method shows the best result.
Also we have to note that the proposed TCD method gets the best scores in three
out of four measures. The input parameters values for TCD are: ε = 4, β = 0.45
and α = 3.
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Table 4. Completeness (c), Homogeneity (h), V-measure, and NMI scores for different
algorithms based on the clusters obtained in Football network.

Method Measure No. Clusters

c h V NMI

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

TCD 0.85 0.00 0.69 0.00 0.76 0.00 0.77 0.00 8.00 0.00

AFC 0.89 0.02 0.88 0.03 0.89 0.03 0.89 0.03 12.00 0.00

SSLPA 0.94 0.00 0.79 0.00 0.86 0.00 0.86 0.00 9.00 0.00

Louvain 0.92 0.00 0.84 0.03 0.88 0.02 0.88 0.02 9.69 0.48

Infomap 0.93 0.00 0.92 0.00 0.92 0.00 0.92 0.00 12.00 0.00

Table 5. Completeness (c), homogeneity (h), V-measure, and NMI scores for different
algorithms based on the clusters obtained in Pol-books network.

Method Measure No. Clusters

c h V NMI

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

TCD 0.73 0.00 0.51 0.00 0.60 0.00 0.61 0.00 2.00 0.00

AFC 0.47 0.07 0.50 0.07 0.48 0.07 0.48 0.07 3.00 0.00

SSLPA 0.34 0.00 0.62 0.00 0.44 0.00 0.46 0.00 8.00 0.00

Louvain 0.48 0.03 0.63 0.02 0.54 0.02 0.55 0.02 4.71 0.45

Infomap 0.48 0.00 0.62 0.00 0.54 0.00 0.54 0.00 5.00 0.00

7 Conclusion

In this paper, we have presented a novel approach for community detection in
social networks based on the concept of tolerance classes adapted from tolerances
spaces and near set theory. We have proposed a tolerance-based community
detection (TCD) algorithm that was tested against four well-known methods.
For parameter selection, an objective function based on the popular modularity
and coverage function has been used. The effectiveness of our method was tested
on four real-world data sets. A detailed analysis of experiments and results is
given using the standard measures of completeness, homogeneity, V-measure,
and NMI. In addition, to demonstrate the robustness of the proposed method,
sensitivity analysis of its parameters is presented. For the future work, we pro-
pose to extend the TCD algorithm for detecting overlapping communities and
experimenting with large networks. Another potential extension is for directed
graphs. Also we can explore other distance functions for forming the tolerance
classes.
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Abstract. In the authors’ previous research the possible usage of the
correlation clustering in rough set theory was investigated. Correlation
clustering relies on a tolerance relation. Its result is a partition. From the
similarity point of view singleton clusters have no information. A system
of base sets can be generated from the partition, and if the singleton
clusters are left out, then it is a partial approximation space. This way
the approximation space focuses on the similarity (the tolerance relation)
itself and it is different from the covering type approximation space rely-
ing on the tolerance relation. In this paper the authors examine how the
partiality can be decreased by inserting the members of some singletons
into an arbitrary base set and how this annotation affects the approxi-
mations. The authors provide software that can execute this process and
also helps to select the destination base set and it can also handle missing
data with the help of the annotation.

Keywords: Rough set theory · Correlation clustering
Set approximation

1 Introduction

In our previous study we examined whether the clusters, generated by correlation
clustering, can be understood as a system of base sets. Correlation clustering is a
clustering method in data mining which creates a partition. The groups, defined
by this partition, contain the similar objects. In our previous paper (presented at
IJCRS 2017) we showed that it is worth to generate the system of base sets from
the partition. This way the base sets contain objects that are typically similar to
each other and they are pairwise disjoint. There can be some clusters which have
only one member. These singletons represent very little information regarding
the similarity. This is they reason why they are not considered as base sets.
This way we gained a partial approximation space. In practice there is always
an expert who uses the systems. This user may have a background knowledge.
We would like to offer a possibility to the user to implement this knowledge into
the system by inserting a member of a singleton into a base set. We would like
to show some situation where this annotation could be useful.
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The structure of the paper is the following: A theoretical background about
the classical rough set theory comes first. In Sect. 3 we present our previous
work. In Sect. 4 we define correlation clustering mathematically, shortly present
the contraction method which finds a quasi-optimal partition, and how the rep-
resentative member of a cluster can be chosen. In Sect. 5 the annotation process
is described. In Sect. 6 our software is shown with a possible output. Finally we
conclude the results.

2 Theoretical Background

From the theoretical point of view a Pawlakian approximation space (see in
[10–12]) can be characterized by an ordered pair 〈U,R〉 where U is a nonempty
set of objects and R is an equivalence relation on U . In order to approximate an
arbitrary subset S of U the followings have to be introduced:

– the set of base sets: B = {B | B ⊆ U, and x, y ∈ B if xRy}, the partition of
U generated by the equivalence relation R;

– the set of definable sets: DB is an extension of B, and it is given by the
following inductive definition:
1. B ⊆ DB;
2. ∅ ∈ DB;
3. if D1,D2 ∈ DB, then D1 ∪ D2 ∈ DB.

– the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.
1. Dom(l) = Dom(u) = 2U

2. l(S) =
⋃{B | B ∈ B and B ⊆ S};

3. u(S) =
⋃{B | B ∈ B and B ∩ S 	= ∅}.

3 Similarity Based Rough Sets

When we would like to define the base sets, we use the background knowledge
embedded in an information system. The base sets represent background knowl-
edge (or its limit). In a Pawlakian system we can say that two objects are indis-
cernible if all of their known attribute values are identical. The indiscernibility
relation defines an equivalence relation. In some cases we have only a similar-
ity (tolerance) relation. If we change the negativity of indiscernible relations to
positivity of similarity (based on background knowledge), then we may rely on
a tolerance relation. Some covering systems are based on a tolerance relation. It
emphasizes the similarity to a given object and not the similarity of objects ‘in
general’. Using correlation clustering, we obtain a (quasi optimal) partition of
the universe (see in [2–4]). The clusters contain such elements which are typically
similar to each other and not just to a distinguished member. In our previous
research we investigated whether the partition can be understood as a system of
base sets (see in [9]). By our experiments, it is worth to generate a partition with
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correlation clustering. The base sets, generated from the partition, have several
good properties:

– the similarity of objects relying on their properties (and not the similarity to
a distinguished object) plays a crucial role in the definition of base sets;

– the system of base sets consists of disjoint sets, so the lower and upper approx-
imation are closed in the following sense: Let S be a set and x ∈ U . If x ∈ l(S),
then we can say, that every y ∈ U object which are in the same cluster as x
is in l(S). If x ∈ u(S), then we can say, that every y ∈ U object which are in
the same cluster as x is in u(S).

– only the necessary number of base sets appears (in applications we have to
use an acceptable number of base sets);

– the size of base sets is not too small, or too big.

4 Correlation Clustering

Cluster analysis is a well-known method in data mining. The goal is to group
the objects so that the objects in the same group are more similar to each other
than to those which are in other groups. In many cases the similarity is based on
the attribute values of the objects. Although, there are some cases when these
values are not numbers, but we can still say something about their similarity
or dissimilarity. Let’s take the humans for example. We cannot describe some-
one’s looks by a number, but we still make statements whether two persons are
similar or dissimilar. These opinions are dependent on the person who makes
the statements. Someone can say that two random persons are similar while
others treat them as dissimilar. If we want to formulate the similarity and dis-
similarity by using mathematics, we need a tolerance relation (i.e. a reflexive
and symmetric relation). If this relation holds for two objects, we can say that
they are similar. If this relation does not hold, then they are dissimilar. This
relation is reflexive because every object is similar to itself. It is also symmetric
because if some object is similar to another one, then the second object is also
similar to the first object. However, the transitivity does not hold necessarily.
If we take a human and a mouse, then due to their inner structure they are
similar. This is the reason why mice are used in drug experiments. A human and
a Paris doll are also similar due to their shape. This is why these dolls are used
in show-windows. Although a mouse and a doll are dissimilar (except that both
are similar to the same object). Correlation clustering is a clustering technique
based on a tolerance relation (see in [6,7,14]).

The task is to find an R ⊆ V × V equivalence relation which is closest to
the tolerance relation. A (partial) tolerance relation R (see in [8,13]) can be
represented by a matrix M . Let matrix M = (mij) be the matrix of the partial
relation R of similarity: mij = 1 if objects i and j are similar, mij = −1 if
objects i and j are dissimilar, and mij = 0 otherwise.

A relation is called partial if there exist two elements (i, j) such that mij = 0.
It means that if we have an arbitrary relation R ⊆ V ×V we have two sets of pairs.
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Let Rtrue be the set of those pairs of elements for which the R holds and Rfalse

be the one for which R does not hold. If R is partial, then Rtrue∪Rfalse ⊆ V ×V .
If R is total, then Rtrue ∪ Rfalse = V × V .

A partition of a set S is a function p : S → N. The object classes, defined
by the partition, are called clusters. Objects x, y ∈ S are in the same cluster at
partitioning p, if p(x) = p(y). We call the following two cases conflicts:

– Two dissimilar objects end up in the same cluster
– Two similar objects end up in different clusters

The cost function is the number of these conflicts. The formal definition can be
seen in [9]. For a relation the partition with the minimal cost function value is
called optimal. Solving a correlation clustering problem is equivalent to mini-
mizing its cost function, for the fixed relation. If the cost function value is 0, the
partition is called perfect. Given the R and R we call the value f the distance of
the two relations. The partition given this way, generates an equivalence relation.
This relation can be considered as the closest to the tolerance relation.

It is easy to check that we cannot necessarily find a perfect partition for an
arbitrary similarity relation. In Fig. 1 we can see a very simple example for the
problem. Take the relation on the left. The dashed line denotes dissimilarity and
the normal line similarity. On the right, Fig. 1 shows all the possible partition
of these objects, where rectangles indicate the clusters. The thick lines denote
the pairs which are counted in the cost function. In the upper row the value of
the cost function is 1 (in each case), while in the two other cases it is 2 and 3,
respectively.

Fig. 1. Minimal frustrated similarity graph and its partitions

The number of partitions can be given by the Bell number (see in [1]), which
grows exponentially. So the optimal partition cannot be determined in reasonable
time. In a practical case a quasi optimal partition can be sufficient so a search
algorithm can be used. We used an algorithm described in the next subsection.
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4.1 Correlation Clustering by Contraction

We can define a force between objects based on a tolerance relation R as follows:

fR(i, S) =
∑

j∈S

mij , fR(R,S) =
∑

i∈R

∑

j∈S

mij . (1)

Based on the force fR we can define two transformations of a partition:

– if fR(R,S) > 0, we can replace clusters R and S with cluster R ∪ S by
contracting them into one cluster,

– if fR(i, R) = maxS fR(i, S) and i /∈ R, then move object i from its cluster
into cluster R.

We leave it to the reader to check that these two steps decrease the number
of conflicts, so with them we can construct a greedy algorithm. This algorithm
stops when we cannot apply either step to get to a better state.

The contraction method is just repeating these steps in the right order. We
conducted many experiments to find the right order: The movement step alone
is almost enough to generate a good partition. It groups the objects into several
clusters but unfortunately this step is not able to join these clusters. If we have
thousands of objects, then determining their most attractive cluster is a long
task, although the process can be parallelized. In some rare cases, if we execute
these movement steps in parallel, we could get into an infinite loop because some
objects move back and forth between two clusters. If we only enable independent
(i.e. no common cluster) movement steps, this problem disappears.

The contraction step is a big change, and—based on our experiments—it is
not worth repeating, but worth following up with a movement step to liberate
the objects which got into a worse relation with the contraction.

Different kinds of tolerance relations demand different variants of contraction
methods (see in [5]).

4.2 Representative Member

We call a member representative if it is similar to most of the members and
different from the least of the members in the same group. For any member m
two values have been stored:

– α - the number of elements that are similar to m and are in the same group.
– β - the number of elements that are different from m and are in the same

group.

Figure 2 shows a very simple example to the method. For the member A the
two values are:

– α = 2. Because there are two members (B and C) that are similar to A and
are in the same group.

– β = 2. Because there are two members (F and E) that are different from A
and belong in the same group.
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Fig. 2. α and β values for member A

In this example the similarity relation is based on the Euclidean distance of
the objects. The smaller circle denotes the similarity threshold and the greater
one denotes the difference threshold.

A member can be considered a possible representative if the following fraction
is maximal:

r =
αw − βv

α + β + 1
v, w ∈ R, v, w > 1, w > v (2)

The v and w are some weights. In our research we used 2 as both of their
values.

For any group there can be more than one possible representative members.
Although, only one member is chosen to be the actual representative. In this
paper it is chosen randomly from the set of possible representative members.

5 Similarity Based Rough Sets with Annotation

Singleton clusters represent very little information because the system could not
consider its member similar to any other objects without increasing the value of
the cost function (see in Sect. 4). As they mean little information, we can leave
them out. If we do not consider the singleton clusters, then we can generate par-
tial system of base sets from the partition. Sometimes it can happen that an object
does not belong to a cluster because the system could not consider it similar to any
other objects based on the background information. This does not mean that this
object is only similar to itself, but without proper information the system could
not insert it into any cluster in order to decrease the number of conflicts. In medical
applications it can occur that a patient has a similar disease as some other patients
but has different data in the information system. In this case the search algorithm
would consider this patient different from the others and so the patient does not
belong to any non-singleton cluster. Although, a doctor or an expert could recog-
nize that the patient could belong to a non-singleton cluster. The original partial
system was defined by the correlation clustering. However, the user has some back-
ground knowledge. They can use this knowledge to help the system by inserting
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the members of some singletons into base sets (non-singleton clusters). With the
help of the annotation process the user can put their own knowledge into the sys-
tem. It also decreases the partiality by decreasing the number of singletons. After
the annotation a new approximation space appears.

Let S be the set to be approximated, {x} a singleton gained from the cor-
relation clustering and B a base set. The following cases can happen with the
base set B after the annotation if B ⊆ l(S):

– If x ∈ S, then B′ = {x} ∪ B and B′ ⊆ l(S) This way the approximation of
the set S becomes more precise.

– If x /∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S) but B′ 	⊆ l(S) This increases the
uncertainty relative to the set S.

The following cases can happen with the base set B after the annotation if
B ⊆ u(S):

– If x ∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S)
– If x /∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S)

The following cases can happen with the base set B after the annotation if
B ⊆ u(S) \ l(S):

– If x ∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S) \ l(S)
– If x /∈ S, then B′ = {x} ∪ B and B′ ⊆ u(S) \ l(S)

In both cases the upper approximation and the boundary region becomes
larger. We can say that the annotation depends on the set to be approximated.
It could be useful if:

– x ∈ S, then the user could only choose from those B base sets which are in
l(S).

– x /∈ S, then the user could only choose from those B base sets which are in
l(u(S)c), where u(S)c denotes the complement of the upper approximation.

This relative annotation looks very promising.
If there are more than one suitable base sets, then it can be useful if the user

has some help to decide in which base set they should choose to put the member
of a singleton into. The recommended base set is the one whose representative
member is the most similar to the member of the given singleton. In this way,
there is no need to compare it to each member of each base set.

The annotation process can be qualified as relevant or irrelevant regarding
how it changes the representatives.

1. Relevant: After inserting a member of a singleton into a base set B, the
representative member of the new base set B′ is changed. In this case some
real information is implemented into the system. Let us assume that the
objects are members of political parties and the representative members are
the leaders of these parties. The annotation process is when a new member
is elected to a party. If the annotation is relevant, then it means that the
balance of the party is changed, and a new leader is risen.
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2. Irrelevant: After inserting a member of a singleton into a base set B, the
representative member of the new base set B′ is unchanged. In this case the
implemented information is not relevant because it does not alter the base
sets gained from the correlation clustering.

In either case the annotation can modify the set of possible representatives.
As a conclusion we can say that, if after the annotation something was changed,
then the user had some useful information which was not embedded in the sim-
ilarity relation.

The order of the annotation is also worth to be checked. If we are to insert
the members (O1, O2) of 2 different singletons into the same base set B, then
the following question is needed to be answered. Is it still relevant to insert O2

into B after putting O1 into B?

– If the answer is yes, then the two members are interchangeable. This means
that O1, O2 has some sort of similarity that was hidden in the similarity
relation.

– If the answer is yes, then the two members are not interchangeable. This
means that annotating O1 makes it irrelevant to insert O1 into B.

5.1 Dealing with Missing Data

In a real world application it can happen that an attribute value of an object
is missing. This means that it can be unknown, unassigned or inapplicable (i.e.
maiden name of a male). Coping with these data is usually a hard task. In many
cases these values are often substituted. It is common to replace a missing value
with the mean or the most frequent value. Typically this gives a rather good
result in many situations. In early stage diabetes, it is not unusual that only the
blood sugar level is higher than the normal level. If this value is missing for a
patient, then it should not be replaced by the mean because the mean can be
the normal blood sugar level. After the substitution this patient can be treated
as a healthy one. This type of substitution does not consider the information
of an object itself but the information of a collection of objects, therefore it
can lead to a false conclusion. In this paper we propose another method to
handle missing data. If an object has a missing attribute value, then it cannot
be treated as similar to any other objects, so this entity forms a cluster alone. As
mentioned earlier, these clusters cannot be treated as base sets. However, with
the annotation the user has the possibility to decide whether an object with
missing data is similar to other objects or not. The user has some background
knowledge that can be used this way to cope with the missing values. In this
case the information of an object itself is considered.
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6 Program

The authors of this article wrote a program which helps us with the approxima-
tion and the annotation process. The software can be downloaded from: https://
github.com/lordimp88/NagyDavid. For giving the input datasets the user has
two options:

1. Generating random coordinate points
2. Reading continuous data from a file

1. Random Points
The user gives the number of points, and then the points are generated in
a 2 dimensional interval which is also given by the user In this option the
base of the tolerance relation is the Euclidean distance of the objects (d).
We defined a similarity (S) and a dissimilarity threshold (D). The tolerance
relation R can be given this way for any objects O1, O2:

O1RO2 =

⎧
⎪⎨

⎪⎩

+1 d(O1, O2) ≤ S

−1 d(O1, O2) > D

0 otherwise
(3)

2. Continuous Data
Each row represents a single entity. In the software there is an option to
normalize the data in the way described below. Let A be an attribute and v
the value to be normalized. After the normalization:

v =
v − min(A)

max(A) − min(A)
(4)

The similarity is defined in two steps.
(a) step: Let A1, A2 . . . An be the attributes, t1, t2 . . . tn threshold values,

O1, O2 two objects. Let Oj(Ai) denote the attribute value of Ai for object
Oj (i = 1 . . . n, j = 1, 2). If ∃i ∈ {1 . . . n} : |O1(Ai) − O2(Ai)| ≥ ti, then
the objects O1 and O2 are treated as different.

(b) step: If the condition in the first step does not hold, then the tolerance
relation R can be defined in the following way for any objects O1, O2

using a similarity threshold S and a dissimilarity threshold D:

O1RO2 =

⎧
⎪⎨

⎪⎩

+1 d(O1, O2) ≤ S

−1 d(O1, O2) > D

0 otherwise
(5)

The d “distance” value is calculated for any objects O1, O2 by the follow-
ing method:

d(O1, O2) =

√
√
√
√

n∑

i=1

(O1(Ai) − O2(Ai))
2 (6)

https://github.com/lordimp88/NagyDavid
https://github.com/lordimp88/NagyDavid
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The necessity of the first step can be explained by the following sim-
ple example. Let us assume that the objects are patients. It can hap-
pen that two patients are differ only in the blood pressure level and the
other attribute values are relatively close to one another. So the distance
between these two entities can be a small value. However, the patients
cannot be treated as similar, because a high blood pressure level can indi-
cate an illness. This fact remains hidden without the first step, because
the similarity value can be small for the two patients. The same holds for
normalized data.

After getting the input points the software runs a search algorithm which finds a
quasi optimal partition. This algorithm is described in Subsect. 4.1. As mentioned
earlier, the singleton clusters mean little information, so the software leaves them
out and creates the system of base sets. After defining the base sets, the user
can select a set of points for approximation.

6.1 Annotation

In the software the user has the option to insert the members of the left-out sin-
gleton clusters to any base set. Two singleton clusters cannot be merged together
due to the similarity relation (their members are different). We mentioned earlier
that there are two types of singletons:

– Its member is different from most of the objects so it forms a cluster alone.
– Due to the background knowledge the system decided that this object cannot

be a member of any other group.

The software does not examine for a singleton which type it belongs, so there
is no mandatory annotation for a singleton. It is up to the user to decide.

6.2 The Output of the Software

In this subsection we show a possible output generated by the software. In the
following figures 20 points can be seen. The similarity relation is based on the

Fig. 3. Clusters (left) and the set to be approximated (right)
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Fig. 4. The lower (left) and upper (right) approximation by clustering

Fig. 5. The lower (left) and upper (right) approximation by clustering with annotation

Euclidean distance of the objects. Of course the software is capable of handling
more points, but for better visibility only 20 points were used. The similarity
threshold S was set to 50, and D was set to 90. In the left side of Fig. 3 the
clusters generated by the correlation clustering can be seen. The singleton clus-
ters contain the objects denoted by: the � symbol, the � symbol and the �
symbol. Some points were selected for approximation. The members of this set
are denoted by the × symbols, and the other members are denoted by the star
symbol. The members were chosen randomly. This set can be seen in the right
side of Fig. 3. In Fig. 4 the reader can see the lower and upper approximation
defined by the base sets gained from clustering after leaving the singletons out.
The members of two singletons were inserted into two different base sets. The
singleton denoted by the � symbol was merged with the base set denoted by
the � symbol. The base set denoted by the � symbol was extended with the
singleton denoted by the � symbol. The result of the annotation can be seen in
Fig. 5. None of the members of the chosen singletons were members of the set to
be approximated. This is the reason why the lower approximation became the
empty set, and the upper approximation had more members.

7 Conclusion and Future Work

In [9] the authors introduced a partial approximation space relying on a similarity
relation (a tolerance relation technically). The genuine novelty of approximation
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spaces is the systems of base sets: it is the result of correlation clustering, and so
similarity is taken into consideration generally. Singleton clusters have no real
information in approximation process, these clusters cannot be taken as base
sets, therefore the approximation spaces are partial in general cases (the unions of
base sets are proper subsets of universes.) In the present paper a new possibility
appears in order to embed some information into the approximation spaces: a
user may decide the status of a member of a singleton cluster: it can be put into a
base set, and the approximation of a set changes according to the new system of
base sets. This possibility is crucial in practical applications. The next step is to
give up the pairwise disjoint property of base sets in the annotation process. This
possibility helps a user a lot to make a decision about a member of singleton
cluster: it may belong to more than one base sets, and so the user’s decision
is not so sharp. Another step to make in the near future is the investigation
of influences of a similarity relation on valid logical consequences in a logical
system relying on similarity based rough sets with or without annotation.

Acknowledgement. This work was supported by the construction EFOP-3.6.3-
VEKOP-16-2017-00002. The project was co-financed by the Hungarian Government
and the European Social Fund.

References

1. Aigner, M.: Enumeration via ballot numbers. Discrete Math. 308(12), 2544–2563
(2008). http://www.sciencedirect.com/science/article/pii/S0012365X07004542
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Abstract. This paper presents an approach to evaluating the natural and
technogenic safety of the one of the largest regions in Siberia through the
comprehensive analysis of territorial indicators. In order to explore geographical
variations and patterns in occurrence of emergencies the multidimensional data
analysis technique is applied to data of the Territory Safety Passports. For data
modeling, principal components are selected and interpreted taking account of
the contribution of the data attributes to the principal components. Data distri-
bution on the principal components is analyzed at different levels of the territory
detail: municipal areas and settlements. The results of this analysis have allowed
to identify the high-risk areas and rank the territories according to danger degree
of occurrence of the natural and technogenic emergencies. It gives the basis for
decision making and makes it possible for authorities to allocate the forces and
means for territory protection more efficiently and develop a system of measures
to prevent and mitigate the consequences of emergencies in the large region.

Keywords: Multidimensional data analysis � Principal component analysis
Evaluating the natural and anthropogenic safety � Prevention of emergencies
Territorial management

1 Introduction

Prevention of natural and technogenic emergencies is a one of the major tasks of the
territory management. Analytical support of decision-making processes based on
modern technologies and efficient methods of data analysis is a necessary condition for
improving the territorial safety system and management quality.

The Krasnoyarsk territory is the second largest federal subject of Russia and the
third largest subnational governing body by area in the world. The Krasnoyarsk region
lies in the middle of Siberia and occupies an area of 2,339,700 km2, which is 13% of
the country’s total territory. This territory is characterised by heightened level of natural
and technogenic emergencies which is determined by social-economic aspects, large
resource potential, geographical location and climatic conditions. In the territory there
are many accident prone technosphere objects including radiation-related objects,
chemically-dangerous objects, fire-hazardous and dangerously explosive objects;
hydraulic facilities; critically important objects; a lot of survival objects including
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boiler plants, power plants, pipelines and networks. Moreover, the territory is located in
seven climatic zones. A number of large-scale natural emergencies, such as flood,
forest fire, gale-strength wind and anomalously low temperature are recorded each year
[1]. In order to improve the population and territory safety, a lot of monitoring systems
and control tools for on-line observation are being actively introduced within the region
[2–4]. The Ministry of Emergency has enacted the structure and order of conducting
the Territory Safety Passport, which defines a system of indicators to assess the state of
territory safety, the risk of emergencies and possible damages to create efficient pre-
vention and mitigation actions [5]. At present, there are massive data collections about
the state of controlled objects, occurred events and sources of emergencies. However,
we have to admit that the processing stored data, aimed at obtaining the new and useful
knowledge, is insufficient. The local databases remain unused, while the reasonable
decisions, comprehensive analysis and emergencies prediction are sorely needed. Thus,
identification of risk factors of emergencies based on monitoring data and investigation
of their impact on key indicators of human safety are topical and important tasks in
territorial management.

Data mining techniques provide the effective tool for discovering previously
unknown, nontrivial, practically useful and interpreted knowledge needed to make
decisions [6]. This paper presents the results of comprehensive multidimensional
analysis of natural and technogenic safety indicators of the Krasnoyarsk territory in
order to explore geographical variations and patterns in occurrence of emergencies by
applying the data mining technique – principal component analysis – to data of the
Territory Safety Passports.

The outline of this paper is as follows: Sect. 1 contains introduction. Section 2
describes the initial data. Section 3 presents results of principal component analysis:
identification and interpretation of principal components; analysis of data distribution
on the principal components at different levels of the territory detail. Section 4 draws
the conclusion.

2 Data Description

Evaluating the natural and technogenic safety indicators is based on data of the Ter-
ritory Safety Passports of the Krasnoyarsk territory collected in Center of Emergency
Monitoring and Prediction (CEMP). Original dataset contains 1,690 objects, essentially
discrete settlements-level geographical entities of the Krasnoyarsk territory, each with
12 measured attributes. Data attributes are listed in Table 1. One part of attributes
characterizes the sensitivity of the territory to the risk factors effects (e.g. population
density, the presence of industrial and engineering facilities) that is determined by the
number of objects located on the territory (i.e. number of potential sources of emer-
gencies), it is so-called “object attributes’’. The other part of attributes characterizes the
presence of potential factor that can damage the health of people, can cause irreversible
damage to the environment that is determined by the statistic of events occurred in the
territory (i.e. number of emergencies), it is so-called “event attributes’’. In addition,
some reference characteristics are used for data interpretation and map visualization.
The preliminary correlation analysis of original data has shown a fairly strong
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relationship between “object” and “event” attributes, therefore for further analysis we
will consider the attributes that characterize population and events. The correlation
coefficients are presented in Table 2.

Within this research, the analysis and visualisation of multidimensional data are
conducted using the ViDaExpert [7]. Data visualization on geographical maps is
performed by applying the mapping tools «ArcGIS» [8].

Table 1. List of the data attributes of Territory Safety Passports

No Attributes Description

1 Pop Population
2 Soc_object Number of important social facilities (e.g. educational, health, social,

cultural and sports facilities)
3 Water_object Number of dangerous water bodies
4 Indust_object Number of potentially dangerous industrial objects (e.g. plants,

factories, mines)
5 Oil_line Number of pipeline sectors in 5 km radius from borders of settlement
6 Munic_object Number of municipal facilities (e.g. power supply, water supply and

heating facilities)
7 Flood_event Number of floods
8 NFire_event Number of natural fires
9 TFire_event Number of technogenic fires
10 Munic_event Number of accidents at municipal facilities
11 Nat_event Number of natural events (excluding natural fires and floods)
12 Tech_event Number of technogenic events (excluding technogenic fires and

accidents at municipal facilities)

Table 2. Correlation coefficients between data attributes

No 2 3 4 5 6 7 8 9 10 11 12

1 0.97 0.39 0.96 0.04 0.28 0.29 0.08 0.96 0.95 0.08 0.60
2 0.36 0.96 0.01 0.25 0.25 0.05 0.91 0.94 0.06 0.59
3 0.39 −0.01 0.32 0.60 0.12 0.39 0.36 0.17 0.30
4 0.01 0.24 0.29 0.05 0.91 0.91 0.07 0.56
5 0.08 −0.02 0.06 0.07 0.02 0.05 0.14
6 0.29 0.08 0.31 0.43 0.13 0.48
7 0.06 0.33 0.30 0.13 0.28
8 0.10 0.06 −0.02 0.05
9 0.93 0.11 0.63
10 0.08 0.58
11 0.13
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3 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most common techniques used to
describe patterns of variation within a multi-dimensional dataset, and is one of the
simplest and robust ways of doing dimensionality reduction. PCA is a mathematical
procedure that uses an orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly uncorrelated variables
called principal components [9]. The number of principal components is always less
than or equal to the number of original variables. This transformation is defined in such
a way that the first principal component has the largest possible variance and each
subsequent component, respectively, has the highest variance possible under the
constraint that it is orthogonal to the preceding components.

3.1 Contribution of the Data Attributes to the Principal Components

One of the greatest challenges in providing a meaningful interpretation of multi-
dimensional data using PCA is determining the number of principal components. In
general, the method allows to identify k components based on k initial attributes.
Table 3 shows the results of calculating the eigenvectors of the covariance matrix
arranged in order of descending eigenvalues.

Based on combination of Kaiser’s rule and the Broken-stick model [10], two
principal components for data attributes were identified (PC1 and PC2) with 65%
accumulated dispersion. Figure 1(a) illustrates the eigenvalues of components. As can
be seen from Fig. 1(a), Kaiser’s rule determines two principal components – eigen-
values of first two components are significantly greater than the average value and the
Broken-stick model gives also two principal components – the line of Broken-stick
model also cuts the eigenvalues of first two components. The contribution of the data
attributes to principal components is presented in Fig. 1(b).

Table 3. Results of principal components calculation

Components 1 2 3 4 5 6 7

Eigenvalues 0.404 0.249 0.141 0.116 0.075 0.010 0.005
Accumulated dispersion 0.504 0.652 0.793 0.909 0.985 0.995 1
Pop 0.509 0.109 0.111 0.113 0.227 0.182 0.787
TFire_event 0.513 0.083 0.061 0.088 0.171 0.616 −0.557
NFire_event 0.060 0.439 −0.876 0.186 −0.022 −0.033 0.012
Munic_event 0.503 0.096 0.120 0.084 0.251 −0.764 −0.263
Flood_event 0.235 −0.314 −0.325 −0.853 0.109 −0.004 0.029
Nat_event 0.086 −0.822 −0.311 0.458 0.103 −0.015 0.010
Tech_event 0.397 −0.072 0.019 0.013 −0.913 −0.051 0.024
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From Fig. 1(b) we can see that the first principal component (PC1) is characterised
by the following attributes: a high level of population, high proportions of technogenic
fires, accidents at municipal facilities and other technogenic events, a low percentage of
natural events including natural fires and floods. In combination, these characteristics
present the big settlements (e.g. cities) with high levels of technogenic hazards. The
second principal component (PC2) is characterised by the following attributes: a low
level of population, high proportion of natural fires, strong negative correlation with the
percentage of natural events including floods and technogenic events including fires
and accidents at municipal facilities. In combination, these characteristics present rel-
atively small settlements (e.g. villages) with high levels of natural fires. This means that
in comparison with other types of emergencies the technogenic and natural fires are the
greatest threat for the Krasnoyarsk territory.

3.2 Data Distribution on the Principal Components

The data can be divided into groups according to where the settlements are located in
terms of Territory Classifier. There are three levels of the territory detail: settlements,
municipal areas and groups of municipal areas that give 1,690 objects, 65 objects and 8
objects respectively for the Krasnoyarsk territory. Figure 2 shows the visualisation of
territorial groups (groups of municipal areas) on the geographic coordinates and the
PCA plot, where: group 1 (green) – Angarsk Group; group 2 (rose) – Eastern Group;
group 3 (purple) – Yeniseisk Group; group 4 (light blue) – Western Group; group 5
(yellow) – Central Group; group 6 (red) – Southern Group; group 7 (blue) – Taymyr
Autonomous Okrug; group 8 (brown) – Evenk Autonomous Okrug. On a data map, the
points in the form of triangles are settlements, and the color of these points corresponds
to the color of the territorial group. Objects in the form of circles represent centroids of
clusters of territorial groups.

As can be seen from Fig. 2, along the first principal component (PC1) the territorial
groups are concentrated quite densely, it means that technogenic fires are general
characteristic for all territorial groups of region, but along the second principal com-
ponent (PC2) the territorial groups are distributed significantly and we can see that the
natural fires are indicative of northern territorial groups.

Fig. 1. (a) Eigenvalues of components. (b) Contribution of the data attributes to the first (PC1)
and second (PC2) principal components
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Fig. 2. Visualisation of territorial groups on the geographic map and the PCA plot (Color figure
online)

Fig. 3. Visualisation of the projections on the first principal component for municipal areas and
settlements (Color figure online)
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The visualisation of the projections on the first and second principal components on
the geographic map is displayed in Figs. 3 and 4. On these figures, the negative values
in range [−1, 0] correspond to Group 1 (blue), the positive values in range (0; 0.5]
correspond to Group 2 (green) and the highest positive values in range (0.5; 1] cor-
respond to Group 3 (red). The color intensity of municipal areas corresponds to the
number of settlements in the group.

The lowest values of projections on the first principal component (Fig. 3, blue
points) are observed for such settlements as: Ust-Kamo, Shigashet, Kasovo,
Verhnekemskoe, Komorowskiy, Angutiha, Lebed. It can be explained by the fact that
these settlements are very small villages and, at present, in these settlements there are
no any socially significant objects and residents. The complete absence of the economic
activity in these settlements leads to the lowest level (or absence) of technogenic fires.
The highest values of the projections on the first principal component (Fig. 3, red
points) are observed for such large settlements as Krasnoyarsk, Norilsk, Achinsk,
Kansk, Minusinsk Lesosibirsk. These settlements present the big cities of the Kras-
noyarsk territory where the population and number of socially significant and industrial
facilities are above average level in region.

Fig. 4. Visualisation of the projections on the second principal component for municipal areas
and settlements (Color figure online)
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The lowest values of projections for the second principal component (Fig. 4, blue
points) are observed for such settlements as: Turuhansk, Cheremshanka, Tanzybey,
Emelyanovo, Ermakovskoe. Low levels of natural fires can be explained by the fol-
lowing facts: the absence of vegetation as a source of emergency in steppe areas (e.g.
Western and Southern groups) and the absence of settlements in forest zone (e.g. Evenk
Autonomous Okrug, Yeniseiysk and Turukhansky areas). The highest values of pro-
jections for the second principal component (Fig. 4, red points) are observed for such
settlements as: Startsevo, Tilichet, Kuray, Baikal, Glinniy. The high risk of natural fires
is observed in the large settlements that are located close to the forest zones. In
addition, there is probability of natural fires in the big cities where the forests constitute
the part of their territories.

4 Conclusion

In this paper the evaluating of natural and technogenic safety of the Krasnoyarsk
territory in the context of settlements is carried out first time by applying the multi-
dimensional data analysis technique – principal component analysis – to data of the
Territory Safety Passports. The data analysis results show that the technogenic and
natural fires are the greatest threat for territory of the Krasnoyarsk region. The explored
geographical variations and patterns allow to identify the high-risk municipal areas and
particular settlements, rank the territories according to danger degree of occurrence of
the natural and technogenic emergencies. The results of this research make it possible
for specialists of CEMP to develop a system of measures to prevent and mitigate the
consequences of emergencies in the Krasnoyarsk territory.

The techniques and tools used in this paper make it easy to change the initial dataset
(e.g. territories or threats) for other tasks. The presented approach to comprehensive
multidimensional analysis of the territories can be adopted for different control objects
in various areas.
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Abstract. Technically put, a metaphor is a conceptual mapping
between two domains, which allows one to better understand the target
domain; as Lakoff and Núñes put it, the main function of a metaphor is
to allow us to reason about relatively abstract domains using the infer-
ential structure of relatively concrete domains. In the paper we would
like to apply this idea of framing one domain through conceptual set-
tings of another domain to rough set theory (RST). The main goal is to
construe rough sets in terms of the following mathematical metaphor:
RST is a modular set-arithmetic. That is, we would like to map/project
modular arithmetic onto rough sets, and, as a consequence, to redefine
the fundamental concepts/objects of RST. Specifically, we introduce new
topological operators (which play a similar role as remainders in modu-
lar arithmetic), discuss their formal properties, and finally apply them
to the problem of vagueness (which has been intertwined with RST since
the 1980’s).

Keywords: Rough set · Modular arithmetic · Remainder · Topolgy
Boundary · Vagueness

1 Introduction

Metaphors, as ambiguous as they are, have often provided us with deep insights
into many fields of human activity; starting from very abstract theological prob-
lems of Trinity (e.g., the Tertullian’s mataphor of Sun: Godfather is the star
itself, Jesus is the light, and the Holy Spirit is the heat), to modern problems
of cognitive science (e.g., the famous computer metaphor which has been dom-
inating in the last 40 years in cognitive psychology). Technically speaking, a
metaphor is a conceptual mapping between two domains, which allows one to
better understand the target domain. Or, better still, as Lakoff and Núñes [6]
put it: the main function of a metaphor is to allow us to reason about relatively
abstract domains using the inferential structure of relatively concrete domains.
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E.g., the Sun is mapped on the Trinity, allowing one to concretely frame a
seriously abstruse idea, or a computer is mapped on a human brain allowing one
to frame how it functions.

A little bit more problematic is the role of metaphor in mathematics. The
most vivid example seems to be the metaphor of Divine Intellect, which, although
often very implicit, allowed most of mathematicians to (finally) accept the realm
of infinite sets and non-constructive mathematics. But, as emphasised by the
opponents, this framing is highly theological – e.g., the book The Ghost in Tur-
ing’s Machine. Taking God Out of Mathematics and Putting the Body Back In,
in which Rotman fights against the Platonism, as a way of framing mathemat-
ics.1 In computer science the most well-known examples are given by liquid : e.g.,
the flow metaphor, which is the source of information flow, memory leaks, or
the law of conservation of memory.

In the present paper we would like to apply the idea of a metaphor to rough
set theory (RST). However, following suggestions by Lakoff and Núñes, we would
like to do this in a relatively concrete way. As noted above, usually metaphors
allow us merely to frame or conceptualise some very abstract ideas, bringing
no concrete results. Yet, sometimes we are able to make one step further and
materialise a given metaphor: e.g., the liquid metaphor has been embodied in
computer science as a liquid state machine (LST). In the present paper we would
like to follow this path, and apart from the conceptualisation/framing we would
also like to deal with some materialisation of modular arithmetic within the
conceptual body of RST. Under this view, we are interested in the set counterpart
of remainders, which serve in modular arithmetic as the standard representatives
of congruence classes. That is, we are going to enrich RST with new (topological)
operators, the remainder r and deficit d, which assign to a given set some kind
of remainders with respect to/modulo the underlying granularity of the universe.

Anyway, our hope is that the number metaphor will shed new light on the
foundations of rough sets. More specifically, we shall address the problem of
vague concepts, which have been intertwined with rough sets from the very
beginning of this theory (the early 80s), mainly due to the existence of bor-
derline cases. The second problem which we are going to address is the very
nature/characteristic of a rough set itself.

Since the paper is the very first step in our project of redefining RST (as a
kind of arithmetic), we cannot offer – apart from methodological considerations
about vagueness – any discussion of (future) applications. Our next step is likely
to focus upon the set remainder r and examine it against the background of
another arithmetic system. We believe that this half of the boundary will finally
lead us to some new results being both theoretically interesting and applicable.

2 Mathematical Preliminaries

In this section we shall recall basic definitions from rough set theory and modular
arithmetic. We start with rough set theory, the motivations hidden under the
1 A very interesting discussion of these problems may be found in Krajewski [5].
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hood, and the methodological consequences of the original (Pawlak’s) definitions.
Then we shortly recall modular arithmetic. In the next section we shall use this
arithmetic as a metaphor for rough sets.

2.1 Rough Set Theory

Let us start with the methodological assumptions staying behind rough set
theory; as Pawlak observed [10]:

In the rough set approach vagueness is due to lack of information about some
elements of the universe. If with some elements the same information is associ-
ated, in view of this information these elements are indiscernible. [...] It turns out
that indiscernibility leads to the boundary-line cases, i.e., in view of the available
information some elements cannot be classified to the concept or its complement
and thus they form boundary-line cases.

The indiscernibility relation E ⊆ U ×U between the elements of the universe
U leads to the fundamental structures and operators of rough set theory. The
detailed and extensive presentation of rough sets may be found in [9].

Definition 1 (Approximation Space). A pair (U,E), where U is a non-
empty set and E is an equivalence relation on U , is called an approximation
space. A subset X ⊆ U is called definable if X =

⋃ Y for some Y ⊆ U/E,
where U/E is the family of equivalence classes of E (the quotient set of E).

As is well known, each equivalence relation E determines a partition U/E of
the universe U , which is usually interpreted as a classification of objects (of
course, each object x may be classified only to one equivalence class [x]E).
According to Z. Pawlak, knowledge about a specific domain is construed as a
classification of its elements [10]. Thus, an approximation space expresses the
information/knowledge encoded by the underlying information system. Any sub-
set X ⊆ U is called a concept, U/E is called a knowledge basis, and concepts
build up from elements of the knowledge basis are called definable concepts or
exact concepts (the set of all definable concept is denoted by D). Since definable
(exact) concept are supposed to form some algebraic structure (e.g., a topology
or an algebra), usually the empty set ∅ is added to the knowledge basis. In the
paper we always assume that ∅ ∈ D. An undefinable (not exact) concept is then
approximated by a pair of exact concepts:

Definition 2 (Approximation Operators). Let (U,E) be an approximation
space. For every concept X ⊆ U , its E-lower and E-upper approximations are
defined as follows, respectively:

X = {a ∈ U : [a]E ⊆ X},

X = {a ∈ U : [a]E ∩ X �= ∅}.

By the usual abuse of language and notation, the operator : P(U) → P(U)
sending X to X will be called the lower approximation operator, whereas the
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operator : P(U) → P(U) sending X to X will be called the upper approxi-
mation operator. Of course, U/E gives rise – as a base – to a topological space
(U, τE), whose interior operator Int is and closure operator Cl is . There-
fore we obtain the standard Kuratowski axioms valid for rough approximations
(we restrict our attention only to these axioms which are relevant to our study
in the next section).

Proposition 1. For every subset X of an approximation (U,E) space it holds:

1. ∅ = ∅,
2. X ∪ Y = X ∪ Y ,
3. X = X.

Proposition 2. For every subset X of an approximation (U,E) space it holds:

1. ∅ = ∅,
2. X ∩ Y = X ∩ Y ,
3. X = X.

In this paper a rough set is defined as a pair (X,X), for some X ⊆ U ; as a
consequence a definable set is also a rough set. It may seem (philosophically)
unintuitive, however it is necessary due to mathematical reasons – otherwise
rough sets would not form any interesting structure. An alternative and equally
popular approach is to define a rough set as an equivalence class of the rough
equality relation ≡E ⊆ P(U) × P(U) defined by: X ≡E Y iff X = Y and
X = Y . This definition is much more philosophically justified, but mathemati-
cally inconvenient.

Definition 3 (Representations of Rough Sets). For an approximation
space (U,E) and X ⊆ U , a pair (X,X) is called an increasing representation of
X, whereas a pair (X,U \ X) is called a disjoint representation of X.

The set U \X is often called an exterior of X and denoted by Ext(X), whereas
b(X) = X \ X is the boundary region of X. Of course, the choice of represen-
tation depends on a context of application. In the context of modal systems the
increasing representation is more useful. On the other hand, in the context of
abstract algebras the disjoint representation is more preferable.

However, there is a snake in the garden. As Marek and Truszczyński
explains [7]:

The emphasis on the set X present in the original definition of rough sets
is what we strive here to free ourselves from. After all, in most (if not all)
applications set X we want to reason about is unknown or incompletely specified.

Or, better still, following Chakraborty [3], one may ask: If X is already known
why to approximate at all? 2

2 Although Chakraborty’s question makes perfect sense for abstract approximation
spaces, the case of decision tables is a bit different: here the set X represents a
decision attribute, which – although well known – still needs to be approximated by
means of conditional attributes.
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2.2 Modular Arithmetic

Although elementary modular arithmetic needs no introduction, we present here
some basic information, at least in order to establish the notation. The detailed
exposition of modular arithmetic may be found in [2]. Let us start with the
most fundamental definition by Gauss, given in his Disquisitiones Arithmeticae
(Arithmetic Investigations).

Definition 4 (Equivalence Modulo). Let Z denote the set of integers and m
be an integer. Then for a, b in Z we write

a ≡ b mod m

which reads “a is equivalent b modulo m”, if m|(a − b), where | stands for the
divisibility relation.

The parameter m is called modulus. Usually we employ the standard repre-
sentation of integers modulo m defined in terms of remainders (since modular
arithmetic is regarded in the paper merely as a metaphor, we are going to use
the simplified version of this theorem).

Proposition 3. Let 0 < m be a non-zero positive integer. Then for each a ∈ Z

there exists a unique remainder r such that a ≡ r mod m and r < m.

For this reason, we often use mod as an operator taking an arithmetic term t

t mod m,

and returning the corresponding reminder r; e.g.,

(5 + 2) mod 4 is 3.

The remainders (i.e., 0, 1, 2, . . . ,m − 1), are called standard representatives
for integers modulo m. Actually, each standard representative n stands for
the equivalence class n (called residue class) of integers which are equiva-
lent to n mod m; e.g. for m = 4, the representative 3 stands for the class
3 = {. . . ,−5,−1, 3, 7, 11, . . .}. The set of all congruence classes (or, alterna-
tively, standard representatives) of the integers for a modulus m is usually called
the ring of integers modulo m, denoted by Z/m, which it actually forms when
equipped with the following operations:

a + b = a + b,

a − b = a − b,

a ∗ b = a ∗ b,

where a stands for the residue class. Let us also recall that the ring forms an
abelian group under addition +, and a monoid under multiplication ∗, where
multiplication has to distribute over addition; i.e.,

a ∗ (b + c) = (a ∗ b) + (a ∗ c).
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The identity elements for + and ∗ are denoted 0 and 1, respectively. If the
multiplication is commutative, i.e.

a ∗ b = b ∗ a,

then the ring is called commutative.

3 The Metaphor of Modular Arithmetic

In this section we “project” modular arithmetic onto RST, that is, our aim is
to formalise some ideas from this arithmetic within the RST frame. Since the
full projection is not possible, modular arithmetic may be used here merely as
a metaphor: e.g., rough set theory is a modular set arithmetic. That is, RST
resembles modular arithmetic, and this similarity allows us to reinterpret and
redefine some concepts and assumptions laying behind RST. However, we are
not able to retrieve all concepts introduced in the previous section; specifically,
we are not going to build a ring of residue classes (which is not compatible
with RST), yet we use some Boolean ring machinery. The main emphasis in this
section is put upon the standard representation of integers modulo m and it’s
RST counterpart.

As is well known, an approximation space (U,E) may be conceptualised also
as a topological space (U, τE), whose closure operator Cl is the upper approxima-
tion, and interior operator Int is the lower approximation. All results presented
in this section are valid for any topological space (after replacing X and X by
Cl(X) and Int(X), respectively).

3.1 Modular Set Theory

Let us now come back to modular arithmetic. As already noted, we usually
use remainders as the standard representatives. Thus, for given a,m ∈ Z, the
notation

a mod m

denotes/stands for a remainder r from Proposition 3. Of course, it means that

a = km + r, where k ∈ Z. (1)

It suggests that the remainder may be construed as an excess or nimiety in size
of a with respect to the quantisation of Z by means of m. In rough set theoretic
terminology we could regard numbers of the form km as definable, and r as an
excess which must be erased from a in order to obtain a definable number.

In RST the quantisation of U is given by the family of definable sets with
respect to U/E (denoted by D). As is well known it forms a Boolean alge-
bra (D,∩,∪,′ , ∅, U), where ′ denotes the set complementation. As observed by
Bernstein in 1924 [1], each Boolean algebra gives rise to a group; in particular
(D,�) and (P(U),�), where � stands for the symmetric difference3, are groups.
3 X � Y = (X \ Y ) ∪ (Y \ X).
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Each of them is actually an (additive) abelian group, in which every element is
it’s own inverse. Generally, such groups are called Boolen groups.

Definition 5 (Boolean Ring). A ring R = (U,+, ∗, 0) is Boolean if a2 = a
for every a ∈ U .

As always, each Boolean algebra induces also a Boolean ring. Thus we have:

Proposition 4. (D,�,∩, ∅) and (P(U),�,∩, ∅) are Boolean rings.

Let us now write a set-version of (1):

X = Y � r where Y ∈ D and r ∈ P(U).

Since we want to take the maximal definable set Y ⊆ X, we have:

X = X � r.

Therefore:
r = X \ X. (2)

Let us compare it to the standard RST approach, which is based on the boundary
region:

X ⊆ X ∪ b(X) = X ∈ D and b(X) = X \ X. (3)

Since r(X) ⊆ b(X), we may say that within the modular arithmetic approach
we are interested in the half of the boundary region. Interestingly if we replace
∪ by � in (3), then we define the second part d of the boundary, which may be
interpreted as deficit.

X ⊆ X � d = X ∈ D. (4)

In contrast to the previous scenario of remainder, where the set X has got too
much elements, in the context of (4) the set X has got a deficit of points, and
that is why X is not a definable set.

The natural next step in materialisation of the modular arithmetic metaphor
in RST, is to convert (2) and (4) into definitions of new set operators:

r(X) = X \ X, for every X ⊆ U,

d(X) = X \ X, for every X ⊆ U.

Obviously, two halves become one:

Corollary 1. For every subset X of an approximation (U,E) space it holds that

b(X) = r(X) � d(X).

Before we examine formal properties of the remainder and deficit operators, it is
worth to recall the formal characterisation of the boundary. Most importantly,
b is not as well-behaved as either the lower approximation/interior (Proposition
2) or upper approximation/closure (Proposition 1) operator. In words of Willard
[15]: it is possible, but unrewarding, to characterize a topology completely by its
frontier [i.e., boundary] operation. For Clark [4] to do so is not entirely clear.
However, Pervin [11] states the following axioms for the boundary:
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Proposition 5. For a topological space (U, τ) and its boundary b : P(U) →
P(U), which is defined by b(X) = Cl(X) \ Int(X), it always holds that:

1. b(∅) = ∅,
2. b(X) = b(X ′),
3. b(b(X)) ⊆ b(X),
4. X ∩ Y ∩ b(X ∩ Y ) = X ∩ Y ∩ (b(X) ∪ b(Y )).

for all X, Y ⊆ U .

3.2 Set Modular Remainder

Surprisingly, the remainder r(X) regarded as a set-operator is much better
behaved than the boundary. However, before we discuss its behaviour, let us
retrieve the original conceptualisation of RST.

Proposition 6. For every subset X of an approximation (U,E) space it holds:

1. X = X \ r(X),
2. X = X � r(U \ X),
3. b(X) = r(X) ∪ r(U \ X).

As a set operator the reminder behaves quite smoothly.

Proposition 7. Let (U,E) be an approximation space and r be the induced
reminder operator. Then the following conditions hold:

1. r(∅) = ∅,
2. r(X ∩ Y ) = (r(X) ∩ Y ) ∪ (r(Y ) ∩ X),
3. r(r(X)) = r(X).

In sheer contrast to the deficit operator (discussed in the next subsection), the
reminder is idempotent.

Proof.

r(r(X)) = r(X) \ r(X) = (X \ X) \ (X \ X) = (X ∩ X ′) ∩ (X ∩ X ′) ′ =

(X ∩ X ′) ∩ (X ∩ X ′)′ = (X ∩ X ′) ∩ (X ′ ∪ X) = (X ∩ X ′) ∩ (X ′ ∪ X) =

((X ∩ X ′) ∩ X ′) ∪ ((X ∩ X ′) ∩ X) = ((X ∩ X ′) ∩ X ′) ∪ ((X ∩ X ′) ∩ X).

Thus we have r(r(X)) = r(X) ∪ (r(X) ∩ X) and for (r(X) ∩ X) ⊆ r(X), we
obtain:

r(r(X)) = r(X) ∪ (r(X) ∩ X) = r(X).
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3.3 Set Modular Deficit

As in the previous subsection, before we discuss the formal behaviour of deficit
operator d, we shall define the RST conceptual body.

Proposition 8. For every subset X of an approximation (U,E) space it holds:

1. X = X � d(X),
2. X = X \ d(U \ X),
3. b(X) = d(X) ∪ d(U \ X).

The deficit operator is not as smooth as the remainder; most importantly, the
deficit is not idempotent. Yet, it is still much better behaved than the boundary.

Proposition 9. Let (U,E) be an approximation space and d be the induced
deficit operator. Then the following conditions hold:

1. d(∅) = ∅,
2. d(X ∪ Y ) = (d(X) \ Y ) ∪ (d(Y ) \ X),
3. d(d(X)) �= d(X),
4. d(d(X)) ⊆ X.

Interestingly, within this conceptualisation/metaphor, RST is not about
approximations of undefinable (incompletely specified) sets; rather, RST – sim-
ilarly like modular arithmetic – is primarily concerned with the remainder and
deficit. Does it change much? Firstly, even if X is well specified (known), it still
makes perfect sense to compute its value(s) modulo the underlying definable
sets (quantisation). Secondly, we may introduce another representation of sub-
sets of U – alternative to the increasing and disjoint representations introduced
in Sect. 2.1.

Definition 6 (Modular Representation of Rough Sets). For an approxi-
mation space (U,E) and X ⊆ U , a pair (r(X),d(X)) is called a modular repre-
sentation of X.

And thirdly, this new representation better shows the imperfectness of the set
X. If we drop out X and put the specific values, e.g. C,D ⊆ U , such that
C �= D, then under the disjoint representation (C,D) the extent to which the
underlying set (X) is unspecified or imperfect is hardly visible. In the increasing
representation we may compute the boundary and have some rough knowledge
about this problem. But under modular representation this issue is very clear:
C is the set of elements of X which we have imperfect knowledge about, whereas
D brings us elements outside X which, due to our imperfect knowledge, may be
added to X4.

4 The modular representation is not – however – equivalent to a rough set, e.g., if
X = ∅, then (X,X) usually represents/approximates more than a single set. How-
ever, the modular representation is (X,d(X)), which stands for X alone.
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4 Vagueness: Set Modular Approach

In this section we discuss the set (modular) arithmetic against the background
(of the problem) of vagueness (as discussed in philosophy and science). We also
extend our conceptualisation on the case of topological spaces, which is more
subtle and versatile.

Let us start with a small excerpt from the Stanford Encyclopedia of
Philosophy:

Vagueness is standardly defined as the possession of borderline cases. [...]
Borderline cases are inquiry resistant. Indeed, the inquiry resistance typically
recurses. For in addition to the unclarity of the borderline case, there is normally
unclarity as to where the unclarity begins. In other words ‘borderline case’ has
borderline cases. This higher order vagueness shows that ‘vague’ is vague.

In other words, vagueness is defined as the possession of borderline cases
which are inquiry resistant, in the sense that borderline cases have borderline
cases (the so called higher-order vagueness).

As noted in the introductory section, in the (original) RST methodology, a
set X, which is supposed to be approximated, is well-known or well-defined: in
order to compute an approximation of X, for each object x ∈ U we need to know
how its equivalence class [x]E is related to X, e.g., if [x]E ⊆ X or [x]E ∩ X �= ∅;
thus, we must know all elements of X. That is why Chakraborty in [3] asks: If
X is already known why to approximate at all? On the other hand, as observed
by Pawlak [10], in RST vagueness occurs naturally as borderline cases, which
result from the incompleteness of our knowledge; that is why X needs to be
approximated.

Let us check the Encyclopedia of once again:
For instance, a boy may count as a borderline case of ‘obese’ because people

cannot tell whether he is obese just by looking at him. A curious mother could
try to settle the matter by calculating her boy’s body mass index. The formula
is to divide his weight (in kilograms) by the square of his height (in meters).
If the value exceeds 30, this test counts him as obese. The calculation will itself
leave some borderline cases. The mother could then use a weight-for-height chart.
These charts are not entirely decisive because they do not reflect the ratio of fat
to muscle, whether the child has large bones, and so on. The boy will only count
as an absolute borderline case of ‘obese’ if no possible method of inquiry could
settle whether he is obese. When we reach this stage, we start to suspect that our
uncertainty is due to the concept of obesity rather than to our limited means of
testing for obesity.

The main question here is whether our goal is to model or to deal with
vagueness. On the one hand, the philosophical demands concerning vagueness
are so high, that virtually any formal representation is prone to criticism. On the
other hand, vague concepts are also used in hard sciences such as medicine. E.g.,
on the National Institute of Health Obesity Research web page once can find:

Obesity is a major contributor to serious health conditions in children and
adults, including type 2 diabetes, cardiovascular disease, many forms of cancer,
and numerous other diseases and conditions.
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The solution here is to expel all borderline cases. As Weiner observes [14]:
As sometimes happens in such research, the decision is made to exclude

borderline cases from the study. [...] For obvious reasons – the exclusion of bor-
derline cases requires two sharp distinctions: a distinction between those who are
obese and those who are borderline-obese and a distinction between those who are
borderline-obese and those who are not obese.

Thus we have the two opposite approaches to borderline cases: philosophical
(where these cases are inquiry resistant), and scientific (where these cases are
well-defined and expelled). Interestingly, the metaphor of modular arithmetic
allows us to run with the hare and hunt with the hounds.

Firstly, we would like to paraphrase the Wiener’s distinctions as follows:

(I) a distinction between those who are obese and those who are
borderline-obese;

(II) a distinction between those who are borderline-not-obese and those who are
not obese.

If X is a set of obese people, then (I) may be modelled by r(X), and (II)
may be represented by d(X). Now, we can generalise this approach and call
r(X) a collection of borderline-members of X, whereas d(X) would be a set of
borderline-non-members. Unfortunately, as long as we deal with approximation
spaces, both (I) and (II) come in one package.

Corollary 2. For every subset X of an approximation (U,E) space it holds that

r(X) = ∅ iff d(X) = ∅.

As already discussed, any approximation space (U,E) might be viewed as a
topological space (U, τE), whose base is given by U/E. Since any topology τ on
a space U is uniquely determined by its closure operator or the collection C of
all closed subset of U , we may assume that known (definable) sets of U , that is
D, is a sum: τ ∪ C. For, as observed by Wiweger [16], in (U, τE) every open set
is closed and every closed set is open, we have τE ∪ CE = τE = CE . Hence, if
X has a non-empty boundary, it is neither closed nor open, so both r(X) and
d(X) are non-empty. If d(X) is empty, then X is closed, so it is also open, and
r(X) must be empty. The case of r(X) is analogous.

Fortunately, the correspondence between binary relations and topologies on
U can be generalised to the case of preorders R and Alexandrov topological
spaces (U, τR). This time, as required, τR usually differs from CR, but our def-
initions of the remainder and deficit still make perfect mathematical sense –
actually, all propositions from the previous section are valid for any topological
space. However, our metaphor makes less (common)sense in this new settings.
We may try correct it a bit by calling the members of τR directly definable and
the elements of CR dually definable. Then r could be related to directly definable
sets, whereas d would relate to the dually definable ones.
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Now let us come back to the comments given by (a) Marek and Truszczyński
in [7] (X is unknown or unspecified) and (b) Chakraborty in [3] (X is well known
by still needs approximations) – see the last paragraphs of Sect. 2.1. Concerning
(a), if X is a plain subset of a topological space (U, τR), then we could call it
imperfect if it includes borderline members: r(X) �= ∅. Concerning (b), if X is
an open set, then it is well-defined, that is r(X) = ∅, but we could call it rugged
if there are borderline-non-members: d(X) �= ∅. Finally, a set X could be called
vague if it is imperfect or rugged. As expected, under the modular representation
it is directly visible if a set X is imperfect, rugged, or vague.

Let us go back to the fundamental question in the philosophy of vagueness,
namely: have borderline cases of X got borderline cases? Because in our app-
roach we distinguish borderline-members of X from borderline-non-members of
X, we may only ask if the set of borderline-members (borderline-non-members) is
imperfect, rugged, or vague. Let us consider, e.g., d(d(X)), which may be rugged
(and thus vague). Therefore, we may model a phenomenon, which is similar to
the second-order vagueness: borderline-non-members may have borderline-non-
members (vague may be vague). Interestingly, the non-empty set of borderline-
members always stays vague, and hence it also stays inquiry resistant – as
requested by the Stanford Encyclopedia of Philosophy; unfortunately, in a rather
trivial way. Another solution to maintain the higher order vagueness was offered
by Skowron [12,13], who discusses this problem within a dynamic settings, where
the underlying set U or the knowledge/attributes are changing, which in turn
makes the boundary to be in a state of flux. However, in such a case also crisp
sets are unstable and may become vague. Needless to say, from purely philo-
sophical point of view, both approaches are not (fully) adequate. On the bright
side, our approach to the second order vagueness is consistent with the scientific
methodology and practice [14].

5 Conclusions

In the paper we have discussed a metaphor within which rough set theory (RST)
is regarded as a sort of modular set-arithmetic. To this end, we have mapped
the conceptual domain of modular arithmetic (where a given number is assigned
a remainder with respect to a given modulus) onto RST (where a set is given
a remainder with respect to a given collection of definable sets). In result, we
have introduced two new topological operators: the remainder r and the deficit
d, which may be roughly understood as halves of the boundary. We have pre-
sented their formal properties and discussed their application to the problem of
vagueness. Interestingly, the idea of splitting the boundary in half allowed us to
introduce a new representation for sets, which is philosophically more subtle. In
particular, it has allowed us to address the methodological shortcomings of RST
discussed by Marek and Truszczyński [7], and Chakraborty [3].

Acknowledgements. We are greatly indebted to anonymous referees for their valu-
able comments and corrections.
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Abstract. For binary classification problem, all samples can be divided
into three regions based on the three-way decision theory: positive
regions, negative regions and boundary regions. These samples in bound-
ary regions may be impossible to make a definite decision for lacking of
detailed information. More information obtained from positive and neg-
ative regions is crucial for boundary processing. In the real word, people
may identify positive regions based on one rule, and identify negative
regions on another. The samples in boundary regions are also divided
to positive or negative regions based on different rules. In this paper,
we propose a method for processing boundary regions in three-way deci-
sions based on hierarchical feature representation (HFR−TWD), which
can obtain hierarchical feature representation of positive and negative
regions. Firstly, all samples are divided into three regions by MinCA,
which builds the most accurate covers for each class. Then samples in
positive regions and negative regions respectively construct hierarchical
feature representation. Thirdly, the best feature representation of each
class is selected by using boundary region validating. Finally, boundary
samples in test set are divided according to best feature representation of
each class. Experiments show that the proposed method HFR − TWD
improves classification accuracy.

Keywords: Boundary regions · Hierarchical Feature Representation
Three-way decision theory · MinCA

1 Introduction

In conventional two-way decision model, there are only two optional choices for
a decision: positive decision or negative decision regardless of lacking of infor-
mation or not. Thus, it may result in wrong decisions when the information is
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not enough. To address this issue, Yao proposed Three-way decision model [1–4],
which extends two-way decision theory by incorporating an additional choice:
boundary decision. Three-way decision theory presents the universe as positive,
negative and boundary regions. Many researchers have done further research
on it.

Yao et al. researched on the three-way decision semantically in DTRS and
proposed the three-way decision rough set model [2]. Liu et al. established a
novel three-way decision model based on an incomplete system [5]. Yao proposed
sequential three-way decisions to make a definite decision of acceptance or rejec-
tion for some uncertain samples [6]. Xu et al. proposed the single-object stream-
computing based three-way decisions algorithm (SS3WD), it aims at solving
challenges results from simultaneous addition and deletion of objects [7]. Gao
and Yao introduced four actionable strategies to the trisecting-and-acting three-
way decision model according to action benefit and action cost [8]. Qian and
Dang solved the attribute reduction problem for sequential three-way decisions
under dynamic granulation [9]. Cabitza et al. proposed two methods aiming
at collective knowledge extraction from questionnaires with ordinal scales and
dichotomous questions based on a three-way decision procedure and a statistical
method [10].

In recent years, The three-way decision was widely used in the real life, such
as spam filtering [11,12], text classification [13], rubust classification [14], medical
decision-making [15], Parkinson’s disease detection [16], management theory [17],
risk preferences of decision-making [18], image data analysis [19,20], uncertainty
management [21,22], oil exploration decision [23], sentiment analysis of text
[24], cost-sensitive software defect prediction [25], cost-sensitive face recognition
[26], conflict analysis [27], clustering analysis and covering reduction analysis
[14,28], incomplete data analysis [5,29], malware analysis [30], social networks
[31], recommendation systems [32] and etc.

The main superiority of three-way decision compared with two-way decision
is the utility of the boundary decision. In three-way decision theory, both the
positive and negative regions contain elements without uncertainty or fuzziness.
The boundary decision is regarded as a feasible choice of decision when the
available information for decision is too limited to make a proper decision. This
is similar to the human decision strategy in the practical decision problems. In
this case, how to reduce the boundary regions is a new problem [33].

Li et al. adopted the idea of tri-training algorithm [34] and put forward
a tri-training algorithm based on three-way decisions to reduce the boundary
regions [33]. We had proposed multi-view decision model based on constructive
three-way decision theory, which mines the global information of all samples to
classifying boundary samples [35]. Then, we had used three-way decision theory
to multi-granular mining for boundary regions [36]. We also adopted a cost-
sensitive method to deal with the boundary region [37].

Those researches mined new information to further investigate boundary
regions. For a practical decision problem, we may find diverse characteristics
between the types of decisions. People always take optimistic decision using
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these characteristics, while other decision may use different characteristics.
Representative characters of a decision are unique. People will take different
types of decision according to different representative characters. Namely, The
feature representations of each decision are different and important. Because of
deep architecture of human brain, the last few years have seen significant inter-
est in “deep” learning algorithms that learn layered, hierarchical representations
of high-dimensional data. The cognition process is hierarchical and abstract in
layers. Making the right decision at the most optimal level is also a crucial issue.

In this paper, we propose a method to process boundary regions based on
Hierarchical Feature Representation (HFR − TWD). We firstly divide all sam-
ples into three regions by MinCA. Then samples in positive regions and negative
regions respectively construct hierarchical feature representation. The best fea-
ture representation of each class are selected using boundary region validating.
Finally, boundary samples in test set are divided according to best feature rep-
resentation of each class.

The paper is organized as follows: In Sect. 2, we introduce the related works.
In Sect. 3, we introduce a method to process boundary regions based on Hierar-
chical Feature Representation (HFR − TWD) in detail. In Sect. 4, we analyze
the experimental results. We draw our conclusion in Sect. 5.

2 Related Work

The three-way decisions model divides the universe into three regions accord-
ing to two thresholds (α, β). One region represents the set of elements with
membership grades are higher than α and these elements are accepted to be
instances of the concept modeled by the fuzzy set. Another region represents the
set of elements with membership grades are less than β and these elements are
rejected. The third region represents the set of elements that are between α and
β. These elements are neither accepted nor rejected to be instances of the con-
cept modeled by the fuzzy set. Zhang and Xing [38] proposed three-way decisions
model based on covering algorithm. Covering Algorithm (CA) is introduced to
forming the covers, three regions are formed according to these covers and does
not need any parameters. So, in this paper, we introduce MinCA to process
boundary regions. MinCA builds the min covers, and we will get more accurate
three regions according these min covers and does not need any parameters. The
following describes the detail of CA and MinCA.

Covering algorithm (CA) is a constructively supervised learning algorithm
that maps all samples in the data set to an n-dimensional sphere Sn. The sphere
neighborhoods are utilized to divide the samples. The CA can construct to neural
networks (NNs) based on the samples’ own characteristics.

Definition 2.1. Cover Algorithm (CA): Given a training samples set
X = {(x1, l1), (x2, l2), · · · , (xu, lu)}, where li means Label(xi) = li, which is the
set in u-dimensional Euclidean space. Ai = (A1

i , A
2
i , · · · , Aq

i ) is q-dimensional
characteristic attribute of the ith sample. We assume Cj =

⋃
Cj

i , i ∈ [1, 2, · · · ].
Cj represents all covers of the jth category samples. We can define the distance
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between sample i and the farthest similar point as d1(i) where the boundary does
not have any dissimilar points, the distance between sample i and the nearest
other as d2(i).

d2(i) = min{d(xi, xk)}, li �= lk, k ∈ [1, · · · , u] (1)
d1(i) = max{d(xi, xk)|d(xi, xk) < d2(i)}, li = lk, k ∈ [1, · · · , u] (2)

d(i) = (d1(i) + d2(i))/2 (3)

Then, Cj
i is the ith cover of class j which is constructed by xi and d(i). The

center of Cj
i is xi, the radius is d(i).

Definition 2.2. MinCA: We assume Cj =
⋃

Cj
i , i ∈ [1, 2, · · · ]. Cj represents

all Min covers of the jth category samples, when

d(i) = d1(i) (4)

The center of Min cover Cj
i is xi, the radius is d(i). C1 =

⋃
C1

i contains all
covered samples of class 1 and C2 =

⋃
C2

i contains all covered samples of class
2. So, C1 is positive region (POS), C2 is negative region (NEG). All uncovered
samples are in boundary regions (BND).

In MinCA model, it regards the max distance between the center and the
similar points as the radius [38]. The covers of MinCA model are smaller and
more precise. The positive region POS and the negative region NEG accurately
consist of those objects that we accept as satisfying the conditions and reject as
satisfying the conditions. More uncertain samples are divided into BND regions
for further precise decision. The difference between MinCA and CA is shown in
Fig. 1.

Fig. 1. The difference between MinCA and CA



A Method for Boundary Processing in Three-Way Decisions 127

3 A Method to Process Boundary Regions Based
on Hierarchical Feature Representation (HFR−TWD)

3.1 Hierarchical Feature Representation

Training samples are divided by MinCA into three regions C1, C2 and uncov-
ered samples, namely POS, NEG and BND. Then we will extract feature
representation rules from POS and NEG regions. Mutual information is able
to detect non-linear relationships among attributes. Therefore, we define mutual
information relation metric to obtain feature representation.

Definition 3.1. Mutual Information Relation Metric: R+/R−
Given a training samples set X = {x1, x2, · · · , xu}, Ai = (A1, A2, · · · , Aq) is
q-dimensional characteristic attribute of the sample. The information entropy of
feature As(s ∈ [1, · · · , q]) is defined as

H (As) = −
u∑

i=1

p (xi) log p (xi) (5)

The joint entropy of feature As and feature At(t ∈ [1, · · · , q]) is defined as

H
(
AsAt

)
= −

u∑

i=1

u∑

j=1

p (xi xj) log p (xi xj) (6)

The conditional entropy As to At is

H(As|At) = H(AsAt) − H(At) (7)

The mutual information relationship between feature As and feature At are
as follow:

I(As, At) = H(As) − H(As|At) = H(As) + H(At) − H(AsAt) (8)

So, we can get mutual information relation metric R+ using samples in POS
region, and get mutual information relation metric R− using samples in NEG
region, where rij = I(Ai, Aj) in R+/R− is the relationship between feature Ai

and feature Aj . To eliminate self-influence, we set rii = 1.
R+/R− is a fuzzy equivalence relation on POS/NEG.

Definition 3.2. Quotient Space A(λ): Define d(λ) is a metric (or distance)
function on R+/R−. Let

Rλ = {R+/R− � λ}, λ � 0 (9)

Rλ is an equivalence relation on attribute A.
Let A(λ) be a quotient space with respect to R+/R−.
Based on Quotient Space Theory, a family of quotient space {A(λ)|0 ≤ λ ≤ 1}

is an order-sequence under the inclusion relation of quotient sets. A(λ) forms a
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hierarchical structure with respect to attribute A. Thus, given fuzzy equivalence
relations on attribute A, we have a corresponding hierarchical feature represen-
tation on attribute A.

Therefore, m levels feature representation of POS class and n levels feature
representation of NEG class are obtained using mutual information relation met-
ric R+ and R− based on A(λ). Example 3.1 is the m levels feature representation
of car dataset’s [39] POS class.

Example 3.1. For car dataset, given attribute set A = {A1, A2, A3, A4, A5, A6}
and a fuzzy equivalence relation R+ on POS. R+ is represented by symmetric
matrix as follows (Table 1):

Table 1. A symmetric matrix R+ of A

rij*100 A1 A2 A3 A4 A5 A6

A1 100 1.010 0.041 0.310 0.330 1.250

A2 1.010 100 0.023 0.110 0.065 0.400

A3 0.041 0.023 100 0.019 0.022 0.012

A4 0.310 0.110 0.019 100 0.039 0.150

A5 0.330 0.065 0.022 0.039 100 0.059

A6 1.250 0.400 0.012 0.150 0.059 100

Let rij = I(Ai, Aj). Based on the distance we construct the quotient space
show below (Fig. 2).

Fig. 2. Hierarchical Feature Representation of car dataset

3.2 The Selection of Best Representation

In this section, we obtain hierarchical feature representation based on mutual
information relation metric of POS region and NEG region. Given m levels
feature representation of POS class(sub + (i), i ∈ [1, 2, · · · ,m]) and n levels
feature representation of NEG class(sub − (j), j ∈ [1, 2, · · · , n]) consist of m ∗ n
feature representation of all samples. Samples in boundary regions are validated
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based on each feature representation. The most accurate feature representation
is best representation.

Define a function L(xi, C
1, C2, sub) : Computing the shortest dis-

tance between xi and the center of cover in C1 and C2 using feature
representation(sub):

d1 = (xi,C1,sub), d2 = (xi,C2,sub)
if d1 < d2, return: 1
else return: 2

The process of validation is presented as Algorithm 1.

Algorithm 1. Validation (BND(X),m, n)
Input: BND(X) = {(x1, l1), (x2, l2), · · · , (xs, ls)}, where li means

Label(xi) = li,
Output: The best feature representation: best+ and best−

1 max=0;
2 for i = 1; i ≤ m; i + + do
3 for j = 1; j ≤ n; j + + do
4 int correct=0,error=0;
5 for xi, i = 1, · · · , s do
6 label1 = L(xi, C

1, C2, sub + (i));
7 label2 = L(xi, C

1, C2, sub − (j));
8 label3 = L(xi, C

1, C2, Ai);
9 if label1 == label2 || label1 == label3 then

10 labeli = label1;

11 else if label2 == label3 then
12 labeli = label3;

13 if Label(xi) == labeli then
14 correct+1;

15 else
16 error+1;

17 if max < correct then
18 best+ = i, best− = j, max= correct;

19 return best+ and best−;

3.3 Hierarchical Feature Representation Algorithm Based on Three
Way Decision

In this section, we propose a Hierarchical Feature Representation algorithm
based on Three Way Decision (HFR − TWD).

We firstly divide train samples into three regions: POS, NEG and BND
based on MinCA, which obtain mostly precise covers. Then we can get mutual
information relation metric R+ and R− using samples in POS and NEG regions.
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m levels feature representation of POS class and n levels feature representation
of NEG class are obtained. The samples in BND will be validated using m ∗ n
levels feature representation to select best representation best+ and best−.
Finally, test samples are divided into three regions, and samples in boundary
regions are examined by using best+ and best−.

The detail of HFR − TWD is presented as Algorithm 2.

Algorithm 2. Hierarchical Feature Representation algorithm based on
Three Way Decision(HFR − TWD)
Input: train samples X = {(x1, A1), (x2, A2), · · · , (xu, Au)} and test samples

Y = {y1
1 , y

1
2 , · · · , y2

1 , y
2
2 , · · · }, where yj

i means Lable(yi) = j
Output: POS samples(Lable(yi) == 1), NEG samples(Lable(yi) == 2)

1 //training:
2 train sample set X with attribute set A based on MinCA, generate Min cover

set C = {c11, c12, c13, · · · , c21, c22, c23, · · · };
3 delete covers where coverednumber < Nmin, then POS = C1 =

⋃
c1,

NEG = C2 =
⋃

c2;
4 for i=1, Ai in POS regions, i++ do
5 for j=1, Aj in NEG regions, j++ do
6 rij = I(Ai, Aj);
7 if i==j then
8 rii = 1;

9 get m levels feature representation of POS class and n levels feature
representation of NEG class based on Definition 3.1;

10 {best+, best−} = V alidation(BND(X),m, n);
11 //testing:
12 for all test samples Y = {yi} do
13 compute shortest distance d between yi and cover center;

14 if d < radius of nearest cover cj then
15 Lable(yi) = j;

16 else
17 lable1=L(yi, C

1, C2, best+);
18 lable2=L(yi, C

1, C2, best−);
19 lable3=L(yi, C

1, C2, Ai);
20 if lable1 == lable2 || lable1 == lable3 then
21 Lable(yi) = lable1;

22 else if lable2 == lable3 then
23 Lable(yi) = lable3;

4 Experiments

Our experiments are performed on two data sets from UCI Machine Learning
Repository [39]. Table 2 shows the details of the data sets. All the samples used in
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experiment have complete attribute values. All comparative experiments results
were published, we use these published results to evaluate our algorithm.

Table 2. Two data sets from UCI

Data Number of data Attributes Classes

spambase 4601 58 2

chess 3196 36 2

4.1 Best Feature Representation Selection

We divide all samples into three regions through MinCA, Table 3 shows the num-
ber of three regions on spambase dataset and chess dataset. Figure 3 shows, we
get 10 level feature representations of POS class and 10 level feature represen-
tations of NEG class, and the maximum correct number is 500 in spambase
dataset, we conclude that the best+ is sub+(9) and the best− is sub−(7). As for
chess dataset, we get 5 level feature representations of POS class and 4 level
feature representations of NEG class, the maximum correct number is 691 from
Fig. 4, so the best+ is sub+(4), the best− is sub−(2).

Table 3. The number of three regions

Data Number of data POS NEG BND

spambase 4601 2376 1432 793

chess 3196 1200 1087 909

Fig. 3. The number of correct categories on spambase dataset
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Fig. 4. The number of correct categories on chess dataset

4.2 Comparative Experiments

We firstly compare our algorithm with five algorithms on spambase dataset
and chess dataset. Those comparative algorithms are three-way decisions model
based on decision-theoretic rough set (DTRS) [1], Cost-sensitive three-way
decisions model based on CCA(CCTDM) [40], robustness three-way decisions
model based on CCA(R-TDM) [41] and Multi-granular three-way decision
algorithm(MGTD) [36]. All experiments are 10-fold cross-validation.

Comparative results are clearly shown in Fig. 5, Figure (a) indicts that the
accuracy of our algorithm is up to 96.9% on average on spambase dataset, and
it is superior to others. Figure (b) apparently indicts that the accuracy of our
algorithm is better than those five algorithms on chess dataset.

Fig. 5. The whole classification accuracy of 6 three-way decision models

Then, we compare the performance of our algorithm with some latest
algorithms on spambase dataset. Those comparative algorithms are integrated
particle swarm optimization based J48 algorithm (IPSO − J48) [11], artificial
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bee-based decision tree (ABBDT ) [42], SV M and SV M&K−mean [43]. And we
also compare the performance of our algorithm with other some latest algorithms
on chess dataset. Those comparative algorithms are a weighted entropy frequent
pattern mining (WEFPM) [44], iterative sampling based frequent itemset min-
ing (ISbFIM) [45], an attributes similarity-based K-medoids clustering tech-
nique (AS − KMC) [46], filter search strategy (relief-f) with an evolutionary
search algorithm (differential evolution) (RfDE) [47].

The comparative results are shown in Tables 4 and 5. From Table 4, we can
see that the test accuracy of our algorithm is higher than others on spambase
dataset. From Table 5, we can see that the best classification algorithm is RfDE
algorithm, but our algorithm is merely slightly lower than it.

Table 4. Classification accuracy on spambase dataset

Algorithm Accuracy (%)

ABBDT [42] 93.7

IPSO − J48 [11] 98.3

SVM [43] 96.1

SVM&K − mean [43] 98.0

HFR − TWD 98.9

Table 5. Classification accuracy on chess dataset

Algorithm Accuracy (%)

WEFPM [44] 93.2

ISbFIM [45] 89.0

AS − KMC [46] 94.8

RfDE [47] 97.1

HFR − TWD 96.9

5 Conclusion

In this paper, we proposed a method HFR − TWD to process boundary sam-
ples into a certain region. First of all, we utilize MinCA to divide all sam-
ples into three regions. Then, samples in POS and NEG respectively construct
hierarchical feature representation, we use these hierarchical feature representa-
tions to handle BND region, and we will get the best feature representations.
Finally, we use the best feature representations to handle boundary region in
testing process. Compared with five three way decision models and other latest
algorithms, the HFR − TWD can find the best hierarchical feature representa-
tions to effectively handle samples from boundary region. So, we can conclude
that the performance of HFR − TWD algorithm is better.
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Abstract. Multigranulation decision-theoretic rough sets (MDTRS) is
a workable model for real-world decision making. The fruitful research
achievements of the use of these models have been reported in dif-
ferent aspects. In most existing optimistic MDTRS models, the lower
and upper approximations are defined based on the strategy seek-
ing commonality while preserving differences, while pessimistic MDTRS
models based on the strategy Seeking commonality while eliminating
differences in the definitions of approximations. But in real life, one
may need different strategies in defining lower approximation and upper
approximation. This paper defines a new MDTRS approach in the frame-
works of multi-covering approximation spaces by using different strate-
gies in defining lower and upper approximation, namely, covering-based
optimistic-pessimistic multigranulation decision-theoretic rough sets. We
first explore a number of basic properties of the new model. Then,
we elaborate on the relationship between the proposed models and the
existing ones in literature and disclose the interrelationships of the new
models.

Keywords: Covering · Multigranulation
Decision-theoretic rough sets · Optimistic · Pessimistic

1 Introduction

Since Yao and Wong [1] proposed the notion of decision-theoretic rough sets
(DTRS), many researchers have been working on the theory. For example,
Herbert and Yao [2] explored the game-theoretic rough set by combining game
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theory with DTRS. Liu et al. [3] discussed a multiple-category classification app-
roach with decision-theoretic rough sets, which can effectively reduce misclassi-
fication rate. Yu et al. [4] studied an automatic method of clustering analysis
with the decision-theoretic rough set theory. Li et al. [5] studied an axiomatic
characterization of decision-theoretic rough sets. Jia et al. [6] proposed an opti-
mization representation of decision-theoretic rough set model and developed a
heuristic approach and a particle swarm optimization approach for searching
an attribute reduction with a minimum cost. Based on the DTRS, Yao [7,8]
presented a new decision-making method known as three-way decisions, where
a universe is divided into three pairwise disjoint regions, positive, negative and
boundary regions by using an evaluation function and a pair of thresholds. Three-
way decisions have been applied to many domains, such as email filtering [9],
cost-sensitive face recognition [10], recommender system design [11], and so on.

The study on decision-theoretic rough set in a multigranulation environment
is a new and interesting topic. Qian et al. [12] developed the multigranulation
decision-theoretic rough set and proved that it is a general framework of many
existing multigranulation rough set models. To tackle the problem of computa-
tional cost in calculating the approximation of a target set with larger scale data,
Qian et al. [13] proposed the combination of local rough sets with multigran-
ulation decision-theoretic rough sets to obtain local multigranulation decision-
theoretic rough sets (LMG-DTRSs) as a semi-unsupervised learning method. It
is proved to be an excellent solution for dealing with data that have limited
labels. However, those two models have their own limitations [14]: (1) All granu-
lar structures in those models are based on equivalence relations, hence they are
not suitable for coverings or neighborhoods based environments. (2) The models
evaluate the multigranulation approximations in a quantitative way, so they are
not suitable for the situations where general binary relations are considered. To
tackle the above problems, Liu et al. [15] have proposed optimistic multigranu-
lation decision-theoretic rough set model by employing the minimal descriptors
of elements in a multi-covering space. The model may help to build a more
reasonable and suitable decision environment for solving real world problems.
Although, the successful fruits have been achieved on MDTRS, we found that in
most existing optimistic MDTRS models [22–26], the lower and upper approxi-
mations are defined based on the strategy seeking commonality while preserving
differences, while pessimistic MDTRS models based on the strategy Seeking com-
monality while eliminating differences in the definitions of approximations. But
in real life, one may need different strategies in defining lower approximation
and upper approximation [16]. In order to enlarge the usage scope of MDTRS,
this paper proposed a new MDTRS model in the frameworks of multi-covering
approximation spaces by using different strategy when defining lower and upper
approximation, namely, covering-based optimistic-pessimistic multigranulation
decision-theoretic rough sets (OP-CMDTRS). The motivation of this paper is
outlined as follows.

– Two new fusion strategies are developed to deal with multi-source information
systems.
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– The models are constructed based on different strategies in defining lower
approximations and upper approximations instead of using the same strategy
adopted in the existing literatures.

The remainder of the paper is organized as follows. Section 2 reviews some
basic notions and notations. Section 3 proposes the OP-CMDTRS model and
discusses the interrelationships with the other generalized rough sets. Section 4
concludes the paper.

2 Preliminaries

In this section, some basic notions and notations will be reviewed.

2.1 Covering-Based Rough Sets

In this subsection, we will review some concepts related to the covering-based
rough sets.

Definition 1 [17]. Let U be a universe of discourse and C a family of nonempty
subsets of U . If ∪C = U , then C is called a covering of U . The ordered pair 〈U,C〉
is called a covering approximation space.

Definition 2 [19]. Let 〈U,C〉 be a covering approximation space, x ∈ U , then
mdC(x) = {K ∈ Cx| ∀S ∈ Cx(S ⊆ K ⇒ K = S)} is called the minimal descrip-
tion of x, where Cx = {K ∈ C| x ∈ K}.

2.2 Qian’s MGRS

In this subsection, we will briefly outline the definition of optimistic multi-
granulation rough sets.

Definition 3 [18]. Let K = (U,R) be a knowledge base, where R is a family
of equivalence relations on the universe U . Let A1, A2, ..., Am ∈ R, where m is a
natural number. For any X ⊆ U , its optimistic lower and upper approximations
with respect to A1, A2..., Am are defined as follows.

m∑

i=1

Ai
O(X) = {x ∈ U | [x]A1 ⊆ X or [x]A2 ⊆ X or · · · or [x]Am

⊆ X}
m∑

i=1

Ai
O(X) = ¬

m∑

i=1

Ai(¬X)

where ¬X denotes the complement set of X. (
m∑

i=1

Ai
O(X),

m∑

i=1

Ai
O(X)) is called

the optimistic multi-granulation rough sets of X. Here, the word optimistic
means that only a single granular structure is needed to satisfy the inclusion
condition between an equivalence class and a target concept when multiple inde-
pendent granular structures are available in the problem.
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2.3 Decision-Theoretic Rough Sets

In [8], Yao proposed the theory of three-way decisions. Compared with two-way
decisions, three-way decisions exhibit a third option, that is, non-commitment
in addition to acceptance and rejection. The theory of three-way decisions can
be described as follows.

Within the frame of three-way decisions, the set of states is given by
Ω = {X,¬X} (where ¬X denotes the complement of X), the set of actions
is given by A = {aP , aB , aN}, where aP , aB and aN represent the three actions
in classifying an object x, namely, deciding x ∈ POS(X), deciding x should be
further investigated x ∈ BND(X), and deciding x ∈ NEG(X). λPP , λBP and
λNP denote the loss incurred for taking actions of aP , aB and aN , respectively,
when an object belongs to X. Similarly, λPN , λBN and λNN denote the loss
incurred for taking the correspondence actions when the object belongs to ¬X.
By Bayesian decision procedure, for an object x, the expected loss R(a• | [x])
associated with taking the individual actions can be expressed as

R(aP |[x]) = λPP P (X|[x]) + λPNP (¬X|[x]),

R(aN |[x]) = λNP P (X|[x]) + λNNP (¬X|[x]),

R(aB|[x]) = λBP P (X|[x]) + λBNP (¬X|[x]).

Then the Bayesian decision procedure suggests the following three minimum-risk
decision rules.

(P1) If R(aP |[x]) ≤ R(aB |[x]) and R(aP |[x]) ≤ R(aN |[x]), decide x ∈
POS(X),
(N1) If R(aN |[x]) ≤ R(aP |[x]) and R(aN |[x]) ≤ R(aB |[x]), decide x ∈
NEG(X),
(B1) If R(aB|[x]) ≤ R(aP |[x]) and R(aB|[x]) ≤ R(aN |[x]), decide x ∈
BND(X).

By considering 0 ≤ λPP ≤ λBP < λNP and 0 ≤ λNN ≤ λBN < λPN , (P1)–(B1)
can be expressed concisely as:

(P2) If P (X|[x]) ≥ α and P (X|[x]) ≥ γ, decide x ∈ POS(X),
(N2) If P (X|[x]) ≤ γ and P (X|[x]) ≤ β, decide x ∈ NEG(X),
(B2) If P (X|[x]) ≤ α and P (X|[x]) ≥ β, decide x ∈ BND(X),

where:

α = λPN−λBN

(λPN−λBN )+(λBP −λPP ) ,

β = λBN−λNN

(λBN−λNN )+(λNP −λBP ) ,

γ = λPN−λNN

(λPN−λNN )+(λNP −λPP ) .
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If 0 ≤ β < γ < α ≤ 1, (P2)–(B2) can be rewritten as follows:

(P3) If P (X|[x]) ≥ α, decide x ∈ POS(X),
(N3) If P (X|[x]) ≤ β, decide x ∈ NEG(X),
(B3) If β < P (X|[x]) < α, decide x ∈ BND(X).

Based on the decision rules above, we obtain lower and upper approximations
of the decision-theoretic rough sets as follows.

PR(X) = {x ∈ U | P (X|[x]) ≥ α} and PR(X) = {x ∈ U | P (X|[x]) > β}.

3 Covering-Based Optimistic-Pessimistic
Multigranulation Decision-Theoretic Rough Sets

In the MGRS theory, two kinds of strategies are used when approximating
an observed concept. One is an optimistic strategy, i.e, Seeking commonality
while preserving difference [18], and another one is pessimistic strategy, i.e.,
Seeking commonality while eliminating differences [18]. Here, we employ the opti-
mistic strategy in the definition of lower approximation and pessimistic strat-
egy in the definition of upper approximation of decision-theoretic rough sets
in multi-covering approximation space 〈U,C〉. We refer to this type of DTRS,
covering-based optimistic-pessimistic multigranulation decision-theoretic rough
sets (called OP-CMDTRS).

Definition 4. Let 〈U,C〉 be a multi-covering approximation space and
C1, C2, · · · , Cn ∈ C, where n is a natural number. For any X ⊆ U , covering-
based optimistic-pessimistic multigranulation decision-theoretic rough lower and
upper approximations of X are defined as follows.

∑n

i=1
COP,α

i (X) = {x ∈ U | ∨n
i=1(P (X| ∩ mdCi

(x)) ≥ α)}

∑n

i=1
COP,β

i (X) = U − {x ∈ U | ∨n
i=1(P (X| ∩ mdCi

(x)) ≤ β)}
= {x ∈ U | ∧n

i=1(P (X| ∩ mdCi
(x)) > β)}

The pair (
∑n

i=1 COP,α
i (X),

∑n
i=1 COP,β

i (X) is called a covering-based optimistic-
pessimistic multigranulation decision-theoretic rough set.

Next, an example is given to explain the OP-CMDTRS models defined above.

Example 1. Let 〈U,C〉 be a multi-covering approximation space. C a fam-
ily of coverings on U and U = {x1, x2, x3, x4}. C1, C2 ∈ C are two
coverings on U such that C1 = {{x1, x2}, {x2, x3, x4}, {x3, x4}}, C2 =
{{x1, x3}, {x2, x4}, {x1, x2, x4}}.

Suppose X = {x1, x4}. According to the above definitions, we have the following
results.
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First, we calculate the minimal descriptions for each element under granular
structure C1, C2.

For C1:

∩mdC1(x1)= {x1, x2},
∩mdC1(x2)= {x2},
∩mdC1(x3) = ∩mdC1(x4)= {x3, x4}.

For C2:

∩mdC2(x1)= {x1},
∩mdC2(x2) = ∩mdC2(x4)= {x2, x4},
∩mdC2(x3)= {x1, x3}.

According to Definition 4, we obtain:

P (X| ∩ mdC1(x1)) = P (X∩(∩mdC1 (x1)))

P (∩mdC1 (x1))
=

1/4
1/2

= 1
2 = 0.5

P (X| ∩ mdC1(x2)) = 0,
P (X| ∩ mdC1(x3)) = 0.5,
P (X| ∩ mdC1(x4)) = 0.5,
P (X| ∩ mdC2(x1)) = 1,
P (X| ∩ mdC2(x2)) = 0.5,
P (X| ∩ mdC2(x3)) = 0.5,
P (X| ∩ mdC2(x4)) = 0.5.

If α = 0.6 and β = 0.3, by Definition 4, the following result is formed.

∑2
i=1 COP,0.6

i (X) = {x1},
∑2

i=1 COP,0.3
i (X) = {x1, x2, x3, x4}.

Proposition 1. Let 〈U,C〉 be a multi-covering approximation space and
C1, C2, · · · , Cn ∈ C, where n is a natural number. Covering-based optimistic-
pessimistic multigranulation decision-theoretic rough lower and upper approxi-
mations satisfy the following properties.

(1)
∑n

i=1 COP,α
i (∅) = ∅,

∑n
i=1 COP,β

i (∅) = ∅;

(2)
∑n

i=1 COP,α
i (U) = U ,

∑n
i=1 COP,β

i (U) = U .

Remark 1. Let 〈U,C〉 be a multi-covering approximation space and
C1, C2, · · · , Cn ∈ C, for any X ⊆ U , the following properties may not hold.

(1)
∑n

i=1 COP,α
i (X) ⊆ ∑n

i=1 COP,β
i (X);

(2)
∑n

i=1 COP,α
i (X) ⊆ X;

(3) X ⊆ ∑n
i=1 COP,β

i (X).

Example 2 explains Remark 1.
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Example 2 (Example 1 continued). If α = 0.6 and β = 0.51, we have that
∑2

i=1 COP,0.6
i (X) = {x1},

∑2
i=1 COP,0.51

i (X) = ∅,

then
∑n

i=1 COP,α
i (X) ⊆ ∑n

i=1 COP,β
i (X) and X ⊆ ∑n

i=1 COP,β
i (X) are not

hold.
If α = 0.5, we have that

∑2
i=1 COP,0.5

i (X) = U , then
∑n

i=1 COP,α
i (X) ⊆ X is

not satisfied.

Proposition 2. Let 〈U,C〉 be a multi-covering approximation space and
C1, C2, · · · , Cn ∈ C, where n is a natural number. For any X ⊆ U , covering-
based optimistic-pessimistic multigranulation decision-theoretic rough lower and
upper approximations satisfy the following two properties.

(1)
∑n

i=1 COP,α
i (X) = ∪n

i=1C
α
i (X);

(2)
∑n

i=1 COP,β
i (X) = ∩n

i=1C
β
i (X).

where Cα
i (X) = {x ∈ U | P (X| ∩ mdCi

(x)) ≥ α} and Cβ
i (X) = {x ∈ U | P (X| ∩

mdCi
(x)) ≥ β} are defined in [20].

Proof: It is obvious according to Definition 4 and Definition 3.1 in [20].

4 Relationships of the Models

We discuss some interesting interrelationships between the proposed models and
the existing ones.

Theorem 1. Let 〈U,C〉 be a multi-covering approximation space and
C1, C2, · · · , Cn ∈ C. For any X ⊆ U , we have that

(1)
∑n

i=1 COP,α
i (X) = O∑n

i=1 Ci
α
(X);

(2)
∑n

i=1 COP,β
i (X) = P∑n

i=1 Ci

β
(X);

where O∑n
i=1 Ci

α
(X) = {x ∈ U | P (X| ∩ mdC1(x)) ≥ α or · · · or P (X| ∩

mdCn
(x)) ≥ α}
P∑n

i=1 Ci

β
(X) = U − {x ∈ U | P (X| ∩ mdC1(x)) ≤ β or · · · or P (X| ∩

mdCn
(x)) ≤ β}

Proof: It is straightforward.

Theorem 2. Let 〈U,C〉 be a multi-covering approximation space and
C1, C2, · · · , Cn ∈ C. For any X ⊆ U , we have

(1) If α = 1,
∑n

i=1 COP,α
i (X) = FR∑n

i=1 Ci
(X);

(2) If β = 0,
∑n

i=1 COP,β
i (X) = FR∑n

i=1 Ci
(X).

where FR∑n
i=1 Ci

(X) and FR∑n
i=1 Ci

(X) are defined in [21].
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Proof: Here we only prove (1), the other parts can be proved in a similar way.
According to Definition 4, we have
∑n

i=1 COP,1
i (X) = {x ∈ U | ∨n

i=1(P (X| ∩ mdCi
(x)) ≥ 1)}

= {x ∈ U |P (X| ∩ mdC1(x)) = 1or · · · or
P (X| ∩ mdCn

(x)) = 1}
= {x ∈ U | ∩ mdC1(x) ⊆ Xor · · · or ∩ mdCn

(x) ⊆ X}
= FR∑n

i=1 Ci
(X).

This completes the proofs of Theorem 2.

Remark 2. Let 〈U,C〉 be a multi-covering approximation space, C1, C2, · · · ,
Cn ∈ C and C1 = {C11, C12, · · · , C1p}, C2 = {C21, C22, · · · , C2q}, ..., Cn =
{Cn1, Cn2, · · · , Cnl}, where p, q, . . . , l are all natural numbers. For any X ⊆ U ,
the follows may not satisfied.

(1)
∑n

i=1 COP,α
i (Cij) = Cij ,

(2)
∑n

i=1 COP,β
i (Cij) = Cij .

Remark 2 shows that for any element Cij in the coverings which construct the
given DTRS model, the lower or upper approximation of Cij in that model is
may not itself anymore, which is true in classical multigranulation rough set
model.

Example 3 is employed to explain Remark 2.

Example 3. Let 〈U,C〉 be a multi-covering approximation space, where
U = {1, 2, 3, 4}, C1, C2 ∈ C, C1 = {{1, 2}, {2, 3, 4}, {3, 4}}, C2 =
{{1, 3}, {2, 4}, {1, 2, 4}}. Let X = C11 = {1, 2}.

For C1:
mdC1(1) = {{1, 2}},
mdC1(2) = {{1, 2}, {2, 3, 4}},
mdC1(3) = mdC1(4) = {{3, 4}}

For C2:
mdC2(1) = {{1, 3}{1, 2, 4}},
mdC2(2) = mdC2(4) = {{2, 4}},
mdC2(3) = {{1, 3}}

Then

P (X| ∩ mdC1(1)) = P (X∩(∩mdC1 (1)))

P (∩mdC1 (1))
=

1/4
1/2

= 1
2 = 0.5,

P (X| ∩ mdC1(2)) = 0,
P (X| ∩ mdC1(3)) = 0.5,
P (X| ∩ mdC1(4)) = 0.5,
P (X| ∩ mdC2(1)) = 1,
P (X| ∩ mdC2(2)) = 0.5,
P (X| ∩ mdC2(3)) = 0.5,
P (X| ∩ mdC2(4)) = 0.5.
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If α = 0.6, β = 0.3, then
∑2

i=1 COP,0.6
i (C11) = {1, 2},

∑2
i=1 COP,0.3

i (C11) = U

Obviously, we have
∑2

i=1 COP,0.3
i (C11) = U �= C11 = {1, 2},

Theorem 3. Let 〈U,C〉 be a multi-covering approximation space and
C1, C2, · · · , Cn ∈ C. For any X ⊆ U and 0 ≤ β2 ≤ β1 < α1 ≤ α2 ≤ 1 we
have

(1)
∑n

i=1 COP,α2
i (X) ⊆ ∑n

i=1 COP,α1
i (X);

(2)
∑n

i=1 COP,β1
i (X) ⊆ ∑n

i=1 COP,β2
i (X).

Proof: We only prove (1), the part (2) can be proved in a similar way.
According to Definition 5, we have

∑n
i=1 COP,α2

i (X) = {x ∈ U | ∨n
i=1(P (X| ∩ mdCi

(x)) ≥ α2)}
∑n

i=1 COP,α1
i (X) = {x ∈ U | ∨n

i=1(P (X| ∩ mdCi
(x)) ≥ α1)}

If α1 ≤ α2, then for any i ∈ {1, 2, . . . , n}, we have

P (X| ∩ mdCi
(x)) ≥ α2 ≥ α1

Therefore,

{x ∈ U | ∨n
i=1(P (X| ∩ mdCi

(x)) ≥ α2)} ⊆
{x ∈ U | ∨n

i=1(P (X| ∩ mdCi
(x)) ≥ α1)}

i.e.
∑n

i=1 COP,α2
i (X) ⊆ ∑n

i=1 COP,α1
i (X).

Theorem 3 states that for the same concept with different values of α and β,
the corresponding approximations are different, i.e., the higher the value of α,
the lower the lower approximation, and the bigger the value of β, the bigger the
upper approximation.

Example 4 (Example 3 continued). Suppose α = 0.7 and β = 0.2, according
to Definitions 4, we have

∑2
i=1 COP,0.7

i (C11) = {1},
∑2

i=1 COP,0.2
i (C11) = {1, 3, 4}.

Obviously, we have
∑2

i=1 COP,0.7
i (C11) = {1} ⊂ ∑2

i=1 COP,0.6
i (C11) = {1, 2};

∑2
i=1 COP,0.2

i (C11) = {1, 3, 4} ⊂ ∑2
i=1 COP,0.3

i (C11) = U .

Theorem 4. Let 〈U,C〉 be a multi-covering approximation space and
C1, C2, · · · , Cn ∈ C. If C1, C2, · · · , Cn are all partitions, then for any X ⊆ U
and 0 ≤ β ≤ α ≤ 1 we have
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(1)
∑n

i=1 COP,α
i (X) =

n∑

i=1

A
OP,(α,β)
i (X) =

n∑

i=1

A
O,(α,β)
i (X);

(2)
∑n

i=1 COP,β
i (X) =

n∑

i=1

A
OP,(α,β)
i (X) =

n∑

i=1

A
P,(α,β)
i (X).

where
n∑

i=1

A
OP,(α,β)
i (X),

n∑

i=1

A
OP,(α,β)
i (X) are defined in [16] and

n∑

i=1

A
O,(α,β)
i (X),

n∑

i=1

A
P,(α,β)
i (X) are defined in [18].

5 Conclusion

In the present paper, we mainly discussed a kind of multigranulation decision-
theoretic rough set model in the multi-covering space by employing the new
strategy. We gave the properties of the proposed model. And we also found
some interrelationships between the proposed model and other existing models.
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Abstract. The tree based method is a conventional statistical method
that involves constructing a tree structure for a classification model
through recursively splitting a dataset by explanatory variables to mini-
mize some impurity criteria for the response variable. This tree structure
induces many if-then rules with product forms. In this paper, we study
a basic tree based approach — the classification and regression trees
(CART) method — based on a simulation model for data generation
and verification for induced rules. We compare CART with the statisti-
cal test rule induction method (STRIM) to clarify its performance and
problems. We also apply both methods to a real-world dataset and con-
sider their performances based on the simulation results.

1 Introduction

Activities of modern society are based around various network systems, which
produce massive datasets that are destroyed or stored with no use. Such datasets
contain diverse patterns and features of human activities. Nowadays, as efficient
and timely application of this information can inform business strategies, there
has been rapid development and expansion of data mining research and tech-
nology, particularly in areas concerning e-business. This paper focuses on a tree
based model often used among such data mining methods. The model is a statis-
tical method and constructs a classification model through recursively splitting
a dataset by explanatory variables to minimize some impurity criterion for the
response variable. The aim of splitting the dataset is to visually arrange the
dataset in a tree structure, which presents many if-then rules hidden in the
dataset and can indicate business strategies or information.

We previously proposed an if-then rule induction method called the statisti-
cal test rule induction method (STRIM) [1–9] which statistically interprets the
classical Rough Sets theory [10–13]. We studied the validity of STRIM based on
a simulation model for data generation and verification of induced rules (SM for
DG & VIR) and considered the differences and/or relationships between the rules
c© Springer Nature Switzerland AG 2018
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induced by the classical method and STRIM [1,3,5,9]. Specifically, the simula-
tion model was used to (1) generate the decision table using pre-specified rules in
a rule box and hypotheses for deciding the decision attribute’s value against the
condition attributes’ values generated by random numbers, (2) apply a chosen
rule induction method to the generated decision table, and (3) confirm whether
the applied method properly induced pre-specified if-then rules. That is, the sim-
ulation model can be used to examine the ability of any rule induction method
and to study the features of the chosen method.

In this paper, we choose the classification and regression trees (CART)
method [14] as the most basic tree-based approach. CART is usually used for
classification problems after inducing the classification tree which consists of
many if-then rules. We focus on the validity of its induced rules since their rules
indicate diverse patterns and features of human activities hidden behind the ana-
lyzed dataset and their patterns and features are useful for gaining new business
strategies. Specifically, we apply CART to the aforementioned simulation model
and examine its performance in rule induction since its performance in a simu-
lation has not yet been reported, except on a real-world dataset. The simulation
results clarify the following:

(1) CART tends to induce only some of the pre-specified rules and their sub-rules
with longer rule length due to the tree structure.

(2) CART cannot properly process the conflicting data and eliminate the indif-
ferent data in the dataset of interest due to the bisection method for the
dataset.

(3) The problems and features of (1) and (2) generate a large number of rules
with longer rule length in some cases more than the size of the dataset (the
decision table).

After the simulation experiment, CART and STRIM — which has been already
validated in a simulation — are applied to a real-world dataset and the resulting
rules are judged in consideration of the simulation results.

2 Simulation Model for Data Generation and Verification
of Induced Rules

In statistics, a dataset U = {u(i)|i = 1, ..., N = |U |} is collected from a popula-
tion of interest to estimate and/or infer properties and features of the population.
Here, u(i) is an object with several attributes, whose properties and features
contribute to the estimation and inference of the population. Let us denote an
observation system by S = (U,A, V ). Here, A is the set of an attribute and V is
the set of the attribute’s values; that is, V =

⋃
a∈A Va and Va is the set of the

value of attribute a. When randomly sampling u(i) from the population, each
attribute becomes a random variable with the respective attribute value as its
outcome.

Here, there are two main types of dataset, with a division between the
response and explanatory variables and those without it. In the former case,
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the set of attributes A is denoted A = C ∪ {D} to distinguish from the
latter case. Here, D is a decision attribute and the response variable, and
C = {C(j)|j = 1, ..., |C|} is the set of condition attribute C(j) and also C(j) is
an explanatory variable for the response variable. If D and C(j) are qualitative
variables, D denotes the random variable of the class of u(i) and is affected by
the set C of random variables C(j). Note, however, that CART can deal with
both qualitative and quantitative variables. This paper studies the CART’s per-
formance in rule induction dealing with qualitative variables and compares it to
the results of STRIM based on the system S = (U,A = C ∪ D,V ) called the
decision table in Rough Sets theory.

In the classical Rough Sets theory, the decision table is denoted as S =
(U,A = C ∪ {D}, V, ρ). Here, ρ: U × A → V and ρ is called an information
function. However, this paper does not need ρ since we recognize D and C(j) as
random variables and V as the set of their outcomes, that is, the sample space,
as described above.

Figure 1 outlines a SM for DG & VIR. Randomly sampling u(i) from the
population, the outcome of C = (C(1), ..., C(|C|)); that is, uC(i) = (vC(1)(i), ...,
vC(|C|)(i)) is obtained and becomes the input into the rule box. The rule box
transfers uC(i) to the output uD(i) using the rule box’s pre-specified rules and
hypotheses with regard to the output as shown in Table 1, which shows the
following three cases: (1) the uniquely determined case, (2) the indifferent case
(the rules are not specified at all the inputs), and (3) the conflicted case. Cases
(2) and (3) often happen in the real-world. The observer in Fig. 1 records u(i) =
(uC(i), uD(i)). NoiseC and NoiseD are introduced to adapt the model for the
real-world dataset. NoiseC adjusts the value of uC(i) = (vC(1)(i), ..., vC(|C|)(i))
or makes vC(j)(i) a missing value and NoiseD adjusts the value of uD(i).

Generating uC(i) = (vC(1)(i), ..., vC(|C|)(i)) using random numbers and trans-
forming it into uD(i) using the model shown in Fig. 1, U = {u(i) = (uC(i), uD(i))
|i = 1, ..., N = |U |} can be obtained and applied to any rule induction method to
investigate the extent to which the method induces the pre-specified rules. That
is, the system can be used to investigate the performance for any rule induction
method. To date, most conventional studies have applied rule induction meth-
ods to real-world datasets and judged the results only by the domain knowledge
before studying the method’s properties and features via the simulation with a
white rule box like that shown in Fig. 1.

Fig. 1. A simulation model for data generation and verification of induced rules. The
rule box contains if-then rules R(d, k): if CP (d, k) then D = d (d = 1, 2, ..., k = 1, 2, ...).
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Table 1. Hypotheses for the decision attribute value.

Hypothesis 1 uC(i) coincides with R(d, k), and uD(i) is uniquely determined
as D = d (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any R(d, k), and uD(i) can only be
determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several R(d, k) (d = d1, d2, ...), and their
outputs of uC(i) conflict with each other. Accordingly, the
output of uC(i) must be randomly determined from the
conflicted outputs (conflicted data)

3 Examination of CART on SM for DG & VIR

CART is the most basic tree based model approach and can be adapted into other
methods such as the multiple additive regression tree (MART) [15], bagging
(bootstrap aggregating) [16], and random forests [17]. We now examine CART
on SM for DG & VIR.

3.1 The CART Method

CART is implemented using a statistical software package and is used across
various fields including medical science, environmental science and econometrics.
We briefly describe the method with qualitative variables for use in the following
section (see literature [14] for more detail).

CART recursively splits U in S = (U,A = C ∪D,V ) and constructs a binary
tree T for classification as shown in Fig. 2, where T is a set of nodes tl; that is,
T = {tl|l = 1, ..., le}. Here, tl denotes a set of u(i) labeled l. The root node t = t1
includes the whole set of U . The split rule s1 divides t1 into two sections: the left
node tL = t2 satisfying s1 (y in Fig. 2) and the right node tR = t3 not satisfying
s1 (n in Fig. 2). Accordingly, |t| = |tL|+ |tR|. The split rule st repeatedly divides
t. A node t without st is called a terminal node and the set of terminal nodes is
denoted as T̃ . In Fig. 2, le = 9 and T̃ = {t4, t5, t7, t8, t9}.

The right size tree T is constructed using the following three procedures:

(1) A progression process to grow the tree:
A split rule st at t is selected based on an impurity criterion rc(t) such as
a classification error rate, Gini coefficient or entropy measure. For example,
an entropy measure is rc(t) = − ∑

1≤k≤|Va=D|
p(k|t) log p(k|t). Here, p(k|t) =

∑

uD(i)∈t

1(uD(i) = k)/|t|; 1(•) is a function taking 1 if the given in parentheses

is true, otherwise 0 and p(k|t) is the probability of the event uD(i) = k in t.
The impurity of t in T is R(t) = p(t)rc(t), where p(t) = |t|/|U |. Accordingly,
the reduction amount of the impurity by st can be defined as ΔR(st, t) =
R(t) − R(tL) − R(tR) and the following st should be selected to dominate
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the frequency of a specific D = d in t: s∗
t = max argst∈St

ΔR(st, t). This
procedure is repeated until t satisfies the pre-specified stopping condition,
such as ΔR(s∗

t , t) ≤ R∗. We denote the stopped tree Tmax.
(2) A receding process to prune the tree:

Let us define an adapting degree of T for the dataset as R(T ) =
∑

t∈T̃

R(t). As

T increases, R(T ) decreases. However, a too large T will produce overfitting
and cause large classification errors for the future dataset. Thus, Rα(T ) with
a penalty of the complexity parameter α is defined as Rα(T ) = R(T ) + α|T̃ |
and a subtree T (α) of Tmax satisfying T (α) = arg minT�Tmax Rα(T ) can be
found. Corresponding to the increasing α, 0 = α0 < α1 < α2 < ..., the
nesting sequence of subtree Tmax = T0 � T1 � ... � TJ = {t1} can be found.

(3) A process to select the best tree:
The cross-validation method can obtain the expectation of R(Tj) (j =
0, 1, ..., J) RCV (Tj) and the minimum RCV (Tj0): RCV (Tj0) = minj RCV (Tj).
However, the following Tj1 satisfying the one standard error (1SE) rule is
often used: RCV (Tj1) ≤ RCV (Tj0) + ŜE(RCV (Tj0)) where j1 is the maxi-
mum tree number satisfying the inequality and ŜE(RCV (Tj0)) is the esti-
mated standard deviation of RCV (Tj0).

Fig. 2. An example of tree T .

3.2 Simulation Experiment with CART

We conducted a simulation experiment of CART on SM for DG & VIR in
Fig. 1. Specifically, we specified the rules shown in Table 2 denoting, for example,
CP (1, 1) = 110000 with CP (1, 1) = (C(1) = 1) ∧ (C(2) = 1) as the condition
part of the if-then rule, where |C| = 6, Va = {1, 2, ..., 6} (a = C(j) (j = 1, ..., |C|),
a = D). Then, we generated vC(j)(i) (j = 1, ..., |C| = 6) with a uniform distri-
bution and formed uC(i) = (vC(1)(i), ..., vC(6)(i))(i = 1, ..., N = 10, 000). Next,
we transformed uC(i) into uD(i) using the pre-specified rules in Table 2 and
the hypotheses in Table 1 without generating NoiseC and NoiseD for a plain
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Table 2. An example of pre-specified rules in the rule box in Fig. 1.

R(d, k) CP (d, k) D = d

R(1, 1) 110000 D = 1

R(1, 2) 001100 D = 1

R(2, 1) 220000 D = 2

R(2, 2) 002200 D = 2

R(3, 1) 330000 D = 3

R(3, 2) 003300 D = 3

R(4, 1) 440000 D = 4

R(4, 2) 004400 D = 4

R(5, 1) 550000 D = 5

R(5, 2) 000500 D = 5

R(6, 1) 660000 D = 6

R(6, 2) 006600 D = 6

experiment. We randomly sampled NB = 5, 000 and formed a new dataset as
the decision table. Finally, we applied the sampled dataset to CART, which
was already implemented and freely presented as the function rpart in the R
programming language [18].

Table 3 shows an example of the output by rpart in the list structure obtained
through the procedures (1)–(3) mentioned in Sect. 3.1, although CART also out-
puts the tree structure. When the tree structure becomes too large and compli-
cated, the list structure becomes easier to handle and understand the analyzed
results. Table 3 shows the following:

(1) The node 1) at Line Number 1 (LN = 1) is the root t1 and contains 5, 000
data points. If the node is represented by D = 5 which has the most frequent
occurrence of uD(i) (i = 1, ..., NB), the 4, 139 objects of u(i) will be lost. The
occurrence rates of D = 1, ...6 are (0.17 0.16 0.17 0.17 0.17 0.16) respectively.

(2) LN = 2 shows that node 2) which is obtained by splitting the parent node
1) with the condition C(3) = 1 ∨ 2 ∨ 5 ∨ 6 (= s1), holds 3, 402 objects of u(i)
satisfying the condition, and if the node is represented by the most frequent
occurrence attribute value D = 1, then the node will lose 2, 701 objects of
u(i). The same applies hereafter.

(3) LN = 5 shows that node 16) is a terminal node obtained by splitting the
parent node 8) with the condition C(4) = 1. It holds 143 objects of u(i)
satisfying the condition and can be represented by D = 1 permitting the loss
of 10 objects of u(i). By tracing the nodes 16) → 8) → 4) → 2) accumulating
and arranging the split conditions, we obtain (C(4) = 1) ∧ (C(3) = 1) ∧
(C(4) = 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5) ∧ (C(3) = 1 ∨ 2 ∨ 5 ∨ 6) = (C(3) = 1) ∧ (C(4) = 1).
That is, the following product form of an if-then rule with rule length 2
(RL = 2) is obtained: if (C(3) = 1) ∧ (C(4) = 1) then D = 1.



154 Y. Kato et al.

Table 3. An example of the output by rpart.

Line Output Node Information
Number (node), split, n, loss, yval, (yprob), * denotes terminal node

1 1) root 5000 4139 5 (0.17 0.16 0.17 0.17 0.17 0.16)
2 2) C3=1,2,5,6 3402 2760 1 (0.19 0.18 0.13 0.14 0.18 0.17)
3 4) C4=1,2,3,4,5 2827 2263 1 (0.2 0.2 0.14 0.14 0.19 0.13)
4 8) C3=1 676 443 1 (0.34 0.14 0.12 0.14 0.12 0.13)
5 16) C4=1 143 10 1 (0.93 0.014 0.014 0 0.021 0.021) *
6 17) C4=2,3,4,5 533 433 1 (0.19 0.18 0.15 0.18 0.14 0.16)
6 34) C1=2,3,5 276 209 2 (0.15 0.24 0.2 0.13 0.16 0.12)
7 68) C2=1,3,6 147 106 3 (0.14 0.2 0.28 0.15 0.088 0.14) *
8 69) C2=2,4,5 129 92 2 (0.16 0.29 0.1 0.12 0.25 0.093)
... ... ... ...
136 123) C2=6 7 2 6 (0 0.14 0 0.14 0 0.71) *
137 31) C3=4 130 11 4 (0.0077 0.015 0.023 0.92 0.015 0.023) *

Table 4. Arrangement of induced rules for each D by rule length.

D = d Number of rules by rule length

1 2 3 4 5 6 Total

1 0 1 0 86 458 792 1,337

2 0 1 0 159 94 1,296 1,550

3 0 2 0 75 222 0 299

4 0 1 0 150 96 1,296 1,543

5 0 1 4 237 36 0 278

6 0 1 0 44 60 504 609

Total 0 7 4 751 966 3,888 5,616

(4) LN = 7 also shows a terminal node and derives the if-then rule: if (C(1) =
2 ∨ 3 ∨ 5) ∧ (C(2) = 1 ∨ 3 ∨ 6) ∧ (C(3) = 1) ∧ (C(4) = 2 ∨ 3 ∨ 4 ∨ 5) then
D = 3 by tracing node 68) → 34) → 17) → 8) → 4) → 2), accumulating and
arranging the split conditions. This rule contains 36 rules of the product form
with RL = 4 such as if (C(1) = 2) ∧ (C(2) = 1) ∧ (C(3) = 1) ∧ (C(4) = 2)
then D = 3.

Arranging the if-then rules contained in Table 3 with the product form pro-
duces the amount of rules for each D by RL, as shown in Table 4, which is
then compared with the specified rules in Table 2. Table 4 has the following
implications:

(i) CART induced seven rules with RL = 2. Six of the seven coincided with
the specified rules: R(1, 2), R(2, 2), R(3, 2), R(4, 2), R(5, 2), and R(6, 2) in
Table 2. The other at D = 3 was the rule: if (C(3) = 4) ∧ (C(4) = 3) then
D = 3 and did not coincide with a pre-specified rule.
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(ii) Excluding the six rules, CART induced unnecessary and/or partial rules
with respect to the pre-specified rules, amounting to 5, 610 from the decision
table of |U | = 5, 000 each of which can be recognized as an if-then rule of
RL = 6. That is, CART may create new unrelated rules from the decision
table while arranging the decision table and inducing rules from it.

Implication (i) is inferred as follows. As mentioned in (3) of Table 3, CART
split the root node and induced the rule R(1, 2): if (C(3) = 1)∧ (C(4) = 1) then
D = 1. By contrast, the data not satisfying (C(3) = 1), that were satisfying
C(3) = 1̄ = 2 ∨ 3... ∨ 6 were used for inducing the rule if (C(3) = 2 ∨ 3... ∨ 6) ∧
... ∧ (C(1) = 1) ∧ (C(2) = 1) then D = 1, which was included in the rule set of
D = 1 of RL = 3, ..., 6 in Table 4. Thus, CART induces only the partial rule of
R(1, 1). Figure 3 is a simplified illustration of this process. The same reasoning
applies to the rules for D = 2, ..., 6.

Generally, tree based approaches, including CART carry the restriction
that U(R(j1, 1)) ∩ U(R(j2, 2)) = φ, (j1, j2 = 1, ..., |Va=D|, j1 	= j2), where
U(R(j1, 1)) is the subset of U satisfying R(j1, 1). Accordingly, they cannot
express the conflict rules. Real-world datasets include not only the conflicting
data but also the indifferent data (see Table 1). In addition, this approach cannot
eliminate the indifferent data.

From the above considerations of implication (i), the tree based approach
will cause, for example, C(1) = 1̄ = 2 ∨ 3... ∨ 6, ..., C(6) = 1̄ = 2 ∨ 3... ∨ 6, which
is why CART caused more rules than |U | = 5, 000 (see implication (ii)).

Fig. 3. Simplified Tree diagram derived from Table 3.

4 Experimental Studies of STRIM

We proposed STRIM [1–9] which statistically interprets the classical Rough Sets
theory and we studied its validity based on the model shown in Fig. 1 before
applying it to a real-world dataset to confirm its usefulness. The outline of the
algorithm is shown in C-language style in Fig. 4 (details in [8,9]). At LN(Line
Number) = 8–9, for each decision attribute value di, the statistically indepen-
dent condition attributes against di are reducted. At LN = 10, the function
rule check() (the body is at LN = 19–33) systematically forms a trying rule by
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Line Algorithm to induce if-then rules by STRIM with a reduct function
Number

1 int main(void) {
2 int rdct max[|CV|]={0,. . . ,0}; //initialize maximum value of C(j)
3 int rdct[|CV|]={0,. . . ,0}; //initialize reduct results by D=l
4 int rule[|C|]={0,...,0}; //initialize trying rules
5 int tail=-1; //initialize value set
6 input data; // set decision table
7 for (di=1; di<=|D|; di++) {// induce rule candidates every D=l
8 attribute reduct(rdct max)
9 set rdct[ck] ; // if (rdct max[ck]==0) {rdct[ck]=0; }else {rdct[ck]=1; }
10 rule check(rcdct, redct max, tail, rule); // the first stage process
11 }// end di
12 arrange rule candidates // the second stage
13 }// end main
14 int attribute reduct(int rdct max[]) {
15 make contingency table for D=l vs. C(j)
16 Test H0(j,l);
17 if H0(j,l) is rejected then set rdct max[j,l]=jmax else rdct max[j,l]=0; //

jmax:the attribute value of the maximum frequency
18 }// end of attribute reduct
19 int rule check(int rdct[], int rdct max[], int tail,int rule[]) {// the first stage

process
20 for (ci=tail+1; cj<|C|; ci++) {
21 for (cj=1; cj<=rdct[ci]; cj++) {
22 rule[ci]=rdct max[cj]; // a trying rule set for testing
23 count frequency of the trying rule; // count n1, n2, ...
24 if (frequency>=N0) {//sufficient frequency ?
25 if (|z|>3.0) {//sufficient evidence ?
26 add the trying rule as a rule candidate
27 }// end of if |z|
28 rule check(ci,rule)
29 }// end if frequency
30 }// end cj
31 rule[ci]=0; // trying rules reset
32 }// end ci
33 }// end rule check

Fig. 4. An algorithm for STRIM including a reduct function.

the dimension rule[] (condition part of a rule CP ). At LN = 25, we examine the
degree of the validity for the trying rule by the z-value which is the degree of bias
in the frequency distribution of D supposing the standard normal distribution.
This is used to select the rule as a candidate. The selected candidates are finally
arranged into the induced rules at LN = 12.

Table 5 shows that STRIM with the dataset corresponding to Table 3 induced
all the rules specified in Table 2. For example, R(7) in Table 5 coincides with
those at LN = 5 in Table 3. The frequency distribution of D (n1, ..., n6) =
(133, 2, 2, 0, 3, 3) is extremely biased at D = 1 representing the decision attribute
although CART shows the rates in place of the frequency distribution. The other
frequencies (n2, ..., n6) = (2, 2, 0, 3, 3) may have been caused by the conflict. The
accuracy, coverage and p-value corresponding to the z-value are also shown.

Let us consider why large differences exist between the rule induction results
by CART and STRIM. As mentioned above, STRIM systematically explores the
condition part of an if-then rule as CP , statistically tests whether the frequency
distribution (n1, ..., n6) of the U(CP ) has bias or not and induces the set of rules
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Table 5. Induced rules by STRIM for the dataset corresponding to Table 3.

Induced rule R(i) Condition

part C

D p-value(z) (n1,..,n6) Accuracy Coverage

1 66000 6 1.38E−160(26.98) (1, 2, 2, 3, 1, 149) 0.9430 0.1865

2 33000 3 5.45E−151(26.15) (0, 0, 139, 1, 1, 1) 0.9789 0.167

3 00220 2 3.17E−145(25.63) (2, 138, 1, 2, 1, 1) 0.952 0.1673

4 00660 6 1.27E−137(24.94) (6, 1, 4, 2, 3, 137) 0.895 0.171

5 11000 1 8.81E−133(24.49) (126, 1, 1, 0, 1, 0) 0.977 0.148

6 00550 5 2.16E−131(24.36) (1, 1, 1, 2, 133, 3) 0.943 0.154

7 00110 1 1.24E−130(24.29) (133, 2, 2, 0, 3, 3) 0.930 0.156

8 55000 5 1.35E−129(24.19) (1, 0, 0, 2, 130, 4) 0.949 0.151

9 00330 3 1.59E−127(23.99) (3, 3, 130, 2, 2, 3) 0.909 0.157

10 22000 2 6.93E−124(23.64) (0, 116, 1, 1, 2, 1) 0.959 0.141

11 44000 4 4.35E−123(23.57) (2, 2, 0, 123, 2, 4) 0.925 0.147

12 00440 4 1.74E−117(23.01) (1, 2, 3, 119, 2, 3) 0.915 0.143

Table 6. Arrangement of induced rules by CART for the Rakuten travel dataset.

D = d Number of rules by rule length

1 2 3 4 5 6 Total

1 1 0 2 20 22 0 45

2 0 0 20 95 112 306 533

3 0 0 3 43 24 324 394

4 0 0 5 43 75 48 171

5 0 1 0 17 24 0 42

Total 1 1 30 218 257 678 1185

with a high p-value. In this process, the conflicting data partially included in the
U(CP ) hardly contributes to bias and the U(CP ) supported by the indifferent
dataset can be easily removed as shown in Table 5, since such a dataset barely
causes bias. Even in the case when NoiseC and NoiseD are contaminated in u(i)
with a high percentage, STRIM has a high rate of inducing the pre-specified rules.
That is, in terms of rule induction, STRIM is robust against such noises [4].

On the other hand, tree based approaches, including CART divide the given
dataset into many parts recursively thus splitting the parts based on the criterion
of the impurity where each part of the dataset included in the terminal node
induces rules. However, there is no way to properly remove the rules controlled
by the indifferent data or to handle the conflicting data, which induce many
meaningless rules as shown in Table 4 and Fig. 3. However, the criteria inducing
rules by the bias of STRIM and the reduction of the impurity of CART use the
same concept so CART partially induces the same rules as STRIM.
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Table 7. Induced rules for the Rakuten dataset by STRIM.

Induced rule R(i) Condition part C D p-value(z) (n1,..,n6) Accuracy Coverage

1 005050 5 0.0(46.31) (6, 4, 6, 74, 662) 0.88 0.65

2 055000 5 0.0(44.28) (9, 9, 9, 46, 594) 0.89 0.59

3 005005 5 0.0(41.28) (6, 3, 5, 27, 488) 0.92 0.48

4 000010 1 0.0(40.72) (634, 175, 26, 4, 0) 0.76 0.64

5 040040 4 5.90E−183(28.82) (7, 22, 39, 338, 60) 0.73 0.34

6 000044 4 3.92E−166(27.44) (8, 35, 57, 380, 110) 0.64 0.39

7 030030 3 1.45E−164(27.31) (43, 109, 407, 88, 2) 0.63 0.40

8 004004 4 6.28E−138(24.97) (10, 19, 39, 296, 81) 0.67 0.30

9 020000 2 1.02E−84(19.47) (146, 344, 168, 28, 1) 0.50 0.34

CART 050050 5 5.77E−281(35.80) (1, 2, 24, 147, 511) 0.75 0.51

5 Studies with a Real-World Dataset

The Rakuten Institute of Technology provides an open dataset of Rakuten Travel
[19]. This dataset contains about 6, 200, 000 questionnaire survey ratings A =
{C(1) = Location, C(2) = Room, C(3) = Meal, C(4) = Bath (Hot Spring),
C(5) = Service, C(6)=Amenity, D = Overall } for about 130, 000 travel facilities
using a set of categorical values Va = {Dissatisfied (1), Somewhat dissatisfied (2),
Neither satisfied nor dissatisfied (3), Satisfied (4), Very Satisfied (5)}, ∀a ∈ A,
that is, |Va=D| = |Va=C(j)| = 5. We constructed a decision table of N = 10, 000
surveys by randomly selecting 2, 000 samples, each with D = m (m = 1, ..., 5),
from about 400, 000 surveys of the 2013–2014 dataset because there were heavy
biases with respect to the frequency of D = m. Finally we randomly sampled
NB = 5, 000 from the 10, 000 surveys and re-constructed the decision table.

We applied CART to the decision table and arranged the results shown in
Table 6 in the same way as Table 4. Table 6 shows the same tendency as Table 4.
That is, CART induced many rules with long rule length although the specified
rules of a real-world dataset were unknown.

We applied STRIM to the same dataset and obtained Table 7, which shows
the following:

(1) The rule lengths of all induced rules were less or equal than two. R(4)
coincides with the rule at D = 1 of RL=1 in Table 6.

(2) The rule at D = 5 of RL = 2 in Table 6 corresponds to R(1), R(2) or R(3) of
D = 5 in Table 7 so that the rule is specifically written as CART in Table 7.
Comparing with the z-value, accuracy and coverage of R(1), R(2) or R(3),
those of the CART rule in Table 7 was lower than the STRIM equivalents
except the coverage of R(3) whereas the other rules of D = 5 by CART were
included in the rules with RL ≥ 4. Specifically, STRIM finds R(3) independent
of that of CART. Accordingly, the rules of D = 5 by STRIM seems more
useful than those by CART.

(3) The rules induced by STRIM in Table 7 indicate that C(1) (Location) and
C(4) (Bath (Hot Spring)) can be commonly reducted through D = 1, ..., 5
while CART commonly induced many rules with RL ≥ 5 due to the lack of
the reduct function; all of these rules appear meaningless.
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Combining these considerations with the simulation experiment results, we
found that CART barely induces the proper or valid rules compared to those by
STRIM; however, we note that the proper and/or valid rules are unknown when
using a real-world dataset and can only be guessed using the domain knowledge.

6 Conclusion

Methods to extract and/or find knowledge and/or information from large
datasets are actively researched. We focused on CART as a basic tree based
approach with a response variable and explanatory variables. CART presents
their relationships in a tree structure and is used for classification problems.
Specifically, we investigated the validity and availability of CART for inducing
a tree structure in a simulation model of data generation and verification of
induced rules (SM for DG & VIR) under the condition that both variables took
qualitative values (although CART can also handle quantitative variables). We
then compared CART with STRIM expanding the classical Rough Sets theory.
We examined CART’s validity and performance in if-then rule induction in a
simulation experiment since the tree structure is a kind of if-then rule struc-
ture and can be easily transformed into the form of the rules. The following list
presents our key findings with respect to the SM for DG & VIR:

(1) CART is likely to induce a large number of rules with longer rule length
than those of the pre-specified rules and most of these appear meaningless.

(2) CART cannot properly handle the conflicting data nor effectively remove
the indifferent data.

(3) CART has no way of reducting the explanatory variables (the condition
attributes) that have nothing to do with the response variable (the decision
attribute).

(4) The cause of (1), (2) and (3) is that CART only recursively splits the subset
of the given dataset U based on the criterion reducing the impurity until
the subset meets the stop condition of the splitting. CART does not have
a reproducing and/or reusing process of the split subset data, and thus the
rules depend on the subset already split (see Fig. 3). By contrast, STRIM
does not split U and uses the subset of U any number of times to test a
trying rule with a clear criterion that the rule has bias.

(5) The criterion reducing the impurity by CART and the bias criterion by
STRIM are based on a common concept for rule induction and thus both
methods partially induce the same rules.

After considering the above findings, we applied CART to the real-world
dataset of Rakuten Travel and confirmed the same tendency as in the simulation
by comparing CART’s induced rules with those of STRIM. Note that judging
which rules induced by CART should be adopted would be very difficult without
conducting the simulation.
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Many tree based approaches derived from CART have been proposed such
as MART [15], Bagging [16], and Random Forests [17] and so on [20–22]. Future
work should study these methods in SM for DG & VIR to clarify their features
before applying them to real-world datasets.

Acknowledgements. We truly thank Rakuten Inc. for presenting Rakuten Travel
dataset [19].
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Abstract. The paper presents a new generation of Rseslib library - a
collection of rough set and machine learning algorithms and data struc-
tures in Java. It provides algorithms for discretization, discernibility
matrix, reducts, decision rules and for other concepts of rough set the-
ory and other data mining methods. The third version was implemented
from scratch and in contrast to its predecessor it is available as a sepa-
rate open-source library with API and with modular architecture aimed
at high reusability and substitutability of its components. The new ver-
sion can be used within Weka and with a dedicated graphical interface.
Computations in Rseslib 3 can be also distributed over a network.

1 Introduction

Rough set theory [15] was introduced by Pawlak as a methodology for data anal-
ysis based on approximation of concepts in information systems. Discernibility
is a key concept in this methodology, which is the ability to distinguish objects,
based on their attribute values. Along with theoretical research rough sets were
developed in practical directions as well. To facilitate applications software tools
implementing rough set concepts and methods have been developed. This paper
describes one of such tools.

Rseslib 3 is a library of rough set and machine learning algorithms and data
structures implemented in Java. It is the successor of Rseslib 2 used in Rough Set
Exploration System (RSES) [2]. The first version of the library started in 1993
and was implemented in C++. It was used as the core of Rosetta system [14].
Rseslib 2 was the first version of the library implemented in Java and it stands
for the core of RSES. The third version of the library was entirely redesigned
and all the methods available in this version were implemented from scratch.
The following features are distinguishing the version 3 from its predecessor:

– available as a library with an API
– open source distributed under GNU GPL license
– modular component-based architecture
– easy-to-reuse data representations and methods
– easy-to-substitute components
– available in Weka.
c© Springer Nature Switzerland AG 2018
H. S. Nguyen et al. (Eds.): IJCRS 2018, LNAI 11103, pp. 162–176, 2018.
https://doi.org/10.1007/978-3-319-99368-3_13
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As open source library of rough set methods in Java Rseslib 3 fills in an uncovered
gap in the spectrum of rough set software tools. The algorithms in Rseslib 3 can
be used both by users who need to apply ready-to-use rough set methods in
their data analysis tasks as well as by researchers interested in extension of the
existing rough set methods who can use the source code of the library as the
basis for their extended implementations. The library can be used also within the
following external tools: Weka [1], the dedicated graphical interface Qmak and
Simple Grid Manager distributing computations over a network of computers.

The library is not limited to rough sets, it contains and is open to concepts
and algorithms from other areas of machine learning and data mining. That is
related to another goal of the project which is to provide a universal library of
highly reusable and substitutable components at a very elementary level unmet
in open source data mining Java libraries available today.

Looking for analogous open source Java projects one can find Modlem1 and
Richard Jensen’s programs2. Modlem is a Weka package providing a covering
algorithm inducing decision rules. The algorithm contains some aspects of rough
set theory. Richard Jensen developed a number of programs in Java providing
various rough set methods, some of them are provided with their source code.

There are useful libraries of rough set methods developed in other program-
ming languages: RoughSets [18] in R and NRough [23] in C#. RoughSets package
was extended with RapidRoughSets [8] - an extension facilitating the use of the
package in RapidMiner, a popular java platform for data mining, machine learn-
ing and predictive analytics. There are a number of tools providing rough set
methods within graphical interface like RSES [2], Rosetta [14] or ROSE [17].

2 Data

The concept of the library is based on classical representation of data in machine
learning. It is assumed that a finite set of objects U , a finite set of conditional
attributes A = {a1, . . . , an} and a decision attribute dec are given. Each object
x ∈ U is represented by a vector of values (x1, . . . , xn). The value xi is the
value of the attribute ai on the object x belonging to the domain of values Vi

corresponding to the attribute ai: xi ∈ Vi. The type of a conditional attribute
ai can be either numerical, if its values are comparable and can be represented
by numbers Vi ⊆ R (e.g.: age, temperature, height), or nominal, if its values are
incomparable, i.e., if there is no linear order on Vi (e.g.: color, sex, shape).

The library contains many algorithms implementing various methods of
supervised learning. These methods assume that each object x ∈ U is assigned
with a value of the decision attribute dec(x) called a decision class and they
learn from the objects in U a function approximating the real function dec
on all objects outside U . At present the algorithms in the library assume
that the domain of values of the decision attribute dec is discrete and finite:
Vdec = {d1, . . . , dm}.

The library reads data from files in three formats: ARFF, CSV and RSES2.
1 https://sourceforge.net/projects/modlem.
2 http://users.aber.ac.uk/rkj/site/?page id=79.

https://sourceforge.net/projects/modlem
http://users.aber.ac.uk/rkj/site/?page_id=79
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3 Discretizations

Some algorithms require data in form of nominal attributes, e.g. some rule
based algorithms like the rough set based classifier. Discretization (known also
as quantization or binning) is data transformation converting data from numeric
attributes into nominal attributes. The library provides a number of discretiza-
tion methods. Each method splits domain of a numerical attribute into a number
of disjoint intervals. New nominal attribute is formed by encoding a numerical
value into an identifier of an interval.

The following discretization methods are available in Rseslib:

– Equal width intervals
– Equal frequency intervals
– Holte’s 1R algorithm [7]
– Entropy minimization (static and dynamic) [5]
– ChiMerge algorithm [10]
– Maximal discernibility (MD) heuristic (global and local) [13].

4 Discernibility Matrix

Computation of reducts is based on the concept of discernibility matrix [21].
The library provides 4 types of discernibility matrix. Each type is |U | × |U |
matrix defined for all pairs of objects x, y ∈ U . The values of discernibility
matrix M(x, y) are defined as the subsets of the set of conditional attributes:
M(x, y) ⊆ A. If a data set contains numerical attributes discernibility matrix
can be computed using either the original or the discretized numerical attributes.

The first type of discernibility matrix Mall depends on the values of the
conditional attributes only, it does not take the decision attribute into account:

Mall(x, y) = {ai ∈ A : xi �= yi}

In many applications, e.g. in object classification, we want to discern objects
only if they have different decisions. The second type of discernibility matrix
Mdec discerns objects from different decision classes:

Mdec(x, y) =

{
{ai ∈ A : xi �= yi} if dec(x) �= dec(y)
∅ if dec(x) = dec(y)

If data are inconsistent, i.e. if there are one or more pairs of objects with
different decisions and with equal values on all conditional attributes then
Mdec(x, y) = ∅ like for pairs of objects with the same decision. To overcome
this inconsistency the concept of generalized decision was introduced [16,20]:

∂(x) = {d ∈ Vdec : ∃y ∈ U : ∀ai ∈ A : xi = yi ∧ dec(y) = d}
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If U contains inconsistent objects x, y they have the same generalized
decision. The next type of discernibility matrix Mgen is based on generalized
decision:

Mgen(x, y) =

{
{ai ∈ A : xi �= yi} if ∂(x) �= ∂(y)
∅ if ∂(x) = ∂(y)

This type of discernibility matrix removes inconsistencies but discerns pairs
of objects with the same original decision, e.g. an inconsistent object from a con-
sistent object. The fourth type of discernibility matrix M both discerns a pair of
objects only if they have both the original and the generalized decision different:

M both(x, y) =

{
{ai ∈ A : xi �= yi} if ∂(x) �= ∂(y) ∧ dec(x) �= dec(y)
∅ if ∂(x) = ∂(y) ∨ dec(x) = dec(y)

Data can contain missing values. All types of discernibility matrix available
in the library have 3 modes to handle missing values [11]:

– different value — an attribute ai discerns x, y if the value of one of them on ai

is defined and the value of the second one is missing (missing value is treated
as yet another value): ai /∈ M(x, y) ⇔ xi = yi ∨ (xi = ∗ ∧ yi = ∗)

– symmetric similarity — an attribute ai does not discern x, y if the value of
any of them on ai is missing: ai /∈ M(x, y) ⇔ xi = yi ∨ xi = ∗ ∨ yi = ∗

– nonsymmetric similarity — asymmetric discernibility relation between x and
y: ai /∈ M(x, y) ⇔ (xi = yi ∧ yi �= ∗) ∨ xi = ∗.

The first mode treating missing value as yet another value keeps indiscernibility
relation transitive but the next two modes make it intransitive. Such a relation is
not an equivalence relation and does not define correctly indiscernibility classes in
the set U . To eliminate that problem the library provides an option to transitively
close an intransitive indiscernibility relation.

5 Reducts

Reduct [21] is a key concept in rough set theory. It can be used to remove some
data without loss of information or to generate decision rules.

Definition 1. The subset of attributes R ⊆ A is a (global) reduct in relation to
a discernibility matrix M if each pair of objects discernible by M is discerned by
at least one attribute from R and no proper subset of R holds that property:

∀x, y ∈ U : M(x, y) �= ∅ ⇒ R ∩ M(x, y) �= ∅
∀R′

� R ∃x, y ∈ U : M(x, y) �= ∅ ∧ R′ ∩ M(x, y) = ∅
If M is a decision-dependent discernibility matrix the reducts related to M

are the reducts related to the decision attribute dec.
Reducts defined in Definition 1 called also global reducts are sometimes too

large and generate too specific rules. To overcome this problem the notion of
local reducts was introduced [26].
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Definition 2. The subset of attributes R ⊆ A is a local reduct in relation to a
discernibility matrix M and an object x ∈ U if each object y ∈ U discerned from
x by M is discerned from x by at least one attribute from R and no proper subset
of R holds that property:

∀y ∈ U : M(x, y) �= ∅ ⇒ R ∩ M(x, y) �= ∅
∀R′

� R ∃y ∈ U : M(x, y) �= ∅ ∧ R′ ∩ M(x, y) = ∅
It may happen that local reducts are still too large. In the extreme situation

there is only one global or local reduct equal to the whole set of attributes A.
In such situations partial reducts [12] can be helpful.

Let P be the set of all pairs of objects x, y ∈ U discerned by a discernibility
matrix M : P = {{x, y} ⊆ U : M(x, y) �= ∅} and let α ∈ (0; 1).

Definition 3. The subset of attributes R ⊆ A is a global α-reduct in relation
to a discernibility matrix M if it discerns at least (1 − α) |P | pairs of objects
discernible by M and no proper subset of R holds that property:

|{{x, y} ⊆ U : R ∩ M(x, y) �= ∅}| ≥ (1 − α) |P |
∀R′

� R : |{{x, y} ⊆ U : R′ ∩ M(x, y) �= ∅}| < (1 − α) |P |
Let P (x) be the set of all objects y ∈ U discerned from x ∈ U by a discerni-

bility matrix M : P (x) = {y ∈ U : M(x, y) �= ∅} and let α ∈ (0; 1).

Definition 4. The subset of attributes R ⊆ A is a local α-reduct in relation to a
discernibility matrix M and an object x ∈ U if it discerns at least (1 − α) |P (x)|
objects discernible from x by M and no proper subset of R holds that property:

|{y ∈ U : R ∩ M(x, y) �= ∅}| ≥ (1 − α) |P (x)|
∀R′

� R : |{y ∈ U : R′ ∩ M(x, y) �= ∅}| < (1 − α) |P (x)|
The following algorithms computing reducts are available in Rseslib:

– All Global Reducts
The algorithm computes all global reducts from a data set. The algorithm
is based on the fact that a set of attributes is a reduct if and only if it is a
prime implicant of a boolean CNF formula generated from the discernibility
matrix [19]. First the algorithm calculates the discernibility matrix and then
it transforms the discernibility matrix into a boolean CNF formula. Finally it
applies an efficient algorithm finding all prime implicants of the formula using
well-known in the field of boolean reasoning advanced techniques accelerating
computations [4]. All found prime implicants are global reducts.

– All Local Reducts
The algorithm computes all local reducts for each object in a data set. Like
the algorithm computing global reducts it uses boolean reasoning. The first
step is the same as for global reducts: the discernibility matrix specified by
parameters is calculated. Next for each object x in the data set the row of
the discernibility matrix corresponding to the object x is transformed into a
CNF formula and all local reducts for the object x are computed with the
algorithm finding prime implicants.
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– One Johnson Reduct
The method computes one reduct with greedy Johnson algorithm [9]. The
algorithm starts with the empty set of attributes called the candidate set
and adds iteratively one attribute maximizing the number of discerned pairs
of objects according to the semantics of a selected discernibility matrix. It
stops when all objects are discerned and checks if any of the attributes in the
candidate set can be removed. The final candidate set is a reduct.

– All Johnson Reducts
A version of the greedy Johnson algorithm in which the algorithm branches
and traverses all possibilities rather than selecting one of them arbitrarily
when more than one attribute cover the maximal number of uncovered fields
of the discernibility matrix. The result is the set of the reducts found in all
branches of the algorithm.

– Global Partial Reducts
The algorithm finding global α-reducts described in [12]. The value α is the
parameter of the algorithm.

– Local Partial Reducts
The algorithm finding local α-reducts described in [12]. The value α is the
parameter of the algorithm.

The table below presents time (in seconds) of computing decision-related reducts
by particular algorithms on some data sets. Numerical attributes were discretized
with the local maximal discernibility method. The experiments were run on Intel
Core i7-4790 3.60 GHz processor.

Dataset Attributes Objects All global All local Global partial Local partial

Segment 19 1540 0.6 0.9 0.2 0.2

Chess 36 2131 4.1 66.1 0.2 0.4

Mushroom 22 5416 2.9 4.9 0.8 1.5

Pendigits 16 7494 10.4 23.2 2.2 4.3

Nursery 8 8640 6.5 6.7 1.5 2.8

Letter 16 15000 44.6 179.7 9.7 20.5

Adult 13 30162 62.1 70.1 18.0 33.0

Shuttle 9 43500 91.8 92.5 22.7 48.4

Covtype 12 387342 8591.9 8859.0 903.7 7173.7
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6 Rules Generated from Reducts

Reducts described in the previous section can be used in Rseslib to generate
decision rules. As reducts can be generated from a discernibility matrix using
generalized decision Rseslib uses generalized decision rules:

Definition 5. A decision rule indicates the probabilities of the decision classes
at given values of some conditional attributes:

ai1 = v1 ∧ . . . ∧ aip = vp ⇒ (p1, . . . , pm)

where pj is defined as pj = |{x∈U : xi1=v1∧...xip=vp∧dec(x)=dj}|
|{x∈U : xi1=v1∧...xip=vp}| .

A data object x is said to match a rule if the premise of the rule is satisfied
by the attribute values of x: xi1 = v1, . . . , xip = vp. Rseslib provides the option
to allow the values vk in the descriptors of a rule to be missing values: aik = ∗.
An object x satisfies a descriptor with missing value aik = ∗ if the value of the
attribute aik on x is missing: xik = ∗.

Each decision rule r: ai1 = v1 ∧ . . . ∧ aip = vp ⇒ (p1, . . . , pm) in Rseslib is
assigned with its support in the data set U used to generate rules:

support(r) =
∣∣{x ∈ U : xi1 = v1 ∧ . . . xip = vp

}∣∣
Rseslib provides two algorithms generating decision rules from reducts:

– Rules from global reducts (Johnson reducts are global reducts). Given a
set of global reducts GR the algorithm finds all templates in the data set:

Templates(GR) =

{ ∧
ai∈R

ai = xi : R ∈ GR, x ∈ U

}

For each template the algorithm generates one rule with the decision proba-
bilities pj as defined in Definition 5:

Rules(GR) = {t ⇒ (p1, . . . , pm) : t ∈ Templates(GR)}
– Rules from local reducts. For each object x ∈ U the algorithm applies the

selected algorithm LR : U �→ P(A) computing local reducts LR(x) for x and
generates the set of templates as the union of the sets of templates from all
objects in U :

Templates(LR) =

{ ∧
ai∈R

ai = xi : R ∈ LR(x), x ∈ U

}

The set of decision rules is obtained from the set of templates in the same
way as in case of global reducts:

Rules(LR) = {t ⇒ (p1, . . . , pm) : t ∈ Templates(LR)}
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7 Classification

7.1 Rough Set Classifier

Rough set classifier provided in Rseslib uses the Algorithms computing discerni-
bility matrix, reducts and rules generated from reducts described in the previous
sections. It enables to apply any of the discretization methods listed in Sect. 3 to
transform numerical attributes into nominal attributes. A user of the classifier
selects a discretization method, a type of discernibility matrix and an algorithm
generating reducts. The classifier computes a set of decision rules and the sup-
port of each rule in the training set.

Let Rules denote the computed set of decision rules. The rules are used in
classification to determine a decision value when provided with an object x to be
classified. First, the classifier calculates the vote of each decision class dj ∈ Vdec

for the object x:

votej(x) =
∑

{t⇒(p1,...,pm)∈Rules: xmatches t}
pj · support(t ⇒ (p1, . . . , pm))

Then the classifier assigns to x the decision with the greatest vote:

decroughset(x) = max
dj∈Vdec

votej(x)

7.2 K Nearest Neighbors/RIONA

Rseslib provides an originally extended version of the k nearest neighbors (k-nn)
classifier [24]. It can work with data containing both numerical and nominal
attributes and implements fast neighbor search that make the classifier work in
reasonable time for large data sets.

In the learning phase the algorithm induces a distance measure from a train-
ing set and constructs an indexing tree used for fast neighbor search. Optionally,
the algorithm can learn the optimal number k of nearest neighbors from the
training set. The distance measure is the weighted sum of distances between
values of two objects on all conditional attributes. The classifier provides two
metrics for nominal attributes: Hamming metric and Value Difference Metric
(VDM), and three metrics for numerical attributes: the city-block Manhattan
metric, Interpolated Value Difference Metric (IVDM) and Density-Based Value
Difference Metric (DBVDM). IVDM and DBVDM metrics are adaptations of
VDM metric to numerical attributes. For computation of the weights in the dis-
tance measure three methods are available: distance-based method, accuracy-
based method and a method using perceptron.

While classifying an object the classifier finds k nearest neighbors in the
training set according to the induced distance measure and it applies one of three
methods of voting for the decision by the found neighbors: equally weighted, with
inverse distance weights or with inverse square distance weights.

The algorithm has also the mode to work as RIONA algorithm [6]. This mode
implements a classifier combining the k-nn method with rule induction where
the nearest neighbors not validated by additional rules are excluded from voting.
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7.3 K Nearest Neighbors with Local Metric Induction

K nearest neighbors with local metric induction is the k nearest neighbors
method extended with an extra step - the classifier computes a local metric
for each classified object [22]. While classifying an object, first the classifier
finds a large set of the nearest neighbors (according to a global metric). Then
it generates a new, local metric from this large set of neighbors. At last, the k
nearest neighbors are selected from this larger set of neighbors according to the
locally induced metric and used to vote for the decision.

In comparison to the standard k-nn algorithm this method improves classi-
fication accuracy particularly for the case of data with nominal attributes. It is
reasonable to use this method rather for large data sets (2000 training objects
or more).

7.4 Classical Classifiers

Rseslib delivers also implementations of classifiers well-known in the machine
learning community (see [25] for more details):
C4.5 - decision tree developed by Quinlan
AQ15 - rule-based classifier with a covering algorithm
Neural network - classical backpropagation algorithm
Naive Bayes - simple Bayesian network
Support vector machine
PCA - classifier using principal component analysis
Local PCA - classifier using local principal component analysis
Bagging - metaclassifier combining a number of “weak” classifiers
AdaBoost - another popular metaclassifier.

8 Other Algorithms

Beside rough set and classification methods Rseslib provides many other machine
learning and data mining algorithms. Each algorithm is available as separate
class or method and easy to use as an independent component. That includes:
Data transformation: discretizations, missing value completion (non-invasive
data imputation by Gediga and Duentsch), attribute selection, numerical
attribute scaling, new attributes (radial, linear and arithmetic transformations)
Data filtering: missing values filter, Wilson’s editing, Minimal Consistent Sub-
set (MSC) by Dasarathy, universal boolean function based filter
Data sampling: with repetitions, without repetitions, with given class distri-
bution
Data clustering: k approximate centers algorithm
Data sorting: attribute value related, distance related
Rule induction: from global reducts, from local reducts, AQ15 algorithm
Metric induction: Hamming and Value Difference Metric (VDM) for nominal
attributes, city-block Manhattan, Interpolated Value Difference Metric (IVDM)
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and Density-Based Value Difference Metric (DBVDM) for numerical attributes,
attribute weighting (distance-based, accuracy-based, perceptron)
Principal Component Analysis (PCA): OjaRLS algorithm
Boolean reasoning: two different algorithms generating prime implicant from
a CNF boolean formula
Genetic algorithm scheme: a user provides cross-over operation, mutation
operation and fitness function only
Classifier evaluation: single train-and-classify test, cross-validation, multiple
test with random train-and-classify split, multiple cross-validation (all types of
tests can be executed on many classifiers).

9 Modular Component-Based Architecture

Providing a collection of rough set and machine learning algorithms is not the
only goal of Rseslib. It is designed also to assure maximum reusability and sub-
stitutability of the existing components in new components of the library. Hence
a strong emphasis is put on its modularity. The code is separated into loosely
related elements as small as possible so that each element can be used inde-
pendently of other elements. For each group of the elements of the same type a
standardizing interface is defined so that each element used in an algorithm can
be easily substituted by any other element of the same type. Code separation
and standardization is applied both to the algorithms and to the objects.

The previous sections presented the range of algorithms available in Rseslib.
Below there is a list of the objects in the library implementing various data-
related mathematical concepts that can be used as isolated components:
Basic: attribute, data header, data object, boolean data object, numbered data
object, data table, nominal attribute histogram, numeric attribute histogram,
decision distribution
Boolean functions/operators: attribute value equality, numerical attribute
interval, nominal attribute value subset, binary discrimination, metric cube,
negation, conjunction, disjunction
Real functions/operators: scaling, perceptron, radius function, multiplica-
tion, addition
Integer functions: discrimination (discretization, 3-value cut)
Decision distribution functions: nominal value to decision distribution,
numeric value to vicinity-based decision distribution, numeric value to inter-
polated decision distribution
Vector space: vector, linear subspace, principal components subspace, vector
function
Linear order
Indiscernibility relations
Distance measures: Hamming, Value Difference Metric, city-block Manhat-
tan, Interpolated Value Difference Metric, Density-Based Value Difference Met-
ric, metric-based indexing tree
Rules: boolean function based, equality descriptors rule, partial matching rule
Probability: gaussian kernel function, hypercube kernel function, m-estimate.
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The structure of rough set algorithms in Rseslib is one of the examples of the
component-based architecture. Each of the six modules: Discretization, Logic,
Discernibility, Reducts, Rules and Rough Set Classifier provides well-abstracted
algorithms with clearly defined interfaces that allow algorithms from other mod-
ules to use them as their components. It is easy to extend each module with
implementation of a new method and to add the new method as an alternative
in all components using the module.

The component-based architecture of Rseslib makes it possible to implement
unconventional combinations of data mining methods. For example, perceptron
learning is used as one of the attribute weighting methods in the algorithm
computing a distance measure between data objects. Estimation of value proba-
bility at given decision is another example of such combination: it uses k nearest
neighbors voting as one of the methods defining conditional value probability.

10 Tools

10.1 Rseslib Classifiers in Weka

Weka [1] is a very popular machine learning and data mining software equipped
with the system of packages updated independently of Weka core allowing people
all over the world to contribute to Weka and maintain easily their extensions.

Rseslib is such an official Weka package available from Weka repository.
Rseslib version 3.1.2 (the latest at the moment of preparing this paper) provides
three Rseslib classifiers with full configuration in Weka: rough set classifier, k
nearest neighbors/RIONA and k nearest neighbors with local metric induction.
These three classifiers can be used, tested and compared with other classifiers
within all Weka interfaces.

10.2 Graphical Interface Qmak

Qmak is a graphical user interface dedicated to Rseslib library. It is a tool for data
analysis, data classification, classifier evaluation and interaction with classifiers.
Qmak provides the following features:

– visualization of data, classifiers and single object classification
– interactive classifier modification by a user
– classification of test data with presentation of misclassified objects
– experiments on many classifiers: single train-and-classify test, cross-validation,

multiple test with random train-and-classify split, multiple cross-validation.

Qmak 1.0.0 (the latest at the moment of preparing this paper) with Rseslib 3.1.2
provides visualization of 5 classifiers: rough set classifier, k nearest neighbors,
C4.5 decision tree, neural network and principal component analysis classifier.
Visualization of a rough set classifier presents the decision rules of the classi-
fier (see Fig. 1). The rules can be filtered and sorted by attribute occurrence,
attribute values, length, support and accuracy. Visualization of classification by
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Fig. 1. Qmak project panel with instance of rough set classifier displayed

rough set classifier shows the decision rules matching a classified object enabling
the same types of filtering and sorting criteria as visualization of the classifier.

Users can implement new classifiers and their visualization and add them
easily to Qmak. It does not require any change in Qmak itself. A new classifier
can be added using GUI or in the configuration file.

Qmak is available from Rseslib homepage. Help on Qmak can be found in
the main menu of the application.

10.3 Computing in Cluster

Simple Grid Manager is a tool for running massive Rseslib-based experiments
on all available computers. It is the successor of the previous version of software
dedicated to Rseslib 2 [3]. Using SGM a user can create an ad-hoc cluster of
computers by running server part on one machine and client part on all machines
designated to run the experiments. The server reads experiment lists from script
files, distributes tasks between all available client machines, collects results of
executed tasks and stores them in a result file. The main features of the tool are:

– Executes train-and-test experiments with any set of classifiers from Rseslib
library (or user written classifiers compatible with Rseslib standards)

– Allows ad-hoc cluster creation without any configuration and maintenance
– Automatically resumes failed jobs and skips completed jobs in case of restart
– Uses robust communication that allows creation of a cluster over non-reliable

networks
– Enables utilizing multi-core architectures by executing many client instances

on one machine.
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Simple Grid Manager is available from Rseslib homepage. The guide on how to
run the distributed experiments can be found in [25].

11 Conclusions and Future Work

The paper presents the contents of Rseslib 3 library that is designed to be used
both by users who need to apply ready-to-use rough set or other data mining
methods in their data analysis tasks as well as by researchers interested in exten-
sion of the existing methods. More information on Rseslib 3 and its tools can be
found on the home page3 and in the user guide [25].

The development of Rseslib 3 is continued. The repository of the library4

is maintained by GitHub and is open to new contributions from all researchers
and developers willing to extend the library. There is ongoing work on a classifier
specialized in imbalanced data. The algorithms computing reducts are planned
to be added to Weka package as attribute selection methods. Discretizations
are also to be added to Weka package as separate algorithms. We are going to
add Rseslib to Maven repository and to investigate the possibility of connecting
Rseslib to RapidMiner.
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Abstract. In this paper, we present a composite framework of sequen-
tial three-way decisions to deal with hybrid data based on the fusion
of different granularities. According to the top-down manner, we con-
struct a multilevel composite granular structure by the addition of a
new attribute type, and define a general composite binary relation based
on three kinds of fusion strategies. At each level, the particular regions
including seven selections are considered to induce the acceptance, non-
commitment, and rejection rules. Some uncertain objects may be further
investigated by more types of attributes at the next level. In this way,
such multilevel processing of hybrid data naturally leads to the composite
sequential three-way decisions.

Keywords: Sequential three-way decisions · Hybrid data
Composite binary relation

1 Introduction

Compared to two-way decisions, three-way decisions provide three choices for
decision-making, namely, the decisions of acceptance, non-commitment, and
rejection [14]. As a useful tool to solve human problem and process informa-
tion, the basic notion of three-way decisions can be interpreted as a two-step
approach [16]. The first step with trisecting is to divide the objects into three
pair-wise disjoint regions, denoted as Region I, Region II, and Region III, respec-
tively. The second step with acting is to move objects among three regions by
appropriate strategies. In the past few years, such framework has attracted a lot
of researches associated with granular computing and rough sets [5,12].

More particularly, Yao and Deng [17] proposed sequential three-way decisions
with probabilistic rough sets under a cost-accuracy trade off, and further Yao
[15] introduced a sequential framework of three-way decisions with a high-level
c© Springer Nature Switzerland AG 2018
H. S. Nguyen et al. (Eds.): IJCRS 2018, LNAI 11103, pp. 177–186, 2018.
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conceptual understanding of granular computing. Moreover, Yang et al. [11]
presented a general sequential three-way decisions model with the incremental
processing. Based on such multilevel granularity of framework, the objects are
gradually assigned into different regions under the dynamic process of decision-
making. For clear understanding, we illustrate the multilevel sequential process-
ing in Pawlak rough sets [6]. As a special model of three-way decisions, rough
sets divide the objects into three ordered regions, namely, positive, boundary,
and negative regions. A multilevel granular structure can be constructed by a
nested sequence of attributes. Subsequently, at a particular level, seven possi-
ble situations resulting from the combinations of regions may be adopted, e.g.,
the objects only in boundary region are further investigated at the next level
of granularity due to the insufficiency of available information. In this way, we
generate the acceptance and rejection rules and make the delayed decisions with
the non-commitment rules at each level.

As an efficient and effective model, sequential three-way decisions have been
researched in many real-world applications, e.g., face recognition [3], deep neural
networks [4], attribute reduction [7], multi-class statistical recognition [9]. How-
ever, they seldom consider hybrid data, namely, so-called the composite decision
table [18], which includes various of attribute types, e.g., categorical, numerical,
interval-valued and set-valued, etc. With the advent of the era of Big Data, the
information of objects may be collected by various types of attributes. Note that,
the different types of data can provide us with a different specific descriptions on
objects. Hence, it is desired to mine the valuable information from such hybrid
data by the fusion strategy, e.g., the intersection composite relation [18] and the
quantitative composite relation [10]. To tackle the complex problem-solving for
hybrid data in granular computing, it is noteworthy that a multilevel granular
structure may be constructed from hybrid data. Moreover, we need to pay more
attention to the fusion of models associated with each type of attributes. In fact,
the sequential strategy may be a suitable approach for the composite data. It
leads to the multiple different models for the different hybrid data at the differ-
ent levels. Therefore, the main motivation of this paper is to combine sequential
three-way decision with hybrid data. We construct a multilevel composite gran-
ular structure by the addition of a new attribute type. Subsequently, we discuss
the general composite binary relations by the optimistic, neutral, and pessimistic
strategies. Finally, we propose a composite sequential three-way decisions model
with DTRS for dynamic hybrid data decision-making.

The remainder of this paper is organized as follows. Section 2 introduces the
basic notion of three-way decisions. In Sect. 3, a composite sequential three-way
decisions model is proposed for dynamically addressing hybrid data. Finally,
Sect. 4 concludes our proposal and points out the future work.

2 The Theory of Three-Way Decisions

In general, three-way decisions can be categorized into two classes, namely, the
static and dynamic three-way decisions. In fact, as a dynamic multilevel frame-
work associated with trisecting-and-acting, sequential three-way decisions are a
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natural extension of the former. In this section, we briefly introduce the notion
of such framework [11,15,16].

2.1 The Static Three-Way Decisions

For the trisecting task in three-way decisions, we consider a decision table DT =
(U,AT ). U is a finite nonempty set of objects; AT is a finite set of attributes.
Suppose v : U −→ L is an evaluation function, which estimates the decision
states of objects in U . Let (L,�) denotes a totally ordered set, (α, β) denotes a
pair of thresholds which satisfies α � β. Based on the evaluation function v(x)
in such a decision table DT , three pair-wise disjoint regions can be constructed
as follows:

Region I(v) = {x ∈ U | v(x) � α},

Region II(v) = {x ∈ U | α � v(x) � β}, (1)
Region III(v) = {x ∈ U | β � v(x)},

where Region I(v) ∪ Region II(v) ∪ Region III(v) = U . For simplicity, we denote
this three regions as R1, R2, and R3. Once we obtain a tri-partition based on
the evaluation-based approach, three different strategies for the acting task are
developed on R1, R2, and R3, respectively [16].

Based on the trisecting-and-acting framework, many generalizations of sets
can be explored with three-way decisions, such as rough sets [6]. As Yao stated
in [16], there are three structures for three regions, namely, unordered three
regions without any preferences, non-linearly ordered three regions, and linearly
ordered three regions. It is reasonable to state that, corresponding to R1, R2,
and R3, respectively, the positive, boundary, and negative regions in rough sets
belong to the third situation. By considering probabilistic rough sets, DTRS
is an improved Bayesian approach to three-way decisions based on the overall
minimum decision risk [13].

For categorical data, the equivalence relation RE is utilized to divide the
objects into the equivalence granules [x]. Given a concept X ⊆ U , we can regard
the condition probability Pr(X|[x]) = |X ⋂

[x]|
|[x]| as the evaluation function v(x) to

measure the similarity between [x] and X. Suppose a pair of thresholds (α, β)
satisfied 0 � β < α � 1. We give the representation of three regions in DTRS
model as follows:

POS(X) = {x ∈ U | Pr(X|[x]) � α},

BND(X) = {x ∈ U | β < Pr(X|[x]) < α}, (2)
NEG(X) = {x ∈ U | Pr(X|[x]) � β}.

In DTRS model, the positive, boundary, and negative regions generate three
rules with a yes, delayed and no decision, respectively. Moreover, we can system-
atically and mathematically calculate two thresholds by the well-known Bayesian
decision procedure. The details can be found in [13].
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2.2 The Dynamic Three-Way Decisions

With a dynamic idea for practical decision-making, we provide a general frame-
work of sequential three-way decisions by our previous work [11].

Suppose GS = (GS1, GS2, . . . , GSn−1, GSn) is the n levels granular struc-
ture, where GSi = (Ui, Gi, vi(x), αi, βi), i = 1, 2, . . . , n. At ith level, Ui denotes
the processing objects, Gi denotes a particular granulation, vi(x) denotes an
evaluation function and (αi, βi) denotes a pair of thresholds which satisfies
αi � βi (i.e., αi � βi ∧ ¬(βi � αi)). From first level to nth level in sequen-
tial three-way decisions, the ith level of three regions can be expressed as:

Ri
1(vi) = {x ∈ Ui | vi(x) � αi},

Ri
2(vi) = {x ∈ Ui | αi � vi(x) � βi}, (3)

Ri
3(vi) = {x ∈ Ui | βi � vi(x)},

where Ri
1(vi) ∪ Ri

2(vi) ∪ Ri
3(vi) = Ui, and Ui has seven selections resulting from

the combinations of R1, R2, and R3 depicted as follows:

(1) Ui = Ri−1
1 (vi−1),

(2) Ui = Ri−1
2 (vi−1),

(3) Ui = Ri−1
3 (vi−1),

(4) Ui = Ri−1
1 (vi−1) ∪ Ri−1

2 (vi−1),

(5) Ui = Ri−1
1 (vi−1) ∪ Ri−1

3 (vi−1),

(6) Ui = Ri−1
2 (vi−1) ∪ Ri−1

3 (vi−1),

(7) Ui = Ui−1 = Ri−1
1 (vi−1) ∪ Ri−1

2 (vi−1) ∪ Ri−1
3 (vi−1),

where i 	= 1, U1 = U is a set of original objects for processing. Seven situa-
tions may be selected by the objective. For example, in rough sets, for the most
of binary classification problems, the boundary region attracts our more con-
cern than other two regions. We need to investigate the objects of boundary
region at the next level. In a similar case, for multi-class, we may pay attention
to both boundary and negative regions. For above two different tasks, the sec-
ond and sixth options can be adopted with our sequential three-way decisions,
respectively. Moreover, the remaining five situations may also be carried out for
complex problem solving.

To sum up, structures, models and granularity for each level is a key issue
for the sequential hybrid data analysis. In next section, we will introduce a
novel multilevel composite granular structure to make a sequence of three-way
decisions by the fusion of granularities.

3 Composite Sequential Three-Way Decisions

In real-world decision-making, we may collect various types of data over time to
enhance our evidence for making the definite decisions of acceptance or rejec-
tion. In other words, we may tackle these data at each level in the sequential
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decision procedure. The different types of attributes may naturally lead to a
multilevel composite granular structure. We adopt the fusion strategy to obtain
the granules of objects. In this way, the composite sequential three-way decisions
are proposed for hybrid data sets.

3.1 The Multilevel Composite Granular Structure

Definition 1 (Composite decision table). let CDT = (U,AT = C
⋃

D,V, f)
be a composite decision table, where U is a nonempty finite set of objects; AT
is a nonempty finite set of attributes, C is a set of condition attributes, which
consists of m different types of attributes, C =

⋃m
k=1 Ck, where Ck is a subset

of C with the same attribute type and m denotes the number of attribute types,
D is a decision attribute set, C

⋂
D = ∅; V is a domain of the attributes,

V =
⋃

a∈ATVa; f = U × AT → V is an information function, f(xi, al) denotes
the attribute value of object xi under al, i = 1, 2, · · · , |U |, l = 1, 2, · · · , |AT |.

Table 1. A composite decision table CDT

U a1 a2 a3 a4 a5 d

x1 1 0.6 0.4 [0.4, 0.6] {0} 0

x2 2 0.3 0.5 [0.5, 0.7] {0,1} 1

x3 1 0.3 0.2 [0.6, 0.7] {0,2} 1

x4 2 0.5 0.3 [0.2, 0.4] {1,3} 0

x5 2 0.4 0.5 [0.2, 0.3] {0,3} 1

x6 2 0.3 0.4 [0.6, 0.7] {1,2} 0

Example 1. Table 1 is a composite decision table, which includes four types of
data, namely, categorical, numerical, interval-valued and set-valued data. Let
U = {x1, x2, x3, x4, x5, x6} be a set of objects, C = {a1, a2, a3, a4, a5} be a set
of attributes on U . In Table 1, C1 = {a1} is categorical data, C2 = {a2, a3} is
numerical data, C3 = {a4} is interval-valued data and C4 = {a5} is set-valued
data.

Based on a level-by-level addition strategy with the different attribute types,
it is easy to construct a multilevel composite granular structure in a composite
decision table.

Definition 2 (Multilevel composite granular structure). Given a composite deci-
sion table CDT = (U,AT = C

⋃
D,V, f), C =

⋃m
k=1 Ck. Let CDTi =

(Ui, ATi = Ci

⋃
D,Vi, fi) be the ith level of composite decision table CDT , where

Ci =
⋃i

j=1 Cj ⊆ C, i = 1, 2, . . . ,m. At the ith level, CRCi
i is the composite binary

relation and [x]Ci
is the composite granules based on CRCi

i . The ith level of
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composite granular structure CGSi and the multilevel composite granular struc-
ture CGS are denoted respectively as follows:

CGSi = (Ui, CRCi
i , Ci, [x]Ci

), (4)
CGS = (CGS1, . . . , CGSm−1, CGSm). (5)

Example 2. Given a composite decision table CDT shown in Table 1. According
to Definition 2, we can construct a nested sequence of attributes and a multilevel
composite granular structure as follows:

{a1} ⊂ {a1, a2, a3} ⊂ {a1, a2, a3, a4} ⊂ {a1, a2, a3, a4, a5}
Level − 1 : CGS1 = (U,CRC1

1 , C1 = {a1}, [x]C1),
Level − 2 : CGS2 = (U,CRC2

2 , C2 = {a1, a2, a3}, [x]C2),
Level − 3 : CGS3 = (U,CRC3

3 , C3 = {a1, a2, a3, a4}, [x]C3),
Level − 4 : CGS4 = (U,CRC4

4 , C4 = {a1, a2, a3, a4, a5}, [x]C4).

3.2 The Composite Binary Relation with the Fusion of Granularities

Under such multilevel composite granular structure CGS, the sequential three-
way decisions can be used to make a faster decision by a less overall cost of
decision process with the acceptance accuracy. Besides, the objects with various
types of attributes can be granulated by the multiple binary relations separately.
However, we should consider the solution of granulation for such hybrid data by
a single composite relation. Consequently, the fusion strategy will be investigated
with the composite binary relation CRCi

i at each level.
Given a composite decision table CDT = (U,AT = C

⋃
D,V, f), where C

contains m types of attributes, C =
⋃m

k=1 Ck. Suppose RCk is the binary relation
for the kth type of attributes, and [x]Ck is the granules induced by RCk . In this
case, we suggest three possible strategies by the different fusion approaches for
the granules [10].

For instance, we have three types of attributes C1, C2, and C3, and three
binary relations RC1 , RC2 , and RC3 at a particular level. For an object x1 ∈
U = {x1, x2, x3, x4, x5}. Suppose that we have three granules for x1 as [x1]C1 =
{x1, x2, x4}, [x1]C2 = {x1, x2, x3}, and [x1]C3 = {x1, x2} by RC1 , RC2 , and RC3 ,
respectively. By the union and intersection operations of sets, we have

[x]C1∩C2∩C3 = [x1]C1 ∪ [x1]C2 ∪ [x1]C3

= {x1, x2, x4} ∪ {x1, x2, x3} ∪ {x1, x3} = {x1, x2, x3, x4},

[x]C1∪C2∪C3 = [x1]C1 ∩ [x1]C2 ∩ [x1]C3

= {x1, x2, x4} ∩ {x1, x2, x3} ∩ {x1, x3} = {x1}.

It is obvious to find that, the former is the optimistic strategy for the fusion of
granules and the latter is pessimistic. This two ideas are similar with the opti-
mistic and pessimistic multigranulation rough set proposed by Qian [8]. More
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particularly, they focused on the fusion of a series of lower and upper approxi-
mations associated with a family of indiscernibility relations. Furthermore, the
optimistic and pessimistic approach may lead to two extreme directions. Specifi-
cally speaking, these two strategies may induce coarser or finer granules. Hence,
to obtain a appropriate granule for object x1, we may adopt a mixed operation
as follows:

[x]C1∪C2∩C3 = [x1]C1 ∪ [x1]C2 ∩ [x1]C3

= {x1, x2, x4} ∪ {x1, x2, x3} ∩ {x1, x3} = {x1, x3},

[x]C1∩C2∪C3 = [x1]C1 ∩ [x1]C2 ∪ [x1]C3

= {x1, x2, x4} ∩ {x1, x2, x3} ∪ {x1, x3} = {x1, x2, x3}.

We can observe that the neutral results with the granule [x] is obtained as
follows:

[x]C1∩C2∩C3 ⊂ [x]C1∪C2∩C3 ⊂ [x]C1∩C2∪C3 ⊂ [x]C1∪C2∪C3 .

Based on above analysis, three strategies, namely, union, mixed, and inter-
section operations, may be adopted to define the composite binary relation. To
construct a reasonable granular structure by the top-down manner, a more com-
patible fusion method is used to define a general composite binary relation.

Definition 3 (Composite binary relation). Let CDTi = (Ui, ATi =
Ci

⋃
D,Vi, fi) be the ith level of composite decision table CDT = (U,AT =

C
⋃

D,V, f), where C =
⋃m

k=1 Ck, Ci =
⋃i

j=1 Cj ⊆ C, i = 1, 2, . . . ,m. Sup-
pose RCj is the binary relation for the jth type of attributes. For x, y ∈ U , the
composite binary relation CRCi

i at the ith level is defined as:

CRCi
i = {(x, y) ∈ U × U | |{RCj : (x, y) ∈ RCj}| ≥ λ} , (6)

where | ∗ | denotes the cardinality of a set, λ = 1, 2, . . . , |Ci| are the control
parameters for the results of granulation, and |Ci| denotes the number of attribute
types at the ith level.

In Definition 3, we can select different fusion strategies for the composite
binary relation CRCi

i by different λ. As we introduced before, the general fusion
strategies are described as follows:

(1) If λ = 1, the optimistic (union) strategy is adopted.
(2) If 1 < λ < |Ci|, the neutral (mixed) strategy is adopted.
(3) If λ = |Ci|, the pessimistic (intersection) strategy is adopted.

Example 3. To illustrate the fusion process of granulation by Definition 3, the
equivalence relation RE [6], the neighborhood relation RN [2], the similarity
relation RI [19], and the tolerance relation RS [1] are provided to deal with cat-
egorical, numerical, interval-valued, and set-valued attributes CE , CN , CI , and
CS , respectively in Table 1. The results of granulation with respect to the com-
posite decision table CDT are shown in Tables 2 and 3.
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Table 2. The results of granulation by the single binary relation

U CE = {a1} CN = {a2, a3} CI = {a4} CS = {a5}
x1 {a1, a3} {a1, a4, a5} {a1, a2} {a1, a2, a3, a5}
x2 {a2, a4, a5, a6} {a2, a4, a5, a6} {a1, a2, a3, a6} {a1, a2, a3, a4, a5, a6}
x3 {a1, a3} {a3, a4, a6} {a2, a3, a6} {a1, a2, a3, a5, a6}
x4 {a2, a4, a5, a6} {a1, a2, a3, a4, a5, a6} {a4, a5} {a2, a4, a5, a6}
x5 {a2, a4, a5, a6} {a1, a2, a4, a5, a6} {a4, a5} {a1, a2, a3, a4, a5}
x6 {a2, a4, a5, a6} {a2, a3, a4, a5, a6} {a2, a3, a6} {a2, a3, a4, a6}

Table 3. The results of granulation by the composite binary relation

U CRC4
4 , λ = 1 CRC4

4 , λ = 2 CRC4
4 , λ = 3 CRC4

4 , λ = 4

x1 {a1, a2, a3, a4, a5} {a1, a2, a3, a5} {a1} {a1}
x2 {a1, a2, a3, a4, a5, a6} {a1, a2, a3, a4, a5, a6} {a2, a4, a5, a6} {a2, a6}
x3 {a1, a2, a3, a4, a5, a6} {a1, a2, a3, a6} {a3, a6} {a3}
x4 {a1, a2, a3, a4, a5, a6} {a2, a4, a5, a6} {a2, a4, a5, a6} {a4, a5}
x5 {a1, a2, a3, a4, a5, a6} {a1, a2, a4, a5, a6} {a2, a4, a5} {a4, a5}
x6 {a2, a3, a4, a5, a6} {a2, a3, a4, a5, a6} {a2, a3, a4, a6} {a2, a6}

In Table 2, it is easy to find that the different binary relations induce the
different sizes of granules. To get the fusion granules in composite decision table
CDT , four kinds of composite binary relations are implemented corresponding
to the control parameters λ = 1, 2, 3, 4 in Table 3. Indeed, the impact of λ bring
the different results by the control of granulation. Moreover, with the increase of
λ, the sizes of granules with each object monotonicly decrease. In other words,
we obtain the biggest size of granules when λ = 1 due to the optimistic fusion
strategy. The pessimistic granulation with the smallest size of granules is adopted
by setting λ equal to 4. λ = 2 and λ = 3 are our neutral strategy for the fusion
of granulation.

3.3 Composite Sequential Three-Way Decisions with DTRS

With coarse-grained granules, one type of data is used to make an acceptance or
rejection decision for some objects. However, more types of data may be consid-
ered due to the lack of information evidence. The non-commitment decisions is
made for the rest of objects since we may have stronger support by other types
of data. Based on this recognition, by the fusion of binary relations, the sequen-
tial approach to three-way decisions under the multilevel composite granular
structure can be proposed to tackle hybrid data.

Suppose the second situation in Eq. (4) is adopted to construct composite
sequential three-way decision with DTRS model. Given a composite decision
table CDT = (U,AT = C

⋃
D,V, f). Let CGSi = (U,CRCi

i , Ci, [x]Ci
) be the
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ith level of composite granular structure, where CRCi
i is the composite binary

relation. At ith level, three-way regions in DTRS model are defined as follows:

POSi (Xi) = {x ∈ Ui | Pr(Xi|[x]Ci
) � αi},

BNDi (Xi) = {x ∈ Ui | βi < Pr(Xi|[x]Ci
) < αi}, (7)

NEGi (Xi) = {x ∈ Ui | Pr(Xi|[x]Ci
) � βi},

where Xi denotes the concept at the ith level, Xi ⊆ Ui, Ui = BNDi−1(Xi−1),
Ui ⊆ U(i 	= 1, U1 = U), and αi, βi are two thresholds at the ith level, 0 � βi <
αi � 1.

In such composite sequential three-way decisions model, our further investi-
gation should consider three issues as follows:

(1) The selection of hybrid data at each level of granular structure. In sequen-
tial three-way decisions, a sequence of different types of attributes may be
added into CDT successively according to their significance. To construct
a reasonable and monotonic granular structure, we should determine which
types of data are more important for decision-making at a particular level.

(2) The fusion of binary relations with various types of attributes. This paper
presents a general composite binary relations by the control parameter λ.
It is necessary to optimize λ by some objectives, such as the evaluation of
granulation or the accuracy of decisions.

(3) The determination of thresholds for the different hybrid data. A sequence
of thresholds should be calculated and interpreted by a reasonable way. In
fact, each level contains the different hybrid data in our proposed composite
granular structure. For instance, hybrid data at the ith level may consist of
categorical and numerical data, or interval-valued and set-valued data. The
former and the latter may need different thresholds to obtain a tri-partition
in terms of three-way decisions.

4 Conclusions

To address the fusion of different attribute types in granular computing, this
paper presented a composite framework of sequential three-way decisions. We
proposed the multilevel composite granular structure, and investigated three
fusion methods associated with different binary relations by the optimistic, neu-
tral, and pessimistic strategies. Besides, we consider a general composite relation
by the control parameter λ of granulation. To efficiently handle a huge hybrid
data, incremental leaning and parallel computing may be introduced into com-
posite sequential three-way decisions in our future work.
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Abstract. Traditional attribute reduction based on neighborhood deci-
sion error rate aims to reduce the decision errors through selecting valu-
able attributes. To further improve the performances of the selected
attributes in reducts, an ensemble selector is introduced into such frame-
work. Different from the previous strategy, our approach is realized
through considering a set of the fitness functions instead of one and only
one fitness function, which makes the ensemble selecting of attribute is
possible. The experimental results on 10 UCI data sets and 2 KEEL
data sets demonstrate that our ensemble selector is effective in improv-
ing the stabilities of both reducts and classification results. In addition,
the classification accuracies can also be increased.

Keywords: Attribute reduction · Ensemble selector
Fitness function · Classification accuracy

1 Introduction

In the filed of rough set, to deal with data with continuous values or even mixed
values, Hu et al. [10] have proposed the concept of Neighborhood Rough Set
(NRS). Presently, NRS has been widely explored because the strong adaptability
to complex data.

Similar to other rough sets, attribute reduction [1,12,15,20] is also a key
topic in NRS. With respect to different requirements, many attribute reductions
have been studied in terms of NRS. A topic example is that Hu et al. [11] pro-
posed the concept of Neighborhood Decision Error Rate (NDER) based attribute
reduction. Different from the previous measures such that approximation qual-
ity [6], conditional entropy [22] for defining attribute reductions, NDER provides
us a criterion from the perspective of the performance of classification learning.
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Therefore, attribute reduction is effective in reducing the incorrect neighbor-
hood decisions, it follows that the classification performance [13,16,19,21] of the
neighborhood classifier [9] may be improved.

Given a definition of attribute reduction, the immediate problem is to find
the reduct. Up to now, due to the lower time complexity, heuristic algorithm [7]
is favored by the majority of researchers in rough set. For instance, Yao et al. [24]
analyzed the structure of reduct constructions in heuristic searching. They
pointed out that most of the searching strategies [26] posssess two similar struc-
tures: (1) “adding one attribute into the pool set step by step until the constraint
is satisfied”, it is referred to as the addition control strategy; (2) “deleting one
attribute from the pool set for step by step until the constraint is satisfied”, it
is referred to as the deletion control strategy.

It should be noticed that no matter what kind of the searching strategy is
selected, one and only one fitness function is used for evaluating the significance
of attribute and then deciding which attribute should be added or deleted. How-
ever, one fitness function may be sensitive to the data perturbation. For example,
if part of the samples have been changed, then the fitness value may be quite
different from the reduct results that derived by raw data.

To overcome the limitations of one fitness function, we try to design a algo-
rithm to compute NDER based reduct which aims to achieve higher stability.
Since it has been reported that the ensemble strategy [17,21,23,26] is an effective
technique to improve the stability in the field of feature selection, our algorithm
will then design an ensemble selector to evaluate the significance of attribute,
i.e., a set of the fitness functions instead of only one fitness function is used.

The rest of the paper is organized as follows. In Sect. 2, we will review some
basic concepts related to neighborhood relation. In Sect. 3, following the limita-
tion of attribute reduction based on NDER, an ensemble approach is proposed
to compute NDER reducts. Section 4 analyzes the effectiveness of our approach
over 10 UCI data sets and 2 KEEL data sets. We then conclude with some
remarks and perspectives for further work in Sect. 5.

2 Preliminary Knowledge

2.1 Neighborhood Relation

Without loss of generality, a decision system can be represented as DS =<
U,AT, d > in which U is the set of samples, AT is the set of condition attributes
and d is a decision attribute. Furthermore, ∀x ∈ U , d(x) expresses the label of
sample x, and ai(x) denotes its value over condition attribute ai ∈ AT .

Given a decision system, since the classification task is considered in this
paper, an equivalence relation over d can be defined such that INDd = {(x, y) ∈
U × U : d(x) = d(y)}. By INDd, a partition U/INDd = {X1,X2, . . . , Xq} is
induced, Xk ∈ U/INDd is referred to as the k-th decision class. Specially, the
decision class which contains sample x is denoted by [x]d.
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Furthermore, a relation can also be defined in terms of condition attributes.
For instance, ∀A ⊆ AT , Hu et al. [9] have defined a neighborhood relation such
that NA = {(x, y) ∈ U × U : �A(x, y) ≤ σ}. In NA, σ ≥ 0, �A(., .) is the
distance function [4] with respect to A.

In the context of this paper, Euclidean distance is employed, i.e., �A(x, y) =√∑
ai∈A

(
ai(x) − ai(y)

)2. By NA, the neighborhood of sample x is formed such
that NA(x) = {y ∈ U : (x, y) ∈ NA}. To avoid that only the sample x belongs
to the neighborhood of x, Hu et al. [9] modified σ for each x ∈ U such that

δ = min
y∈U∧y �=x

�A(x, y) + σ · ( max
y∈U∧y �=x

�A(x, y) − min
y∈U∧y �=x

�A(x, y)
)
. (1)

Assuming that the neighborhood relation derived from δ with respect to A is
denoted by δA, then the neighborhood of x is δA(x) = {y ∈ U : �A(x, y) ≤ δ}.

2.2 Neighborhood Rough Set and Classifier

Definition 1. Given a decision system DS =< U,AT, d >, ∀A ⊆ AT , the
neighborhood lower and upper approximations of d with respect to A are then

defined as δA(d) =
q⋃

k=1

δA(Xk) and δA(d) =
q⋃

k=1

δA(Xk), where δA(Xk) = {x ∈
U : δA(x) ⊆ Xk} and δA(Xk) = {x ∈ U : δA(x) ∩ Xk 	= ∅}.

Through further considering the partial inclusion between neighborhood and
decision class, Hu et al. [9] proposed the following Neighborhood Classifier
(NEC). Different from KNN [5,18] which specifies the number of neighbors,
NEC uses σ to select neighbors.

Algorithm 1. Neighborhood Classifier (NEC)

Inputs: DS =< U,AT, d >,A ⊆ AT , test sample y /∈ U , and parameter σ;
Outputs: Predicted decision label PreA(y).
1. ∀x ∈ U , compute ΔA(y, x);
2. Compute δ, and obtain δA(y);
3. ∀Xk ∈ U/INDd, compute Pr(Xk|δA(y)) = |δA(y) ∩ Xk|/|δA(y)|;
4. Xj = arg max{Pr(Xk|δA(y)) : ∀Xk ∈ U/INDd};
5. Find the corresponding decision label PreA(y) in terms of Xj ;
6. Return PreA(y).

By NEC, Neighborhood Decision Error Rate (NDER) is defined as follows.
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Definition 2. Given a decision system DS =< U,AT, d >, ∀A ⊆ AT , then
NDER related to A is then defined as

NDERA(d) =
|{x ∈ U : PreA(x) 	= d(x)}|

|X| . (2)

in which |X| is the cardinal number of set X.

In Definition (2), for each computation of PreA(x), x is considered as a test
sample. If the predicted label of x is obtained, then it can be compared with
the true label of x. Obviously, NDER ia generated by a leave-one-out validation
strategy.

It should be noticed that NDERA(d) is counted by predictions of all sam-
ples in a decision system, it does not highlight the decision errors occur in one
of the specific decision classes. For such reason, a local strategy to compute
neighborhood decision error rate can be obtained as Definition 3 shows.

Definition 3. Given a decision system DS =< U,AT, d >, ∀A ⊆ AT , ∀Xk ∈
U/INDd, then NDER of Xk with respect to A is defined as

NDERXk

A (d) =
|{x ∈ Xk : PreA(x) 	= d(x)}|

|Xk| . (3)

3 Attribute Reduction

3.1 NDER Based Attribute Reduction

The definition of attribute reduction with the constraint of NDER is defined as
follows.

Definition 4. Given a decision system DS =< U,AT, d >, ∀A ⊆ AT , A is
referred to as a Neighborhood Decision Error Rate Reduct (NDERR) if and
only if

1. NDERA(d) ≤ NDERAT (d);
2. ∀B ⊂ A,NDERB(d) > NDERAT (d).

In the following, the addition strategy will be employed to compute NDERR.
For each iteration in addition strategy, the most significant attribute can be
determined by the following fitness function. ∀A ⊆ AT , then ∀ai ∈ AT − A, its
significance with respect to neighborhood decision error rate is:

Φ(ai) = NDERA(d) − NDERA∪{ai}(d). (4)

The above fitness function indicates that if the value of Φ(ai) is higher, then
ai will more important. This is mainly because higher value of Φ(ai) implies that
the lower NDER will be achieved if ai is added into A.
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Example 1. Suppose that the NDERA(d) = 0.8. when a1 is added into A, we
obtained the NDERA∪{a1}(d) = 0.6; Similarity, when a2 is added into A, and
then we compute the NDERA∪{a2}(d) = 0.5; By the computation, we obtained
that Φ(a1) = 0.2 and Φ(a2) = 0.3. So attribute a2 is selected.

The following Algorithm 2 shows us the detailed process of computing NDERR
by Φ(ai).

Algorithm 2. Process to compute NDERR

Inputs: DS =< U,AT, d >, and parameter σ;
Outputs: One NDERR A.
1. A ← ∅, let NDERA(d) = 1;
2. Compute NDERAT (d);
3. Do

(1) ∀ai ∈ AT − A, compute Φ(ai);
(2) Select b ∈ AT − A such that Φ(b) = max{Φ(ai) : ∀ai ∈ AT − A};
(3) A ← A ∪ {b};
(4) Compute NDERA(d);

Until NDERA(d) ≤ NDERAT (d)
4. Return A.

3.2 Ensemble Process

Algorithm 2 uses one and only one fitness function to determine the significance
of the attribute. In this subsection, we will present an ensemble selector for
determining the significance of the attribute through using a set of the fitness
functions. Such set of fitness functions can be defined by the NDER of specific
decision class, i.e., NDERXk

A (d). ∀A ⊆ AT and ∀Xk ∈ U/INDd, then ∀ai ∈
AT − A, the significance of ai with respect to NDER of Xk is:

ΦXk
(ai) = NDERXk

A (d) − NDERXk

A∪{ai}(d). (5)

Since for supervised data, more than one decision classes can be obtained and
then the set of the fitness functions is {ΦX1 , . . . ,ΦXq

}. Therefore, the following
Algorithm is designed to compute NDERR.
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Algorithm 3. Ensemble process to Compute NDERR

Inputs: DS =< U,AT, d >, parameter σ;
Outputs: One NDERR A.
1. A ← ∅, let NDERA(d) = 1;
2. Compute NDERAT (d);
3. Do

(1) Temporary pool T ← ∅;
(2) For k = 1 to q

(i) ∀ai ∈ AT − A, compute ΦXk
(ai);

(ii) Select b ∈ AT − A such that ΦXk
(b) = max{ΦXk

(ai) :
∀ai ∈ AT − A};

(iii) Add b into T ;
End

(3) For each different attribute in T , compute the frequency
of occurrences;

(4) If Two or more attributes in T have the maximal frequency
of occurrences

Then
Select an attribute b which ranks high in the order of the raw
attributes;

Else
Select an attribute b in T with the maximal frequency of
occurrences;
// Ensemble selector

End
(5) A ← A ∪ {b};
(6) Compute NDERA(d);

Until NDERA(d) ≤ NDERAT (d)
4. Return A.

The step 3 is the main step in this attribute reduction process. For each
iteration in step 3, the aim is to select a significant attribute and then add it
into the pool set. The time complexity of this step is O(n2 × m2), where n is
the numbers of attributes and m is the numbers of samples. The overall time
complexity is O(nr × m2) if there are n candidate attributes, and r attributes
are selected. Similar to Algorithm 3, the Algorithm 2 also comes with a time
complexity of O(nr × m2).

Different from Algorithm 2, single fitness function Φ is replaced by a set of
fitness functions {ΦX1 ,ΦX2 , . . . ,ΦXq

} in Algorithm 3.
The following Fig. 1 further shows us a detailed mechanism of ensemble strat-

egy shown in Algorithm 3.
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Fig. 1. Ensemble process.

Following Fig. 1, for each decision class Xk, we obtain the set of fitness values
in terms of set of candidate attributes such that {ΦXk

(a1), . . . ,ΦXk
(an)} where

1 ≤ k ≤ q, therefore, the attribute ai with maximal fitness value ΦXk
(ai) is

selected for decision class Xk. Similarity, different decision classes may generate
a collection of the attributes and then the majority principle is regarded as the
ensemble voting for deriving the final selected attribute, i.e., the attribute with
maximal frequency of occurrence is selected. If two or more attributes have the
maximal frequency of occurrence, then the attribute which ranks high in the
order of the raw attributes is finally selected.

3.3 Measuring Stabilities

Following attribute reduction, a natural problem is to test the performances of
reduct. In this paper, it is assumed that the stability indicates the degree of
varying of reducts when sample variations happen. Therefore, the stability of
reduct [20,25] can be defined as following.

Definition 5. Given a decision system DS =< U,AT, d >, suppose that U is
divided into t groups with the same size such that U1, U2, . . . , Ut, then the stability
of reduct is:

Streduct =
2

t · (t − 1)

t−1∑
r=1

t∑
r′=r+1

|Ar ∩ Ar′ |
|Ar ∪ Ar′ | , (6)

in which Ar is the reduct obtained in < U − Ur, AT, d >.

The value of Streduct is used as an index to describe the stability of reduct.
Obviously, Streduct ∈ [0, 1], if Streduct = 0, it indicates that the same element does
not exist between any two reducts, then the reduct obtained by the algorithm
is completely unstable. If Streduct = 1, it indicates that the results of any two
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reducts are the same, then the reduct obtained by the algorithm is completely
stable. The greater the value of Streduct, the higher the stability of the reduct.

Following the stability of reduct, we use NEC to further investigate the sta-
bilities of classification results [8]. Firstly, the following joint distribution matrix
should be used (Table 1).

Table 1. Joint distribution of classification results.

NECAr (x) = d(x) NECAr (x) �= d(x)

NECAr′ (x) = d(x) a b

NECAr′ (x) �= d(x) c d

NECAr
(x) is the predicated label of sample x if classifier NEC is used over

attribute sets Ar, a, b, c and d are numbers of samples which satisfy the cor-
responding conditions, respectively. Therefore, the agreement of classification
results between reducts Ar and Ar′ is: Agg(Ar, Ar′) = a+d

a+b+c+d , it follows that
the stability of classification result is:

Stclassification =
2

t · (t − 1)

t−1∑
r=1

t∑
r′=r+1

Agg(Ar, Ar′). (7)

4 Efficiency Analysis

To evaluate the performances of Ensemble process, 10 UCI data sets and 2 KEEL
data sets have been selected, which are shown in Table 2. All the experiments
have been carried out on a personal computer with Windows 10, Inter Core i5-
6300HQ CPU (2.50 GHz) and 16.00 GB memory. The programming is Matlab
R2016a. Moreover, for each data set, we have appointed 10 different parameters
used in neighborhood relation such that σ = {0.05, 0.10, . . . , 0.50}.

4.1 Comparison of Stabilities

In this subsection, we will compare the stabilities of two types of reducts which
are obtained by Algorithms 2 and 3, respectively. Such stabilities are reflected
by how data perturbation will influence the results of reducts.

From this point of view, 10-folder cross-validation has been adopted in this
experiment. Therefore, the obtained stabilities of reducts are average values
derived by cross-validation. The following Fig. 2 displays the detailed results
of stabilities.

By Fig. 2, it is not difficult to observe the following.

1. In most cases, Algorithm 3 is superior to Algorithm 2 for improving the sta-
bilities of reducts. From this point of view, the ensemble selector we proposed
in Algorithm 3 does work.
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2. In most cases, the stabilities of classification results based on reducts derived
by Algorithm 3 are greater than those derived by Algorithm 2. Therefore,
we know that the reduct with higher stability may help us to generate stable
classification results.

Table 2. Data sets description. The full name of data set nr 10 is: Parkinson Multiple
Sound Recording.

ID Data sets Samples Attributes Decision classes Sources

1 Cardiotocography 2126 22 10 UCI

2 Contraceptive method 1473 10 3 UCI

3 Dermatology 366 35 6 UCI

4 Glass identification 214 10 6 UCI

5 Libras movements 360 90 15 UCI

6 Seeds 218 8 3 UCI

7 Statlog (Heart) 270 13 2 UCI

8 Steel plates faults 1941 34 2 UCI

9 Wine quality 6498 11 7 UCI

10 Parkinson 1208 26 2 UCI

11 Ringnorm 7400 21 2 KEEL

12 Twonorm 7400 21 2 KEEL

Fig. 2. Stabilities of reducts and classification results.
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4.2 Statistical Comparisons of Reducts

In this section, we will make the statistical comparisons of algorithms considered
in this paper. The Wilcoxon signed rank test is selected for comparing two algo-
rithms. The purpose of this computation is trying to reject the null-hypothesis
that the two algorithms perform equally well for computing reduct.

For each data set, we have appointed 10 different parameters used in neigh-
borhood relation to obtain reducts, it follows that 10 stabilities will be derived
with respect to each algorithm. Take the data “Cardiotocography” for instance,
the 10 stabilities of reducts derived by Algorithm 2 are “0.6000, 0.6000, 0.6000,
0.5000, 0.3333, 1, 0.5000, 0.3333, 0.2857, 0.5252” while the 10 stabilities of
reducts derived by Algorithm 3 are “0.7143, 0.8333, 1, 0.5714, 0.5714, 0.7143,
0.8333, 0.8333, 0.4286, 0.7071”, the corresponding p-value (p-value is the prob-
ability of observing the given result, or one more extreme, by chance if the null
hypothesis is true.) of Wilcoxon signed rank test is 0.0334. The detailed results
of p-values are shown in Table 3.

Table 3. p-value of Wilcoxon signed rank test for comparing stabilities of reducts.

ID Algorithm 2 and Algorithm 3 ID Algorithm 2 and Algorithm 3

1 0.0334 7 0.0001

2 0.0094 8 0.0125

3 0.0363 9 0.0001

4 0.0002 10 0.0333

5 0.0001 11 0.0200

6 0.1567 12 0.0034

Suppose that the significance level is given by 0.05, that is, if p-value is less
than 0.05, then we reject the null-hypothesis. Therefore, following the detailed
p-value shown in Table 3, we can see that most of the p-values are less than 0.05,
from which we can conclude that Algorithm 2 and 3 do not perform equally well
from the viewpoint of the stability of the reduct. In other words, Algorithm 3 is
so different from Algorithm 2 for computing reducts.

4.3 Comparisons of Classification Performances

To further test the classification performances of the reducts obtained by our
Algorithm 3, classification accuracies are employed to evaluate classification per-
formances. In this subsection, not only neighborhood classifier (NEC) has been
employed, but also four types of fuzzy rough approaches [13,14] have been used,
they are Fuzzy Rough Classifier (FRC) [2], three robust fuzzy rough classifiers
include k -mean-FRC, k -median-FRC and k -trimmed-FRC [13,14,19]. We option
to compare with the four types of fuzzy rough classifiers mainly because: (1)
both Algorithm 2 and 3 are designed to derive based on neighborhood rough set
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theory; (2) the structure of fuzzy rough set is quite different from that of neigh-
borhood rough set and then fuzzy rough classifier can also be regarded as the
third-party classifier. Therefore, by using third-party classifier, the comparisons
of the classification performances of the different reducts may be more objective.

In this experiment, we have selected three parameters such that σ = {0.1,
0.2, 0.3}. For each σ, we use 10-folder cross-validation to obtain 10 different
reducts over training sets by both Algorithm 2 and 3. Immediately, we compute
the classification accuracies of the five classifiers by using the reducts over testing
sets. Similar to Ref. [14], the value of k in FRC is 3. The following Tables 4, 5,
6, 7 and 8 show us the average classification accuracies of each classifier.

With an investigation of above results, we can observe the following.

1. In most cases, Algorithm 3 provides us reducts which can generate higher
classification accuracies in terms of five different classifiers. From this point
of view, Algorithm 3 is superior Algorithm 2 since the induced reducts are
more effective in classification learning.

2. Different from NEC, by considering four types of fuzzy rough classifiers,
greater value of σ may help us to obtain reducts which are with higher clas-
sification accuracies. For example, in “Libras Movements” data set, if σ is
set by 0.1, 0.2 and 0.3, then the classification accuracies of FRC based on
the reducts generated by Algorithm 2 are 0.4722, 0.7611 and 0.7889, respec-
tively; the classification accuracies of FRC based on the reducts generated by
Algorithm 3 are 0.5611, 0.7922 and 0.8083, respectively.

Table 4. Mean values of classification accuracies (NEC).

ID σ = 0.1 σ = 0.2 σ = 0.3

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.7888 0.7822 0.6844 0.7065 0.6204 0.6571

2 0.4807 0.4976 0.4745 0.4786 0.4440 0.4508

3 0.9290 0.9563 0.9290 0.9290 0.7706 0.7732

4 0.6125 0.5421 0.4255 0.4628 0.4069 0.4351

5 0.7417 0.7667 0.5028 0.4917 0.2372 0.2694

6 0.9190 0.9333 0.9048 0.9190 0.7667 0.7952

7 0.7593 0.7815 0.7481 0.7519 0.7000 0.7409

8 0.9987 0.9985 0.9794 0.9788 0.7372 0.7970

9 0.9440 0.9552 0.9492 0.9494 0.8937 0.9440

10 0.6631 0.6746 0.6506 0.6655 0.6258 0.6316

11 0.7285 0.7310 0.6472 0.6533 0.6283 0.6409

12 0.5580 0.5939 0.5022 0.5022 0.4649 0.5472

Average 0.7603 0.7677 0.6998 0.7074 0.6079 0.6402
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Table 5. Mean values of classification accuracies (FRC).

ID σ = 0.1 σ = 0.2 σ = 0.3

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.6035 0.6225 0.6130 0.6225 0.5844 0.6416

2 0.4311 0.4277 0.4334 0.4338 0.4612 0.4750

3 0.4892 0.4264 0.8661 0.8771 0.9154 0.9373

4 0.6206 0.6402 0.6777 0.6965 0.6917 0.6965

5 0.4722 0.5611 0.7611 0.7922 0.7889 0.8083

6 0.8905 0.9000 0.8905 0.9408 0.8905 0.9408

7 0.6333 0.7000 0.7000 0.7296 0.6963 0.7296

8 0.9541 0.9320 0.9897 0.9981 0.9985 0.9981

9 0.9211 0.8543 0.9210 0.9327 0.9210 0.9327

10 0.6259 0.6416 0.6349 0.6424 0.6349 0.6424

11 0.5812 0.5824 0.5487 0.5497 0.5487 0.5497

12 0.6035 0.6225 0.6130 0.6225 0.5844 0.6416

Average 0.6522 0.6676 0.7208 0.7365 0.7263 0.7495

Table 6. Mean values of classification accuracies (k-mean-FRC).

ID σ = 0.1 σ = 0.2 σ = 0.3

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.5848 0.6126 0.5476 0.6216 0.5476 0.6403

2 0.4263 0.4284 0.4270 0.4291 0.4243 0.4318

3 0.4783 0.4234 0.8251 0.8775 0.8716 0.9181

4 0.6159 0.7007 0.6392 0.7146 0.6963 0.7146

5 0.4694 0.5417 0.7500 0.7557 0.7972 0.8194

6 0.9408 0.9190 0.9095 0.9286 0.9048 0.9381

7 0.6333 0.6481 0.6704 0.6889 0.7185 0.6444

8 0.7439 0.7733 0.9449 0.9402 0.9918 0.9995

9 0.8711 0.8763 0.9324 0.9370 0.9270 0.9157

10 0.6250 0.6267 0.6523 0.6399 0.6515 0.6747

11 0.5467 0.5467 0.5351 0.5355 0.5351 0.5355

12 0.5848 0.6126 0.5476 0.6216 0.5476 0.6403

Average 0.6267 0.6425 0.6984 0.7242 0.7177 0.7397
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Table 7. Mean values of classification accuracies (k-median-FRC).

ID σ = 0.1 σ = 0.2 σ = 0.3

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.5476 0.6238 0.5667 0.6429 0.5857 0.6524

2 0.4263 0.4325 0.4263 0.4325 0.4243 0.4325

3 0.4756 0.3196 0.7270 0.7706 0.9207 0.9399

4 0.6206 0.6311 0.6206 0.6404 0.6299 0.6869

5 0.1611 0.2889 0.6333 0.7028 0.7833 0.8083

6 0.9143 0.9286 0.9143 0.9143 0.9143 0.9190

7 0.6074 0.6111 0.6926 0.6993 0.6926 0.6630

8 0.6919 0.6816 0.8944 0.8983 0.9912 0.9892

9 0.8711 0.8203 0.9330 0.9551 0.9275 0.9348

10 0.6200 0.6333 0.6506 0.6738 0.6631 0.6647

11 0.5382 0.5367 0.5382 0.5497 0.5321 0.5497

12 0.5476 0.6238 0.5667 0.6429 0.5857 0.6524

Average 0.5852 0.5943 0.6803 0.7102 0.7209 0.7410

Table 8. Mean values of classification accuracies (k-trimmed-FRC).

ID σ = 0.1 σ = 0.2 σ = 0.3

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.5203 0.5299 0.5944 0.5952 0.6325 0.6429

2 0.4318 0.4535 0.4318 0.4535 0.4750 0.4762

3 0.4729 0.3114 0.6883 0.7104 0.8962 0.9482

4 0.5508 0.6544 0.5787 0.6730 0.5508 0.6730

5 0.1917 0.1899 0.5361 0.5667 0.7611 0.7639

6 0.9095 0.9190 0.9190 0.9286 0.9190 0.9286

7 0.5741 0.6407 0.6926 0.7222 0.7222 0.7222

8 0.6770 0.6772 0.8413 0.8449 0.9758 0.9799

9 0.7306 0.7533 0.9217 0.9102 0.9217 0.9217

10 0.6168 0.6441 0.6656 0.6573 0.6656 0.6573

11 0.5353 0.5555 0.5232 0.5267 0.5232 0.5267

12 0.5203 0.5299 0.5944 0.5952 0.6325 0.6429

Average 0.5609 0.5716 0.6656 0.6820 0.7229 0.7403

5 Conclusion and Future Work

In this paper, an ensemble strategy has been introduced into the process of
computing reduct. It uses a set of fitness functions instead of single one to
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determine which attribute should be selected in the process of computing reduct.
The experiment results have demonstrated that the our approach cannot only
improve the stabilities of both reducts and classification results, but also strength
the classification performances. The future work will be focused on the following
two aspects.

1. Only addition control strategy is employed in this paper. The deletion,
addition-deletion control strategies will be further explored.

2. The weights of different fitness functions are also interesting issues to be
addressed.

3. Such approach may also be considered in some other rough set models, such
as decision-theoretic rough set [3], etc.
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Abstract. In this paper, the rule induction method STRIM, the clas-
sical Rough Sets (RS) theory and the notion of three-way decision rules
are summarized and their performance is examined by applying them
to a real-world dataset and a simulation dataset. From these experi-
mental studies, the problems inherent in the rule induction method by
the conventional RS theory based on the indiscernibility are pointed out
and a comparison is made with STRIM. Specifically, the rule induction
methods that are based on indiscernibility and do not consider the deci-
sion table which is only a sample of outcomes obtained by chance from
a population of interest are highly dependent upon the samples in the
decision table given. This paper states that such rule induction methods
are thus problematic and need to be improved to create a more robust
rule induction method.

1 Introduction

Extracting the properties and structures hidden in a large dataset is about dis-
covering knowledge and/or information, and that is important for making good
strategical decisions and acting consistently. For example, Rough Sets (RS) the-
ory proposed by Pawlak [1] in 1982 is used for reducting a dataset, creating a
decision table [2,3], and inducing if-then rules hidden in the decision table [4,5].
Here, the dataset is a set of objects each of which is featured by particular val-
ues: its condition attributes and its decision attribute. RS theory first focuses
on an indiscernibility property of these objects and provides inclusion relation-
ships of the target object set by defining lower and upper approximations. These
approximate expressions provide two representative rules with necessity (accu-
racy = 1.0) and possibility (accuracy > 0.0) respectively. However, the necessity
rule imposes a severe condition, i.e., accuracy = 1.0, on the rule induction.
Therefore, Ziarko [6] proposed a variable precision rough set model (accuracy
= 1.0 − ε) with an admissible error (ε ∈ [0.0, 0.5)).

Yao [7–9] divided the target set into positive, negative, and boundary regions
using the lower and upper approximations and proposed three-way decision rules
c© Springer Nature Switzerland AG 2018
H. S. Nguyen et al. (Eds.): IJCRS 2018, LNAI 11103, pp. 202–214, 2018.
https://doi.org/10.1007/978-3-319-99368-3_16
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corresponding to those regions. Yao also suggested that the boundary parame-
ters (α, β) of the three-way decision rules should be determined by considering
accuracy as a type of conditional probability representation and introducing a
cost function from a Bayesian decision perspective. This consideration extends
Pawlak’s and Ziarko’s rule induction methods and corresponds to them in some
special cases. However, Yao does not propose a new reduction method or a new
rule induction method for the decision table and the new related algorithms.

As an alternative to RS theory, the statistical test rule induction method
(STRIM) which considers the decision table as a sample dataset obtained from
a population has been proposed [10–17]. STRIM uses a statistical reduct method
on the decision table [14] and a statistical rule induction method from the
reducted table [16]. Note that STRIM was studied independently of the con-
ventional RS methods and was not based on the approximation concept. Specif-
ically, STRIM recognizes the condition attributes and decision attributes of the
decision table as random variables and the decision table as their outcomes.
Moreover STRIM proposes a data generation model of the decision table by a
system which generates input sets of condition attribute values and transforms
them into the corresponding output of the decision attribute value through pre-
specified if-then rules and hypotheses with regard to the decision attribute value
based on causality. This system can also be used for confirming the validity of
any rule induction method by applying the method to the dataset generated
by the system and investigating whether the method can or cannot induce the
pre-specified rules.

In this paper, we first summarize STRIM and give an example of testing its
performance by applying it to a real-world dataset. We then state the basics of
the if-then rule induction method by STRIM from the viewpoint of proof by con-
tradiction in propositional logic. We then summarize the conventional RS theory
based on indiscernibility, and point up the problem of its rule induction method
based on indiscernibility in contrast to STRIM. We study this experimentally
by applying the LEM2 algorithm, implementing the classical RS theory to the
data generation model described above and comparing the results with those of
the same experiment using STRIM. Lastly, the idea of three-way decision rules
is summarized and we point out that the idea is fundamentally based on the
concept of indiscernibility and will cause the same problems as does the classical
RS theory. From three summarizations and studies of the conventional methods,
this paper points out that the rule induction method based on the concept of
indiscernibility of the given decision table needs to be improved as the decision
table is merely a sample obtained from the population.

2 The Conventional STRIM

In RS theory, the decision table is expressed as: S = (U,A = C ∪ {D}, V, ρ).
Here U = {u(i)|i = 1, ..., |U | = N} is a sample set, A is an attribute set, C =
{C(j)|j = 1, ..., |C|} is a condition attribute set C(j), a condition attribute, is a
member of C, and D is a decision attribute. V is a set of attribute values denoted
V =

⋃
a∈A Va and characterized by the information function ρ: U × A → V .
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Rule Box &
Hypothesis

Input:

u (i)

Output:

u (i)C D

Observer
NoiseC NoiseD

Fig. 1. Data generation model: The rule box contains if-then rules R(d, k): if CP (d, k)
then D = d (d = 1, 2, ..., k = 1, 2, ...).

Table 1. Hypotheses with regard to decision attribute value.

Hypothesis 1 uC(i) coincides with R(k), and uD(i) is uniquely determined as
D = d(k) (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any R(d), and uD(i) can only be
determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several R(d) (d = d1, d2, ...), and their
outputs of uC(i) conflict with each other. Accordingly, the
output of uC(i) must be randomly determined from the
conflicted outputs (conflicted data)

Generally, inducing if-then rules from a decision table implicitly assumes
a causal relationship between the condition attributes and decision attributes.
Therefore, in STRIM, we propose a model in which S is derived from the
input/output relationships shown in Fig. 1. In other words, STRIM considers
the decision table to be a sample dataset obtained from an input–output sys-
tem that includes a rule box as shown in Fig. 1 and hypotheses regarding the
decision attribute values, as shown in Table 1. A sample u(i) consists of its con-
dition attribute values uC(i) and decision attribute values uD(i). Here, uC(i)
is an input to the rule box and is transformed to the output uD(i) using the
rules (generally unknown) contained in the rule box and the hypotheses. The
hypotheses consist of three cases corresponding to the nature of the input. The
three cases are: uniquely determined, indifferent, and conflicted (see Table 1).
In contrast, u(i) = (uC(i), uD(i)) is measured by an observer (Fig. 1). The exis-
tence of NoiseC and NoiseD causes missing values in uC(i) and changes uD(i) to
create another uD(i) value. These noises bring the system closer to a real-world
system. Differing from the conventional RS theory, STRIM includes the data
generation model shown in Fig. 1. This data generation model suggests that the
values (uC(i), uD(i)), i.e., a decision table is the outcome of the random variables
(C,D) = ((C(1), ..., C(|C|),D) observing the population. Therefore, in STRIM,
ρ(u(i), C(j)) are the outcome of the random variables C(j). Note that there is
no concept of the information function in STRIM, i.e., S = (U,A = C ∪{D}, V )
is the decision table and V is the sample space in STRIM.



Conventional Rough Set Theory from a View of STRIM 205

Table 2. STRIM rule induction results for Rakuten Travel dataset.

CP (d, k) C(1)C(2)
...C(6)

D p-value (z) Accuracy Coverage f = (n1, n2, n3, n4, n5)

(5,1) 005050 5 0.0 (64.08) 0.876 0.629 (11, 12, 9, 146, 1258)

(5,2) 005005 5 0.0 (58.31) 0.915 0.486 (17, 6, 5, 62, 972)

(1,1) 000010 1 0.0 (57.78) 0.766 0.639 (1277, 346, 40, 4, 1)

(4,1) 040040 4 0.0 (40.37) 0.719 0.348 (16, 37, 90, 695, 129)

(3,1) 030030 3 0.0 (38.12) 0.633 0.392 (73, 203, 784, 170, 9)

(2,1) 020000 2 3.0E−168 (27.62) 0.494 0.348 (303, 695, 351, 51, 6)

Given a dataset created by the data generation model in Fig. 1, five processes
are carried out: (1) STRIM extracts significant pairs of condition attributes
and their values, e.g., C(j) = vjk , for rules of D = d using the local reduct
[14,16,17]; (2) STRIM constructs a trying condition part of the rules, e.g.,
CP (d, k) = ∧j(C(jk) = vj), using the reduct results; (3) STRIM investigates
whether U(CP (d, k)) has caused a bias at nd in the frequency distribution of the
decision attribute values f = (n1, n2, ..., nMD

). Here, nm = |U(CP (d, k))∩U(m)|
(m = 1, ..., |VD| = MD), U(CP (d, k)) = {u(i)|uC=CP (d,k)(i), i.e., uC(i) sastifies
CP (d, k)}, and U(m) = {u(i)|uD=m(i)} since the uC(i) coinciding with CP (d, k)
in the rule box is transformed to uD(i) based on hypothesis 1 or 3 (Table 1). In
other words, CP (d, k) coinciding with one of the rules in the rule box creates
bias in f = (n1, n2, ..., nMD

). Specifically, STRIM uses a statistical test method
for the investigation of the bias specifying a null hypothesis H0: f does not have
any bias, i.e., CP (d, k) is not a rule; the alternative hypothesis is H1: f has a
bias, i.e., CP (d, k) is a rule and has a proper significance level. Here, H0 is tested
using the sample dataset, i.e., the decision table and the proper test statistics;
for example,

z =
(nd + 0.5 − npd)
(npd(1 − pd))0.5

(d = 1, 2, ...,MD), (1)

where pd = P (D = d), n =
5∑

j=1

nj , z obeys the standard normal distribution

under a proper condition [18] and is considered an index of the bias of f ; (4) If
H0 is rejected, the assumed CP (d, k) becomes a candidate for the rules in the
rule box; (5) STRIM repeats processes (1–4) to obtain a set of rule candidates,
then arranges the rule candidates and induces the final results [16,17].

Figure 2 shows a STRIM algorithm that includes a reduct function. Here,
line nos. (LN) 8 and 9 are the reduct part of process (1), process (2) is executed
at LN 10, where the dimension rule[] is used as the rule candidate, process (3)
is executed at LN 25 in the rule check() function, process (4) is executed at LN
26, and process (5) is executed from LN 7 to LN 11 and LN 12.

A rule induction example obtained by applying STRIM to the Rakuten Travel
dataset, which is maintained by the Rakuten Institute of Technology follows



206 T. Saeki et al.

Line Algorithm to induce if-then rules by STRIM with a reduct function
No.
1 int main(void) {
2 int rdct max[|CV|]={0,. . . ,0}; //initialize maximum value of C(j)
3 int rdct[|CV|]={0,. . . ,0}; //initialize reduct results by D=l
4 int rule[|C|]={0,...,0}; //initialize trying rules
5 int tail=-1; //initialize value set
6 input data; // set decision table
7 for (di=1; di<=|D|; di++) {// induce rule candidates every D=l
8 attribute reduct(rdct max)
9 set rdct[ck] ; // if (rdct max[ck]==0) {rdct[ck]=0; }else {rdct[ck]=1; }
10 rule check(rcdct, redct max, tail, rule); // the first stage process
11 }// end di
12 arrange rule candidates // the second stage
13 }// end main
14 int attribute reduct(int rdct max[]) {
15 make contingency table for D=l vs. C(j)
16 Test H0(j,l);
17 if H0(j,l) is rejected then set rdct max[j,l]=jmax else rdct max[j,l]=0; //

jmax:the attribute value of the maximum frequency
18 }// end of attribute reduct
19 int rule check(int rdct[], int rdct max[], int tail,int rule[]) {// the first stage

process
20 for (ci=tail+1; cj<|C|; ci++) {
21 for (cj=1; cj<=rdct[ci]; cj++) {
22 rule[ci]=rdct max[cj]; // a trying rule set for test
23 count frequency of the trying rule; // count n1, n2, ...
24 if (frequency>=N0) {//sufficient frequency ?
25 if (|z|>3.0) {//sufficient evidence ?
26 add the trying rule as a rule candidate
27 }// end of if |z|
28 rule check(ci,rule)
29 }// end if frequency
30 }// end cj
31 rule[ci]=0; // trying rules reset
32 }// end ci
33 }// end rule check

Fig. 2. STRIM algorithm with reduct function.

[17] (for another example, see [16]). The dataset concerned contains approxi-
mately 6, 200, 000 questionnaire surveys of ratings A = { C(1) = “Location,”
C(2) = “Room,” C(3) = “Meal,” C(4) = “Bath (Hot Spring),” C(5) = “Ser-
vice,” C(6) = “Amenity,” and D = “Overall” } of approximately 130, 000 travel
facilities by using a set of categorical values Va = { “Dissatisfied (DS(1)),”
“Somewhat dissatisfied (SD(2)),” “Neither satisfied nor dissatisfied (NN(3)),”
“Satisfied (ST (4)),” and “Very Satisfied (V S(5))” }, where ∀a ∈ A, i.e.,
|Va=D| = |MD| = |Va=C(j)| = MC(j) = 5. We constructed a decision table
of N = 10, 000 questionnaire surveys by randomly selecting 2, 000 samples, each
of D = m (m = 1, ..., 5), from approximately 400, 000 surveys from the 2013–
2014 dataset, choosing these surveys because they contained heavy biases with
respect to the frequency of D = m. We applied STRIM to this decision table
and obtained Table 2, which represents the following:

(1) CP (d = 5, k = 1) represents a rule stating that if (C(3) = V S(5))
∧

(C(5) =
V S(5)) then D = V S(5), and its accuracy and coverage are 0.876 and 0.639,
respectively.
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Table 3. Examples of rules induced by LEM2 for the first simulation dataset (Case1).

Rule
no.

Rule (accuracy,
coverage)

f =
(n1, n2, n3,
n4, n5, n6)

1 (C1 = 1) & (C2 = 1) & (C4 = 6) = >(D = 1) (1.0, 0.0296) (15,0,0,0,0,0)

2 (C1 = 4) & (C3 = 1) & (C4 = 1) = >(D = 1) (1.0, 0.0355) (18,0,0,0,0,0)

3 (C1 = 1) & (C2 = 1) & (C3 = 1) = >(D = 1) (1.0, 0.0197) (10,0,0,0,0,0)

4 (C1 = 5) & (C2 = 6) & (C3 = 1) & (C4 = 1)
= >(D = 1)

(1.0, 0.0138) (7,0,0,0,0,0)

. . . . . . . . . . . .

8 (C1 = 1) & (C2 = 1) & (C3 = 5) & (C5 = 6)
= >(D = 1)

(1.0, 0.0099) (5,0,0,0,0,0)

. . . . . . . . . . . .

24 (C1 = 5) & (C2 = 6) & (C3 = 5) & (C4 = 4)
& (C5 = 2) = >(D = 1)

(1.0, 0.002) (1,0,0,0,0,0)

. . . . . . . . . . . .

27 (C1 = 2) & (C3 = 2) & (C4 = 5) & (C5 = 6)
& (C6 = 5) = >(D = 1)

(1.0, 0.002) (1,0,0,0,0,0)

. . . . . . . . . . . .

(2) This rule implies the frequency f = (11, 12, 9, 146, 1258) of the decision
attribute values, and the bias at D = 5 is z = 64.08 as calculated by Eq. (1)
corresponding to the p-value= 0.0.

(3) STRIM suggests that C(1) = “Location” and C(4) = “Bath (Hot Spring)”
can be reducted because no rules use those attributes.

3 Considerations on a Rule Induction Method by STRIM
from the Viewpoint of Proof by Contradiction

In propositional logic, a logical expression Q is often derived from several logical
expressions P1, P2, ..., Pn. It can be proved that Q is also true (T) from the
interpretation that all Pj (j = 1, ..., n) is T. Simultaneously, if P1∧P2∧ ...∧Pn =
P , P → Q is valid. Here, Q is referred to as a logical consequence from P . If
P → Q is shown to be true, a reasoning result Q

′
for arbitrary P

′
can be obtained

using reasoning rules by modus ponens. In propositional logic, to demonstrate
that P → Q is true, the proof by contradiction is often used to indicate that
P∧ ∼ Q = false (F) because P → Q =∼ P ∨ Q =∼ (P∧ ∼ Q) = T.

As described in Sect. 2, rules hidden in the decision table are derived by
evaluating the condition part CP (d, k) = ∧j (C(jk) = vj) of the if-then rule for
D = d by a hypothesis test. We propose an algorithm to estimate rule candidates
by rejecting H0: f does not have any bias and CP (d, k) is not a rule. Now,
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let Pj = T when C(jk) = vk and let Pj = F when C(jk) 
= vk. In addition, let
Q = T when D = d and Q = F when D 
= d. For example, in CP (d = 5, k = 1)
in Table 2, the number of samples of U where P = T is 11 + 12 + 9 + 146 +
1,258 = 1,436, and among them the number of samples where D 
= 5 (Q = F,
i.e., � Q = T) is 11 + 12 + 9 + 146 = 178. Therefore, under H0, the number
of samples for P∧ ∼ Q = T is 178. Note that (C,D) = ((C(1), ..., C(|C|)),D)
are random variables. Under P (D = 5) = 1/5 and the judgment model in
Table 1, the occurrence probability of such a distribution shows that the p-value
is equal to or less than 0.0. Thus, H0 is rejected in this case, i.e., it is determined
statistically that P∧ ∼ Q = F. Therefore, it can be seen that P → Q = T is
shown with critical p-value = 0.0. Here, since (C,D) are random variables it
is necessary to consider the problem that the if-then rule induction method
(Sect. 2) is rooted in the fact that the propositional logic P → Q is judged to be
statistically true or false using proof by contradiction.

4 Considerations on Conventional RS Theory
and Its Application to a Rule Induction Problem

Conventional RS theory focuses on the following equivalence relation and the
equivalence set of indiscernibility within the decision table S of interest:

IB = {(u(i), u(j)) ∈ U2|ρ(u(i), a) = ρ(u(j), a),∀a ∈ B ⊆ C}.

Here, IB is an equivalence relation in U and derives the quotient set, U/IB =
{[ui]B |i = 1, 2, ..., |U | = N}, and [ui]B = {u(i) ∈ U |(u(j), ui) ∈ IB, ui ∈ U}.
[ui]B is an equivalence set with the representative element ui. Let it be that
∀X ⊆ U , then X can be approximated as B∗(X) ⊆ X ⊆ B∗(X) using the
equivalence set:

B∗(X) = {ui ∈ U |[ui]B ⊆ X}, (2)

B∗(X) = {ui ∈ U |[ui]B ∩ X 
= φ}. (3)

B∗(X) and B∗(X) are the lower and upper approximations respectively of X by
B. Note that the pair (B∗(X), B∗(X)) is typically referred to as a rough set of
X by B.

Specifically, we let X = {u(i)|ρ(u(i),D) = d} = U(d) = {u(i)|uD=d(i)}, and
define a set of u(i) as U(CP ) = {u(i)|uC=CP (i)}. If U(CP ) ⊆ U(d), then, with
necessity, CP can be used as the condition part of the if-then rule of D = d. In
other words, the following expression of if-then rules with necessity is obtained:

Rule(d, k) : if CP = ∧j(C(jk) = vjk) then D = d. (4)

Similarly, with possibility, C∗(X) derives the condition part CP of the if-then
rule of D = d. However, the approximations B∗(X) ⊆ X ⊆ B∗(X) of U(d) by
lower/upper approximation are too severe or too loose, respectively, and, in many
cases, it is impossible to induce effective rules due to the inclusion relationship.
Ziarko then expanded the original RS by introducing an admissible error in two
ways:

Bε(U(d)) = {u(i)|acc ≥ 1 − ε}, (5)



Conventional Rough Set Theory from a View of STRIM 209

Table 4. Examples of rules induced by STRIM for the first simulation dataset (Case1).

CP (d, k) C(1)
...C(6)

D p-value(z) Accuracy Coverage f = (n1, n2, n3, n4, n5, n6)

(6,1) 660000 6 5.91E−98(20.97) 0.938 0.1883 (1, 2, 1, 2, 0, 90)

(3,1) 330000 3 1.94E−97(20.92) 0.978 0.1778 (0, 0, 88, 1, 1, 0)

(2,1) 002200 2 2.70E−89(20.00) 0.942 0.1698 (,1 81, 1, 1, 1, 1)

(5,1) 550000 5 1.71E−81(19.08) 0.987 0.1477 (0, 0, 0, 0, 78, 1)

(6,2) 006600 6 2.99E−81(19.05) 0.889 0.1674 (6, 1, 1, 0, 2, 80)

(5,2) 005500 5 9.91E−81(18.99) 0.964 0.1515 (0, 1, 1, 1, 80, 0)

(1,1) 001100 1 2.42E−79(18.82) 0.920 0.1578 (80, 1, 2, 0, 3, 1)

(3,1) 003300 3 8.65E−77(18.50) 0.888 0.1596 (3, 2, 79, 2, 2, 1)

(4,1) 004400 4 1.50E−76(18.48) 0.949 0.1456 (1, 0, 1, 75, 1, 1)

(1,2) 110000 1 4.86E−74(18.17) 0.959 0.1381 (70, 1, 1, 0, 1, 0)

(2,2) 220000 2 9.07E−68(17.35) 0.938 0.1279 (0, 61, 1, 0, 2, 1)

(4,2) 440000 4 1.45E−65(17.06) 0.918 0.1301 (1, 1, 0, 67, 2, 2)

(6,3) 600600 6 6.82E−24(10.01) 0.532 0.1046 (8, 9, 11, 6, 10, 5)

(5,3) 500500 5 7.14E−08(7.08) 0.464 0.0739 (10, 10, 11, 5, 39, 9)

(3,3) 030300 3 2.33E−08(5.46) 0.390 0.0606 (11, 6, 30, 12, 10, 8)

Table 5. Comparison of the number of induced rules by rule length derived by using
LEM2 and STRIM.

Case no. Method Number of rules by rule length

1 2 3 4 5 6 Total

Case1 LEM2 0 0 82 1073 623 0 1778

STRIM 0 15 0 0 0 15

Case2 LEM2 0 0 72 1108 556 0 1736

STRIM 0 14 0 0 0 0 14

Case3 LEM2 0 0 74 1106 616 0 1796

STRIM 0 13 0 0 0 0 13

Bε(U(d)) = {u(i)|acc > ε}, (6)

where acc = |U(d) ∩ U(CP (k))|/|U(CP (k))| = nd/n, ε ∈ [0, 0.5). The pair
(Bε(U(d)), Bε(U(d))) is called an ε-lower and ε-upper approximation that
satisfies the properties B∗(U(d)) ⊆ Bε(U(d)) ⊆ Bε(U(d)) ⊆ B∗(U(d)),
Bε=0(U(d)) = B∗(U(d)), and Bε=0(U(d)) = B∗(U(d)). The ε-lower and/or
ε-upper approximations induce if-then rules with admissible errors in the same
manner as the lower and/or upper approximations.
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As described above, in conventional RS theory, an equivalence relation IB

at a given U is first focused on. Then, based on this relation, an equivalence
set at a given U is derived, and the target set is approximated by the equiv-
alence set. Using these approximated sets, if-then rules are induced respec-
tively, as described above. However, the outcome ρ(u(i), C(k)) of the ran-
dom variable C(k) is used for the equivalence relation IB = {(u(i), u(j)) ∈
U2|ρ(u(i), a) = ρ(u(j), a), ∀a = ∀C(k) ∈ B ⊆ C}. Therefore, the equivalence
event IB is a probability event controlled by the conditional joint probability
P ((C(k) = ρ(u(i), C(k)), C(k) = ρ(u(j), C(k)))|ρ(u(i), C(k)) = ρ(u(j), C(k)),
∀C(k) ∈ B ⊆ C).

Here, we confirm the rule induction performance using the conventional RS
theory in a simulation experiment. First, we set the following rule in the Rule
Box in Fig. 1:

R(d) : if Rd then D = d, (d = 1, ...,MD = 6) (7)

Rd = (C(1) = d) ∧ (C(2) = d) ∨ (C(3) = d) ∧ (C(4) = d).

Assume that random variables C(j) (j = 1, ..., |C| = 6) are distributed uniformly
and generate inputs uC(i) = (vC(1)(i), ..., vC(6)(i)) (i = 1, ..., N = 10000). Then,
using the pre-specified rule (7) and the hypothesis in Table 1, the output uD(i)
is generated to create a decision table. We randomly selected samples by NB =
3, 000 from the decision table and formed a new decision table. Table 3 shows
some of the 1,778 rules obtained by applying the LEM2 algorithm implementing
the lower approximation in ROSE2 [18] to this decision table. In Table 3, by
focusing on the rule for D = 1 as an example, two or three rules are shown for
rule lengths 3 4, and 5. Table 4 shows the results of analyzing the same decision
table by STRIM. This simulation experiment was repeated three times, and the
numbers of rules induced by each method were arranged and compared according
to the rule length in Table 5. We observe the following from these tables.

(1) LEM2 induced all rules for accuracy = 1. Some of the induced rules with
rule length 3 or 4 shown in Table 3 are sub-rules of the pre-specified rules.
If specifying admissible error ε for accuracy and estimating rules by use of
VPRS, it is possible to induce the pre-specified rules shown in Table 4. How-
ever, in VPRS neither an induction algorithm nor a specifying method for ε
has been proposed.

(2) As shown in Table 4, STRIM induced all 12 pre-specified rules and three
extra rules. Statistical evidence (p-value or z-value) is shown in these rules.
Although it seems that the pre-specified rules can be estimated using appro-
priate ε and VPRS, the main component of the induction in STRIM is the
statistical test The induced rules are based on evidence, i.e., a sufficient num-
ber of data that can be used by the statistical test. On the other hand, the
coverages of the rules induced in LEM2 are only small percentages, i.e., they
include rules of length 5, and by any criterion that is not sufficiently restrictive
to be accepted as a rule.
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(3) The decision table can be considered a collection of many unarranged if-
then rules. LEM2 and STRIM summarize those rules so that human beings
can grasp and use the structure and/or features of the rules. From conducting
the rule induction experiment three times by LEM2 and STRIM (Table 5), we
see that LEM2 summarizes 3,000 rules in somewhat more than 1,700 rules;
however, it is clear that LEM2 cannot adequately deal with the given decision
table. On the other hand, STRIM induces all pre-specified rules (generally
unknown). Note that STRIM induces several additional rules; however, the
difference between STRIM and LEM2 can be clearly observed from the accu-
racy coverage and z-value (Table 4). The validity of the analyzed result by
STRIM for the real-world dataset in Table 2 can be inferred to some extent
from this simulation result. In any case, we can infer that the rule induction
method by the conventional RS based on stochastically varying equivalence
relations derives different rules for each decision table, and that the lower
approximation rule based on such an equivalence relation cannot fully sum-
marize the decision table.

5 Three-Way Decision Rules and Their Application
to the Classification Problem

Yao proposed the concept of three-way decision rules as a new rule induction and
decision-making method based on a new interpretation of the classical RS theory
[7–9]. Specifically, using a classical RS, Yao proposed to divide U into three
regions of X, i.e., the positive region POS(X), the boundary region BND(X),
and the negative region NEG(X):

POS(X) = B∗(X), (8)

BND(X) = B∗(X) − B∗(X), (9)

NEG(X) = U − POS(X) ∪ BND(X) = U − B∗(X) = (B∗(X))C . (10)

Any element x ∈ POS(X) certainly belongs to X, and any element x ∈
NEG(X) does not belong to X. One cannot decide with certainty whether or
not an element x ∈ BND(X) belongs to X. Similar to the conventional RS the-
ory, we let X = U(d) and can obtain the following decision rules corresponding
to (8), (9), and (10):

Des([x]) →P Des(U(d)), for [x] ⊆ POS(U(d)), (11)

Des([x]) →B Des(U(d)), for [x] ⊆ BND(U(d)), (12)

Des([x]) →N Des(U(d)), for [x] ⊆ NEG(U(d)). (13)

Here, Des([x]) denotes the logic formula defining the equivalence class [x]. For
example, [x] is defined by ∧j (C(jk) = vjk).
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Yao links (11), (12), and (13) to the rule accuracy (or confidence) based on
the probability measure as follows:

acc(Des([x]) →Λ Des(U(d))) = Pr(U(d)|[x]) =
|[x] ∩ U(d)|

|[x]| . (14)

Here, Pr(U(d)|[x]) is the conditional probability of U(d) given [x]. In other
words, the probability that the element of [x] exists in U(d) is estimated by
the cardinal number. According to accuracy, the positive, boundary, and neg-
ative rules are defined by the conditions: acc = 1, 0 < acc < 1, and acc = 0,
respectively. However, like the idea of VPRS, such approximation based on acc
is impractical because the condition is too severe to handle real-world datasets.
Therefore, Yao introduced tolerance, similar to VPRS, and proposed rules for
the classification problem as follows:

(P1) If Pr(U(d)|[x]) ≥ α, decide [x] ⊆ POS(U(d)),
(B1) If β < Pr(U(d)|[x]) < α, decide [x] ⊆ BND(U(d)),
(N1) If Pr(U(d)|[x]) ≤ β, decide [x] ⊆ NEG(U(d)).

Here, 0 ≤ β < α ≤ 1. As described above, Yao associated the accuracy of the
induced rule with the conditional probability. Furthermore, when applying this
induced rule to the classification problem, Yao proposed determining boundary
parameters (α, β) in accordance with a criterion that minimizes the costs and/or
losses by errors based on Bayesian statistics [19]. A detailed discussion is given
in the literature [8].

Ziarko did not report a method to specify a reasonable admissible error ε.
Yao specified error ε based on Bayesian statistics and included previous studies
as a special case. For example, Eqs. (5) and (6) correspond to α = 1 − ε and
β = ε, respectively. However, Yao did not propose a specific rule induction
method and/or algorithm, such as the decision matrix method [4] or LEM2 [5].
In addition, the three-way decision rules constructing three regions, i.e., the
positive, boundary, and negative regions are based on the equivalence relation,
which depends on the given decision table and will induce different rules for
each sample dataset obtained from the same population similar to the results in
classical RS theory.

6 Conclusion

This paper has summarized the concept and validity of a STRIM algorithm that
induces rules without using RS theory but by using a statistical test. Further-
more, the rule induction performance of STRIM has been demonstrated through
a real-world dataset analysis and a simulation experiment. STRIM has the fol-
lowing features.

(1) There is a data generation model in which the roles of input, output,
input/output converting mechanism, observation, and noise generation are
clear.
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(2) The condition attributes (input) and the decision attribute (output) are
considered random variables. Therefore, for example, ρ(u(i), C(k)) in the
decision table are the outcomes of the random variables C(k). In other
words, the decision table is the set of outcomes randomly obtained from
the population with condition attributes and decision attribute.

(3) The if-then rule is an input/output converting mechanism that causes bias
in the output distribution under the decision attribute value hypothesis
(Table 1).

(4) The judgment of bias in the output distribution is determined by a statistical
test using a given decision table. Therefore, although STRIM uses a sample
dataset, it has an objective criterion that satisfies the criteria for statistical
testing with a significance level.

(5) The statistical test is rooted in the proof by contradiction, which is often
used when demonstrating the logical consequences of propositional logic.

We have also summarized the conventional RS theory and the associated rule
induction method, and pointed out problems there with shown by the results
of the simulation experiment. Corresponding to points (1) to (4) above, the
conventional RS theory and the rule inducing method are described as follows.

(i) There is no data generation model. Thus, there is no alternative to studying
the given decision table at the starting point.

(ii) As there is no data generation model, such as the information function
ρ(u(i), C(k)), ρ(u(i),D) is needed for convenience. The information func-
tion is such that the function value is different for each sample for the same
attribute C(k).

(iii) The criterion for adopting a rule is accuracy, and the adoption criteria are
not clear (coverage is very small e.g. only one sample satisfies the rule).

(iv) The induced rules are established using only the given decision table, and
different rules are derived from different decision tables obtained from the
same population because the equivalence class and lower and upper approx-
imation sets differ for each decision table.

From the above, it is considered that the indiscernibility based on the equiv-
alence class is not the essence of a good rule induction method and an improved
rule induction method is needed.
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Abstract. Instances in multi-label data sets are generally described as
a high-dimensional feature vector, as brings the “curse of dimensional-
ity” problem. To ease this problem, some multi-label feature selection
algorithms have been proposed. However, they all handle feature selec-
tion problems with the assumption that all candidate features are avail-
able beforehand. While in some real applications, feature selection must
be conducted in the online manner with dynamic features, for example,
novel topics arise constantly with a set of features in social networks.
Online streaming feature selection (OSFS), dealing with dynamic fea-
tures, has attracted intensive interest in recent years. Some online fea-
ture selection methods are designed for single-label applications, They
can not be directly applied in multi-label scenarios. In this paper, we pro-
pose a multi-label online streaming feature selection algorithm based on
spectral granulation and mutual information (ML-OSMI), which takes
high-order label correlations into consideration. Moreover, comprehen-
sive experiments are conducted to verify the effectiveness of the proposed
algorithm on twelve multi-label high-dimensional benchmark data sets.

Keywords: Multi-label feature selection · Streaming features
Mutual information · Granular computing

1 Introduction

Multi-label data emerge on various real-world domains, such as image process-
ing, text classification, bioinformatics and information retrieval [1–5]. In these
applications, each instance is associated with multiple labels simultaneously. For
example, a document may belong to many topics and a gene could have several
functions [5]. Moreover, multi-label data are generally represented by very high
dimensional vectors, as brings a large number of features and most of them are
irrelevant or redundant [6]. Unnecessary features may not only reduce the perfor-
mance of classifiers but result in the increment of memory storage and computa-
tion time. To ease these problems, feature selection techniques have been wildly
c© Springer Nature Switzerland AG 2018
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studied, which select a relative small subset of features from the original feature
space to remove irrelevant and redundant features without losing discriminative
information for later processing.

A number of feature selection methods dealing with multi-label data have
been proposed [7–9]. However, they handle feature selection problems with the
assumption that all candidate features are available before the learning starts
and have to wait for the calculation of all the features, which is very deficient
in practice. Online streaming feature selection [10], evaluating features dynam-
ically with the arrival of new features, is a more time efficiency and intuitive
way to solve such problems. Existing online feature selection methods [11–14].
But they are designed for single-label learning tasks and cannot be directly
applied to multi-label tasks. One commonly encountered way is transforming
the multi-label problems into single-label problems. Then single-label online fea-
ture selection methods can be adopted. Nevertheless, it ignores the correlation
among labels which may carry useful information for learning task, or leads to
extremely high and unbalanced label space [9,15].

In this paper, we analyze multi-label online streaming feature selection prob-
lem and design an online streaming feature selection algorithm based on spec-
tral granulation and mutual information. The proposed algorithm first granu-
lates labels using spectral clustering. Then it transforms label granules into new
multi-class labels and performs feature selection on the new label space. The
main contributions of this study are summarized as follows: (1) Although there
are multi-label feature selection methods for constant features and single-label
feature selection algorithms for dynamic features, we introduce dynamic feature
selection into multi-label scenarios. (2) We designed a novel multi-label online
streaming feature selection algorithm. (3) Comprehensive experiments are con-
ducted to compare our proposed methods with traditional multi-label methods
and single-label online streaming feature selection algorithms on various bench-
mark multi-label data sets.

2 Related Works

2.1 Multi-label Feature Selection

In multi-label learning tasks, each instance is associated with multiple labels
and these labels are generally correlated, as makes multi-label feature selection
tasks more complicated than single-label ones. Moreover, there are evidences
showing that taking label correlations into consideration can benefit the learning
model [7]. Hence, exploring label dependence is an important issue. Multi-label
feature selection algorithms can be divided into three categorizes by the type of
correlations they considered, first-order, second-order and high-order methods.

First-order ones, such as BR [15], consider each label independently and
transform the multi-label feature selection task into several binary single-label
sub-problems. LCFS [16] is a second-order algorithm. It builds new labels based
on relations among the original labels to capture pair-wise label correlations
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and then conducts BR approach on the expanded label space to select a sub-
set of informative features. First-order and second-order algorithms assume that
labels are independent to each other or pair-wise correlated. However, correla-
tions among labels in real applications are more complicated. LP transforms
multi-label data set to a new single-label multi-class data set, then any single-
label feature selection could be adopted [15]. However, when the number of labels
is extreme large, LP based methods could suffer from terribly class-imbalance
problems [6].

MDMR [17] defines mutual information based evaluations to guide feature
selection procedure, considering multi-label feature selection problems in two
aspects, namely feature dependency and feature redundancy. [18] implements a
multi-label feature selection method similar to MDMR named MLMRMR based
on the single-label feature selection algorithm mRMR [19]. [9] partitions labels
into clusters according to their similarity using a balanced k-means methods
and then undertakes feature selection based on mRMR viewing each cluster
of labels as a new multi-label subtask. RFS [20] introduces �2,1-norm on both
loss function and regularization to eliminate unnecessary features. [21] solves
multi-label feature selection with streaming labels by ranking features iteratively,
where the labels arrive one at a time. [7] proposes a multi-label feature selection
method called MIFS. The labels are first mapped to a low-dimensional space
with less noisy. Then it conducts feature selection on the reduced label space.

2.2 Online Streaming Feature Selection

Online streaming feature selection focuses on the feature selection problems with
dynamic features. Grafting [13], Alpha-investing [14], fast-OSFS [11] and SAOLA
[22] are several state-of-the-art algorithms proposed to solve online streaming fea-
ture selection problems. Grafting treats the feature selection task as a stream-
wise regularized risk minimization problem. New features are selected if the
improvement of accuracy made by them is greater than a predefined threshold.
However, it has no mechanism to remove redundant features selected previously,
rendering it suffering from the nesting effect. Alpha-investing [14] uses a step-
wise linear regression model and a p-value to determine new features which are
selected or not. Furthermore, alpha-investing and Grafting used prior informa-
tion about the structure of feature space, which is impossible to obtain on the
original streaming tasks. Hence, they might not produce good performance in
real applications. Wu [11] proposed the fast-OSFS algorithm, needing no prior
knowledge about the feature space, which contains two major steps: online rele-
vance analysis and online redundancy analysis. The first step discards irrelevant
features and the second eliminates redundant features. SAOLA [22] is another
online feature selection method dealing with dynamic features using mutual
information based criterions to guide feature selection heuristically.

Though there are several online feature selection methods proposed, they are
designed for single-label tasks and can not apply directly in multi-label scenarios.
In this paper, we study the multi-label feature selection problems with dynamic
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(or streaming) features and propose a multi-label online streaming feature selec-
tion algorithm.

3 The Proposed Method

In this section, we first describe the multi-label online streaming feature selec-
tion problem. Then, we design a multi-label online streaming feature selection
method. The proposed method applies spectral clustering which granulates labels
into clusters and captures high-order label correlations. Moreover, the relevance
and redundancy of features are redefined using mutual information to guide
multi-label feature selection procedure.

3.1 Problem Statement

Definition 1 (Traditional Multi-label Feature Selection). Let X be the
sample space and xi ∈ X is a feature vector. Y = {l1, l2, ..., lm } is a set of
labels. Multi-label learning is objective to produce a function H = {X → 2L}
which assigns each instance with a set of relevant labels. Traditional multi-label
feature selection holds the assumption that instances are represented with a fixed
dimensional feature space F = {f1, f2, ..., fd}. They aim to select an optimal
subset of features SF ⊆ F without harming the predictive performance.

Definition 2 (Streaming Features). Streaming features denote a feature
space where features flow in one by one over time with fixed number of instances.
With a dynamic feature space, the dimensionality may tend to very high or even
infinite. Besides, each feature is required to be processed when its arrival. Hence,
feature selection procedure should be conducted in the online manner.

Definition 3 (Multi-label Online Streaming Feature Selection). Multi-
label online streaming feature selection copes with a streaming feature vector
F t

s , where F t
s = {f1, f2, ..., ft} and ft denotes the feature arrives at time

t. As the features flow in continuously, multi-label streaming feature selection
task is objective to remove irrelevant and redundant features from the available
feature set F t

s while holds discriminative information with more than one targets
Y = {l1, l2, ..., lm }.

There are three major challenges in the multi-label streaming feature selec-
tion scenario:

– The dynamic and uncertain nature of the feature space. The dimen-
sionality of the feature space grows over time and may even tend to infinite.

– The streaming nature of the feature space. The subset of selected fea-
tures should be updated timely with new features flow in one at a time.

– The complex correlations among labels. There are complex correlations
among labels and evidences show that taking label correlations into consid-
eration will benefit learning model.
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3.2 The Framework of ML-OSMI

The framework of the proposed multi-label online streaming feature selection
algorithm is shown in Fig. 1. To capture label correlations, the original label
space is first transformed into a multi-class multi-target one with much lower
dimensionality. Then, the new labels are used to select features. To conduct
feature selection procedure with many labels and streaming features, we adopt
relevance test and redundancy test to guide the online feature selection, moti-
vated by single-label online streaming feature selection methods [11]. Section 3.3
gives the details of label space transformation and Sect. 3.4 redefines the rele-
vance and redundancy of features.

Fig. 1. Framework of the proposed algorithm

3.3 Capturing Label Correlations by Spectral Granulation

In multi-label data, a label is generally related to a small set of labels from the
entire label space [9,23]. Hence, the label correlations can be explored as much
as possible by dividing labels into partitions, where the labels in one partition
are relevant to each other and the labels in different partitions are irrelevant.
The partitions of labels are considered as granulas in this paper. The labels in
the same granula are high correlated while the labels in different granula are
mutually independent or weakly related. To generate the granulas, labels are
clustered using spectral clustering with cosine similarity. Then, each label clus-
ters is transformed into a multi-class label applying LP framework [6]. Finally,
we get a new label space consists of multi-class labels with much lower dimen-
sionality than the original label space. The new multi-class labels are used to
steer feature selection processing taking label correlations into account.

3.4 Evaluations Based on Mutual Information

To perform multi-label feature selection, an algorithm must be able to mea-
sure the dependency between features and labels. Mutual information is often
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employed to characterize this dependency. Given two random variables x and
y, their mutual information is defined in terms of probability density functions
p(x), p(y) and p(x, y):

mi(x, y) =
∫ ∫

p(x, y)log
p(x, y)

p(x)p(y)
dxdy . (1)

the normalized version of mutual information is:

nmi(x, y) =
2 × mi(x, y)
h(x) + h(y)

. (2)

where h(x) =
∫

p(x) log p(x)dx. Given conditional variable z, the conditional
mutual information between x and y is

cmi(x, y|z) =
∫ ∫

p(x, y|z)log
p(x, y)

p(x)p(y)
dxdy . (3)

Given a finite set of features F and a finite set of labels L, mutual information
based feature selection methods is objective to find the optimal subset of features
SF ∗ ⊆ F without reducing the information shared by features and labels, as
can be written as:

SF ∗ = arg min
SF⊆F

{|SF | : mi(SF, L) = mi(F, L)} . (4)

It can also be considered as removing every unnecessary feature from F . Using
conditional mutual information, this formulation can be expressed as:

SF ∗ = arg min
SF⊆F

{|SF | : ∀fεF − SF, cmi(f, L|SF ) = 0} . (5)

The Eq. (5) indicates that an optimal reduction of the original feature set F
should contain no irrelevant or redundant features. However, either Eqs. (4) or
(5) is difficult to calculate. In the following, we redefine the relevance and redun-
dancy of features based on mutual information to guide the feature selection
procedure to achieve this target.

Definition 4 (Relevance) given a finite label set L = {l1, l2, ..., ln}, the
relevance of the feature f and the label set L is defined as:

rel(f, L) = max{nmi(f, li), liεL} . (6)

The rel(f, L) measures the relevance between feature f and the label set L.
Moreover,it delivers in pairwise manner, as can be calculated with efficiency.
Obviously, if rel(f, L) = 0, f shares little information with any label li ∈ L. In
other words, f can be discarded without harming the predictive performance.
However, 0 is a threshold which is too strict to use in real applications. A com-
promise choice is using a small positive relevance threshold α. If rel(f, L) ≤ α,
f is considered to be an irrelevant feature.
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Definition 5 (Redundancy). let F is a finite feature set, for any feature gεF ,
the significance of g on L given another hεF is defined as

sig(g, L|h) = max{cmi(g, li|h), liεL} . (7)

which means that a feature g is redundant and can be removed from F if there
exists a feature hεF − g satisfying sig(g, L|h) = 0. This is a loosed and approx-
imate version of the formulation cmi(g; li|F − g) = 0 described in Eq. 5. It only
considers second-order conditional dependency but is much easier and efficient
to calculate.

3.5 The Proposed Method

We propose a multi-label online feature selection algorithm named multi-label
online streaming feature selection based on spectral granulation and mutual
information (ML-OSMI) on the basis of Sects. 3.2, 3.3 and 3.4. The pseudo-code

Algorithm 1. ML-OSMI
Input: Feature stream F , label space L and the relevance threshold α
Output: selected features SF

1 granulating labels into Z = {z1, z2, ..., zk } using spectral clustering;
2 SF = ∅;
3 repeat
4 get f from the stream F ;
5 /*checking relevance */
6 if rel(f, L) ≤ α then
7 continue;
8 end
9 /*checking redundancy */

10 added = 1;
11 for aj in SF do
12 /*checking whether f is redundant*/
13 if sig(f, zi, aj) == 0 then
14 added = 0;
15 break;

16 end
17 /*checking whether aj is redundant*/
18 if sig(aj , zi, f) == 0 then
19 SF = SF \aj ;
20 end

21 end
22 if added == 1 then
23 SF = SF ∪ f ;
24 end

25 until no new features or stopping criteria met ;
26 return SF
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of ML-OSMI is shown in Algorithm 1. ML-OSMI delivers as follows. As a new
feature f flows in, if rel(f, L) ≤ α is satisfied, f is considered to be a irrelevant
feature and discarded. The online feature selection waits for the next feature. If
f passes the relevance checking at Step 6, the algorithm assesses two kinds of
redundancy, the redundancy of f and the redundancy of selected features before
time t. Suppose SF is the set of selected features before f arrives. Firstly, the
algorithm checks the redundancy of f to determine whether there exists a feature
aj ∈ SF making f conditionally independent to the label set. If there has no such
a feature in SF , f is selected. Then, the algorithm removes all features made
to be redundant by f from SF . If there has no new features, the algorithm
terminates.

3.6 Analysis of Time Efficiency

The time complexity of the proposed algorithm consists of two parts: the com-
plexity of conducting relevance analysis and the complexity of removing redun-
dant features. In the analysis, the number of samples is omitted for simplicity.
Let Ft be the features arrived before time t. F r

t is a subset of Ft containing
all features which are relevant to the label set. Suppose SFt is the selected fea-
ture subset at time t and r = |SFt |. Let m = |Ft | be the number of features
in Ft and p = |F r

t |. When the number of feature is extremely high, it has
m � p � r. Hence, the average time complexity of the proposed algorithm is
O(km+kpr), where k is the number of label granulas and k � r. If all features
are discarded on the relevance test, the best time complexity is O(km). While
all features pass the independence test, the worst-case complexity is O(kmr).
Noticing that k � n and r � m, where n is the cardinality of the original
label set, one can concludes that O(kmr) � O(nm2).

4 Experiment Results

4.1 Experiment Settings

We use twelve multi-label high-dimensional benchmark data sets from various
domains as our test beds. The details of data sets are shown in Table 1. The scene
is from the image processing application. emotions and CAL500 involve emo-
tions classification of music. genbase and yeast are obtained in biology domain.
The rest seven data sets are from text and natural language processing topics.
All data sets are available at the MEKA website1. The experiments are con-
ducted on a personal computer with Windows Server 2016, Inter(R) Core (TM)
i7-6850K CPU and 64 GB memory employing MATLAB R2016a platform.

To illustrate the effectiveness of the proposed algorithm, we compare our
algorithm with four state-of-the-art multi-label feature selection algorithms and
two state-of-the-art single-label online feature selection algorithms. The com-
parisons contain the number of selected of features, running time and prediction
1 http://meka.sourceforge.net/#datasets.

http://meka.sourceforge.net/#datasets
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performances. The predictions are delivered by the multi-label k-nearest neigh-
bors algorithm(ML-KNN) [24] trained with the selected features. ML-KNN is
a well known multi-label classification method for its efficiency. In our experi-
ments, the number of nearest neighbors is set to the recommended value 10 and
the smoothing factor is 1. Five widely used evaluations are used to measure the
predictive performances, namely Hamming Loss, Coverage, One Error, Ranking
Loss and Average Precision [6]. The greater the value of Average Precision, the
better the performance of the model. For the other four evaluations, the less
their value are, the better the model is.

Table 1. Details of the benchmark data sets

Ind Dataset Instance Feature Label Domain

1 emotions 593 72 6 music

2 bibtex 7395 1836 159 text

3 CAL500 502 68 174 music

4 delicious 16105 500 983 text

5 enron 1702 1001 53 text

6 genbase 662 1186 27 biology

7 languagelog 1460 1004 75 text

8 medical 978 1449 45 ext

9 scene 2407 294 6 images

10 tmc2007 28596 49060 22 text

11 20NG 19299 1006 20 text

12 yeast 2417 103 14 biology

4.2 Comparisons with Traditional Multi-label Feature Selection
Methods

The comparative multi-label feature selection algorithms are F-Score [25], MLM-
RMR [18,19], RFS [20] and MIFS [7]. Comparisons on running time and predic-
tive performances are given. The implements of these algorithms can be found on
Github2 and the parameters such as the size of selected features are set as their
default value. Moreover, the 5-fold validation mechanism is adopted on all data
sets. Table 2 gives the running time and Fig. 2 shows the predictive performances
of multi-label feature selection methods.

(1) ML-OSMI vs. F-Score. As is shown in Table 2, F-Score takes fewer time
on 8 of 12 data sets except for CAL500, enron, genbase and medical. However,
Fig. 2 shows that ML-OSMI achieves higher Average Precision on 11 of 12 except
for the bibtex. There has no significant difference on Coverage among all fea-
ture selection methods. For Hamming Loss, ML-OSMI delivers better results on
2 https://github.com/KKimura360/MLC toolbox.

https://github.com/KKimura360/MLC_toolbox
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Table 2. Running time (Seconds)

Ind F-Score MIFS RFS MLMRMR Proposed

1 0.013 0.117 0.795 0.026 0.102

2 3.719 29.751 603.866 30.022 18.655

3 0.141 0.897 0.529 0.011 0.041

4 7.294 424.569 3989.808 96.614 45.698

5 0.650 1.837 20.059 2.209 0.388

6 0.361 0.529 3.103 0.882 0.025

7 1.074 1.978 13.013 2.575 3.441

8 0.733 1.157 6.733 1.558 0.532

9 0.029 0.717 34.849 1.044 2.388

10 0.499 27.580 21669.986 20.382 1.142

11 0.523 19.950 6544.833 14.217 24.936

12 0.027 0.568 34.542 0.285 0.545

enron, genbase, languagelog, medical and scene. On other 7 data sets, ML-OSMI
and F-Score perform equally well. Besides, ML-OSMI obtains better performance
on 9 out of 12 data sets for One Error and 10 out of 12 data sets for Ranking
Loss.

(2) ML-OSMI vs. MIFS. Table 2 says that ML-OSMI uses fewer time to select
features on 9 out of 12 data sets than MIFS. Figure 2 shows that ML-OSMI per-
forms better than MIFS on all data sets but the scene on Average Precision,
Hamming Loss and Ranking Loss. For Coverage, neither of them shows superi-
ority. Moreover, except for scene and languagelog, ML-OSMI gains better results
of One Error than MIFS.

(3) ML-OSMI vs. RFS. The comparisons between ML-OSMI and RFS in
Table 2 show that ML-OSMI achieves better time efficiency on all data sets. For
the predictive performances, Fig. 2 indicates that ML-OSMI gets better results
evaluated by Average Precision, One Error and Ranking Loss on all data sets
except for the emotions and languagelog. Besides, ML-OSMI outperforms RFS
on 8 out of 12 data sets on Hamming Loss and delivers the same results on 3
of the remaining 4 data sets. For Coverage, ML-OSMI and RFS perform almost
equally well.

(4) ML-OSMI vs. MLMRMR. Table 2 shows that MLMRMR takes less time
than ML-OSMI on emotions, CAL500, languagelog, scene, 20NG and yeast, while
ML-OSMI takes less time than MLMRMR on the other 6 data sets. As Fig. 2
shows, ML-OSMI performs better than MLMRMR on enron and scene and
MLMRMR performs better than ML-OSMI on enron and bibtex. On the remain-
ing 9 data sets, ML-OSMI performs as good as MLMRMR.
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4.3 Comparisons with OSFS Methods in Streaming Feature
Scenario

We also compare ML-OSMI with two state-of-the-art OSFS algorithms, Alpha-
investing [14] and SAOLA [22]. To evaluate the effectiveness of the proposed
multi-label online streaming feature selection algorithm, we choose 8 data sets
with extreme high dimensionality to simulate the streaming feature selection sce-
nario. Average Precision and Hamming Loss are used as the criterions to demon-
strate the performance of the algorithms. Figure 3 reports the performances of
LP-SAOLA, LP-alpha-investing and ML-OSMI with the features flowing in con-
tinuously over time. Table 3 gives the running time.
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Fig. 2. Comparisons with multi-label feature selection methods

Table 3. Running time (Seconds)

Dataset lp-alpha-investing lp-saola Proposed

emotions 0.004 0.154 0.102

bibtex 15.331 435.656 18.655

CAL500 0.003 0.193 0.041

delicious 6.180 43.281 45.698

enron 0.416 109.994 0.388

genbase 1.137 1.068 0.025

languagelog 0.875 106.720 3.441

medical 0.481 150.697 0.532

scene 0.211 1.153 2.388

tmc2007 18.408 52.927 1.142

20NG 41.580 157.684 24.936

yeast 0.007 0.027 0.545
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Fig. 3. The predictive performance changes with features streaming in

(1) ML-OSMI vs. LP-alpha-investing. Figure 3 shows that the proposed
algorithm outperforms LP-alpha-investing on 6 out of 8 data sets evaluated by
Average Precision and Hamming Loss. For mc2007, LP-alpha-investing generates
better results on the prior 80% of features than ML-OSMI. However, with new fea-
tures continuously flow in, ML-OSMI performs better than LP-alpha-investing.
Table 3 says that LP-alpha-investing takes less time dealing with 8 out of 12 data
sets. It should be noted that LP-alpha-investing transforms the whole label set into
a single multi-class label, as makes it more time efficiency.

(2) ML-OSMI vs. LP-saola. On enron, medical, bibtex and 20NG, ML-OSMI
gets better Average Precision and Hamming Loss with features streaming flowing
in. Besides, compared to LP-SAOLA, the proposed algorithm gains better time
efficiency on 9 out of 12 data sets except for delicious, scene and yeast. Especially,
on six relatively higher dimensional data sets with thousands of features, bib-
tex, enron, genbase, medical, tmc2007 and 20NG, the proposed algorithm shows
better efficiency for taking relative less time.

5 Conclusion

In this paper, we propose a multi-label online streaming feature selection
algorithm to address multi-label feature selection with dynamic features. The
proposed method first granulates the labels. Labels in the same granula are high
correlated and labels in different granula are mutually independent or weakly
correlated. Then, transforming each granula of labels into a multi-class label,
the original labels is converted into a new space with much lower dimensionality,
taking high-order correlations into consideration. Moreover, the relevance and
redundancy of features are redefine based on mutual information to guide feature
selection procedure. Finally, the features are selected with the new label space in
online manner. Comprehensive experiments are conducted to verify the effective-
ness of the proposed method, comparing it with traditional multi-label feature
selection methods and online streaming feature selection methods. Results have
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shown that the proposed multi-label online feature selection algorithm can effec-
tively solve multi-label feature selection with dynamic features. In our future
work, we will study how to deliver feature selection with features and labels flow
in simultaneously.
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Abstract. This paper proposes an interpretation of characterizing
required condition and desired condition of an user, that is a bipolar
query, from the perspective of rough set semantics with an additional
feature of learning the user’s need through dialogue.

1 Introduction

Bipolar queries are meant to express human preferences and intentions by distin-
guishing the required and desired components. In the context of machine-driven
search in response to an user’s query, understanding this distinction between
required and desired conditions, articulated to a machine through natural lan-
guage, is a real challenge. In literature (see, e.g., [5,8–10,12]), there are two ways
of viewing this bipolar nature of a query given by a human user; one is bipolar
univariate and other is unipolar bivariate. In the first case, one scale passing
gradually from negative evaluation to positive evaluation via neutral cases is
considered. In the latter, two more or less independent scales, which separately
account for positive and negative evaluations for both required and desired con-
ditions, is considered. In this paper, our approach will be inclined to the second
way of viewing bipolar queries. The next important issue is to assess the query
as a whole by aggregating its bipolar assessments. The methods for assessing
each of the components of a bipolar query and aggregating them together are
varying in the literature.

In [8] authors have presented a way to distinguish between an agent’s require-
ment and desire in a formal set up so that an automated search engine can satisfy
a particular objective of an user. They have posed the problem through an exam-
ple that an user is looking for a house which is cheap and possibly close to the
public transport. The task is to identify, among these two constraints, the required
one and the desired one, and accordingly aggregate the preferences on houses
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giving more priority to the required condition than the desired condition. In [12],
the issue is addressed by first selecting houses satisfying the attribute ‘cheap’,
and then order them using the criterion ‘close to public transport’. Kacprzyk
and Zadrożny [8], on the other hand, have emphasized on an approach where
the former condition has to be satisfied necessarily, and the latter only if possi-
ble. In this regard, they come up with an operator, defined by standard logical
connectives, to capture the sense of and possibly, and the operator is named
as and possibly operator. The semantics of this operator is then investigated
by considering different many-valued logical connectives for ‘conjunction’ and
‘implication’. Thus given a house h, h is cheap and possibly close to the public
transport is translated to a value from a suitable value set. But the development
of the theory ignores the following aspects.

– How to decide which operators would fit suitable to satisfy the user’s choice?
– How the system is perceiving situations while searching for answers related to

the user’s queries?
– How the decision process reflects the natural aspect of learning from data?
– How the user’s requirement and intention can be realized without a component

of interaction or dialogue between the user and the system?

We focus on the key strategy taken in [8], which naturally leads towards two terms;
the first condition has to be satisfied necessarily and then the second condition
if possible. This perspective naturally brings in rough set theory [17] as a possi-
ble model for finding a suitable semantics for bipolar queries. Moreover, in [8] the
notion of cheap and possibly close to the public transport is realized through the
key rule that if there are houses satisfying both then fine, otherwise, choose only the
cases satisfying the first, where the notions of cheap and close to public transport
are represented by fuzzy sets. Thus, based on some price value and distance mea-
sure each house is identified with the degree to which it is cheap and the degree to
which it is close to public transport. Then the aggregation of these two measures is
nothing but a mere calculation of numbers, from where retrieving back the original
semantics of cheap and close to public transport and refining the search by mod-
ifying the semantics a bit is impossible. In this context, the method proposed in
this paper based on rough set would be advantageous as the rough set theoretic
approximation of any vague concept remains grounded in the data.

Below we present a preliminary idea based on rough sets and information
systems so that the process of obtaining a cluster of houses, suitable to user’s
choice, (i) be grounded in the available data, (ii) be flexible for refinement based
on modification of data, and (iii) be sensitive to the user’s feedback through
initiation of dialogues.

In this regard, in Sect. 2, first we present the basic notions from the the-
ory of rough sets. Section 3 discusses about our proposed method of addressing
the notion of bipolar queries using rough set semantics, and a formal language
corresponding to the proposed semantics. In Sect. 4, we present a proposal by
introducing dialogue between the user and the system in order to understand
the user’s need better. Lastly, there is a concluding section listing some further
possibilities to be explored.
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2 Preliminary of Rough Sets and Decision Systems

The notion of rough sets was introduced by Pawlak [15,16] in order to address the
concepts which have borderline cases apart from the cases which surely belong
and surely do not belong to the concepts. The notion of rough set is defined
based on a notion of information system which describes a set of objects of a
universe with respect to certain attributes.

Definition 1. An information system is a triple A = (U,A, V ), where U is a
set of objects, A is a set of attributes, and V is a set of values such that for each
a ∈ A, a : U �→ V .

Given an information system A for any B ⊆ A we can create an equivalence
relation, known as indiscernibility relation, in the following way.

Definition 2. Given an information system A = (U,A, V ) for B ⊆ A the indis-
cernibility relation with respect to B, denoted as INDB, is defined as follows.
For any x, y ∈ U , x INDB y iff a(x) = a(y) for each a ∈ B.

This relation INDB partitions the whole universe into equivalence classes, and
that generates an approximation space (U, INDB).1

Definition 3. Given an approximation space (U, INDB), for any set X ⊆ U ,
there are two approximations of X with respect to INDB.

– The lower approximation of X with respect to the attributes of B, denoted as
LowB(X), is given as LowB(X) = ∪{[u]B : [u]B ⊆ X}.

– The upper approximation of X with respect to the set of attributes B, denoted
as UppB(X), is given as UppB(X) = ∪{[u]B : [u]B ∩ X �= φ}.

Definition 4. Given an approximation space (U, INDB), any set X ⊆ U is
represented by a pair (LowB(X), UppB(X)), called a rough set2.

The lower approximation of a set X with respect to the set of attributes B
represents those objects for which the whole equivalence class with respect to B
is completely contained in X; that is, LowB(X) is the union of those equivalence

1 Instead of calling (U, INDB) as approximation space one may call it indiscernibility
space. But as the notions of approximation, like the lower and upper approximation
operators, are defined based on INDB , we follow the prevalent practice of calling
(U, INDB) as approximation space, rather than calling (U,Low,Upp) as the approx-
imation space generated from the indiscernibility space (U, INDB).

2 In literature (see, e.g., [1,13–16,18,22–24]) there are different variant definitions of
rough sets; interrelations among these different definitions and operations parallel to
set theoretic union, intersection and complementation are also studied by different
researchers (see, e.g., [1–3,7]). Unlike ordinary sets, the set of all rough sets over a
universe U with respect to intersection, union and complementation does not form
a Boolean algebra, and so intersection, union and complementation operations of
rough sets are a bit different than the usual ones. In this paper, instead of going into
the detail we refer the readers to the cited above literature.
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classes with respect to B for which it is sure that the concept X applies. The
upper approximation of X with respect to B is the union of those equivalence
classes which has non-empty intersection with X; that is, UppB(X) contains
those elements from the universe for which either they belong to X or they
are equivalent to some elements belonging to X. So, UppB(X) contains those
elements which are possibly in X. So, if X represents a vague concept, then
LowB(X) contains those elements which surely belong to X, UppB(X)c contains
those elements which surely do not belong to X, and UppB(X) \ LowB(X)
contains those elements which are the borderline instances of X.

One more important point is aggregation of information systems over the
same universe and approximation of a set with respect to the individual infor-
mation systems and their aggregated information system. Usually, if X ⊆ U is
included in the lower approximation with respect to one information system and
Y ⊆ U is included in the lower approximation of another, then X ∩ Y is also
included in the lower approximation of the joint information system consisting of
the union of both the sets of attributes of those two information systems. This is
also an outcome of the nature of intersection operation of two rough sets. These
properties of rough set theoretic operations and aggregation of rough sets would
have an impact in Sect. 3 in the context of defining a semantics for a modal
language.

In [18,21], departing from the notion of equivalence class, a notion of general-
ized approximation space, based on a notion of neighbourhood of an element of
the universe, is proposed. Then analogous to the notion that an equivalence class
of an element u is contained in a set X or has non-empty intersection with X,
a neighbourhood of u is included in X to a degree is introduced. Let us present
a few basic definitions in this regard.

Definition 5. A generalized approximation space is a tuple (U,J , v) where J
is an uncertainty function given as J : U �→ P (P (U)), and v : P (U) × P (U) �→
[0, 1].

For any x ∈ U , J(x) can be considered to be a family of neighbourhoods of x,
and v is a graded inclusion function determining how a subset of U is included in
another subset. For X belonging to J(x), one can have different interpretations
such as ‘a neighbourhood of x’, ‘a cover of x’, or even ‘an equivalence class of x’
in usual sense. When we are beyond the classical sense of partition, the clusters
around x are not very crisp as that of an equivalence class as no condition of
disjointness is imposed between two different clusters of two elements. So, J
allows some uncertainty in the formation of a cluster around an element, and
hence is called uncertainty function. In the context of ordinary approximation
space each member of J(x) of the generalized approximation space represents an
equivalence class of x based on INDB with respect to some set B of attributes.
There can be different definitions for a graded inclusion relation also; as an
example the standard one is given as follows.
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Example 1. For any X,Y ⊆ U , the standard rough set inclusion is given as

vSRI(X,Y ) =

{ |X∩Y |
|X| if X �= ∅

1 otherwise.

Now based on the above notion of generalized approximation space, one can
define the lower and upper approximation of any set X ⊆ U in the following
way.

Definition 6. Given a generalized approximation space (U,J , v), for any set
X ⊆ U ,

– Low(X) = {u ∈ U : v(Y,X) = 1 for some Y ∈ J(x)}
– Upp(X) = {u ∈ U : v(Y,X) > 0 for any Y ∈ J(x)}.
Instead of such crisp conditions for defining Low(X) and Upp(X) based on
the neighbourhood function J , one can also impose the conditions respectively
v(Y,X) ≥ 1 − t and 0 < v(Y,X) < 1 − t (or t ≤ v(Y,X) < 1 − t [26]) for
some very small positive number t, in the definitions of the lower and upper
approximations of X.

Let us consider an information system (U,A, V ). We can now create a gen-
eralized approximation space (U,JA, vt) such that for each x ∈ U , JA(x) =
{[x]B : B ⊆ A}, and vt : P (U) × P (U) �→ [0, 1] where t ∈ [0, .5). Thus we have
a family of generalized approximation spaces parametrized by the thresholds
t ∈ [0, .5) such that the lower approximation operator LowB,t and the upper
approximation operator UppB,t are defined in the following way.

Definition 7. Given a generalized approximation space (U,JA, vt), for any
X ⊆ U and B ⊆ A,

– LowB,t(X) = ∪{[x]B : vt(X, [x]B) ≥ 1 − t}
– UppB,t(X) = ∪{[x]B : 0 < vt(X, [x]B) < 1 − t}.

3 Information System Based Interpretation of Required
and Desired Conditions

Let an information system have a database of houses characterized as cheap and
expensive with respect to a set of amenities and price. The system also has a
characterization of the same set of houses with respect to other parameters in
terms of the decision values for closed to public transport. That is, in terms of
rough set literature there are two decision tables [16] for a set of houses - one for
the decision attribute ‘cheap’ (C) and the other for the decision attribute ‘close
to public transport’ (P ). Now following the basic notions of rough sets we can
design the following simple method so that the system can select a set of houses
as ‘cheap and possibly close to the public transport’.
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(i) Let C be the class of houses which belong to the decision class cheap based
on a set of attributes A1, and P be the class of houses which belong to the
decision class close to public transport based on a set of attributes A2. As
the respective sets of attributes, viz., A1 and A2, for the lower and upper
approximations for C and P are clear from the context, for simplicity of
presentation let us use just C, P and P

c
in the present sequel.

(ii) As the first preference is to choose houses which are surely cheap, and then
look for the houses which are possibly close to public transport too, we first
focus on identifying C. Now, if C ∩P = φ we would choose C. If C ∩P �= φ,
we can have the following possible relations of P (sure cases of P ) and P

c

(surely negative cases of P ) with C (see Fig. 1).
• C ∩ P = φ, C ∩ P

c
= φ. • C ∩ P �= φ, C ∩ P

c
= φ.

• C ∩ P = φ, C ∩ P
c �= φ. • C ∩ P �= φ, C ∩ P

c �= φ.
(iii) Now in order to formalize C and possibly P we can simply consider the

following interpretation: C ∩ P else C ∩ P else C.
That is, the system would choose those houses which are both surely cheap
and surely close to the public transport if such a non-empty set exists. If
not, the system would prefer to select those houses which are surely cheap
and still possible to be counted as close to public transport if such a non-
empty set exists; otherwise it would choose only the set of surely cheap
houses. One can notice, both from the Fig. 1 and from the cases listed in
item (ii), that our target search criterion is such that the resultant cluster
can never be C ∩ P

c
.

(iv) Extension of above proposal for more than two constraints. In
the above case we have considered only two constraints C and P and a
preference of the first over the second. Based on the same framework let
us consider some possible ways of extending the idea for more than two
constraints.

(a) Let there be three constraints C1, C2, C3 such that the user wishes to
have C1 � C2 � C3 where Ci � Cj represents that Ci is preferred over
Cj , and C1, C2, C3 are perceived with respect to A1,A2,A3 respectively.
So, in this case we can first look for the clusters obtained from the rule
C1 ∩ C2 else C1 ∩ C2 else C1. Let H be the obtained cluster. Now we do
not want to meet the constraint C3 at the cost of deviating from H. So,
our next step would be to look for the cluster following the rule H ∩ C3

else H ∩ C3 else H.
(b) Let {C1, C2, . . . , Cn} be a set of constraints which are equally required,

and {P1, P2, . . . , Pm} be a set of constraints which are equally desired, and
for each i, j, Ci � Pj . Then instead of each single table for the constraints,
we can consider the joint table with decision attribute C1 & . . . & Cn and
the other decision table with decision attribute P1 & . . . & Pm, where
& is interpreted as holding all the component decisions together. Then
considering C1 & . . . & Cn as C and P1 & . . . & Pm as P we can proceed
as above.
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(v) Refinement of search: In the above proposal the main key behind the
search is C ∩ P else C ∩ P else C. It indicates that the best choice would
be when C ∩ P is non-empty. In case if C ∩ P is empty the next choice
would be C ∩P , and if that possibility does not work too, then the outcome
would be C. But if we keep practical aspects of a search in mind, then
often we like to refine the search by making some adjustment in the set of
parameters/attributes so that we can accommodate both the constraints
surely C and possibly P . As the background database with description
and decision about houses are available, designing the refinement of search
following the above mentioned direction is not difficult. As we now will be
directly dealing with adjusting the set of attributes in order to get a cluster
of houses better fitting the user’s intention, instead of using the notation C
we would now switch to the notation LowA1(C).
• Suppose LowA1(C) ∩ LowA2(P ) = φ.
• As the database for both the decision attributes are available, we can

check whether by dropping a few attributes from A2 some houses from
LowA1(C) get included in a refined lower approximation of P . So, we start
with checking if for some h ∈ LowA1(C) there is some A′

2 ⊆ A2 such that
vt([h]A′

2
, P ) ≥ 1−t for some t ∈ [0, 0.5). In that case, [h]A′

2
⊆ LowA′

2,t
(P ),

and we thus have LowA1(C) ∩ LowA′
2,t

(P ) �= φ.
• As the next step it can be checked whether for A′

2 ⊆ A2, one obtains a
good overlap of the equivalence class of houses generated with respect to
A′

2 with LowA1(C). So, we can check if for some h ∈ LowA2(P ), there
is some A′

2 ⊆ A2 such that v([h]A′
2
, LowA1(C)) ≥ 1 − t for some very

small threshold t ∈ [0, 0.5). For such case, [h]A′
2

⊆ LowA′
2,t

(LowA1(C)) ∩
LowA2(P ), and we obtain a modified cluster which may better satisfy the
user.

• If the above options do not work, as a next possibility the system can drop
some amenities from A1 and check if for A′

1 ⊆ A1 and [h]A1 ⊆ LowA1(C)
whether both [h]A′

1
∩LowA2(P ) �= φ and v([h]A′

1
, LowA1(C)) ≥ 1−t, for a

negligibly small threshold t > 0, hold. In such case, v([h]A′
1
, C) ≥ 1− t as

LowA1(C) ⊆ C. Thus we obtain a modified cluster LowA′
1,t

∩LowA2(P ) �=
φ.

It is to be noted that for refining the search LowA1(C), the cluster correspond-
ing to the required condition, always has been given a priority over LowA2(P ),
the cluster corresponding to the desired condition. In the first case, the system
makes an attempt by checking if some houses from LowA1(C) can be considered
as surely close to public transport to some degree if some attributes characterizing
P are ignored. So, the search starts from some houses belonging to LowA1(C).
In the second case, the search starts from the houses which are already consid-
ered as surly close to public transport. The target is to check if for some subset
A′

2 of the set of attributes characterizing P , v([h]A′
2
, LowA1(C)) ≥ 1 − t for

some small positive quantity t. In case of positive result, the already obtained
cluster LowA1(C) is tuned a bit by a modified cluster LowA′

2,t
(LowA1(C)).

Thus, without affecting LowA1(C) much a set of houses can be obtained from
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Fig. 1. Possible cases of P and P
c

with C.

LowA′
2,t

(LowA1(C)) ∩ LowA2(P ). If dropping a few attributes of P does not
work, as the third option the system goes for dropping a few attributes from
A1, the set characterizing C. In this context, with respect to the smaller set
of attributes A′

1, for a class [h]A1 which was already included in LowA1(C),
it is checked if [h]A′

1
∩ LowA2(P ) �= φ and for a small positive number t,

v([h]A′
1
, LowA1(C)) ≥ 1−t is still satisfied. In such case, LowA′

1,t
(C)∩LowA2(P )

is considered as the refined cluster as v([h]A′
1
, LowA1(C)) ≥ 1 − t implies

v([h]A′
1
, C) ≥ 1 − t. As in LowA′

1,t
(C) we consider a kind of neighbourhood

of LowA1(C), we do not much move away from LowA1(C).
Thus, as a general scheme we may consider a collection of generalized approx-

imation spaces AS = {At,Ai
: Ai ⊆ A}t∈[0,0.5) where At,Ai

= (U,JAi
, vt), and

JAi
(x) = {[x]B : B ⊆ Ai}. As dropping some attributes helps to generate a big-

ger equivalence class, the system can check whether dropping some attributes
from A2 (⊆ A), the set of attributes characterizing P , and/or A1 (⊆ A),
the set of attributes characterizing C, can include some common cases in the
respective equivalence classes. As our target is not to deviate from the cluster
LowA1(C), in each time we can check whether a newly obtained enlarged equiv-
alence class, say [h]A′

2
or [h]A′

1
has a significantly good overlap with LowA1(C).

Moreover, a tuning of the threshold t also can generate a bigger set of pos-
sibilities without deviating from the main target. For instance, let us choose
A′

2 ⊆ A2. So, surely [h]A2 ⊆ [h]A′
2
; but [h]A2 ⊆ LowA2(P ) does not mean

[h]A′
2

⊆ LowA2(P ). Now let us consider that for some t1 ∈ [0, 0.5), for all
[h]A′

2
⊆ LowA2(P ), vt1([h]A′

2
, LowA′

2
(P )) ≥ 1 − t1. So, vt1([h]A′

2
, P ) ≥ 1 − t1

and [h]A′
2

⊆ LowA′
2,t1

(P ). Hence LowA2(P ) ∩ LowA′
2,t1

(P ) �= φ. Tuning the
threshold helps when for a prefixed threshold t1, for some [h]A′

2
⊆ LowA2(P ),

vt1([h]A′
2
, LowA2(P )) ≥ 1 − t1 is not the case. Then we may slightly change the

threshold, and consider a modified threshold t2 ∈ [0, 0.5) such that t1 ≤ t2. With
respect to this new threshold t2 if vt2([h]A′

2
, LowA2(P )) ≥ 1 − t2, then as before

we can claim LowA2(P ) ∩ LowA′
2,t2

(P ) �= φ. So, without moving away from the
initial cluster we can enlarge our possibilities by considering a modified cluster
LowA1 ∩ LowA′

2,t2
(P ).
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The above discussion on refining a search to serve an user better, reflects the
need for introducing interactions/dialogues among the user and the system. We
would attempt to throw light on this issue in Sect. 4.

3.1 A Modal Language Representing Above Semantics

Let us now present a syntax which can provide a language to express the basic
ingredients and operational parts of the above semantics where we have two
decision tables (U,A1, C) and (U,A2, P ). More specifically, it is not needed to
emphasize on this term ‘two decision tables’. We can talk about a single decision
table with an extended set A of finitely many conditional attributes including
A1 ∪ A2, and an extended set of finitely many decision attributes, combining
all decision parameters that we would like to address. It is to be noted that
the decision attributes are always of different status than that of the conditional
attributes. Usually, a decision class, i.e. a particular value for a decision attribute,
is described by different sets of possible values of the conditional attributes. Each
possible combination of values for the conditional attributes can be represented
by an equivalence class generated from the indiscernibility relation, obtained
with respect to the set of all conditional attributes. But a single decision class
may contain objects of different equivalence classes, and two different decision
classes may contain objects from the same equivalence class. So, usually, decision
classes are approximated with respect to the equivalence classes obtained from
a set of conditional attributes.

The main aim of this section is to provide an outline of a formal language
where we can express the proposed key rule of search as a well-formed formula.
Having such a formal language would be advantageous as it may be used to
express constraints for higher order aggregations of different information sys-
tems.

1. Atomic propositions: a = v for a ∈ A1 ∪ A2 ∪ {P,C} and v belonging to the
set Va of values of the attribute a

2. Logical Connectives: ∧, ∨ ¬
3. Modal operators: �B, �B (finitely many modal operators suffixed by subsets

of A).
4. Formulas: Any atomic formula is a formula, and if α, β are formulas then for-

mulas obtained from them by using logical connectives and modal operators
are formulas too.

From the above alphabet we can have compound formula of the form a ∈ V ′

for any V ′ ⊆ Va, where a ∈ V ′ represents the disjunction of the atomic formulas
a = v for all v ∈ V ′.

Interpretation of the Above Language
Let us consider the decision system (U,A∪D, V ∪Vd), where U is a set of houses,
A is a set of conditional attributes including A1, A2, and D is a set of decision
attributes containing the decision attribute C (cheap) and P (close to the public
transport). For the conditional attributes the value set V = {Va : a ∈ A}, and
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the same for the decision attributes is Vd which includes Vd1 and Vd2 , the set
of values respectively for C and P . We now interpret the above language with
respect to the given decision system.

1. ||a = v|| = {x ∈ U : a(x) = v}.
2. ||α ∧ β|| = ||α|| ∩ ||β||, ||α ∨ β|| = ||α|| ∪ ||β||, ||¬α|| = ||α||c with standard

set theoretic intersection, union and complementation operations.
3. For any formula with the modal operator � in the front is interpreted as

follows.
||�A1α|| = LowA1(||α||).

4. For any formula with the modal operator � in the front is interpreted as
follows.
||�A2α|| = UppA2(||α||)

So, interpretation of a formula of the form a ∈ V ′ would be ∪v∈V ′{x ∈ U :
a(x) = v}.

Now let us concentrate on presenting the key rule C and possibly P so that
it can capture the semantics proposed in Sect. 2. Let α = �A1(C ∈ D1), β =�A2(P ∈ D2), and γ = �A2(P ∈ D2) where D1 ⊆ Vd1 and D2 ⊆ Vd2 . Let α′

represent the formula �A1∪A2(C ∈ D1 ∧ P ∈ D2). Following the usual rough set
semantics for intersection we know LowB(X) ∩ LowB′(Y ) ⊆ LowB∪B′(X ∩ Y )
[1–3,7]. So, ||α ∧ β|| ⊆ ||α′||. Now considering δ = (α′ ∧ (α ∧ β)) ∨ (¬(α ∧ β) ∧
(α ∧ γ)) we can notice that if there is a house belonging to LowA1(||C ∈ D1||) ∩
LowA2(||P ∈ D2||), then the result would be LowA1(||C ∈ D1||) ∩ LowA2(||P ∈
D2||); and if not, it would pick up the houses from the cluster LowA1(||C ∈
D1||)∩UppA2(||P ∈ D2||). So, the formula ¬δ∨α has exactly the same semantics
what the key rule C ∩ P else C ∩ P else C intends to have.

4 A Dialogue Based Approach to Bipolar Queries

In this section, we would make an attempt to introduce interactions or dia-
logues between the user and the system. This would help the system to better
understand the user’s need, and to initiate negotiations for providing alternative
choices. In [6] we have presented a formal language for dialogues and that can be
exploited for our present purpose. Let us now present a prototypical case of the
user-system interactions to better understand the user’s perspective of a specific
query.

– First the dialogue is initiated when the user gives a description, say houses
that are cheap and possibly close to public transport. The user’s description is
treated as a sequence of attributes 〈C,P 〉 where the order of the appearance
indicates the preference of the first attribute over the second.

– The system has a database of houses characterized with respect to amenities
and prices. So, the system can forward a dialogue with a sequence of attributes
representing amenities and a budget for price. The dialogue may be formalized
as 〈a1, a2, . . . am, b〉.
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– In return the user’s can change the ordering of the attributes representing her
preference for particular amenities and put a value for b, the budget. Instead
of changing order, the preference for the amenities can also be expressed in
terms of values from a specific scale.

– In a similar fashion, the system would also enquire for parameters describing
location, connectivity that specify the feature close to the public transport.
In response the user returns a sequence of values and/or attributes describing
her preference.

– With the given attributes for both cheap and close to public transport the sys-
tem can compare with the available databases. Based on the constraint, given
by the user, the system might need to drop some attributes and consider the
decision classes namely, cheap and close to public transport, and their approx-
imations based on the modified subsets of attributes. In that way, clusters for
LowA1(C), UppA1(C), LowA2(P ), UppA2(P ) are generated, and the system
looks for the cluster that satisfies the condition LowA1(C) ∩ LowA2(P ) else
LowA1(C) ∩ UppA2(P ) else LowA1(C).

– Now each house, from the obtained cluster of houses, can be individually
identified with a sequence presenting their amenities and price budget, as well
as descriptions pertaining to close to public transport. A typical such sequence
may look like 〈a1, a2, . . . , vb; b1, b2 . . . vp〉 where ai represents amenities, vb
represents budget price, the semicolon (;) represents the end of description
for the required condition, bi’s represent the attributes corresponding to the
desired condition, and vp represents some values for the decision close to public
transport. All such sequences can be forwarded to the user in the next round
of the dialogue. So, the system as a dialogue would send a set of sequences to
the user.

– If the user is satisfied with the result, she can send the accep-
tance feedback through a sequence 〈a1, a2, . . . , vb; b1, b2 . . . vp;��〉; Otherwise,
〈a1, a2, . . . , vb; b1, b2 . . . vp;�〉, representing her dissatisfaction, is forwarded.

– If the user is not satisfied, the system can explore different refinement strate-
gies.

• In this context, based on user’s preference over the parameters for distance
from public transport the system can search for a cluster LowA2\{bj},t1(P )
for t1 ∈ [0, 0.5) so that LowA1(C) ∩ LowA2\{bj},t1(P ) becomes non-
empty (cf. Sect. 3). The dialogue can continue for finitely many rounds
based on the system’s output and the user’s feedback. For instance, if
LowA2\{bj},t1(P ) ∩ LowA1(C) does not satisfy the user, then the system
can tune the threshold t1 to t2 such that t1 ≤ t2, or drop {bj , bk} from A2

based on the preference of parameters, described by the user at the begin-
ning of the dialogue. Then a new search begins to check the possibility
LowA1(C) ∩ LowA2\{bj ,bk},t2(P ).

• The system also can drop some attributes from A1, and check if there is
a non-empty cluster LowA1\{aj},t(C)∩LowA2(P ) fitting to the user need.
Feedback of the user collected at each round of answer may help to learn
the system the more precise interval for the threshold t.
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5 Conclusions

In this paper, we provide a semantics for bipolar queries, where intention of an
user is understood in terms of the required condition and desired condition, from
the context of rough sets. We tried to capture the priority of required condition
over the desired condition following the proposal that if both are satisfied then
fine, otherwise the required condition has to be satisfied. This was the approach
taken in [8] too. But in our context, one more advantage is that this search
for finding an outcome satisfying the user is based on the user’s description of
attributes defining the notion of ‘cheap’ and ‘close to public transport’. Unlike
fuzzy set theoretic approaches taken in [8], the notions of ‘cheap’ and ‘close to
public transport’ are not given a priori by fuzzy membership functions; rather
they are learnt by matching the available data with the user’s descriptions.
Moreover, we have also introduced interactions between the user and the system
and the possibility of modifying the search based on the user’s feedback. The
proposal of dialogue between an user and a system can be extended among
multiple sources of information systems. In the existing literature on multiple
sources of information systems [11,19,20,25], usually the information collected
from multiple sources are aggregated by some means; the incorporation of the
user’s feedback and tuning the search based on that have not been addressed.

This paper only addresses situations where different constraints of the user
can be arranged in a linear order of preference. In practice, it can be a complex
relation of preference among different constraints of the user. This needs further
investigation. In this regard, a further point of reference could be the Belief-
Desire-Intention (BDI) model of Casali et al. [4], where the desire of an user is
described in terms of positive and negative preference relations, and intention
of an user reflects practical necessities which cannot be violated. In the BDI
model, the semantics for desire and intention are given by different models; they
are kept connected by some bridging rules. This approach [4] along with the
model of dialogue base [6], allowing interactions among different databases of a
network of information systems, may help us to extend the research further.
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Abstract. In this exploratory article, we draw attention to the common
formal ground among various estimators such as the belief functions of
evidence theory and their relatives, approximation quality of rough set
theory, and contextual probability. The unifying concept will be a general
filter function composed of a basic probability and a weighting which
varies according to the problem at hand. To compare the various filter
functions we conclude with a simulation study with an example from the
area of item response theory.

Keywords: Filter functions · Belief functions
Approximation quality · Contextual probability

1 Introduction

In order to classify a data point x ∈ Q about which we have no precise knowledge,
one may take into account information that is available in a neighbourhood of x
and use this to classify x. Neighbourhoods can be defined in various ways; promi-
nent examples are by distance functions in a numerical context or as equivalence
or similarity classes with respect to a chosen relation in a nominal context [10].

The original rough set concept of neighbourhood of a point x is a class of
an equivalence relation which contains x. This was generalized to consider the
relationship of subsets of Q with R(x), where R is a binary relation on Q and
R(x) = {y ∈ Q : xRy}. From each of these neighbourhood concepts lower and
upper approximations can be derived, and we invite the reader to consult [13]
for an introduction to such generalization.
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Even if we have decided in principle which type of neighbourhood of E ⊆ Q
should be considered, it is often still not clear which neighbourhood should be
used. For example, one crucial issue in the k – nearest neighbour method is the
choice of k. In other words, decisions have to be made which sets we allow to
be neighbourhoods of a point or a set, and this is where filter functions come in
useful.

The Oxford English Dictionary gives various definitions of filter, among
others, [9]:

– A porous device for removing impurities or solid particles from a liquid or
gas passed through it.

– A device for suppressing electrical or sound waves of frequencies not required.
– Computing A function used to alter the overall appearance of an image in a

specific manner.
– Computing A piece of software that processes data before passing it to another

application, for example to reformat characters or to remove unwanted types
of material.

A filter function may be considered as a rule that tells us which sets are selected
to serve as an approximation (or description) of a subset E of the universe Q,
and how these “neighbourhoods” will be weighted.

Throughout, Q denotes a finite nonempty set with |Q| = n, and N is a family
of subsets of Q.

At times, we will suppose that N is a – not necessarily proper – Boolean
subalgebra of 2Q with atom set At(N ) = {A1, . . . , Ak}. In this case, if Y ∈ N ,
we define noa(Y ) as the number of atoms of N contained in Y .

A probability measure on a Boolean subalgebra N of 2Q is an additive func-
tion p on N , i.e. if Q1, . . . , Qk ∈ N , and the Qi are pairwise disjoint, then
p(

⋃{Qi : 1 ≤ i ≤ k} =
∑{p(Qi) : 1 ≤ i ≤ k}; we require furthermore that

p(Q) = 1. This is the standard definition of measure theory.
The sampling probability on N is defined by

pN (Y ) :=

{∑{ |Ai|
n : Ai ⊆ Y }, if Y �= ∅,

∅, otherwise.
(1.1)

This assignment is based on the principle of indifference and assumes ignorance
about the distribution within the atoms of N .

A generalization of probability measures are mass functions or basic proba-
bilities [11], or basic belief functions [16]: A mass function on N is a function
m : N → [0, 1] such that

∑{m(Y ) : Y ∈ N} = 1. A focal element is a set Y ∈ N
with m(Y ) �= ∅. Owing to the finiteness of Q, the restriction to the upper bound
1 for m(Y ) is one of convenience which may be obtained by appropriate weight-
ing. Unlike the Dempster–Shafer model, we assume an open world situation, and
do not require that m(∅) = 0; here, we follow [14, Sect. 4.8].
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If p is a probability measure on N , then the function mp : N → [0, 1]
defined by

mp(Y ) :=

{
p(Y ), if Y ∈ At(N ),
0, otherwise.

(1.2)

is a mass function. So, formally, probabilities are special mass functions (often
called Bayesian mass functions).

2 Filter Functions

In general, a filter is a function which passes information that is pertinent to
the application area, and reduces (or leaves out) information considered to be
irrelevant. This concept of a filter originates with signal processing, but the same
idea may be applied to elements of weighted structures. There is no relation to
the filter concept in lattice theory.

We consider filter functions F : 2Q → [0, 1] of the general form

F (E) =
∑

{m(Y ) · w(E, Y ), Y ∈ N}.(2.1)

A filter consists of several parts:

– A set N of neighbourhoods which are often determined by an indicator func-
tion and, perhaps, other parameters. In such a way, the pool N of possible
neighbourhoods is adjusted to the needs of the problem under consideration.
How the initial N is chosen is a topic for further research.

– A weighting function w : 2Q × N → [0, 1] which re–scales the weights of the
neighbourhoods in such a way that desired properties such as the value of
an upper bound or the sum of the re–scaled values are guaranteed. In most
cases, the values of w will be in [0, 1].

If E ⊆ Q is an event (or a piece of evidence), and Y ∈ N , it is reasonable to
suppose that Y should not be considered a neighbourhood of E, if E∩Y = ∅. On
the other hand, any Y which contains E should be considered a neighbourhood
of E; these are, in some sense, “boundary” situations.

In this spirit, we define our main indicator functions by

indu(X,Y ) = 1 ⇐⇒ if X ∩ Y �= ∅, Upper indicator

indl(X,Y ) = 1 ⇐⇒ Y ⊆ X, Lower indicator.

Other indicators we use are

indz(Y ) = 1 ⇐⇒ indu(Y, Y ) = 1 ⇐⇒ Y �= ∅,
indsub(X,Y ) = 1 ⇐⇒ X ⊆ Y, Subset indicator,

indeq(X,Y ) = 1 ⇐⇒ indsub(X,Y ) · indsub(Y,X) = 1 ⇐⇒ X = Y Equality indicator.
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We suppose, as is customary, that an indicator function takes values in {0, 1}.
Now we define the upper and the lower filter :

Fu
m(E) :=

∑
{m(Y ) · indu(E, Y ) : Y ∈ N}, Upper filter(2.2)

F l
m(E) :=

∑
{m(Y ) · indl(E, Y ) : Y ∈ N}, Lower filter.(2.3)

Lower and upper filters as defined above are not the only one, which select a
neighbourhood of some evidence E; they are, as we shall see, maximal filters of
their type: For the upper filter and E �= ∅, a set Y ∈ N is a neighbourhood
of E, if they have at least one element in common. A simple way to sharpen
this is the demand that they have at least k ≥ 1 elements in common. If E has
exactly one element, then the situation is unchanged, but if E consists of more
than one element, the number of neighbourhood sets will be reduced. These
considerations lead us to upper and lower k – filters (1 ≤ k ≤ |Q|) by first
defining the indicators

indu,k(X,Y ) = 1 ⇐⇒ |X ∩ Y | ≥ k,(2.4)

indl,k(X,Y ) = 1 ⇐⇒ Y ⊆ X and |Y | ≥ k.(2.5)

A similar parametrization may be used to demand that a neighbourhood should
cover more than s% of the event. So, we define the indicator functions

indu,s(X,Y ) = 1 ⇐⇒ X = Y or |X ∩ Y | � s · |X|,(2.6)

indl,s(X,Y ) = 1 ⇐⇒ X = Y or Y � X and |Y | � s · |X|.(2.7)

The boundary values of the parameterized indicators are easily seen to be

ind
u,k=1

(X, Y ) = ind
u,s=0

(X, Y ) = ind
u
(X, Y ), ind

u,k=|Q|
(X, Y ) = ind

u,s=1
(X, Y ) = ind

sub
(X,Y )

ind
l,k=1

(X,Y ) = ind
l,s=0

(X, Y ) = ind
l
(X, Y ), ind

l,k=|Q|
(X,Y ) = ind

l,s=1
(X, Y ) = ind

eq
(X, Y ).

The respectively weighted upper and lower filter are now defined by

Fu,s
m (E) :=

∑

Y ∈N
m(Y ) · indu,k(E, Y ),(2.8)

F l,s
m (E) :=

∑

Y ∈N
m(Y ) · indl,k(E, Y ),(2.9)

Fu,s
m (E) :=

∑

Y ∈N
m(Y ) · indu,s(E, Y ),(2.10)

F l,s
m (E) :=

∑

Y ∈N
m(Y ) · indl,s(E, Y ).(2.11)
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The parameterized filters are antitone with respect to s:

Theorem 1. Let s, t ∈ [0, 1], and s ≤ t. Then, F l,t
m (E) ≤ F l,s

m (E) and
Fu,t
m (E) ≤ Fu,s

m (E).

Proof. We show the claim only for the lower filter, as the remaining claim is
proved similarly. First, consider

F l,t
m (E) ≤ F l,s

m (E) ⇐⇒ F l,s
m (E) − F l,t

m (E) ≥ 0,

⇐⇒
∑

Y ∈N
m(Y ) · indl,t(E, Y ) −

∑

Y ∈N
m(Y ) · indl,s(E, Y ) ≥ 0,

⇐⇒
∑

Y ∈N
m(Y ) · (indl,t(E, Y ) − indl,s(E, Y )) ≥ 0.

Since s ≤ t, we have |Y | � t · |X| implies |Y | � s · |X|, and therefore,
indl,t(E, Y ) = 1 implies indl.s(E, Y ) = 1. It follows that indl,s(E, Y ) ≥
indl,t(E, Y ), i.e. indl,s(E, Y ) − indl,t(E, Y ) ≥ 0. Since m(Y ) ≥ 0, we conclude
F l,t
m (E) ≤ F l,s

m (E).

The same proof shows that the parameterized filters are antitone as well.

3 Approximation and Estimation

In this section we show how commonly used belief and approximation measures
fit into the scheme of filter functions as proposed in (2.1). For an overview of
different interpretations of “belief” we refer the reader to [7].

3.1 Evidence Measures

Evidence theory has been widely studied as an alternative to classical probabil-
ity theory, see the source book edited by Yager and Liu [21]. For a thoughtful
discussion of belief and probability we invite the reader to consult [4,7], where,
among others, it was shown that “a key part of the important Dempster-Shafer
theory of evidence is firmly rooted in classical probability theory”.

In evidence theory and related fields, two functions are obtained from a mass
function m : N → [0, 1]:

belm(E) :=
∑

Y ∈N ,Y ⊆E

m(Y ), degree of belief,(3.1)

plm(E) :=
∑

Y ∈N ,Y ∩E �=∅
m(Y ), degree of plausibility.(3.2)

These concepts were introduced by Dempster [1], who called them, respectively,
lower and upper probability. A belief function assigns the total amount of belief
supporting E without supporting Q \ E, and plm(E) quantifies the maximal
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amount of belief that might support E [15]. It is straightforward to show that
plm(E) = belm(Q) − belm(Q \ E).

Conversely, every mass function can be obtained from a function bel which
satisfies certain conditions, see e.g. [11, Chap. 2].

Belief and plausibility are easily related to the upper and lower filter function
as follows:

belm(E) =
∑

{m(Y ) : Y ⊆ E, Y ∈ N} =
∑

{m(Y ) · indl(E, Y ) : Y ∈ N} = F l
m(E),

plm(E) =
∑

{m(Y ) : E ∩ Y �= ∅, Y ∈ N} =
∑

{m(Y ) · indu(E, Y ) : Y ∈ N} = Fu
m(E).

3.2 Rough Set Approximation Quality

Suppose that X ⊆ Q, and that N is a Boolean algebra with atoms A1, . . . , Ak.
Then, At(N ) can be considered the partition of Q obtained from some equiva-
lence relation θ on Q; in other words, we work with a rough set approximation
space 〈Q, θ〉. In rough set theory [10], the upper approximation of X is the set
upp(X) :=

⋃{Ai : Ai ∩ X �= ∅} and the lower approximation of X is the set
low(X) :=

⋃{Ai : Ai ⊆ X}. These approximations lead to two statistics relative
to N :

μN∗(E) =
|upp(E)|

n
,(3.3)

μN
∗ (E) =

|low(E)|
n

.(3.4)

Inspection of the indices used in “classical rough set theory” such as α, γ, rough
membership, other element counting etc. shows that these indices are valid only
in case we assume the principle of indifference: Assuming no knowledge of the
distribution within the equivalence classes, we let p be the sampling probabil-
ity measure on N as defined in (1.1). There may be other assumptions within
the frame of lower and upper set approximations, which consequently lead to
other evaluation schemes. The principle of indifference is widely used in rough
set theory – explicitly or implicitly. For example, the general rough membership
function defined in [8, Definition 4.3.] is a special filter in our terminology for
which the principle of indifference is a hidden assumption; otherwise the esti-
mator of this index is biased and unsuitable for applications. In [8] only point
estimators of indices or membership functions are addressed - but this is not the
whole story: The reliability of the indices needs to be discussed as well. Assuming
the principle of indifference, we are able to compute confidence intervals such as
the reliability of the general rough membership function or other filters, as we
demonstrate in the present work.
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Using the mass function m determined by p as defined in (1.2) we can describe
μN∗(E) and μN

∗ (E) in terms of upper and lower filter:

μN∗(E) =
∑

{ |Ai|
n

: E ∩ Ai �= ∅},
=

∑
{m(Y ) : E ∩ Y �= ∅, Y ∈ N},

=
∑

{m(Y ) · indu(E ∩ Y ), Y ∈ N},
= Fu

m(E),

μN
∗ (E) =

∑
{ |Ai|

n
: Ai ⊆ E)},

=
∑

{m(Y ) · indl(E ∩ Y ), Y ∈ N},
= F l

m(E).

This shows the close connection of rough set approximation to the estimators of
evidence theory, observed first by Skowron [12].

The approximation quality is the function

γ(E) :=
|low(E)|

n
+

|low(Q \ E)|
n

..(3.5)

γ(E) is the relative frequency of all elements of Q which are correctly classified
under the granulation of information by N with respect to being an element of
E or not. In terms of filter functions, this becomes

γ(E) = F l
m(E) + F l

m(Q \ E).(3.6)

3.3 Pignistic Probability

According to Smets [15], decision making under uncertainty can (and should) be
done in two steps. On a credal level, an assignment of beliefs is made to pieces
of evidence. In order to be coherent on a pignistic level (decision level), the
uncertainties quantified by the belief function must be turned into a probability
measure. In such a way, the two levels of handling uncertainty and decision
making are clearly separated unlike, as Smets claims, in Bayesian reasoning.

A pignistic probability distribution (with respect to the mass function m and
the Boolean algebra N ) [16, Sect. 3] is a function pp : N → [0, 1] which is
defined by

ppm(E) :=
∑

{m(Y ) · |E ∩ Y |
noa(Y )

: Y ∈ N+}(3.7)
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If E is an atom of N , we obtain

ppm(E) =
∑

{m(Y ) · |E|
noa(Y )

: E ⊆ Y ∈ N}.(3.8)

Note that E ⊆ Y implies that Y �= ∅. It was shown in [15] that pp is indeed a
probability measure, if N = 2Q. Setting

w(E, Y ) :=

{ |E∩Y |
noa(Y ) if Y �= ∅,

0, otherwise,

we see that pp(E) =
∑{m(Y ) · w(E, Y ), Y ∈ N} as in (2.1).

3.4 Contextual Probability

Another two step procedure to reason under uncertainty, called contextual prob-
ability was first proposed in [17], and subsequently developed in [19]. It is a
secondary probability, which is defined in terms of a basic (primary) function; it
can be used to estimate the primary probability from a data sample through a
process called neighbourhood counting; for details see [20].

Given a mass function m over 2Q, we first define a weight function by

w(E, Y ) :=

{ |E∩Y |
|Y | if Y �= ∅,

0, otherwise.

The contextual probability is the function cpm : 2Q → [0, 1] defined by

cpm(E)) =
∑

{m(Y ) · w(E, Y ) : Y ∈ N},(3.9)

Wang [17] showed that cpm is a probability distribution if N = 2Q.
This definition of contextual probability was found problematic when trying

to find a simple relationship between the primary probability and the secondary
probability, so the definition was refined in [18], and extended in [20]. The work
on estimating contextual probability from data sample has spawned a series of
papers exploring the various forms of neighbourhood counting for multivariate
data, sequences, trees, and graphs. We give a somewhat simplified version of the
revised definition, and also extend its range over 2Q.

Suppose that p is a probability measure on N , and let K :=
∑{p(Y ) · |Y | :

Y ∈ N} be a normalization factor. The contextual probability with respect to p,
is defined by

cpp(E) :=
∑

{p(Y ) · |E ∩ Y |
K

,Y ∈ N}.(3.10)

Setting w(E, Y ) := |E∩Y |
K and using the mass function mp of (1.2), we see that

cpp is an instance of a general filter function.
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4 Probabilistic Knowledge Structures

In this section we apply some of the filter functions defined previously to a
situation well known in the context of psychometric aspects of learning, in par-
ticular, knowledge structures [5,6]. Connections of knowledge structures to other
concepts including rough sets were exhibited in [2].

Suppose that U is a set of students, Q is a set of problems, and S ⊆ U × Q
is a binary relation between students and problems, called a solving relation;
uSq means that student u solves problem q. For each u ∈ U , the set S(u) :=
{q ∈ Q : uSq} is called the empirical (observed) solving pattern of u. The set
{S(u) : u ∈ U} is called an empirical knowledge structure (EKS) with respect
to U and Q, denoted by K̂. With each X ⊆ Q we associate a number obs(X) =
|{u ∈ U : S(u) = X}|. Thus, obs(X) is the number of times that X was observed
as a student’s solving pattern.

A probabilistic knowledge structure (PKS) is a tuple 〈N ,m〉 where N ⊆ 2Q,
and m is a mass function on N . We interpret m as item–pattern probability in
the sense that

m(X) = p(each x ∈ Xis solved, and no problem inQ \ X is solved).(4.1)

in other words m(X) is the probability that X is an observed item pattern. m(∅)
is the probability that no item in Q is solved, and m({x}) is the probability that
only x is solved.

Given a PKS, we estimate the probabilities by the relative frequencies of the
observed item patterns by

m̂(X) = p̂(eachx ∈ X is solved, and no problem inQ \ X is solved) =
obs(X) · |X|

n
.

(4.2)

In this way we not only obtain insight into the probability nature of the
mass function and its derivations, but we may use the empirical counterpart of
relative frequencies as estimates and as a basis for statistical inference.

Using a PKS as a workhorse, we will explore which interpretation this context
offers for different filter functions. First, consider F l

m, which is just the belief
function belm. Then, according to our interpretation,

belm(E) =
∑

{m(Y ) : Y ∈ N , Y ⊆ E},

=pbelm((some items in E are solved or no item is solved)
and no item outsideE is solved.)

Considering a solving path ∅ ⊆ {x1} ⊆ {x1, x2} ⊆ . . . ⊆ E, we see that pbelm is a
cumulative probability function with pbelm(Q) = 1. A problem which may arise
is that the condition “some item in E is solved or no item is solved” is not always
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acceptable. Thus, we may remove the latter condition – which corresponds to
m(∅) �= ∅, and define

bel+m(E) =
∑

{m(Y ) : Y ∈ N+, Y ⊆ E},

= pbel+m(some items in E are solved and no item outside E is solved.)

bel+m is also a cumulative function, but bel+m(Q) = 1 − m(∅).
Turning to Fu

m, we recall that FU
m = plm. Then,

plm(E) =
∑

{m(Y ) : Y ∩ E �= ∅, Y ∈ N},
= ppl(at least one problem inE is solved).

If E = {x}, then ppl({x}) is the item solving probability of x.
To estimate only the states in N , we let indN (E) := 1 if and only if E ∈ N ,

and define

belmin
m (E) := indN (E) · F l

m(E) =
∑

{m(Y ) · indN (E) · indl(E, Y ) : Y ∈ N}.
(4.3)

F l,min
m may be regarded as some sort of minimal lower filter, as only elements of

N are allowed to be approximated. Observe that the lower filter F l
m coincides

with belmin
m if and only if N = 2Q.

To parameterize the upper filter Fu
m(E) to use only states in N that contain

E we shall consider plmin
m := Fu,1

m as defined in (2.10) with s = 1.
Suppose we have a set of five questions Q = {1, 2, 3, 4, 5} and N consisting

of 12 item patterns, each supplied with a basic probability, as shown in Fig. 1.

Fig. 1. A weighted knowledge structure
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Given the PKS in Fig. 1, we have performed some empirical experiments to
compute sampling distributions of the defined filter procedures. We use a multi-
nomial sampling, and N = 50, N = 100, or N = 1, 000 observations of item
patterns. For 10,000 simulations of the sampling process, we computed the sam-
pling distributions of the functions belm,plm, cpm,belmin

m ,plmin
m , and pl[k = 2]

for all subsets of 2{1,2,3,4,5}. We have computed the mean, bias, median, upper
and lower quartile, and the 2.5%- and 97.5%-quantile of the sampling distribu-
tions of these functions for each subset Q.1

Fig. 2. Simulation graph

Figure 2 shows the mean of the different filter functions on the nonempty
subset of 2Q. The left most is the value of {1}, followed by the values of the
sets {2}, . . . , {5}. The sets with two elements follow in lexicographical order,
followed by the sets with 3, 4, and finally, 5 elements.

We observe that the values of the functions plm, plmin
m , and plk=2

m are equal
for sets with one element, and plmin

m and plk=2 are identical for sets with two
elements. The larger the number of elements, the larger the difference of plm and
plmin

m . The same observations hold for belm and belmin
m . Furthermore, the graphs

of plk=2
m and cpm are quite similar – up to events with 1 element.

By way of example, Fig. 3 shows the confidence intervals of cpm for 50, respec-
tively, 500 observations.

The organisation of the x-axis in Fig. 3 is the same as in Fig. 2. It can be see
from Fig. 3 that – given a quite sparse PKS as our example of Fig. 1 – the 95%
confidence bounds are quite narrow, even if we assume a small empirical basis
of only 50 observations (left part of the figure). An empirical basis of 500 item

1 The tables and the R-source of the simulation procedure are available for download
at www.roughsets.net.

www.roughsets.net
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patterns allows us a precise estimate of the cpm values. The same is true for the
other measures; we omit the details for these which can be found in the archive.
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Fig. 3. CI and median of cpm

5 Summary and Outlook

We have exhibited a common form of several estimators employed in reasoning
under uncertainty. The novelty is not that connections exist among them – these
have been known for some time –, but the interpretation as filter functions, a
term we have borrowed from digital imaging. A filter, such as an edge detector,
extracts salient features of a scene, or, as in our case, of a situation for fur-
ther processing. A simulation study indicates how some filters behave in various
situations.
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In future work we shall explore whether and how the filter concept can be
extended to other estimators, for example, to kernel functions such as k-nearest
neighbour. We will also investigate a logical approach to filter functions applied
in applications of theories of visual perception and digital imaging, following the
path started in [3].

Acknowledgement. We are grateful to the referees for constructive comments.
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Abstract. Attribute reduction is viewed as one of the most important
topics in rough set theory and there have been many researches on this
issue. In the real world, partially labeled data is universal and cost sensi-
tivity should be taken into account under some circumstances. However,
very few studies on attribute reduction for partially labeled data with test
cost have been carried out. In this paper, based on mutual information,
the significance of an attribute in partially labeled decision system with
test cost is defined, and for labeled data, a heuristic attribute reduction
algorithm TCSPR is proposed. Experimental results show the impact of
test cost on reducts for partially labeled data and comparative experi-
ments of classification accuracy indicate the effectiveness of the proposed
method.

Keywords: Attribute reduction · Uncertainty · Rough set
Test cost sensitive · Partially labeled data

1 Introduction

Uncertainty is a common phenomenon in the world. Reasoning and knowl-
edge acquisition with uncertain or incomplete information is always a core sub-
problem of artificial intelligence. There have been plenty of theories on the prob-
lem of uncertainty, for example, probability theory [2], possibility theory [4,5],
fuzzy set [3], rough set [6,7], evidence theory [8,9], cloud model [1]. As an exten-
sion of set theory, rough set which was proposed by Polish computer scientist
Zdzislaw Pawlak [6] in 1982, is a soft computing tool to model imperfect knowl-
edge. In rough set, it is assumed that knowledge is based on the ability to classify
c© Springer Nature Switzerland AG 2018
H. S. Nguyen et al. (Eds.): IJCRS 2018, LNAI 11103, pp. 257–269, 2018.
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objects and tabular representation of knowledge is often employed. Uncertainty
in this theory is represented by the boundary region of a set, and the boundary
region can be specified in terms of a pair of crisp sets which give the lower and
the upper approximation of the original set.

Recently, a deluge of data from a variety of sources has reached an unprece-
dented volume. However, there may exist incomplete data due to various rea-
sons. In decision systems of rough set, some values of the decision attributes may
be missing and the systems are actually partially labeled data. This could often
occur in reality. For example, for the information system of patients in a hospital,
some diagnoses of diseases may be missing due to the patients stop doing further
examinations. Knowledge acquisition from partially labeled data is akin to semi-
supervised learning which attracts plenty of researchers. To deal with partially
labeled data, some methods based on rough set have been proposed [10–13], and
incremental methods in dynamic system are studied [14–17].

The existing rough set-based methods for partially labeled data mentioned
above seek low classifying error rates or high accuracy and implicitly assume that
all classes or features have the same cost, nevertheless, this assumption may not
be suitable in real-world scenarios. For example, in a clinical diagnosis system,
it may cause some damage to a patient who is misclassified as cancer class,
but may result in serious damage if a patient who has cancer is misclassified
as non-cancer class and could not get treatment timely. Also, a patient often
needs to undertake a number of medical tests, in this case, money and/or time
for these tests are regarded as test costs and the costs may be various according
to different tests. From these two examples, we can infer that cost sensitivity
should be considered in some problems. In the cost sensitive settings, it is aimed
to minimize the total cost, rather than simply minimize the error rate. Turney
[18] concluded nine types of costs in inductive concept learning and in decision
systems, some researchers have done much research on decision cost [19–22] and
test cost [23,24]. However, there have been few studies about cost sensitive in
decision system with missing decision values. Motivated by these analysis, this
paper focuses on tackling the problem of attributes reduction for partially labeled
data with test cost sensitive. We first define the significance of an attribute in
the partially labeled decision system with test cost based on mutual information.
Next, for labeled data, a heuristic algorithm TCSPR for attribute reduction is
proposed. Then some attribute reduction experiments are conducted on several
data sets to find out the impact of test cost on reducts. In order to verify the
effectiveness of the proposed method, the quality of reducts are compared.

The remainder of the paper is organized as follows. Some preliminary con-
cepts and uncertainty measures based on information entropy in rough set are
briefly reviewed in Sect. 2. In Sect. 3, the definition of partially labeled decision
system with test cost is given and an attribute reduction algorithm TCSPR is
proposed. Section 4 illustrates some experiments and results. Section 5 concludes
the paper with some discussions.
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2 Preliminary

In this section, we present a review of some basic rough set concepts related to
this article. One can refer to references [6,7,25] for detail of the theory.

2.1 Rough Set

Definition 1. An information system is a tuple IS = (U,A, V, f), where U =
{x1, x2, . . . , xn} is a finite nonempty set of objects, and A = {a1, a2, . . . , am}
is a finite nonempty set of attributes, V is a nonempty set of values of ai ∈
A(i = 1, 2, . . . ,m), f : U → V is a nonempty set of information functions each
of which maps an object in U to a exact value in V .

If A = C ∪ D, where C is a set of condition attributes and D is a decision
attributes set, the information system is called decision information system or
decision table and denoted as DS = (U,A = C ∪ D,V, f).

Definition 2. Let DS = (U,A = C ∪D,V, f) be a decision information system,
B ⊆ A be an equivalence relation (also called B-indiscernibility relation), for an
arbitrary set X ⊆ U , the lower approximation and upper approximation of X
with respect to B respectively are defined as:

B(X) = {x ∈ U |[x]B ⊆ X},
B(X) = {x ∈ U |[x]B ∩ X �= ∅},

where [x]B is the equivalence class including x with respect to B, and [x]B =
{y ∈ U |f(x, a) = f(y, a),∀a ∈ B}. If B(X) = B(X), X is B-definable, and if
B(X) �= B(X), X is rough with respect to B.

Definition 3. Let DS = (U,A = C ∪ D,V, f) be a decision information sys-
tem, and the objects in U are partitioned into r disjoint crisp subsets by decision
attributes set D, namely, U/D = {D1,D2, . . . , Dr}, then C-positive region of D
is defined as:

POSC(D) =
⋃r

i=1 C(Di),
and the boundary region of D w.r.t. C is defined as:

BNC(D) =
⋃r

i=1 C(Di) − ⋃r
i=1 C(Di).

For any B ⊆ A and X ⊆ U , the positive region POSB(X) is the collection
of the objects that can be certainly classified as members of X with respect to
relation B. The boundary region BNB(X), in a sense, is the undecidable area of
the universe and none of the objects in this region can be certainly classified into
X or ∼ X. In rough set theory, uncertainty can be represented by the boundary
region of a set.

2.2 Uncertainty Measure Based on Entropy and Reduct

In rough set theory, there are some algebraic measurement methods to express
the inexactness of object or set, such as accuracy, roughness, attribute depen-
dency degree. Inspired by Shannon’s information entropy, Miao gave the informa-
tion representation of the concepts and operations about rough set theory, and
proposed the heuristic reduction algorithm based on mutual information [26].
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Definition 4. Let DS = (U,A = C ∪ D,V, f) be a decision information sys-
tem, B ⊆ A and the objects in U are partitioned into m disjoint crisp subsets
{B1, B2, . . . , Bm} by B, then rough entropy of B is defined as:

H(B) = −
m∑

i=1

|Bi|
|U | log2

|Bi|
|U | ,

where |B| denotes the cardinality of B, and
m∑

i=1

|Bi| = |U | holds.

Definition 5. Let DS = (U,A = C ∪ D,V, f) be a decision information sys-
tem, U/C = {X1,X2, · · · ,Xm} and U/D = {Y1, Y2, · · · , Yn}, the entropy of D
conditioned on C is defined as:

H(D|C) = −
m∑

i=1

|Xi|
|U |

n∑

j=1

|Xi ∩ Yj |
|Xi| log2

|Xi ∩ Yj |
|Xi| . (1)

Let I(x; y) be the mutual information of x and y, the increment of mutual
information, which is defined as:

I(B ∪ {a};D) − I(B;D) = H(D|B) − H(D|B ∪ {a}), (2)

can be used to measure the attribute significance.

Definition 6. Let DS = (U,A = C ∪D,V, f) be a decision information system,
B ⊆ C, for ∀a ∈ C − B, the significance measure of a on B can be defined by
mutual information as:

SGF (a,B,D) = H(D|B) − H(D|B ∪ {a}).
If B = ∅, the significance measure of a is:

SGF (a,D) = H(D) − H(D|{a}).

SGF (a,B,D) expresses the importance of attribute a to decision D condi-
tioned on the given attributes B.

Reduct is a subset of attributes that maintains some particular properties
as the original data. For a given decision table, there may be multiple reducts.
Based on the definitions above, relative reduct can be defined as follows.

Definition 7. Let DS = (U,A = C ∪ D,V, f) be a decision information system
and B ⊆ C, B is a reduct of C relative to D iff:

(1) H(D|B) = H(D|C);
(2) ∀a ∈ B,H(a|B − {a}) > 0.

In a given decision table, the intersection of all attribute reducts is core, and
each element of a core should be in every reduct. The core may be an empty set.

2.3 Test Cost Sensitive Rough Set

Definition 8 ([27]). A test cost sensitive decision system is a tuple TDS =
(U,A = C ∪ D,V, f, c), where U,A,C,D, V and f have the same meanings as
in definition 1, c : C → R+ ∪ {0} is the test cost function and R+ is the set of
positive real numbers.
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Assuming that the test cost of every attribute is independent, test cost func-
tion can be represented by a vector c = [c(a1), c(a2), · · · , c(a|C|)], where c(ai)(i =
1, 2, . . . , |C|) is the test cost of attribute ai, and for ∀B ⊆ C, c(B) =

∑

a∈B

c(a).

3 Attribute Reduction for Partially Labeled Data

3.1 Partially Labeled Decision System

In a partially labeled decision system, some values of the decision attributes are
missing. In the light of test cost, partially labeled decision system can be defined
as:

Definition 9. A partially labeled decision system with test cost is a tuple
TPDS = (U = L ∪ N,A = C ∪ D,V, f, c), where U,A,C,D, V, f and c have
the same meanings as in definition 8. L denotes the set of labeled objects, and
N denotes the set of unlabeled objects.

Then, we can define the significance of attribute a on B in a partially labeled
decision system with test cost as follows:

SGF (a,B,D, c(a), λ) = (H(D|B) − H(D|B ∪ {a}))c(a)λ, (3)

where H(D|B) and H(D|B∪{a}) are the entropy of D conditioned on B and
B ∪ {a} respectively, and they can be calculated by equation (1) in which the
number of objects |U | should be replaced by the number of labeled objects |L|.
c(a) is the test cost of attribute a, and c(a) ≥ 0. λ is a parameter that can adjust
the weight of test cost and λ ≤ 0. If λ = 0, the significance of attribute a on B
is based on conditional entropy as shown in definition 6. c(a1), c(a2), · · · , c(a|C|)
and λ can be specified in real application by domain experts.

3.2 Attribute Reduction Algorithm

It has been proved that finding a minimal reduct of a decision table with exhaus-
tive algorithm is NP-hard in rough set [28], and correspondingly, computing the
minimal test cost of a reduct will have the same complexity. Actually, some
heuristic algorithms have been proposed, and most of them are greedy.

In this paper, a heuristic algorithm (TCSPR) for attribute reduction of par-
tially labeled data based on test cost sensitive is as Algorithm 1. In the algorithm,
based on the objects with labeled, we first find the core of the attributes set.
Then in each iterative step of the while loop, after the computation of signifi-
cance of every attribute in the unselected attributes subset, choose the attribute
with highest significance and add it to the reduct set, until the end condition
holds. The significance is computed based on Eq. (3).
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Algorithm 1. A heuristic attribute reduction algorithm for partially labeled data
with test cost sensitive, called TCSPR

Input: TPDS = (U = L ∪ N, A = C ∪ D, V, f, c), λ
Output: An attributes subset B as a relative reduct
U ← L;
B ← ∅;
for all a ∈ C do

if POSC−{a}(D)! = POSC(D) then
B ← B

⋃{a};
end if

end for
tempA ← C − B;
while H(D|B)! = H(D|C)

for all a ∈ tempA do
compute SGF (a, B, D, c(a), λ);

end for
select a′ with maximal SGF (a′, B, D, c(a′), λ);
B ← B

⋃{a′};
tempA ← tempA − {a′};

end while
return B;

3.3 Complexity Analysis

If the core is a reduct of the attributes set, then it is the minimal reduct. Let
m be the number of condition attributes, l be the number of labeled objects,
namely m = |C|, l = |L|, the computational complexity of finding the core is
O(ml), and this is the best case of finding a reduct. In the worst case, the reduct
is the whole condition attributes, correspondingly the computational complexity
is O(m2l2).

4 Experiments

In this section, some experiments are conducted on several data sets from UCI
repository [29] with the following purposes: (1) to find out the impact of param-
eter λ on the reducts of partially labeled data, (2) to find out the impact of test
cost on the reducts of partially labeled data, (3) to compare the classification
accuracy of classifiers trained from partially labeled data.

4.1 Data Sets and Experiment Environment

According to the experimental requirements of attribute reduction, we adopt 4
data sets with task of classification, as shown in Table 1. The datasets are pre-
processed as follows: (1) we delete the eleventh attribute of dataset mushroom
because of missing attribute values, (2) the continuous attributes in the dataset
wine and ionosphere are discreted by Weka using 3 bins. All the attributes are
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Table 1. Summary of datasets

Name #attributes #objects #classes

wine 13 178 3

zoo 16 101 7

mushroom 21 8124 2

ionosphere 34 351 2

identified by natural numbers for convenience. All the experiments are imple-
mented in MATLAB on a PC with CPU 2.60 GHz and 4 GB memory.

4.2 Impact of Parameter λ on Reduct

Because there are no existent test costs of datasets in Table 1, we first assume
some values of them. The test costs can be produced by many methods, and here
we adopt normal distribution with the mean is 0, and the variance is 1. Then
we scale the costs between 1 and 100. Let the test costs of all the attributes be
the numbers in Table 2.

Table 2. Test costs of datasets

dataset #attributes test cost
wine 13 42 49 54 59 64 71 1 61 100 46 93 79 71
zoo 16 61 100 67 41 1 52 52 28 70 55 60 35 31 36 21 34

mushroom 21 48 70 1 54 45 17 32 45 100 86 16 91 52 38 51 36 37 65 63 63 51
ionosphere 34 84 29 69 39 47 39 24 27 51 1 78 54 81 67 74 8 24 43 61 96 48 100

74 97 62 36 8 63 85 48 40 47 21 41

With the test costs in Table 2, we let labeled ratio be 0.2, 0.4, 0.6, 0.8, and
1.0 respectively, the reducts produced by Algorithm 1 with different λ (λ =
0,−0.5,−1,−2,−4) are shown in Table 3. When λ = 0, we do not consider the
test costs of attributes and the significance of attribute is based on conditional
entropy in reality. Here, we assume the objects of different class in the labeled
data are of the same proportion as the objects of different class in the whole
dataset. When the labeled ratio is 1.0, that is the dataset and there are no
unlabeled data.

In the wine and zoo datasets, when the labeled ratio is up to 0.4, the changes
of reducts based on different λ (λ = −0.5,−1,−2,−4) are small. In the mush-
room dataset, the core of attributes is {5} when the labeled ratio is less than
or equal to 0.8, however the core is {1, 3, 5, 9, 13, 14} when the labeled ratio is
bigger than 0.85, owing to the huge difference between the core, the reducts are
very different. In the ionosphere dataset, it seems that the difference between
reducts are mainly caused by labeled ratio and λ has tiny impact on the reducts.
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Table 3. Reducts on different λ with the same cost

dataset ratio core reduct
λ = 0 λ = −0.5 λ = −1 λ = −2 λ = −4

w
in

e

0.2 ∅ {2,11,13} {2,7,11,13} {2,7,11,13} {1,2,4,7,10 1,2,4,7,10}
0.4 {13} {2,5,10,11,12,13} {1,2,7,9,11,13} {1,2,4,7,9,10,13} {1,2,3,4,7,8,10,13

} {
} {1,2,3,4,7,8,10,13}

0.6 {3,13} {1,3,9,11,13} {1,3,7,9,11,13} {1,2,3,7,8,10,13} {1,2,3,7,8,10,13} {1,2,3,7,8,10,13}
0.8 {1,3,13} {1,3,4,9,11,12,13} {1,3,7,8,10,11,13} {1,2,3,4,7,8,10,13 1,2,3,4,7,8,10,13} {1,2,3,4,7,8,10,13}
1.0 {1,3,13} {1,3,4,9,11,12,13} {1,2,3,4,7,8,10,13} {1,2,3,4,7,8,10,13

} {
} {1,2,3,4,7,8,10,13} {1,2,3,4,7,8,10,13}

z
o
o

0.2 ∅ {1,6,13} {4,5,6,13} {4,5,6,13} {4,5,6,13,14} {4,5,6,13,14,15,16}
0.4 {6} {1,6,8,13} {4,5,6,8,13} {4,5,6,8,13} {4,5,6,8,13} {4,5,6,8,13,16}
0.6 {6,13} {3,4,6,11,13} {4,5,6,8,12,13} {4,5,6,8,12,13} {4,5,6,8,12,13} {4,5,6,8,12,13,16}
0.8 {6,13} {3,4,6,8,13} {4,6,8,12,13} {4,5,6,8,12,13} {4,5,6,8,12,13} {4,5,6,8,12,13,15,16}
1.0 {6,13} {3,4,6,8,13} {4,6,8,12,13} {4,5,6,8,12,13} {4,5,6,8,12,13} {4,5,6,8,12,13,16}

m
u
sh

ro
o
m 0.2 {5} {1,5} {3,5} {3,5} {3,5} {3,5}

0.4 {5} {5,19} {3,5,11,21} {3,5,7,8,11} {3,5,7,8,11} {3,5,7,8,11}
0.6 {5} {5,19} {3,4,5,11} {3,5,7,8,11} {3,5,7,8,11} {3,5,7,8,11}
0.8 {5} {3,5,19} {1,3,4,5,11} {3,5,7,11,12} {1,3,5,7,8,11} {1,3,5,7,8,11}
1.0 {1,3,5,

9,13,14}
{1,3,4,5,9,13,14,
21}

{1,3,5,7,9,13,14,
21}

{1,3,5,7,9,11,13,
14,21}

{1,3,5,7,9,11,13,
14,17}

{1,3,5,7,9,11,13,
14,17}

io
n
o
sp

h
e
re 0.2 ∅ {4,15,20,22,34} {4,7,8,10,16,27,

33}
{4,8,10,16,17,27,
33}

{4,7,8,10,16,27,
33}

{4,7,8,10,16,27,
33}

0.4 {5} {1,4,5,14,25,28,
34}

{5,6,8,10,12,16,
25,32,33}

{5,8,10,16,17,18,
25,27,32,33}

{5,8,10,16,17,18,
25,27,32,33}

{5,8,10,16,17,18,
25,26,27,32,33,34}

0.6 {4,5,6,18,
23,26,34}

{1,4,5,6,8,9,14,18,
23,25,26,29,34}

{4,5,6,10,12,16,18,
23,25,26,27,32,33,
34}

{4,5,6,10,12,16,17,
18,23,25,26,27,32,
33,34}

{4,5,6,10,12,16,17,
18,23,25,26,27,32,
33,34}

{4,5,6,7,10,12,16,
17,18,23,25,26,27,
32,33,34}

0.8 {4,5,6,8,
18,22,23,
26,32,34}

{1,4,5,6,8,9,18,22,
23,24,25,26,29,32,
34}

{4,5,6,7,8,10,12,
14,16,18,22,23,25,
26,27,32,33,34}

{4,5,6,7,8,10,12,
14,16,18,22,23,25,
26,27,32,33,34}

{4,5,6,7,8,10,12,
14,16,18,22,23,25,
26,27,32,33,34}

{4,5,6,7,8,10,12,
14,16,18,22,23,25,
26,27,32,33,34}

1.0 {4,5,6,8,
18,22,23,
26,32,34}

{3,4,5,6,8,9,10,11,
18,22,23,24,26,27,
29,31,32,34}

{4,5,6,7,8,10,12,
14,16,18,22,23,25,
26,27,32,33,34}

{4,5,6,7,8,10,12,
14,16,18,22,23,25,
26,27,32,33,34}

{4,5,6,7,8,10,12,
14,16,18,22,23,25,
26,27,32,33,34}

{4,5,6,7,8,10,12,
14,16,18,22,23,25,
26,27,32,33,34}

From Table 3, we can find that as the ratio raises, the core of a dataset
expands, and this may result in the change of reduct. The changes are tiny in
some datasets, such as wine and zoo, but huge in mushroom and ionosphere. The
reducts are very different when λ = 0 compared to the reducts based on test
costs (λ = −0.5,−1,−2,−4). Meanwhile, the attributes with the smallest test
cost, namely the attribute 7 in wine dataset, attribute 5 in zoo dataset, attribute
3 in mushroom dataset and attribute 10 in ionosphere dataset respectively, are
almost in all the reducts with different ratio and λ, but do not appear in the
cores and reducts when λ = 0. The results in this table also indicates that the
impact of λ on the reducts of partially labeled data may be limited, and the
reducts almost the same when λ = −1 and λ = −2 in some datasets, however
there may be some fluctuation when λ = −0.5 and λ = −4 compared to λ = −1.

4.3 Impact of Test Cost on Reduct

In the experiments above, we find the impact of λ on the reducts of partially
labeled data based on the same test cost. Here, we let λ = −1, and conduct some
experiments to show the impact of test costs on the reducts of partially labeled
data. We let labeled ratio be 0.2, 0.4, 0.6, 0.8 and 1.0 respectively, test costs
be produced randomly and satisfy normal distribution, the reducts produced by
Algorithm 1 with different test costs are shown in Table 4.

In wine and ionosphere datasets, the reducts expand when labeled ratios raise
in general. In zoo, the numbers of attributes in reduct change a little, mainly be
5 or 6. But the numbers change a lot in mushroom, for example, the reduct is
{1,5} when the ratio is 0.2 and test cost is [1 40 51 76 1 78 17 63 85 73 100 97
38 70 27 14 94 61 59 94 82], and the reduct is {5,19} when the ratio is 0.6 and
test cost is [31 53 57 77 39 1 26 70 22 62 45 71 4 39 19 100 59 70 22 34 38].
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Table 4. Reducts on different test cost with the same λ

dataset ratio test cost reduct
wine 0.2 48 70 1 54 45 17 32 45 100 86 16 91 52 {3,7,11,13}

41 68 36 39 95 92 93 67 1 68 100 60 79 {3,4,8,9,12}
0.4 1 100 58 73 14 38 45 60 14 61 24 52 65 {1,3,5,9,11,13}

69 100 97 29 66 17 1 94 55 53 93 80 70 {4,5,6,7,9,11,13}
0.6 85 97 64 63 100 1 52 28 56 89 94 36 53 {1,3,6,8,10,12,13}

70 57 75 77 37 60 1 100 46 29 58 22 65 {2,3,5,7,10,11,12,13}
0.8 42 100 78 1 63 24 48 57 70 48 87 44 61 {1,3,4,5,6,10,12,13}

68 52 74 59 29 1 100 33 53 65 53 25 37 {1,3,5,6,9,11,12,13}
1.0 46 100 21 77 61 42 15 41 47 1 57 23 47 {1,3,7,8,10,11,13}

51 23 37 52 1 68 100 66 36 54 20 87 66 {1,2,3,5,9,10,11,12,13}
zoo 0.2 36 37 23 100 11 25 17 1 35 32 95 33 5 97 84 34 {3,7,8,13}

36 61 68 78 65 81 80 42 49 54 59 64 71 1 61 100 {1,10,13,14}
0.4 72 1 12 55 62 32 67 85 71 17 37 34 47 39 35 100 {2,3,6,10,14}

51 57 72 4 24 78 74 23 100 60 67 66 44 1 58 10 {4,6,8,13,14}
0.6 100 37 85 51 75 57 44 50 77 83 77 43 28 64 67 1 {4,6,8,12,13,16}

48 100 42 31 21 1 34 55 22 53 67 32 59 61 46 96 {4,6,9,12,13}
0.8 31 65 38 43 68 83 63 87 38 66 47 42 1 76 100 70 {1,3,6,9,12,13}

90 51 13 23 25 82 35 52 10 44 1 28 72 100 64 52 {3,4,6,9,11,13}
1.0 99 90 1 19 46 45 25 50 43 100 52 34 58 50 77 63 {3,4,6,9,13}

3 58 33 26 20 63 39 1 100 33 49 52 8 75 49 46 {1,3,4,6,8,13}
mushroom 0.2 27 71 59 50 55 16 49 86 53 52 35 50 56 60 43 46 95 1 100 58 73 {1,5,18}

1 40 51 76 1 78 17 63 85 73 100 97 38 70 27 14 94 61 59 94 82 {1,5}
0.4 39 80 100 75 87 80 58 71 48 84 40 42 47 1 96 72 48 94 28 63 59 {5,14,19}

56 56 14 44 39 67 84 85 14 48 1 5 45 100 17 58 37 85 6 46 65 {5,11,19}
0.6 31 53 57 77 39 1 26 70 22 62 45 71 4 39 19 100 59 70 22 34 38 {5,19}

99 56 87 1 54 39 16 81 74 66 23 100 76 56 66 57 10 56 39 34 29 {4,5,7,11,17}
0.8 33 1 66 56 44 44 27 67 42 29 74 40 32 38 26 20 100 81 52 17 26 {2,5,10,20,21}

60 87 29 1 25 74 76 78 62 70 52 89 28 78 42 56 80 94 34 100 83 {3,4,5,19}
1.0 38 33 32 29 42 43 73 100 59 33 65 48 1 78 53 46 61 51 4 35 35 {1,3,5,9,13,14,19,21}

31 100 21 33 26 11 42 39 95 40 15 98 86 41 1 34 43 56 40 62 60 {1,3,4,5,9,11,13,14}
ionosphere 0.2 76 100 92 73 49 50 98 24 66 15 94 90 67 65 1 82 9 5 69 42 78 85 90

49 79 70 89 81 91 63 63 94 11 54
{8,10,15,18,24,33}

27 46 68 71 32 44 57 48 60 62 34 50 9 78 41 28 49 24 53 42 100 78
1 63 24 48 57 70 48 87 44 61 68 56

{8,13,16,18,20,23,34}

0.4 13 28 54 17 75 27 100 14 52 1 25 29 58 74 55 35 70 70 50 63 58 17
69 27 28 51 37 42 64 77 40 56 39 53

{1,4,5,8,10,22,24,25,34}

55 34 51 58 48 80 34 32 12 64 63 45 63 50 52 48 55 48 100 23 10 24
25 38 43 42 57 54 61 80 70 21 1 64

{5,8,9,12,20,21,24,25,32,33}

0.6 22 66 44 53 67 46 57 61 75 55 82 42 40 90 26 41 68 45 82 71 49 19
57 1 48 64 47 66 100 68 49 60 53 3

{1,4,5,6,10,12,18,22,23,24,
25,26,34}

45 87 54 70 30 57 71 21 64 51 31 55 7 1 25 30 25 11 63 15 58 76 55
58 46 18 54 80 100 44 14 60 65 50

{1,4,5,6,8,12,13,14,18,20,21,
23,25,26,31,34}

0.8 26 90 1 39 22 36 55 52 35 65 62 62 40 70 62 100 71 73 50 23 41 34
38 60 38 31 41 46 57 30 55 51 76 45

{1,3,4,5,6,8,9,18,22,23,24,
,26,29,32,34}

41 11 5 54 38 60 19 100 49 75 39 40 65 61 13 1 14 4 47 33 35 6 68
58 43 74 20 57 55 55 24 54 30 19

{3,4,5,6,8,11,12,16,18,20,22,
23,24,26,27,32,33,34}

1.0 39 81 46 58 39 56 1 41 35 43 58 55 98 51 57 32 53 36 62 78 69 48
31 89 100 64 43 84 50 53 78 36 25 69

{1,4,5,6,7,8,9,10,11,14,18,
22,23,26,29,32,33,34}

46 39 48 61 59 23 55 40 25 9 51 28 37 18 1 40 35 64 55 60 19 15 7
48 100 53 19 55 11 4 53 19 44 68

{4,5,6,8,9,10,11,14,15,18,
21,22,23,26,27,29,32,33,34}

From Table 4, we find that the attributes in reducts vary a lot according to
different test costs except the attributes in core, which indicates that test cost
has great impact of reduct. Furthermore, the attribute with low cost probably
be a member of reduct and this is consistent with the conclusion in Sect. 4.2.

4.4 Quality of Reducts

From partially labeled data based on reduct, one can train classifier and use
it to predict the classification of new objects. Here, some experiments are con-
ducted to show the prediction performance of the classifiers. First, the numbers
of attributes based on different reduction algorithms are shown in Fig. 1, where
Pawlak stands for reduction based on attribute dependency degree, and Entropy
stands for reduction based on entropy. Obviously, TCSPR gets more attributes
than other algorithms in most cases.

Then, based on the reduced partially labeled data from three different meth-
ods (Pawlak, Entropy and TCSPR), we use decision tree model and CART algo-
rithm to train classifier. To avoid randomness, 10-fold cross-validation is adopted
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Fig. 1. Relationship between number of attributes and labeled ratio

and this is done 10 times. The relationships between classification accuracy of
unlabeled data and ratio of labeled objects are shown in Fig. 2, where accuracy is
the mean of the 100 experimental results, and “original” indicates the classifica-
tion accuracy of the classifier trained by the whole dataset. Generally speaking,
for all the three methods, there are some identical phenomenons in Fig. 2: in the
wine and zoo datasets, the classification accuracy raises as the ratio of labeled
data increases, and this accords with the common recognition; In the mushroom
dataset, the classification accuracy is already near to 1 when the ratio is 0.1,
and when the ratio increases, the accuracy decreases till the ratio is 0.8, then
the accuracy goes up sharply when the ratio is 0.9; However, in the ionosphere
dataset, the classification accuracy fluctuates according to the ratio. Figure 2
also shows that the accuracies of Pawlak and Entropy are closer, especially in
the zoo and mushroom datasets, which indicates that the great impact of test
cost on classification accuracy. In mushroom dataset, the classification accuracy
of TCSPR is much superior than that of the other two methods, and in zoo
dataset, the classification accuracy of TCSPR is higher than that of the other
two methods when ratio is less than 0.6, however it approaches to other two
in other settings. So, on the premise of not reducing the classification accuracy
obviously, considering test cost for partially labeled data and finding the reduct
with minimal test cost, which can be studied in future, are meaningful.
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Fig. 2. Relationship between classification accuracy and labeled ratio

5 Conclusion

Based on rough set theory, this paper focuses on the attributes reduction of
partially labeled data with test cost sensitive. Based on mutual information and
the test cost of every condition attribute, we give the definition of attribute
significance. Then a heuristic algorithm (TCSPR) for attribute reduction based
on the significance is proposed. Experiments indicate the impact of labeled ratio
and test cost on the reducts, and the effectiveness of our algorithm is verified too.
In the future, more comparative experiments should be conducted to analyze the
quality of the reducts, and further work can concentrate on incremental attribute
reduction of partially labeled data with test cost sensitive.
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11. Jensen, R., Vluymans, S., Parthaláin, N.M., Cornelis, C., Saeys, Y.: Semi-
supervised fuzzy-rough feature selection. In: Yao, Y., Hu, Q., Yu, H., Grzymala-
Busse, J.W. (eds.) RSFDGrC 2015. LNCS (LNAI), vol. 9437, pp. 185–195.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25783-9 17

12. Zhang, W., Miao, D.Q., Gao, C., Li, F.: Rough set attribute reduction algorithm
for partially labeled data. Comput. Sci. 44(1), 25–31 (2017). (in Chinese)

13. Dai, J.H., Hu, Q.H., Zhang, J.H., Hu, H., Zheng, N.G.: Attribute selection for
partially labeled categorical data by rough set approach. IEEE Trans. Cybern.
PP(99), 1–12 (2017)

14. Ciucci, D.: Temporal dynamics in information tables. Fundamenta Informaticae
115(1), 57–74 (2012)

15. Luo, C., Li, T.R., Chen, H.M., Fujita, H., Yi, Z.: Efficient updating of probabilistic
approximations with incremental objects. Knowl.-Based Syst. 109, 71–83 (2016)

16. Jing, Y.G., Li, T.R., Fujita, H., Yu, Z., Wang, B.: An incremental attribute reduc-
tion approach based on knowledge granularity with a multi-granulation view. Inf.
Sci. 411, 23–38 (2017)

17. Lang, G.M., Miao, D.Q., Yang, T., Cai, M.J.: Knowledge reduction of dynamic
covering decision information systems when varying covering cardinalities. Inf. Sci.
346(C), 236–260 (2016)

18. Turney, P.D.: Types of cost in inductive concept learning. In: 17th ICML Proceed-
ings of the Cost-Sensitive Learning Workshop, California, pp. 1–7 (2000)

19. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating con-
cepts. Int. J. Man-Mach. Stud. 37, 793–809 (1992)

20. Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models.
Inf. Sci. 178(17), 3356–3373 (2008)

21. Huang, J.J., Wang, J., Yao, Y.Y., Zhong, N.: Cost-sensitive three-way recommen-
dations by learning pair-wise preferences. Int. J. Approx. Reasoning 86(C), 28–40
(2017)

https://doi.org/10.1007/978-3-319-25783-9_17


A Test Cost Sensitive Heuristic Attribute Reduction Algorithm 269

22. Li, H., Zhou, X., Zhao, J., Huang, B.: Cost-sensitive classification based on decision-
theoretic rough set model. In: Li, T. (ed.) RSKT 2012. LNCS (LNAI), vol. 7414, pp.
379–388. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31900-
6 47

23. Yang, X.B., Qi, Y.S., Song, X.N., Yang, J.Y.: Test cost sensitive multigranulation
rough set: model and minimal cost selection. Inf. Sci. 250(11), 184–199 (2013)

24. Ju, H.J., Li, H.X., Yang, X.B., Zhou, X.Z., Hang, B.: Cost-sensitive rough set: a
multi-granulation approach. Knowl.-Based Syst. 123(1), 137–153 (2017)

25. Zhang, W.X., Wu, W.Z., Liang, J.Y.: Rough Sets Theory and Methods. Science
Press, Beijing (2003). (in Chinese)

26. Miao, D.Q., Hu, G.R.: A heuristic algorithm for reduction of knowledge. J. Comput.
Res. Dev. 36(6), 681–684 (1999). (in Chinese)

27. Min, F., He, H.P., Qian, Y.H., Zhu, W.: Test-cost-sensitive attribute reduction.
Inf. Sci. 181(22), 4928–4942 (2011)

28. Wong, S.K.M., Ziarko, W.: On optimal decision rules in decision tables. Bull. Polish
Acad. Sci. Math. 33(11–12), 693–696 (1985)

29. http://archive.ics.uci.edu/ml/index.php

https://doi.org/10.1007/978-3-642-31900-6_47
https://doi.org/10.1007/978-3-642-31900-6_47
http://archive.ics.uci.edu/ml/index.php


Logic on Similarity Based Rough Sets

Tamás Mihálydeák(B)
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Abstract. Pawlak’s indiscernibility relation (which is an equivalence
relation) represents a limit of our knowledge embedded in an informa-
tion system. Covering approximation spaces generated by tolerance rela-
tions treat objects which are similar to a given object in the same way.
Similarity based rough sets rely on the similarity of objects in general
and preserve the benefit of pairwise disjoint system of base sets. By
using correlation clustering not only a pairwise disjoint system of base
sets can be generated but representative members of base sets can be
defined. These representative members have an important logical usage.
The author shows that there is a logical system relying on similarity base
sets in which the truth values of first-order formulas can be counted in
an effective simple way.

Keywords: Rough set theory · Correlation clustering · Partial logic
Multivalued logic

1 Introduction

Pawlak’s original theory of rough sets (see in e.g. [13,14,16]), covering systems
relying on tolerance relations [17], general covering systems [15,20], decision the-
oretic rough set theory [19], general partial approximation spaces [5] are different
systems of rough set theory. There is a very important common property: all
systems rely on given background knowledge and we cannot say more about an
arbitrary set (representing a ‘new’ property) or about its members then its lower
and upper approximations make possible. The base sets represent background
knowledge at least some regard:

– in Pawlak’s system they represent the limit of background knowledge by indis-
cernibility relation;

– in covering systems relying on tolerance relation objects which are similar to
a given one are treated in the same way;

– in general covering systems a base set corresponds to a property informally;
– general partial approximation spaces give up covering requirement in order

to represent partiality appearing in information systems.
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The system of similarity based rough sets (see in [12]) focuses on similarity in
general and shows a possibility to define partial and pairwise disjoint system of
base sets. Similarity relations generate new systems of properties: those objects
belong to the same base set which are similar to each other (not only to a given
object). In the present paper a partial first–order logic is created in order to
give a possibility to use logical tools therefore the consequences of background
knowledge can be investigated.

After giving a general picture of approximation spaces the influences of back-
ground knowledge on membership relations are surveyed. Then the most impor-
tant features of similarity based sets are given in order to show a possibility
of creating base sets relying on similarity relations in general with preserving
pairwise disjoint property of base sets. Finally a partial first-order logic relying
on similarity base sets is presented.

2 Theoretical Background

The notion of general approximation spaces can represent the bases of the most
important kinds of rough set theory:

Definition 1. The ordered 5-tuple 〈U,B,DB, l, u〉 is a general partial approxi-
mation space with a Pawlakian approximation pair if

1. U is a nonempty set;
2. B ⊆ 2U , B �= ∅ and if B ∈ B, then B �= ∅;
3. DB is an extension of B, and it is given by the following inductive definition:

(a) B ⊆ DB;
(b) ∅ ∈ DB;
(c) if D1,D2 ∈ DB, then D1 ∪ D2 ∈ DB.

4. the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.
(a) l(S) =

⋃ C l(S), where C l(S) = {B | B ∈ B and B ⊆ S};
(b) u(S) =

⋃ Cu(S), where Cu(S) = {B | B ∈ B and B ∩ S �= ∅}.
Informally, the set U is the universe of approximation; B is a nonempty set

of base sets; DB (i.e. the set of definable sets) contains not only the base sets,
but those which can be used to approximate any subset of U ; the functions l, u
(and b) determine the lower and upper approximation of any set.

The characteristic difference between the kinds of approximation spaces (with
a Pawlakian approximation pair) appears in the base sets (members of B).
Only four main kinds of approximation spaces are mentioned here: the original
Pawlakian; covering generated by a tolerance relation; general covering; general
(partial):

1. From the theoretical point of view an original Pawlakian approximation space
(see in [13,16]) can be characterized by an ordered pair 〈U,R〉 where U is a
nonempty set of objects and R is an equivalence relation on U . R is called an
indiscernibility relation and it determines a partition on U . The equivalence
classes of generated partition are base sets and so they are the members of B.



272 T. Mihálydeák

2. Pawlakian approximation spaces (relying on an indiscernibility relation) have
been generalized using tolerance relations (instead of equivalence ones), which
are similarity relations and so they are symmetric and reflexive. Covering-
based approximation spaces generated by tolerance relations (see e.g. in [17])
generalize Pawlakian approximation spaces in two points:
(a) R is a tolerance relation;
(b) if [x] = {y | y ∈ U, xRy}, then B = {[x] | x ∈ U}.

3. General covering approximation spaces (see e.g. in [20]) do not rely on tol-
erance relations, any nonempty subset of U can be a base set. There is only
one requirement:

⋃
B = U .

4. In the case of general (partial) approximation spaces (see e.g. in [5]) the last
requirement is given up: any family B of nonempty subsets of U can be a set
of base sets.

3 Influences of Embedded Knowledge on Membership
Relations

What is the importance of set of base sets from the theoretical point of view? It
represents a sort of limit of our knowledge embedded in an information system.
In some situation it makes our judgment of the membership relation uncertain
– making the set vague – because a decision about a given object affects the
decision about all other objects which are in a same base set.

The main source of uncertainty is in our background knowledge. Let S be a
subset of U , and x, y ∈ U . What is the consequence of embedded and limited
background knowledge? What can be said about y with respect to x?

1. In an original Pawlakian space relying on an equivalence relation R:
– if x ∈ l(S) (i.e. x is a member of S necessarily), then y ∈ S for all y, xRy;
– if x ∈ u(S) \ l(S) (i.e. x is a member of S possibly), then y may be

a member of S for all y, xRy (it means that there are y1, y2 such that
xRy1, y1 ∈ S, and xRy2, y2 /∈ S);

– if x ∈ l(S̄)(= U \ u(S)) (i.e. x is not a member of S necessarily), then
y /∈ S for all y, xRy.

2. In a covering space generated by a tolerance relation R:
– if x ∈ l(S) (i.e. x is a member of S necessarily), then y ∈ S for all

y, y ∈ [x′] where x′ ∈ [x] and [x′] ∈ C l(S);
– if x ∈ ⋃

(Cu(S) \ C l(S)) (i.e. x is a member of S possibly), then there is
an x′ and a base set [x′] such that x ∈ [x′], [x′] ∩ S �= ∅, [x′] �⊆ S and y
may be a member of S for all y ∈ [x′];

– if x ∈ l(S̄)(= U \ u(S)) (i.e. x is not a member of S necessarily), then
y /∈ S for all y, xRy.

3. In a general covering space:
– if x ∈ l(S) (i.e. x is a member of S necessarily), then there is a base set

B, such that x ∈ B and B ∈ C l(S)) therefore y ∈ S for all y ∈ B;
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– if x ∈ ⋃
(Cu(S) \ C l(S)) (i.e. x is a member of S possibly), then there is a

base set B such that x ∈ B, B ∩ S �= ∅ and B �⊆ S therefore y may be a
member of the set S for all y ∈ B;

– if x ∈ l(S̄)(= U \ u(S)) (i.e. x is not a member of S necessarily), then
there is a base set B such that B ∩ S = ∅ therefore y /∈ S for all y ∈ B.

4. In a general partial space:
– if x ∈ l(S) (i.e. x is a member of S necessarily), then there is a base set

B, such that x ∈ B and B ∈ C l(S)) therefore y ∈ S for all y ∈ B ;
– if x ∈ ⋃

(Cu(S) \ C l(S)) (i.e. x is a member of S possibly), then there is a
base set B such that x ∈ B, B ∩ S �= ∅ and B �⊆ S therefore y may be a
member of the set S for all y ∈ B;

– if x ∈ l(S̄) (i.e. x is not a member of S necessarily), then there is a base
set B such that B ∩ S = ∅ therefore y /∈ S for all y ∈ B;

– otherwise we do not know anything about x (i.e. there is no any base
set B such that x ∈ B), therefore we cannot say anything about y with
respect to x.

Boundary regions play a crucial role in the representation of uncertainty
coming from given background knowledge. In [4] the authors showed that the-
oretically different boundary regions can be introduced into a general partial
approximation space 〈U,B,DB, l, u〉:
1. b1(S) = u(S) \ l(S);
2. b2(S) =

⋃
(Cu(S) \ C l(S));

3. b3(S) =
⋃ Cb(S), where Cb(S) = {B | B ∈ B, B ∩ S �= ∅, and B �⊆ S}.

In original Pawlakian spaces there is no difference between different types of
boundary regions, i.e. if 〈U,B,DB, l, u〉 is an original Pawlakian space charac-
terized by an ordered pair 〈U,R〉, then b1(S) = b2(S) = b3(S) for all S ⊆ U .
In general case the boundary regions defined according to the first point are
not definable sets necessarily, therefore this definition cannot be used in general
approximations spaces where we want to rely on only definable sets. If there are
only finite number of base sets (i.e. B is finite), then the sets b2(S), b3(S) are
definable for all S ⊆ U . Some important connections between different types of
boundary regions were showed in [4,6]:

– b1(S) ⊆ b2(S) ⊆ u(S);
– b1(S) = b2(S) if and only if b2(S) ∩ l(S) = ∅;
– if B is one-layered (i.e. the base sets are pairwise disjoint), then there is no

difference between different types of boundary regions, i.e.
• b1(S) = b2(S) = b3(S);
• b1(S) is definable;
• bi(S) ∩ l(S) = ∅, where i = 1, 2, 3;
• u(S) = l(S) ∪ bi(S), where i = 1, 2, 3.

Notice that only lower and upper approximations (and so only background
and embedded knowledge represented by base sets) are used, and in a finite
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one-layered case there is no real difference between different types of bound-
ary regions.

The next step is to make clear the ‘nature’, the usage and the influences of
background (and embedded) knowledge.

1. In the original Pawlakian case the limit of our knowledge appears explicitly:
base sets consist of indiscernible objects, there is no way to distinguish them
from each other.

2. In covering structures generated by tolerance relations a base set contains
objects which are similar to a given object, and therefore we treat them in
the same way. Being similar to a given object is a property, but it is a very
special (not a general) one, it is generated by the tolerance relation.

3. In general covering spaces base sets can be considered as the representations
of real properties, and we suppose that all object have at least one (known,
represented) property. Objects with the same property (members of a base
set) are handled in the same way. (The system of base sets cannot be generated
by tolerance relations in some cases.)

4. General partial spaces are similar to general covering ones, but it is not sup-
posed that all objects have at least one property represented by a base set. In
practical cases information systems are not total, there is no relevant infor-
mation about an object: it may be in our database but some information is
missing, and so it does not have any property represented by a base set.

Some problems appear in different cases. In practical applications indiscerni-
bility relation (as an equivalence relation) may be too strong. In the case of huge
number of objects if we have a reflexive and symmetric relation, then it may be
difficult to decide whether it is transitive. Covering spaces generated by toler-
ance relations give possibilities to use only reflexive and symmetric relations, but
too many base sets appear, (each object generate a base set). These base sets
are not about similarity (in general), but only about similarity to given objects
(to their generators). In general covering and partial spaces there is no room for
similarity, these spaces rely on only common properties of objects. A pairwise
disjoint system of base sets generated from a covering system (relying on a tol-
erance relation or a family of properties) or a general partial system is not a real
solution: it is difficult to give any meaning represented by received base sets and
too many small base sets appear, therefore the system may become very close
to classical set theory.

The following question appears: is there any way to use similarity in general
and to preserve the benefit of pairwise disjoint system? The system of simi-
larity based rough sets gives a possible solution. The system was presented at
IJCRS2017 [12].

4 Similarity Based Rough Sets

Suppose that there is a universe U , and a (not necessarily total) tolerance relation
R, which represents similarity among objects belonging to U . Of course the base
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of the similarity can be the properties of our object. If U is finite (as in practical
cases) and we have an arbitrary fixed ordering of members of U , then a (partial)
tolerance relation can be defined by a matrix M (see in [8,17]):

– mij = 1 whenever objects ui and uj are similar,
– mij = −1 whenever objects ui and uj are dissimilar,
– mij = 0 otherwise.

A relation is partial if there exist two elements (ui, uj) such that mij = 0. It
means that if we have an arbitrary relation R ⊆ U ×U we have two sets of pairs.
Let Rtrue be the set of those pairs of elements for which the R holds, and Rfalse

be the one for which R does not hold. If R is partial then Rtrue∪Rfalse ⊆ U ×U .
If R is total then Rtrue ∪ Rfalse = U × U .

The task given at the end of previous section is to find an R ⊆ U × U
equivalence relation closest to the tolerance relation. Correlation clustering is a
clustering technique based on a tolerance relation (see in [1–3]) and its result is
a partition. A partition of a set U is a function p : U → N. Objects ui, uj ∈ U
are in the same cluster at partitioning p, if p(ui) = p(uj).

The cost function counts the negative cases i.e. it gives the number of cases
whenever two dissimilar objects are in the same cluster, or two similar objects
are in different clusters. The cost function of a partition p and a relation R with
matrix M is

f(p,M) =
1
2

∑

i<j

(mij + abs(mij)) −
∑

i<j

δp(ui)p(uj)mij ,

where δ is the Kronecker delta symbol. For a fixed relation the partition with
the minimal cost function value is called optimal. Solving a correlation cluster-
ing problem is equivalent to minimizing its cost function. The partition given
this way, generates an equivalence relation. This relation can be considered as
the closest to the tolerance relation. There are many different techniques for
correlation clustering, here these methods are not analyzed because they depend
on U .

There is a natural way to determine the representative members of a clusters:
We call a member representative if it is similar to most of the members and
different from the least of the members in its cluster.

From the approximation point of view the most important point is that the
result of correlation clustering can give a system of base sets (with representative
members): we use only non-singleton clusters as base sets. Singleton clusters are
not able to represent any information connected with given similarity relation.

By applying a correlation clustering process on U connected with the sim-
ilarity relation R the similarity based general approximation space SBAP can
be defined:

Definition 2. SBAP = 〈U,R,B,V〉 is a similarity based general approxima-
tion space, where
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– U is a nonempty set;
– R is a tolerance relation on the set U ;
– B(= {Bi | i = 1, . . . , n}), where Bi is a non-singleton cluster received by the

correlation clustering process on U , relying on the tolerance relation R;
– V = 〈u1, u2, . . . , un〉 is the representative vector of SBAP , i.e. ui ∈ Bi is a

representative object of Bi determined by the correlation clustering process.

5 Logic on Similarity Based Rough Sets (LSBRS)

Similarity and its logical properties are investigated in rough set theory exten-
sively (see e.g. Ewa Or�lowska’s and Dimiter Vakerelov’s papers [7,18]). In an
information system different similarity relations can be defined and the men-
tioned papers introduce different (modal) logical systems and deal with different
(logical) properties of relations.

LSRBS is not a logical system of similarity relations appearing in an infor-
mation system, it is not about the logical connections of different relations. It is
a logic on similarity based rough sets, i.e. in its semantics the system of simi-
larity based rough sets (given by a universe, a tolerance relation and a process
of correlation clustering) plays crucial role which is similar to the role of classi-
cal set theory in the semantics of classical first–order logic. LSBRS is a partial
three–valued logic.1

5.1 Language of Logic on Similarity Based Rough Sets

The language of LSBRS is not independent from the given similarity based gen-
eral approximation space which characterizes the ‘word’ relying on background
knowledge.

Definition 3. Let SBAP = 〈U,R,B, 〈u1, u2, . . . , un〉〉 be a similarity based
general approximation space. L = 〈LC, V ar, Con, Term,Rep, Form〉 is a first
order language relying on SBAP with the set Rep of representatives , if

1. LC = {¬,∧,∨,⊃,≡,∀,∃, (, )}, LC is the set of logical constants.
2. V ar = {xi | i = 0, 1, 2, . . . }, V ar is the denumerable infinite set of individual

variables.
3. Con = N ∪ ⋃∞

n=1 P(n)), where N is a set of name parameters, and P(n) is
the set of n–argument predicate parameters. Con is the denumerable set of
non–logical constants.

4. The sets LC, V ar, N , P(n) (n = 1, 2, . . . ) are pairwise disjoint.
5. Term = V ar ∪ N , Term is the set of terms.
6. Rep = {a1, a2, . . . , an} ⊆ N .
7. The set Form (the set of formulas) is given by the following inductive defi-

nition:
(a) If P ∈ P(n)(n = 1, 2, . . . ) and t1, t2, . . . , tn ∈ Term, then

P (t1, t2, . . . , tn) ∈ Form;
1 Different versions of partial first–order logic relying on rough sets are e.g. in [9–11].
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(b) If A,B ∈ Form, then ¬A, (A ◦ B),∈ Form where ◦ ∈ {∧,∨,⊃,≡};
(c) If A ∈ Form, x ∈ V ar, then ∀xA,∃xA ∈ Form;

Remark 1. Later the members of the set Rep will be the names of representative
objects.

5.2 Semantics of LSBRS

Definition 4. Let SBAP = 〈U,R,B, 〈u1, . . . , un〉〉 be a similarity based gen-
eral approximation space, and L be a language of first order logic relying on
SBAP with the set Rep of representatives. 〈SBAP, �〉 is an interpretation rely-
ing on the similarity based general approximation space SBAP if

– � is an interpretation function such that
1. Dom(�) = Con;
2. If ai ∈ Rep, i.e. ai is a representative, then �(ai) = ui.
3. If b ∈ N \ Rep (i.e. b is a non-representative name parameter), then

�(b) ∈ U .
4. If P ∈ P(1) i.e. P is a one-argument predicate parameter, then

�(P ) = 〈�(P )1, . . . , �(P )n〉, where �(P )1, . . . , �(P )n ∈ {−1, 0, 1};
5. If P ∈ P(m), (m > 1) i.e. P is an n-argument predicate parameter, then

�(P ) =

⎛

⎜
⎝

�(P )11, . . . , �(P )1n

...
. . .

...
�(P )m1, . . . , �(P )mn

⎞

⎟
⎠

where �(P )ij ,∈ {−1, 0, 1} (1 ≤ i ≤ n, 1 ≤ j ≤ m).

The points 4, 5 show that the semantic value of a predicate parameter may
and must be characterized only by lower, upper approximations and the bound-
ary region. Lower approximation corresponds to positive region, upper approxi-
mation corresponds to the union of positive and boundary region.

Let 〈SBAP, �〉 be an interpretation relying on the similarity based general
approximation space SBAP . If P is a one argument predicate parameter, then

– the set �+(P ) = ∪{Bi | �(P )i = 1} is the positive region of P ;
– the set ��(P ) = ∪{Bi | �(P )i = 0} is the boundary region of P ;
– the set �−(P ) = ∪{Bi | �(P )i = −1} is the negative region of P ;
– there is no information about objects which do not belong to the set

�+(P ) ∪ ��(P ) ∪ �−(P ).

Similar positive, negative and boundary region can be constructed in the case
of m-argument predicate parameter P, (m > 1):

– �+(P ) = ∪{Bi | �(P )1i = 1}×∪{Bi | �(P )2i = 1}× · · ·×∪{Bi | �(P )mi = 1}
is the positive region of P (where 1 ≥ i ≥ n);

– ��(P ) = ∪{Bi | �(P )1i = 0} × ∪{Bi | �(P )2i = 0} × · · · × ∪{Bi | �(P )mi = 0}
is the boundary region of P (where 1 ≥ i ≥ n);
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– �−(P ) = ∪{Bi | �(P )1i = −1} × · · · × ∪{Bi | �(P )mi = −1} is the negative
region of P (where 1 ≥ i ≥ n);

– if an m-tuple 〈u1, . . . , um〉 does not belong to the set �+(P )∪ ��(P )∪ �−(P ),
then there is no information about at least one object of the m-tuple
〈u1, . . . , um〉.

Definition 5. Function v is an assignment relying on the interpretation
〈SBAP, �〉 if v : V ar → U .

Definition 6. Let v be an assignment relying on the interpretation 〈SBAP, �〉,
x ∈ V ar and u ∈ U . v[x : u] is a modified assignment of v, if v[x : u] is an
assignment, v[x : u](y) = v(y) if x �= y, and v[x : u](x) = u.

5.3 Semantic Rules of LSBRS

In the semantics of LSBRS the semantic value of an expression depends on a
given interpretation Ip = 〈SBAP, �〉, a given assignment v (relying on Ip). For
the sake of simplicity in order to treat semantic paritiality (i.e. some formulas
have no semantic value) a null entity is used. We use number 0 for falsity, num-
ber 1 for truth, number 1/2 for uncertainty and number 2 for null entity. The
semantic value of an expression A with respect to Ip = 〈SBAP, �〉, and the
assignment v is denoted by [[A]]Ip

v or [[A]]〈SBAP,�〉v. For the sake of simplicity the
superscripts are omitted.

Semantic rules are the followings:

1. If x ∈ V ar, then [[x]]v = v(x).
2. If c ∈ N i.e. c is a name parameter, then [[a]]v = �(a)
3. If P ∈ P(1), i.e. P is a one-argument predicate parameter and t ∈ Term,

then [[P (t)]]v =

⎧
⎪⎪⎨

⎪⎪⎩

1 if [[t]]v ∈ �+(P )
1/2 if [[t]]v ∈ ��(P )
0 if [[t]]v ∈ �−(P )
2 otherwise

4. If P ∈ P(m), i.e. P is an m-argument predicate parameter and t1, t2, . . . , tm ∈
Term, then

[[P (t1, . . . , tm)]]v =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 〈[[t1]]v, . . . , [[tm]]v〉 ∈ �+(P )
1/2 if 〈[[t1]]v, . . . , [[tm]]v〉 ∈ ��(P )
0 if 〈[[t1]]v, . . . , [[tm]]v〉 ∈ �−(P )
2 otherwise

5. If A ∈ Form, then

[[¬A]]v =
{

2 if [[A]]v = 2
1 − [[A]]v otherwise

6. If A,B ∈ Form, then

[[(A ∧ B)]]v =
{

2 if [[A]]v = 2, or [[B]]v = 2;
min{[[A]]v, [[B]]v} otherwise

[[(A ∨ B)]]v =
{

2 if [[A]]v = 2, or [[B]]v = 2;
max{[[A]]v, [[B]]v} otherwise

[[(A ⊃ B)]]v =
{

2 if [[A]]v = 2, or [[B]]v = 2;
max{[[¬A]]v, [[B]]v} otherwise
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7. If A ∈ Form, x ∈ V ar and V(A) =
{
u | u ∈ U such that [[A]]v[x:u] �= 2

}
, then

[[∀xA]]v =
{

2 if V(A) = ∅,
min{[[A]]v[x:u] | u ∈ V(A)} otherwise

[[∃xA]]v =
{

2 if V(A) = ∅,
max{[[A]]v[x:u] | u ∈ V(A)} otherwise

5.4 Central Logical Notions

Definition 7. Let SBAP = 〈U,R, 〈u1, u2, . . . , un〉〉 be a similarity based gen-
eral approximation space, L = 〈LC, V ar, Con, Term,Rep, Form〉 be a first
order language relying on SBAP with the set Rep of representatives and
Γ ⊆ Form,A,B ∈ Form.

– The formula A is a strong consequence of the members of set Γ (in notation
Γ �s A) over the similarity based general approximation space SBAP if all
members of Γ are true, then A is true with respect to all interpretations and
assignments relying on SBAP .

– The formula A is a weak consequence of the members of set Γ (in notation
Γ �w A) over the similarity based general approximation space SBAP if all
members of Γ are not false, then A is not false with respect to all interpreta-
tions and assignments relying on SBAP .

– The formula A is logically equivalent with the formula B (in notation A ⇔ B)
over the similarity based general approximation space SBAP if [[A]]v = [[B]]v
for all interpretations and assignments relying on SBAP .

– The formula A is degenerate with respect to an interpretations and assign-
ment v relying on SBAP if [[A]]v = 2

5.5 Theorems About LSBRS

Next three theorems show the sources of partiality. Their proofs are the trivial
consequences of semantic rules.

Theorem 1. [[P (t1, t2, . . . , tn)]]v = 2 if and only if there is a ti such that [[ti]]v /∈⋃
B.

Theorem 2. Let A be a formula, b be a non-representative name parameter
and x be a variable.

– If b has an occurrence in A and [[b]]v /∈ ⋃
B, then [[A]]v = 2.

– If x is a free variable of A and [[x]]v /∈ ⋃
B, then [[A]]v = 2.

Theorem 3. If [[A]]v = 2, then there is a non-representative name parameter b
in A such that [[b]]v /∈ ⋃

B or a free variable x of A such that [[x]]v /∈ ⋃
B

Theorem 4. Let P be an n-argument predicate parameter, and t1, . . . , tn ∈
Term. If [[ti]]v ∈ Bi, (i = 1, . . . , n) (therefore [[ti]]v and ui are in the same
base set i.e. ui is a representative object of [[ti]]v), then [[P (t1, . . . , tn)]]v =
[[P (a1, . . . , an)]]v
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Proof. It is a trivial consequence of interpretation of representatives.

Let A ∈ Form be a formula, and t1, t2 ∈ Term be terms. A new notation
[A]t1t2 has to be introduced:

– Suppose that t2 ∈ V ar, and term t1 is substitutable for variable t2 in the
formula A. Then the formula [A]t1t2 is the result of substitution of term t1 for
all free occurrences of variable t2.

– Suppose that t1, t2 ∈ N (i.e. t1, t2 are name parameters). Then the formula
[A]t1t2 is the result of substitution of name parameter t1 for all occurrences of
name parameter t2.

Corollary 1. If u is a member of the base set represented by the object ui

(therefore �(ai) = ui = [[ai]]), then [[A]]v[x:u] = [[[A]ai
x ]]v

The next theorem is fundamental because it shows that in determining the
truth value of a formula we have to take into consideration only the values of
predicates on representatives. The proof is a direct consequence of Theorem 4
and Corollary 1.

Theorem 5. Let A ∈ Form, x1, . . . , xk ∈ V ar such that there is at least one
free occurrence of xi in A (i = 1, . . . , k), and b1, . . . , bl ∈ N such that there is at
last one occurrence of bj in A (j = 1, . . . , l).

– If there is an i or a j such that [[xi]]v /∈ ⋃
B or [[bj ]]v /∈ ⋃

B then [[A]]v = 2.
– If [[xi]]v = [[a�

i ]] (i = 1, . . . , k), and [[bj ]]v = [[a��
j ]] (j = 1, . . . , l), where

a�
i , a

��
j ∈ Rep (i = 1, . . . , k), (j = 1, . . . , l), then

[[A]]v = [[[A]a
�
1 ,...,a�

k,a��
1 ,...,a��

l

x1,...,xk,b1,...,bl
]]

The next theorem shows that in quantified cases one has to take into consid-
eration only the values of predicates on representatives.

Theorem 6. Let SBAP be a similarity based general approximation space, L
be a first-order language relying on SBAP , A ∈ Form, x ∈ V ar, and Rep =
{a1, a2, . . . , an}. Then

∀xA ⇔ [A]a1
x ∧ [A]a2

x ∧ · · · ∧ [A]an
x

∃xA ⇔ [A]a1
x ∨ [A]a2

x ∨ · · · ∨ [A]an
x

Proof. If [[∀xA]]v = 2 or [[∃xA]]v = 2, then V(A) = ∅, i.e. [[A]]v[x:u] = 2 for all
u ∈ U . Therefore according to Corollary 1 [[[A]ai

x ]]v = 2 for all i = 1, 2, . . . , n and
so [[[A]a1

x ∧ [A]a2
x ∧ · · · ∧ [A]an

x ]] = 2, and [[[A]a1
x ∨ [A]a2

x ∨ · · · ∨ [A]an
x ]] = 2.

If [[[A]a1
x ∧ [A]a2

x ∧ · · · ∧ [A]an
x ]] = 2, then there is an i such that [[[A]ai

x ]] = 2.
It means that there is at least one term t in A which is different from x and ai

and the source of semantic value gap, i.e. [[t]]v /∈ ∪B. Therefore [[A]]v[x:u] = 2 for
all u ∈ U , i.e. V(A) = ∅, [[∀xA]]v = 2 and [[∃xA]]v = 2.

If [[∀xA]]v �= 2 or [[∃xA]]v �= 2, then
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[[∀xA]]v = min{[[A]]v[x:u] | u ∈ V(A)} = min{[[[A]a1
x ]]v, [[[A]a2

x ]]v, . . . , [[[A]an
x ]]v} =

= [[[A]a1
x ∧ [A]a2

x ∧ · · · ∧ [A]an
x ]]v

[[∃xA]]v = max{[[A]]v[x:u] | u ∈ V(A)} = max{[[[A]a1
x ]]v, [[[A]a2

x ]]v, . . . , [[[A]an
x ]]v} =

= [[[A]a1
x ∨ [A]a2

x ∨ · · · ∨ [A]an
x ]]v ��

The next theorem shows that in rough set theory we have to be careful
when we use some generally accepted classical logical laws. For example the
contraposition law of implication does not hold, the modus ponens holds but
the modus tollens does not. It is enough to give the statements only for one-
argument predicate parameters.

Theorem 7. Let P,Q ∈ Con be two one-argument predicate parameters. Then

– P (x) ⊃ Q(x) �⇔ ¬Q(x) ⊃ ¬P (x)
– Quantified modus ponens holds: {∀x(P (x) ⊃ Q(x)), P (b)} � Q(b).
– Quantified modus tollens does not hold: {∀x(P (x) ⊃ Q(x)),¬Q(b)} � ¬P (b).

Proof. It is enough to prove, that there is an interpretation and assignment
where

[[P (x) ⊃ Q(x)]]v �= [[¬Q(x) ⊃ ¬P (x)]]v

Let SBAP be a similarity based approximation space such that it has only four
base sets, and �(P ) = 〈1, 0, 0,−1〉, �(Q) = 〈1, 1,−1,−1〉. Then

[[P (x) ⊃ Q(x)]]v[x:u] = [[¬Q(x) ⊃ ¬P (x)]]v[x:u] if u ∈ B1 ∪ B2 ∪ B4

[[P (x) ⊃ Q(x)]]v[x:u] �= [[¬Q(x) ⊃ ¬P (x)]]v[x:u] if u ∈ B3

Remark 2. [[∀x(P (x) ⊃ Q(x))]]v = 1 means only that the positive region of P is
a subset of positive region of Q, but it does not mean that the negative region
of Q is a subset of negative region of P and so ∀x(P (x) ⊃ Q(x)) �⇔ ∀x(¬Q(x) ⊃
¬P (x)).

6 Conclusion and Future Work

The main result of the paper is to give a partial first–order three-valued logical
system on similarity based general approximation spaces. Important advantages
of the logical system are the followings:

– its semantics relies on similarity in general (and not on the similarity to a
given object);

– its semantics preserves the benefit of the pairwise disjoint system of base sets;
– the semantic values of all formulas with or without quantifiers can be deter-

mined by taking into consideration only the values of representatives (i.e.
representative objects);

– its semantic treats uncertainty on a precise way;
– logical tools (as for example consequence relation, logical equivalence) can be

used in order to make explicit the consequences of embedded knowledge.
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The next step is to use the introduced logical system in practice to solve
some problems in data mining connected with rough set theory.
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6. Csajbók, Z.E., Mihálydeák, T.: From vagueness to rough sets in partial approxi-
mation spaces. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J.,
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7. Golińska-Pilarek, J., Or�lowska, E.: Logics of similarity and their dual tableaux a
survey. In: Della Riccia, G., Dubois, D., Kruse, R., Lenz, H.J. (eds.) Preferences
and Similarities, pp. 129–159. Springer, Vienna (2008). https://doi.org/10.1007/
978-3-211-85432-7 5

8. Mani, A.: Choice inclusive general rough semantics. Inf. Sci. 181(6), 1097–1115
(2011)
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Abstract. A relation system on two universal sets is a natural extension
of a relation system on a universal set. This paper studies attribute
reduction algorithms for relation systems on two universal sets. Based
on two new discernibility matrices, we propose two reduction algorithms
for relation systems and relation decision systems on two universal sets.
As a corollary, we derive respectively the attribute reduction algorithms
for relation systems and relation decision systems on one universal set.

Keywords: Attribute reduction · Discernibility matrix
Relation system · Relation decision system

1 Introduction

Attribute reduction is a quite useful technique for preprocessing data. The idea
of attribute reduction is selecting a set of attributes which retain the same
information for classification purposes as the entire set of attributes. Lots of
researchers [1,3,4,8,9] have plunged into the research of attribute reduction
and provided varieties of algorithms to obtain reduction set quickly and accu-
rately. Pawlak [10,11] firstly studied attribute reduction for information sys-
tems. Skowron and Rauszer [12,13] are the first to propose discernibility matrix
based attribute reduction algorithms for information systems. However, their
algorithms were designed for dealing with complete and symbolic data sets. We
know that lots of data sets are incomplete. In order to explore a better means
of dealing with incomplete data sets, many kinds of attribute reductions were
presented [15–18]. Jia et al. [2] summarized existing 22 definitions of attribute
reductions and compared these definitions through experiments. We [5] pro-
posed an algorithm for general relation decision systems based on a discernibil-
ity matrix. Stepaniuk [14] defined the concept of the lth lower approximation
reduction for decision tables. We [6,7] considered such a type of reduction and
gave the corresponding algorithms based on discernibility matrices.
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Until now, all attribute reduction has focused on one universal set, how-
ever, there are lots of the possible two or more different universal sets in the
real world. Naturally, we need to consider attribute reduction problems on two
universal sets. As for the reduction strategy, we use the discernibility matrix
reduction method, different discernibility matrices correspond to different types
of reductions, there is no doubt that how to construct discernibility matrix is a
key step. In this paper, we will respectively construct a discernibility matrices
for a relation system and a relation decision system on two universal sets and
give the corresponding attribute reduction algorithms.

The remainder of the paper is organized as follows. In Sect. 2, we briefly ret-
rospect some basic notions and notations of relations and relation decision sys-
tems on two universal sets. Section 3 proposes an attribute reduction algorithm
for relation systems on two universal sets. In Sect. 4, an attribute reduction algo-
rithm is proposed for relation decision systems on two universal sets. In Sect. 5,
as a special case of our proposed algorithms, we give reduction algorithms for a
relation system on one universal set. Finally, Sect. 6 concludes the paper.

2 Preliminaries

In this section, we will define some basic knowledge about the notions of relations
and relation decision systems on two universal sets. Let U = {x1, x2, · · · , xn}
and V = {y1, y2, · · · , ym} be two finite universal sets. Suppose that R is a binary
relation from U to V , recall that the left R-relative set of an element y in V is
defined as

lR(y) = {x|x ∈ U, xRy}.
Similarity, the right R-relative set of an element x in U is defined as

rR(x) = {y|y ∈ V, xRy}.

Definition 2.1. Let U and V be two finite universal sets and A = {a1, a2, ..., as}
be a family of binary relations from U to V , then (U, V,A) is called a relation
system based on two universal sets ( a relation system, for short). If A = C ∪D,
and C ∩ D = ∅, then (U, V,C ∪ D) is called a relation decision system based
on two universal sets ( a relation decision system, for short), where C is called
the condition attribute set, and D is called the decision attribute set. For any
subset ∅ �= B ⊆ C, we associate a relation RB =

⋂
a∈B a. The consistent part

of the relation decision system (U, V,C ∪ D) is defined as GCD = {x|rRC
(x) ⊆

rRD
(x), x ∈ U}.

Definition 2.2. Let (U, V,A) be a relation system and Y be an arbitrary subset
Y ⊆ V , then the lower and upper approximations of Y on two universal sets
respected to A are defined respectively as

RA(Y ) = {x|x ∈ U, rRA
(x) ⊆ Y } and RA(Y ) = {x|x ∈ U, rRA

(x) ∩ Y �= ∅}.
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Definition 2.3. Let (U, V,A) be a relation system, B ⊆ A and B �= ∅. If B
satisfies the following two conditions:

(1) RB = RA.
(2) RB′ �= RA for any B′ ⊂ B.

Then B is called the reduction of (U, V,A).

Definition 2.4. Let (U, V,C ∪ D) be a relation decision system, B ⊆ C and
B �= ∅. If B satisfies the following conditions:

(1) GBD = GCD.
(2) GB′D �= GCD for ∀B′ ⊂ B.

Then B is called the reduction of (U, V,C ∪ D).

Note that, if GCD = U , then (U, V,C ∪ D) is called consistent, otherwise
it is called inconsistent. Especially, if GCD = ∅, then RSDTU is called totally
inconsistent. In this situation, each singleton set a(a ∈ C) is a reduction of C.
Hence, from now on, we always assume GCD �= ∅.

3 An Attribute Reduction Algorithm for Relation
Systems

In this section, we propose an attribute reduction algorithm for a relation system
on two universal sets. We define the indiscernibility matrix as follows.

Definition 3.1. Let (U, V,A) be a relation system, we define the discernibility
matrix M = (mij)n×m via mij = {a ∈ A|(xi, yj) /∈ a}.

We will give the reduction algorithm by means of the mathematical proofs.

Theorem 3.1. Let (U, V,A) be a relation system with ∅ �= B ⊆ A. Then the
following conditions are equivalent.

(1) RA = RB.
(2) If mij �= ∅, then B ∩ mij �= ∅.

Proof. (1) ⇒ (2): Suppose that mij �= ∅ and mij ∩ B = ∅, by the definition of
the discernibility matrix, we have (xi, yj) ∈ RB. By condition (1), (xi, yj) ∈ RA,
so (xi, yj) ∈ a for each a ∈ A. This is in contradiction with mij �= ∅.

(2) ⇒ (1): Since B ⊆ A, we have RA ⊆ RB . Now we need to show RB ⊆ RA.
Suppose that (xi, yj) /∈ RA, then ∃a ∈ A satisfies (xi, yj) /∈ a. That means

a ∈ mij . By condition (2), B ∩ mij �= ∅, Let b ∈ B ∩ mij , then (xi, yj) /∈ b and
(xi, yj) /∈ RB . Hence, RB ⊆ RA and RB = RA. �

Corollary 3.1. Let (U, V,A) be a relation system and ∅ �= B ⊆ A. Then B is
a reduction of A if and only if it is a minimal subset satisfying mij ∩ B �= ∅ for
any mij �= ∅.

Using Corollary 3.1, we now give a reduction algorithm for a relation system.
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Algorithm 1. An attribute reduction algorithm for a relation system
Input: A relation system (U, V,A)
Output: All attribute reduction set of (U, V,A)

1 for i = 1 to i ≤ n do
2 for j = 1 to j ≤ m do
3 mij = ∅;
4 for each a ∈ A do
5 if (xi, yj) /∈ a then
6 mij = mij ∪ a;

7 Transform the discernibility function f from its CNF f =
∏
(
∑

mij) into a
DNF f =

∑s
t=1(

∏
Bt), (Bt ⊆ A);

8 return reduct(A) = {B1, B2, · · · , Bs};

Table 1. A relation system

a1 y1 y2 y3 y4 y5
x1 1 0 0 0 1
x2 0 1 0 1 0
x3 1 0 1 1 0
x4 1 1 1 0 0

;

a2 y1 y2 y3 y4 y5
x1 1 1 0 0 0
x2 1 0 0 0 1
x3 0 0 0 1 1
x4 1 1 0 0 0

;

a3 y1 y2 y3 y4 y5
x1 1 0 0 0 0
x2 0 0 1 0 0
x3 0 0 0 1 0
x4 1 0 0 1 0

;

a4 y1 y2 y3 y4 y5
x1 1 1 0 1 1
x2 0 1 1 1 1
x3 1 1 0 1 0
x4 1 0 1 0 0

.

Example 3.1. Let U = {x1, x2, x3, x4}, V = {y1, y2, y3, y4, y5} and A =
{a1, a2, a3, a4}. The relation system (U, V,A) is given by the following table (See
Table 1).

(1) Compute the 4 × 5 discernibility matrix M = (mij)4×5 as follows

M =

⎛

⎜
⎜
⎝

∅ {a1, a3} A {a1, a2, a3} {a2, a3}
{a1, a3, a4} {a2, a3} {a1, a2} {a2, a3} {a1, a3}

{a2, a3} {a1, a2, a3} {a2, a3, a4} ∅ {a1, a3, a4}
∅ {a3, a4} {a2, a3} {a1, a2, a4} A

⎞

⎟
⎟
⎠ .

(2) Transform the discernibility function f = (a1 ∨ a2) ∧ (a1 ∨ a3) ∧ (a2 ∨ a3) ∧
(a3 ∨a4) from its CNF into the DNF f = (a1 ∧a3)∨ (a2 ∧a3)∨ (a1 ∧a2 ∧a4).

(3) {a1, a3}, {a2, a3} and {a1, a2, a4} are all attribute reduction sets of A.

4 An Attribute Reduction Algorithm for Relation
Decision Systems

In this section, we give an attribute reduction algorithm for a relation decision
system (U, V,C ∪D). Similar to the previous section, we define the discernibility
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matrix M = (mij)s×m as follows.

mij =
{{a|a ∈ C, (xi, yj) /∈ a}, xi ∈ GCD, (xi, yj) /∈ RD

∅, otherwise .

where s = |UCD| denotes the cardinality of UCD.

Lemma 4.1. Let (U, V,C ∪ D) be a relation decision system, if xi ∈ GCD and
(xi, yj) /∈ RD, then mij �= ∅.

Proof. Suppose that mij = ∅, then we have (xi, yj) ∈ a for each a ∈ C. That
means (xi, yj) ∈ RC . Because of xi ∈ GCD, rRC

(xi) ⊆ rRD
(xi). So, yj ∈ rRD

(xi).
This contradicts (xi, yj) /∈ RD. �

Theorem 4.1. Let (U, V,C ∪D) be a relation decision system and ∅ �= B ⊆ C.
Then the following conditions are equivalent.

(1) GCD = GBD.
(2) If mij �= ∅, then B ∩ mij �= ∅.

Proof. (1) ⇒ (2): Suppose that mij �= ∅ and mij ∩ B = ∅. By the definition of
the discernibility matrix, we have (xi, yj) ∈ RB, (xi, yj) /∈ RD and xi ∈ GCD.
By condition (1), GCD = GBD, so xi ∈ GBD. That means rRB

(xi) ⊆ rRD
(xi)

and (xi, yj) ∈ RD. This is in contradiction with (xi, yj) /∈ RD.
(2) ⇒ (1): Since B ⊆ C, we have RC ⊆ RB , by definition of GCD, we have

GBD ⊆ GCD. We now show that GCD ⊆ GBD.
Suppose that xi ∈ GCD, we show rRB

(xi) ⊆ rRD
(xi). In fact, if xj /∈ rRD

(xi),
then (xi, yj) /∈ RD. By Lemma 4.1, mij �= ∅. By condition (2), B ∩mij �= ∅. Let
b ∈ B ∩ mij , then (xi, yj) /∈ b and (xi, yj) /∈ RB. Hence, rRB

(xi) ⊆ rRD
(xi). In

other words, xi ∈ GBD and GCD ⊆ GBD. �

Corollary 4.1. Let (U, V,C ∪D) be a relation decision system and ∅ �= B ⊆ C.
Then B is a reduction of C if and only if it is a minimal subset satisfying
mij ∩ B �= ∅ for any mij �= ∅.

Example 4.1. Let U = {x1, x2, x3, x4, x5}, V = {y1, y2, y3, y4, y5, y6}, C =
{a1, a2, a3, a4, a5} and D = {d}. The relation decision system (U, V,C ∪ D) is
given by following table (See Table 2). For instance, (x1, y1) /∈ a1 and (x1, y2) ∈
a1.

According to the Algorithm2,

(1) Compute the GCD of (U, V,C ∪ D), by direct computation, GCD =
{x1, x3, x4}.

(2) Compute the 3 × 6 discernibility matrix M = (mij)3×6 as follows

⎛

⎝
{a1, a3, a5} {a2, a3, a5} {a1, a2} ∅ ∅ {a1, a2, a3, a5}

∅ {a3, a4, a5} {a2, a4, a5} C {a1, a3, a4, a5} ∅
{a1, a2} ∅ C {a3, a5} {a2, a3, a5} {a1, a4}

⎞

⎠ .
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Algorithm 2. Attribute reduction algorithm for a relation decision system
Input: A relation decision system (U, V,C ∪ D)
Output: All attribute reduction sets of (U, V,C ∪ D)

1 GCD = ∅;
2 for each x ∈ U do
3 if rRC (x) ⊆ rRD (x) then
4 GCD = GCD ∪ x;

5 for i = 1 to i ≤ n do
6 for j = 1 to j ≤ m do
7 mij = ∅;
8 for each a ∈ C do
9 if (xi, yj) /∈ a then

10 mij = mij ∪ a;

11 Transform the discernibility function f from its CNF f =
∏
(
∑

mij) into a
DNF f =

∑s
t=1(

∏
Bt), (Bt ⊆ C);

12 return reduct(A) = {B1, B2, · · · , Bs};

(3) Transform the discernibility function f = (a1 ∨ a2) ∧ (a1 ∨ a4) ∧ (a3 ∨ a5) ∧
(a2 ∨ a4 ∨ a5) from its CNF into the DNF f = (a1 ∧ a5) ∨ (a1 ∧ a2 ∧ a3) ∨
(a1 ∧ a3 ∧ a4) ∨ (a2 ∧ a3 ∧ a4) ∨ (a2 ∧ a4 ∧ a5).

(4) All reduction sets are {a1, a5}, {a1, a2, a3}, {a1, a3, a4}, {a2, a3, a4} and
{a2, a4, a5}.

5 An Application to Relation Systems on a Universal Set

Since a relation system on one universal set is a special case of a relation system
on two universal sets, we can obtain respectively two reduction algorithms for a
relation system and a relation decision system on one universal set.

Definition 5.1. Let (U,A) be a relation system and ∅ �= B ⊆ A, set B is called
the attribute reduction of A if B satisfies the following conditions:

(1) RA = RB;
(2) For any ∅ �= B′ ⊂ B, RA �= RB′ .

If U = V , then (U, V,A) becomes (U,A). The following example illustrates
our algorithm.

Example 5.1. Consider the following incomplete information system (U,A)
(See Table 3), where U = {x1, x2, · · · , x5} and A = {a1, a2, a3, a4, a5, a6, a7}.

Where ∗ denotes missing attribute values (a null or a unknown value). Each
ak ∈ A can be seen as a relation from U to U via

ak = {(xi, xj)|ak(xi) = a(xj) or ak(xi) = ∗ or ak(xj) = ∗}.
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Table 2. A relation decison system

a1 y1 y2 y3 y4 y5 y6
x1 0 1 0 1 1 0
x2 1 1 1 1 0 1
x3 0 1 0 1 1 0
x4 1 1 1 0 0 1
x5 1 1 0 1 0 1

;

a2 y1 y2 y3 y4 y5 y6
x1 1 0 0 1 1 0
x2 0 1 1 1 1 0
x3 0 1 0 1 0 1
x4 1 1 0 0 1 1
x5 1 0 1 0 1 1

;

a3 y1 y2 y3 y4 y5 y6
x1 0 0 1 1 1 0
x2 0 1 1 1 0 0
x3 1 1 0 0 0 1
x4 1 0 1 0 0 1
x5 1 1 0 0 1 1

;

a4 y1 y2 y3 y4 y5 y6
x1 1 1 1 1 1 1
x2 0 1 1 1 0 0
x3 1 1 0 1 1 0
x4 1 0 0 0 0 1
x5 1 0 1 0 1 1

;

a5 y1 y2 y3 y4 y5 y6
x1 0 0 1 1 1 0
x2 1 1 1 1 1 1
x3 1 1 0 0 0 1
x4 1 0 0 0 0 1
x5 1 1 1 1 1 1

;

d y1 y2 y3 y4 y5 y6
x1 0 0 0 1 1 0
x2 0 0 1 0 1 0
x3 0 1 0 0 0 1
x4 1 0 0 0 0 1
x5 0 1 0 0 0 1

.

Table 3. An incomplete information system

U a1 a2 a3 a4 a5 a6 a7

x1 0 0 1 1 1 1 0

x2 0 0 0 1 0 1 *

x3 1 1 0 * 0 0 1

x4 1 1 1 0 0 1 0

x5 * 0 0 0 0 0 *

For example, (x1, x5) ∈ a1 and (x5, x3) ∈ a1, while (x1, x3) /∈ a1. Thus (U,A)
is a relation system.

According to the Algorithm1, the lower triangular part of discernibility
matrix is as follows:

⎛

⎜
⎜
⎜
⎜
⎝

∅
{a3, a5} ∅

{a1, a2, a3, a5, a6, a7} {a1, a2, a6} ∅
{a1, a2, a4, a5} {a1, a2, a3, a4} {a3, a6, a7} ∅
{a3, a4, a5, a6} {a4, a6} {a2} {a2, a3, a6} ∅

⎞

⎟
⎟
⎟
⎟
⎠

.

Transform the discernibility function f from its CNF f =
∏

(
∑

mij) into a
DNF f =

∑s
t=1(

∏
Bt), (Bt ⊆ A).

Thus {a2, a3, a4}, {a2, a3, a6}, {a2, a5, a6} and {a2, a4, a5, a7} are the four
reduction sets of A.
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Definition 5.2 [5]. Let (U,C ∪ D) be a relation decision system, then the
consistent part is UCD = {x|rRC

(x) ⊆ rd(x)}. Let ∅ �= B ⊆ C, set B is called
the attribute reduction of C if B satisfies the following conditions:

(1) UCD = UBD;
(2) For any ∅ �= B′ ⊂ B, UCD �= UB′D.

Similarly, we can derive an attribute reduction algorithm for a relation deci-
sion system. The following example illustrates our algorithm.

Example 5.2. Consider the following incomplete decision table shown in
Table 4. Where U = {x1, x2, · · · , x5}, C = {a1, a2, a3, a4} and D = {d}. Sim-
ilarly, ∗ denotes missing attribute values (a null or a unknown value). Each
ak ∈ C ∪ D can be seen as a relation on U via

ak = {(xi, xj)|ak(xi) = a(xj) or ak(xi) = ∗ or ak(xj) = ∗}.

Table 4. An incomplete decision table

U a1 a2 a3 a4 d

x1 0 0 0 1 1

x2 0 0 1 1 0

x3 1 * 0 * 1

x4 1 1 0 0 0

x5 * 0 1 1 *

According to Algorithm 2, we obtain the GCD = {x1, x2, x5}. The discerni-
bility matrix M is as follows.

(mij)3×5 =

⎛

⎝
∅ {a3, a4} ∅ {a1, a2, a4} ∅

{a3, a4} ∅ {a1, a3} ∅ ∅
∅ ∅ ∅ ∅ ∅

⎞

⎠ .

Transform the discernibility function f = (a3 ∨a4)∧ (a1 ∨a2 ∨a4)∧ (a1 ∨a3)
from its CNF into the DNF f = (a1 ∧ a3) ∨ (a1 ∧ a4) ∨ (a2 ∧ a3) ∨ (a3 ∧ a4).

Thus {a1, a3}, {a1, a4}, {a2, a3} and {a3, a4} are four reduction sets of C.
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6 Conclusions

A relation system on two universal sets is an extension of a relation system on
one universal set. In this paper, we have introduced the concepts of the attribute
reduction for relation systems and relation decision systems on two universal sets.
The proposed two algorithms can find all reduction sets for relation systems
and relation decision systems, respectively. The corresponding algorithms for
one universal set are respectively our special cases of the two algorithms. Now
our algorithms are theoretical models, our future work will focus on practical
applications of the proposed algorithms.
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Abstract. Recently, generalized fuzzy Petri nets have been proposed.
This paper describes a modified class of generalized fuzzy Petri nets
called optimized generalized fuzzy Petri nets. The main difference
between the current net model and the previous one is the definition of
the operator binding function δ. This function, like in the previous net
model, combines transitions with triples of operators (In, Out1, Out2) in
the form of appropriate triangular norms. The operator In refers to the
way in which all input places are connected to a given transition (or more
precisely, the statements corresponding to these places) and affects the
aggregation power of truth degrees associated with the input places of
the transition. However, the operators Out1 and Out2 refer to the way in
which the new markings of output places of the transition are calculated
after firing the transaction. For the operator In, it is assumed that it can
belong to one of two classes, i.e., t or s-norms, while the operator Out1
belongs to the class of t-norms, and the operator Out2 to the class of
s-norms. The meaning of these three operators in the current net model
is the same as in the previous one. However, the new net model has been
extended to include external knowledge about the partial order between
the triangle norms used in the model. In addition, it is assumed that the
new net model works in the steps mode. The paper also shows how to
use this net model in the fuzzy reasoning algorithm. The tangible benefit
of this approach compared to the previous one lies in the fact that the
user can now more precisely adapt his model to the real life situation
and use it more effectively by choosing the appropriate triples of opera-
tors for net transitions. This paper also presents an example of a small
rule-based decision support system in the field of control, illustrating the
described approach.

1 Introduction

Petri nets (PNs) [13] have broad application areas such as robotic tasks and
artificial intelligence. In the past few decades, various types of PNs have been
proposed for different applications. Although PN’s research and applications
have brought a lot of fruit, some flaw remained, namely that they were unable
to represent fuzzy data used in knowledge-based systems (KBSs) or a system
with uncertainty. To overcome this disadvantage, a novel model of PNs called

c© Springer Nature Switzerland AG 2018
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fuzzy Petri net (FPN) was developed in 1984 by Lipp [5]. FPNs are a modifica-
tion of classical PNs for dealing with imprecise, vague, or fuzzy information in
KBSs, which have been extensively used to model fuzzy production rules (FPRs)
and formulate fuzzy rule-based reasoning automatically. FPNs support struc-
tural organization of information, provide visualization of knowledge reasoning,
and facilitate design of efficient fuzzy inference algorithms. All this makes FPNs
a potential methodology for knowledge representation and reasoning in KBSs
[2,6]. Since the introduction of FPNs for supporting approximate reasoning in
a fuzzy rule-based system (FRBS) [7], they have received deal of attention from
researches and practitioners in the domain of artificial intelligence. The earlier
FPN models, as indicated in the literature on the subject [6], have a number of
shortcomings and are not suitable for increasingly complex KBSs. As a result,
many alternative models have been proposed in the literature in order to increase
FPN power for knowledge representation as well as for a more intelligent imple-
mentation of rule-based reasoning [1,2,6,11,16–21].

A few years ago the GFP -nets [16] were proposed for knowledge represen-
tation and reasoning in KBSs. This model is a natural extension of classical
FPNs [6]. The t-norms and s-norms were introduced to the model as substitutes
of min and max operators. The latter ones generalize naturally AND and OR
logical operators with the Boolean values 0 and 1. The GFP -net model is not
only more comfortable in terms of knowledge representation, but most of all it
is more effective in the modeling process of approximate reasoning as in this
model the user has the chance to define the input/output operators according
to her/his preferences.

This paper describes both the optimized generalized fuzzy Petri nets (oGFP -
nets for short) and an algorithm for a fuzzy reasoning process. The main differ-
ence between this net model and the existing GFP -nets concerns the definition
of the operator binding function δ. This function, similarly to GFP -nets, con-
nects transitions with triples of operators (In,Out1, Out2) in the form of suitable
triangular norms. The meaning of these operators in the oGFP -nets is the same
as in the case of GFP -nets. However, by building the oGFP model, the exter-
nal knowledge of the partial order between triangular norms is used. It is also
assumed that oGFP -nets work in the steps mode. The work also shows the use
of this model in the fuzzy reasoning algorithm. Typically, such algorithms are
applicable in KBSs to describe fuzzy inference processes in the form of FPRs.
For given degrees of truth of some statements from rule promises are determined
degrees of truth of other statements which are goal statements. FPRs describe
relations between these statements. The speed of a fuzzy reasoning process is
very important, especially in real-time decision making systems. The proposed
algorithm allows firing of independent FPRs in one reasoning step. In this app-
roach it is assumed that if in a given KBS there are two (or more) FPRs having
a common statement in conclusions then operator Out2 appearing in triples
of operators (In,Out1, Out2) which are attached to all transitions representing
those rules must be the same. Apart from this assumption, you can get different
degrees of truth in a joint statement.



296 Z. Suraj

Since there exist infinitely numerous triangular norms in the field of fuzzy
logic, and the nature of the marking changes variously in given oGFP -nets
depending on triangular norms used in the net model, it is very difficult to choose
the appropriate triangular norms for a specific application without an external
knowledge of the relationships between them. However, taking into account some
properties of triangular norms described in Proposition 3 in Sect. 2.2, you can
build the oGFP -net model more efficiently than in the case of the GFP -net one.
The choice of suitable operators for the modeled system is very important, espe-
cially in control systems or expert systems, which are in many cases described by
incomplete, imprecise and/or vague information. Trying to make GFP -nets more
useful in practice, in this paper we establish a connection between GFP -nets
and the theory of algebraic t-norm properties. This relationship is methodologi-
cal, demonstrating the possible application of t-norm methodology to transform
GFP -nets into a more realistic model.

The rest of this paper is organized in the following way. First, some back-
ground knowledge regarding partially ordered sets, triangular norms and their
properties are provided in Sect. 2. In Sect. 3, the definition of oGFP -net is given.
Section 4 describes a reasoning process modelled by means of a given oGFP -net.
An example illustrating the approach described in this paper is provided in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries

2.1 Partially Ordered Sets

Let R be a binary relation on a set A. A relation R on A is said to be a partial
ordering on A if: (1) it is reflexive, i.e., (x, x) ∈ R for each x ∈ A, (2) it is
transitive, i.e., if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R for any x, y, z ∈ A,
(3) it is antisymmetric, i.e., if (x, y) ∈ R and (y, x) ∈ R, then x = y for any
x, y ∈ A. A partial ordering R on A is said to be a linear ordering on A if at
least one of the following conditions: (x, y) ∈ R, (y, x) ∈ R or x = y holds for
any x, y ∈ A. If R is a partial ordering on A, then the pair U = (A,R) is said
to be a partially ordered set (abbreviated poset). If R is a linear ordering on A,
then the pair U = (A,R) is said to be a linearly ordered set.

Let U = (A,R) be a poset, and X ⊆ A. The element a0 ∈ A is said to be
the upper (lower) bound in U of a subset X ⊆ A if (x, a0) ∈ R ((a0, x) ∈ R) for
all x ∈ X. The upper (lower) bound in U of A is the greatest (least) element
in U . An element a ∈ A is said to be maximal (minimal) in U if (a, x) ∈ U
(respectively (x, a) ∈ R) implies x = a. It is clear that the greatest (least)
element is maximal (minimal), and if R is a linear ordering, then the element
maximal (minimal) in U is also the greatest (least) in U . It is obvious that if the
greatest (least) element in U exists, then all the maximal (minimal) elements
are equal. If B is a set of upper bounds in U = (A,R) of a set A1 ⊆ A, then the
least element in (B,R ∩ B2) is said to be the least upper bound in U of the set
A1 and is denoting sup(A1, U). Replacing in the preceding definition “upper”
and “least” respectively by “lower” and “greatest” the definition of the greatest
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lower bound of A1 in U is obtained. And this will be denoted as inf(A1, U). It
is clear that sup(A1, U) and inf(A1, U) are uniquely determined by A1 and U if
they exist. A poset U is said to be a lattice if for any a, b ∈ A in U there are
sup({a, b}, U) and inf({a, b}, U).

Detailed information on partially ordered sets is available in [3].

2.2 Triangular Norms

A triangular norm (t-norm for short) [4] is a function T : [0, 1]2 → [0, 1], such
that for all a, b, c ∈ [0, 1] the following four conditions are satisfied: (1) it has 1 as
the unit element; (2) it is monotone; (3) it is commutative; (4) it is associative.

Example 1. We list only a few of basic t-norms known from the literature and
used in this paper: (1) ZtN(a, b) = min(a, b) (minimum, Zadeh t-N orm);
(2) HtN(a, b) = 0 for a = b = 0, HtN(a, b) = ab/(a + b − ab) oth-
erwise (H amaher t-N orm); (3) GtN(a, b) = ab (algebraic product, Goguen
t-N orm); (4) EtN(a, b) = ab/(2 − (a + b − ab) (E instein t-N orm); (5) LtN(a, b)
= max(0, a+ b− 1) (Lukasiewicz t-N orm); (6) DtN(a, b) = 0 for (a, b) ∈ [0, 1)2,
DtN(a, b) = min(a, b) otherwise (drastic product, Drastic t-N orm).

The family of all basic t-norms without the drastic product will be denoted
by TN.

The comparison of t-norms is done in the usual way, i.e., pointwise. If, for two
t-norms T1 and T2, the inequality T1(a, b) ≤ T2(a, b) holds for all (a, b) ∈ [0, 1]2,
then it is said that T1 is weaker than T2 and is denoted T1 ≤ T2.

Taking into account the properties of t-norms and the above definitions it is
easy to show the following properties:

Proposition 1. (1) For each t-norm T and for each (a, b) ∈ [0, 1]2 we have:
DtN ≤ T ≤ ZtN , i.e., the drastic product DtN is the least, and the minimum
ZtN is the greatest t-norm ([4], pages 6–7). (2) Since LtN ≤ EtN ≤ GtN ≤
HtN , we get the following linear order for the six basic t-norms: DtN ≤ LtN ≤
EtN ≤ GtN ≤ HtN ≤ ZtN .

An s-norm [4] is a function S : [0, 1]2 → [0, 1] such that for all a, b, c ∈ [0, 1]
the following four conditions are satisfied: (1) it has 0 as the unit element, (2)
it is monotone, (3) it is commutative, (4) it is associative.

Example 2. We list only a few of basic s-norms corresponding respectively to the
basic t-norms presented in Example 1. (1) ZsN(a, b) = max(a, b) (maximum,
Zadeh s-N orm); (2) HsN(a, b) = 1 for a = b = 1, HsN(a, b) = (a+b−2ab)/(1−
ab) otherwise (H amaher s-N orm); (3) GsN(a, b) = a + b − ab (probabilistic
sum, Goguen s-N orm); (4) EsN(a, b) = (a+ b)/(1+ab) (E instein s-N orm); (5)
LsN(a, b) = min(1, a+b) (bounded sum, Lukasiewicz s-N orm); (6) DsN(a, b) =
1 for (a, b) ∈ (0, 1]2, DsN(a, b) = max(a, b) otherwise (drastic sum, Drastic s-
N orm).

The family of all basic s-norms without the drastic sum will be denoted
by SN.



298 Z. Suraj

As in the case of t-norms, we can also show the following properties for
s-norms:

Proposition 2. (1) For each s-norm S and for each (a, b) ∈ [0, 1]2 we have:
ZsN ≤ S ≤ DsN , i.e., the maximum ZsN is the least, and the drastic sum DsN
is the greatest s-norm ([4], pages 12–13). (2) Since HsN ≤ GsN ≤ EsN ≤ LsN ,
we get the following order for the six basic s-norms: ZsN ≤ HsN ≤ GsN ≤
EsN ≤ LsN ≤ DsN .

Let (x, y, z) and (x′, y′, z′) be two vectors over a non-empty set X. In the
following, the comparison of such vectors is done in the usual way, i.e., pointwise.
If, for two vectors (x, y, z) and (x′, y′, z′), the inequalities x ≤ x′, y ≤ y′, and
z ≤ z′ hold for all x, y, z, x′, y′, z′ ∈ X], then we say that the vector (x, y, z) is
less than the vector (x′, y′, z′) and we write (x, y, z) ≤ (x′, y′, z′).

Example 3. Consider two pairs U = (A, R) and U ′ = (A, R′), where the set A =
TN∪SN , the relation R = TN×TN×SN , and the relation R′ = SN×TN×SN
are the sets of all triples over the A. It is easy to show that the pairs U = (A, R)
and U ′ = (A, R′) are lattices. The simple proof of this fact is omitted. It is also
worth emphasizing that these two lattices are finite, and each of them consists of
125 triples. Due to the large number of nodes in the graphical representation of
these lattices, we present only small fragments in the drawings (Figs. 1 and 2).
Each lattice contains the least (greatest) element corresponding to the lower
(upper) node on the corresponding graph. Moreover, in each graph immediate
neighboring vertices to the the lower (upper) node are presented.

Fig. 1. A fragment of graphical representation of the lattice U (Case AND)
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Fig. 2. A fragment of graphical representation of the lattice U ′ (Case OR)

For the lattices U = (A, R) and U ′ = (A, R′) we can show the following
properties:

Proposition 3. (1) For each triple (A,B,C), where A,B are any t-norms from
TN and C is any s-norm from SN , and for each (a, b) ∈ [0, 1]2 we have:
(LtN,LtN,ZsN) ≤ (A,B,C) ≤ (ZtN,ZtN,LsN), i.e., (LtN,LtN,ZsN) is the
least element in U (Case AND, minimal), and (ZtN,ZtN,LsN) is the greatest
element in U (Case AND, maximal) (see Fig. 1).

(2) For each triple (D,B,C), where D,C are any s-norms from SN and B
is any t-norm from TN , and for each (a, b) ∈ [0, 1]2 we have: (ZsN,LtN,ZsN)
≤ (D,B,C) ≤ (LsN,ZtN,LsN), i.e., (ZsN,LtN,ZsN) is the least element in
U ′ (Case OR, minimal), and (LsN,ZtN,LsN) is the greatest element in U ′

(Case OR, maximal) (see Fig. 2).

The properties of triples presented in Proposition 3 will be used in the definition
of the new model of fuzzy Petri net presented in the next section.

3 Optimized Generalized Fuzzy Petri Nets

We assume that the reader is familiar with the basic notions of PNs [10,12].
Let U = (A, R) and U ′ = (A, R′) be the lattices described in Sect. 2. An

oGFP -net over U and U ′ is a tuple N = (P, T, I,O,M0, S, α, β, γ,Op, δ), where:
(1) P = {p1, p2, . . . , pn} is a finite set of places; (2) T = {t1, t2, . . . , tm} is a
finite set of transitions; (3) I : T → 2P is the input function; (4) O : T → 2P

is the output function, and 2P denotes a family of all subsets of the set P ;
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(5) M0 : P → [0, 1] is the initial marking; (6) S = {s1, s2, . . . , sn} is a finite set
of statements; (7) α : P → S is the statement binding function; (8) β : T → [0, 1]
is the truth degree function; (9) γ : T → [0, 1] is the threshold function, and [0,1]
denotes the set of real numbers between 0 and 1; (10) Op is the family of all
t-norms and s-norms appearing in the set A; (11) δ : T → Op × Op × Op such
that:
(Case AND, see Proposition 3)

1. δ(t) = (LtN,LtN,ZsN), if the input operator In of transition t should belong
to t-norms (it represents the logical connective AND, minimal),

2. δ(t) = (ZtN,ZtN,LsN), if the input operator In of transition t should belong
to s-norms (it represents the logical connective AND, maximal).
(Case OR, see Proposition 3)

3. δ(t) = (ZsN,LtN,ZsN), if the input operator In of transition t should
belong to t-norms (it represents the logical connective OR, minimal),

4. δ(t) = (LsN,ZtN,LsN), if the input operator In of transition t should belong
to s-norms (it represents the logical connective OR, maximal).

In general case, it is possible to consider other possible connections of triples
to the individual transitions of the oGFP -net, resulting from the dependencies
between the triples illustrated in Figs. 1 and 2. However, we included only these
triples of t-norms that are attached to the lowest and highest nodes in the
graphs presented in these drawings, because here we are interested in defining
the optimized form of our net model.

In the drawing, places are represented as circles and transitions as rectangles.
The function I describes the oriented arcs connecting places with transitions, and
the function O describes the oriented arcs connecting transitions with places. If
I(t) = {p} then a place p is called an input place of a transition t, and if
O(t) = {p′}, then a place p′ is called an output place of t. The initial marking
M0 is an initial distribution of real numbers from [0,1] in the places. It can be
represented by a vector of dimension n of real numbers over [0, 1]. For p ∈ P ,
M0(p) can be interpreted as a truth value of the statement s bound with a
given place p by means of the statement binding function α. In the drawing, the
tokens are represented by the appropriate real numbers from [0,1] placed over
the circles corresponding to the suitable places. We assume that if M0(p) = 0
then the token does not exist in the place p. The numbers β(t) and γ(t) are
placed in a net picture under the transition t. The first number is interpreted
as the truth degree of an implication corresponding to a given transition t.
The role of the second one is to limit the possibility of transition firings, i.e.,
if the input operator In value for all values corresponding to input places of
the transition t is less than a threshold value γ(t) then this transition cannot
be fired (activated). The operator binding function δ connects transitions with
triples of operators (In,Out1, Out2). The first operator in the triple is called
the input operator, and two remaining ones are the output operators. The input
operator In concerns the way in which all input places are connected with a
given transition t (more precisely, statements corresponding to those places).
However, the output operators Out1 and Out2 concern the way in which the
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next marking is computed after firing the transition t. In the case of the input
operator we assume that it can belong to one of two classes, i.e., t- or s-norm,
whereas the second one belongs to the class of t-norms and the third to the class
of s-norms.

It is worth noting that in this definition elements P, T, I,O,M0, S, α, β, γ have
the same meaning as in the definition of the general fuzzy Petri net introduced
in [16]. The main difference between the current net model and the previous one
is the definition of the operator binding function δ. This function, like in the pre-
vious net model, combines transitions with triples of operators (In,Out1, Out2)
in the form of appropriate triangular norms. However, this net model has been
extended to external knowledge about the partial order between triangle stan-
dards (see case AND and OR in the definition). In addition, it is assumed that
the new net model operates in the steps mode. This aspect of the net operation
will be explained in detail later.

Let N be an oGFP -net. A marking of N is a function M : P → [0, 1].
The oGFP -net dynamics defines how new markings are computed from the

current marking when transitions are fired.
There are several ways to increase the usability of Petri nets [14]. They

concern different ways of net work. In this paper, we assume that an oGFP -net
can operate in two modes: single firings or steps.

Single firings: A transition t ∈ T is enabled (or ready for firing) for marking
M if the number produced by input operator In for all input places of the
transition t by M is positive and greater than, or equal to the number being a
value of threshold function γ corresponding to the transition t.

Steps are a generalization of nets work in mode of single firings. In the paper,
we consider two kinds of steps: simple and generalized.

Simple steps: A nonempty set U of transitions is called to be a simple step
by a marking M if and only if there are transitions enabled by M and pair-
wise structurally independent (concurrent), i.e., these transitions have not joint
neither input places nor output places.

Generalized steps: A nonempty set U of transitions is called to be a gener-
alized step (for short step) by a marking M if and only if there are transitions
enabled by M and fired simultaneously. A step (a simple step) U by a marking
M is called to be maximal, if there is no any step (simple step) U ′ by M such
that U ′ ⊃ U .

In the definition of a step we do not demand the structural independency of
transitions with a step U , but we demand only the possibility of its simultaneous
firing. This means that if the sets of input places and output places for transitions
belonging to the step U are not pairwise disjoint, thus simultaneous firing of
those transitions will be possible only in Option 2 (see in the following). This
definition is a natural generalization of the simple step definition.

Only enabled transitions can be fired. We consider two operating options of
oGFP -nets in the paper.

Option 1. If M is a marking of N enabling a transition t and M
′
is the mark-

ing derived from M by firing t, then for each p ∈ P a procedure for computing
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the marking M
′
is as follows: (1) Tokens from all input places of the transition

t are removed. (2) Tokens in all output places of t are modified in the following
way: at first the value of input operator In for all input places of t is computed,
next the value of output operator Out1 for the value of In and for the value of
truth degree function β(t) is determined, and finally, a value corresponding to
M

′
(p) for each p ∈ O(p) is obtained as a result of output operator Out2 for the

value of Out1 and the current marking M(p). (3) Tokens in the remaining places
of net N are not changed.

Option 2. The main difference in the definition of the marking M
′
presented

above (Option 1) concerns input places of the fired transition t. In Option 1
tokens from all input places of the fired transition t are removed, whereas in
Option 2 all tokens from input places of the fired transition t are copied.

Fig. 3. An oGFP -net with the initial marking

Example 4. Consider a oGFP -net in Fig. 3. For the net we have: the set of
places P = {p1, p2, p3, p4, p5}, the set of transitions T = {t1, t2}, the input func-
tion I and the output function O in the form: I(t1) = {p1, p2}, I(t2) = {p2, p3},
O(t1) = {p4}, O(t2) = {p5} and the initial marking M0 = (0.5, 0.8, 0.7, 0, 0),
the set of statements S = {s1, s2, s3, s4, s5}, the statement binding function α :
α(p1) = s1, α(p2) = s2, α(p3) = s3, α(p4) = s4, α(p5) = s5, the truth degree
function β : β(t1) = 0.7, β(t2) = 0.5, the threshold function γ: γ(t1) = 0.4,
γ(t2) = 0.3, the set of operators Op = {ZtN,LsN}, the operator binding func-
tion δ: δ(t1) = (ZtN,ZtN,LsN) (Case AND, maximal), δ(t2) = (LsN,ZtN,
LsN) (Case OR, maximal). The transition t1 is enabled by the initial mark-
ing M0, since ZtN(M0(p1),M0(p2)) = min(0.5, 0.8) = 0.5 ≥ 0.4 = γ(t1).
Firing transition t1 by the marking M0 (Option 1) transforms M0 to the
marking M ′ = (0, 0, 0.7, 0.5, 0), because ZtN(ZtN(M0(p1),M0(p2)), β(t1)) =
ZtN(0.5, 0.7) = 0.5 and LsN(M0(p3), ZtN(ZtN(M0(p1),M0(p2)), β(t1)) =
LsN(0, 0.5) = min(1, 0 + 0.5) = 0.5. In a similar way, you can calculate the
next marking after firing the transition t2 by M0. In this case, the resulting
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marking will be M ′′ = (0.5, 0, 0, 0, 0.5). It is easy to see that transitions t2 by
the marking M ′ and t1 by M ′′ are no longer enabled. Let us observe also that
a set U = {t1, t2} is a step by the initial marking M0 in Option 2. The step U
can be fired by M0. However, this set of transitions is not a simple step by M0,
since transitions t1 and t2 are not structurally independent. The set U is not
also a step by M0 in Option 1, because after firing transition t1 in this option
the transition t2 is not enabled. A similar situation appears after firing tran-
sition t2 by M0 in Option 1. Whereas maximal step U = {t1, t2} by marking
M0 in Option 2 is enabled. After firing this step by M0 we obtain the marking
M ′′ = (0.5, 0.8, 0.7, 0.5, 0.5).

In some cases such situations in the net are not accepted, i.e., when, e.g.,
statements s4 and s5 attached to places p4 and p5 of the net describe spe-
cific decisions in KBS, that is modeled by the net. Then the markings of these
places can be interpreted as the true degrees of these statements. Thus, the
equality of these values does not allow to unambiguously determine which deci-
sion should be chosen. Using the net definition presented above (or more gen-
eral, using, for example, information about t-norm properties represented in the
graphs in Figs. 1 and 2), we can try to find such triples of t-norms attached
to net transitions that the problem of ambiguity will be possible to solve. In
our example, if we take, for example, the following connections for t1 and t2:
δ(t1) = (ZtN,ZtN,LsN) and δ(t2) = (ZsN,LtN,ZsN) (see points 2 and 3 in
the definition of oGFP -net), then maximal step U is also enabled by marking
M0 and after the step U by M0 in Option 2, we obtain the resulting marking
M ′′′ = (0.5, 0.8, 0.7, 0.5, 0.3). Now you can see that places p4 and p5 have differ-
ent markings equal to 0.5 and 0.3, respectively. This means that in this case the
problem of ambiguity no longer exists. We omit the detailed description of the
relevant calculations illustrating these considerations.

4 Approximate Algorithm

In this section we show how to use the oGFP -net model in the fuzzy reasoning
algorithm. In order to describe the algorithm, we need earlier two auxiliary
concepts.

In some situations we may want to determine the antecedence-consequence
relationships between two groups of statements: the starting (given) statements
si1, . . . , sik, and goal (computed) statements so1, . . . , sol. In the Petri net rep-
resentation, the places associated with the first group of statements are called
starting places, whereas the places associated with the second one are called goal
places. Furthermore, if the truth degrees of the starting statements si1, . . . , sik
are given, we may want to know what the truth degrees of the goal statements
so1, . . . , sol are. These problems can be solved by using an approximate reason-
ing algorithm based on oGFP -nets. We assume that the truth degrees of the
starting statements are given by the expert or they are identified by sensors in
finite time units. The goal of the reasoning is to determine the truth degrees of
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the output (goal) statements. In addition, we assume that oGFP -net modeling
reasoning process works in the step mode (simple or generalized).

In the following section we present an example of this algorithm’ use.

Algorithm 1. Reasoning Algorithm Using oGFP -net
Input : A set of the markings of starting places
Output: A set of the markings of goal places
repeat

Determine the steps ready for firing
while Are there any steps ready for firing? do

Fire a step ready for firing;
Compute the new markings of places after firing the step;
Determine the steps ready for firing;

Read the markings of goal places;
Reset the markings of all places

until Is this the end of simulation? ;

5 Illustrative Example

Consider the example of KBS, which contains a set of four rules: (r1) IF s2 THEN
s4; (r2) IF s1 AND s4 THEN s5; (r3) IF s3 AND s4 THEN s6; (r4) IF s5 AND s6
THEN s7, where the statements’ labels have the following meaning: s1 - ‘Plant
work is non-stable’, s2 - ‘Temperature sensor of plant indicates the temperature
over 150 ◦C’, s3 - ‘Plant cooling does not work’, s4 - ‘Plant temperature is high’,
s5 - ‘Plant is in failure state’, s6 - ‘Plant makes a huge hazard for environment’,
and s7 - ‘Turn off plant supply’.

At first, using a method for constructing a GFP -net on the base of a given set
of rules [16], we present the oGFP -net model corresponding to these rules. This
net model is shown in Fig. 4. Note that the places p1, p2, p3, p4, p4(copy), p5, p6
and p7 include the numbers 0.8,0.7,0.9,0,0,0,0,0 corresponding to the truth
degrees of statements s1, s2, s3, s4, s4(copy), s5, s6, s7, respectively. Moreover,
there are: the truth degree function β: β(t1) = 0.8, β(t2) = 0.9, β(t3) = 0.7,
β(t4) = 1.0, the threshold function γ: γ(t1) = γ(t2) = γ(t3) = γ(t4) = 0.1,
the set of operators Op = {ZtN,LsN} and the operator binding function δ:
δ(t1) = δ(t2) = δ(t3) = δ(t4) = (ZtN,ZtN,LsN) (Case AND, maximal). In
addition, it is worth adding that each net transition ti, i = 1, 2, ..., 4) together
with the input and output places corresponds exactly to one production rule ri
given above.

Next, we simulate the behavior of the net model shown in Fig. 4(a) using
the algorithm 1 in Option 1. Assessing the statements attached to the start-
ing places from p1 to p3 and choosing the step mode for the net work, we
see that only the step U1 = {t1} is ready for firing by the initial marking
M0 = (0.8, 0.7, 0.9, 0, 0, 0, 0). After firing this step by M0, we obtain a new mark-
ing M1 = (0.8, 0, 0.9, 0.7, 0.7, 0, 0, 0). Then, we determine steps ready for firing



Toward Optimization of Reasoning Using Generalized Fuzzy Petri Nets 305

Fig. 4. (a) An oGFP-net model of the example of KBS constructed by using the method
presented in [16], (b) A graph representing all reachable markings of the oGFP-net

by M1. In this case, we also have only one step of the form: U2 = {t2,t3}. After
firing the step U2 by M1, we obtain a marking M2 = (0, 0, 0, 0, 0, 0.7, 0.7, 0).
Further, we check whether there exist steps ready for firing by M2. We can see
that step U3 = {t4} is enabled by M2. After firing step U3 by M2 the algorithm 1
stops and the final value, corresponding to the statement s7 attached to the goal
place p7, equal to 0.7 is obtained. The graphical representation of the algorithm
1 execution is illustrated in Fig. 4(b). We can easily see in this graph a sequence
of steps (the reachable path) of the form {t1}{t2, t3}{t4}. The reachable path
goes from the initial marking M0 represented in the graph by the node N1 to the
final marking M3 = (0, 0, 0, 0, 0, 0, 0, 0.7) represented in the graph by the node
N4 (see Table in Fig. 5). Since the marking of place p7 is the true degree of the
statement attached to this place, thus the value 0.7 is the believable degree of
final decision in the example of KBS.

Fig. 5. A table of all nodes in the graph from Fig. 4(b)

It is worth to observe that if we accept for these four transitions the operator
binding function δ: δ(t1) = δ(t2) = δ(t3) = δ(t4) = (LtN,LtN,LsN) (Case
AND, minimal) and if we choose the same sequences of steps as above, we
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obtain the final value for the statement s7 equal to 0. We omit the detailed
computations performed in this case.

This example shows clearly that different interpretations of the operator bind-
ing function δ may lead to quite different decision results. In addition, choosing
the steps mode for net work one can speed up its operation. The oGFP -net
model proposed in the paper gives us such possibility. Therefore, we can say
that this net model is more flexible than the ones known from the subject lit-
erature. Choosing a suitable interpretation for the logical operators AND and
OR we may apply the mathematical relationships between triangular norms pre-
sented in Sect. 2.2. The rest in this case certainly depends on the experience of
the model designer to a significant degree.

6 Concluding Remarks

FPNs are one of the most popular and applicable class of PNs in the domain of
artificial intelligence, which have been widely studied by researchers and prac-
titioners. In this paper, we have proposed a new approach to fuzzy reasoning
process using the oGFP -net model. This model uses for the optimized (minimal,
maximal in the sense of Proposition 3) operator binding function δ interpreta-
tion for the triples (In,Out1, Out2) of t-norms. We have shown in the paper by
means of the simple example that there exist problems in which, by choosing
the appropriate triples (In,Out1, Out2) of t-norms, we can force the final con-
clusion. Of course, it is possible to consider another set of basic t-norms, which
is the base for determining the optimized triples (In,Out1, Out2) of t-norms. It
depends on our preferences. Moreover, thanks to the possibility of firing a set of
transitions (steps) at each stage of the net’s operation, we speed up the fuzzy
reasoning process in the modeled KBS. These two aspects are the main novelty
of the presented research work. The algorithm proposed in the paper has been
implemented in PNeS [20]. Using an intuitive, realistic example, the practicality
and usability of the proposed approach to modeling decision-making systems
was demonstrated in the paper. It seems that this paper not only proves that
the alternative net model is more suitable than the previous FPNs [6], but it also
suggests both practitioners and researchers how to use the FPN more effectively.
In addition, this paper can also be seen as a stimulus for further deep analysis
of the area and to broaden the knowledge about the FPNs to help practitioners
build more effective KBSs for smart decision making.

In this paper, we only considered the extension of AND and OR operators to
t-norms in terms of real numbers. It seems useful to study FPNs in the context
of the t-norm concept relating to more general mathematical structures (see e.g.
[8,9]). In future work, we intend to deal with this problem, focusing in particular
on the methodology presented here.
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Abstract. A sequent calculus wG5 is introduced for the variety of par-
tition topological quasi-Boolean algebras. The sequent calculus wG5 has
the cut elimination property, i.e., every sequent derivable in wG5 has a
cut-free derivation. Furthermore, a sequent calculus wG4t is introduced
for the variety of topological quasi-Boolean algebras with tense opera-
tors, and it is a conservative extension of a sequent calculus wG4 for the
variety of topological quasi-Boolean algebras.

1 Introduction

Rough set theory was systematically established by Pawlak [7]. Indeed there are
various different ways to define rough sets, and various algebraic structures were
developed to capture them (cf. [1–3]). Rough and pre-rough algebras were defined
and Stone-style representation theorems were presented in [3]. Pre-rough and
rough algebras are based on quasi-Boolean algebras (also known as De Morgan
algebras) and topological quasi-Boolean algebras. Topological Boolean algebras
were first investigated by Tarski and McKinsey in [5], and more results on these
algebras can be found in Rasiowa [8]. Topological quasi-Boolean algebras were
initially defined in [2].

Recently the properties and interrelations between weak pre-rough algebras,
particularly the logics of these algebraic structures, have been investigated in
[9,10]. Hilbert-style axiomatic systems and Gentzen-style sequent calculi have
been established for these logics. However, from proof-theoretic point of view,
these sequent calculi in [9,10] do not admit cut elimination. Cut elimination plays
central role in proof analysis of various logics, and it allows to obtain various
logical properties including subformula property, decidability and interpolation
property (cf. e.g. [6]). The aim of the present paper is to make up for such a lack
of cut-free sequent calculus for algebras related with rough sets.
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The logic of topological Boolean algebras is exactly the modal logic S4
(cf. [4]). The necessity operator � is interpreted as the interior operation in
a topological space, and ♦ is the dual of �. The characteristic axioms for S4,
i.e., (T ) �p → p and (4) �p → ��p, define the basic properties of the interior
operator, and the modal logic S4 is sound and complete with respect to the
class of all topological spaces (cf. [5]). Partition topological spaces are topologi-
cal spaces defined by the axiom (B) p → �♦p, i.e., every closed subset is open.
The modal logic S5 is obtained by extending S4 with the axiom (B), and it is
sound and complete with respect to partition topological spaces. It is worthy to
mention that Palwak’s approximation spaces are exactly relational frames with
equivalence relation, and S5 is the logic of such approximation space.

If the Boolean basis of topological Boolean algebras is changed into quasi-
Boolean algebras, we obtain the class of all topological quasi-Boolean algebras.
Similarly we obtain the class of all partition topological quasi-Boolean algebras.
The logic of topological quasi-Boolean algebras tqB4 is a weakening of classical
modal logic S4, and the logic of partition topological quasi-Boolean algebras
tqB5 is a weakening of classical modal logic S5. It is worthy to mention here that
there are difficulties in finding cut-free sequent systems that are encountered for
quite simple modal systems such as classical modal logic S5. Standard Gentzen
sequent calculi for classical modal logic fail to be modular and do not satisfy
most important properties of sequent calculus (cf. e.g. [6,11]). In the present
paper, we shall develop a Gentzen sequent calculus wG5 for the logic tqB5
which admits cut elimination. And then we introduce a Gentzen sequent calculus
wG4t for the logic of topological quasi-Boolean algebras with tense operators.
Finally, by conservativity, we get a Gentzen sequent calculus wG4 for the logic
of topological quasi-Boolean algebras.

2 Partition Topological Quasi-Boolean Algebras

In this section, we shall give the definition of partition topological quasi-Boolean
algebras, and a sound and complete consequence system shall be established for
these algebras.

Definition 1. A quasi-Boolean algebra (qBa) is an algebra A = (A,∧,∨,¬, 0, 1)
where (A,∧,∨, 0, 1) is a bounded distributive lattice, and ¬ is an unary operation
on A such that the following conditions hold for all a, b ∈ A:

(DN) ¬¬a = a, (DM) ¬(a ∨ b) = ¬a ∧ ¬b.

The lattice order ≤ on A is defined by: a ≤ b if and only if a ∧ b = a, or
equivalently a ∨ b = b. A topological quasi-Boolean algebra (tqBa) is an algebra
A = (A,∧,∨,¬, 0, 1,�) where (A,∧,∨,¬, 0, 1) is a quasi-Boolean algebra, and
� is an unary operation on A such that for all a, b ∈ A:

(K�) �(a ∧ b) = �a ∧ �b, (N�) �� = �.
(T�) �a ≤ a, (4�) �a ≤ ��a.
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A partition topological quasi-Boolean algebra (tqBa5) is a topological quasi-
Boolean algebra A = (A,∧,∨,¬,�, 0, 1) such that for all a ∈ A:

(5) ♦a ≤ �♦a,

where ♦ is an unary operation on A defined by ♦a := ¬�¬a. The class of all
partition topological quasi-Boolean algebra is denoted by tqBa5.

Fact 1. For any tqBa5 A = (A,∧,∨,¬,�, 0, 1) and a, b ∈ A, the following hold:

(1) ¬0 = 1 and ¬1 = 0.
(2) ¬(a ∧ b) = ¬a ∨ ¬b.
(3) If a ≤ b, then ¬b ≤ ¬a.
(4) ♦0 = 0 and ♦(a ∨ b) = ♦a ∨ ♦b.
(5) �a = ��a and ♦a = ♦♦a.
(6) ♦a = �♦a and �a = ♦�a.
(7) ♦a ≤ b if and only if a ≤ �b.

Definition 2. Let X = {xi | i < ω} be the denumerable set of all variables. The
set of all terms T is defined inductively by the following rule:

T � ϕ ::= x | ⊥ | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | �ϕ, where x ∈ X.

The above definition means that formulas are defined recursively from constant
⊥, set of proposition variables X and logical connectives ¬,∧,∨,�: ⊥ and x ∈ X

are formulas; if ϕ,ψ are a formulas, then ¬ϕ, ϕ∧ψ, ϕ∨ψ and �ϕ are formulas.
For convenience, hereafter we frequently use this kind of recursive definition.

We use the abbreviations � = ¬⊥ and ♦ϕ := ¬�¬ϕ. The complexity of a
term ϕ is defined as the number of occurrences of binary connectives or modal
operators in ϕ. The algebra T = (T ,∧,∨,¬,�,⊥,�) is called the term algebra.

3 The Sequent Calculus wG5

In this section, we shall introduce the sequent calculus wG5 for the logic wS5.
For proof theory of nonclassical logics, we refer to [6]. For this purpose, we intro-
duce two structural operators: the comma for ∧ and the pair of angle brackets
〈−〉 for ♦. A term structure is an expression Γ defined inductively as follows:

Γ := ϕ | (Γ, Γ ) | 〈Γ 〉, where ϕ ∈ T .

Term structures are denoted by Γ,Δ,Σ etc. with or without subscripts. A context
is a term structure Γ [−] with a single position which can be filled with a term
structure. Let Γ [Δ] be obtained from the context Γ [−] by filling Δ into the
single position. We stipulate that a single position [−] itself is a context.

The complexity of a term structure Γ (or context Γ [−]) is the number of
occurrences of structural operators in Γ (or Γ [−]).
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A sequent is an expression of the form Γ ⇒ ϕ where Γ is a term structure
and ϕ is a term. A sequent rule is a fraction of the form

Γ1 ⇒ ϕ1 . . . Γn ⇒ ϕn

Γ0 ⇒ ϕ0
(R)

where Γ1 ⇒ ϕ1, . . . , Γn ⇒ ϕn are called the premisses and Γ0 ⇒ ϕ0 is called the
conclusion of (R).

Definition 3. The Gentzen sequent calculus wG5 consists of the following
axioms and inference rules:

(1) Axioms:
(Id) ϕ ⇒ ϕ (⊥) Γ [⊥] ⇒ ϕ (�) Γ ⇒ �

(2) Connective rules:

Γ [ϕ,ψ] ⇒ χ

Γ [ϕ ∧ ψ] ⇒ χ
(∧⇒)

Γ ⇒ ϕ Γ ⇒ ψ

Γ ⇒ ϕ ∧ ψ
(⇒∧)

Γ [ϕ] ⇒ χ Γ [ψ] ⇒ χ

Γ [ϕ ∨ ψ] ⇒ χ
(∨⇒)

Γ ⇒ ψi

Γ ⇒ ψ1 ∨ ψ2
(⇒∨)(i = 1, 2)

Γ [¬ϕ] ⇒ χ Γ [¬ψ] ⇒ χ

Γ [¬(ϕ ∧ ψ)] ⇒ χ
(¬∧⇒)

Γ ⇒ ¬ψi

Γ ⇒ ¬(ψ1 ∧ ψ2)
(⇒¬∧)

Γ [¬ϕ,¬ψ] ⇒ χ

Γ [¬(ϕ ∨ ψ)] ⇒ χ
(¬∨⇒)

Γ ⇒ ¬ϕ Γ ⇒ ¬ψ

Γ ⇒ ¬(ϕ ∨ ψ)
(⇒¬∨)

Γ [ϕ] ⇒ χ

Γ [¬¬ϕ] ⇒ χ
(¬¬⇒)

Γ ⇒ ψ

Γ ⇒ ¬¬ψ
(¬¬⇒)

(3) Modal rules:
Γ [〈ϕ〉] ⇒ ψ

Γ [♦ϕ] ⇒ ψ
(♦⇒)

Γ ⇒ ψ

〈Γ 〉 ⇒ ♦ψ
(⇒♦)

Γ [¬ϕ] ⇒ ψ

Γ [〈¬♦ϕ〉] ⇒ ψ
(¬♦⇒)

〈Γ 〉 ⇒ ¬ψ

Γ ⇒ ¬♦ψ
(⇒¬♦)

Γ [ϕ] ⇒ ψ

Γ [〈�ϕ〉] ⇒ ψ
(�⇒)

〈Γ 〉 ⇒ ψ

Γ ⇒ �ψ
(⇒�)

Γ [〈¬ϕ〉] ⇒ ψ

Γ [¬�ϕ] ⇒ ψ
(¬�⇒)

Γ ⇒ ¬ψ

〈Γ 〉 ⇒ ¬�ψ
(⇒¬�)

(3) Structural rules and Cut rule:

Γ [Δ] ⇒ ψ

Γ [Δ,Σ] ⇒ ψ
(Wk)

Γ [Δ,Δ] ⇒ ψ

Γ [Δ] ⇒ ψ
(Ctr)

Γ [〈Δ〉] ⇒ ψ

Γ [Δ] ⇒ ψ
(T)

Γ [〈Δ〉] ⇒ ψ

Γ [〈〈Δ〉〉] ⇒ ψ
(4)

Δ ⇒ ϕ Γ [ϕ] ⇒ ψ

Γ [Δ] ⇒ ψ
(Cut)
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The term ϕ in (Cut) is called the cut term. A term or term structure in the below
sequent of a rule is called principal if it is derived by that rule. The notation
wG5 Γ ⇒ ψ means that Γ ⇒ ψ is derivable in wG5. The subscript wG5 is
omitted if no confusion will arise. A sequent rule (R) is admissible in wG5 if the
conclusion is derivable whenever the premisses of (R) are derivable in wG5.

Lemma 1. The following rules are admissible in wG5:

Γ [Δ,Σ] ⇒ ψ

Γ [Σ,Δ] ⇒ ψ
(Ex)

Γ [Δ1, (Δ2,Δ3)] ⇒ ψ

Γ [(Δ1,Δ2),Δ3] ⇒ ψ
(As1)

Γ [(Δ1,Δ2),Δ3] ⇒ ψ

Γ [Δ1, (Δ2,Δ3)] ⇒ ψ
(As2)

Proof. Straightforward by (Wk) and (Ctr). ��

For n ≥ 0, let Γ [−]n be a context with n positions. In particular, if n = 0,
Γ [−]0 = Γ . Let Γ [Δ1] . . . [Δn] be the term structure obtained from Γ [−]n by
filling Δ1, . . . ,Δn into the n positions in order. Let Γ [Δ]n be filling Δ into the n
positions. Let wG5• be sequent calculus obtained from wG5 by replacing (Cut)
with the following extended cut rule:

Δ ⇒ ϕ Γ [ϕ]n ⇒ ψ

Γ [Δ]n ⇒ ψ
(ECut).

Clearly wG5• is equivalent to wG5, i.e., for any sequent Γ ⇒ ψ, wG5• Γ ⇒ ψ
if and only if wG5 Γ ⇒ ψ. The system wG5• is needed in the proof of cut
elimination theorem because the system wG5 contains the contraction rule.

Theorem 2 (Cut Elimination). If wG5 Γ ⇒ ψ, then there is a derivation
of Γ ⇒ ψ in wG5 without using (Cut).

Proof. Assume that wG5 Γ ⇒ ψ. Then wG5• Γ ⇒ ψ. Let D be a derivation
of Γ ⇒ ψ in wG5•. Take an application of (ECut) in a branch of D such
that there is no application of (ECut) above. We show that such an application
can be eliminated and by repeating the process we obtain a cut-free derivation
of Γ ⇒ ψ. Consider such an instance of (ECut) with premissed Δ ⇒ α and
Σ[α]n ⇒ β which are derived by (R1) and (R2) respectively.

Assume that at least one of (R1) and (R2) is an axiom. Then we can derive
the conclusion Σ[Δ] ⇒ β without using (ECut). Similarly, if at least one of (R1)
and (R2) is a structural rule, (T) or (4), we can easily get the conclusion. For
example, let (R2) be (Ctr). One case is that the derivation

Δ ⇒ α

Σ[α, α][α]n−1 ⇒ β
(Ctr)

Σ[α][α]n−1 ⇒ β
(ECut)

Σ[〈〈Δ〉〉][Δ]n−1 ⇒ β

is transformed into the following derivation:

Δ ⇒ α Σ[α, α][α]n−1 ⇒ β
(ECut)

Σ[Δ,Δ][Δ]n−1 ⇒ β
(Ctr)

Σ[Δ]n ⇒ β

where (ECut) is applied to sequents with lower height.
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Assume that the cut term is not principle in (R1), we apply (Ecut) to the
right premiss of (ECut) and the premisses of (R1). For example, let (R1) be
(♦⇒). The derivation

Δ[〈ϕ〉] ⇒ α
(♦⇒)

Δ[♦ϕ] ⇒ α Σ[α]n ⇒ β
(ECut)

Σ[Δ[♦ϕ]]n ⇒ β

is transformed into the following derivation:

Δ[〈ϕ〉] ⇒ α Σ[α]n ⇒ β
(ECut)

Σ[Δ[〈ϕ〉]]n ⇒ β
(♦⇒)n

Σ[Δ[♦ϕ]]n ⇒ β

where (♦⇒)n means n times application of (♦⇒), and (ECut) is applied to
sequents with lower height.

Assume that the cut term is not principal in (R2), we apply cut to the right
premiss of (ECut) and the premiss of (R2). For example, let (R2) be (�⇒). One
case is that the derivation

Δ ⇒ α

Σ[β][α]n ⇒ β
(�⇒)

Σ[〈�β〉][α]n ⇒ β
(ECut)

Σ[〈�β〉][Δ]n ⇒ β

is transformed into the following derivation:

Δ ⇒ α Σ[β][α]n ⇒ β
(ECut)

Σ[β][Δ]n ⇒ β
(�⇒)

Σ[〈�β〉][Δ]n ⇒ β

where (ECut) is applied to sequents with lower height.
Assume that the cut term α is principal in both premisses. The proof proceeds

by induction on the complexity of α. Here we show only the following cases and
the remaining cases are shown similarly.

(1) α = ♦α′. The derivation

Δ′ ⇒ α′
(⇒♦)〈Δ′〉 ⇒ ♦α′

Σ[〈α′〉][α]n−1 ⇒ β
(♦⇒)

Σ[♦α′][α]n−1 ⇒ β
(ECut)

Σ[〈Δ′〉]n ⇒ β

is transformed into the following derivation:

Δ′ ⇒ α′
〈Δ′〉 ⇒ α Σ[〈α′〉][α]n−1 ⇒ β

(ECut)
Σ[〈α′〉][〈Δ′〉]n−1 ⇒ β

(ECut)
Σ[〈Δ′〉]n ⇒ β

where (ECut) is applied to sequents with lower height or less complicated term.
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(2) α = ¬♦α′. The derivation

〈Δ〉 ⇒ ¬α′
(⇒¬♦)

Δ ⇒ ¬♦α′
Σ[¬α′][α]n−1 ⇒ β

(¬♦⇒)
Σ[〈¬♦α′〉][α]n−1 ⇒ β

(ECut)
Σ[〈Δ〉][Δ]n−1 ⇒ β

is transformed into the following derivation:

〈Δ〉 ⇒ ¬α′
Δ ⇒ ¬α Σ[¬α′][α]n−1 ⇒ β

(ECut)
Σ[¬α′][Δ]n−1 ⇒ β

(ECut)
Σ[〈Δ〉][Δ]n−1 ⇒ β

where (ECut) is applied to sequents with lower height or less complicated term.
(3) α = ¬¬α′. The derivation

Δ ⇒ α′
(⇒¬¬)

Δ ⇒ ¬¬α′
Σ[α′][α]n−1 ⇒ β

(¬¬⇒)
Σ[¬¬α′][α]n−1 ⇒ β

(ECut)
Σ[Δ]n ⇒ β

is transformed into the following derivation:

Δ ⇒ α′
Δ ⇒ α Σ[α′][α]n−1 ⇒ β

(ECut)
Σ[α′][Δ]n−1 ⇒ β

(ECut)
Σ[Δ]n ⇒ β

where (ECut) is applied to sequents with lower height or less complicated term. ��

Let wG5◦ be the sequent calculus obtained from wG5 by dropping (Cut).
By the Cut elimination theorem, wG5◦ is equivalent to wG5.

Corollary 1. For any sequent Γ ⇒ ψ, wG5 Γ ⇒ ψ if and only if wG5◦

Γ ⇒ ψ.

Hence the cut rule (Cut) is admissible in wG5◦. Moreover, by the cut elimi-
nation theorem, we have the following property of a derivation which is analogue
to the ‘subformula property’ in proof theory.

Corollary 2. If wG5 Γ ⇒ ψ, then there is a derivation in wG5 in which the
complexity of each term in the upper sequent is less or equal to the complexity
of a term in the lower sequent.

4 Soundness and Completeness

In this section, we shall prove that the sequent calculus wG5 is sound and
complete with respect to tqBa5. Given a tqBa5 A = (A,∧,∨,¬,�, 0, 1), an
assignment in A is a function θ : X → A. Every assignment θ can be extended
homomorphically to the term algebra T. Let θ(ϕ) denote the value of ϕ under
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the assignment θ. For any term structure Γ , the term f(Γ ) associated with Γ
is defined inductively by: f(ϕ) = ϕ; f(Γ,Δ) = f(Γ ) ∧ f(Δ); f(〈Γ 〉) = ♦f(Γ ).
For any tqBa5 A, a sequent Γ ⇒ ψ is valid in A, notation A |= Γ ⇒ ψ, if
θ(f(Γ )) ≤ θ(ψ) for any assignment θ in A. The notation tqBa5 |= Γ ⇒ ψ
stands for that A |= Γ ⇒ ψ for all A ∈ tqBa5.

Definition 4. For any sequent Γ [ϕ] ⇒ ψ, we obtain ϕ ⇒ r(Γ (ψ)) by the fol-
lowing rules:

Γ1, Γ2 ⇒ ψ

Γ2 ⇒ τ(Γ1) → ψ
(R1)

〈Δ〉 ⇒ ψ

Δ ⇒ �ψ
(R2)

Γ [Δ1,Δ2] ⇒ ψ

Γ [Δ2,Δ1] ⇒ ψ
(Ex)

We say that ϕ is displayed in the sequent ϕ ⇒ r(Γ (ψ)).

Every formula in the antecedent of a sequent can be displayed. The consequent
of ϕ ⇒ r(Γ (ψ)) is the result of displaying ϕ in Γ [ϕ] ⇒ ψ and it contains ψ. For
example, the formula q in the antecedent of the sequent 〈p, 〈q, r〉〉 ⇒ ♦♦p can
be displayed as follows:

〈p, 〈q, r〉〉 ⇒ ♦♦p
(R2)

p, 〈q, r〉 ⇒ �♦♦p
(R1)〈q, r〉 ⇒ p → �♦♦p
(R2)

q, r ⇒ �(p → �♦♦p)
(Ex)

r, q ⇒ �(p → �♦♦p)
(R1)

q ⇒ r → �(p → �♦♦p)

Lemma 2. tqBa5 |= Γ [ϕ] ⇒ ψ if and only if tqBa5 |= ϕ ⇒ r(Γ (ψ)).

Proof. The rules (R1), (R2) and (Ex) for displaying ϕ preserve validity in tqBa5.
The following inverse rules also preserve validity in tqBa5:

Γ2 ⇒ τ(Γ1) → ψ

Γ1, Γ2 ⇒ ψ
(R3)

Δ ⇒ �ψ

〈Δ〉 ⇒ ψ
(R4)

Hence tqBa5 |= Γ [ϕ] ⇒ ψ if and only if tqBa5 |= ϕ ⇒ r(Γ (ψ)).

Theorem 3 (Soundness). If wG5 Γ ⇒ ψ, then tqBa5 |= Γ ⇒ ψ.

Proof. Assume that wG5 Γ ⇒ ψ. The proof proceeds by induction on the
height of a derivation of Γ ⇒ ψ in wG5. It is easy to show that all axioms are
valid in tqBa5. Note that the axiom (⊥) is valid by Lemma 2. It is easy to show
that all rules in wG5 preserve validity in tqBa5 by Lemma 2. ��

To show the completeness of wG5, it suffices to show the completeness of
wG5◦. Henceforth, we use the sequent calculus wG5◦. Recall that the cut rule
(Cut) is admissible in wG5◦.
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Lemma 3. The following rule of monotonicity is admissible in wG5◦:

ϕ ⇒ ψ

Γ [ϕ] ⇒ f(Γ [ψ])
(MN).

Proof. Assume that  ϕ ⇒ ψ. The proof proceeds by induction on the com-
plexity of Γ [−]. The case that Γ [−] = [−] is obvious. Suppose that Γ [−] =
(Γ1[−], Γ2). By induction hypothesis,  Γ1[ϕ] ⇒ f(Γ1[ψ]). Then it is easy to
obtain that  Γ1[ϕ] ∧ f(Γ2) ⇒ f(Γ1[ψ]) ∧ f(Γ2). Clearly  Γ2 ⇒ f(Γ2). By
(Cut),  Γ1[ϕ], f(Γ2) ⇒ f(Γ1[ψ]) ∧ f(Γ2). Suppose that Γ [−] = 〈Δ[−]〉. By
induction hypothesis,  Δ[ϕ] ⇒ f(Δ[ψ]). By (⇒♦),  〈Δ[ϕ]〉 ⇒ ♦f(Δ[ψ]). ��

Lemma 4. The following hold in wG5◦:

(1)  ¬f(Γ [ϕ]) ∧ ¬f(Γ [ψ]) ⇒ ¬f(Γ [ϕ ∨ ψ]).
(2)  ¬f(Γ [¬ϕ]) ∧ ¬f(Γ [¬ψ]) ⇒ ¬f(Γ [¬(ϕ ∧ ψ)]).
(3)  ¬f(Γ [¬ϕ,¬ψ]) ⇒ ¬f(Γ [¬(ϕ ∨ ψ)]).
(4)  ¬f(Γ [ϕ]) ⇒ ¬f(Γ [¬¬ϕ]).
(5)  ¬f(Γ [¬ϕ]) ⇒ ¬f(Γ [〈¬♦ϕ〉]).
(6)  ¬f(Γ [ϕ]) ⇒ ¬f(Γ [〈�ϕ〉]).
(7)  ¬f(Γ [〈¬ϕ〉]) ⇒ ¬f(Γ [�ϕ]).

Proof. Here we show only (5). The remaining items are shown similarly. The
proof proceeds by induction on the complexity of Γ [−]. Assume that Γ [−] = [−].
We need to show  ¬¬ϕ ⇒ ¬¬♦ϕ. One derivation is as follows:

ϕ ⇒ ϕ
(♦⇒)〈ϕ〉 ⇒ ♦ϕ
(T)

ϕ ⇒ ♦ϕ
(¬¬⇒)¬¬ϕ ⇒ ♦ϕ

(⇒¬¬)¬¬ϕ ⇒ ¬¬♦ϕ

Assume that Γ [−] = (Γ1[−], Γ2). By induction hypothesis,  ¬f(Γ1[¬ϕ]) ⇒
¬f(Γ1[〈¬♦ϕ〉]). Clearly we have ¬f(Γ1[¬ϕ], Γ2) = ¬(f(Γ1[¬ϕ]) ∧ f(Γ2))
and ¬f(Γ1[〈¬♦ϕ〉], Γ2) = ¬(f(Γ1[〈¬♦ϕ〉]) ∧ f(Γ2)). Let f(Γ1[¬ϕ]) = α,
f(Γ1[〈¬♦ϕ〉]) = β and f(Γ2) = γ. One derivation is as follows:

¬α ⇒ ¬β
(⇒¬∧)¬α ⇒ ¬(β ∧ γ)

¬γ ⇒ ¬γ
(⇒¬∧)¬γ ⇒ ¬(β ∧ γ)
(¬∧⇒)¬(α ∧ γ) ⇒ ¬(β ∧ γ)

Assume that Γ [−] = 〈Σ[−]〉. Let α = f(Σ[¬ϕ]) and β = f(Σ[〈¬♦ϕ〉]). By
induction hypothesis,  ¬α ⇒ ¬β. The derivation of ¬♦α ⇒ ¬♦β is as follows:

¬α ⇒ ¬β
(¬♦⇒)〈¬♦α〉 ⇒ ¬β
(⇒¬♦)¬♦α ⇒ ¬♦β

This completes the proof.
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Lemma 5. The following contraposition rule is admissible in wG5◦:

Γ ⇒ ψ

¬ψ ⇒ ¬f(Γ )
(Ctp).

Proof. Assume that  Γ ⇒ ψ. Then there is a derivation D in wG5◦ for Γ ⇒ ψ.
By induction on the height n of D, we prove that  ¬ψ ⇒ ¬f(Γ ). If n = 0, then
Γ ⇒ ψ is an axiom. Then it is easy to show that  ¬ψ ⇒ ¬f(Γ ). Note that
we can show that  ¬ψ ⇒ ¬f(Γ [⊥]) by induction on the complexity of Γ [−].
Assume that n > 0. Then Γ ⇒ ψ is obtained by a rule (R). If (R) is a connective
rule or modal rule, by (MN) and induction hypothesis, it is easy to show that
 ¬ψ ⇒ ¬f(Γ ). For example, let (R) be (�⇒) and the derivation end with

Γ [ϕ] ⇒ ψ

Γ [〈�ϕ〉] ⇒ ψ
.

By induction hypothesis,  ¬ψ ⇒ ¬f(Γ [ϕ]). By Lemma 4 (6),  ¬f(Γ [ϕ]) ⇒
¬f(Γ [〈�ϕ〉]). Hence  ¬ψ ⇒ ¬f(Γ [〈�ϕ〉]). ��

Lemma 6. For any term structure Γ , the following hold:

(1) wG5◦ Γ ⇒ f(Γ ).
(2) if wG5◦ f(Γ ) ⇒ ψ, then wG5◦ Γ ⇒ ψ.

Proof. (1) is shown by induction on the complexity of Γ . The case that Γ is a term
is trivial. Assume that Γ = (Γ1, Γ2). By induction hypothesis, wG5◦ Γ1 ⇒ f(Γ1)
and wG5◦ Γ2 ⇒ f(Γ2). By (Wk), wG5◦ Γ1, Γ2 ⇒ f(Γ1) and wG5◦ Γ1, Γ2 ⇒
f(Γ2). By (⇒∧), wG5◦ Γ1, Γ2 ⇒ f(Γ1) ∧ f(Γ2). Assume that Γ = 〈Δ〉. By
induction hypothesis, wG5◦ Δ ⇒ f(Δ). By (⇒♦), wG5◦ 〈Δ〉 ⇒ ♦f(Δ). For
(2), assume that wG5◦ f(Γ ) ⇒ ψ. By (1) and (Cut), wG5◦ Γ ⇒ ψ. ��

To show the completeness of wG5◦, we introduce the Lindenbaum-Tarski
algebra. The binary relation ∼ on the set of all terms T as follows:

ϕ ∼ ψ if and only if wG5◦ ϕ ⇒ ψ and wG5◦ ψ ⇒ ϕ.

Clearly ∼ is an equivalence relation on T . Let |ϕ| = {ψ ∈ T | ϕ ∼ ψ} be the
equivalence class of ϕ under ∼. Let T /∼ be the set of all such equivalence classes.
Moreover, by the rules for ∧ and ∨ as well as (Ctp), one can easily show that ∼
is a congruence relation on T . Then we define the following operations on T /∼:

|ϕ| ∧′ |ψ| = |ϕ ∧ ψ| |ϕ| ∨′ |ψ| = |ϕ ∨ ψ|
¬′|ϕ| = |¬ϕ| �′|ϕ| = |�ϕ|

0′ = |⊥| 1′ = |�|

Let T/∼ = (T /∼,∧′,∨′,¬′,�′, 0′, 1′) be the quotient algebra of the term algebra
T under ∼. One can easily show that T/∼ is a tqBa5.

Lemma 7. For any terms ϕ and ψ, if |ϕ| ≤ |ψ|, then wG5◦ ϕ ⇒ ψ.
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Proof. Assume that |ϕ| ≤ |ψ|. Then |ϕ| ∧′ |ψ| = |ϕ ∧ ψ| = |ϕ|. Hence ϕ ∧ ψ ∼ ϕ.
Then wG5◦ ϕ ⇒ ϕ ∧ ψ. Clearly wG5◦ ϕ ∧ ψ ⇒ ψ. By (Cut), wG5◦ ϕ ⇒ ψ. ��

Theorem 4 (Completeness). If tqBa5 |= Γ ⇒ ψ, then wG5◦ Γ ⇒ ψ.

Proof. Assume that �wG5◦ Γ ⇒ ψ. By Lemma 6 (2), �wG5◦ f(Γ ) ⇒ ψ. By
Lemma 7, |f(Γ )| �≤ |ψ|. Let θ be the assignment in T/∼ with θ(x) = |x| for
every variable x. It is easy to show by induction on the complexity of ϕ that
θ(ϕ) = |ϕ|. Hence θ(f(Γ )) �≤ θ(ψ). Therefore tqBa5 �|= Γ ⇒ ψ.

By the completeness theorem, wG5 is indeed a sequent calculus for partition
topological quasi-Boolean algebras.

5 The Sequent Calculus wG4

In this section, we shall introduce a sequent calculus wG4 for the variety of
topological quasi-Boolean algebras. We first introduce a sequent calculus wG4t

for topological quasi-Boolean algebras with tense operators. And then we get
wG4 by dropping rules for additional operators, and it is a sequent calculus for
tqBa since wG4t is a conservative extension of the logic of tqBa.

Definition 5. A topological quasi-Boolean algebra with tense operators (tqBaT)
is an algebra A = (A,∧,∨,¬, 0, 1,�,�) where (A,∧,∨,¬, 0, 1,�) is a topolog-
ical quasi-Boolean algebra and � is an unary operation on A such that for all
a, b ∈ A:

(Adj�)�a ≤ b if and only if a ≤ �b.

We define �a := ¬�¬a. The class of all topological quasi-Boolean algebras with
tense operators is denoted by tqBaT.

Lemma 8. For any tqBaT A and a, b ∈ A, the following hold:

(1) �0 = 0 and �1 = 1.
(2) if a ≤ b, then �a ≤ �b and �a ≤ �b.
(3) �(a ∨ b) = �a ∨ �b and �(a ∧ b) = �a ∧ �b.
(4) a ≤ ��a and a ≤ �a.
(5) ♦a ≤ b if and only if a ≤ �b.
(6) a ≤ �♦a and ��a ≤ �a.
(7) ��a = �a and ��a = �a.

Proof. Here we show only (4) and (5), and the remaining items are shown easily.
For (4), by �a ≤ �a and (Adj), a ≤ ��a. Since A is a tqBa, we have ��a ≤ �a.
Then a ≤ �a. For (5), assume that ♦a ≤ b. Then ¬b ≤ ¬♦a = �¬a. By (Adj�),
�¬b ≤ ¬a. Then a ≤ �b. The other direction is shown similarly.

Definition 6. The set of all tense terms Tt is defined inductively as follows:

Tt � ϕ:: = x | ⊥ | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | �ϕ | �ϕ, where x ∈ X.

Let Tt = (T ,∧,∨,¬,⊥,�,�,�) be the tense term algebra.
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Now we shall introduce the sequent calculus wG4t for the tense logic wS4t.
For this purpose, we introduce three structural operators: (i) the comma for ∧;
(ii) 〈−〉↑ for ♦; and (iii) 〈−〉↓ for �.

Definition 7. A tense term structure is an expression Γ defined as follows:

Γ := ϕ | (Γ, Γ ) | 〈Γ 〉↑ | 〈Γ 〉↓, where ϕ ∈ Tt.

A sequent is the form Γ ⇒ ϕ where Γ is a tense term structure and ϕ ∈ Tt.

Definition 8. The Gentzen sequent calculus wG4t consists of axioms and con-
nective rules in wG5 and the following rules:

(1) Modal rules:
Γ [〈ϕ〉↑] ⇒ ψ

Γ [♦ϕ] ⇒ ψ
(♦⇒)

Γ ⇒ ψ

〈Γ 〉↑ ⇒ ♦ψ
(⇒♦)

Γ [¬ϕ] ⇒ ψ

Γ [〈¬♦ϕ〉↑] ⇒ ψ
(¬♦⇒)

〈Γ 〉↑ ⇒ ¬ψ

Γ ⇒ ¬♦ψ
(⇒¬♦)

Γ [ϕ] ⇒ ψ

Γ [〈�ϕ〉↑] ⇒ ψ
(�⇒)

〈Γ 〉↑ ⇒ ψ

Γ ⇒ �ψ
(⇒�)

Γ [〈¬ϕ〉↑] ⇒ ψ

Γ [¬�ϕ] ⇒ ψ
(¬�⇒)

Γ ⇒ ¬ψ

〈Γ 〉↑ ⇒ ¬�ψ
(⇒¬�)

Γ [〈ϕ〉↓] ⇒ ψ

Γ [�ϕ] ⇒ ψ
(�⇒)

Γ ⇒ ψ

〈Γ 〉↓ ⇒ �ψ
(⇒�)

Γ [¬ϕ] ⇒ ψ

Γ [〈¬♦ϕ〉↓] ⇒ ψ
(¬�⇒)

〈Γ 〉↓ ⇒ ¬ψ

Γ ⇒ ¬�ψ
(⇒¬�)

Γ [ϕ] ⇒ ψ

Γ [〈�ϕ〉↓] ⇒ ψ
(�⇒)

〈Γ 〉↓ ⇒ ψ

Γ ⇒ �ψ
(⇒�)

Γ [〈¬ϕ〉↓] ⇒ ψ

Γ [¬�ϕ] ⇒ ψ
(¬�⇒)

Γ ⇒ ¬ψ

〈Γ 〉↓ ⇒ ¬�ψ
(⇒¬�)

(2) Structural rules and Cut rule:

Γ [Δ] ⇒ ψ

Γ [Δ,Σ] ⇒ ψ
(Wk)

Γ [Δ,Δ] ⇒ ψ

Γ [Δ] ⇒ ψ
(Ctr)

Γ [〈Δ〉↑] ⇒ ψ

Γ [Δ] ⇒ ψ
(T♦)

Γ [〈Δ〉↑] ⇒ ψ

Γ [〈〈Δ〉↑〉↑] ⇒ ψ
(4♦)

Γ [〈Δ〉↓] ⇒ ψ

Γ [Δ] ⇒ ψ
(T�)

Γ [〈Δ〉↓] ⇒ ψ

Γ [〈〈Δ〉↓〉↓] ⇒ ψ
(4�)

Δ ⇒ ϕ Γ [ϕ] ⇒ ψ

Γ [Δ]
(Cut)

The notation wG4t
Γ ⇒ ψ means that Γ ⇒ ψ is derivable in wG4t.
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Theorem 5 (Cut Elimination). If wG4t Γ ⇒ ψ, then there is a derivation
of Γ ⇒ ψ in wG4t without using (Cut).

Proof. The proof proceeds as in the proof of Theorem 2. ��

Let wG4◦
t be the sequent calculus obtained from wG4t by dropping (Cut).

By the Cut elimination theorem, wG4◦
t is equivalent to wG4t.

Lemma 9. The following contraposition rule is admissible in wG4◦
t :

Γ ⇒ ψ

¬ψ ⇒ ¬f(Γ )
(Ctp).

Proof. The proof is quite similar to the proof of Lemma 5. ��

Theorem 6 (Completeness). If tqBaT |= Γ ⇒ ψ, then wG4◦
t

Γ ⇒ ψ.

Proof. The soundness part is shown by induction on the height of a derivation.
The proof of the completeness part is similar to the proof of Theorem 4. ��

Let wG4 be the sequent calculus obtained from wG4t by dropping the modal
rules for � and �. Then wG4t is a conservative extension of wG4.

Theorem 7. For any ϕ,ψ ∈ T , wG4 ϕ ⇒ ψ if and only if wG4t
ϕ ⇒ ψ.

Proof. The proof proceeds by induction on the height of a derivation of ϕ ⇒ ψ.
Details are omitted here. ��

6 Concluding Remarks

We established a Gentzen sequent calculus wG5 for partition topological quasi-
Boolean algebras which admits cut elimination. This is one step in the proof
analysis of logics for algebraic structures related with rough sets. Here we con-
clude with some remarks.

First, if the language is restricted to the language for quasi-Boolean algebras
without modal operators and term structures are restricted to finite multisets of
terms, the axioms and connective rules of wG5 form a Gentzen sequent calculus
for quasi-Boolean algebras. All structural rules and cut rule are admissible in
this sequent calculus. And there is also a smooth decision procedure for the
derivability of a sequent.

Second, the decidability of wG5 can be proved by showing the finite model
property of wG5. This shall be presented in a further paper. Note that the
decidability of wG5 does not follow from the cut elimination theorem directly
because the system contains the contraction rule.

Third, one can extend the wG5 to sequent calculi for (weak) pre-rough
algebras and their non-distributive varieties. It is very likely that we can get
cut-free sequent calculi and prove the finite model property and decidability of
some logics for (weak) pre-rough algebras and their non-distributive varieties.
This provides a proof-theoretic approach to the study of equational theories of
these classes of algebraic structures.
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Abstract. Rule induction based on indiscernible classes from neigh-
borhood rough sets is described in information tables with continuous
values. An indiscernible range that a value has in an attribute is deter-
mined by a threshold on that attribute. The indiscernible class of every
object is derived from using the indiscernible range. First, lower and
upper approximations are described in complete information tables by
using indiscernible classes. Rules are obtained from the approximations.
A rule that an object supports, which is called a single rule, is short of
applicability. To improve the applicability of rules, a series of single rules
is put into one rule expressed in an interval value, which is called a com-
bined rule. Second, these are addressed in incomplete information tables.
Incomplete information is expressed in a set of values or an interval value.
Two types of indiscernible classes; namely, certainly and possibly indis-
cernible ones, are obtained from in an information table. The actual
indiscernibility class is between the certainly and possibly indiscernible
classes. The family of indiscernible classes of an object has a lattice struc-
ture. The minimal element is the certainly indiscernible class while the
maximal one is the possibly indiscernible class. By using certainly and
possibly indiscernible classes, we obtain four types of approximations:
certain lower, certain upper, possible lower, and possible upper approx-
imations. From these approximations we obtain four types of combined
rules: certain and consistent, certain and inconsistent, possible and con-
sistent, and possible and inconsistent ones. These combined rules have
greater applicability than single rules that individual objects support.
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1 Introduction

Rough sets, constructed by Pawlak [12], are used as an effective method for data
mining. The framework is usually applied to information tables with nominal
attributes and creates fruitful results in various fields. However, we are frequently
faced with attributes taking continuous values, when we describe properties of
an object in our daily life. Therefore, we describe rough sets in information tables
with continuous values.

Ways how to deal with attributes taking continuous values are broadly clas-
sified into two approaches. One is to discretize a continuous domain by dividing
it into a collection of disjunctive intervals. Objects included in an interval are
regarded as indistinguishable. From this indistinguishability the family of indis-
cernible classes is derived [1]. Results strongly depend on how discretization
is made. Especially, objects that are located in the proximity of the boundary
of intervals are strongly affected by discretization. This leads to that results
abruptly change by a little alteration of discretization. The other is a way using
neighborhood [7]. In this approach when the distance of an object to another
one on an attribute is less than or equal to a given threshold, two objects are
regarded as indistinguishable on the attribute. Results gradually change as the
threshold changes. So, we use the latter approach.

Rules are induced from lower and upper approximations. Concretely speak-
ing, when objects o and o′ are included in the approximations, let single rules
ai = 3.60 → aj = v and ai = 3.73 → aj = v be induced, where objects o and
o′ are characterized by values 3.60 and 3.73 of attribute ai and the set approxi-
mated is specified by value v of attribute aj . For example, value 3.66 of attribute
ai is not indiscernible with 3.60 and 3.73 under the threshold 0.05. Therefore,
we cannot say anything from these single rules for a rule supported by an object
with value 3.66 of attribute ai. This means that the single rules are short of
applicability. To improve such applicability, we consider a combined rule that is
derived from a series of single rules supported by individual objects.

In addition, we are frequently confronted with incomplete information in
daily life. We cannot sufficiently utilize information obtained from our daily life
unless we deal with incomplete information. We express incomplete information
in a partial value or an interval value. A missing value that means unknown in
an attribute is expressed in all elements over the domain of the attribute. For
example, the domain is given in the interval [1.23, 4.45], the missing value is
expressed in [1.23, 4.45].

Most of authors fix the indiscernibility of an object with incomplete informa-
tion with another object [3,16–18], as was done by Kryszkiewicz [4]. However,
object o characterized by a value with incomplete information has two possibili-
ties. One possibility is that the object o may have the same value as another one
o′; namely, the two objects may be indiscernible. The other possibility is that
o may have a different value from o′; namely, the two objects may be discernible.
To fix the indiscernibility is to take into account only one of the two possibili-
ties. Therefore, this treatment creates poor results and induces information loss
[9,15]. We do not fix the indiscernibility of objects with incomplete information
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and simultaneously deal with both possibilities. This can be realized by dealing
with objects having incomplete information from viewpoints of certainty and
possibility [10], as was done by Lipski in the field of incomplete databases [5,6].

We have an approach based on possible world from the viewpoints of certainty
and possibility. This way creates possible tables. Unfortunately, infinite possible
tables can be derived from an information table with continuous values. Another
way uses possible classes of an object, in which the object is possibly indiscernible
with anyone [8]. The number of possible classes grows exponentially, as the
number of values with incomplete information increases. However, this difficulty
can be avoided by using minimum and maximum possible classes in the case
of nominal attributes [10]. In this work, we apply this approach to information
tables with continuous values.

The paper is organized as follows. In Sect. 2, an approach using indiscernible
classes is addressed in complete information tables. In Sect. 3, we develop the
approach in incomplete information tables. This is described from two viewpoints
of certainty and possibility. In Sect. 4, conclusions are addressed.

2 Rough Sets by Using Indiscernible Classes in Complete
Information Systems with Continuous Values

A data set is represented as a two-dimensional table, called an information table.
In the information table, each row and each column represent an object and
an attribute, respectively. A mathematical model of an information table with
complete information is called a complete information system. The complete
information system is a triplet expressed by (U,AT, {D(ai) | ai ∈ AT}). U is a
non-empty finite set of objects, which is called the universe. AT is a non-empty
finite set of attributes such that ai : U → D(ai) for every ai ∈ AT where D(ai)
is the domain of attribute ai.

Indiscernible class [o]ai
for object o on ai is:

[o]ai
= {o′ | |ai(o) − ai(o′)| ≤ δai

}, (1)

where ai(o) is the value for attribute ai of object o and δai
is a threshold that

denotes a range in which ai(o) is indiscernible with ai(o′). The indiscernible
class is a tolerance class. Using the tolerance class, rough sets are generalized
[14]. And recently it is used in decision rule induction [13].

Family Fai
of indiscernible classes on ai is:

Fai
= {[o]ai

| o ∈ U}, (2)

where ∪i[o]ai
= U . Using indiscernible classes, lower approximation apr

ai
(O)

and upper approximation aprai
(O) of set O of objects for ai are:

apr
ai

(O) = {o | [o]ai
⊆ O}, (3)

aprai
(O) = {o | [o]ai

∩ O �= ∅}. (4)
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Proposition 1. If δ1 ≤ δ2, then aprδ1
ai

(O) ⊇ aprδ2
ai

(O) and aprδ1
ai

(O) ⊆
aprδ2

ai
(O), where aprδ1

ai
(O) and aprδ1

ai
(O) are lower and upper approximations

under threshold δ1 of attribute ai and aprδ2
ai

(O) and aprδ2
ai

(O) are lower and
upper approximations under threshold δ2 of attribute ai.

For object o in the lower approximation of O, all objects with which o is indis-
cernible are included in O; namely, [o]ai

⊆ O. On the other hand, for an object
o in the upper approximation of O, some objects with which o is indiscernible
are in O; namely, [o]ai

∩ O �= ∅. Thus, apr
ai

(O) ⊆ aprai
(O).

Rules are induced from lower and upper approximations. Let O be specified
by restriction aj = x. Object o ∈ apr

ai
(O) consistently supports a single rule

ai = ai(o) → aj = x. Object o ∈ aprai
(O) inconsistently supports a single rule

ai = ai(o) → aj = x. The degree of consistency, called accuracy, is |[o]ai
∩O|/|O|.

Since attribute ai has the continuous domain, the antecedent part of single
rules that individual objects support is usually different. We obtain lots of single
rules, but they have a drawback for applicability. For example, let two values
ai(o) and ai(o′) be 3.65 and 3.75 for objects o and o′ in apr

ai
(O). When O is

specified by restriction aj = x, o and o′ support single rules ai = 3.65 → aj = x
and ai = 3.75 → aj = x, respectively. By using these rules, we can say that a
object having value 3.68 of ai, indiscernible with 3.65 under δai

= 0.03, supports
ai = 3.68 → aj = x. However, we cannot at all say anything for a rule supported
by an object with value 3.70 discernible with 3.65 and 3.75. This shows that a
single rule is short of applicability.

To improve the applicability of rules, we combine a series of single rules
into one rule, which is called a combined rule. Let objects in U be aligned in
ascending order of ai(o) and be attached the serial superscript with 1 to NU

where |U | = NU . apr
ai

(O) and aprai
(O) consist of collections of objects with

serial superscripts. For example, apr
ai

(O) = {· · · , oh, oh+1, · · · , ok−1, ok, · · · }
(h ≤ k). Let ol in apr

ai
(O) support a single rule ai = ai(ol) → aj = x. Then,

single rules derived from collection (oh, oh+1, · · · , ok−1, ok) can be put into one
combined rule ai = [ai(oh), ai(ok)] → aj = x.

Next, when aj is an attribute with the continuous domain, O is specified by
a restriction with an interval value. The interval value has the lower and the
upper bounds that are existing values of attribute. Let the objects be aligned
in ascending order of values of aj and be attached the serial superscript with
1 to NU . For example, using the ordered objects, O is specified like O = {o |
aj(o) ≥ aj(om) ∧ aj(o) ≤ aj(on)} with m ≤ n; in other words, O is specified
by restriction aj = [ai(om), ai(on)]. In the case, the combined rule, derived from
collection (oh, oh+1, · · · , ok−1, ok), is expressed with ai = [ai(oh), ai(ok)] → aj =
[ai(om), ai(on)]. The accuracy of the combined rule is minh≤s≤k |[os]ai

∩ O|/|O|.



Rule Induction Based on Indiscernible Classes from Rough Sets 327

Proposition 2. Let r and r be sets of combined rules obtained from apr
ai

(O)
and aprai

(O), respectively. If (ai = [l, u] → W ) ∈ r, then ∃l′ ≤ l,∃u′ ≥ u (ai =
[l′, u′] → W ) ∈ r, where O is specified by restriction W .

Example 1. Information tables are depicted in Fig. 1. T0 is the original infor-
mation table. U is {o1, o2, · · · , o18, o19}. T1, T2, and T3 are derived from T0,
where some attributes are projected and objects are aligned in ascending order
of values of attributes a1, a2, and a3, respectively.

Fig. 1. T0 is the original information table. T1, T2, and T3 are derived from T0.

Let threshold δa1 be 0.05. Indiscernible classes of objects are:

[o1]a1 = {o1, o10, o14}, [o2]a1 = {o2, o11, o16, o17}, [o3]a1 = {o3}, [o4]a1 = {o4},

[o5]a1 = {o5}, [o6]a1 = {o6, o10, o15}, [o7]a1 = {o7}, [o8]a1 = {o8}, [o9]a1 = {o9},

[o10]a1 = {o1, o6, o10, o14, o15}, [o11]a1 = {o2, o11, o16}, [o12]a1 = {o12},

[o13]a1 = {o13, o19}, [o14]a1 = {o1, o10, o14}, [o15]a1 = {o6, o10, o15},

[o16]a1 = {o2, o11, o16}, [o17]a1 = {o2, o17}, [o18]a1 = {o18}, [o19]a1 = {o13, o19}.

When O is specified by restriction a4 = b, O = {o1, o2, o5, o9, o11, o14, o16, o19}.
Let O be approximated by objects on attribute a1 with continuous values.
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Using formulas (3) and (4), lower and upper approximations are:

apr
a1

(O) = {o5, o9, o11, o16},

apra1
(O) = {o1, o2, o5, o9, o10, o11, o13, o14, o16, o17, o19}.

Information table T1 is derived from information table T0, where objects are
aligned in ascending order of values of attribute a1 and are attached the serial
superscript from 1 to 19. The above approximations are described using the
serial superscript as follows:

apr
a1

(O) = {o7, o8, o14, o15},

apra1
(O) = {o5, o6, o7, o8, o11, o12, o13, o14, o15, o16, o17},

where

o5 = o17, o6 = o2, o7 = o16, o8 = o11, o11 = o10, o12 = o1,

o13 = o14, o14 = o9, o15 = o5, o16 = o19, o17 = o13.

From the lower approximation, consistent combined rules are

a1 = [2.95, 2.97] → a4 = b, a1 = [3.22, 3.42] → a4 = b,

from collections {o7, o8} and {o14, o15}, respectively, where a1(o7) = 2.95,
a1(o8) = 2.97, a1(o14) = 3.22, and a1(o15) = 3.42. From the upper approxi-
mation, inconsistent combined rules are

a1 = [2.89, 2.97] → a4 = b, a1 = [3.07, 3.91] → a4 = b,

from collections {o5, o6, o7, o8} and {o11, o12, o13, o14, o15, o16, o17}, respectively,
where a1(o5) = 2.89, a1(o11) = 3.07, and a1(o17) = 3.91.

Next, we consider the case where O is specified by a3 with the continu-
ous domain. Information table T3 is derived from T0, where the objects are
aligned in ascending order of values of a3 and are attached the serial superscript
from 1 to 19. Using lower bound a3(o5) = a3(o15) = 3.22 and upper bound
a3(o10) = a3(o8) = 3.49, O = {o5, o6, o7, o8, o9, o10} = {o2, o3, o8, o15, o16, o17}.
We approximate O by attribute a2. Information table T2 where the objects are
aligned in ascending order of values of a2 is derived from T0. Let δa2 be 0.05.
Indiscernible classes of objects are:

[o1]a2 = {o1, o4, o7, o8}, [o2]a2 = {o2, o3, o16}, [o3]a2 = {o2, o3, o13, o16},

[o4]a2 = {o1, o4, o7, o8}, [o5]a2 = {o5}, [o6]a2 = {o6}, [o7]a2 = {o1, o4, o7},

[o8]a2 = {o8}, [o9]a2 = {o9}, [o10]a2 = {o10}, [o11]a2 = {o11, o18}, [o12]a2 = {o12},

[o13]a2 = {o3, o13}, [o14]a2 = {o14}, [o15]a2 = {o15}, [o16]a2 = {o2, o3, o16},

[o17]a2 = {o17}, [o18]a2 = {o11, o18}, [o19]a2 = {o19}.

Using formulas (3) and (4), lower and upper approximations are:

apr
a2

(O) = {o2, o8, o15, o16, o17}, apra2
(O) = {o1, o2, o3, o4, o8, o13, o15, o16, o17}.
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Using information table T2 where objects are aligned in ascending order of values
of attribute a2 and are attached the serial superscript from 1 to 19, the above
approximations are described as follows:

apr
a2

(O) = {o6, o7, o9, o10, o11}, apra2
(O) = {o4, o5, o6, o7, o9, o10, o11, o12, o13},

From the lower approximation, consistent combined rules are

a2 = [3.11, 3.29] → a3 = [3.22, 3.49], a2 = [3.51, 3.65] → a3 = [3.22, 3.49],

where a2(o6) = 3.11, a2(o7) = 3.29, a2(o9) = 3.51, and a2(o11) = 3.65. From
the upper approximation, inconsistent combined rules are

a2 = [2.98, 3.29] → a3 = [3, 22, 3.49], a2 = [3.51, 3.71] → a3 = [3.22, 3.49],

where a2(o4) = 2.98 and a2(o13) = 3.71.
This example shows that a combined rule is more applicable than single

rules. For example, using the above consistent combined rule a2 = [3.11, 3.29] →
a3 = [3.22, 3.49], we can say that an object with 3.20 for a value of attribute a2

supports this rule, because 3.20 is included in interval [3.11, 3.29]. On the other
hand, using single rules a2 = 3.11 → a3 = [3.22, 3.49] and a2 = 3.29 → a3 =
[3.22, 3.49], we cannot say what rule the object supports under a threshold 0.05.

For formulas on sets A and B of attributes,

[o]A = ∩ai∈A[o]ai
, (5)

apr
A
(O) = {o | [o]A ⊆ O}, (6)

aprA(O) = {o | [o]A ∩ O �= ∅}. (7)

3 Rough Sets by Indiscernible Classes in Incomplete
Information Systems with Continuous Domains

An information table with incomplete information is called an incomplete infor-
mation system. In incomplete information systems, ai : U → sai

for every
ai ∈ AT where sai

is a set of values over domain D(ai) of attribute ai or an
interval on D(ai). Single value v with v ∈ ai(o) or v ⊆ ai(o) is a possible value
that may be the actual one as the value of attribute ai in object o. The possible
value is the actual one if ai(o) is a single value.

In an incomplete information system1, an indiscernible class is a possible
class that may be the actual indiscernible class. We have lots of indiscernible
classes. Family F [o]ai

of indiscernible class is:

F [o]ai
= {C[o]ai

∪ e | e ∈ P(P [o]ai
\C[o]ai

)}, (8)

1 For the sake of simplicity and space limitation, We describe the case of an attribute,
although our approach can be easily extended to the case of more than one attribute.
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where P(P [o]ai
\C[o]ai

) is the power set of P [o]ai
\C[o]ai

, and certainly indis-
cernible class C[o]ai

and possibly one P [o]ai
on attribute ai of object o are:

C[o]ai
= {o′ | o′ = o ∨ (∀u ∈ ai(o)∀v ∈ ai(o′)|u − v| ≤ δai

)}, (9)
P [o]ai

= {o′ | o′ = o ∨ (∃u ∈ ai(o)∃v ∈ ai(o′)|u − v| ≤ δai
)}. (10)

The family of indiscernible classes has a lattice structure. The minimal element is
the certainly indiscernible class and the maximal one is the possibly indiscernible
class. In other words, C[o]ai

is the minimum indiscernible class and P [o]ai
is the

maximum indiscernible class. Objects in the certainly indiscernible class of o are
certainly indistinguishable with o. Objects in the possibly indiscernible class of
o are possibly indistinguishable with o.

We can derive not the actual, but certain and possible approximations from
the viewpoint of certainty and possibility, as Lipski obtained in query processing
under incomplete information [5,6]. We cannot definitely obtain whether or not
an object belongs to the actual approximations, but we can know whether or
not the object certainly and/or possibly belongs to approximations. Therefore,
we show certain approximations (resp. possible approximations) whose object
certainly (resp. possibly) belongs to the actual approximations.

Let O be a set of objects. Using certainly and possibly indiscernible classes,
certain lower approximation Capr

ai
(O) and possible one Papr

ai
(O) for ai are:

Capr
ai

(O) = {o | P [o]ai
⊆ O}, (11)

Papr
ai

(O) = {o | C[o]ai
⊆ O}. (12)

Similarly, Certain upper approximation Caprai
(O) and possible one Paprai

(O)
are:

Caprai
(O) = {o | C[o]ai

∩ O �= ∅}, (13)
Paprai

(O) = {o | P [o]ai
∩ O �= ∅}. (14)

As with the case of nominal attributes [10], the following proposition holds.

Proposition 3. Capr
ai

(O) ⊆ Papr
ai

(O) ⊆ O ⊆ Caprai
(O) ⊆ Paprai

(O).

Using four approximations denoted by formulae (11)–(14), lower and upper
approximations are expressed in interval sets, as is described in [11]2, as fol-
lows:

apr•
ai

(O) = [Capr
ai

(O), Papr
ai

(O)], (15)

apr•
ai

(O) = [Caprai
(O), Paprai

(O)]. (16)

Certain and possible approximations are the lower and upper bounds of the
actual approximation. The two approximations apr•

ai
(O) and apr•

ai
(O) depend

2 Hu and Yao also say that approximations describes by using an interval set in infor-
mation tables with incomplete information [2].
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on each other; namely, the complementarity property apr•
ai

(O) = U −apr•
ai

(U −
O) linked with them holds, as is so in complete information systems.

When objects in O are specified by attribute aj with incomplete information,
O is specified by using an element in domain D(aj). In the case where O is
specified by restriction aj = x with x ∈ D(aj), four approximations: certain
lower, possible lower, certain upper, and possible upper ones, are:

Capr
ai

(O) = {o | P [o]ai
⊆ COaj=x}, (17)

Papr
ai

(O) = {o | C[o]ai
⊆ POaj=x}, (18)

Caprai
(O) = {o | C[o]ai

∩ COaj=x �= ∅}, (19)
Paprai

(O) = {o | P [o]ai
∩ POaj=x �= ∅}, (20)

where

COaj=x = {o ∈ O | aj(o) = x}, (21)
POaj=x = {o ∈ O | aj(o) ⊇ x}. (22)

For rule induction, we can say as follows:

– o ∈ Capr
ai

(O) certainlyandconsistently supports ruleai = ai(o) → aj(o) = x.
– o ∈ Caprai

(O) certainly and inconsistently supports rule ai = ai(o) →
aj(o) = x.

– o ∈ Papr
ai

(O) possibly and consistently supports ai = ai(o) → aj(o) = x.
– o ∈ Paprai

(O) possibly and inconsistently supports ai = ai(o) → aj(o) = x.

We create combined rules from them.
Let UC

ai
and U I

ai
be sets of objects having complete information and incom-

plete information for ai. o ∈ UC
ai

is aligned in ascending order of ai(o) and
is attached the serial superscript with 1 to NC

i
where |UC

ai
| = NC

i . Objects
o ∈ (Capr

ai
(O) ∩ UC

ai
), o ∈ (Caprai

(O) ∩ UC
ai

), o ∈ (Papr
ai

(O) ∩ UC
ai

),
and o ∈ (Paprai

(O) ∩ UC
ai

) are aligned in ascending order of ai(o). And
then they are expressed by a sequence of collections of objects with a serial
superscript like {· · · , oh, oh+1, · · · , ok−1, ok, · · · } (h ≤ k). From collection
(oh, oh+1, · · · , ok−1, ok), four types of combined rules expressed with ai = [l, u] →
aj = x are derived. For a certain and consistent combined rule,

l = min(ai(oh),min
Y

e) and u = max(ai(ok),max
Y

e),

Y =

⎧
⎨

⎩

e < ai(ok+1), for h = 1 ∧ k �= NC
i

ai(oh−1) < e < ai(ok+1), for h �= 1 ∧ k �= NC
i

ai(oh−1) < e, for h �= 1 ∧ k = NC
i

with e ∈ ai(o′) ∧ o′ ∈ X, (23)

where X is (Capr
ai

(O) ∩ U I
ai

).
For certain and inconsistent, possible and consistent, possible and incon-

sistent combined rules, X is (Caprai
(O) ∩ U I

ai
), (Papr

ai
(O) ∩ U I

ai
), and

(Paprai
(O) ∩ U I

ai
), respectively.
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Proposition 4. Let Cr and Pr be sets of combined rules obtained from
Capr

ai
(O) and Papr

ai
(O), respectively. When O is specified by restriction W ,

if (ai = [l, u] → W ) ∈ Cr, then ∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → W ) ∈ Pr.

Proposition 5. Let Cr and Pr be sets of combined rules obtained from
Caprai

(O) and Paprai
(O), respectively. When O is specified by restriction W ,

if (ai = [l, u] → W ) ∈ Cr, then ∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → W ) ∈ Pr.

Proposition 6. Let Cr and Cr be sets of combined rules obtained from
Capr

ai
(O) and Caprai

(O), respectively. When O is specified by restriction W ,
if (ai = [l, u] → W ) ∈ Cr, then ∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → W ) ∈ Cr.

Proposition 7. Let Pr and Pr be sets of combined rules obtained from
Papr

ai
(O) and Paprai

(O), respectively. When O is specified by restriction W ,
if (ai = [l, u] → W ) ∈ Pr, then ∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → W ) ∈ Pr.

Example 2. Let O be specified by restriction a4 = b in IT of Fig. 2.

Fig. 2. Information table IT with incomplete information

COa4=b = {o2, o5, o9, o11, o14, o16},

POa4=b = {o1, o2, o5, o9, o11, o14, o16, o17, o19}.
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Each C[oi]a1 for i = 1, . . . , 19 is, respectively,

C[o1]a1 = {o1, o10}, C[o2]a1 = {o2, o11, o16, o17}, C[o3]a1 = {o3},

C[o4]a1 = {o4}, C[o5]a1 = {o5}, C[o6]a1 = {o6, o10, o15}, C[o7]a1 = {o7},

C[o8]a1 = {o8}, C[o9]a1 = {o9}, C[o10]a1 = {o1, o6, o10, o14, o15},

C[o11]a1 = {o2, o11, o16}, C[o12]a1 = {o12}, C[o13]a1 = {o13, o19},

C[o14]a1 = {o10, o14}, C[o15]a1 = {o6, o10, o15}, C[o16]a1 = {o2, o11, o16},

C[o17]a1 = {o2, o17}, C[o18]a1 = {o18}, C[o19]a1 = {o13, o19}.

Each P [oi]a1 for i = 1, . . . , 19 is, respectively,

P [o1]a1 = {o1, o6, o10, o14, o15}, P [o2]a1 = {o2, o9, o11, o16, o17}, P [o3]a1 = {o3},

P [o4]a1 = {o4}, P [o5]a1 = {o5}, P [o6]a1 = {o1, o6, o10, o15}, P [o7]a1 = {o7},

P [o8]a1 = {o8}, P [o9]a1 = {o2, o9, o11, o16, o17}, P [o10]a1 = {o1, o6, o10, o14, o15},

P [o11]a1 = {o2, o9, o11, o16, o17}, P [o12]a1 = {o12}, P [o13]a1 = {o13, o19},

P [o14]a1 = {o1, o10, o14}, P [o15]a1 = {o1, o6, o10, o15},

P [o16]a1 = {o2, o9, o11, o16, o17}, P [o17]a1 = {o2, o9, o11, o16, o17},

P [o18]a1 = {o18}, P [o19]a1 = {o13, o19}.

Four approximations are:

Capr
a1

(O) = {o5},

Papr
a1

(O) = {o2, o5, o9, o11, o16, o17},

Capra1
(O) = {o2, o5, o9, o10, o11, o14, o16, o17},

Papra1
(O) = {o1, o2, o5, o6, o9, o10, o11, o13, o14, o15, o16, o17, o19}.

UC
a1 = {o2, o3, o4, o5, o6, o7, o8, o10, o12, o13, o14, o15, o16},

U I
a1 = {o1, o9, o11, o17, o18, o19}

Objects in UC
a1 are aligned in ascending order of values of attribute a1 as follows:

o3, o12, o7, o2, o16, o6, o15, o10, o14, o5, o13, o8, o4

A series of superscripts is attached to these objects:

o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12, o13,

where o1 = o3, o
2 = o12, . . . , o

13 = o4. Using objects with the superscript, the
four approximations are expressed as follows:

Capr
a1

(O) = {o10},

Papr
a1

(O) = {o4, o5, o10, o9, o11, o17},

Capra1
(O) = {o4, o5, o8, o9, o10, o9, o11, o17},

Papra1
(O) = {o4, o5, o6, o7, o8, o9, o10, o11, o1, o9, o11, o17, o19}.
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where objects with a superscript and with a subscript have complete and incom-
plete information for attribute a1, respectively; namely,

Capr
a1

(O) ∩ UC
a1

= {o10}, Capr
a1

(O) ∩ UI
a1

= ∅,
Papr

a1
(O) ∩ UC

a1
= {o4, o5, o10}, Papr

a1
(O) ∩ UI

a1
= {o9, o11, o17},

Capra1
(O) ∩ UC

a1
= {o4, o5, o8, o9, o10}, Capra1

(O) ∩ UI
a1

= {o9, o11, o17},
Papra1

(O) ∩ UC
a1

= {o4, o5, o6, o7, o8, o9, o10, o11}, Papra1
(O) ∩ UI

a1
= {o1, o9, o11, o17, o19}.

From these expressions, four types combined rules are derived. For certain and
consistent rules,

a1 = 3.42 → a4 = b.

For possible and consistent rules,

a1 = [2.89, 2.97] → a4 = b, a1 = [3.22, 3.42] → a4 = b.

For certain and inconsistent rules,

a1 = [2.89, 2.97] → a4 = b, a1 = [3.07, 3.42] → a4 = b.

For possible and inconsistent rules,

a1 = [2.89, 3.92] → a4 = b.

Last, we describe the case where o ∈ O is specified by numerical attribute
aj with incomplete information. o ∈ UC

aj
is aligned in ascending order of aj(o)

and is attached with the serial superscript with 1 to NC
j where |UC

aj
| = NC

j . We
specify O by aj(om) ∈ UC

aj
and aj(on) ∈ UC

aj
with m ≤ n.

Capr
ai

(O) = {o | P [o]ai
⊆ CO[aj(om),aj(on)]}, (24)

Papr
ai

(O) = {o | C[o]ai
⊆ PO[aj(om),aj(on)]}, (25)

Caprai
(O) = {o | C[o]ai

∩ CO[aj(om),aj(on)] �= ∅}, (26)
Paprai

(O) = {o | P [o]ai
∩ PO[aj(om),aj(on)] �= ∅}, (27)

where

CO[aj(om),aj(on)] = {o ∈ O | aj(o) ⊆ [aj(om), aj(on)]}, (28)
PO[aj(om),aj(on)] = {o ∈ O | aj(o) ∩ [aj(om), aj(on)] �= ∅}. (29)

o ∈ UC
aj

is aligned in ascending order of aj(o) and is attached the serial super-
script with 1 to NC

j . Now, O is specified by attribute values aj(om) and aj(on)
with om ∈ UC

aj
and on ∈ UC

aj
. o ∈ UC

ai
is aligned in ascending order of ai(o) is

attached the serial superscript with 1 to NC
i . Also, four types of combined rules

with ai = [l, u] → aj = [aj(om), aj(on)] are obtained: certain and consistent,
certain and inconsistent, possible and consistent, and possible and inconsistent
combined rules.

These types of combined rules are obtained in incomplete information table
IT in Fig. 2. For example, let O be specified by numerical attribute a3 with
incomplete information. When O is approximated on numerical attribute a2

with incomplete information, the four types of combined rules are derived.
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4 Conclusions

We have described rough sets and rule induction from them in information
tables with continuous domains. First, we have dealt with complete information
tables. Rough sets are obtained from indiscernible classes. Individual objects
that belongs to the rough sets support single rules. The single rules are short of
applicability. To improve the applicability of rules, we have put a series of single
rules derived from the rough sets into one combined rule. The combined rule is
expressed by using intervals.

Second, we have dealt with incomplete information tables. Incomplete infor-
mation is depicted in a disjunctive set of values or an interval of values. We have
dealt with it from viewpoints of certainty and possibility, as was introduced
by Lipski in the field of incomplete databases. Lots of indiscernible classes are
derived. The family of indiscernible classes is expressed by a lattice having the
minimal and maximal elements. The number of indiscernible classes increases
exponentially as the number of attribute values with incomplete information
grows. However, approximations are obtained by using the minimal and the
maximal indiscernible classes. Therefore, we have no difficulty of computational
complexity. By using the minimal and the maximal indiscernible classes, four
types approximations: certain lower, certain upper, possible lower, and possible
upper approximations are obtained, as is so in incomplete information tables
with nominal attributes. From these approximations, we have derived four types
of combined rules that are expressed by using interval values: certain and consis-
tent, certain and inconsistent, possible and consistent, and possible and incon-
sistent combined rules. The combined rules are more applicable than single ones.
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Abstract. Contextual probability (G) provides an alternative, efficient
way of estimating (primary) probability (P ) in a principled way. G is
defined in terms of P in a combinatorial way, and they have a simple
linear relationship. Consequently, if one is known, the other can be cal-
culated. It turns out G can be estimated based on a set of data samples
through a simple process called neighbourhood counting. Many results
about contextual probability are obtained based on the assumption that
the event space is the power set of the sample space. However, the real
world is usually not the case. For example, in a multidimensional sam-
ple space, the event space is typically the set of hyper tuples which is
much smaller than the power set. In this paper, we generalise contex-
tual probability to multidimensional sample space where the attributes
may be categorical or numerical. We present results about the normalisa-
tion constant, the relationship between G and P and the neighbourhood
counting process.

Keywords: Probability estimation · Contextual probability
Neighbourhood counting

1 Introduction

The frequentist view of probability interprets probability as the limit of fre-
quency. Therefore a principled method for probability estimation should be
grounded in the notion of frequency and the well known Bayes rule. However
a frequency based estimation method is often hindered by the data sparsity
dilemma, and a Bayes rule based method is often plagued by the combination
explosion problem.

When estimating probability from data samples of a multidimensional space
through the notion of frequency, we are usually faced with the problem of data
sparsity. In this case, it is not possible to estimate probability via frequency, as if
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we do so, the probability will be zero for many events. An alternative approach is
to break down the problem of estimating probability into simpler sub-problems
through the Bayes rule, but then we need to solve an exponential number of
sub-problems each corresponding to a simpler event. So this is not feasible if the
number of dimensions (attributes, variables) is large.

The contextual probability (G) concept [11] provides an alternative way of
estimating (primary) probability (P ) in a principled way: we define a secondary
probability in terms of the primary probability of interest, establish the relation-
ship between the two probabilities, and then estimate the primary probability
via the secondary one. If the secondary probability G can be estimated in a desir-
able way, the primary probability P can. It has been shown that the secondary
probability G can be estimated through neighbourhood counting (see e.g. [11])
for different types of data – multivariate, sequential and graphical. Furthermore,
the process of neighbourhood counting can be used for tasks beyond probability
estimation (see e.g. [6,9,13]).

When a sample space U is a structureless set, the relationship between G
and P is linear [11]. However, when U is a structured set (i.e., order structured
set, or multidimensional space), their relationship is unknown. In this paper we
generalise contextual probability to multidimensional sample spaces when the
attributes may be categorical or numerical.

2 Background

In this section we provide some background information on subjects relevant to
this paper, in order to make the paper self-contained.

2.1 Notation and Assumption

Let A = {a1, a2, · · · , an} be a set of attributes. The attributes can be either cate-
gorical or numerical, and all attributes are assumed to be finite. If ai is categori-
cal, its domain is a finite, un-ordered set {x1, x2, · · · , xmi

} and we let dom(ai)
def=

{x1, x2, · · · , xmi
}. If ai is numerical, its domain is an ordered set {x1, x2, · · · , xmi

}
and we let dom(ai)

def= {1, · · · ,mi}. These assumptions about attributes are
adopted throughout the rest of the paper. A multivariate sample space defined
by A is U

def=
∏n

i=1 dom(ai). A data set is D ⊆ U – a set of samples of U .

2.2 Probability

The starting point for probability theory is a set U called the sample space
whose points are in 1-1 correspondence with the possible outcomes of a random
experiment [1]. Any specific subset of these outcomes, which corresponds to a
question that can be answered “yes” or “no”, is called an event. The development
of the mathematical theory will be facilitated if we require that the set of events
forms a σ-algebra. Thus we may form unions, intersections, and complements of
events and be assured that the resulting sets are also events.
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Furthermore the basic physical requirement is that the probability P (E)
assigned to an event E corresponds to the relative frequency of E in a very large
number of independent repetitions of the random experiment. It follows that P
should be a nonnegative, additive set function, with P (U) = 1.

The above discussion may be summarized as follows. Let U be a set, and F
be a σ-algebra over U . A probability function is a mapping P : F → [0, 1] such
that the following axioms of probability are satisfied:

– P (E) ≥ 0 for any E ∈ F ;
– P (U) = 1;
– For any E1, E2 ∈ F , if E1 ∩ E2 = ∅ then P (E1 ∪ E2) = P (E1) + P (E2).

U is the sample space, and F is the event space associated with U .
In general any function satisfying the above axioms of probability, however

defined, is a probability function [4]. Thus the basic mathematical object of
study is a probability space <U,F , P>.

Now we take a closer look at σ-algebra. Let U be a set, and let 2U be its
power set. Then a subset F ⊆ U is called a σ-algebra if it satisfies the following
properties[3]:

– U ∈ F .
– F is closed under complementation: if A ∈ F , then so is its complement,

U \ A.
– F is closed under countable unions: if A1, A2, A3, . . . are in F , then so is

A = A1 ∪ A2 ∪ A3 ∪ . . .

From these properties, it follows that the σ-algebra is also closed under countable
intersections (by applying De Morgan’s laws). As an example, F can be the power
set of U , i.e., F = 2U .

2.3 The Contextual Probability

Consider a (mathematical) probability space <U,F , P>, where U is a sample
space, F is a σ-algebra over U and P is a probability function over F . For X ∈ F
let f(X) be a measure of X. As an example, f(X) can be the counting measure,
i.e., f(X) being the number of elements in X.

Definition 1 ([11]). The contextual probability is a mapping from F to [0, 1]
such that, for X ∈ F ,

G(X) =
∑

E∈F
P (E)f(X ∩ E)/K (1)

where K =
∑

E∈F P (E)f(E) and is a constant for a given sample space.

It has been shown that G is a probability function [11]. Since G is defined in
terms of P , it is secondary. In contrast P is primary since the starting point is
the probability space <U,F , P>.
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This secondary probability is related to works in [5,7,8], but any discussion
of these related works is beyond the scope of this paper.

G(X) is defined from all those E ∈ F that overlap with X (i.e., X ∩ E 	= ∅).
These E’s are relevant to X and serve as the contexts in which G(X) is defined.
Thus G(X) is called the contextual probability of X.

Each such E is called a neighborhood1 of X. In other words a neighborhood
of X is an element E of F such that E overlaps X. For simplicity, if E is a
singleton set, e.g., E = {a}, we write G(a) for G({a}).

2.4 Relationship Between G and P

Let U,F , P,G be understood. P is a probability distribution over U , and G is
another probability distribution over U which is defined in terms of P . If P is
known, G can be calculated by definition. Conversely, if G is known, how can
P be calculated? If we can establish the relationship between P and G, we can
answer this question.

The following lemma provides a formula to calculate the normalizing factor
K =

∑
X∈F f(X)P (X) in the definition of G.

Lemma 1 ([11]). Assume that U is finite with N = |U |, F = 2U is the event
space associated with U , and f() is a counting measure. Then K = (N +1)2N−2.

The relationship between G and P for elements in U is shown in Theorem 1
below.

Theorem 1 ([11]). Assume that U is finite with N = |U |, F = 2U is the
event space associated with U , and f() is a counting measure. Then, for x ∈ U ,
G(x) = αP (x) + α, where α = 1

N+1 .

Since both P and G are probability functions they satisfy the additive axiom.
In other words for E ∈ F , P (E) =

∑
x∈E P (x) and G(E) =

∑
x∈E G(x). Fol-

lowing Theorem 1 we then have:

Corollary 1 ([11]). For any E ∈ F , G(E) = αP (E) + α|E|.
Theorem 1 and Corollary 1 establish the linear relationship between G and

P . If we know P we can calculate G, and vice versa.

2.5 Estimation of Contextual Probability

Here we discuss how to estimate G from data. Let D ⊆ U be a given data set.
According to Definition 1, G can be calculated from P . Assuming the principle
of indifference2, P can be estimated as follows. For any E ∈ F ,

P̂ (E) = |ED|/n (2)

where ED = {x ∈ D : x ≤ E} is the set of elements in D that are covered by E
and n = |D|.
1 The concept of neighbourhood is used in different contexts with possibly different

definitions. The use of this concept in this paper is defined as such.
2 This is common in statistics. See, e.g., [3].
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Theorem 2 ([11]). Let U be a finite sample space, F = 2U be the event space
associated with U , f() be a counting measure, and D ⊆ U be a given data sample
with n = |D|. Assuming the principle of indifference we have, for any t ∈ U ,

Ĝ(t) =
1

nK

∑

x∈D

c(t, x)

where c(t, x) is the number of E ∈ F that covers both t and x.

It is shown [10] that c(t, x) is a similarity measure for points t and x, called
neighbourhood counting measure (metric), since every E ∈ F is a neighbourhood
of some point. It is the count of all common neighbourhoods for t and x. In fact
it is further a similarity metric as it satisfies the similarity axioms [2].

3 Generalisation of Contextual Probability in
Multidimensional Sample Space

In this section we seek to generalise contextual probability in a more gen-
eral setting where the sample space is defined by a set of n attributes, A =
{a1, a2, · · · , an}. We assume that the domain of each attribute is a finite set,
and we consider two cases: (1) attributes are categorical; and (2) attributes are
numerical.

3.1 When All Attributes Are Categorical

Let A be a set of categorical attributes, A = {a1, a2, · · · , an}. The sample space
defined by A is denoted by U and is more formally defined as follows,

U =
n∏

i=1

dom(ai) =
{
<v1, v2, . . . , vn> : vi ∈ dom(ai)

}
.

where <v1, v2, . . . , vn> is a simple tuple. Thus, every data point is a simple
tuple, and vice versa.

As explained earlier, an event is a set of experiment outcomes that cor-
responds to a question with “yes” or “no” answer. Since the sample space is
defined by a set of attributes, a sensible question may be composed in terms of
the attributes as follows: a sub-question is composed for every attribute, leading
to a sub-event, and all sub-questions are joined up by the classical logical oper-
ators (i.e. conjunction, disjunction and complement) to form an event question.
Note that an event is usually a subset of the sample space. In the same spirit,
a sub-event can be sensibly a subset of the domain of one attribute. Therefore
we sensibly define the event space as a set of arrays of subsets of every attribute
domain. More formally,

F =
n∏

i=1

2dom(ai) =
{
<s1, s2, . . . , sn> : si ⊆ dom(ai)

}
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where <s1, s2, . . . , sn> is a hyper tuple [12]. It is clear that this event space is
not the same as the power set of U . In fact it is a subset of the power set of U .
It can be shown that this F is a Borel σ-algebra3. Therefore it qualifies to be an
event space.

Table 1. Sample space defined by three categorical attributes

ID a1 a2 a3

1 a α 0

2 a α 1

3 a β 0

4 a β 1

5 a γ 0

6 a γ 1

7 b α 0

8 b α 1

9 b β 0

10 b β 1

11 b γ 0

12 b γ 1

13 c α 0

14 c α 1

15 c β 0

16 c β 1

17 c γ 0

18 c γ 1

Example 1 (Data and event space generated by a set of attributes). Consider
three categorical attributes A = {a1, a2, a3} where

dom(a1) = {a, b, c}
dom(a2) = {α, β, γ}
dom(a3) = {0, 1}

The (complete) sample space defined by these attributes is shown in Table 1.
The event space defined by these attributes is the following,

F =
{

< s1, s2, s3 >: s1 ⊆ dom(a1), s2 ⊆ dom(a2), s3 ⊆ dom(a3)
}
.

3 https://en.wikipedia.org/wiki/Borel set.

https://en.wikipedia.org/wiki/Borel_set
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Table 2. A sample of the event space defined by three categorical attributes

a1 a2 a3

{} {} {}
{a} {α} {0}
{a} {α, β} {0, 1}
{a, b, c} {α, β, γ} {0, 1}

There is a total of 23 ×23 ×22 = 256 events. On the other hands, there is a total
of 218 = 262144 subsets of data points. A sample of the event space is shown in
Table 2.

The following lemma provides a formula to calculate the normalizing factor
K in the definition of G, i.e., K =

∑
X∈F f(X)P (X).

Lemma 2. Let U be a sample space defined by n categorical attributes ai, i =
1, 2, . . . , n. Let Mi = |dom(ai)|. Let K =

∑
X∈F f(X)P (X). Then

K =
(
(M1 + 1) × · · · × (Mn + 1)

) × (
2M1−2 × · · · × (2Mn−2)

)

Proof.

K =
∑

X∈F
f(X)P (X) =

∑

X∈F
X=<s1,...,sn>

s1⊆dom(a1),...,sn⊆dom(an)
m1=|s1|,...,mn=|sn|

m=m1×...×mn

mP (X)

=
∑

s1⊆dom(a1)
m1=|s1|

· · ·
∑

sn⊆dom(an)
mn=|sn|

(m1 × . . . × mn)P (X)

=
∑

s1⊆dom(a1)
m1=|s1|

· · ·
∑

sn⊆dom(an)
mn=|sn|

(m1 × . . . × mn)
∑

x∈X

P (x)

=
∑

x∈U

∑

s1⊆dom(a1)
m1=|s1|
x1∈s1

· · ·
∑

sn⊆dom(an)
mn=|sn|
xn∈sn

(m1 × . . . × mn)P (x)

=
M1−1∑

m1=0

· · ·
Mn−1∑

mn=0

(
(m1 + 1)

(
M1−1
m1

) × . . . × (mn + 1)
(
Mn−1
mn

))

=
(M1−1∑

m1=0

(m1 + 1)
(
M1−1
m1

)) × · · · ×
(Mn−1∑

mn=0

(mn + 1)
(
Mn−1
mn

))

=
(
(M1 + 1)2M1−2

)
× · · · ×

(
(Mn + 1)2Mn−2

)

=
(
(M1 + 1) × · · · × (Mn + 1)

) × (
2M1−2 × · · · × (2Mn−2)

)
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The relationship between G and P for elements in U is shown in Theorem 3.

Theorem 3. Let U be a sample space defined by n categorical attributes ai,
i = 1, 2, . . . , n. Let Mi = |dom(ai)|. Then, for x ∈ U ,

G(x) = αP (x) + α,

where α = 1
(M1+1)×···×(Mn+1) .

Proof.

G(x) =
∑

Y ∈F

f(x ∩ Y )P (Y )

K
=

∑

Y ∈F,x∈Y

P (Y )

K

=
1

K

∑

Y ∈F,x∈Y

P (Y ) =
1

K

∑

Y ∈F,x∈Y

∑

z∈Y

P (z)

=
1

K

∑

Y ∈F,x∈Y

( ∑

z∈Y,z �=x

P (z) + P (x)
)

=
1

K

( ∑

Y ∈F,x∈Y

∑

z∈Y,z �=x

P (z) +
∑

Y ∈F,x∈Y

P (x)
)

=
1

K

( ∑

z∈U,z �=x

∑

Y ∈F,x∈Y,z∈Y

P (z) +
∑

Y ∈F,x∈Y

P (x)
)

=
1

K

((
2M1−2 × · · · × 2Mn−2)(1 − P (x)

)
+

(
2M1−1 × · · · × 2Mn−1)P (x)

)

=
1

K

((
2M1−2 × · · · × 2Mn−2) +

(
2M1−2 × · · · × 2Mn−2)P (x)

)

=

(
2M1−2 × · · · × 2Mn−2

)

K

(
1 + P (x)

)
=

1

(M1 + 1) × · · · × (Mn + 1)
(1 + P (x))

= α(1 + P (x)), where α =
1

(M1 + 1) × · · · × (Mn + 1)

The claim then follows.

3.2 When Attributes Are Ordinal

Let A = {a1, a2, · · · , an} be a set of ordinal attributes. For simplicity of presen-
tation we assume that all attributes have finite domains which can be written
as dom(ai) = {1, 2, 3, . . . ,m} where m = |dom(ai)| for attribute ai. The sample
space defined by A is then the following,

U =
n∏

i=1

dom(ai) =
{
<v1, v2, . . . , vn> : vi ∈ dom(ai)

}
.

Since there is ordinal relationship between values, the event space is a bit
complicated. For one ordinal attribute, we can take the set of all subsets of its
domain as the event space, but such a set will lose the ordinal information in the
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ordinal attribute. We can instead take the set of all intervals of the domain as
the event space, but such a set is not a sigma algebra because the complement of
one interval is not a single interval. Therefore we need a new definition of event
space.

We consider transforming ordinal attributes without losing the ordinal infor-
mation. There may be different ways of transformation. Here we discuss one way
of transformation where every ordinal attribute is replaced by a set of binary
attributes.

Consider ordinal attribute ai where dom(ai) = {1, 2, . . . ,mi}. We construct
one binary attribute, ai,j , for every ordinal value j ∈ dom(ai) and then convert
every data instance <v1, v2, . . . , vi−1, vi, vi+1, . . . , vn> into the following:

<v1, v2, . . . , vi−1, vi,1, vi,2, . . . , vi,mi
, vi+1, . . . , vn>

where

vi,j =

{
1, if vi ≤ j,

0, otherwise.
(3)

which corresponds to a new binary attribute, ai,j . Repeating this pro-
cedure for all attributes, we will obtain a new binary vector for the
original data instance. We thus transform the original sample space U
into a binary sample space Ub, which is defined by binary attributes
a1,1, . . . , a1,m1 , a2,1, . . . , a2,m2 , . . . , an,1, . . . , an,mn

with domain of {0, 1} for all.
We rename these attributes as ab

1, a
b
2, . . . , a

b
nb

, and we thus have a new binary
sample space:

Ub =
nb∏

i=1

dom(ab
i ) =

nb∏

i=1

{0, 1} =
{
<v1, v2, . . . , vnb

> : vi ∈ {0, 1}}.

where nb =
∑n

i=1 |dom(ai)|.
Example 2. Table 3 shows a toy data table consisting of 5 data instances from
a sample space defined by 3 ordinal attributes. Transforming the attributes in
the way as described above, we convert these 5 data instances into binary ones,
which are shown in Table 4.

Now that we transform a sample space into a binary one, we can define an
event space as follows.

Fb =
nb∏

i=1

2{0,1} =
{
<s1, s2, . . . , snb

> : si ⊆ {0, 1}}

This event space is the set of all hyper tuples [12] definable by the set of binary
attributes. It is clearly a sigma algebra since the complement of every hyper
tuple is another hyper tuple and the union/intersection of any two hyper tuples
is another hyper tuple. Probability can thus be rigorously defined on Fb.

On the basis of the above discussions we then have the following corollary
from Lemma 2 and Theorem 3.
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Table 3. A toy data table with 3 ordinal attributes. The first two attributes have 3
values each in their domain, and the third attribute has 4 values.

ID a1 a2 a3

1 1 2 3

2 3 1 2

3 2 3 1

4 3 2 4

5 1 3 2

Table 4. A data table with 10 binary attributes, which is transformed from Table 3.

ID a1,1 a1,2 a1,3 a2,1 a2,2 a2,3 a3,1 a3,2 a3,3 a3,4

1 1 1 1 0 1 1 0 0 1 1

2 0 0 1 1 1 1 0 1 1 1

3 0 1 1 0 0 1 1 1 1 1

4 0 0 1 0 1 1 0 0 0 1

5 1 1 1 0 0 1 0 1 1 1

Corollary 2 (All ordinal attributes via binary transformation). If the
sample space Ub is defined by nb binary attributes, then the normalisation con-
stant is K = 3nb and G(x) = aP (x) + a for x ∈ Ub where a = 1/3nb .

Transforming a single ordinal attribute into a set of binary attributes is the
means of working out the relationship between G and P . Now that we have an
insight about the transformation, we can work out their relationship without
going through the transformation:

Corollary 3 (All ordinal attributes). If the sample space U is defined by n
ordinal attributes with finite domains {1, 2, · · · ,mi} for i = 1, 2, · · · , n, then the
normalisation constant is K = 3m1+m2+···+mn and G(x) = aP (x)+a for x ∈ Ub

where a = 1/3m1+m2+···+mn .

Corollary 4 (Mixed attributes). If the sample space U is defined by a
mixture of nominal and ordinal attributes with finite domains. Assume that
a1, a2, · · · , ah are nominal attributes and ah+1, ah+2, · · · an are ordinal attributes.
The sizes of their domains are mi for i = 1, 2, · · · , n. Then the normalisation
constant is

K = Knom × Kord

where

Knom =
(
(M1 + 1) × · · · × (Mh + 1)

) × (
2M1−2 × · · · × (2Mh−2)

)
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and
Kord = 3mh+1+mh+2+···+mn

and G(x) = aP (x) + a for x ∈ Ub where a = 1/
(
bnom × bord

)
where

bnom =
(
(m1 + 1) × (m2 + 1) × · · · × (mh + 1)

)

and
bord = 3mh+1+mh+2+···+mn

4 Estimating Contextual Probability in Multidimensional
Sample Space Through Neighbourhood Counting

Following the same line of reasoning as in Theorem2, we can prove

Theorem 4 (Estimating contextual probability in multidimensional
space). Let U be a multidimensional sample space as discussed above, and
D ⊆ U be a set of samples. Then, for any t ∈ U ,

Ĝ(t) =
1

nK

∑

x∈D

c(t, x)

where c(t, x) is the number of events (or neighbourhoods) E ∈ F that covers
both t and x. Therefore, contextual probability G(t) can be estimated through
neighbourhood counting.

Next, we follow the same line of reasoning as in [10, Sect. 4.2] to discuss how to
count neighbourhoods through a formula. Note U is a multidimensional sample
space defined by n attributes a1, a2, . . . , an and mi = |dom(ai)|. The attributes
may be categorical or ordinal. The ordinal attributes are transformed into binary
attributes as discussed above. Consider t, x ∈ U where t =< t1, t2, . . . , tn > and
x =< x1, x2, . . . , xn >, we can count their common neighbourhoods as follows:

c(t, x) =
n∏

i

ca(ti, xi) (4)

where

ca(ti, xi) =

⎧
⎪⎨

⎪⎩

2mi−1, if ai is categorical and xi = ti

2mi−2, if ai is categorical and xi 	= ti

c′
a(ti, xi), if ai is ordinal

When ai is ordinal, ti is transformed into a vector of binary values
<ti1, ti2, . . . , timi

>, and xi is similarly transformed. We then have

c′
a(ti, xi) =

mi∏

j

c′′
a(tij , xij) (5)
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where

c′′
a(tij , xij) =

{
2, ifxij = tij

1, ifxij 	= tij

Because of the way an ordinal attribute ai is transformed, we have

c′
a(ti, xi) = 2mi−|xi−ti| (6)

Therefore, in summary, we have

Theorem 5 (Neighbourhood counting). Let U be a multidimensional sam-
ple space defined by n attributes a1, a2, . . . , an and let mi = |dom(ai)|. The
attributes may be categorical or ordinal. The ordinal attributes are transformed
into binary attributes as discussed above, resulting in a new sample space U ′.
For t, x ∈ U where t = <t1, t2, . . . , tn> and x = <x1, x2, . . . , xn>, we can count
their common neighbourhoods as follows:

c(t, x) =
n∏

i

c(ti, xi), (7)

where

c(ti, xi) =

⎧
⎪⎨

⎪⎩

2mi−1, if ai is categorical and xi = ti

2mi−2, if ai is categorical and xi 	= ti

2mi−|xi−ti|, if ai is ordinal

5 Conclusion

In this paper we present a generalisation of contextual probability to multidimen-
sional sample space where the attributes are categorical or numerical. We show
that under such more realistic conditions, the existing results about contextual
probability holds well in a conceptually concise way. One technical challenge is
how to handle multidimensional sample space, which is the Cartesian product of
multiple sample spaces. The other technical challenge is how to deal with numer-
ical attributes. Both challenges are satisfactorily addressed. In future work, we
will apply the generalised contextual probability to real world problems, in par-
ticular, financial applications where probability estimation is a key process.
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Abstract. The paper presents research on greedy heuristics used
to obtain characteristics of features. The parameters of decision rules
induced by heuristics were treated as a source of knowledge about vari-
ables. The observations on attributes were exploited for generation of
new rules, and for post-processing pruning rule sets, inferred in Classical
Rough Set Approach. The proposed framework was applied in stylomet-
ric domain.
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1 Introduction

Information about roles played by characteristic features in recognition of
described concepts is contained not only in the input data, either raw or pre-
processed [3]. Knowledge discovered in a data mining process is present in forms
constructed by learning algorithms, for example in structures of decision graphs,
topologies of artificial neural networks, and in induced rules. These additional
representations of knowledge can be used in search of new or optimised solutions.

Association and decision rules are often preferred for description and pre-
sentation of information, as due to their transparent structure they enhance
understanding of patterns hidden in data. Rule sets can be obtained by many
induction algorithms, with the objectives of finding a minimal cover or all rules
on examples, providing good generalisation, ensuring high supports, satisfactory
classification accuracy, or meeting some other criteria or requirements [13,14].
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Exhaustive algorithms return all rules that can be inferred from input data,
which can take time and cause prohibitively high cardinalities of rule sets, yet
it gives the widest choice of elements, to be tailored to specific needs in post-
processing. Heuristics focused on rule parameters are capable of relatively quickly
returning manageable sets of rules, sufficient for the intended purpose. The work
of these heuristics on data can be treated as preliminary gathering of information,
which is next stored in the inferred rules, ready to be exploited for other ends.

In the research presented in the paper, selected greedy heuristics [1] were
employed for induction of decision rules, which were applied as decision algorithms
to validation and test sets. The classification results were compared against that
of the exhaustive algorithms found for the same learning data in Classical Rough
Set Approach [9]. Knowledge represented by rules inferred by greedy heuristics
was next used to obtain characterisation of features by the proposed coefficients,
which led to construction of attribute rankings based on rule parameters.

Rankings belong with feature selection, a domain dedicated to estimation of
importance of variables. Discovering which attributes are essential, redundant, or
irrelevant, allows for improvement of predictive models [3]. Techniques of feature
selection are typically divided into [5]: filter, wrapper, and embedded methods
[10]. Ranking mechanisms can be based on machine learning techniques, statis-
tical measures, information theory, and other approaches [4,12]. They impose an
order on variables, assigning to each a specific score. When a scoring function
is independent on an inducer used for classification, the ranking performs as a
filter, otherwise a wrapper or hybrid solution is obtained.

Knowledge about attributes discovered by greedy heuristics was exploited in
two ways: to generate new decision rules, and to prune whole rules from the
previously induced exhaustive algorithms. These two processes were governed
by the constructed rankings and observations of attributes present as conditions
in decision rules inferred by heuristics. Results from the conducted experiments
show that with the presented research framework it was possible to discard both
some variables and rules without degrading the power of the rule classifier.

Experiments were performed on data sets devoted to two cases of binary
authorship attribution [6], with balanced classes and stylometric features. Esti-
mation of performance for rule classifiers was obtained by validation and test
sets, and sets discretised with supervised approach described by Kononenko [7].

The paper consists of five sections. Section 2 presents descriptions of greedy
heuristics employed in research, and characterisation of attributes by induced
rules through defined coefficients. In Sect. 3, the main notions of stylometric
processing of texts are explained. Section 4 contains results of experiments and
comments to them, while Sect. 5 includes conclusions.

2 Greedy Heuristics

In [1], greedy heuristics were compared from the point of view of optimisation of
association rules, relative to length and support. In this paper, an application of
four best heuristics (from the point of view of support) in induction of decision
rules and feature characterisation is described.
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2.1 Main Notions

A decision table is defined as T = (U,A ∪ {d}) [9], where U = {r1, . . . , rk} is a
nonempty, finite set of objects (rows), A = {f1, . . . , fn} is a nonempty, finite set
of attributes, i.e., f : U → Vf for any f ∈ A, where Vf is the set of values of an
attribute f , called the domain of f . Elements of A are called condition attributes.
d /∈ A is a distinguishing attribute, called a decision attribute, and a is a value
of a decision attribute (called also a decision), a ∈ Vd, where Vd is the domain
of d. It is assumed that the decision table is consistent, it does not contain any
rows with equal values of condition attributes and different decisions.

The number of rows in the table T is denoted by N(T ). For a value a of
a decision attribute, N(T, a) is the number of rows r of T with a decision a, and
M(T, a) = N(T ) − N(T, a). mcd(T ) denotes the most common decision for T ,
which is the minimum index of a decision a such that N(T, a) has maximum
value. The set of not constant condition attributes on T is denoted by E(T ).

A table obtained from T by removal of some rows is called a subtable of T .
T (fi1 , a1), . . . , (fim , am) denotes a subtable of T that consists of rows which at
the intersection with columns fi1 , . . . , fim have values a1, . . . , am.

The expression

(fi1 = a1) ∧ . . . ∧ (fim = am) → d = a (1)

is called a decision rule over T if fi1 , . . . , fim ∈ {f1, . . . , fn}, a1, . . . , am are
values of corresponding attributes, and a is a decision. The rule corresponds to
the subtable T ′ = T (fi1 , a1), . . . , (fim , am) of T . The rule (1) is called realizable
for a row r if r belongs to T ′. This rule is called true for T , if each row of T ′ for
which the rule (1) is realizable, has the decision a attached to it. The considered
rule is a rule for T and r, if this rule is true for T and realizable for r.

The support of the rule (1) is the number of rows in T ′ for which the rule is
realizable and which are labeled with the decision a. If the considered rule is a
rule for T and r then its support is equal to N(T ′).

2.2 Description of Heuristics

Algorithm 1 presents a pseudo-code for the greedy heuristic H, for construction of
a decision rule for a row r from T with the assigned decision a. At each iteration,
an attribute fi ∈ {f1, . . . , fn} with the minimum index fulfilling heuristic H, is
selected. The heuristic H stops when all rows in T ′ have the same decision. The
algorithm is applied sequentially to each row r of T . As a result, for each row of
a decision table T , one decision rule for T and r, is obtained.

To describe the work of the heuristic H we denote: T (j+1) = T (j)(fi, bi),
where j is an index of the subsequent subtable during the execution of H. For

M(T (j+1), a) = N(T (j+1)) − N(T (j+1), a),
RM(fi, r, a) = (N(T (j+1)) − N(T (j+1), a))/N(T (j+1)),
α(fi, r, a) = N(T (j), a) − N(T (j+1), a) and β(fi, r, a) = M(T (j), a) −
M(T (j+1), a),
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each heuristics H selects the attribute fi ∈ E(T (j)) in the following manner:

– Poly selects an attribute fi which maximizes the value β(fi,r,a)
α(fi,r,a)+1 ,

– Log selects an attribute fi which maximizes the value β(fi,r,a)
log2(α(fi,r,a)+2) ,

– MaxS selects an attribute fi which minimizes the value α(fi, r, a) given that
β(fi, r, a) > 0,

– RM selects an attribute fi which minimizes the value RM(fi, r, a).

Algorithm 1. Greedy heuristic H for construction of a decision rule for T and r

Require: Decision table T with condition attributes f1, . . . , fn, row r = (b1, . . . , bn)
with the assigned decision a

Ensure: Decision rule for T , r and a
begin
Q ← ∅;
j ← 0;
T (j) ← T ;
while all rows in T (j) are not assigned with the same decision a do

select fi ∈ {f1, . . . , fn} with the minimum index fulfilling the heuristic H;
T (j+1) ← T (j)(fi, bi);
Q ← Q ∪ {fi};
j = j + 1;

end while∧
fi∈Q(fi = bi) → d = a, where a is a decision attached to r.

end

The following example demonstrates calculations executed by all heuristics.

Example 1. The example shows how heuristic H constructs a decision rule for
the decision table T0, row r1 with the assigned decision A. The decision table T0

has three condition attributes, so there are considered three subtables:
T

(1)
1 = T

(0)
0 (f1, 0), T

(1)
2 = T

(0)
0 (f2, 0) and T

(1)
3 = T

(0)
0 (f3, 1).

T0 =

f1 f2 f3 d

r1 0 0 1 A

r2 2 1 1 B

r3 2 0 1 A

r4 2 1 0 B

T
(1)
1 =

f1 f2 f3 d

r1 0 0 1 A
T

(1)
2 =

f1 f2 f3 d

r1 0 0 1 A

r3 2 0 1 A

T
(1)
3 =

f1 f2 f3 d

r1 0 0 1 A

r2 2 1 1 B

r3 2 0 1 A

Heuristic MaxS:

α(f1, r1, A) = 1, β(f1, r1, A) = 2, α(f2, r1, A) = 0, β(f2, r1, A) = 2,
α(f3, r1, A) = 0, β(f3, r1, A) = 1,

so the rule f2 = 0 → d = A is obtained.
Heuristic Poly:

β(f1,r1,A)
α(f1,r1,A)+1 = 2

2 , β(f2,r1,A)
α(f2,r1,A)+1 = 2

1 , β(f3,r1,A)
α(f3,r1,A)+1 = 1

1 ,

so the rule f2 = 0 → d = A is obtained.
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Heuristic Log:
β(f1,r1,A)

log2(α(f1,r1,A)+2) = 2
log2 3 , β(f2,r1,A)

log2(α(f2,r1,A)+2) = 2
log2 2 , β(f3,r1,A)

log2(α(f3,r1,A)+2) = 1
log2 2 ,

so the rule f2 = 0 → d = A is obtained.
Heuristic RM :

RM(f1, r1, A) = 0, RM(f2, r1, A) = 0, RM(f3, r1, A) = 1
3 ,

so the rule f1 = 0 → d = A is obtained.

2.3 Feature Characterisation and Selection

A rule can be characterised by its parameters, such as length corresponding
to the number of conditions on attributes, or support indicating for how many
training samples the rule is true. When many learning samples support a rule, it
means that the rule captures a pattern present in many examples. Greater rule
length marks closer, more detailed description of patterns, which runs the risk
of overfitting, while shorter rules possess better generalisation properties.

These parameters are often used for formulation of rule quality or inter-
estingness measures [13], which can then be employed in the process of rule
selection [11]. On the other hand, the sets of inferred rules can be treated as an
additional source of information on features, with the knowledge discovered by
the learning algorithm represented in the form of rules.

To mine this new source and exploit it for feature characterisation and selec-
tion, to each rule ri a specific coefficient was assigned, RuleCoef(ri), equal to
the quotient of the rule support divided by length,

RuleCoef(ri) = Support(ri)/Length(ri). (2)

For an attribute f its coefficient was calculated as a sum of coefficients of all
rules that included this attribute among their conditions (Cond), divided by the
total number of rules (NrOfRls)

AttrCoef(f) =
NrOfRls∑

i=1

RuleCoef(ri|f ∈ Cond(ri))
NrOfRls

. (3)

The cumulative version of attribute coefficient calculated an average of coeffi-
cients obtained over various heuristics (NrOfH denotes number of heuristics)

CumAC(f) =
∑NrOfH

i=1 AttrCoefi(f)
NrOfH

. (4)

The cumulative coefficient was used as the ranking function applied to all fea-
tures, with the top positions taken by variables occurring many times in short
rules with high supports, and with the attributes included rarely as conditions,
in longer rules, with lower support values, at the bottom.
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3 Stylometric Analysis of Texts

Authorship attribution is a main task within stylometric analysis of texts [6]. The
fundamental notion in this domain comes down to the statement that given a
sufficient number of representative samples of writing, any author can be charac-
terised and recognised with a sufficient level of reliability, basing on uniqueness
of their style. As authors are to be recognised regardless of what they write
about, the subject topics of texts are disregarded, and instead there are con-
sidered stylometric features with discriminative properties, specific to authors
and their writing styles, habits of expression, linguistic preferences. Thus vari-
ous sets of attributes are employed in analysis. Techniques applied usually refer
to statistic-oriented computations, or to artificial intelligence approaches.

Typical stylometric descriptors are lexical or syntactic. The former specify
averages and frequencies of occurrence for words and phrases, while the latter
bring information about syntactic aspects of sentence formation, and punctua-
tion marks. Such stylometric features are continuous valued. Mining them for
construction of rule classifiers results in transparent description of discovered
patterns present in data, which enhances understanding of domain knowledge.
However, many rule induction algorithms require nominal values of features,
thus discretisation is often implemented as a part of input data pre-processing
stage.

When an authorship attribution task is treated as classification, with authors
recognised as distinguished classes, to evaluate performance of a constructed
classifier it is important to employ independent validation and test samples based
on entirely separate source texts. Otherwise (as in case of using cross-validation)
the classification results could be overly optimistic [2]. Also, it is documented
that authors of the same gender show higher similarity in writing styles [8].
Therefore, texts authored by writers of the opposite gender should not be used
in the same input data set as comparing authors without gender distinction
falsifies results to such degree as to make them unreliable.

4 Experimental Results

The experiments performed in the research presented in this paper consisted of
several steps, as described in the following sections.

4.1 Preparation of Input Data Sets

The pre-processing stage was devoted to the preparation of the input data sets.
Firstly, two pairs of authors were chosen, Thomas Hardy and Henry James
(denoted as WriterM data set), and Edith Wharton and Mary Johnston (named
as WriterF data set). Their works were separated into three groups correspond-
ing to the source texts for learning, validation, and test samples. Each longer
text was divided into several smaller pieces of comparable size. For each author
the same numbers of samples were selected to ensure balance of data.
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Secondly, over all these pieces of texts the frequencies of occurrence were cal-
culated for 25 stylometric descriptors: 18 lexical markers corresponding to com-
mon function words used (and, of, in, to, that, for, with, on, this, at, but, from,
not, by, as, what, if, without), and 7 syntactic markers referring to employed
punctuation marks (exclamation, question, hyphen, colon, semicolon, fullstop,
comma). It resulted in the set of continuous condition attributes with all the
values in the range [0,1).

Thirdly, for each pair of writers all three sets of samples (learning, vali-
dation, and test) were independently discretised with Kononenko’s supervised
approach [7]. For further considerations there were taken these features for which
the number of intervals established in discretisation was greater than one. As
discretisation was executed in the limited local context of each set, in discrete
WriterF data set there were 19 variables, and 17 for WriterM.

The constructed input data sets were subjected to rule induction algorithms.

4.2 Generation of Decision Rules by Greedy Heuristics

At the second stage of experiments four greedy heuristics, implemented in Java 8
using Spring framework, were applied to WriterM and WriterF training samples,
returning four rule sets for both data sets. Heuristics induce one rule for each
row of a decision table, regardless of rules inferred for other rows, which means
that it is probable that some rules (in particular those with higher supports) are
not unique. Thus all generated rules were compared, repeated elements removed,
and the numbers listed specify only unique rules.

The rule sets were next employed as decision algorithms to classify samples
from validation and test sets (called T1 and T2), using simple majority voting
strategy in case of conflicts. In all evaluations of performance constraints on
minimal rule support were imposed: there was chosen the highest support that
ensured 100% recognition of the training samples. When some rules were dis-
carded the value of support is given with the number of remaining rules. The
results are displayed in Table 1.

For RM heuristic for WriterF, and Log for WriterM data set, from the rule
sets some elements were rejected by imposing constraints on rule support, for
others all found rules were needed to correctly classify the training data. Clas-
sification accuracy for the validation and test sets was not always satisfactory,
in fact it was low for MaxS and Poly for WriterF, and for MaxS and RM for
WriterM. The best results of classification accuracy are shown in bold.

For both data sets exhaustive algorithms in Classical Rough Set Approach
(CRSA) were also inferred, with the parameters as listed in Table 2. In the full
algorithms (F-Exh and M-Exh respectively), the numbers of generated rules
were two ranks higher than from heuristics. For the minimal algorithms (named
as F-ExhM and M-ExhM ), obtained from Exh algorithms by rejecting weaker
rules with rule supports lower than the listed minimum, the cardinalities of rule
sets become manageable, if still higher than those from heuristics. Classification
accuracies observed were increased, which is always an advantage.
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Table 1. Parameters of rule sets generated by greedy heuristics

WriterF data set WriterM data set

Log MaxS Poly RM Log MaxS Poly RM

Number of rules 15 20 17 24 29 65 37 30

Min/Max supp. 32/85 28/81 31/85 1/85 13/62 9/57 18/62 8/54

Average support 68.27 66.10 68.27 36.08 44.70 31.83 41.22 27.60

Min/Max length 2/5 3/8 2/7 1/2 2/5 2/9 2/7 1/4

Average length 2.47 4.85 4.55 1.83 3.45 5.47 4.27 2.37

Class. accuracy
for T1 [%]

94.49 26.67 26.67 83.33
sup≥ 12
20 rls

73.26
sup≥ 21
28 rls

36.11 81.48 75.56

Class. accuracy
for T2 [%]

77.63 4.00 12.25 93.75 81.47 44.56 83.13 50.00

Table 2. Parameters of rule sets generated by exhaustive CRSA algorithm

WriterF data set WriterM data set

F-Exh F-ExhM M-Exh M-ExhM

Number of rules 2121 98 7291 347

Min/Avg/Max support 1/9.19/85 39/53.16/85 1/5.35/62 24/34.87/62

Min/Avg/Max length 1/3.86/7 2/2.64/5 1/4.90/8 2/3.88/7

Class. accuracy for T1 [%] 94.44 100.00 62.22 90.00

Class. accuracy for T2 [%] 96.25 98.75 85.00 93.75

4.3 Characterisation of Features by Induced Rules

In the third stage of experiments for each heuristic rule and attribute coefficients
were calculated. The obtained values imposed orderings on attributes, displayed
in Tables 3 and 4, which show also ranking based on cumulative attribute coeffi-
cients, averaged over all heuristics, and the order based on attribute coefficients
calculated for exhaustive algorithms and their minimal forms.

Not all available attributes were always included as conditions in rule sets
induced by all tested approaches, which is why some rankings contained fewer
positions. The frequency of occurrence of “what” was never used in rules gen-
erated by greedy heuristics for WriterF dataset, thus the attribute is separated
from others in CumAC ranking. For WriterF heuristics discarded more features
from the available set than for WriterM, for which almost always all considered
variables were needed, however, the former had more condition attributes to
begin with than the latter.

CumAC ranking was next used for inferring new rule sets, and for pruning
ExhM rule sets, as described in the following sections of the paper.
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4.4 Feature Selection Leading to Induction of New Rule Sets

Generation of new rules governed by a ranking was executed by steps, within
which one attribute was added to the considered set, starting at the highest
ranking position, and then proceeding down. The process was continued till the
list of attributes was exhausted. As for the whole feature sets the algorithms
were previously induced (F-Exh and M-Exh), thus the last induction step cor-
responded to the one before the lowest ranking position, 18th for WriterF and
16th for WriterM, which is displayed in Table 5.

The induction step indicates the number of attributes involved in generation
of each rule set, then the total number of rules inferred in this step is listed,
and how, with imposing threshold support given, this number was reduced. The
value of support is at the maximal level that still ensures perfect recognition of
the learning samples. The tables present only these steps for which inferred rules
were capable of 100% recognition of training samples. The initial steps, where
some learning examples were incorrectly classified, are omitted.

For WriterF data set 10 highest ranking attributes were sufficient for induc-
tion of decision rules correctly classifying all learning samples, yet the threshold

Table 3. Characterisation of available features by rule sets induced through greedy
heuristics and exhaustive algorithm (CSRA) for WriterF data set

Ranking position Log MaxS Poly RM CumAC F-Exh F-ExhM

1 comma comma comma comma comma on colon

2 colon colon colon on colon but comma

3 exclam questi that colon and as and

4 semico without at and at colon semico

5 and that and to not from on

6 not at to but exclam by exclam

7 to and exclam not that and to

8 at not semico of to to of

9 on exclam not fullst semico of by

10 by of without as on what as

11 fullst semico on by without fullst from

12 of to of that of semico what

13 from by fullst at questi comma fullst

14 but on by fullst exclam at

15 fullst from by not but

16 from questi from without not

17 but as questi without

18 but at questi

19 what that that
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Table 4. Characterisation of available features by rule sets induced through greedy
heuristics and exhaustive algorithm (CSRA) for WriterM data set

Ranking position Log MaxS Poly RM CumAC M-Exh M-ExhM

1 from but but and from at but

2 for for from from but but from

3 but semico for by for with that

4 by from that that that that at

5 that that with of by from with

6 and questi questi not and not and

7 with with by in with if questi

8 fullst fullst fullst semico semico and for

9 if hyphen semico for fullst of not

10 semico of if but of questi semico

11 not if at what if in if

12 of by hyphen with questi by of

13 at in not questi not what by

14 in and of if in semico hyphen

15 questi not what at at hyphen in

16 at and fullst hyphen fullst what

17 what in what for fullst

value of minimal rule support (7) was lower than for F-ExhM (39). Classifica-
tion accuracy for T1 and T2 sets was slightly decreased, and the number of rules
reduced to 59. On the other hand, from all these rule sets only the one studied
at the 17th step measured up in performance to F-ExhM.

For WriterM the minimal number of variables to be recalled to ensure correct
recognition of training examples was 7, but the performance was degraded. Only
the 13th step offered the undamaged predictive power for the reduced number
of rules, yet again the minimal support (19) was lower than for M-ExhM (24).

This part of experiments brought the conclusion that generation of new rule
sets driven by characterisation of attributes through heuristics relatively quickly
led to induction of rule sets with reduced cardinalities that were capable of
perfect classification of the learning samples. Yet obtaining the same predictive
power of rule classifiers required more features. Also threshold supports of rules,
even though locally maximised, were not necessarily reaching the global maxima.

4.5 Feature Selection Used for Pruning Rule Sets

Greedy heuristics discovered some knowledge with respect to inclusion and exclu-
sion of features from the considered set, while ensuring correct recognition for
learning samples. Thus in the research an another approach was tried, relying on
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Table 5. Classification results for rule sets generated while following CumAC rankings
for WriterF and WriterM data set

pruning rule sets governed by heuristic-based characterisation of features. For
each heuristic the set of variables included as conditions in induced rules was
composed. Then the rules from ExhM algorithm were pruned by discarding rules
referring to variables absent in the considered set. Rule subsets are named after
heuristic and the results shown in the upper part of Table 6.

Table 6. Classification results for pruned rule sets for WriterF and WriterM data set

From these subsets all but one maintained the classification for training sam-
ples. This was not true for F-ExhM Poly. For WriterF data set none of the four
rule sets offered uncorrupted predictive power for both validation and test sets
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T1 and T2. For WriterM M-ExhM MaxS=M-ExhM Poly=ExhM. More interest-
ing was M-ExhM RM that included fewer rules (reduction by 56/347=16.13%
with respect to M-ExhM ) and the same or improved performance.

The middle rows (only a single row for WriterF) of Table 6 present selected
results from rule set pruning while following a feature ranking. The rank-
ing exploited was the same as previously driving generation of new rule
sets, described in Sect. 4.4. The elements from ExhM, ExhM Log, ExhM MaxS,
ExhM Poly, and ExhM RM were pruned, by keeping rules with all attributes
included in the subset considered in each step and rejecting others.

The results given are limited to these rule sets that kept the recognition of
learning samples intact, and for WriterF it was true only for F-ExhM for the last
possible subset with 18 included variables. For WriterM there were three such
cases, two for M-ExhM, and one for ExhM RM. The numerical index indicates the
cardinality of each attribute set. Only ExhM RM15 rule set challenged results
obtained for M-ExhM, with the length reduced by 94/347=27.09%.

For each data set, for the sets of attributes included in rules induced by
each heuristic that perfectly classified the training data, there was executed
an intersection and only elements present in this subset were allowed to be
used as conditions in rules from ExhM, while rules involving other variables
were removed. The remaining rule sets ExhM H, given in the bottom row of the
table, had the lowest cardinalities against those studied for rule pruning, but the
performance was not impressive, in particular for WriterF.

These experiments showed successful application of feature characterisation
by heuristics for pruning rule sets while maintaining the correct classification of
training samples, yet without any guarantee of uncorrupted predictive power of
rule classifiers. The rules studied in this batch of tests had the advantage of high
support values as pruned rule sets were obtained by maximising this parameter.

5 Conclusions

The paper presents research conducted in stylometric domain, dedicated to appli-
cation of some greedy heuristics for characterisation and selection of features.
In the first part of executed experiments selected heuristics were applied to the
training data and decision rules were induced by these heuristics. Next, the
inferred rule sets and their parameters were treated as an additional source of
knowledge on available attributes, which led to construction of feature rankings.

In the second part the rankings were exploited in generation of new rules
driven by the ranking, and for pruning rule sets. The results from the two pro-
cesses were compared to the inferred exhaustive algorithms in their full, and
support constrained forms. In both approaches several rule sets were obtained
with lowered cardinalities, as well as cases of the same and improved performance
for validation and test sets, showing the merit of the proposed methodology.
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Abstract. From an optimization point of view, we propose a new
method to determine the loss funtion of intuitionistic fuzzy three-way
decisions. First, two linear programming models are constructed to deter-
mine a pair of thresholds in three-way decisions based on their practical
semantics. Meanwhile, the validity of the models is verified by KKT con-
ditions. Second, the models are further extended to intuitionistic fuzzy
three-way decisions (IF-3WD) and the corresponding nonlinear models
are established. Third, the uniqueness of solution for models is proven
and a LINGO software is employed to solve the models. We then obtain
both thresholds of IF-3WD and its decision rules. Finally, an example is
given to show the effectiveness of our method.

Keywords: Intuitionistic fuzzy sets · Three-way decisions
Optimization models · KKT conditions

1 Introduction

Three-way decisions (3WD), composed of acceptance, further investigation and
rejection, are initially proposed in 1990 based on the Bayesian decision theory
[1]. Since then, researches on 3WD have received more and more attention and
many related achievements have been achieved [2–5,8], which are widely applied
to various fields such as spam filtering [3], face recognition [4], cognitive concept
learning [6], three-way clustering [7] and multi-attribute decision making [8].

In the studies on three-way decisions, how to determine a pair of thresholds
of three-way decisions has become a crucial step of obtaining three-way decision
rules. Presently many research achievements on such aspect have been obtained
c© Springer Nature Switzerland AG 2018
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[1,9–13]. For example, Yao [1] first deduced the analytic solutions to both thresh-
olds in 3WD from decision-theoretic rough sets on the basis of Bayesian deci-
sion procedure, which provides a reasonable semantic for a pair of thresholds
in probabilistic rough sets. Li et al. [9] derived the mathematical expression of
both thresholds in 3WD from decision-theoretic rough sets model with multiple
risk preferences. On the basis of optimization models, Jia et al. [10] constructed
an optimization model with the minimum of total decision costs, consisting of
the positive decision costs, negative decision costs and boundary decision costs
in 3WD, based on which an adaptive learning algorithm is designed to solve the
model and to determine both thresholds. Also, the similar method is presented in
[11]. Based on that, Zhang [12] proposed an approach to the determination for a
pair of thresholds of three-way decisions in view of Gini coefficients. In addition,
Azam [13] introduced game-theoretic methods to determine these thresholds.

With the above-mentioned literature, it is clearly acknowledged that a pair
of thresholds in 3WD are determined based on the loss function assessments
with real numbers. In reality, however, decision maker may be difficult to give
a crisp evaluation, and more easier to adopt an imprecise or fuzzy evaluation
such as interval numbers, linguistic variables and intuitionistic fuzzy sets. Later,
researchers explored the determination of both thresholds in 3WD with the loss
function expressed by fuzzy evaluation. For example, in light of fuzzy three-way
decision models with Bayesian decision procedure, Liang et al. systematically
studied the threshold determination of fuzzy three-way decisions based on the
loss function given respectively as: interval numbers [15], linguistic variables [21],
intuitionistic fuzzy sets [17–19], hesitant fuzzy sets [20] and dual hesitant fuzzy
sets [21], and then obtained the corresponding fuzzy three-way decisions.

However, in some cases where the loss function is expressed as fuzzy assess-
ments above (e.g. intuitionistic fuzzy sets), it is usually difficult to determine a
pair of thresholds in intuitionistic fuzzy 3WD using existing methods [17–19].
Thus, we only obtain the indirect rules of intuitionistic fuzzy 3WD, which can
not facilitate make actual decisions. To overcome these, in this paper a gen-
eral method for determining these thresholds is proposed based on optimization
models, which helps obtain intuitionistic fuzzy 3WD directly.

2 Preliminaries

2.1 Decision-Theoretic Rough Sets

In general, the model of decision-theoretic rough sets is composed of two states
and three actions [1,2], denoted by Ω = {X,¬X}, and A = {aP , aB , aN}, respec-
tively. The loss function regarding three actions under different states is listed
by the 3 × 2 matrix, as shown in Table 1.

For Table 1, λPP , λBP and λNP denote the risk loss generated by adopting
actions of aP , aB and aN , respectively, when an object is in the state of X. Anal-
ogously, λPN , λBN and λNN denote the risk loss for adopting the same actions,
respectively, when an object is not in X. Assume Pr(X|[x]) is the conditional
probability of an object x belonging to X, where x is usually denoted by its
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Table 1. The risk loss matrix of actions under different states.

X(P ) ¬X(N)

aP λPP λPN

aB λBP λBN

aN λNP λNN

equivalence class [x]. Therefore the expected risk loss R(a•|[x])(• = P,B,N) for
each object x is calculated as:

R(a•|[x]) = λ•P Pr(X|[x]) + λ•NPr(¬X|[x]). (1)

In light of Bayesian decision procedure, which indicates the following decision
rules with the minimum risk losses [1]:

(P) If R(aP |[x]) ≤ R(aB|[x]) and R(aP |[x]) ≤ R(aN |[x]), decide: x ∈ POS(X);
(B) If R(aB|[x]) ≤ R(aP |[x]) and R(aB|[x]) ≤ R(aN |[x]), decide: x ∈ BND(X);
(N) If R(aN |[x]) ≤ R(aP |[x]) and R(aN |[x]) ≤ R(aB |[x]), decide: x ∈ NEG(X).

The above rules (P)–(N) are called three-way decisions. As a matter of
fact, these rules can be simplified on the basis of the relation: Pr(X|[x]) +
Pr(¬X|[x]) = 1 and the corresponding losses in Table 1. By considering a rea-
sonable case of the loss function with:

λPP ≤ λBP < λNP , (2)
λNN ≤ λBN < λPN . (3)

We can obtain the concise rules (P1)–(N1) as follows:

(P1) If Pr(X|[x]) ≥ α and Pr(X|[x]) ≥ γ, decide: x ∈ POS(X);
(B1) If Pr(X|[x]) ≤ α and Pr(X|[x]) ≥ β, decide: x ∈ BND(X);
(N1) If Pr(X|[x]) ≤ β and Pr(X|[x]) ≤ γ, decide: x ∈ NEG(X).

where the thresholds α, β and γ are calculated as:

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
,

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
, (4)

γ =
λPN − λNN

(λPN − λNN ) + (λNP − λPP )
.

Based on (2), (3) and (4), it follows that 0 < α ≤ 1, 0 ≤ β < 1 and 0 < γ < 1.
Additionally, we see from the rule (B1) that there exist two cases: (i) α > β and
(ii) α ≤ β. Let us first take into account the case: (i) α > β which implies:

(λPN − λBN )(λNP − λBP ) > (λBP − λPP )(λBN − λNN ). (5)
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(5) induces α > γ > β, by which the rules (P1)–(N1) are further simplified as:

(P2) If Pr(X|[x]) ≥ α, decide: x ∈ POS(X);
(B2) If β < Pr(X|[x]) < α, decide: x ∈ BND(X);
(N2) If Pr(X|[x]) ≤ β, decide: x ∈ NEG(X).

(ii) When α ≤ β, we have:

(λPN − λBN )(λNP − λBP ) ≤ (λBP − λPP )(λBN − λNN ), (6)

which implies α ≤ γ ≤ β. Hence the rules (P1)–(N1) are reduced to the two-way
decisions below.

(P3) If Pr(X|[x]) ≥ γ, decide: x ∈ POS(X);
(N3) If Pr(X|[x]) < γ, decide: x ∈ NEG(X).

2.2 Intuitionistic Fuzzy Sets

Let X = {x1, x2, ..., xn} be a fixed set. An intuitionistic fuzzy set (IFS) E on X
is defined as [22]:

E = {(x, μE(x), νE(x))|x ∈ X}, (7)

where μE : X �→ [0, 1] and νE : X �→ [0, 1] denote the membership and non-
membership degrees of element x belonging to the IFS E respectively, with 0 ≤
μE(xk)+νE(xk) ≤ 1 for all x ∈ X. In addition, πE(x) = 1−μE(x)−νE(x) ∈ [0, 1]
is called the hesitation degree of element x belonging to the IFS E. Particularly,
if πE(x) = 0 for all x ∈ X, then the IFS E reduces to an ordinary fuzzy set.

In light of these results reported in [22], an intuitionistic fuzzy number (IFN)
is denoted by e = (μe, νe). Given IFNs e = (μe, νe) and g = (μg, νg), we have:

(1) e = g if and only ifμe = μg and νe = νg;
(2) e = (νe, μe),where e is the complement set of e;
(3) e ⊕ g = (μe + μg − μeμg, νeνg);
(4) λe = (1 − (1 − μe)λ, (νe)λ), where λ ≥ 0.

To compare IFNs, the ranking function of IFNs based on the risk attitudes
of decision maker (DM) is defined in advance.

Definition 1 [23]. Let e = (μe, νe) be an IFN. Then, the ranking function of e
is calculated as:

S�(e) = (1 − 	)
1 − νe

1 + πe
+ 	(1 − 1

2
π2

e), (8)

where πe = 1 − μe − νe and 	 ∈ [0, 1] is the risk coefficient reflecting the risk
attitudes of DM. Specially, if 	 ∈ (0.5, 1], then the DM is optimistic about
decision results; if 	 ∈ [0, 0.5), then the DM is pessimistic; otherwise, the DM
is neutral.
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Based on Definition 1, the rules for ranking IFNs are given as follows:

Definition 2 [23]. Let e = (μe, νe) and g = (μg, νg) be two IFNs. Then we
have:

(1) If S�(e) > S�(g), then e is bigger than g, denoted by e � g;
(2) If S�(e) < S�(g), then e is smaller than g, denoted by e ≺ g;
(3) If S�(e) = S�(g), then e is equal to g, denoted by e ∼ g.

2.3 KKT Conditions

Considering the model:

min
x∈Rn

f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, ...,m,

hj(x) = 0, j = 1, 2, ..., r.

(9)

It is clearly known from (9) that its feasible region is D = {x : gi(x) ≤ 0, i =
1, 2, ...,m;hj(x) = 0, j = 1, 2, ..., r}, which is a closed set. If all locally optimal
solutions to (9) are searched, then its globally optimal solution will be found
from them. Following this idea, an approach to searching all locally optimal
solutions to (9) is given based on the following theorem.

Theorem 1 [24]. Let x∗ be a feasible solution to (9) and f(x), gi(x), hj(x) be
differentiable functions where 1 ≤ i ≤ m and 1 ≤ j ≤ r. If x∗ is a locally optimal
solution to (9), then there exist multiplier vectors Γ ∗ = (u∗

1, u
∗
2, ..., u

∗
m)T and

Λ∗ = (v∗
1 , v

∗
2 , ..., v

∗
r )T of Lagrange such that the following formulas hold.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Δf(x∗) +

m∑
i=1

u∗
i Δgi(x∗) +

r∑
j=1

v∗
j Δhj(x∗) = 0,

gi(x∗) ≤ 0, u∗
i gi(x∗) = 0, u∗

i ≥ 0, i = 1, 2, ...,m,

hj(x∗) = 0, j = 1, 2, ..., r.

(10)

Note that Theorem 1 is a necessary KKT condition whether or not (9) exists
locally optimal solutions. If there are the locally optimal solutions to (9), then
they will be generated among its KKT points. Specially, if it is a convex pro-
gramming problem, then the KKT points will be its locally optimal solutions.
With respect to a linear programming problem, which is regarded as one of
convex programming problems, the KKT points are also its globally optimal
solutions [24]. Therefore, searching the global optimization solutions to linear
programming problems becomes to find their KKT points by KKT conditions,
which is the main idea for solving the following α-model and β-model.
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3 Constructing Optimization Models to Determine Both
Thresholds in 3WD

For readers’ convenience, Pr(X|[x]) and Pr(¬X|[x]) in (1) are denoted by
s = Pr(X|[x]) and t = Pr(¬X|[x]) respectively, which can obtain s + t = 1.
In fact, we see from (P) and (P2) that the value of α should be the mini-
mum one among all conditional probabilities satisfying: R(aP |[x]) ≤ R(aB |[x])
and R(aP |[x]) ≤ R(aN |[x]). Similarly, the value of β should be the maximum
one among all conditional probabilities satisfying: R(aN |[x]) ≤ R(aP |[x]) and
R(aN |[x]) ≤ R(aB|[x]) from (N) and (N2). These are our motivation that the
following two optimization models are established to determine a pair of thresh-
olds α and β in 3WD.

α-model :

α = min s

s.t.

⎧
⎪⎨

⎪⎩

sλPP + tλPN ≤ sλBP + tλBN ,

sλPP + tλPN ≤ sλNP + tλNN ,

s + t = 1.

β-model :

β = max s

s.t.

⎧
⎪⎨

⎪⎩

sλNP + tλNN ≤ sλPP + tλPN ,

sλNP + tλNN ≤ sλBP + tλBN ,

s + t = 1.

In order to verify that the optimal solutions to the above-proposed models are
consistent with (4). KKT conditions are used to induce their analytical solutions.

For the α-model, where the KKT conditions are adopted to obtain the fol-
lowing formulas.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − u∗
1(λBP − λPP ) − u∗

2(λNP − λPP ) + v∗
1 = 0,

−u∗
1(λBN − λPN ) − u∗

2(λNN − λPN ) + v∗
1 = 0,

s∗(λBP − λPP ) − t∗(λPN − λBN ) ≥ 0,

s∗(λNP − λPP ) − t∗(λPN − λNN ) ≥ 0,

u∗
1[s

∗(λBP − λPP ) − t∗(λPN − λBN )] = 0, u∗
1 ≥ 0,

u∗
2[s

∗(λNP − λPP ) − t∗(λPN − λNN )] = 0, u∗
2 ≥ 0,

s∗ + t∗ − 1 = 0.

(11)

In (11), several cases are discussed to obtain the corresponding KKT points.

(1) If u∗
1 = u∗

2 = 0, then v∗
1 = −1 and v∗

1 = 0, which are contradictory with each
other. Clearly, this case does not hold.

(2) If u∗
1 = 0 and u∗

2 �= 0, then we get:

s∗
1 =

λPN − λNN

(λPN − λNN ) + (λNP − λPP )
and u∗

2 =
1

(λPN − λNN ) + (λNP − λPP )
> 0.

(3) If u∗
1 �= 0 and u∗

2 = 0, then it follows:

s∗
2 =

λPN − λBN

(λPN − λBN ) + (λBP − λPP )
and u∗

1 =
1

(λPN − λBN ) + (λBP − λPP )
> 0.
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(4) If u∗
1 �= 0 and u∗

2 �= 0, then one has:

s∗
3 =

λBN − λNN

(λBN − λNN ) + (λNP − λBP )
,

u∗
1[(λBP − λPP ) + (λPN − λBN )] + u∗

2[(λNP − λPP ) + (λPN − λNN )] = 1.

Take u∗
1 = 1

2[(λBP −λPP )+(λPN−λBN )] > 0 and u∗
2 = 1

2[(λNP −λPP )+(λPN−λNN )] > 0.

For convenience, let a = λBP − λPP , b = λPN − λBN , c = λNP − λBP and
d = λBN −λNN . It is clear that s∗

1 = b+d
b+d+c+a , s∗

2 = b
b+a and s∗

3 = d
d+c . Nowadays

we need to determine whether or not s∗
1, s

∗
2 and s∗

3 are the feasible solutions to
α-model, where several cases are discussed as follows:

(1) If s∗
2 > s∗

3, then it holds that ad < bc. In this way,
(i) When s∗

1 = b+d
b+d+c+a , we have t∗1 = c+a

b+d+c+a , which follows

s∗
1(λBP − λPP ) − t∗

1(λPN − λBN ) =
(b + d)a − (c + a)b

b + d + c + a
=

ad − bc

b + d + c + a
< 0.

Therefore s∗
1 is not a feasible solution to α-model and is not a KKT point.

(ii) When s∗
2 = b

b+a , one has t∗2 = a
b+a . Thus,

s∗
2(λBP − λPP ) − t∗2(λPN − λBN ) = ba−ab

b+a = 0and

s∗
2(λNP − λPP ) − t∗2(λPN − λNN ) = b(c+a)−a(b+d)

b+a = bc−ad
b+a > 0,

which implies that s∗
2 is a feasible solution to α-model and a KKT point.

(iii) When s∗
3 = d

d+c , t∗3 = c
d+c holds. That is,

s∗
3(λBP − λPP ) − t∗3(λPN − λBN ) =

da − cb

d + c
< 0.

Thereby s∗
3 is not a feasible solution to α-model and is not a KKT point.

(2) If s∗
2 < s∗

3, then it follows ad > bc. Similarly,
(i) When s∗

1 = b+d
b+d+c+a , we have t∗1 = c+a

b+d+c+a , which leads to

s∗
1(λBP − λPP ) − t∗

1(λPN − λBN ) =
(b + d)a − (c + a)b

b + d + c + a
=

ad − bc

b + d + c + a
> 0,

and s∗
1(λNP − λPP ) − t∗

1(λPN − λNN ) =
(b + d)(c + 1) − (c + a)(b + d)

b + d + c + a
= 0.

Thus s∗
1 is a feasible solution to α-model and is a KKT point.

(ii) When s∗
2 = b

b+a , one has t∗2 = a
b+a . Thus,

s∗
2(λBP − λPP ) − t∗2(λPN − λBN ) = ba−ab

b+a = 0and

s∗
2(λNP − λPP ) − t∗2(λPN − λNN ) = b(c+a)−a(b+d)

b+a = bc−ad
b+a < 0.

Obviously, s∗
2 is not a feasible solution to α-model and is not a KKT point.
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(iii) When s∗
3 = d

d+c , it yields t∗3 = c
d+c . Then we obtain:

s∗
3(λBP − λPP ) − t∗3(λPN − λBN ) =

da − cb

d + c
> 0 and

s∗
3(λNP − λPP ) − t∗3(λPN − λNN ) =

da − cb

d + c
> 0,

which shows that s∗
3 is a feasible solution to α-model. Also it is a KKT point.

(3) If s∗
2 = s∗

3, then ad = bc is obvious. It is easy to verify that s∗
1, s

∗
2 and s∗

3 are
KKT points, and s∗

1 = s∗
2 = s∗

3.

Based on the analysis above, we know when s∗
2 > s∗

3, s∗
2 is a unique KKT

point of α-model; when s∗
2 < s∗

3, s∗
1 and s∗

3 are both KKT points of α-model.
However, it follows c

d < a+c
b+d due to ad > bc, thus we get 1

1+ c+a
b+d

< 1
1+ c

d
that is

s∗
1 = b+d

b+d+c+a < d
d+c = s∗

3; when s∗
2 = s∗

3, s∗
1, s

∗
2 and s∗

3 are its KKT points and
s∗
1 = s∗

2 = s∗
3. Considering the α-model is a linear programming model, so the

following theorem is obtained:

Theorem 2. In the α-model, if s∗
2 > s∗

3, then s∗
2 is its unique optimal solution,

which is α = λPN−λBN

(λPN−λBN )+(λBP −λPP ) ; otherwise, s∗
1 is its unique optimal solution,

that is α = λPN−λNN

(λPN−λNN )+(λNP −λPP ) .

Analogously, we can obtain the similar theorem for the β-model as follows:

Theorem 3. In the β-model, if s∗
2 > s∗

3, then s∗
3 is its unique optimal solution,

which is β = λBN−λNN

(λBN−λNN )+(λNP −λBP ) ; otherwise, s∗
1 is its unique optimal solution,

that is β = λPN−λNN

(λPN−λNN )+(λNP −λPP ) .

Combining Theorem 2 with Theorem 3, We find from (4) that α = s∗
2, β = s∗

3

and γ = s∗
1, which is further to deduce the following corollary.

Corollary 1. In the α-model and β-model, if α > β, then α =
λPN−λBN

(λPN−λBN )+(λBP −λPP ) and β = λBN−λNN

(λBN−λNN )+(λNP −λBP ) are their unique opti-
mal solution respectively; otherwise, γ = λPN−λNN

(λPN−λNN )+(λNP −λPP ) is their unique
optimal solution simultaneously.

Proof. Theorems 2 and 3 show that α = λPN−λBN

(λPN−λBN )+(λBP −λPP ) and β =
λBN−λNN

(λBN−λNN )+(λNP −λBP ) are a unique optimal solution of α-model and β-model
respectively, when α > β. We mainly prove the latter part of this corollary, in
fact, if α ≤ β, it will hold that ad ≥ bc. That is c

d ≤ c+a
b+d ≤ a

b , which indicates
1

1+ a
b

≤ 1
1+ c+a

b+d

≤ 1
1+ c

d
, namely, b

b+a ≤ b+d
b+d+c+a ≤ d

d+c . Therefore α ≤ γ ≤ β.

However, when α ≤ β, α = β = λPN−λNN

(λPN−λNN )+(λNP −λPP ) is an optimal solution of
α-model and β-model simultaneously. Thereby γ is also their optimal solution.

Corollary 1 shows that in three-way decisions, a pair of thresholds obtained
by the α-model and β-model coincide with the ones derived from the classical
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method [1,2], which implies that both models-based method for determining
thresholds is feasible and effective.

To better understand these models, the semantics of their optimal solutions
α and β are presented in Fig. 1. We see from Fig. 1 that if α > β, the three-way
decisions are adopted; otherwise, the two-way decisions are used and here the
α-model and β-model converge to the same pont,which is α = β.

Fig. 1. The semantics of the optimal solutions to these models

It is well known that the loss function in 3WD is usually expressed by precise
real numbers. In actual decision process, however, decision maker may be difficult
to give a precise assessment on the loss function due to their limited knowledge
and tight deadlines. Whence they are much easier to give an imprecise or fuzzy
evaluation, such as interval numbers and intuitionistic fuzzy sets (IFSs). In the
following, the above method is extended to three-way decision problems where
the loss function is expressed by IFSs in Table 2. We then determine both thresh-
olds of intuitionistic fuzzy three-way decisions (for short, IF-3WD), which can
overcome these drawbacks that the current methods are difficult to determine
both thresholds α and β on IF-3WD in some cases [17–19]. This is the main
purpose of proposing an optimization models based IF-3WD method.

Table 2. The IF risk loss matrix of actions under different states.

X(P ) ¬X(N)

aP λPP = (μPP , νPP ) λPN = (μPN , νPN )

aB λBP = (μBP , νBP ) λBN = (μBN , νBN )

aN λNP = (μNP , νNP ) λNN = (μNN , νNN )

4 Optimization Models Construction in IF-3WD

In the IF-3WD, there are still two states Ω = {X,¬X} and three actions
A = {aP , aB , aN}, where the implications of states and actions are the same
as the ones in Table 1. The differences in this model are the loss function with
intuitionistic fuzzy sets rather than precise real numbers, as shown in Table 2.
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By considering a reasonable case of the intuitionistic fuzzy loss function
with:

μPP < μBP < μNP , νPP > νBP > νNP , πPP > πBP > πNP , (12)
μNN < μBN < μPN , νNN > νBN > νPN , πNN > πBN > πPN . (13)

where π•◦ = 1 − μ•◦ − ν•◦(• = P,B,N ; ◦ = P,N).
Intuitionistic fuzzy sets here are compared on the basis of the Definition 2.

Thus, the following theorem is further required:

Proposition 1. In Table 2, based on (12), (13) and Definition 2, we have:

λPP ≺ λBP ≺ λNP andλNN ≺ λBN ≺ λPN . (14)

Proof. In light of (12) and (13), it is clear that 1−νPP

1+πPP
< 1−νBP

1+πBP
< 1−νNP

1+πNP

and 1−νNN

1+πNN
< 1−νBN

1+πBN
< 1−νPN

1+πPN
. Furthermore, 1 − 1

2 (πPP )2 < 1 − 1
2 (πBP )2 <

1 − 1
2 (πNP )2 and 1 − 1

2 (πNN )2 < 1 − 1
2 (πBN )2 < 1 − 1

2 (πPN )2 hold as well,
which induces S�(λPP ) < S�(λBP ) < S�(λNP ) and S�(λNN ) < S�(λBN ) <
S�(λPN ). Hence, the concludes hold.

It is acknowledged from Proposition 1 that the risk loss for adopting accepted
decision is smaller than the one for delayed decision that is smaller than the risk
loss for rejected decision, when the object is in the state of X. However, when
the object is not in X, the risk losses for taking the same actions are the opposite
results. Also, it is the prerequisite of three-way decisions.

According to the operations of IFSs, we can calculate the intuitionistic fuzzy
risk loss for taking actions a•(• = P,B,N), denoted by R(a•|[x]), where

R(a•|[x]) = sλ•P ⊕ tλ•N =
(
1 − (1 − μ•P )s(1 − μ•N )t, (ν•P )s(ν•N )t) .

Based on the Bayesian decision theory, the following decision rules are given:

(P4) If R(aP |[x])  R(aB |[x]) and R(aP |[x])  R(aN |[x]), decide: x ∈ POS(X);
(B4) If R(aB |[x])  R(aP |[x]) and R(aB |[x])  R(aN |[x]), decide: x ∈

BND(X);
(N4) If R(aN |[x])  R(aP |[x]) and R(aN |[x])  R(aB |[x]), decide: x ∈

NEG(X).

As a matter of fact, the rules (P4)–(N4) can be further transformed as these
rules based on the ranking function of IFNs as follows:

(P5) If S�(R(aP |[x])) ≤ S�(R(aB |[x])) and S�(R(aP |[x])) ≤ S�(R(aN |[x])),
decide: x ∈ POS(X);

(B5) If S�(R(aB |[x])) ≤ S�(R(aP |[x])) and S�(R(aB |[x])) ≤ S�(R(aN |[x])),
decide: x ∈ BND(X);

(N5) If S�(R(aN |[x])) ≤ S�(R(aP |[x])) and S�(R(aN |[x])) ≤ S�(R(aB |[x])),
decide: x ∈ NEG(X).
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At this point, we will extend the optimization models based method in Sect. 3
to IF-3WD and then determine the corresponding threshold values. The similar
models are constructed as follows:

α-model :

α = min s

s.t.

⎧
⎪⎨

⎪⎩

S�(R(aP |[x])) ≤ S�(R(aB |[x])),

S�(R(aP |[x])) ≤ S�(R(aN |[x])),

s + t = 1.

β-model:

β = max s

s.t.

⎧
⎪⎨

⎪⎩

S�(R(aN |[x])) ≤ S�(R(aP |[x])),

S�(R(aN |[x])) ≤ S�(R(aB |[x])),

s + t = 1.

For the above-constructed models, a pivotal theorem is given as:

Theorem 4. Under the prerequisites (12) and (13), there is a unique optimal
solution to the α-model and β-model.

Proof. It is clear from the α-model that its feasible region is a non-empty and
closed set with boundedness, where (s, t) = (1, 0) is an actually feasible solution.
Thus we conclude that the feasible region is a compact set in R×R by the Heine-
Bore theory. In light of the property of a compact set, that is, a continuous and
real function in the compact set is bounded and has minimum and maximum
values. Also we note that the objective function is continuous and monotonic in
the α-model, which implies that there is a unique optimal solution to the α-model
such that its objective function reaches a minimum value. Similarly, there is the
same conclude for the β-model. Therefore the theorem holds.

Theorem 4 shows that although the α-model and β-model are nonlinear and
their analytic solutions are difficultly induced by KKT conditions, their numer-
ical solutions can be obtained via LINGO solving and IF-3WD are directly
acquired. Motivated by this idea, in what follows a general approach to IF-3WD
is proposed based on optimization models with LINGO solving.

5 Optimization Models Based Intuitionistic Fuzzy
Three-Way Decisions

Based on Theorem 4, we will use LINGO to solve models and then obtain thresh-
olds of IF-3WD and its decision rules, where the detailed steps are as follows:

Step 1: Assume the risk coefficient 	 and the intuitionistic fuzzy risk loss
matrix in Table 2 are given. Thus the α-model and β-model are constructed.

Step 2: LINGO is used to solve the α-model and β-model above, and their
optimal solutions α and β are obtained. Whence we need to compare the values
of α and β.

(i) If α > β, then the three-way decisions are adopted as follows: (P)When
Pr(X|[x]) ≥ α, decide: x ∈ POS(X); (B)When β < Pr(X|[x]) < α, decide:
x ∈ BND(X); (N)When Pr(X|[x]) ≤ β, decide: x ∈ NEG(X).
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(ii) If α ≤ β, here the optimal solution to the α-model is the same as the one to
the β-model (That is γ = α = β). The two-way decisions are used: (P)When
Pr(X|[x]) ≥ γ, decide: x ∈ POS(X); (N)When Pr(X|[x]) < γ, decide:
x ∈ NEG(X).

6 An Illustrative Example

To show the feasibility and effectiveness of our method, a numerical example
is given [18]. For the selection problem in software plan, suppose there are two
states Ω = {X,¬X}, which indicate that the software is good or bad. The
set of actions for the new development plan is denoted by A = {aP , aB , aN},
where aP , aB and aN represent the development, further investigation and not
development for the software, respectively. In light of the matrix of the loss
function in Table 2, these loss functions are given respectively as follows: λPP =
(0.00, 0.60), λPN = (0.90, 0.10), λBP = (0.40, 0.40), λBN = (0.50, 0.40), λNP =
(0.80, 0.20) and λNN = (0.10, 0.50).

In this example, the proposed method is implemented to make decision, where
the detailed steps are as follows:

Step 1: On the basis of the risk losses above and the risk coefficient of decision
maker (assume 	 = 0.5), both models are constructed:
α-model

α = min s

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1−0.6s×0.1t

2(1+1.0s×0.1t−0.6s×0.1t) − 1−0.4s×0.4t

2(1+0.6s×0.5t−0.4s×0.4t)

≤ (1.0s×0.1t−0.6s×0.1t)2−(0.6s×0.5t−0.4s×0.4t)2

4 ,
1−0.6s×0.1t

2(1+1.0s×0.1t−0.6s×0.1t) − 1−0.2s×0.5t

2(1+0.2s×0.9t−0.2s×0.5t)

≤ (1.0s×0.1t−0.6s×0.1t)2−(0.2s×0.9t−0.2s×0.5t)2

4 ,

s + t = 1.

β-model

β = max s

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1−0.2s×0.5t

2(1+0.2s×0.9t−0.2s×0.5t) − 1−0.6s×0.1t

2(1+1.0s×0.1t−0.6s×0.1t)

≤ (0.2s×0.9t−0.2s×0.5t)2−(1.0s×0.1t−0.6s×0.1t)2

4 ,
1−0.2s×0.5t

2(1+0.2s×0.9t−0.2s×0.5t) − 1−0.4s×0.4t

2(1+0.6s×0.5t−0.4s×0.4t)

≤ (0.2s×0.9t−0.2s×0.5t)2−(0.6s×0.5t−0.4s×0.4t)2

4 ,

s + t = 1.

Step 2: LINGO is employed to solve the α-model and β-model above,
and their optimal solutions α and β are obtained as: α = 0.7617186 and
β = 0.3342650. It is obvious that the three-way decisions are implemented below:

(P) If Pr(X|[x]) ≥ 0.7617186, then decide: x ∈ POS(X);
(B) If 0.3342650 < Pr(X|[x]) < 0.7617186, then decide: x ∈ BND(X);
(N) If Pr(X|[x]) ≤ 0.3342650, then decide: x ∈ NEG(X).
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In order to explore the influence of decision maker’s risk attitudes on thresh-
olds in IF-3WD, the proposed method is employed to obtain other thresholds,
as shown in Table 3.

Table 3. The thresholds change under different DM’s risk coefficients.

The thresholds
The risk coefficient of DM �

0 0.1 0.2 0.3 0.4
α 0.7642999 0.7639836 0.7635985 0.7631216 0.7625153
β 0.3217988 0.3233975 0.3253093 0.3276395 0.3305426

0.5 0.6 0.7 0.8 0.9 1
0.7617186 0.7606224 0.7590173 0.7564419 0.7515853 0.7384302
0.3342650 0.3392210 0.3461714 0.3567050 0.3748982 0.4169299

Here, a comparative study is given to illustrate the advantages of the pro-
posed method. For this example, the existing method [17] can determine a pair
of thresholds in the special cases of positive and negative viewpoints and then
obtain the corresponding decision rules. However, it is difficult to determine
these thresholds of intuitionistic fuzzy 3WD in composite situations and thus
only obtain the indirect rules of three-way decisions, which are not favourable
to make actual decisions, see [17–19] for more details. The proposed method can
overcome these limitations and a pair of thresholds determined by our method
in composite cases are presented in Fig. 2.

Fig. 2. Comparison of thresholds determined by our method with existing method [17].
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From Table 3 and Fig. 2, the following concludes may be obtained:

(1) Our method can effectively determine the thresholds α and β in IF-3WD,
which can solve the problem where the current methods are difficult to obtain
these thresholds for IF-3WD model in some cases. It is of great significance
that this method is extended to the threshold determination of three-way
decisions with the loss function expressed by triangular fuzzy numbers, inter-
val numbers, linguistic variables, hesitant fuzzy sets and dual hesitant fuzzy
sets respectively.

(2) The thresholds α and β obtained by our method are monotonically decreas-
ing and increasing respectively as 	 increases. It coincides with human intu-
ition and thus shows the reasonability of our method to some extent.

7 Conclusion

Based on the extended α-model and β-model, a general method of obtaining IF-
3WD is proposed to solve the problem, where the current methods are difficult
to determine a pair of thresholds in IF-3WD in some cases. This study provides
an idea for deriving three-way decisions from the optimization models, which
can enrich the theory of three-way decisions and intuitionistic fuzzy sets. Future
researches may focus on the generalization of the proposed optimization models.
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In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L.
(eds.) RSCTC 2014. LNCS (LNAI), vol. 8536, pp. 160–171. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08644-6 17

13. Azama, N., Zhang, Y., Yao, J.T.: Evaluation functions and decision conditions
of three-way decisions with game-theoretic rough sets. Eur. J. Oper. Res. 261,
704–714 (2017)

14. Qian, Y.H., Zhang, H., Sang, Y.L., et al.: Multigranulation decision-theoretic rough
sets. Int. J. Approximate Reasoning 55, 225–237 (2014)

15. Liang, D.C., Liu, D.: Systematic studies on three-way decisions with interval-valued
decision-theoretic rough sets. Inf. Sci. 276, 186–203 (2014)

16. Liang, D.C., Pedrycz, W., Liu, D., et al.: Three-way decisions based on decision-
theoretic rough sets under linguistic assessment with the aid of group decision
making. Appl. Soft Comput. 29, 256–269 (2015)

17. Liang, D.C., Liu, D.: Deriving three-way decisions from intuitionistic fuzzy
decision-theoretic rough sets. Inf. Sci. 300, 28–48 (2015)

18. Liang, D.C., Xu, Z.S., Liu, D.: Three-way decisions with intuitionistic fuzzy
decision-theoretic rough sets based on point operators. Inf. Sci. 375, 183–201 (2017)

19. Liu, J.B., Zhou, X.Z., Huang, B., Li, H.: A three-way decision model based on
intuitionistic fuzzy decision systems. In: Polkowski, L. (ed.) IJCRS 2017. LNCS
(LNAI), vol. 10314, pp. 249–263. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60840-2 18

20. Liang, D.C., Liu, D.: A novel risk decision-making based on decision-theoretic
rough sets under hesitant fuzzy information. IEEE Trans. Fuzzy Syst. 23(2), 237–
247 (2015)

21. Liang, D.C., Xu, Z.S., Liu, D.: Three-way decisions based on decision-theoretic
rough sets with dual hesitant fuzzy information. Inf. Sci. 396, 127–143 (2017)

22. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
23. Wan, S.P., Wang, F., Dong, J.Y.: A novel risk attitudinal ranking method for

intuitionistic fuzzy values and application to MADM. Appl. Soft Comput. 40, 98–
112 (2016)

24. Chen, B.L.: Optimization Theory and Algorithm. Tsinghua University Press, Bei-
jing (2005)

https://doi.org/10.1016/j.ins.2018.03.009
https://doi.org/10.1016/j.ins.2018.03.009
https://doi.org/10.1007/978-3-319-08644-6_17
https://doi.org/10.1007/978-3-319-60840-2_18
https://doi.org/10.1007/978-3-319-60840-2_18


External Indices for Rough Clustering

Matteo Re Depaolini, Davide Ciucci(B), Silvia Calegari, and Matteo Dominoni

DISCo, University of Milano-Bicocca, Viale Sarca 336/14, 20126 Milano, Italy
ciucci@disco.unimib.it

Abstract. Clustering external indices are used to compare the cluster-
ing result with a given gold standard, represented (in the classical case)
by a partition of the dataset. Rough clustering on the other hand splits
the dataset in subsets with uncertain boundaries such that different clus-
ters may overlap, i.e., the result is a covering instead of a partition.

The aim of this work is to extend the aforementioned external indices
to the rough clustering case, in order to evaluate the results of the cluster-
ing with respect to the gold standard. Thus, the comparison of different
rough clustering methods among them and with other methods will then
be possible.

Keywords: Rough clustering · External indices · Fuzzy clustering

1 Introduction

Clustering is an unsupervised learning technique whose task is to group similar
objects together and assign dissimilar objects to different groups. These groups
are called clusters. In standard clustering methods, clusters have sharp bound-
aries and objects belong to one and only one cluster. In soft clustering [16], these
constraints are relaxed and objects can (partially) belong to more than one clus-
ter. In order to evaluate the performances of a clustering method, two kinds of
indices exist: external and internal. The first ones are used when instance labels
are available and can be used to partition the universe. In this case, the result
of the clustering can be compared with the partition obtained by labels. If this
is not the case, the clustering is evaluated by internal indices, on some “good”
properties of the clusters’ structure.

Here, we are dealing with external indices, the best known one being Rand
[17] and its derived ones. These indices have been generalized for some soft
techniques, such as fuzzy clustering [6] but both the classical and the fuzzy
indices are not applicable to the rough set case (we notice that for internal indices
there exist at least one approach based on a decision theoretic rough set approach
[12]). Indeed, the classical ones are based on a partition-partition comparison,
whereas rough clustering does not generate a partition, as we will see in Sect. 2.2.
On the other hand, fuzzy indices suppose the availability of a membership degree
of each object to any cluster, and these values are not present in rough clustering.
Thus, the aim of the present work is to introduce generalized versions of Rand,
c© Springer Nature Switzerland AG 2018
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Jaccard and Fowlkes–Mallows indices suitable for rough clustering and to show
their applicability. The importance of these indices is to be able to evaluate and
compare rough clustering algorithms with (generalized versions of) standard and
well known methods.

In Sect. 2.1, basic notions of clustering, rough clustering and external indices
will be recalled. In Sect. 3, the new indices are defined and some properties are
given including the relationship with the Frigui index for fuzzy clustering [5].
Some experimental results are shown in Sect. 4 and finally, some remarks and
future works are discussed.

2 Clustering

Basic notions of rough clustering and external indices are provided in this section.

2.1 Hard k-means

K-means [8] is the most widely used approach for clustering and rough clustering
is mainly based on it. It is a prototype algorithm, that is, based on the idea that
each group (cluster) must have a representative called prototype or centroid. Each
instance is grouped in one and only one cluster.

The algorithm executes the following steps.

1. First of all, k instances are elected centroids;
2. Other instances are assigned to their nearest cluster’s centroid, so that clusters

are built for the first time;
3. Centroids are recomputed averaging the points of their clusters. Centroids

will very hardly correspond to dataset instances from now on;
4. Each instance is reassigned to the nearest cluster’s centroid;
5. Steps 3 and 4 are repeated until recalculated centroids are closer than a

threshold δ to the previous ones.

There are several methods to make the election of centroids described in step 1.
In any case, the initial choice of the centroids influences the overall process.
Under the assumption that the techniques of election of initial centroids are not
deterministic, it is suggested to execute the overall process several times, in order
to begin each time with different centroids.

2.2 Rough Clustering

Hard clustering, such as k-means, assigns each instance to just one cluster. This is
sometimes questionable since there may exist situations in which we are not able
to classify an instance with certainty. Rough clustering, such as rough k-means
designed by Lingras [10], exploits rough set theory in order to assign “uncertain”
instances to the boundary region of the relative clusters. Indeed, each cluster Ci

is made by a lower region (or lower approximation) and an uncertain region,
named boundary. The first one contains the objects that surely belong to the
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cluster (this region is referred to as Ci), while the second contains the objects
on which we have some evidence that may belong to the cluster, but we are not
sure about that. All the points in a cluster Ci, either in the lower or boundary
region, fall into the upper approximation, referred as Ci. Thus, the boundary of
each cluster Ci can be obtained as: Ci \ Ci. We can consider hard clustering a
particular case of rough clustering in which each object of each cluster Ci falls
into Ci.

Remark 1. According to Lingras [10], if an object belongs to a boundary region,
then it must belong to at least another one. This requirement is relaxed in [18]
under a different interpretation of the boundary region. Here, we do not enter
into this discussion, and simply remark that our measures are valid in both cases.

In rough k-means, the assignment of each instance x to a set of clusters is made
in the following way. First, the distance between x and all clusters’ centroids
is computed: {d

(x)
1 , d

(x)
2 , . . . , d

(x)
n }. Then, the minimum distance is taken, let us

it d
(x)
min and each d

(x)
i is compared with d

(x)
min. The aim of these comparisons is

to determine whether each instance belongs surely to a specific cluster or can
be assigned to more clusters and to which clusters can be assigned. Formally,
Lingras [10] defines the assignment of each instance x as follows:

1. ∀ cluster Ci s.t. d
(x)
min/d

(x)
i ≥ δ, x belongs to the boundary region of the near-

est cluster (whose centroid has distance equal to d
(x)
min from x) and to the

boundary region of cluster Ci.
2. Otherwise, x belongs to the lower region of the nearest cluster (whose centroid

has distance equal to d
(x)
min).

2.3 External Indices

The aim of external indices is to compare a given partition, the “gold standard”,
with a clustering result. It is expected that the more the clustering result is
similar to the partition the more the index is high, and it assumes the maximum
value 1 if the two are equal. Vice versa, the more the clustering result and the
partition are different, the more the index is low, with 0 as minimum value.

The most famous external indices for hard clustering are Rand [17], Jaccard
[7] and Fowlkes-Mallows [4]. They are all based on the following concepts:

– the set of pairs in the same partition and in the same cluster, named a;
– the set of pairs in the same partition and in different clusters, named b;
– the set of pairs in different partitions and in the same cluster, named c;
– the set of pairs in different partitions and in different clusters, named d.

So, it is clear that a and d should be maximized and b and c minimized. The
above mentioned indices measure in different ways the ratio of well classified
instances with respect to the total number of instances, according to the following
formulae:
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Rand =
|a| + |d|

|a| + |b| + |c| + |d| (1)

Jaccard =
|a|

|a| + |b| + |c| (2)

Fowlkes − Mallows =

√
|a|

|a| + |b| ∗ |a|
|a| + |c| (3)

3 Extending External Indices to Rough Clustering

The aim of this section is to extend the above indices to the rough clustering
case. At first, let us discuss why Eqs. (1), (2) and (3) are not applicable to rough
k-means and similar algorithms. In hard clustering, every instance is contained
in one and only one cluster so every pair of instances is contained in only one of
a, b, c or d. For that reason, the following equality holds:(

n

2

)
= |a| + |b| + |c| + |d| (4)

In rough clustering, any pair can be divided in many sets (as shown in Example 1)
and can be repeated in the same set (as shown in Example 2).

Thus, the value of a, b, c, d cannot be computed as previously and we propose
to weight each pair according to its number of occurrences.

Example 1. Let us say we have two clusters (C1, C2), two partitions (p1, p2)
and a dataset D. Let us consider only two instances x, y ∈ D s.t. (x ∈
p1, y ∈ p1) and (x ∈ C1, y ∈ C1, y ∈ C2). Then, a = {((x,C1), (y, C1)) . . . },
b = {((x,C1), (y, C2)) . . . }, c = {. . . } and d = {. . . }.

As we can see in Example 1, in contrast to hard clustering, the same pair appears
in two sets (a and b). In this situation it is intuitive to divide the weight of the
pair by 2, such that each one will weight 1/2.

Example 2. Let us suppose again to have two clusters (C1, C2), two parti-
tions (p1, p2) and a dataset D. We consider only two instances x, y ∈ D
s.t. (x ∈ p1, y ∈ p1) and (x ∈ C1, x ∈ C2, y ∈ C1, y ∈ C2). Thus,
a = {((x,C1), (y, C1)), ((x,C2), (y, C2)) . . . }. Indeed, we have the pair (x, y)
with x ∈ C1, y ∈ C2 and the pair (x, y) with y ∈ C1, x ∈ C2. Similarly,
b = {((x,C1), (y, C2)), ((x,C2), (y, C1)) . . . }; and c = {. . . }, d = {. . . }.

As we can see in Example 2, in contrast to hard clustering, the same pair appears
in two sets (a and b) and two times in each of these sets. In this case, each pair
could be weighted as 1/4.

In the following, we formalize this intuition on the weights and give general-
ized versions of the external indices.
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3.1 The New Indices

Our purpose is to validate a rough clustering result comparing it to a given
partition. We suppose to have no knowledge on the clustering result and on the
mechanism used to obtain it, it could also have been randomly generated. So, it
can be stated that given two instances x and y, x belongs to Ci and y belongs to
Cj independently. All we know is that, if x ∈ Ci, x surely belongs to the cluster
Ci and, if x ∈ (Ci−Ci), x belongs to one or more clusters, but it is not possible
to tell the clusters to which x belongs more likely. In the first case, we can set:

P (x ∈ Ci|x ∈ Ci) = 1 (5)

Otherwise, the number of boundaries to which x belongs to is denoted as bn(x).
Rough clustering does not assert the likelihood of membership of x to the bn(x)
clusters. For Laplace’s principle of indifference [9], given a set of events, if it is
impossible to establish the likelihood of each event, the probability distribution
of these events can be considered as uniform. Thus, we can say that

P (x ∈ Ci|x ∈ (Ci − Ci)) =
1

bn(x)
(6)

The following is straightforward:

P (x ∈ Ci|x /∈ Ci) = 0 (7)

As stated before, the belonging of an instance x to a cluster is independent
from the belonging of an instance y to another (or the same) cluster. Thus, the
probability of a pair of instances in any set (a, b, c, d) is as follows:

P (x ∈ Ci, y ∈ Cj) = P (x ∈ Ci) ∗ P (y ∈ Cj) (8)

Moreover, we can assert:

n∑
i=1

(
n∑

j=1

P (x ∈ Ci, y ∈ Cj)) = 1 (9)

In hard clustering, every pair has weight equal to one, such that every index
presented in Sect. 2.3 exploits the cardinality of a,b,c,d. In rough clustering, the
idea is to weight each pair with the value obtained from Eq. (8).

Let D be the set of instances of the dataset and C the set of clusters. Taking
into account Eqs. (5), (6) and (7), we define v : D × C → R:

P (x,Ci) = v(x,Ci) =

⎧⎪⎨
⎪⎩

0, if x /∈ Ci

1, if x ∈ Ci

1
bn(x) , otherwise

(10)

Equation 10 can also be applied to hard clustering with the assumption that
each object of each cluster C falls into C.
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In order to define a generalized forms of a, b, c, d, we introduce a function
w : P(D × C) × P(D × C) → [0, 1] that weights each pair ((x,Ci), (y, Cj)) and
it is defined as

w((x,Ci), (y, Cj)) = P (x ∈ Ci, y ∈ Cj) = v(x,Ci) · v(y, Cj) (11)

Now, let W : P(P(D × C) × P(D × C)) → [0, 1], W takes as input a set S of
pairs of elements of type P(D × C) and gives as output the weight of S as:

W (S) =
∑

(s,s′)∈S

w(s, s′) (12)

Using Eq. (12), it is possible to rewrite Rand, Jaccard and Fowlkes–Mallows
indices as follows:

R − Rand =
W (a) + W (d)

W (a) + W (b) + W (c) + W (d)
(13a)

R − Jaccard =
W (a)

W (a) + W (b) + W (c)
(13b)

R − FowlkesMallows =

√
W (a)

W (a) + W (b)
∗ W (a)

W (a) + W (c)
(13c)

These formulae are clearly an extension of the original ones, since once applied
to hard clustering we obtain the indices as previously defined in Eqs. (1), (2) and
(3). Moreover, Eq. (4) still holds in this case:

Proposition 1. The following holds:(
n

2

)
= W (a) + W (b) + W (c) + W (d) (14)

Proof. From Eq. (9), it easily follows that all repeated pairs (x, y) sum to 1.

Example 3. Let us suppose to have four instances: e1, e2, e3, e4, two partitions:
P1, P2 and two clusters: C1, C2. As shown in Fig. 1, e1, e2, e3 ∈ P2, e4 ∈ P1 and
as a clustering result we have e1, e2 ∈ C1, C2, e3 ∈ C2, e4 ∈ C1. We will omit
the cluster in each pair, for simplicity. Thus, we get:

a = {(e1, e2), (e1, e2), (e1, e3), (e2, e3)}
b = {(e1, e2), (e2, e1), (e3, e1), (e3, e2)}

c = {(e1, e4), (e2, e4)}
d = {(e4, e1), (e4, e2), (e4, e3)}

W (a) = w(e1, e2) + w(e1, e2) + w(e1, e3) + w(e2, e3) =
1
4

+
1
4

+
1
2

+
1
2

=
3
2

Similarly, it is possible to derive: W (b) = 3
2 , W (c) = 1, W (d) = 2 and the

indices can be computed substituting these values in Eqs. 13a, 13b and 13c with
the following results: RAND = 0.583, JACCARD = 0.375, FM = 0.548.
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Fig. 1. Example of a partition and a soft clustering

It is possible to infer that, the more the indices grow, the more the clustering
looks alike the partitioning (and vice versa). Indeed, W (S) is directly propor-
tional to the number of pairs contained in the set S. Thus, the more W (a)
grows, the more “similar” (w.r.t. the partitioning) the instances are clustered
together, and vice versa. With the same reasoning, the more W (d) grows, the
more “differently” (w.r.t. the partitioning) the instances are clustered apart (and
vice versa). On the other hand, the more W (c) and W (b) grow, the more the
instances are wrongly clustered w.r.t the partitioning. Considering that W (a)
and W (d) are the quantities at the numerator in Eqs. (13a), (13b) and (13c) and
that W (a),W (b),W (c),W (d) are the quantities at the denominator, the thesis
easily follows. Finally, we have that

Proposition 2. R − Rand,R − Jaccard,R − FowlkesMallows ∈ [0, 1].

Proof. In the worst case, no pairs are present in a and d, so that the indices are
equal to 0. In the best case, no pairs are present in c and b, so that the indices
are equal to 1. In all the intermediate cases, of course, the indices are in (0, 1).

3.2 Relationship with Fuzzy Indices

Campello [2] designed a framework to generalize the external indices to fuzzy
clustering. His family of indices depends on a t-norm and a t-conorm. Frigui
[5] derived from that theoretic framework his indices using multiplication as
t-norm and bounded sum as t-conorm. He stated that, in order to compare
two partitions P1 and P2 generated by two fuzzy algorithms, it is sufficient to
compare the respective membership degree matrices1 D1 and D2 by computing
the coincidence matrices B1, B2 as follows:

B(i) = D(i) · D(i)T (15)

1 An element dij of these matrices is a value in [0, 1] and it represents the membership
degree of an instance i to a partition Pj .
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Once obtained such matrices, it is possible to calculate the generalized versions
of a,b,c,d as described below:

Wf (a) =
N∑
j=2

j−1∑
k=1

B
(1)
j,k · B

(2)
j,k (16a)

Wf (b) =
N∑
j=2

j−1∑
k=1

B
(1)
j,k · (1 − B

(2)
j,k ) (16b)

Wf (c) =
N∑
j=2

j−1∑
k=1

(1 − B
(1)
j,k ) · B

(2)
j,k (16c)

Wf (d) =
N∑
j=2

j−1∑
k=1

(1 − B
(1)
j,k ) · (1 − B

(2)
j,k ) (16d)

The sense of the indices in the summations of the Eqs. (16a), (16b), (16c) and
(16d) is to sum just half resultant matrices, since each B(i) is symmetric: the
symmetry is due to unordered pairs. For this reason, if we name L the set of all
unordered pairs and let dlk be the k-th row of the membership degree matrix Dl,
we can rewrite Eqs. (16a)–(16d) as follows:

Wf (a) =
∑

(wi,wj)∈L

(d1i · d1j ) · (d2i · d2j ) (17a)

Wf (b) =
∑

(wi,wj)∈L

(d1i · d1j ) · (1 − (d2i · d2j )) (17b)

Wf (c) =
∑

(wi,wj)∈L

(1 − (d1i · d1j )) · (d2i · d2j ) (17c)

Wf (d) =
∑

(wi,wj)∈L

(1 − (d1i · d1j )) · (1 − (d2i · d2j )) (17d)

Finally, the Rand, Jaccard and Fowlkes–Mallows indices, generalized to the fuzzy
case, are defined as in Eqs. (13a), (13b) and (13c) using Wf (a) in place of W (a).

Now, if we have a fuzzy partition P1 and a hard partition P2, and we use
the values obtained by Eq. (10) to construct the membership degree matrices we
get that W (x) = Wf (x) for x ∈ {a, b, c, d} as formally proved in the following
proposition.

Proposition 3. Let P1 be the result of a rough clustering and P2 be a partition.
If D1, D2 in Eq. (15) are constructed using the values obtained by Eq. (10) then

W (x) = Wf (x) for x ∈ {a, b, c, d}.

Proof. Let U be the dataset of N instances: u1, u2, . . . , uN and suppose to have
K clusters. Thus, the membership degree matrix D1, D2 have dimension N ×K
and by hypothesis they are constructed using Eq. 10.
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Now, we interpret each row di of D as the set of probabilities di,k that instance
ui belongs to the cluster Ck, i.e.,

Pk(ui) = di,k = v(ui, k) (18)

So, given two instances ui and uj , di · dj represents the probability of ui to be
in the same cluster together with uj . Indeed, from Eqs. 8 and 18:

di ·dj =
K∑

k=1

P (ui ∈ Ck, uj ∈ Ck) =
K∑

k=1

Pk(ui) ·Pk(uj) =
K∑

f=1

v(ui, Cf ) ·v(uj , Cf )

(19)
Similarly, the probability that ui and uj belong to different clusters can be
seen as:∑

Cl,Ck,l �=k

P (ui ∈ Cl, uj ∈ Ck) =
∑

Cl,Ck,l �=k

v(ui, Cl) · v(uj , Ck) = 1 − di · dj (20)

The below lemma easily follow from the interpretation of di ·dj as the probability
that ui and uj are in the same cluster and the above Eq. (19).

Lemma 1. Given a hard partition D, two instances ui and uj are in the same
cluster iff di ·dj = 1. Vice versa, ui and uj are in different clusters iff di ·dj = 0.

Now, we prove the main statement. For the sake of space, only the case cases a
is shown, being the others proved in a similar way.

Wf (a) =
∑

(wi,wj)∈L

(d1i ·d1j )·(d2i ·d2j ). For all pairs (ui, uj), in which ui and uj are

not in the same cluster in D2, (d1i ·d1j )·(d2i ·d2j ) = 0 for Lemma 1. For all pairs (ui,
uj), in which ui and uj are in the same cluster in D2, (d1i ·d1j ) ·(d2i ·d2j ) = (d1i ·d1j )
for Lemma 1. So, with respect to the summation, the only pairs that count are
the ones in the same cluster in D1 and in the same cluster in D2. So we can
conclude that

Wf (a) =
∑

(ui,uj)∈a

(d1i · d1j ) · (d2i · d2j ) =
∑

(ui,uj)∈a

(d1i · d1j ).

Now, from Eq. 19:

∑
(ui,uj)∈a

(d1i · d1j ) =
∑

(ui,uj)∈a

K∑
f=1

v(ui, Cf ) · v(uj , Cf )

=
∑

((ui,Cf ),(uj ,Cf ))∈a

v(ui, Cf ) · v(uj , Cf ) = W (a)

Thus, we can treat rough external indices as a particular case of Frigui indices
for fuzzy clustering. We underline, however, that in the rough set case only a
comparison soft-hard partition is possible, whereas in the general fuzzy case also
a soft-soft partition comparison is possible.
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We also notice that Brouwer [1], starting from the contribution of [2,5],
asserts that dot multiplication in Eq. (15) is a questionable method for bond-
ing matrices, so that he suggests to normalize the multiplication using cosine
similarity, that is: cos(v, w) = v·w

|v|·|w| .

Proposition 4. The computational cost of computing the four indices Wf (a),
Wf (b), Wf (c),Wf (d) is Θ(K · N2), where N is the number of instances and K
is the number of clusters.

Proof (sketch). Let D(i) be a N ×K matrix represnting the membership matrix.
Let M be the N × K matrix obtained as a results of the rough clustering algo-
rithm. The cost to obtain the corresponding D can be calculated to be Θ(N ·K).
This is the substantial overhead introduced by our approach. The rest of the
algorithm is identical to Frigui’s one, whose cost is Θ(K · N2).

4 Experimental Results

At first, we built two simple datasets in order to show that to an evidently better
clustering, there corresponds a value closer to 1 of the indices. Then, we test our
measures on three well-known datasets.

4.1 On the Relationship Between Clustering’s Quality and Indices

We synthesized two 2D datasets that contain the same points and differ only
for the labels. They can be graphically seen in Figs. 2 and 3a, whose difference
is only in the coloring that represents the instance labeling. Clearly, the first
dataset is easy to cluster whereas the second one represents a more challenging
task. We applied Lingras and West’s rough k-means [11] to both dataset. In the
simplest case, the obtained cluster coincides with the original dataset, hence all
indices have 1 as a result. The clustering relative to the second dataset is shown
in Fig. 3b, where each color represents a different cluster.

The values of all the indices are in this case less than one, thus showing that
they correctly measure the performances of the clustering algorithm.

Fig. 2. First dataset, the clustering result is identical (Color figure online)
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Fig. 3. Original dataset and clustering result. The values of the indices are: Rand =
0.663, Jaccard = 0.290, Fowlkes-Mellows = 0.450. (Color figure online)

4.2 First Application

We have tested our indices on three well-known UCI datasets [3]: Iris, Wine and
Glass, whose characteristics are summarized as follows:

– Iris: 150 instances, 4 continuous attributes, 3 classes
– Wine: 178 instances, 13 numeric attributes, 3 classes
– Glass: 214 instances, 10 continuous attributes, 7 classes

We used three versions of rough k-means implemented in the R package Soft-
Clustering [15]:

– RoughKMeans LW: Lingras & West Rough k-Means [11]
– RoughKMeans PI: PI Rough k-Means [14]
– RoughKMeans PE: Peters Rough k-Means [13]

In all the three algorithms, we set as number of clusters the number of classes
of the datasets. We split the dataset into train and test partitions, taking ran-
domly 70% and 30% of the dataset. The same data have been used to learn and
test all the algorithms.

In Tables 1, 2 and 3, we report the obtained results of our indices and also of
Brouwer “normalized” index: LW stands for results of LW algorithm measured
with our indices and LW-Brouwer with Brouwer index, similarly for the other
algorithms.

These first results make evident that it is now possible to compare the perfor-
mances (in presence of a gold standard) of different rough clustering methods.
Though it is out of scope of this paper to establish which (and under which
conditions) algorithm is better, we can see from these experiments that different
patterns exist according to the three datasets:



External Indices for Rough Clustering 389

– LW has better performances in the IRIS case;
– for the wine and glass datasets, all three algorithms have similar performances,

with LW slightly better in the wine case w.r.t to Jaccard and Fowlkes-Mallows
indices.

Table 1. Clustering results on Iris vs Iris partitions, FM stands for Fowlkes-Mallows.

a b c d Rand Jaccard FM

LW 239.25 82.75 79.50 588.50 0.84 0.60 0.75

LW-Browuer 245.30 76.70 85.92 582.08 0.84 0.60 0.75

PI 262.83 59.17 255.33 412.67 0.68 0.46 0.64

PI-Browuer 293.62 28.38 269.97 398.03 0.70 0.50 0.69

PE 260.83 61.17 255.33 412.67 0.68 0.45 0.64

PE-Browuer 267.25 54.75 265.18 402.82 0.68 0.46 0.65

Table 2. Clustering results on wine vs wine partitions

a b c d Rand Jaccard FM

LW 384.00 88.00 315.75 643.25 0.72 0.49 0.67

LW-Browuer 390.21 81.79 321.59 637.41 0.72 0.49 0.67

PI 296.50 175.50 218.50 740.50 0.72 0.43 0.60

PI-Browuer 314.62 157.38 242.66 716.34 0.72 0.44 0.61

PE 291.50 180.50 224.75 734.25 0.72 0.42 0.59

PE-Browuer 312.52 159.48 252.23 706.77 0.71 0.43 0.61

Table 3. Clustering results on glass vs glass partitions

a b c d Rand Jaccard FM

LW 224.73 244.27 360.93 1 250.08 0.71 0.27 0.43

LW-Browuer 244.18 224.82 424.41 1 186.59 0.69 0.27 0.44

PI 202.25 266.75 334.44 1 276.56 0.71 0.25 0.40

PI-Browuer 223.08 245.92 400.62 1 210.38 0.69 0.26 0.41

PE 198.92 270.08 334.83 1 276.17 0.71 0.25 0.40

PE-Browuer 214.01 254.99 391.17 1 219.83 0.69 0.25 0.40

If we analyze the results of the two families of indices (our vs Brouwer), they
are rather similar, that is, the Brouwer normalization factor does not influence
the results in the analyzed cases. Of course a deeper investigation, both theo-
retical and practical, is needed in order to establish the non-influence of this
normalization factor.
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5 Conclusions

In this work, we extend the classical indices for external clustering evaluation to
the case of rough clustering. We showed that:

– the new indices are theoretically sound: the greater value they have, the closer
is the clustering to the gold standard;

– they can be seen as a particular case of Frigui indices for fuzzy clustering,
thus opening the possibility to have a unique framework to compare rough
and fuzzy clustering.

– they can be successfully used in practice to compare different rough clustering
algorithms.

As a future work, we plan to perform more experiments in order to test
the scalability of the algorithms to compute the indices and to better compare
the different rough and also three-way [19] clustering algorithms. Further we
will exploit the possibility to use the Frigui indices to compare rough and fuzzy
clustering methods. Finally, the indices should be extended to compare rough-
rough partitions in order to use them also in case that the gold standard is not
a hard partition.

Acknowledgments. The present work has been developed under the Pollicina
project, which is supported by the Regional Operational Program of the European
Fund for Regional Development 2014–2020 (POR FESR 2014–2020).
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Abstract. In the article a dispersed system with Pawlak’s approach to
conflict analysis is used. This system was proposed in a previous work.
The novelty that is proposed in this paper is the use of the pairwise com-
parison method in this system. In the system, at first coalitions of local
bases are determined with using Pawlak’s approach. Based on an aggre-
gated knowledge, which is defined for a coalition, a pairwise comparison
matrix is generated. Then the aggregation of the matrices is realised.
Final decisions are made using the row geometric mean method. The
proposed approach was tested using two dispersed data sets. Some con-
clusions are presented in this paper.

Keywords: Dispersed decision-making system · Conflict analysis
Pawlak’s model · Pairwise comparison · Geometric mean

1 Introduction

The use of dispersed knowledge that is available from many different sources
is considered in this paper. We assume that knowledge is gathered in a set of
local decision tables. We do not assume any relations between the sets of objects
or the set of attributes of the local tables. The dispersed system with Pawlak’s
model, which was proposed in the previous work, is considered in this article. In
the paper [12] three approaches of using Pawlak’s model in a dispersed decision
system were discussed, however, it was shown that one of them gives the best
results. Therefore, this approach is used in this work. The novelty that is pro-
posed in the study is the use of the pairwise comparison method in this system.
The classification process of the proposed model can be described in a few steps.
Based on each local table, the classification of object is made. Then, using the
conflict analysis method that is based on Pawlak’s approach, coalitions of local
tables are created. An aggregated decision table is generated for each coalition.
Based on the aggregated table, a pairwise comparison matrix is determined.
c© Springer Nature Switzerland AG 2018
H. S. Nguyen et al. (Eds.): IJCRS 2018, LNAI 11103, pp. 392–404, 2018.
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Then the matrices obtained for all coalitions are aggregated. Two aggregation
methods are considered in this paper – based on the geometric mean and based
on the arithmetic mean. Global decisions are made using the aggregated matrix
and the row geometric mean method.

The problem of simultaneous use of knowledge that is available in separate
data sets is discussed in the context of various computer science problems such as
multiple classifier systems [9,10], distributed decision–making [4,15,16], group
decision–making [2,7] and data science [8,11]. The model that is considered in
this work is not directly related to any of these issues. Of course, the issue of
the simultaneous application of knowledge from various data sets is the com-
mon denominator of this study and the approaches mentioned above, but these
approaches differ in terms of their applications and assumptions. First of all, in
the approach that is considered here, the main goal is to use knowledge that is
predetermined and given in a dispersed form – the process of knowledge disper-
sion is not one of the stages of the model building process. Another important
difference is its structure. In the system that is considered, the relations that
occur between the base classifiers when making decisions for a given object are
analysed. A dynamic structure is used – the classifiers are reorganised dynam-
ically – and for each new case a different configuration of classifiers is created.
This approach is rather unique and distinguishes the system from the approaches
that are known from the literature.

An important concept that is considered in this paper, is the group decision
making approach that use geometric mean [5]. It is a technique that is used
in pairwise comparison problems, which has very reasonable properties [3]. In
this method, the preferences of decision-makers are represented in the form of a
numerical answer to the question how much the first alternative is better than
the second alternative.

The paper is organised as follows. The second section briefly describes the way
Pawlak’s model is used in a dispersed system (the approach from the paper [12]
that is used in this article). The third section presents the method of generating the
pairwise comparison matrices and the technique of their aggregation. The fourth
section compares the proposed methods with a fusion method known from the lit-
erature. The fifth section describes the experiments that were performed using two
data sets from the University of California, Irvine (UCI) repository and presents
the results. The article concludes with a short summary in the last section.

2 Pawlak’s Model in a Dispersed System

In Pawlak’s model, it is assumed that the set Ag is the set of agents that are
involved in the conflict. An opinion about the issues being discussed is expressed
by each agent by assigning one of three values. −1 means that an agent is against
the issue, 0 means it is neutral and 1 means it is for the issue. This knowledge can
be written in the form of an information system S = (U,A), where the universe
U is the set of agents, A is the set of issues and the set of values of a ∈ A is
equal to V a = {−1, 0, 1}. The value a(x), where x ∈ U, a ∈ A is the opinion of
agent x about issue a.
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In the approach that is considered in this paper, it is assumed that a set
of local decision tables is available based on which classifiers are created. The
classification of a test object is made by such an ensemble of classifiers. In the
classification process, the relations between classifiers are analyzed, coalitions
are formed and a hierarchical structure of the system is created. In [12], the
concepts that were proposed by Pawlak were applied to the analysis of the
relations between classifiers. It was assumed that each of the base classifiers
made an initial classification that was saved as a vector of ranks. In this vector,
one rank was assigned for each decision. More precisely, each classifier is called
an agent ag (the concepts classifier and agent are used interchangeably here). It
is assumed that for a classified object x and for each classifier agi, a vector of
ranks [ri,1(x), . . . , ri,c(x)], where c is the number of decision classes, is generated.
For this purpose, the m1 nearest neighbors’ classifier is used. In order to apply
Pawlak’s model, an information system is generated based on these vectors of
ranks. The universe in the information system is equal to the set of classifiers
and the set of issues that are being considered by the classifiers is equal to the
set of decision classes. The function a : U → {−1, 0, 1} for each a ∈ A is defined
in the following way

a(ag) =

⎧
⎪⎨

⎪⎩

1 if rag,a(x) = 1
0 if rag,a(x) = 2
−1 if rag,a(x) > 2

This means that agents are favourable only to the decision that received the
highest rank – Rank 1. Agents are neutral to the decisions that received Rank
2. For all of the other decision values, the agents are against.

In order to determine the coalitions of agents, the conflict function is used.
The conflict function ρB : U × U → [0, 1] for the set of issues B ⊆ A is defined
as follows:

ρB(x, y) =
card{δB(x, y)}

card{B} ,

where δB(x, y) = {a ∈ B : a(x) �= a(y)}. When we consider the set of all of the
attributes A, we write in short ρ(x, y).

We can define the relations between agents by taking into account a set of
attributes. A pair x, y ∈ U is said to be:

– allied R+(x, y), if ρ(x, y) < 0.5,
– in conflict R−(x, y), if ρ(x, y) > 0.5,
– neutral R0(x, y), if ρ(x, y) = 0.5.

Set X ⊆ U is a coalition if for every x, y ∈ X, R+(x, y) and x �= y.
The classifiers are combined into coalitions as was described above. Then, the

common knowledge of classifiers that belongs to one coalition is generated. The
method of the elimination of inconsistencies in the knowledge is used for this
purpose. One decision table is generated based on relevant objects from all of
the decision tables from one coalition. The set of relevant objects is the set of m2

objects with the greatest similarity to the test object. As was described above,
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the coalitions of classifiers are generated dynamically. This means that another
set of coalitions is determined for each new case. In addition, new aggregated
decision tables are generated for each new object. This approach ensures that the
aggregated knowledge is relevant to the issue that is currently being considered.
For more details, please refer to [13]. Based on each aggregated decision table,
a c dimensional vector of values is generated. The m3 nearest neighbors method
is used to do this. The vector’s coordinate is equal to the average similarity of
m3 nearest neighbors from a given decision class to a classified object. These
vectors are used in order to generate a pairwise comparison matrix, which are
described in the following section.

3 Pairwise Comparison Matrices and Row Geometric
Mean Method

For j-th coalition of local decision tables, a vector of values

μj(x) = [μj,1(x), . . . , μj,c(x)]

is generated as it was described above. Based on this vector, for each coalition,
a comparison matrix is generated.

Pairwise comparison matrix for j-th coalition is a martix C(j) = [c(j)ik ] ∈ Rc×c
+

in which c
(j)
ik = 1

c
(j)
ki

for all 1 ≤ i, k ≤ c, where c is the number of decision classes.

In this study, it is proposed that, for j-th coalition, the pairwise comparison
matrix is calculated according to the formula

c
(j)
ik =

μj,i(x)
μj,k(x)

for all 1 ≤ i, k ≤ c and μj,i(x) �= 0, μj,k(x) �= 0.

If any of the values μj,i(x) or μj,k(x) is equal to zero, then instead of zero we
use the value 0.001 in the formula above.

In this way, we get as many pairwise comparison matrices as many coalitions
were defined. Then the matrices are aggregated into one matrix. There are two
basic ways to aggregate individual preferences into a group preference [6]. Which
method should be used depends on whether the group wants to act together as
a unit or as separate individuals. In the first case rather the geometric mean
should be used, in the second case it is better to use the arithmetic mean.
An aggregation method that is equivalent to calculating the geometric mean
from all corresponding elements of the matrices is defined next. Let C(j), where
1 ≤ j ≤ m and m is the number of coalitions, be a set of comparison matrices
for all coalitions. An aggregated comparison matrix is equal to

C = C(1) � . . . � C(m) =
[

m

√

c
(1)
ik . . . c

(m)
ik

]

∈ Rc×c
+

In [1], it was proved that the aggregated matrix is also a pairwise comparison
matrix, i.e. it fulfills the condition cik = 1

cki
for all 1 ≤ i, k ≤ c. In addition,
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multiplying all comparison matrices for coalitions by the same scalar results in
an adequate change in the aggregated matrix.

In an aggregation method that is based on the arithmetic mean, an aggre-
gated matrix is equal to

C = C(1) ⊕ . . . ⊕ C(m) =
[
c
(1)
ik + . . . + c

(m)
ik

m

]

∈ Rc×c
+

This matrix does not have to be a pairwise comparison matrix. However, both
methods (the geometric mean and the arithmetic mean) satisfy the Pareto prin-
ciple, i.e. if c

(j)
ik ≥ c

(j)
i′k′ for all 1 ≤ j ≤ m then

∏m
j=1 c

(j)
ik ≥ ∏m

j=1 c
(j)
i′k′ and also

∑m
j=1 c

(j)
ik ≥ ∑m

j=1 c
(j)
i′k′ .

In the next step, based on the aggregated matrix, a weight vector w = [wi] ∈
Rc

+,
∑c

i=1 wi = 1, is defined according to the row geometric mean method.
The row geometric mean method is the mapping C → wRGM (C) such that the
weight vector wRGM (C) is the unique solution of the optimization problem:

min
w∈Rc

c∑

i=1

c∑

k=1

[

log cik − log
( wi

wk

)]2

The solution to the above formula is the vector wRGM = [wRGM
i ] defined as

follows

wRGM
i (C) =

∏c
k=1 c

1/c
ik

∑c
j=1

∏c
k=1 c

1/c
jk

The weight vector reflect the preferences of all agents. The higher the value
wRGM

i is, the more preferred is the i-th decision class for the decision-makers.
The global decisions taken by all agents are defined as the decisions with the
maximum value of the vector’s wRGM coefficients.

In the next section, it will be justified that in the case considered in the paper
– when the pairwise comparison matrices are defined based on the vectors that
were generated for the aggregated tables – the use of aggregation based on the
geometric mean and the row geometric mean method is equivalent to the fusion
method from the measurement level – the product rule. However, the use of
aggregation based on the arithmetic mean and the row geometric mean method
is not equivalent to any, known from the literature, fusion method and provides
an interesting combination of two approaches (sum and product).

4 Comparison of the Aggregation Method Based
on the Arithmetic Mean and on the Geometric Mean

In this section, a simple calculations and an example will be presented, which
show differences and similarities between the proposed above method that uses
the pairwise comparison matrices and aggregation based on the geometric mean
or the arithmetic mean and a fusion method known from the literature.
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The product rule is well known method for fusion of classifiers’ prediction
[9]. It belong to the measurement level group and consist in performing simple
transformations on vectors generated by the base classifiers. In our case, we use
the vectors that were generated based on the aggregated tables

μj(x) = [μj,1(x), . . . , μj,c(x)], for j-th coalition.

In the product rule the product of the probability values is determined for
each decision class. The set of decisions taken by the dispersed system is the set
of classes that have the maximum of these products

arg max
i∈{1,...,c}

{ ∏

j-th coalition

μj,i(x)
}

.

The product rule is very sensitive to the most pessimistic prediction result. To
eliminate this drawback, for the probability that is equal to 0, the value 10−3 is
used instead.

In the first stage, we will justify that the aggregation based on the geometric
mean with the row geometric mean, in the considered case, is equivalent to the
product rule. Let us assume that

wRGM
i ≤ wRGM

j

for certain decision classes i, j. Because we use the row geometric mean it is
equivalent to

∏c
k=1 c

1/c
ik

∑c
p=1

∏c
k=1 c

1/c
pk

≤
∏c

k=1 c
1/c
jk

∑c
p=1

∏c
k=1 c

1/c
pk

,

where c is the number of decision classes. Because we use the aggregation based
on the geometric mean it is equivalent to

c∏

k=1

cm

√

c
(1)
ik . . . c

(m)
ik ≤

c∏

k=1

cm

√

c
(1)
jk . . . c

(m)
jk ,

where m is the number of coalitions. According to the definition of c
(j)
ik given

earlier we have
c∏

k=1

μ1,i(x)
μ1,k(x)

. . .
μm,i(x)
μm,k(x)

≤
c∏

k=1

μ1,j(x)
μ1,k(x)

. . .
μm,j(x)
μm,k(x)

Thus, this is equivalent to

m∏

p=1

μp,i(x) ≤
m∏

p=1

μp,j(x)

When we use the aggregation based on the arithmetic mean and the row
geometric mean, the j-th decision is preferred over the i-th decision (inequality
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wRGM
i ≤ wRGM

j is fulfilled, as the row geometric mean is used in the last step)
means that

c∏

k=1

c

√

c
(1)
ik + . . . + c

(m)
ik

m
≤

c∏

k=1

c

√

c
(1)
jk + . . . + c

(m)
jk

m

Thus, we have
c∏

k=1

m∑

p=1

μp,i(x)
μp,k(x)

≤
c∏

k=1

m∑

p=1

μp,j(x)
μp,k(x)

For example, for two coalitions m = 2 and two decision classes c = 2, this is
equivalent to the following

μ2
1,i(x)μ2,1(x)μ2,2(x) + μ2

2,i(x)μ1,1(x)μ1,2(x) + μ1,i(x)μ2,i(x)μ1,2(x)μ2,1(x)
+μ1,i(x)μ2,i(x)μ1,1(x)μ2,2(x) ≤ μ2

1,j(x)μ2,1(x)μ2,2(x) + μ2
2,j(x)μ1,1(x)μ1,2(x)

+μ1,j(x)μ2,j(x)μ1,2(x)μ2,1(x) + μ1,j(x)μ2,j(x)μ1,1(x)μ2,2(x)

If we put, for example, i = 1 and j = 2 we have

μ2
1,1(x)μ2,1(x)μ2,2(x) + μ2

2,1(x)μ1,1(x)μ1,2(x)
≤ μ2

1,2(x)μ2,1(x)μ2,2(x) + μ2
2,2(x)μ1,1(x)μ1,2(x)

Such formulas can be interpreted as calculating the probability for a given deci-
sion class determined by a given coalition in comparison to the probabilities that
were designated by the opposite coalition for both decision classes. This method
is not equivalent to any of the methods that are known from the literature. In
the example below, it will be shown that in some cases it has a certain advantage
over and the product rule.

Example 1. Let us assume that two coalitions were created for the set of base
classifiers (agents). This means that two aggregated decision tables were created,
one for each coalition. Let us assume that the decision attribute that appears
in these tables have four decision classes c = 4. Based on each aggregated table,
a four-dimensional vector is created. The i-th coordinate of such a vector cor-
responds to the i-th decision value and is equal to the average similarity of m3

nearest neighbors from a given decision class to a classified object. Due to the
limited volume of the article, we will not discuss the entire process of coalitions
creation and we will not present the form of decision tables of agents or how the
aggregated tables are generated. All this was described in the papers [12,14]. We
will only discuss the process of generating one vector based on these aggregated
tables.

Let us assume that we have two aggregated tables, with binary conditional
attributes, each for one coalition (Table 1). A classified object x is as follows
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a b c e f g h i j k l m

x 1 1 1 0 1 0 1 1 0 0 1 0

Table 1. Aggregated tables

Condition Decision
U1 a b c e f d
x1
1 1 1 1 1 0 1

x1
2 1 0 0 0 1 2

x1
3 0 0 1 0 1 3

x1
4 1 0 0 1 0 4

Condition Decision
U2 b e f g h i j k l m d
x2
1 1 1 0 1 0 0 1 1 0 0 1

x2
2 0 1 0 1 0 0 1 1 0 0 2

x2
3 1 1 0 1 0 0 1 1 0 1 3

x2
4 1 0 1 0 1 1 1 1 0 1 4

Based on the similarity of the classified object to the objects from the aggre-
gated tables, the coalitions have generated the following two vectors

μ1(x) = [μ1,1(x), μ1,2(x), μ1,3(x), μ1,4(x)] = [0.6, 0.6, 0.6, 0.2]

μ2(x) = [μ2,1(x), μ2,2(x), μ2,3(x), μ2,4(x)] = [0.2, 0.1, 0.1, 0.6]

These vectors can be interpreted as follows. The first coalition is the most con-
vinced that the test object should be classified to the first, the second or the
third decision classes μ1,1(x) = μ1,2(x) = μ1,3(x) = 0.6. Furthermore, the first
coalition estimates that the object is the least suited to the fourth decision class.
The second coalition believes that the test object should be classified to the
fourth decision class with the first decision class on the second place.

For the product rule, the following vector will be generated

[0.12, 0.06, 0.06, 0.12]

Thus, according to this method (so also for the aggregation based on the geomet-
ric mean with the row geometric mean, since these two methods are equivalent)
the first and the fourth decisions will be taken.

Now we consider the aggregation based on the arithmetic mean with the row
geometric mean. The pairwise comparison matrices, calculated according to the
formula C(j) =

[
µj,i(x)
µj,k(x)

]

1≤i,k≤c
, for the first and the second coalitions are as

follows

C(1) =

⎡

⎢
⎢
⎢
⎣

1 1 1 3
1 1 1 3
1 1 1 3
1
3

1
3

1
3 1

⎤

⎥
⎥
⎥
⎦

C(2) =

⎡

⎢
⎢
⎢
⎣

1 2 2 1
3

1
2 1 1 1

6
1
2 1 1 1

6

3 6 6 1

⎤

⎥
⎥
⎥
⎦
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The aggregated matrix, calculated according to the aggregation method that is
based on the arithmetic mean, is equal to

C =

⎡

⎢
⎢
⎢
⎣

1 3
2

3
2

5
3

3
4 1 1 19

12
3
4 1 1 19

12
5
3

19
6

19
6 1

⎤

⎥
⎥
⎥
⎦

Using the row geometric mean method we have

wRGM = [0.25, 0.19, 0.19, 0.37]

For example, the value wRGM
1 was calculated as follows

wRGM
1 =

4

√

1 · 3
2 · 3

2 · 5
3

4

√

1 · 3
2 · 3

2 · 5
3 + 4

√
3
4 · 1 · 1 · 19

12 + 4

√
3
4 · 1 · 1 · 19

12 + 4

√
5
3 · 19

6 · 19
6 · 1

Thus, the fourth decision is more preferred than the first decision.
When we once again analyze the vectors that were generated by the coali-

tions μ1(x) and μ2(x), it can be seen that the first coalition made ambiguous
decision. It can therefore be concluded that this coalition was not sure about
taken decision. Therefore, perhaps this decision is less important. On the other
hand, the second coalition was unambiguous when making decision. Therefore,
perhaps the decision of this coalition should be more significant. Such approach
was realized only in the method using the aggregation based on the arithmetic
mean with the row geometric mean method.

5 Experimental Analysis

In the experimental part, tests on the two data sets that have been dispersed
into five different ways are presented. The author does not have access to the
dispersed data that are stored in the form of a set of local decision tables, and
therefore, some benchmark data that were stored in a single decision table were
used. In general, the system with Pawlak’s conflict model will be tested in this
part (proposed in the paper [12] and described in Sect. 2). The results that were
obtained using the system with the aggregation based on the arithmetic mean
with the row geometric mean method are compared with the results using the
system with the product rule.

Data from the UCI repository were used in the experiments – the Soybean
data set and the Vehicle Silhouettes data set. The test set for the Soybean data
set was obtained from the repository (specially prepared by the founders of this
data set). For the Vehicle Silhouettes data set the test set is not available in the
repository. Therefore, it was divided in a random way in the proportion: 70%
the training set, 30% the test set.
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Table 2. Data set summary

Data set # Training
set

# Test
set

# Conditional
attributes

# Decision
classes

Soybean 307 376 35 19

Vehicle Silhouettes 592 254 18 4

Table 2 presents a numerical summary of the data sets.
Each of the data sets was divided into local decision tables in five different

ways. A different number of decision tables were considered in each of these
variants – from three local tables to eleven local tables, the number of tables was
increased by two. The smallest number of tables is three, because for a smaller
number there was no point in studying dependencies and building coalitions of
local tables. The largest number of tables is eleven, because with the available
set of attributes, the division into a larger number of tables would be impossible.

In the system considered in this paper, there are some parameters that were
described in Sect. 2. Their symbols and meaning are repeated below

– m1 – the parameter that determines the number of relevant objects that are
used in the process of generating coalitions;

– m2 – the parameter of the approximated method of the aggregation of the
decision tables;

– m3 – the parameter that determines the number of relevant objects that are
used in the process of generating the vectors of the values that are based on
the aggregated tables.

As was mentioned in Sect. 4, the global decisions taken by all agents are
defined as the decisions with the maximum value of the vector’s wRGM coef-
ficients. It may happen that many different decisions have the same maximum
value in the wRGM vector. Therefore, the system generates a set of global deci-
sions and special measures are needed to determine the quality of the classifica-
tion. In order to compare the quality of the classification, the following measures
are used:

– estimator of classification error e in which an object is considered to be prop-
erly classified if the decision class used for the object belonged to the set of
global decisions generated by the system;

– estimator of classification ambiguity error eONE in which object is considered
to be properly classified if only one, correct value of the decision was generated
to this object;

– the average size of the global decisions sets dWSDdyn
Ag

generated for a test set.

Obviously, if only one decision is generated for each test object, both e and eONE

measures are equivalent to the error rate. However, if the decisions made by the
system are ambiguous, none of these measures is equal to the error rate and each
of them defines a completely different value.
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Parameters values from the set m1,m2,m3 ∈ {1, . . . , 10} were tested. Then,
the minimum value of the parameters are chosen, which results in the lowest
value of the estimator of the classification error to be reached.

The results of experiments with the Soybean data set are presented in Table 3.
The results for the Vehicle Silhouettes data set are given in Table 4. These results
were obtained for the system with Pawlak’s conflict model and the row geometric
mean method and the system with Pawlak’s conflict model and the product rule.
In the tables the following information is given: the number of decision tables
(# Local tables); the optimal parameters values m1, m2 and ε (Parameters); the
measures to determine the quality of the classification: e, eONE and dWSDdyn

Ag
.

Based on the results presented in the tables above, it can be concluded that
the use of aggregation based on the arithmetic mean with the row geometric
mean method gives certainly not worst quality of inference than the product
rule. In four out of ten cases better results were obtained. In the remaining
cases, the same results were obtained.

Table 3. Summary of experiments results with the Soybean data set

Aggregation based on the
arithmetic mean with the row
geometric mean

Product rule (equivalent to
aggregation based on the
geometric mean with the row
geometric mean)

# Local
tables

m1/m2/m3 e eONE dWSDAg m1/m2/m3 e eONE dWSDAg

3 2/3/6 0.096 0.106 1.011 2/3/6 0.096 0.106 1.011

5 1/2/1 0.114 0.170 1.082 1/2/1 0.114 0.168 1.080

7 1/10/1 0.109 0.218 1.146 1/10/1 0.114 0.218 1.141

9 5/3/1 0.085 0.189 1.122 2/3/1 0.088 0.162 1.093

11 2/4/1 0.120 0.210 1.122 2/5/1 0.128 0.202 1.093

Table 4. Summary of experiments results with the Vehicle Silhouettes data set

Aggregation based on the
arithmetic mean with the row
geometric mean

Product rule (equivalent to
aggregation based on the
geometric mean with the row
geometric mean)

# Local
tables

m1/m2/m3 e eONE dWSDAg m1/m2/m3 e eONE dWSDAg

3 9/10/4 0.220 0.220 1 9/10/4 0.224 0.224 1

5 3/4/10 0.303 0.303 1 3/4/10 0.303 0.303 1

7 1/5/6 0.276 0.276 1 1/5/6 0.276 0.276 1

9 1/4/4 0.335 0.335 1 1/3/8 0.335 0.335 1

11 3/2/3 0.280 0.280 1 3/2/3 0.280 0.280 1
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Of course, in this paper only preliminary experiments were presented. Fur-
ther studies are necessary. However, as was shown in the example, the proposed
method certainly takes into account a wider aspect when making group decision.
Because it considers the value of the vector in relation to the values that were
designated for other decisions by other coalitions.

6 Conclusions

In this article, the approach that are known from group decision making (pairwise
comparison) was adopted to the system with dispersed knowledge. A method for
creating pairwise comparison matrices based on vectors generated by coalitions
was proposed. Two approaches to aggregate these matrices (based on the geo-
metric mean and based on the arithmetic mean) were considered. A weight vec-
tor is generated based on the aggregated matrix using the row geometric mean
method. It was shown that the aggregation based on the geometric mean with
the row geometric mean is equivalent to the product rule. It was also justified
that in the aggregation based on the arithmetic mean with the row geometric
mean, other decisions made by other coalitions are taken into account when
making global decisions. Based on the presented experiments it was concluded
that the aggregation based on the arithmetic mean provides better results in
some cases.
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D., Śl ↪ezak, D., Zielosko, B. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10313, pp.
249–262. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60837-2 21

13. Przyby�la-Kasperek, M., Wakulicz-Deja, A.: The strength of coalition in a dispersed
decision support system with negotiations. Eur. J. Oper. Res. 252, 947–968 (2016)

14. Przyby�la-Kasperek, M., Wakulicz-Deja, A.: A dispersed decision-making system -
the use of negotiations during the dynamic generation of a systems structure. Inf.
Sci. 288, 194–219 (2014)

15. Schneeweiss, C.: Distributed decision making. Springer, Berlin (2003)
16. Schneeweiss, C.: Distributed decision making - a unified approach. Eur. J. Oper.

Res. 150(2), 237–252 (2003)

https://doi.org/10.1007/978-3-319-60837-2_21


Exploring GTRS Based Recommender
Systems with Users of Different

Rating Patterns

Bingyu Li(B) and JingTao Yao

Department of Computer Science, University of Regina, Regina, SK S4S0A2, Canada
{li970,jtyao}@cs.uregina.ca

Abstract. Recommender systems predict a new user’s opinion on a col-
lection of items by analyzing preference information of similar users.
The Pawlak rough set (PRS) model is one of the effective tools to make
personalized recommendations. The game-theoretic rough set (GTRS)
model improves the quality of PRS based recommendations by deter-
mining a pair of thresholds that could achieve a tradeoff between two
prominent recommendation evaluation metrics, accuracy and coverage.
It should be noted that the performance of a recommendation algorithm
may be affected by the rating patterns of the users in the considered
dataset. The aim of this research is to evaluate how the performance
of the PRS based and the GTRS based recommendations vary on user
groups with different rating patterns. We conducted comparative exper-
iments on five different data samples. The experimental results suggest
that compared to the PRS model, the GTRS model could not only obtain
an improvement in coverage level, but also achieve an equal accuracy
level on each of the considered data samples. In particular, it achieved
a bigger advantage over the PRS model on user groups that make a
smaller number of rating records. This performance difference indicates
that compared to the PRS model, the GTRS model is a better solution to
make high quality personalized recommendations on small-scale datasets
with fewer rating records stored in the database.

Keywords: Recommender systems · Rough sets
Game-theoretic rough sets

1 Introduction

Recommender systems predict a user’s preference among a collection of items
by aggregating and analyzing suggestions from similar users [1]. Through the
use of data mining techniques, recommender systems help users to find items
that they are interested in without searching through the enormous amount of
information on the internet [1].

Different approaches are involved in the design phase of a recommender sys-
tem. Collaborative filtering, content based filtering, knowledge based filtering
c© Springer Nature Switzerland AG 2018
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and demographic based filtering are by far the most commonly used techniques
in the field of recommender system research [3]. Collaborative filtering (CF) pre-
dicts a user’s opinion on an item by combining similar users’ opinions on this
specific item [15]. For the reason that it is easy to implement and highly effective,
CF is the most popular one among all these approaches [6].

The methods involved in the implementation phase of a CF recommender
system could be further divided into two categories: memory-based methods
and model-based methods [19]. Memory-based methods maintain a database to
store rating information from all users and make calculations across the whole
database whenever a prediction needs to be made [8]. Memory-based methods are
widely implemented in e-commerce websites as they take less effort to implement
and make moderately accurate recommendations at a low cost [16]. However, the
performance of memory-based methods rely highly on the rating density of the
database, as the task of finding similarities among different users gets harder
when fewer rating records are around [5].

On the other hand, model-based methods transfer the existing information
in the database into a preference model through the use of data mining algo-
rithms. When a new user’s information is input into the system, the system will
approach to the preference model instead of the original database to generate
personalized recommendations. It is believed that by using training data to con-
struct a preference model beforehand and making recommendations with the
constructed preference model, model-based algorithms are able to overcome the
limitation of memory-based algorithms.

Different data mining models are used to predict user preference in model-
based CF recommender systems. Some of the well-known models that are com-
monly used include the Bayesian belief nets model, the clustering model, the
latent semantic CF model, and the Pawlak rough set (PRS) model [10].

The PRS model [11] is a powerful mathematical tool to deal with incomplete
information. It forms equivalence classes with users that share similar interests
on training data, and makes predictions with these formed equivalence classes
on test data [17]. One limitation of the PRS based recommendations is that as
the model is intolerant to errors, its predictions are only applicable for a limited
portion of users. However, this limitation could be eliminated through the use
of the game-theoretic rough set (GTRS) model [18].

As a quantitative generalization of the PRS model [13], the GTRS model
helps the PRS model with its error-intolerance which further broadens its prac-
tical application. It formulates a competitive game between two of the most
prominent recommendation evaluation metrics, accuracy and coverage. An opti-
mal threshold pair (α′, β′) that achieves a tradeoff between the two considered
metrics will be returned once the competitive game is completed. The optimal
threshold pair is then used to determine the three rough set regions and to carry
out rough set analysis.

As the rating pattern of the considered user group may have an impact on
the performance of a CF recommendation algorithm [4], we run a comparative
study between the PRS and the GTRS model using various data samples with
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different rating patterns. The two considered models are used to predict user
preference on five featured data samples formed by users with different number
of rating record respectively. The recommendation quality achieved by the two
models are evaluated and compared with each other to address the effect that
rating patterns have on the performance of a recommendation algorithm.

The remainder of the paper consists of 5 different parts. Section 2 introduces
some important concepts about the PRS model and how it is used to make per-
sonalized recommendations. Section 3 gives an insight of how the GTRS model
is used to formulate a competitive game between the two recommendation eval-
uation metrics, accuracy and coverage. In Sect. 4, some data preprocessing and
partitioning are performed on the original dataset to form user groups with users
that have a certain range of rating records. In Sect. 5, the PRS model and the
GTRS model are used to predict user preference on the featured user groups
formed in Sect. 4 respectively. Performance evaluations are carried out to com-
pare the recommendation quality of the two models with each other as well as
to address the problem of how their performance vary on user groups with dif-
ferent rating patterns. Finally a summary, a conclusion, and limitations of our
approach are discussed in Sect. 6.

2 PRS Based Recommendations

The PRS model approximates a set C by a pair of lower and upper approxima-
tions, apr(C) and apr(C) [2]. Let U be a set called universe, and let [x] be an
equivalence class formed based on an equivalence relation on U [12]. Set C that
is being approximated is normally a subset of set U . The three rough set regions,
the positive, the negative and the boundary regions are calculated as follows,

POS(C) = apr(C) = {x ∈ U | [x] ⊆ C} (1)

NEG(C) = apr(C)c = U − {x ∈ U | [x] ∩ C �= ∅} (2)

BND(C) = apr(C) − apr(C) = {x ∈ U | [x] ∩ C �= ∅} − {x ∈ U | [x] ⊆ C} (3)

The example below demonstrates how the PRS model could be used to pre-
dict user preference in a CF recommender system. Table 1 is a movie rating table
constructed using the rating records in the MovieLens dataset. Let us consider a
user set E with a total of 16 users U1, U2, ..., U16, i.e., E = {U1, U2, ..., U8}. The
considered movie set M = {Movie1,Movie2, ...,Movie5} are made up by five
different movies that have been rated by all the users in E. Each cell in Table 1
describes a rating record made by a specific user with regard to a specific movie.
For instance, the first cell in the first row represents a rating record made by
user U1 with regard to Movie1. For each user, a positive rating to a movie is
considered to be a “like” and is transferred into a “+” in the rating table. A
negative rating to a movie is considered to be a “dislike” and is transferred into
a “–” in the rating table.
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Table 1. A movie rating table

Movie1 Movie2 Movie3 Movie4 Movie5

U1 − + + + −
U2 + + − + +
U3 + − − − +
U4 − + + + −
U5 + − − − −
U6 + − + − +
U7 + − − − −
U8 + − + − +

The goal of the PRS analysis is to make preference predictions on Movie5.
Therefore, in the PRS model, Movie1—Movie4 are defined as the conditional
attributes, while Movie5 is defined as the decision attribute. The PRS model
identifies the similarities among different users by classifying users with the same
conditional attribute values into the same equivalence class, as we are assuming
users with the same preference on Movie1—Movie4 might share a similar taste in
movies. For instance, user U1 and U4 both have a negative rating on Movie1 and
positive ratings on Movie2—Movie4. Therefore, they are considered to be similar
with each other and are categorized into the same equivalence class X1. The users
in the user set E are classified into four different equivalence classes X1—X4

according to the rating records they previously made on Movie1—Movie4.

Table 2. Equivalence classes formed based on Table 1

X1 = {U1, U4} X2 = {U2}
X3 = {U3, U5, U7} X4 = {U6, U8}

When new users enter the system, we first identify the equivalence class they
belong to based on the rating records they previously made on Movie1—Movie4.
Then we predict their preference on Movie5 according to which rough set region
their equivalence classes belong to. For instance, equivalence class X1 is less
likely to like Movie5 and should be classified into the negative region, since both
U1 and U4 have a negative rating on this movie. On the other hand, equivalence
class X4 is more likely to like Movie5 and should be classified into the positive
region, since both U6 and U8 have a positive rating on Movie5. However, the
preference prediction of the target user could not be specified if the users in the
equivalence class do not agree with each other with regard to their opinions on
Movie5. For instance, we are unable to tell whether equivalence class X3 likes
Movie5 or not as one of the users in the equivalence class likes the movie while
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the other two do not. In the PRS model, these equivalence classes are classified
into the boundary region, which means the preference of the users that belong to
these equivalence classes could not be predicted. For the PRS model, although
leaving out the equivalence classes in the boundary region reduces the possibility
of it making incorrect recommendations, only being able to make predictions for
a limited portion of users is a drawback in its practical application.

On the other hand, different metrics have been proposed to evaluate the per-
formance of PRS based recommendations, and accuracy and coverage are two
of the most popular ones among all of them [14]. Accuracy computes how close
the recommender system’s predictions are to the actual preference of the tar-
get user [5]. Coverage measures the portion of users for whom recommendations
could be given using only the prediction algorithm [5]. Both accuracy and cov-
erage are the properties we want to pursue in PRS based recommendations, and
we may want to optimize them both at the same time. However, this may not be
possible in many cases. An attempt to increase accuracy might cause a decrease
in coverage, and vice versa [16]. Therefore, instead of trying to optimize both
accuracy and coverage simultaneously, we try to realize a tradeoff between the
two considered attributes. The problem yet to solve is to what degree is this
tradeoff acceptable. As the PRS based recommendations are only applicable for
a limited portion of users, how much sacrifice in accuracy level is acceptable in
order to improve coverage level requires more tradeoff analysis.

3 GTRS Based Recommendations

The GTRS model [20] provides a near optimal solution to this problem by real-
izing the tradeoff through a competitive game formulated between accuracy and
coverage. There are three major components in the competitive game, a set of
players P , a set of strategies S, and a set of payoff functions F [18].

As we are considering a tradeoff between the accuracy and the coverage
of the PRS based recommendations, these two attributes are selected as game
players, i.e., P = {Accuracy, Coverage}. The strategies are a set of moves that
each game player could choose from [18]. In the GTRS model, strategies are
realized by making corresponding adjustments in the thresholds levels [2]. To
better compare the GTRS model with the PRS model, the threshold pair values
in a GTRS based competitive game is initially configured as (α, β) = (1, 0) where
accuracy level is at its highest and coverage level is at its lowest. As a result,
player accuracy and player coverage have three different types of strategies to
choose from, which is to decrease α, to increase β, or to decrease α and increase
β at the same time, i.e., S = {s1, s2, s3}, s1 = α ↓, s2 = β ↑, s3 = α ↓ β ↑.

The payoff functions are used to measure the outcome of a game player
choosing a specific strategy profile [18]. In the rough set model, the metric of
accuracy is defined as the ratio of the number of correctly classified objects in the
positive and negative region to the total number of objects in these two regions.
The metric of coverage is defined as the ratio of the total number of objects in
the positive and negative region to the total number of objects in the universal



410 B. Li and J. Yao

set. Supposing that the threshold pair is configured as (α, β), the payoffs of the
two players fA(α, β) and fC(α, β), i.e., the accuracy and the coverage of the
recommendations are calculated using the following equations [2],

fA(α, β) = Accuracy(α,β) =
| (POSα,β(C) ∩ C) ∪ (NEGα,β(C) ∩ Cc) |

| POSα,β(C) ∪ NEGα,β(C) | (4)

fC(α, β) = Coverage(α,β) =
| POSα,β(C) ∪ NEGα,β(C) |

| U | (5)

After the payoffs of all the strategy profiles have been calculated using the
corresponding payoff functions, the competitive game is completed. A payoff
table like Table 2 will be formed [7]. The rows in Table 3 represent the strategy
selection of player accuracy while the columns describe the strategy selection of
player coverage. Each cell is assigned with a set of payoffs calculated using the
payoff functions with regard to the strategy selections of the two game players.

Table 3. Payoff table for the competitive game between accuracy and coverage

Coverage

s1 = α ↓ s2 = β ↑ s3 = α ↓ β ↑
Accuracy s1 = α ↓ 〈

fA(α ↓↓, β),
fC(α ↓↓, β)

〉
〈
fA(α ↓, β ↑),

fC(α ↓, β ↑)
〉

〈
fA(α ↓↓, β ↑),

fC(α ↓↓, β ↑)
〉

s2 = β ↑ 〈
fA(α ↓, β ↑),

fC(α ↓, β ↑)
〉

〈
fA(α, β ↑↑),

fC(α, β ↑↑)
〉

〈
fA(α ↓, β ↑↑),

fC(α ↓, β ↑↑)
〉

s3 = α ↓ β ↑ 〈
fA(α ↓↓, β ↑),

fC(α ↓↓, β ↑)
〉

〈
fA(α ↓, β ↑↑),

fC(α ↓, β ↑↑)
〉

〈
fA(α ↓↓, β ↑↑),

fC(α ↓↓, β ↑↑)
〉

The Nash equilibrium is calculated by going through each cell in the payoff
table to check if the following conditions hold [18],

for all k �= i, fA(si, sj) ≥ fA(sk, sj); (6)
for all k �= j, fC(si, sj) ≥ fC(si, sk) (7)

The strategy profile (si, sj) that yields the conditions of Nash equilibrium
is selected as the solution to the competitive game. With the calculation of the
optimal strategy profile (si, sj), the corresponding optimal threshold pair (α′, β′)
could be computed. Similar to the PRS model, when new users enter the system,
the GTRS model identifies the appropriate equivalence classes for them based on
the rating records they previously made and makes predictions for them based on
which rough set region their equivalence classes belong to. An optimal accuracy
level and an optimal coverage level could be achieved by determining the three
rough set regions with the GTRS optimal threshold pair (α′, β′).
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4 Data Preprocessing and Partitioning

MovieLens is a website that gathers research data to make personalized recom-
mendations. The MovieLens 1M dataset which consists of 1 million 5-star scale
ratings on 4,000 different movies provided by 6,000 different users, is used to
carry out the comparative evaluation.

Given a dataset, the performance of a CF recommendation algorithm is
affected by the rating pattern of the user group which could be represented
by the number of rating records each user had in the considered data sample [4].
As the number of rating records directly affects the difficulty of finding users
that are similar to the target user, which further affects the performance of a
CF recommendation algorithm. Besides, user groups with more rating records
and user groups with less rating records have different rating behaviours. A user
who tends to make more rating records are more likely to rate items positively,
and a user who tends to make fewer rating records are more likely to rate items
negatively [9].

We partition the data into 5 groups based on number of ratings as we want
to examine model on datasets with different rating patterns. In the MovieLens
dataset, users with a rating record number within the range of 1–50, 51–100,
101–150, 151–200, and 201–250 are selected respectively to form five different
user groups. The rating records in the original dataset are then partitioned into
five data samples according to the formed user groups. The formulation of the
featured data samples, Sample1−Sample5, is described in Table 4.

Table 4. The featured data samples on MovieLens

Sample Sample1 Sample2 Sample3 Sample4 Sample5
Total ratings 40,000 40,000 40,000 40,000 40,000
Total users 1,793 556 325 233 182
Range of rating number 1–50 51–100 101–150 151–200 201–250
Average rating number 22 71 123 172 220

After partitioning the original dataset into featured data samples, for each
data sample, the non-binary scale ratings in the original dataset is transferred
into binary scale ratings. The rating records addressing the top ten most fre-
quently rated movies in each data sample are selected to form equivalence classes,
i.e., to discover similarities among different users. For each data sample, we use
80% of it to train and 20% of it to test.

5 Experimental Results and Analysis

Table 5 and Fig. 1 describe the accuracy performance of the two models on data
samples Sample1−Sample5.
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Table 5. Accuracy of the two prediction algorithms on the featured data samples

Model Sample1 Sample2 Sample3 Sample4 Sample5
GTRS 0.7770 0.6976 0.6160 0.5674 0.5430
PRS 0.7635 0.6898 0.6097 0.5651 0.5414

Fig. 1. Accuracy of the two prediction algorithms on the featured data samples

The accuracy level that the PRS model achieved on the five featured user
groups ranges from 0.5414 to 0.7635, which is equal to 54.14%—76.35% in per-
centage. For the GTRS model, the accuracy level it obtained on these data
samples ranges from 0.5430 to 0.7770, which is equal to 54.30%—77.70% in
percentage. Based on what we can observe from the figure, the accuracy perfor-
mance of the two algorithms have a tight competition with each other on all five
data samples. Since the performance difference between the two models ranges
from 0.16% to 1.35%, it is fair to conclude that the two models achieve an equal
accuracy level on each of the considered data samples.

In terms of accuracy performance variation on user groups with different
rating patterns, the accuracy level of the two considered models both decreases
when making recommendations for user groups with a larger number of rating
records. For instance, the PRS model achieves an accuracy level of 76.35% on
Sample1, while on Sample5 it achieves an accuracy level of 54.14%. For the
GTRS model, the accuracy level it obtains on Sample1 is 77.70%, while on
Sample5 it obtains an accuracy level of 54.30%.

One reason accounting for this performance decrease is that given a dataset,
there are always more users in user groups with a smaller number of rating
records than in user groups with a bigger amount of rating records. The equiv-
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alence classes formed based on data samples like Sample5 are generally smaller
than the ones formed on data samples like Sample1. With less similiar users to
learn rating patterns from, the prediction of user preference become less accurate.
The other reason accounting for this performance decrease is that the coverage
levels on user groups with larger number of rating records are generally higher
than user groups with smaller number of rating records. This means on user
groups with a large number of rating records, preference predictions are made
available for more users. However, both accuracy and coverage have to be consid-
ered in association with each other, as an increase in one attribute will result in
a decrease in the other. Therefore, as recommendations could be made for more
users on user groups with a larger number of rating records, these recommenda-
tions are not as accurate as the ones on user groups with a smaller number of
rating records.

The coverage performance of the two models on Sample1 −Sample5 are
described in Table 6 and Fig. 2.

Table 6. Coverage of the two prediction algorithms on the featured data samples

Model Sample1 Sample2 Sample3 Sample4 Sample5
GTRS 0.8761 0.9634 0.9627 0.9665 0.9692
PRS 0.6892 0.8843 0.9154 0.9348 0.9321

Fig. 2. Coverage of the two prediction algorithms on the featured data samples

Different from what we have discussed in the case of accuracy, the GTRS
model achieves a noticeable improvement in coverage level over the PRS model
on all five considered user groups Sample1−Sample5. This means the GTRS
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model is able to make preference prediction available for more users no matter
how many rating records each user had in the original dataset.

In terms of coverage performance variation on user groups with different
rating patterns, the coverage level of both models will increase when making
predictions for user groups with more rating records. As the PRS model and the
GTRS model achieve their lowest coverage level at 87.61% and 68.92% respec-
tively on Sample1, and obtain their highest coverage level at 96.92% and 93.21%
respectively on Sample5. In other words, both models are able to adjust and
make recommendations applicable for more users on user groups with a larger
number of rating records.

The GTRS model holds a 18.89% advantage in coverage level over the PRS
model on Sample1, however, this advantage drops to 3.71% on Sample5. One
reason accounting for this performance difference is also that there are a lot more
users in user groups with a smaller number of rating records like Sample1, and a
lot less users in user groups with a larger number of rating records like Sample5.
WAs user groups with smaller number of rating records normally consist of
more users, the equivalence classes formed on these user groups are generally
larger. The adjustments in the threshold pair values therefore have a bigger
impact on data samples with larger equivalence classes compared to the ones
with smaller equivalence classes. The GTRS model manipulates the coverage
level by adjusting the threshold pair value. Therefore, the increment it brought
in coverage level is bigger on user groups with more users like Sample1, and
smaller on user groups with less users like Sample5. Moreover, although its
advantage in coverage level is not as obvious on Sample5 as it is on Sample1,
there is still a noticeable increment in coverage level on each of the considered
data samples.

With the accuracy and coverage analysis on the considered data samples, we
could summarize that the GTRS model is able to improve the overall quality
of PRS based recommendations. Since through the incorporation of the GTRS
model, not only could a recommender system make personalized prediction appli-
cable for more users, but also recommend users’ preference with an almost equal
level of accuracy.

With regard to the performance variation on user groups with different rating
patterns, we could conclude that the coverage level of both models will increase
while the accuracy level will decrease on user groups with a larger number of
rating records. Moreover, although the GTRS model achieves an almost equal
accuracy level with the PRS model on all the considered data samples, the advan-
tage it holds in coverage level is bigger on user groups with a smaller number
of rating records. Therefore, the overall performance improvement brought by
the GTRS model is the bigger on user groups with a smaller number of rating
records. This advantage is not as obvious on user groups with a larger number
of rating records, as the adjustments in threshold levels have a bigger impact on
data samples with larger equivalence classes.



Exploring GTRS Based RS with Users of Different Rating Patterns 415

6 Conclusion and Discussion

Recommender systems sift through all available information on the internet to
make recommendations for their users. The PRS model is one of the effective
techniques to make personalized recommendations in a recommender system. It
forms equivalence classes with users that share similar interests on training data,
and makes predictions with these formed equivalence classes on test data. The
GTRS model improves on the quality of the PRS based recommendations by
formulating a competitive game between two of the prominent recommendation
evaluation metrics, accuracy and coverage. With the GTRS model, an opti-
mal threshold pair (α, β) will be attained once a tradeoff is achieved between
the two considered evaluation metrics. Approximating user preference with the
calculated GTRS threshold pair makes the PRS based recommendations appli-
cable for more users, which helps to eliminate the limitation of its practical
application.

As the performance of a recommendation algorithm may be affected by the
rating patterns of the users in the considered dataset, comparative experiments
are carried out on five different data samples to evaluate how the quality of
the PRS based and the GTRS based recommendations vary on user groups with
different rating patterns. The experimental results suggest that the GTRS model
holds an advantage over the PRS model in coverage level, and achieves an equal
performance in accuracy level on each of the considered data sample.

Although the GTRS model achieves an overall better performance compared
to the PRS model on every considered data sample, the performance improve-
ment on each sample is not the same, as the performance of the two models
are affected by the rating pattern of the user group differently. The advantage
that the GTRS model holds over the PRS model is bigger on user groups with
a smaller number of rating records, and is not as obvious on user groups with a
bigger number of rating records.

One reason accounting for this performance difference is that the equivalence
classes formed on user groups with a smaller number of rating records are gen-
erally larger than those on user groups with a bigger number of rating records.
The GTRS model manipulates the accuracy and coverage level by adjusting the
thresholds values, and these adjustments have a bigger impact on data samples
with larger equivalence classes. More reasonings behind the performance differ-
ence could be further addressed by using the GTRS threshold pair attained on
one user group to predict user preference on another user group. Conducting
these cross recommendations among different data samples in future research
will provide us a better insight into the relationship between the rating pattern
of the user group and the performance of the recommendation algorithm.

However, not being able to significantly increase its performance as more
rating records are added to the database might be a limitation of the GTRS based
recommendations. Although it could still achieve an overall better performance
compared to the PRS model, the overall performance of the GTRS model is not
as competitive as some other data mining models on user groups with a larger
number of rating records. Therefore, it is not the best algorithm to predict



416 B. Li and J. Yao

user preference on large-scale datasets compared to some other model-based
techniques such as the latent semantic model and the Bayesian belief nets model.
However, some of these techniques require a large number of user rating records
in the model building process, and are not able to perform if the provided user
rating records are not enough. The GTRS model on the other hand, is able to
make moderately accurate recommendations with fewer rating records stored in
the database. Therefore, when preference predictions are needed on small-scale
datasets with fewer rating records provided, incorporating the GTRS model is
an effective solution to make personalized recommendations.
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NSERC Canada.
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Abstract. Attribute reduction is one of the hottest topics in rough set
data analysis. This paper extends the concept of a boundary region to
a relation system and studies the boundary region reduction for a given
relation system and a fixed set. We present the discernibility matrix and
obtain the judgment theorem of such a type of reduction. The discerni-
bility matrix based boundary reduction algorithm for a relation system
is established.

Keywords: Attribute reduction · Positive region · Boundary region
Negative region · Rough set · Discernibility matrix

1 Introduction

Attribute reduction in information systems is a fundamental aspect of rough set
theory. A reduction is a subset of attributes which reserves the same informa-
tion for classification purposes as the entire set of attributes. Attribute reduc-
tion has been successfully applied in many fields, such as pattern recognition,
machine learning and data mining. There are many different types of attribute
reductions [1,8,11,12,19], for example, positive region reduction [14], variable
precision reduction [18], distribution reduction [10], partial reduction [7], three-
way decision based reduction [9] and so on. Jia et al. [2] gave a brief description
of twenty-two kinds of existing reduction approaches. Pawlak [13,14] was the
first to propose the concept of attribute reduction, Skowron and Rauszer [15,16]
proposed discernibility matrix based attribute reduction algorithms for find-
ing all reduction sets in information systems. Recently, Ma and Yao [9] studied
class-specific attribute reductions in a decision table from the three-way decision
perspective. We [3–7] extended some existing reduction approaches to general
relation systems or relation decision systems. For a relation system (U,A) and a
fixed non-empty subset X ⊆ U , the universal set U is partitioned into the pos-
itive, boundary and negative regions via the lower and upper approximations
of X. This partition is the theoretical basis of three-way decisions. In fact, we
considered the positive and negative region reductions [7] for relation systems.
This paper considers the boundary region reduction for a given relation system
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and gives the corresponding reduction algorithm for finding all reduction sets.
We also discuss the relationship among positive, boundary and negative region
reductions.

The remainder of the paper is organized as follows. In Sect. 2, we briefly
recall some basic concepts and properties of binary relations, rough sets and
relation systems. In Sect. 3, we present the definition of boundary reduction
for a given relation system and a given subset and give a boundary reduction
algorithm. Section 4 discusses the relationship among positive, boundary and
negative region reductions. Finally, Sect. 5 concludes the paper.

2 Preliminaries

Relationships between numbers, sets and many other entities can be formalized
in the idea of a binary relation. This section reviews briefly some basic notations
and notions based on binary relations, rough sets and relation systems.

Let U = {x1, x2, · · · , xn} be a finite universal set and P (U) be the power set
of U . Suppose that R is an arbitrary binary relation on U . The left and right
R-relative sets of an element x in U are defined as

lR(x) = {y|y ∈ U, yRx} and rR(x) = {y|y ∈ U, xRy},

respectively. The left and right R-relative sets are a common generalization of
equivalence classes. Recall the following terminology: (1) R is reflexive if xRx
for each x ∈ U ; (2) R is symmetric if lR(x) = rR(x) for each x ∈ U ; (3)
R is transitive if, for each x, y, z ∈ U , y ∈ rR(x) and z ∈ rR(y) imply z ∈
rR(x); and (4) R is an equivalence relation if R is reflexive, symmetric, and
transitive. Based on the right R-relative set, for subset X ⊆ U , the lower and
upper approximations [13,14,17] of X are defined as

R(X) = {x|x ∈ U, rR(x) ⊆ X} and R(X) = {x|x ∈ U, rR(x) ∩ X �= ∅},

respectively.

Definition 2.1 [5]. Let U be a finite universal set and A be a family of binary
relations on U , then (U,A) is called a relation system.

If A consists of equivalence relations on U , then (U,A) is just a usual informa-
tion system. Thus a relation system is a generalization of an information system.
Let (U,A) be a relation system, with respect to a subset ∅ �= B ⊆ A, we always
associate a relation RB, which is defined as RB = ∩R∈BR.

For a given information system, Pawlak [14] defined the concept of positive,
negative and borderline regions of X ⊆ U . We extend his definition.

Definition 2.2. Let (U,A) be a relation system and ∅ �= X ⊆ U , then the
positive region POSA(X), the boundary region BNDA(X) and the negative
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region NEGA(X) of X are respectively defined as follows:

POSA(X) = RA(X),

BNDA(X) = RA(X) − RA(X),

NEGA(X) = U − RA(X).

This paper studies the boundary region reduction for relation systems. The fol-
lowing proposition gives some basic properties of the boundary region BNDA(X)
of X.

Proposition 2.1. Let (U,A) be a relation system, ∅ �= X ⊆ U and ∅ �= B ⊆ A,
then the following conditions are equivalent:

(1) BNDA(X) = BNDB(X).
(2) RA(X) = RB(X) and RA(X) = RB(X).
(3) (RA(X), RA(XC)) = (RB(X), RB(XC)), where XC = U − X is the com-

plement of X.

Proof. (2) ⇒ (1) is clear. By using the negative property (RA(X))C = RA(XC),
(2) ⇔ (3) is also clear.

(1) ⇒ (2): Since RA ⊆ RB, we have RA(X) ⊆ RB(X) and RB(X) ⊆ RA(X).
BNDB(X) = RB(X) − RB(X) = RA(X) − RA(X) ⊆ RB(X) − RA(X) ⊆
RB(X) − RB(X) implies RA(X) − RA(X) = RB(X) − RA(X), thus RA(X) =
RB(X). Similarly, RA(X) = RB(X). �

3 Boundary Region Reductions

Ma and Yao [9] considered a boundary reduction from the three-way decision
perspective on special decision classes for a decision table. Now we extend their
definition to a given relation system (U,A) and a given non-empty subset X ⊆ U .
This section studies such a type of reduction, which keeps BNDA(X) unchanged,
we call such a type of reduction a boundary reduction. We first give its definition.

Definition 3.1. Let (U,A) be a relation system and a given subset ∅ �= X ⊆ U .
∅ �= B ⊆ A, B is called an X-boundary reduction of (U,A) if B satisfies the
following conditions:

(1) BNDA(X) = BNDB(X).
(2) For any ∅ �= B′ ⊂ B, BNDA(X) �= BNDB′(X).

By Proposition 2.1, an X-boundary reduction of (U,A) keeps both RA(X) and
RA(X) unchanged. We [7] considered two types of reductions that keep RA(X)
and RA(X) unchanged, respectively. Now, via the strict mathematical proofs,
we give an X-boundary reduction algorithm for a given relation system (U,A)
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and a given non-empty subset X ⊆ U . Suppose that U = {x1, x2, · · · , xn}, we
define the discernibility matrix M = (mij)n×n as follows:

mij =

⎧
⎨

⎩

{a|a ∈ A, (xi, xj) /∈ a}, if xi ∈ RA(XC) and xj ∈ X
or xi ∈ RA(X) and xj /∈ X

∅, otherwise
.

Where XC denotes the complement of X. We need a technical lemma.

Lemma 3.1. Let (U,A) be a relation system and ∅ �= X ⊆ U , if xi and xj

satisfy one of the following conditions:

(1) xi ∈ RA(XC), xj ∈ X.
(2) xi ∈ RA(X), xj /∈ X.

Then mij �= ∅.

Proof. Suppose that xi ∈ RA(XC) and xj ∈ X, if mij = ∅, then xiRAxj , so
xj ∈ rRa

(xi) ⊆ XC , that is, xj /∈ X, which contradicts xj ∈ X. Similarly, if
xi ∈ RA(X), xj /∈ X, then mij �= ∅. �

Theorem 3.1. Let (U,A) be a relation system, ∅ �= X ⊆ U , and ∅ �= B ⊆ C.
Then the following conditions are equivalent:

(1) BNDA(X) = BNDB(X).
(2) If mij �= ∅, then B ∩ mij �= ∅.

Proof. (1) ⇒ (2): By Proposition 2.1, we have RA(XC) = RB(XC) and
RA(X) = RB(X). Suppose that mij �= ∅ and B ∩ mij = ∅, then

(i) xi ∈ RA(XC) and xj ∈ X or
(ii) xi ∈ RA(X) and xj /∈ X.

B ∩ mij = ∅ implies xiRBxj and xj ∈ RRB
.

If xi ∈ RA(XC) and xj ∈ X, by condition (1), xi ∈ RB(XC) and xj ∈ X, so
xj ∈ rRB

(xi) ⊆ XC , which contradicts xj ∈ X.
If xi ∈ RA(X) and xj /∈ X, then xi ∈ RB(X) and xj /∈ X, thus xj ∈

rRB
(xi) ⊆ X, which contradicts xj /∈ X.
(2) ⇒ (1): We first show that RA(X) = RB(X). Note that RB(X) ⊆ RA(X)

is clear. If RA(X) �= RB(X), let xi ∈ RA(X) − RB(X), by definition of a lower
approximation, we have rRA

(xi) ⊆ X, and rRB
(xi) � X. Let xj ∈ rRB

(xi) and
xj /∈ X, by Lemma 3.1, mij �= ∅, and from condition (2), B ∩ mij �= ∅. Thus
(xi, xj) /∈ RB, which contradicts xj ∈ rRB

. This shows that RA(X) = RB(X).
Similarly, we can show that RA(X) = RB(X). �

From Theorem 3, we have the following corollary.
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Corollary 3.1. Let (U,A) be a relation system, ∅ �= X ⊆ U , and ∅ �= B ⊆ C,
then B is an X-boundary reduction of A if and only if it is a minimal subset
satisfying mij ∩ B �= ∅ for any mij �= ∅.

According to Corollary 3.1, we propose an X-boundary reduction algorithm
for a given relation system (U,A) and a given subset ∅ �= X ⊆ U as follows.

Algorithm. An X-boundary reduction for a given relation system.
Input: A given relation system (U,A) and ∅ �= X ⊆ U .
Output: All X-boundary reduction sets.

(1) Compute a discernibility matrix M = (mij)n×n.
(2) Transform the discernibility function f from its conjunctive normal

form (CNF)
f = Πmij �=∅,mij �=A(Σmij)

into the disjunctive normal form (DNF) f = Σs
t=1(ΠBt), (Bt ⊆ A).

(3) All reduction sets are B1, B2, · · · , Bs and the core is ∩s
t=1Bt.

End the algorithm.
We illustrate the algorithm introduced previously with a simple example.

Example 3.1. Let (U,A) be a relation system, where U = {1, 2, 3, 4, 5}, A =
{R1, R2, R3, R4, R5} and X = {1, 3, 5}. Each Ri(i = 1, 2, · · · , 5) is given by its
Boolean matrix MRi

.

MR1 =

⎛
⎜⎜⎜⎜⎝

0 1 1 1 0
0 1 1 0 1
1 0 0 0 0
1 1 0 1 1
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

,MR2 =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0
0 1 1 0 1
1 1 0 1 0
1 1 0 1 0
0 1 1 1 0

⎞
⎟⎟⎟⎟⎠

,MR3 =

⎛
⎜⎜⎜⎜⎝

1 1 0 1 0
0 0 1 0 1
1 0 1 0 0
1 0 0 1 1
0 1 1 1 0

⎞
⎟⎟⎟⎟⎠

,

MR4 =

⎛
⎜⎜⎜⎜⎝

0 1 0 1 0
1 0 1 1 1
1 0 1 0 1
1 0 0 1 0
1 1 1 1 0

⎞
⎟⎟⎟⎟⎠

, and MR5 =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0
0 1 1 1 1
1 1 0 1 1
1 0 0 1 1
0 1 0 1 1

⎞
⎟⎟⎟⎟⎠

. Clearly, MRA =

⎛
⎜⎜⎜⎜⎝

0 1 0 1 0
0 0 1 0 1
1 0 0 0 0
1 0 0 1 0
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠

.

By direct computation, RA(X) = {2, 3, 4}, RA(X) = {2, 3} and
BNDA(X) = RA(X) − RA(X) = {4}. The following Table 1 gives the discerni-
bility matrix of the boundary region reduction. Since 1 ∈ RA(XC) and 1 ∈ X, it
follows that both R1 and R4 are in the entry (1, 1) of Table 1, because (1, 1) /∈ R1

and (1, 1) /∈ R4. The discernibility function

f = (R1 + R3)(R1 + R4)(R1 + R5)(R3 + R4)
= (R1 + R3R4R5)(R3 + R4)
= R1R3 + R1R4 + R3R4R5.

Thus all boundary region reduction sets are {R1, R3}, {R1, R4}, and
{R3, R4, R5}.
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4 The Relationship Among Positive, Boundary
and Negative Region Reductions

This section will illustrate the relationship among positive, boundary and nega-
tive region reductions. Let (U,A) be a relation system and X ⊆ U , recall that
an X-positive region reduction keeps RC(X) unchanged. Its formal definition is
as follows.

Table 1. The discernibility matrix of the reduction

1 2 3 4 5

1 {R1, R4} ∅ {R3, R4} ∅ A

2 ∅ {R3, R4} ∅ {R1, R2, R3} ∅
3 ∅ {R1, R3, R4} ∅ {R1, R3} ∅
5 {R1, R2, R3, R5} ∅ {R1, R5} ∅ {R1, R2, R3, R4}

Definition 4.1. Let (U,A) be a relation system and a given subset ∅ �= X ⊆ U .
∅ �= B ⊆ A, set B is called an X-positive reduction of (U,A) if B satisfies the
following conditions:

(1) POSA(X) = POSB(X).
(2) For any ∅ �= B′ ⊂ B, POSA(X) �= POSB′(X).

Similarly, an X-negative region reduction keeps U − RC(X) = RC(XC)
unchanged, however, we omit its formal definition. The discernibility matrices
M = (mij)s×(n−t) and N = (nij)u×t of an X-positive region and X-negative
region reduction are given as follows:

mij =
{{a|a ∈ A, (xi, xj) /∈ a}, xi ∈ RA(X), xj /∈ X

∅, otherwise
, and

nij =
{{a|a ∈ A, (xi, xj) /∈ a}, xi ∈ RA(XC), xj ∈ X

∅, otherwise
,

respectively. Where s = |RA(X)| denotes the cardinality of RA(X), t = |X| and
u = |RC(XC)|.

Using the matrices M and N , we can calculate all positive and negative
region reduction sets, respectively. Moreover, we can also derive the boundary
region reduction from the positive and negative region reductions. This provides
another boundary region reduction algorithm. We use the example below to show
the detailed method.
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Example 4.1. Let (U,A) and X ⊆ U be as in Example 3.1, the discernibility
matrices M = (mij)s×(n−t) of the X-positive region reduction and N = (nij)u×t

of the X-negative region reduction are shown in Tables 2 and 3:

Table 2. The discernibility matrix of an X-positive reduction

2 4

2 {R3, R4} {R1, R2, R3}
3 {R1, R3, R4} {R1, R3}

Table 3. The discernibility matrix of an X-negative reduction

1 3 5

1 {R1, R4} {R3, R4} A

5 {R1, R2, R3, R5} {R1, R5} {R1, R2, R3, R4}

Since the discernibility function of the X-positive region reduction f1 =
R3 + R1R4, so that all the X-positive region reduction sets are {R3} and
{R1, R4}, similarly, the discernibility function of the X-negative region reduction
f2 = R1R3 + R1R4 + R4R5, so that all the X-negative region reduction sets are
{R1, R3}, {R1, R4} and {R4, R5}. The discernibility function of the X-boundary
region reduction is

f = f1f2 = (R3 + R1R4)(R1R3 + R1R4 + R4R5)
= R1R3 + R1R4 + R3R4R5.

Thus all boundary region reduction sets are {R1, R3}, {R1, R4}, and
{R3, R4, R5}.

Remark 1. Let B,C and D be respectively X-positive, boundary and negative
region reductions of a relation system (U,A), then

(1) B ∩ C keeps the negative region unchanged,
(2) C ∩ D keeps the positive region unchanged, and
(3) B ∩ D keeps the boundary region unchanged.

5 Conclusions

The boundary region consists of hesitation objects. In other words, for these
objects, we can neither accept nor reject and, hence, make a non-commitment
decision. Naturally, it is an interesting problem to consider the reduction that
keeps the boundary region unchanged. Thus we propose the concept of the
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boundary region reduction for relation systems and obtain a corresponding
reduction algorithm for finding all reduction sets. We have also established a
relationship among the positive, boundary and negative region reductions. We
have provided a way to derive the boundary region reduction sets from the posi-
tive and negative region reduction sets. The future work is to apply the reduction
model given in this paper to discover knowledge in real life data sets.
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Abstract. Cluster analysis is a method of unsupervised learning tech-
nology which is playing a more and more important role in data mining.
However, one basic and difficult question for clustering is how to gain
the number of clusters automatically. The traditional solution for the
problem is to introduce a single validity index which may lead to failure
because the index is bias to some specific condition. On the other hand,
most of the existing clustering algorithms are based on hard partition-
ing which can not reflect the uncertainty of the data in the clustering
process. To combat these drawbacks, this paper proposes a method to
determine the number of clusters automatically based on three-way deci-
sion and multi-validity index which includes three parts: (1) the k-means
clustering algorithm is devised to obtain the three-way clustering results;
(2) multi-validity indexes are employed to evaluate the results and each
evaluated result is weighed according to the mean similarity between
the corresponding clustering result and the others based on the idea of
the median partition in clustering ensemble; and (3) the comprehensive
evaluation results are sorted and the best ranked k value is selected as
the optional number of clusters. The experimental results show that the
proposed method is better than the single evaluation method used in the
fusion at determining the number of clusters automatically.

Keywords: Clustering · Uncertainty · Three-way decisions
Number of clusters · Multi-validity index

1 Introduction

Cluster analysis is a method of unsupervised learning technology, which is play-
ing a more and more important role in data mining. Clustering algorithms aim
at categorizing a set of unlabeled objects into clusters so that objects in one clus-
ter are more similar than those in the other clusters [13]. Generally speaking,
according to whether there are overlapping regions between clusters, they can
be divided into hard clustering and soft clustering. Given the lack of a precise
definition of the cluster, one basic and difficult problem for clustering is how to
gain the number of clusters automatically [16].
c© Springer Nature Switzerland AG 2018
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In general, a good cluster validity index is essential to determine the num-
ber of clusters automatically. Yu et al. [16] proposed a hierarchical clustering
algorithm which can stop automatically at the perfect number of clusters by
extending the decision-theoretic rough set model to clustering. Mok et al. [8]
proposed a method which can identify the desired number by integrating the
clustering results as a judgment matrix and implementing an iterative graph-
partitioning process. Aiming at avoiding the drawback that hard partitioning is
still used while constructing the judgment matrix, Chen et al. [2] make full use
of the affiliation information in the process of constructing the judgment matrix
so that the degree of the sample points belonging to a cluster can be reflected
more clearly. To provide a more stable results with less processing time, Azimi
et al. [1] introduce the principal component analysis method to the contour coef-
ficient algorithm, run the k-means algorithm with different K values iteratively,
evaluate the corresponding results with the modified silhouette algorithm, and
select the highest evaluated value as the estimated number of clusters. Based on
the idea of particle swarm optimization, Ling et al. [7] proposed a local density
model to determine the number of clusters.

Similar to one clustering algorithm can only explore the internal structure
of a data set from one certain angle, even if there are so many cluster validity
indexes exist, we still cannot find a cluster validity index which is suitable for
all clustering evaluations. Each evaluation index has its own features which may
lead the index to outperform others or can not compare with others [9]. There-
fore, it is difficult for the users to choose a suitable clustering validity index
among so many indexes. On the other hand, the traditional methods of deter-
mining the number of clusters are mainly based on hard partition which are
difficult to reflect the uncertainty of the sample point in the clustering process.
But in real production, there exist some three-way phenomenons [15], such as
psychology, medical diagnosis, management and so on. Because of the informa-
tion’s inaccuracy or incompleteness, it is difficult for anybody to make an accept
or reject judgment directly.

In 2007, Gionis et al. [4] gave a new description of the clustering ensemble:
given a set of clustering results, the goal of clustering ensemble is to find a clus-
tering result which is relative to all input clustering results as much as possible.
The median partition method is one of the consistency function, the goal of
which is to find a clustering result which has a most similarity with the other
cluster members [5]. Cristofor et al. [3] obtained an approximate solution under
the framework of genetic algorithm. Singhbiostatistics et al. [10] proposed a con-
sistency metric which can be maximized by using 0–1 Semi-definite Program to
obtain the center clustering result. Vega-Pons et al. [11] believed the clustering
results that are most dissimilar to other cluster members can be removed, which
in turn significantly reduces the search space.

Inspired by ensemble learning, one method to overcome the limitation of
single index is to utilize multiple validity indexes to construct a multi-index
evaluation system. The original intention of the multi-index evaluation system is
to enhance the robustness and accuracy of the entire decision system by reducing
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the inconsistency of different evaluation indicators on the results of clustering
results and the probability of selecting poor single model [6]. The idea of this
method is similar to the expert committee composed of multiple experts, which
integrates each expert’s evaluation of a certain problem so that the decision
made is more accurate, robust and stable.

In this paper, we firstly apply the idea of the Three-way decision to k-means
algorithm and run iteratively the improved k-means algorithm with different
values of k. Then, a multi-index evaluation system is constructed. Afterwards, a
external validity index is used to measure the similarity between each two clus-
tering results which is used to weight the evaluation result. Then, the weighted
evaluation values of different k values clustering results are sorted in each col-
umn. Finally, the comprehensive evaluation result of each k value is collected
and the best values of k is selected.

The remainder of this paper is organized as follows. Section 2 introduces some
basic concepts and theories. Section 3 describes the proposed framework, the
three-way k-means clustering algorithm, the weighed method on the evaluated
results with different k values and the selecting strategy for the best clustering
numbers. Section 4 reports the results of comparative experiments and conclu-
sions are provided in Sect. 5.

2 Preliminaries

In this section, some basic concepts in Three-way clustering and the popular
validity indexes are introduced.

2.1 Representation of Three-Way Clustering

The purpose of clustering is to divide the universe U = {x1, x2, ..., xn, ..., xN}
into some clusters, here, xn = {x1

n, · · · , xm
n , · · · , xM

n }, xm
n is the value of the

m-dimensional attribute of the object xn. If there are K clusters, the family of
clusters, C, is represented as C = {C1, · · · , Ck, · · · , CK}. The objects in the set
belong to this cluster definitely, the objects not in the set do not belong to this
cluster definitely. This is a typical result of two-way decisions. For soft clustering,
one object might belong to more than one cluster. However, this representation
cannot show which object might belong to this cluster, and it cannot show the
degree of the object influence on the form of the cluster intuitively. Thus, the
use of three regions to represent a cluster is more appropriate than the use of
a crisp set, which also directly leads to three-way decisions based interpretation
of clustering.

In contrast to the general crisp representation of a cluster, we represent a
three-way cluster C as a pair of sets:

C = (Co(C), F r(C)). (1)

Here, Co(C) ⊆ X and Fr(C) ⊆ X. Let Tr(C) = X − Co(C) − Fr(C). Then,
Co(C), Fr(C) and Tr(C) naturally form the three regions of a cluster as Core
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Region, Fringe Region and Trivial Region respectively. That is:

CoreRegion(C) = Co(C),
F ringeRegion(C) = Fr(C),
T rivialRegion(C) = X − Co(C) − Fr(C).

(2)

If x ∈ CoreRegion(C), the object x belongs to the cluster C definitely; if x ∈
FringeRegion(C), the object x might belong to C; if x ∈ TrivialRegion(C),
the object x does not belong to C definitely.

These subsets have the following properties.

X = Co(C) ∪ Fr(C) ∪ Tr(C),
Co(C) ∩ Fr(C) = ∅,
F r(C) ∩ Tr(C) = ∅,
T r(C) ∩ Co(C) = ∅.

(3)

If Fr(C) = ∅, the representation of C in Eq. (1) turns into C = Co(C); it
is a single set and Tr(C) = X − Co(C). This is a representation of two-way
decisions. In other words, the representation of a single set is a special case of
the representation of three-way cluster.

Furthermore, according to Formula (3), we know that it is enough to represent
a cluster expediently by the core region and the fringe region.

In another way, we can define a cluster by the following properties:

(i) Co(Ck) �= ∅, 1 ≤ k ≤ K;
(ii)

⋃
Co(Ck)

⋃
Fr(Ck) = X, 1 ≤ k ≤ K.

(4)

Property (i) implies that a cluster cannot be empty. This makes sure that a
cluster is physically meaningful. Property (ii) states that any object of X must
definitely belong to or might belong to a cluster, which ensures that every object
is properly clustered.

With respect to the family of clusters, C, we have the following family of
clusters formulated by three-way decisions as:

C = {(Co(C1), F r(C1)), · · · , (Co(Ck), F r(Ck)), · · · , (Co(CK), F r(CK))}. (5)

2.2 Review of Validity Indexes

In this section, several popular validity indexes are reviewed as follows.

(1) Dunn

The Dunn index [9] is proposed by Dunn, which is the ratio of the shortest
intra-cluster distance to the largest inter-cluster distance. It is defined as:

DV I =

min
0<m �=n<K

⎧
⎨

⎩
min

∀xi∈Ωm∀xj∈Ωn

{‖xi − xj‖}
⎫
⎬

⎭

max
0<m<K

max
0<n<K

{‖xi − xj‖} . (6)

The larger the DVI, the better the clustering result.
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(2) Silhouette coefficient

The Silhouette coefficient [9] is an internal validity index. It is defined as:

c(xi) =
q(xi) − p(xi)

max{p(xi), q(xi)} . (7)

The parameters of p(xi) and q(xi) are defined as:

p(xi) =

∑

xj∈Ci,xi �=xj

dis(xi, xj)

|Ci| − 1
, q(xi) = min

Cj :1≤j≤k,j �=k

⎧
⎪⎨

⎪⎩

∑

xj∈Ci

dis(xi, xj)

|Cj |

⎫
⎪⎬

⎪⎭
.

(8)

Here xi is the object of Ci, p(xi) is the mean distance between xi and the
other objects in Ci, q(xi) is the minimal average distance between xi and
all point of other clusters. c(xi) is the Silhouette coefficient of object xi. So
the Silhouette coefficient of the data set U is defined as:

SC =

n∑

xi∈U,j=1

c(xj)

n
. (9)

The larger the SC, the better the clustering result.
(3) Davies-Bouldin Index

The DB index [9] is proposed by Davies, which is the ratio of compactness
to separation. It is defined as:

DB =
1
k

∗
k∑

i=1

max
j �=1

( Ci
+ Cj

‖wi − wj‖ ). (10)

where Ci and Cj are the average within-group distance of the ith and the jth
clusters. Respectively, ‖wi − wj‖ is the inter-group distance between these
clusters, where ‖‖ is a norm (e.g. Euclidean).

The smaller the value of DB, the better the clustering result. To achieve a
same monotonicity as other, the paper takes a negative operate on the DB
index.

(4) Calinski-Harabasz index

The CH index [9] is also the ratio of compactness to separation. It is defined
as:

CH =
Tr(SB)/K − 1
Tr(SW )/n − K

. (11)
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The parameters of Tr(SB) and Tr(SW ) are defined as:

Tr(SB) =
k∑

i=1

ni · d(vi, v), T r(Sw) =
K∑

i=1

n∑

j=1

d(xj , vi). (12)

Here ni is the number of objects assigned to the ith cluster. vi is the center
of the ith cluster, v is the center of the whole data set.

The larger the CH is, the better the result is.
(5) XB index

XB index [14] is proposed by Xie et al., which is defined as:

XB =

K∑

i=1

n∑

j=1

μm
ij d(xj , vi)

n ∗ min
i�=j

d(vi, vj)
. (13)

where μij represents the probability that object xj belongs to the ith cluster.
m is the ambiguity factor, which is a weight index used to determine the
ambiguity of the clustering result.

The smaller the XB index, the better performance of the clustering result.
In order to achieve a same monotonicity as other indexes, this paper takes
a negative improvement on the XB index.

(6) PBM index

Another criterion, named PBM [9], is defined as:

PBM =

⎛

⎜
⎜
⎜
⎝

1
K

∗

n∑

i=1

d(xi, v1)

K∑

j=1

∑
xi∈Cj

d(xi, vj)
∗ max

i,j=1,2,··· ,K
d (vi, vj)

⎞

⎟
⎟
⎟
⎠

2

. (14)

The larger the PBM is, the better performance of the cluster result is.
(7) Normalized Mutual Information

Normalized Mutual Information (NMI) [12] is used to measure the anasto-
mosing degree of clustering result πK and πL. It is defined as:

NMI(πK , πL) =
∑K

k=1

∑L
l=1 nk

l log( nnk
l

nknl )
√

(
∑K

k=1 nklog(nk

n )) ∗ (
∑L

l=1 nllog(nl

n ))
. (15)

Here nk represents the number of objects in the kth cluster generated by the
clustering algorithm, nl represents the number of objects in the lth cluster
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in the real cluster partition, nl
k is the number of objects owned by the kth

cluster of the generated result and lth cluster of the real partition.

The larger the NMI value, the greater the similarity between the clustering
result and the real division.

3 The Proposed Method

In this section, the method to determine the number of cluster and its four
components are described.

3.1 The Framework

The proposed automatic method to determine the number of clusters based on
multi-validity indexes is shown in Fig. 1, which is consist of four parts: (1) the set
of clustering result is generated by different algorithms or some algorithm with
different parameters; (2) multiple validity criteria are selected to evaluate those
clustering results; (3) the weighting method is introduced to measure the average
similarity between the clustering result with some k value and the others; and
(4) the selecting strategy of the best clustering numbers.

Fig. 1. The framework to determine the number of clusters automatically

3.2 The Three-Way K-Means Clustering Algorithm

The Three-way k-means (TW-k-means, for short) algorithm is improved by the
traditional k-means by which Three-way clustering results can be calculated. To
determine the thresholds of α and β automatically, a dynamic method is also
proposed in this paper. Firstly, the data set is divided by the conventional k-
means algorithm. Secondly, the α[i], which is the threshold of the ith cluster,
is defined as dave[i], which is the mean distance of the center of Ci (1 ≤ i ≤ K)
and the other object in Ci. Thirdly, The β[i] of the ith cluster is defined as the
sum of dave[i] and dfar[i] the farthest distance of the center of Ci and the other

objects in Ci. If dist[i][j](1 ≤ i ≤ N, 1 ≤ j ≤
⌊√

N
⌋
) is the distance of the
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ith object and the center of the jth cluster. Naturally, we have the three-way
decision rules as follows.

if dist[i][j] < α[j], then xi is assigned to Co(Ck);
if α[j] ≤ dist[i][j] < β[j], then xi is assigned to Fr(Ck);
if dist[i][j] ≥ β[j], then xi is assigned to Tr(Ck).

(16)

TW-k-means clustering algorithm is summarized by algorithm 1.
For a data set, the optimal number of clusters does not exceed

√
N and

the traversal ranges of the number of cluster k is
[
2,

⌊√
N

⌋]
. Therefore, this

paper runs the TW-k-means algorithm with different k from 2 to
⌊√

N
⌋

and
the corresponding results are inserted into Π. The generation is summarised in
Algorithm 2.

3.3 Selecting Relative Criteria

The six indexes in Sect. 2 are employed to construct the system. The clustering
results with different values of k are evaluated by the six selected indexes and
the evaluation matrix E(√

N�−1)×m is constructed, in which the element Eij

Algorithm 1. The three way k-means clustering algorithm
Input: data set X = {x1, · · · , xn, · · · , xN}, the number of clusters T
Output: the clustering result πT =

{
[C1, C1], · · · , [Ct, Ct], · · · , [CT , CT ]

}

1 for the first T objects do
treat them as the starting cluster centers v1, v2, · · · , vT

2 for each object xi do
for each cluster center vj do

calculate the distance of xi and vj , classify the xi to the nearest cluster

3 for each cluster Ci do
update the cluster centers v =

{
v1, v2, · · · , vi, · · · , vT

}

if the cluster centers don’t change then
run to step 4

else
run to step 2

4 for each cluster Ci do
calculate dave [i] the distance of all objects to the cluster center and dfar [i]
the farthest distance of all objects to the cluster center, based on dave [i]
and dfar [i], calculate α [i] and β [i]

5 for each object xi do
for each cluster center vj do

if dist[i][j] < α[j], then xi is assigned to Co(Ck); if α[j] ≤ dist[i][j] <
β[j], then xi is assigned to Fr(Ck); if dist[i][j] ≥
β[j], then xi is assigned to Tr(Ck).
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Algorithm 2. The generation of Π

Input: data set X = {x1, · · · , xn, · · · , xN}
Output: the set of clustering results Π =

{
π2, · · · , πT , · · · , π�√

N�
}

for each k from 2 to
⌊√

N
⌋
do

run the TW-k-means algorithm
insert the result πk into Π

return Π =
{

π2, · · · , πT , · · · , π�√
N�

}

Algorithm 3. The generation of E(√
N�−1)×m

Input: the set of clustering results Π =
{

π2, · · · , πT , · · · , π�√
N�

}

Output: the evaluated matrix E(�√
N�−1)×m

for i=2 to m do

for j=2 to
⌊√

N
⌋
do

Eji=indexi(πj) insert Eji into E(�√
N�−1)×m

return E(�√
N�−1)×m

represents the evaluated result of the k = i + 2 under the jth index. Here,⌊√
N

⌋
− 1 means the number of rows,m means the number of columns. The

generation of E(√
N�−1)×m is summarised in Algorithm 3.

3.4 The Weighed Method Based on Median Partition

In order to select the optimal k from multiple angles, based on the idea of the
median partition method, every clustering result is took as the natural result. So
the NMI index can be used to measure the similarity between each two clustering
results. The mean similarity, stored in the similarity matrix S√

N�−1(
⌊√

N
⌋
−1

means the number of rows), is took as the weight of the corresponding clustering
result and its calculation is shown as follows.

S(πi,Π) =

√
N∑

j=2

NMI(πi, πj)
⌊√

N
⌋

− 1
(17)

The calculated process of the mean similarity is summarised in Algorithm 4.
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Algorithm 4. The generation of S√
N�−1

Input: the set of clustering results Π =
{

π2, · · · , πT , · · · , π�√
N�

}

Output: the similarity matrix S�√
N�−1

for i=2 to
⌊√

N
⌋
do

for j=2 to
⌊√

N
⌋
do

Si = Si + NMI(πi, πj)

Si = Si

/

N
1/2 insert the S�√

N�−1

return S�√
N�−1

3.5 Choosing the Optimal Number

The evaluation matrix E(√
N�−1)×m is merged with the similarity matrix

S√
N�−1. The fusion result is recorded in the weighted evaluation matrix

WE(√
N�−1)×m. Here,

⌊√
N

⌋
− 1 means the number of rows, m means the

number of columns. The fusion formula is shown as follows:

WEij = Eij ∗ Si. (18)

In order to describe the ranks of the clustering results’ quality with different
value of k, the function Rank is defined. If the clustering result πi with k = i in
the clustering results set Π is the best clustering result under the u-th weighted
evaluation index of the matrix WE, which is written as R (indexu, πm,Π) = 1.
Therefore, the weighted evaluation matrix could be transformed to the rank
matrix R(√

N�−1)×m. The transformation formula is defined as follows:

Rij = R(indexj , πi,Π). (19)

Based on the rank matrix R(√
N�−1)×m, the acceptance matrix AC(√

N�−1)
can be constructed. The transformation formula is defined as follows:

ACi=
m∑

j=1

Rij . (20)

The optional k is corresponding to the clustering result with the highest degree
of acceptance. That is, the smallest AC value can be selected as the optional k.

4 Experimental Results

In this section, we have carried out a number of experiments on different real
data set to validate the effectiveness of the proposed method.
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In order to show the method of multi-validity index (MVI, for short) pro-
posed in this paper is valuable, the six indexes used in the process of constructing
the evaluated system, such as the Silhouette index, the DB index and the other
indexes, are tested respectively on the real data sets. The performances of the
fusion method and the single index in predicting the number of clusters of dif-
ferent data sets are recorded in Table 1. In the table, some information of the
data sets is also given, such as the second row of Size means the number of
objects, the third row of Clusters denotes the right or natural number of clus-
ters of the corresponding data set. Letter1 (A, B, C) is a subset from the original
corresponding UCI data sets.

Table 1. Comparison of experimental results

Datasets IRIS Wine Seeds Letter(A, B, C) Ecoli Vowel

Size 150 178 210 300 336 528

Cluster 3 3 3 3 8 11

Silhouete 9 10 14 16 17 31

Dunn 3 7 12 15 3 2

CH 5 11 13 3 4 26

PBM 6 5 5 2 2 3

DB 9 2 2 6 2 2

XB 2 2 2 3 2 2

MVI 3 4 5 3 7 9

By observing the Table 1, we can find the results of the multi-validity index
are much better than the results of the other single indexes. In another words, the
performance of the multi-validity index is more accurate and stable to determine
the number of clusters of the data sets automatically. To be specific, for a certain
validity index, its performance is slightly accurate on some data sets, but on the
other data sets it is dissatisfying. For example, the performance of PBM on the
data of IRIS, Wine, Seeds, Letter(A, B, C) is more accurate than the data set of
Ecoli and Vowel. This phenomenon can prove the starting point of multi-validity
index that single validity index is bias to specific condition. However, for some
data set, for example the data set of Vowel, the performance of all the single
indexes referred in this pater is not so good. On one hand, the performances
of single indexes can be divided into 2 classes, the Silhouete’s prediction of 31
and the CH’s 26 in a class, the other’s predictions are range from 2 to 3 and
they are in another class. Obviously, the prediction of MVI on the data set
of Vowel is more close to the natural clusters of 11. The huge progress of the
accuracy on predicting the number of clusters can reflect the rationality of the
method proposed in the paper that predict the number of the natural number
from multiple aspects.
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Since, the time complexity of k-means algorithm is no more than
O (N ∗ k ∗ t), here, N is the number of objects, k is the number of clusters.
The method proposed in this paper should run iteratively the k-means algo-
rithm N

1
2 times and the clustering results should also be evaluated by the six

single indexes. So the time consumption is somewhat large, but the performance
is hard to say perfect, which can prove, on some degree, that the work of deter-
mining the number of clusters is really a difficult task and we still have a long
way to go.

5 Conclusions

The determination of the number of clusters has always been a question in the
research of clustering. Based on the idea of three-way decision, this paper apply
the core region, the fringe region and the trivial region to deal with the uncer-
tainty of the objects in the process of partition. The TW-k-means algorithm is
run repeatedly with different k from 2 to

⌊√
N

⌋
. Aiming at avoiding the bias of

single validity index in selecting clustering results, multiple evaluation indexes
are employed to construct the multi-validity index, which can evaluate the clus-
tering results with different k values from multiple perspectives. Drawing on
the idea of median partition in clustering ensemble, the similarity between each
two clustering results is calculated separately, according to which the evaluated
results of each k value will be weighted. Finally, the weighted evaluated results
will be sorted by the proposed rank function in each column and the optimal k
value can be calculated. The experimental results show that the performance of
the multi-validity index is better at selecting the optimal k value. Even though,
we still need to improve the time consumption of this algorithm and some other
aspects so that the method can be used to determine the number of clusters of
large-scale data.
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Abstract. In this article, we propose a notion of a semiconcept in the
framework of Yao’s object oriented concepts. A study of the algebra of
such ‘object oriented semiconcepts’ is carried out, in the line of the study
by Wille for the algebra of semiconcepts in formal concept analysis. Two
further unary operators, ‘semi-topological’ in nature, are introduced on
these structures. On abstraction, the properties of these operators lead
to the definition of a ‘semi-topological double Boolean algebra’, of which
the algebra of object oriented semiconcepts becomes an instance.

Keywords: Formal concept analysis · Rough sets
Object oriented concepts

1 Introduction

Rough set theory [10] and formal concept analysis (FCA) [4] provide two related
methodologies for data analysis. Both investigate the notion of concepts, albeit
from different perspectives. Classical rough set theory is developed based on an
equivalence relation on a domain of objects. Generalized formulations have been
proposed by using a binary relation on two domains, one a set of objects and
the other a set of properties – such a binary relation on two domains is called a
formal context in FCA. Many efforts have been made to compare and combine
the two theories [1,3,5,6,9,19].

The central notion in FCA is that of a concept lattice on a context K, denoted
B(K). Düntsch and Gediga, and Yao introduced two kinds of ‘rough concept
lattices’ in rough set theory, based on operators defined in [2]. The former defined
property oriented concept lattices [1], and Yao proposed object oriented concept
lattices [17]. Yao also studied the relationship between these two kinds of rough
concept lattices and concept lattices of FCA in [17]. It is shown that object
oriented concept lattices are dually isomorphic to concept lattices, while property
oriented concept lattices are isomorphic to concept lattices. Further algebraic
properties of rough concept lattices were investigated in [16].
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There is also a study of logic in the direction of FCA [13,14]. To formulate
what is called contextual logic, ‘negation of a concept’ has to be formalized
and Boole’s correspondence between negation and set-complement is taken as a
basis for the purpose. However, there turns out to be a problem of closure if set-
complement is used to define negation of a formal concept. So the latter notion
is generalized successively to that of semiconcept, protoconcept and preconcept
[13,15]. Our interest also lies in defining a negation, in the context of rough
concepts. This article does so in the framework of Yao’s object oriented concepts.
We define object oriented semiconcepts in Sect. 3, and follow the line of study in
[13]. An algebraic structure is developed on the set S(K) of all object oriented
semiconcepts. We show that it forms a dual of double Boolean algebra [13], and
contains two special Boolean subalgebras. In Sect. 4, two further unary operators
are defined on S(K), which turn out to be ‘semi-topological’ [11] in nature. The
properties of these operators lead us to define a semi-topological double Boolean
algebra, of which S(K) becomes an instance.

Considering Boole’s correspondence mentioned above, Wille defined another
(weak) negation in [13], which can be generated by the negations defined on
semiconcepts. This operator gives rise to a ‘concept algebra’, the abstraction of
which is a ‘dicomplemented lattice’. In [8], weakly dicomplemented lattices are
defined which constitute a superclass of the class of dicomplemented lattices. In
Sect. 4.1, we show that weakly dicomplemented lattices are different from the
double Boolean algebras considered in this work. Section 5 concludes the article.

In the next section, we give the preliminaries required for the work presented
in the rest of the paper.

2 Preliminaries

Definition 1 [4]. A formal context is a triple K := (G,M,R), where G,M are
sets of objects and properties respectively, and R ⊆ G × M . gRm is interpreted
as object g has property m. For A ⊆ G and B ⊆ M ,

A
′
:= {m ∈ M | gRmfor all g ∈ A},

B
′
:= {g ∈ G | gRmfor all m ∈ B}.

A concept of K is defined to be a pair (A,B) where A ⊆ G, B ⊆ M , A
′

= B
and B

′
= A. A is called the extent and B the intent of the concept (A,B). The

set of all concepts of K is denoted by B(K).
For concepts (A1, B1) and (A2, B2) in K an order is defined as:

(A1, B1) ≤ (A2, B2) if and only if A1 ≤ A2.

(B(K),≤) forms a complete lattice, and is called the concept lattice of K.

Definition 2 [1]. For a formal context K := (G,M,R), Kc := (G,M,−R), is
called a complement of K, where −R = {(x, y) ∈ G × M : (x, y) /∈ R}.
Example 1 [15]. The following table gives an example of a formal context.
Objects are family members, properties are genders and age variables (Table 1).
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Table 1. A formal context

Male (Ma) Female (Fe) Old Young

Father (Fa) * *

Mother (Mo) * *

Son (So) * *

Daughter (Da) * *

2.1 Semiconcept Algebra

As mentioned in Sect. 1, there is a problem of closure if set-complement is used
to define negation of a formal concept. More explicitly, if (A,B) is a formal
concept in a context (G,M,R), the complement G \ A (M \ B) of the extent
(intent) A (B) may not be an extent (intent). The notion of formal concept was
then generalized by defining a semiconcept.

Definition 3 [12]. A semiconcept of a formal context K := (G,M,R) is defined
as a pair (A,B) with A ⊆ G and B ⊆ M such that A = B

′
or B = A

′
.

The set of all semiconcepts of K is denoted by H(K). The following algebraic
operations �,�,¬, �,⊥ and � are introduced on H(K):

(A1, B1) � (A2, B2) := (A1 ∩ A2, (A1 ∩ A2)
′
)

(A1, B1) � (A2, B2) := ((B1 ∩ B2)
′
, B1 ∩ B2)

¬(A,B) := (G \ A, (G \ A)
′
)

�(A,B) := ((M \ B)
′
,M \ B)

� := (G,φ)
⊥ := (φ,M)

H(K) with the operations �,�,¬, �,⊥ and � is called the algebra of semicon-
cepts of K, and denoted by H(K). The following sets of idempotent elements are
considered, and shown to form Boolean algebras in [12,13]:

H� := {(A,A
′
) ∈ H(K) : A ⊆ G} and H� := {(B

′
, B) ∈ H(K) : B ⊆ M}.

2.2 Object Oriented Concept Lattice

Let G and M be two non-empty sets, and R ⊆ G × M be a relation. For each
x ∈ G, the R-range of x is R(x) := {y ∈ M : xRy}. The converse R0 of R is
R0 := {(y, x) ∈ M × G : xRy}.

For a given formal context K := (G,M,R), �,♦ : 2G → 2M constitute a pair
of dual approximation operators defined as:

X♦ := {y ∈ M : X
⋂

R0(y) �= ∅}, X� := {y ∈ M : R0(y) ⊆ X}.
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On the other hand, �,♦ : 2M → 2G constitute another pair of dual approximation
operators defined as:

Y ♦ := {x ∈ G : Y
⋂

R(x) �= ∅}, Y � := {x ∈ G : R(x) ⊆ Y }.

♦ is called the possibility operator and � the necessity operator. Note that if we
take G = M and R to be an equivalence relation on G then the ♦,� operators
coincide respectively with the upper and lower approximation operators (on the
approximation space (G,R)) of rough set theory.

Now we list some properties of ♦,�. For proof we refer to [1,17,18].

Proposition 1. Let K := (G,M,R) be a context. For any X,X1,X2 ⊆ G and
Y, Y1, Y2 ⊆ M , the following hold.

1. G� = M and φ♦ = φ.
2. M♦ = G if and only if R(x) �= φ for all x ∈ G.
3. φ� = φ if and only if R0(y) �= φ for all y ∈ M .
4. if X1 ⊆ X2 then X�

1 ⊆ X�
2 and X♦

1 ⊆ X♦
2 .

5. if Y1 ⊆ Y2 then Y �
1 ⊆ Y �

2 and Y ♦
1 ⊆ Y ♦

2 .
6. X�♦ ⊆ X ⊆ X♦� and Y �♦ ⊆ Y ⊆ Y ♦�.
7. (X)�

R = (Xc)
′
−R and (Y )�

R = (Y c)
′
−R.

8. Xc� = X♦c and Y c� = Y ♦c.
9. X�c = Xc♦ and Y �c = Y c♦.

10. (X ∩ Y )� = X� ∩ Y �.
11. (X ∪ Y )♦ = X♦ ∪ Y ♦.
12. (X ∩ Y )�♦ ⊆ X�♦ ∩ Y �♦ and X♦� ∪ Y ♦� ⊆ (X ∪ Y )♦�.
13. X�♦� = X� and Y �♦� = Y �.
14. X♦�♦ = X♦ and Y ♦�♦ = Y ♦.

Proposition 2.

1. �♦ mapping X to X♦�, is a closure operator.
2. ♦� mapping X to X�♦, is an interior operator.

For a given set of objects A ⊆ G, the map � : 2G → 2M assigns to it a set of
properties A�, while the map ♦ : 2M → 2G assigns to a set of properties B ⊆ M ,
an object set B♦. For special pairs (A,B), we have the following.

Definition 4 [17,18]. An object oriented concept of the context K is defined
as a pair (A,B) with A ⊆ G, B ⊆ M such that A� = B and B♦ = A. A is
the extent and B the intent of the object oriented concept (A,B). The set of all
object oriented concepts of K is denoted by RO−L(K).

With this definition, it is shown in [18] that object oriented concepts are
described by disjunctions of properties, whereas formal concepts are described
by conjunctions of properties. The two theories together can thus give a more
complete picture of data.

An order is defined on the set RO − L(K) of object oriented concepts:

(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (which is equivalent to B1 ⊆ B2).
(RO − L(K),≤) forms a complete lattice. Moreover, we have

Theorem 1 [16]. RO−L(K) is dually isomorphic to B(Kc).
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3 Object Oriented Semiconcept

We are interested to study the notion of negation in the context of rough con-
cepts. In [13], Wille studied a negation in FCA, by separately negating the extent
and intent of a concept, using set-complement. In this work, we consider object
oriented concepts and introduce negation using Wille’s approach. For a given
object oriented concept we also have two negations, one by taking the comple-
ment of its extent and the other by taking the complement of its intent.

Example 2. Let us continue with the context given in Example 1. In Tables 2
and 3 below, we list for all A ⊆ G,B ⊆ M respectively, A�, A�♦ and B♦, B♦�.

Table 2. Subsets A of G giving object oriented semiconcepts (A, A�)

A ⊆ G A� A�♦

φ φ φ

{Fa} φ φ

{Mo} φ φ

{so} φ φ

{Da} φ φ

{Fa, Mo} {old} {Fa, Mo}
{Fa, So} {Ma} {Fa, So}
{Fa, Da} φ φ

{Mo, So} φ φ

{Mo, Da} {Fe} {Mo, Da}
{So, Da} {Y oung} {So, Da}
{Fa, Mo, So} {Old, Ma} {Fa, Mo, So}
{Fa, Mo, Da} {Fe, Old} {Fa, Mo, Da}
{Mo, So, Da} {Y oung, Fe} {Mo, So, Da}
{Fa, So, Da} {Ma, Y oung} {Fa, So, Da}
G M G

Consider the pair ({Mo,So,Da}, {Y oung, Fe}). It is clear from Table 2 that it is
an object oriented concept. The complement of the extent A = {Mo,So,Da} is
{Fa}, which is not the extent of any object oriented concept of K (cf. Table 3).
Now consider the pair ({So,Da}, {Y oung}), which is also an object oriented
concept. The complement of the intent B = {Y oung} is C = {Ma,Fe,Old}
and C is not the intent of any object oriented concept of K. Analogous to the
situation in FCA, simply taking the set-complement of the extent or intent of an
object oriented concept, may not result in an object oriented concept. One then
relaxes the requirement to consider pairs of the form (Ac, Ac�) and (Bc♦, Bc)
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Table 3. Subsets B of M giving Object oriented Semiconcepts (B♦, B)

B ⊆ M B♦ B♦�

φ φ φ

{old} {Fa, Mo} {old}
{Ma} {Fa, So} {Ma}
{Fe} {Mo, Da} {Fe}
{Y oung} {So, Da} {Y oung}
{Old, Ma} {Fa, Mo, So} {Old, Ma}
{Fe, Old} {Fa, Mo, Da} {Fe, Old}
{Y oung, Fe} {Mo, So, Da} {Y oung, Fe}
{Ma, Y oung} {Fa, So, Da} {Ma, Y oung}
{Ma, Fe} G M

{Old, Y oung} G M

{Ma, Fe, Old} G M

{Ma, Old, Y oung} G M

{Ma, Fe, Y oung} G M

{Fe, Old, Y oung} G M

M G M

to define negation, as Ac� collects properties of the objects of Ac only, while
Bc♦ contains all objects that have properties belonging to Bc. (Note that these
pairs still need not be concepts, as we shall see in an example below). This idea
is generalized to give the definition of an object oriented semiconcept.

Definition 5. Let K := (G,M,R) be a formal context. An object oriented semi-
concept of K is defined as a pair (A,B) with A ⊆ G,B ⊆ M such that A� = B
or B♦ = A. The set of all object oriented semiconcepts of K is denoted by S(K).

Thus object oriented semiconcepts of K are pairs of the form (A,A�) or (B♦, B).
Tables 2 and 3 in Example 2 give us all the object oriented semiconcepts of the
context (G,M,R). It may be then observed that an object oriented semiconcept
may not always be an object oriented concept: ({Fa}, φ) is an object oriented
semiconcept but not an object oriented concept.

Now is there any relation between semiconcepts of FCA and object oriented
semiconcepts defined above? The answer is given by

Proposition 3. For a context K, (A,B) ∈ S(K) if and only if (Ac, B) ∈ H(Kc),
the set of all semiconcepts of the complement of the context K.

3.1 Algebra of Object Oriented Semiconcepts

An order ≤ and algebraic operations �,�,¬, �,� and ⊥ are considered on S(K):
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Definition 6. For (A1, B1), (A2, B2) ∈ S(K),

(a) (A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 and B1 ⊆ B2,
(b) (A1, B1) � (A2, B2) := ((B1 ∩ B2)♦, B1 ∩ B2),
(c) (A1, B1) � (A2, B2) := (A1 ∪ A2, (A1 ∪ A2)�),
(d) ¬(A,B) := (G \ A, (G \ A)�),
(e) �(A,B) := ((M \ B)♦,M \ B),
(f) � := (G,M),
(g) ⊥ := (φ, φ).

The meet (�) and join (�) operations taken in RO−L(K) are extended to S(K).
It is clear from Definition 5 and Proposition 1(1) that S(K) is closed with respect
to all the operations defined above. The tuple (S(K),�,�,¬, �,�,⊥) is called
the algebra of object oriented semiconcepts of K and is denoted by S(K).

Proposition 4. (A1, B1) � (A2, B2) is a lower bound of (A1, B1) and (A2, B2),
and (A1, B1)�(A2, B2) is an upper bound of (A1, B1) and (A2, B2) in (S(K),≤).

Proof. (A1, B1) � (A2, B2) := ((B1 ∩ B2)♦, B1 ∩ B2) and (A1, B1) � (A2, B2) :=
(A1 ∪ A2, (A1 ∪ A2)�). We have the following cases.

Case I: Suppose A1 = B♦
1 and A2 = B♦

2 . Then (B1 ∩ B2)♦ ⊆ B♦
1 = A1 and

(B1 ∩B2)♦ ⊆ B♦
2 = A2 by (5) of Proposition 1. Now (A1 ∪A2)� = (B♦

1 ∪B♦
2 )�.

Using Proposition 1(11) on the rhs, we have (A1 ∪ A2)� = (B1 ∪ B2)♦� and
using Proposition 1(6), we have B1, B2 ⊆ (B1 ∪ B2)♦� = (A1 ∪ A2)�.
Case II: A�

1 = B1 and A�
2 = B2. This case is dealt similarly by replacing � with

♦ as Case I.
Case III: Now let A�

1 = B1 and A2 = B♦
2 . We have (B1 ∩ B2)♦ ⊆ A�♦

1 ⊆ A1

and (B1 ∩ B2)♦ ⊆ B♦
2 = A2, using Proposition 1(5) and (6). From Proposition

1(4) and (6), we have B1 = A�
1 ⊆ (A1 ∪ A2)� and B2 ⊆ B♦�

2 ⊆ (A1 ∪ A2)�. ��
Are these the greatest and least upper bounds? Not necessarily so. In Example 2,
consider the two elements ({Mo,Da}, {Fe}) and ({So,Da}, {Y oung}) in S(K).
({Mo,Da}, {Fe})�({So,Da}, {Y oung}) = (φ, φ) is a lower bound but is not the
greatest lower bound as ({Da}, φ) is also a lower bound of the two object oriented
semiconcepts. On the other hand, we can consider ({Fa}, φ) and ({Mo,Fa}, φ),
for which ({Fa}, φ) � ({Mo,Fa}, φ) = ({Fa,Mo}, {old}), which is an upper
bound but not least as ({Mo,Fa}, φ) is an upper bound of the two object ori-
ented semiconcepts.

Following the approach of Wille, we now consider the set of idempotent
elements in S(K) with respect to the operations � and �.

S(K)� := {(A,B) ∈ S(K) : (A,B) � (A,B) = (A,B)}, and
S(K)� := {(A,B) ∈ S(K) : (A,B) � (A,B) = (A,B)}.

It can be easily observed that

S(K)� = {(A,B) ∈ S(K) : (A,A�) = (A,B)} = {(A,A�) : A ⊆ G}, and

S(K)� = {(A,B) ∈ S(K) : (B♦, B) = (A,B)} = {(B♦, B) : B ⊆ M}.
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Note: For two object oriented semiconcepts (A1, B1), (A2, B2), if the pair with
componentwise set-theoretic intersection, viz. (A1∩A2, B1∩B2), belongs to S(K)
then it must be the greatest lower bound of (A1, B1), (A2, B2). A similar obser-
vation holds for (A1 ∪ A2, B1 ∪ B2) and least upper bound of (A1, B1), (A2, B2).

We obtain in a straightforward manner, the following results for any context K.

Proposition 5.

1. S(K)� ∩ S(K)� = RO − L(K).
2. S(K)� ∪ S(K)� = S(K).
3. (A1, B1)�(A2, B2) = (A1, B1)�(A1, B1) and (A1, B1)�(A2, B2) = (A2, B2)�

(A2, B2) if and only if (A1, B1) ≤ (A2, B2).

As done for semiconcepts, we define two operations on S(K):

x ∨ y :=�(�x��y), and x ∧ y := ¬(¬x � ¬y), for all x, y ∈ S(K).

Theorem 2. The following equations are valid in S(K):

(1a) (x � x) � y = x � y
(2a) x � y = y � x
(3a) x � (y � z) = (x � y) � z
(4a) �(x � x) =�x
(5a) x � (x � y) = x � x
(6a) x � (y ∨ z) = (x � y) ∨ (x � z)
(7a) x � (x ∨ y) = x � x
(8a) ��(x � y) = x � y
(9a) x��x = ⊥

(10a) �⊥ = � � �
(11a) ¬⊥ = �

(1b) (x � x) � y = x � y
(2b) x � y = y � x
(3b) x � (y � z) = (x � y) � z
(4b) ¬(x � x) = ¬x
(5b) x � (x � y) = x � x
(6b) x � (y ∧ z) = (x � y) ∧ (x � z)
(7b) x � (x ∧ y) = x � x
(8b) ¬¬(x � y) = x � y
(9b) x � ¬x = �

(10b) ¬� = ⊥ � ⊥
(11b) �� = ⊥

(12) (x � x) � (x � x) = (x � x) � (x � x).

Observe that the equations stated in Theorem 2 are dual with respect to � and �
in the equations defining a double Boolean algebra [13].

In our next result, we prove that S(K) is dually isomorphic to H(Kc). In
other words, we show the following for the algebraic structure H∂(Kc) that is
obtained from H(Kc) by replacing � with � and � with �.

Theorem 3. For a context K, S(K) is isomorphic to H∂(Kc).

Proof. We define a map h : S(K) → H(Kc) such that h((A,B)) := (Ac, B),
where (A,B) ∈ S(K). This map is well-defined and onto by Proposition 3. It is
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trivially one-one. To show h is a homomorphism, we check the case for �.

h((A,B) � (A1, B1)) =h((B ∩ B1)♦, B ∩ B1)

=((B ∩ B1)♦c, B ∩ B1)

=((B ∩ B1)
′
−R, B ∩ B1) (by Proposition 1(4) and (5))

=(Ac, B) � (Ac
1, B1) in H(Kc)

=(Ac, B) � (Ac
1, B1) in H∂(Kc)

=h((A,B)) � h((A1, B1))

h((G,M)) = (φ,M) = ⊥, which is the top element of H∂(Kc) and h((φ, φ)) =
(G,φ) = �, the bottom element of H∂(Kc). The case for � is similar. ��
Recall the algebras of idempotent elements of semiconcepts defined in Sect. 2.1.
We get the following relationships.

Corollary 1.

1. S(K)� is dually isomorphic to H(Kc)�.
2. S(K)� is dually isomorphic to H(Kc)�.

Proof. (1) Let (A,B) ∈ S(K) then (Ac, B) ∈ H(Kc). Using definitions of �,� in
algebras of object oriented semiconcepts and semiconcepts respectively, we have

(A,B) � (A,B) = (B♦, B) and (Ac, B) � (Ac, B) = (B|′−R, B).
Therefore (A,B) = (A,B) � (A,B) if and only if (A,B) = (B♦, B), i.e. if and
only if Ac = B♦c.

On the other hand, (Ac, B) = (Ac, B) � (Ac, B) if and only if (Ac, B) =
(B|′−R, B), i.e. if and only if Ac = B|′−R. From Proposition 1(7), we have
B♦c = B|′−R and hence (A,B)�(A,B) = (A,B) if and only if (Ac, B)�(Ac, B) =
(Ac, B). Similarly one can show that (A,B) � (A,B) = (A,B) if and only if
(Ac, B) � (Ac, B) = (Ac, B). Therefore image of S(K)� under h defined in
Theorem 3 is equal to H(Kc)� and it is also clear that h is an isomorphism
from S(K)� to H∂(Kc)�.
Proof of (2) is similar. ��

4 Semi-topological Operators on S(K)

Rough concept analysis deals with the necessity and possibility operators � and
♦. As mentioned in Proposition 2, �♦ is a closure operator and ♦� is an interior
operator. We use this idea and define two unary operators C, I on the set S(K)
of object oriented semiconcepts. As we shall see, the two operators turn out to
have semi-topological properties [11].

Definition 7. For any (A,B) ∈ S(K),

C((A,B)) := (A♦�, A♦��),

I((A,B)) := (B�♦♦, B�♦).
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Note. Using the algebraic operations on object oriented semiconcepts, we get
for any x ∈ S(K), C(x) = ¬(¬x � ¬x), and I(x) =�(�x��x).

Lemma 1. Let x, y ∈ S(K). I has the following properties.

1. If x ≤ y then I(x) ≤ I(y).
2. II(x) = I(x).
3. I(x) � x = I(x) = I(x) � I(x) and x � I(x) = x � x.
4. I(�) =�(⊥ � ⊥).
5. I(x � y) ≤ I(x) � I(y).

Proof. (1) Let x, y ∈ S(K) = S(K)� ∪ S(K)� such that x ≤ y.

Case I: Suppose x, y ∈ S(K)�. Without loss of generality, we assume that x =
(A♦, A) and y = (B♦, B) where A,B ⊆ M. Then

I(x) =�(�(A♦, A)��(A♦, A)) =�(Ac♦, Ac♦�) = (Ac♦�c♦, Ac♦�c).
Similarly we deduce that I(y) = (Bc♦�c♦, Bc♦�c). Now x ≤ y implies that A ⊆
B, which implies that Ac♦�c ⊆ Bc♦�c and from this we have Ac♦�c♦ ⊆ Bc♦�c♦

and hence I(x) ≤ I(y).
Case II: If x, y ∈ S(K)� then let x = (A,A�) and y = (B,B�), A,B ⊆ G. Then

I(x) = (A�c♦�c♦, A�c♦�c) and I(y) = (B�c♦�c♦, B�c♦�c).
As x ≤ y, A� ⊆ B�, which implies that A�c♦�c ⊆ B�c♦�c. So A�c♦�c♦ ⊆
B�c♦�c♦ and we get I(x) ≤ I(y).
Case III: If x ∈ S(K)� and y ∈ S(K)�, we assume that x = (A,A�) and
y = (B♦, B). Then I(x) = (A�c♦�c♦, A�c♦�c) and I(y) = (Bc♦�c♦, Bc♦�c).
x ≤ y implies that A� ⊆ B, which gives A�c♦�c ⊆ Bc♦�c. From this we have
A�c♦�c♦ ⊆ Bc♦�c♦ and hence I(x) ≤ I(y).

(2) Let x ∈ S(K).

I(I(x)) =�(��(�x��x)���(�x��x))
=�(((�x��x) � (�x��x)) � ((�x��x) � (�x��x)))
=�(((�x��x) � (�x��x)) � ((�x��x) � (�x��x)))
=�((�x��x) � (�x��x))
=�(�x��x) = I(x).

(3) Let x ∈ S(K) = S(K)� ∪ S(K)�.
Case I: Let x ∈ S(K)�. Without loss of generality we assume that x =
(A,A�), for some A ⊆ G. I(x) = (A�c♦�c♦, A�c♦�c) and from this we get
I(x) � x = (A�c♦�c♦, A�c♦�c) � (A,A�) = ((A�c♦�c ∩ A�)♦, A�c♦�c ∩ A�).
Now A�c ⊆ A�c♦� for any subset A of G. So A�c♦�c ⊆ A� and hence
I(x) � x = (A�c♦�c♦, A�c♦�c) = I(x).
Case II: If x ∈ S(K)�, let x = (B♦, B) for some B ⊆ M. Then I(x) =
(Bc♦�c♦, Bc♦�c) whence I(x) � x = (Bc♦�c♦, Bc♦�c) � (B♦, B) = ((Bc♦�c ∩
B)♦, (Bc♦�c ∩ B)) = (Bc♦�c♦, Bc♦�c) = I(x), as Bc♦�c ⊆ B.
Since for any x ∈ S(K) say x = (A,B), I(x) = (Bc♦�c♦, Bc♦�c) = (D♦,D),
where D = Bc♦�c, we have I(x) ∈ S(K)� for all x ∈ S(K)). Thus I(x)� I(x) =
I(x) and so I(x) � x = I(x) = I(x) � I(x).
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Now we will show that x � I(x) = x � x. Let x ∈ S(K) = S(K)� ∪ S(K)�.

Case I: If x ∈ S(K)�, say x = (A,A�) for some A ⊆ G.

(A,A�) � I((A,A�)) = (A,A�) � (A�c♦�c♦, A�c♦�c)

= (A ∪ A�c♦�c♦, (A ∪ A�c♦�c♦)�)

= (A,A�) because A�c♦�c♦ ⊆ A�♦ ⊆ A

= (A,A�) � (A,A�) = x � x.

Case II: If x ∈ S(K)�, let x = (B♦, B) for some B ⊆ M.

(B♦, B) � I((B♦, B)) = (B♦, B) � (Bc♦�c♦, Bc♦�c)

= (B♦ ∪ Bc♦�c♦, (B♦ � Bc♦�c♦)�)

= (B♦, B♦�) because Bc♦�c ⊆ B

= (B♦, B) � (B♦, B) = x � x.

(4) I(�) =�(�����) =�(⊥ � ⊥).
(5) Let x, y ∈ S(K) = S(K)� ∪ S(K)�.
Case I: Let x ∈ S(K)� and y ∈ S(K)�. Without loss of generality we assume
that x = (A,A�) and y = (B♦, B), where A ⊆ G and B ⊆ M. Then I(x) =
(A�c♦�c♦, A�c♦�c) and I(y) = (Bc♦�c♦, Bc♦�c).
I(x) � I(y) = ((A�c♦�c ∩ Bc♦�c)♦, A�c♦�c ∩ Bc♦�c) and I(x � y) = I((A� ∩
B)♦, A� ∩ B) = ((A� ∩ B)c♦�c♦, (A� ∩ B)c♦�c). Now A�c ⊆ (A� ∩ B)c and
Bc ⊆ (A� ∩ B)c. From this inequality we have, A�c♦� ⊆ (A� ∩ B)c♦� and
Bc♦� ⊆ (A� ∩ B)c♦�. This implies that (A� ∩ B)c♦�c ⊆ A�c♦�c and (A� ∩
B)c♦�c ⊆ Bc♦�c. So (A� ∩ B)c♦�c ⊆ A�c♦�c ∩ Bc♦�c and (A� ∩ B)c♦�c♦ ⊆
(A�c♦�c ∩ Bc♦�c)♦ and hence I(x � y) ≤ I(x) � I(y).
Case II: If x, y ∈ S(K)�, let us assume that x = (A,A�) and y = (B,B�).

Then I(x) � I(y) = ((A�c♦�c ∩ B�c♦�c)♦, A�c♦�c ∩ B�c♦�c) and I(x � y) =
I((A∩B)�♦, (A∩B)�) = ((A∩B)�c♦�c♦, (A∩B)�c♦�c). Now (A∩B)� ⊆ A�

and (A ∩ B)� ⊆ B�. From this we have,

A�c ⊆ (A ∩ B)�c ⇒ A�c♦� ⊆ (A ∩ B)�c♦�

⇒ (A ∩ B)�c♦�c ⊆ A�c♦�c.

Similarly, one can prove that (A ∩ B)�c♦�c ⊆ B�c♦�c. From this inequality
we have (A ∩ B)�c♦�c ⊆ A�c♦�c ∩ B�c♦�c and (A ∩ B)�c♦�c♦ ⊆ (A�c♦�c ∩
B�c♦�c)♦. Hence I(x � y) ≤ I(x) � I(y).
Case III: If x, y ∈ S(K)�, the proof is similar to Case II. ��
Dually, one can prove the following for the operator C on S(K).

Lemma 2. For all x, y ∈ S(K),

1. If x ≤ y then C(x) ≤ C(y)
2. CC(x) = C(x)
3. C(x) � x = C(x) = C(x) � C(x) and x � C(x) = x � x
4. C(⊥) = ¬(� � �)
5. C(x) � C(y) ≤ C(x � y).
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4.1 Semi-topological Double Boolean Algebra

Recall our observation after Theorem 2 that S(K) satisfies the dual of all equa-
tions defining a double Boolean algebra [13]. In this section, we deal with such
an abstract ‘dual double Boolean algebra’, and for the sake of simplicity, retain
the name double Boolean algebra for the structure. More precisely, we have the
following definition.

Definition 8. A double Boolean algebra (A,�,�,¬, �,�,⊥) is an abstract alge-
bra which satisfies the following properties: For any x, y, z ∈ A.

(1a) (x � x) � y = x � y
(2a) x � y = y � x
(3a) x � (y � z) = (x � y) � z
(4a) �(x � x) =�x
(5a) x � (x � y) = x � x
(6a) x � (y ∨ z) = (x � y) ∨ (x � z)
(7a) x � (x ∨ y) = x � x
(8a) ��(x � y) = x � y
(9a) x��x = ⊥

(10a) �⊥ = � � �
(11a) ¬⊥ = �

(1b) (x � x) � y = x � y
(2b) x � y = y � x
(3b) x � (y � z) = (x � y) � z
(4b) ¬(x � x) = ¬x
(5b) x � (x � y) = x � x
(6b) x � (y ∧ z) = (x � y) ∧ (x � z)
(7b) x � (x ∧ y) = x � x
(8b) ¬¬(x � y) = x � y
(9b) x � ¬x = �

(10b) ¬� = ⊥ � ⊥
(11b) �� = ⊥

(12) (x � x) � (x � x) = (x � x) � (x � x),

where ∨ and ∧ are defined as x ∨ y :=�(�x��y), and x ∧ y := ¬(¬x � ¬y).
¬ is called the negation and � the opposition.

Corollary 2. S(K) is a double Boolean algebra.

A quasi-order (reflexive and transitive relation) on a double Boolean algebra
may be defined [7] for all x, y ∈A as:

x � y if and only if x � y = x � x and x � y = y � y.

Remark. As we mentioned in Sect. 1, the algebraic structure of a weakly dicom-
plemented lattice [8,15] also emerged in the context of defining negations in
FCA. We now compare this structure with the double Boolean algebra of
Definition 8. Note that these are algebras of the same type (2,2,1,1,0,0). However,
it can be seen that these are different with respect to the defining axioms. Firstly,
in a weakly dicomplemented lattice (L,∨,∧,� ,� , 1, 0), the reduct (L,∨,∧, 1, 0)
is a lattice, while a double Boolean algebra (A,�,�,¬, �,�,⊥) need not be a
lattice with respect to the �,� operations, as shown in Sect. 3.1. Secondly, to
force another comparison, suppose the lattice meet and join in a weakly dicom-
plemented lattice are relaxed to be lower and upper bound operations �,� sat-
isfying the axioms 1a-b, 2a-b, 3a-b, 5a-b and 12 in Definition 8. The remaining
defining axioms of the negations �,� (cf. [8]) in a weakly dicomplemented lattice
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are retained. Will a double Boolean algebra then be a special case of such a struc-
ture? We find that the negations in the two structures behave differently as well.
In particular, it can be shown that the axiom (x ∧ y) ∨ (x ∧ y�) = x for � need
not hold in a double Boolean algebra, irrespective of whether � is taken as the
negation (¬) or opposition (�) of the double Boolean algebra. Indeed, consider
Example 1: take two object oriented semiconcepts x := ({Fa,Da}, φ) and y :=
(φ, φ). (x � y) � (x � ¬y) = (φ, φ) �= x. If we take x := (G, {Ma,Fe}) and y :=
({Fa}, φ) then (x�y)�(x��y) = (G,M) �= x. On the other hand, if we force �,�
in a double Boolean algebra to be infimum and supremum operators respectively,
we get the equations ��x = x and ¬¬x = x from (8a) and (8b) of Definition 8.
However, these do not hold in general for the negations �,� in a weakly dicom-
plemented lattice, so that the latter is not an example of such a special case of
a double Boolean algebra either.

Now we define a semi-topological double Boolean algebra.

Definition 9. A semi-topological double Boolean algebra is an abstract algebra
A := (A,�,�,¬, �,�,⊥, I,C), where (A,�,�,¬, �,�,⊥) is a double Boolean
algebra, and the unary operators I and C satisfy the following equations for any
x, y ∈ A.

(sa)1 I(x) � x = I(x) � I(x) and
x � I(x) = x � x

(sa)2 I(x � y) � I(x) � I(y)
(sa)3 I(I(x)) = I(x)

(sb)1 C(x) � x = C(x) � C(x) and
C(x) � x = x � x

(sb)2 C(x) � C(y) � C(x � y)
(sb)3 C(C(x)) = C(x)

Theorem 4. S(K) := (S(K,�,�,¬, �,�,⊥, I1, C1) is a semi-topological double
Boolean algebra.

Proof. Follows from Theorem 2 and Lemmas 1, 2. ��

5 Conclusion

This work introduces the notion of negation in the framework of object oriented
concepts in rough concept analysis, and object oriented semiconcepts are defined.
The algebra that these semiconcepts form is shown to be (a dual of) double
Boolean algebra. Moreover, two unary operators are introduced in this algebra,
leading to the definition of a semi-topological double Boolean algebra.

The proposal opens up several directions of further work, including possible
applications. The definition of a new algebraic structure warrants some imme-
diate algebraic investigations, such as investigation for representation theorems.
Definition of a negation can now facilitate studies in the direction of contextual
logic for rough sets. Besides, one can follow up the entire study in the framework
of property oriented concepts.
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Abstract. Natural language supplies us with a plethora of difficulties in
its formal rendering. Common its usage produce cases of uncertain read-
ing one of which is the phenomenon of anaphoric reference. In this notice,
we propose to study the anaphoric reference in the framework of distri-
butional models of language according to Dobrushin and Revzin, but
with the automatic reading of anaphora as a perspective aim. Anaphora
resolution offers us an opportunity to introduce dynamic structures of
rough sets. In the studied in this note case, rough sets emerge as pri-
mary and secondary anaphoric readings of the text underlying dynamic
changes in the process of incremental text deciphering. In a more gen-
eral perspective, rough set collections are construed as states of dynamic
processes with the aim that goals of processes correspond to rough sets
in collections representing states becoming exact.

Keywords: Rough sets · Distributive models of language
The dominance relation · Grammatical category · Paradigmatic forms
Anaphora resolution

1 Analytical Models of Natural Language

It is well-known that natural language understanding poses many difficult prob-
lems whose part comes from syntax. Many models have been elaborated concern-
ing syntactic problems in natural languages. We focus here on analytical models
of language which according to Solomon Marcus [6] attempt at recognizing in
a given language, i.e., in a collection of sentences, the structure of sentences,
the constitutive elements in them and relations among those elements. Usually
we speak of words as elementary units, their properly constructed strings called
sentences and we formalize some relations among words within sentences.
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The inherent ambiguity in such investigations is illustrated by the well-known
example from Bar-Hillel and Shamir [1]: the sentence ‘they are flying planes’
can admit two distinct readings (1) ‘they (are flying) planes’ (2) they are (flying
planes)’. In language formalization on analytical lines, the language L is consid-
ered as a subset of the free semigroup Γ of strings over a given alphabet V and
with operation of catenation on words.

In this setting, a context is any pair (u, v) of strings. For words x, y, follow-
ing Dobrushin [3,4] and Sestier [13], we say that y has greater morphological
homonymy than x if for each context (u, v) such that uxv ∈ L, we have uyv ∈ L.
This is an important example of a relation among words. Another example essen-
tial to our purpose is the partition of the set of words into paradigmatic forms.

A paradigmatic form of a word is the set of its flectional forms, e.g., paradig-
matic forms of the word book are book, books, for the pronoun he, the paradig-
matic class consists of he, his, him, himself. We assume that granulating the
set of words in a language L into paradigmatic classes results in the partition
P on words in the vocabulary V (it may yet happen in general that two non-
paradigmatic words have common paradigmatic forms). A triple (the vocabulary
of words V , the set of well-formed sequences of words L, the paradigmatic par-
tition P ) is a paradigmatically structured language PL.

The relation P can be extended over strings, for a string x1x2...xk, the cor-
responding P -sequence is P1P2...Pk, where Pi is P (xi) for i = 1, 2, ..., k; a P -
sequence is marked if each Pi is P (xi) for some string x1x2...xk ∈ L.

Our basic technical notion is that of domination in the sense of Dobrushin
(op.cit.) We say that P (x) dominates P (y) if for each pair (P (w), P (v)) if
P (w)P (x)P (v) is marked, then P (w)P (y)P (v) is marked. In particular, a word
x dominates a word y if for each context (u, v), if uxv ∈ L then uyv ∈ L, in
symbols x →L y; we omit the subscript L whenever L is fixed. A word x is initial
if there is no y ∈ L such that y → x and not x → y.

For an initial x, the set of all words dominated by x is the grammatical
category C(x) of x (cf. Revzin [9]). Within a category C(x), we introduce the
notion of rank by saying that the rank of y, rank(y) is not greater than rank of
z, rank(z) in case y → z.

2 Anaphora. Anaphoric Reference

In linguistics, anaphora means informally that one occurrence of a word in a
sentence or a text refers back to some occurrence of another word, a typical
example may be Ann was training hardly before her tennis tournament in which
sentence the anaphor is a paradigmatic form her of the personal pronoun she
and the proper name Ann is the antecedent or anaphora resolution.

By an anaphoric pair, we will mean the pair (anaphor, antecedent), and we
define it formally in a category C(x) with the help of the linear order ≺ on
occurrences of words in a text. In this setting, we call an anaphoric C(x)-pair a
pair (u, v) of word occurrences in contexts (a, b) for u and (c, d) for v such that
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(i) u ≺ v;
(ii) u, v ∈ C(x);
(iii) there exist U ′, v′ with u′ ∈ P (u) and v′ ∈ P (v);
(iv) rank(v′) < rank(u′);
(v) u′ is paradigmatically accepted by the context (c, d).

In what follows, we admit as well strings of words as antecedents, and to this
aim, we denote by P ∗ the extension of the paradigmatic partition P over strings.

3 Resolving Anaphoric References. Paradigmatic
Sequences of Anaphora

In this section and following ones, we quote from Semeniuk-Polkowska and
Polkowski [10–12] concerning basic notions and algorithmic ideas. We consider
a text T consisting of separated by space sentences t1, t2, ..., tn where each ti is
a string of word-forms. We consider an initial word-form a along with the set
P ∗(C(a)) of paradigmatic forms of strings in the category C(a) and by Occ(a, T )
we denote the set of occurrences in T of strings from P ∗(a).

Our first notion aimed at segmenting plausible antecedents of anaphora is
that of a paradigmatic sequence of anaphora which is a sequence s = x1 ≺ x2 ≺
... ≺ xk in P (a) such that

(vi) there exists an occurrence of y ∈ P ∗(C(a));
(vii) y ≺ x1;
(viii) rank(y) > rank(a);
(ix) there is no occurrence z ∈ P ∗(C(a)) with xi ≺ z ≺ xi+1 and rank(z) >

rank(a) (x) the sequence s is maximal with respect to (vi)–(ix).

The meaning of a PSA is that it does collect all anaphora in a block of them
not interrupted by any plausible antecedent and separated from other such blocks
by occurrences of plausible antecedents. In the process of anaphora resolution,
we try to find antecedents for anaphora in that block from the set of antecedents
sandwiched between that block and the preceding block. The text in next section
supplies the example of partitioning into PSA’s.

We denote by s(x) the PSA sequence which contains the occurrence x, and,
by f(s), respectively l(s), we denote the first, respectively the last, element of
s; im(s), respectively is(s), denote the immediate predecessor PSA, respectively
the immediate successor PSA, of s with respect to the order ≺.

4 Anaphoric Rough Sets

We now are in the position to indicate rough set structures in the text T . First,
we define the set of strongly plausible antecedents of a sequence s or, for short
primary readings as the lower approximation rough(s) which is the set of occur-
rences y such that l(im(s)) ≺ y ≺ f(s) and (y, x) is an anaphoric pair for each
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x ∈ s. Next, we define the border region Bd(rough(s)) of secondary readings
as the set of occurrences z such that z ≺ l(s) and (z, x) is an anaphoric pair
for some x ∈ s. The rough set rough(s) is defined as the union rough(s) ∪
Bd(rough(s)).

Let us give an example of a real text. Our example comes from Chandler [2].
‘If Muriel Chess1 impersonated Crystal Kingsley2, she11 murdered her12.

That’s elementary. All right, let’s look at it. We know who3 she21 was and what
kind of woman4 she31 was. She32 had already murdered before she33 met and
married Bill Chess1. She34 had been Dr Almore′s2 office nurse5 and his11
littlepal63 and she41 had murdered Dr Almore′s wife7 in such a neat way that
Almore4 had to cover up for her51.’

In this exemplary text, with double superscripts we singled out paradigmatic
sequences for the category of she and similarly but with subscripts elements
of paradigmatic sequences for the category of he, in the former case the first
superscript indicates the sentence, the second its consecutive elements. Possible
antecedents are marked with superscripts for the category of she and subscripts
for the category of he.

4.1 Exemplary paradigmatic sequences of anaphors (PSA’s)

We list those sequences for categories of she and he. For the category of she, we
have the following PSA’s.

(0) s0 = ∅;
(1) s1 =< she11, her12 >;
(2) s2 =< she21 >;
(3) s3 =< she31, She32, she33, She34 >;
(4) s4 =< she41 >;
(5) s5 =< her51 >.

PSA’s for the category of he are
s1 =< his11 > .

4.2 Rough Sets Associated with Exemplary PSA’s

We list rough sets as indicated above, by defining in each case the lower approx-
imation referring to primary readings of anaphora and the boundary region tied
to secondary readings of them.

For s1 : rough(s1) = {Muriel Chess1, Crystal Kingsley2};
Bd(rough(s1)) = ∅.

For s2 : rough(s2) = {who3};
Bd(rough(s2)) = {Muriel Chess1, Crystal Kingsley2}.

For s3 : rough(s3) = {woman4};
Bd(rough(s3)) = {who3,Muriel Chess1, Crystal Kingsley2}.
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For s4 : rough(s4) = {office nurse5, little pal63};
Bd(rough(s4)) = {who3, woman4,Muriel Chess1, Crystal
Kingsley2}.

For s5 : rough(s5) = {Dr Almore′s wife7};

Bd(rough(s5)) = {little pal63, office nurse5, woman4, who3,
Muriel Chess1, Crystal Kingsley2}.

For s1: rough(s1) = {Bill Chess1,Dr Almore′s2}.

4.3 PSA Associated Rough Sets Parsing

Implementation of an exemplary parsing algorithm, that results in a formation
of such sets, relies heavily on access to additional syntactic and semantic data,
that can be gained during text preprocessing. Initial steps involve sentence seg-
mentation and tokenization followed by part of speech tagging (POS), gender
detection and named entity recognition. Tools for such preprocessing are readily
available in open source libraries e.g. Stanford CoreNLP Toolkit [5].

Algorithm 1. Rough set parsing algorithm
1: function parseRoughSets(text, gender)
2: let anaphoraSequence � a sequence of all anaphora in text
3: let lwApproxSets � a sequence of lower approx. rough sets for each anaphora
4: let bondarySets � a sequence of boundary region rough sets for each anaphora
5: let maxBoundarySet � a maximal boundary region in text
6: sentences ← splitText(text) � split text to a sequence of sentences
7: for sentence ← sentences do
8: annotatedSentence ← annotateWithTags(sentence)

� POS annotation done with external toolkit e.g. Stanford CoreNLP
9: anaphora, segments ← splitByPrepositions(annotatedSentence, gender)

10: anaphoraSequence ++= anaphora � add all anaphora to result sequence
11: for segment ← segments do
12: let lowerApprox � an initial empty sequence
13: for token ← segment do
14: if (token is NamedEntity and token.gender == gender) or

(token.pos in (NN, NNP, WP) and token WordNet category person) then
� POS tags as used in Penn Treebank set, WordNet data from external source

15: lowerApprox += token.word
16: end if
17: end for
18: lwApproxSets += lowerApprox
19: bondarySets += maxBoundarySet
20: maxBoundarySet += lwApproxSets
21: end for
22: end for
23: return anaphoraSequence, lwApproxSets, bondarySets
24: end function
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1: function splitByPrepositions(annotatedSentence, paradigmaticCategory)
� In this example paradigmatic category is determined by gender

2: let segments � a sequence of sequences of words from sentence
3: let subSegment � an initial empty sequence of words
4: let anaphorSequence � a sequence of anaphora from sentence
5: for token ← annotatedSentence do
6: if token.pos == PRP and token belongs to paradigmaticCategory then
7: anaphorSequence += token � preposition (anaphora) was detected
8: segments += subSegment
9: subSegment ← empty sequence � new empty sequence for next prep.

10: else
11: subSegment += token
12: end if
13: end for
14: return anaphoraSequence, segments
15: end function

The following section presents a pseudocode of an implementation that forms
the exact sets as in the example above. Splitting, tokenization and annotation of
words was done using the aforementioned NLP toolkit. Additionally WordNet
[7] was used to determine the category of nouns that were not marked during
the annotation preprocessing as named entities. WordNet unique beginners [8]
of these nouns were checked in the database to conform with person, human
being type. This kind of filtering can also be used for other categories e.g. when
resolving for abstract idea or physical object.

5 Semantic Tools. Pruning the Anaphoric Tree
of Resolutions

The sequence of anaphora in a text T , x1, x2, ..., xk is resolved by means of an
increasing hierarchy of partial functions - partial anaphora resolutions - forming
a tree called the anaphoric tree. The root of the tree is the empty function h(0)
on the empty sequence s0. Each partial function is defined on an initial segment
x1, x2, ..., xn, n <= k, and the tree order is the Brouwer-Kleene (lexicographic)
order. The number of functions in a tree of our example for the category of
she is 1092 and it is desirable to prune the tree to select most plausible read-
ings. Pruning of the anaphoric tree cannot be done by purely grammatic tools,
as understanding of proper readings is intimately related to semantics of the
language.

5.1 Identifying Strings, Forbidden Texts

We apply two ideas in order to prune the anaphoric tree. The first is that of
identifying strings [12]. By an identifying string we mean a string of the form

(is) ‘x is (eventually: was, will be, have been, had been, becomes, will become,
became, have become, had become, has name of) y’,
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where x ∈ P (a), a an initial word-form in the category C(a), y ∈ P ∗(C(a),
rank(y) > rank(x).

With each identifying string, we associate a transfer rule.

Transfer rules. For the string in (is), the transfer rule is:
If y is not of maximal rank in the category C(a), then in each partial anaphora

resolution, the occurrence of y as the antecedent to x is replaced by an antecedent
in the appropriate rough set rough(s(x)) having the maximal rank of a proper
name if such antecedent does exist.

In our example, we have the following identifying strings:

(i) ‘who3 she21 was’;
(ii) ‘what kind of woman4 she31 was’;
(iii) ‘She34 had been Dr Almore′s2 office nurse5 and his11 little pal63’.

The transfer rules are applicable in each of the three cases. In case (i), we elim-
inate who3 as a possible antecedent replacing it with either

Muriel Chess1 or Crystal Kingsley2. The transfer rule does change the
rough set rough(s2):

rough(s2) ← {Muriel Chess1, Crystal Kingsley2} and it is an exact set.
In case (ii), we eliminate woman4 replacing it with either Muriel Chess1 or

Crystal Kingsley2.
The rough set rough(s3) becomes
rough(s3) ← {Muriel Chess1, Crystal Kingsley2} and it is exact now.
In case (iii), office nurse5, little pal6 are replaced each with either
Muriel Chess1 or Crystal Kingsley2. The rough set rough(s4) becomes:
rough(s4) ← {Muriel Chess1, Crystal Kingsley2} and it is exact now.
These changes have impact on the rough set rough(s5) which becomes now:
rough(s5) ← {Dr Almore′s wife7};
Bd(rough(s5)) = {Muriel Chess1, Crystal Kingsley2}.

Under transfer rules, the reading of our text becomes:
‘If Muriel Chess impersonated Crystal Kingsley, Muriel Chess/Crystal Kings-

ley murdered Crystal Kingsley/ Muriel Chess.
That’s elementary. All right, let’s look at it.
We know who Muriel Chess/Crystal Kingsley was and what kind of woman

Muriel Chess/Crystal Kingsley was.
Muriel Chess/Crystal Kingsley had already murdered before Muriel

Chess/Crystal Kingsley met and married Bill Chess.
Muriel Chess/Crystal Kingsley had been Dr Almore’s office nurse and his

little pal and Muriel Chess/Crystal Kingsley had murdered Dr Almore’s wife
in such a neat way that Almore had to cover up for Dr Almore’s wife/Muriel
Chess/Crystal Kingsley.’

Transfer rules reduced the size of the anaphoric tree to 384 possible readings.
Which are plausible? We exploit the Revzin idea of forbidden texts to further
prune the anaphoric tree. The set of forbidden texts we single out consists of:
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(a) texts which follow after a phrase x murdered y containing any occurrences
of y as a possible antecedent.
The transfer rule induced by (a) excludes Dr Almore′s wife7 as the
antecedent for her51, changing the rough set rough(s5) to the exact set:

{Muriel Chess1, Crystal Kingsley2}
and offering the reading of the form:

‘If Muriel Chess impersonated Crystal Kingsley, Muriel Chess/Crystal Kings-
ley murdered Crystal Kingsley/Muriel Chess.

That’s elementary. All right, let’s look at it.
We know who Muriel Chess/Crystal Kingsley was and what kind of woman

Muriel Chess/Crystal Kingsley was.
Muriel Chess/Crystal Kingsley had already murdered before Muriel

Chess/Crystal Kingsley met and married Bill Chess.
Muriel Chess/Crystal Kingsley had been Dr Almore’s office nurse and his

little pal and Muriel Chess/Crystal Kingsley had murdered Dr Almore’s wife in
such a neat way that Almore had to cover up for Muriel Chess/Crystal Kingsley.’

(b) in texts following the phrase x married y with possible antecedents for
x ∈ P (a) being proper names name surname1, ..., name surnamen and
y being a proper name name surname∗, the only possible antecedent for
paradigmatic forms of x in the exact rough sets for the sequences containing
x is the name surnamek with surnamek equiform with surname∗.

(c) if a text contains a necessary antecedent y for a paradigmatic form x of an
initial word-form a, then y cannot occur as an object in a preceding y phrase
containing verbs of destruction like murdered, destroyed, erased .... .

The transfer rule following (b) excludes Crystal Kingsley2 as an antecedent for
she34 and by virtue of (c) the only possible readings for she11 and her12 are,
respectively Muriel Chess1 and Crystal Kingsley2. The rough sets resulting
from those final transfer rules are exact sets:

rough(s1) = {MurielChess1, CrystalKingsley2};
rough(s) = {Muriel Chess1} for s = s2, s3, s4, s5} .

The final reading of the text becomes:
‘If Muriel Chess impersonated Crystal Kingsley, Muriel Chess murdered

Crystal Kingsley.
That’s elementary. All right, let’s look at it.
We know who Muriel Chess was and what kind of woman Muriel Chess was.
Muriel Chess had already murdered before Muriel Chess met and married

Bill Chess.
Muriel Chess had been Dr Almore’s office nurse and his little pal and Muriel

Chess had murdered Dr Almore’s wife in such a neat way that Almore had to
cover up for Muriel Chess.’

We have observed the dynamic changes in rough sets associated with paradig-
matic sequences of anaphora, reducing boundary regions in accordance with
advancements in partial readings of the text.
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6 Conclusions

We have presented a new venue for rough sets: dynamic structures/collections
of them. They are intended as states of dynamic processes, with goals of those
processes represented as states at which the collection of rough sets becomes
the collection of exact sets. In the case presented here, rough sets are construed
as sets of possible antecedents for anaphora in a given grammatical category.
We have applied in our schema the idea of R. L. Dobrushin, of contextual dom-
ination, which requires for its automatic application the already tagged texts
and we intend to use to this end the tools listed in the bibliography. We also
intend to extend our analysis to cataphora as for instance the analysis of ‘it’
must take into account the usage of the pronoun ‘it’ in phrases like ‘it was rain
that interrupted the show’ where the pair (it, rain) is a cataphoric pair.

One has to be aware that problems of language analysis are difficult and we
hope that our approach even restricted to texts not complicated beyond what is
typical will bring some tools for automatic reading of anaphora and cataphora
resolutions.
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Abstract. In this paper we review the problem of short reduct calcu-
lation in a sparse decision system. We also address the problem of dis-
cretization of numerical attributes in sparse decision systems. We present
algorithms that provide an approximate solution to these two problems
and analyze the complexity of these algorithms.

1 Introduction

We begin by introducing the necessary notions in Rough Set theory, the prob-
lems of reduct calculation and discretization. Afterwards we introduce Maximal
Discernibility heuristic. Finally, we discuss an implementation of MD heuristic
using contingency tables. We then discuss a version of the algorithm designed for
sparse data sets and discuss several theoretical properties of both the algorithm
and the minimal reduct problem in the sparse setting.

1.1 Preliminaries

An information system is a pair I = (U, A) where U denotes the universe of
objects and A is the set of attributes. An attribute a ∈ A is a mapping a : U → Va.
The codomain Va of attribute a is often also called the value set of attribute a.

A decision system is a pair D = (U, A∪{dec}) which is an information system
with a distinguished attribute dec : U → {1, . . . , d} called a decision attribute.
Attributes in A are called conditions or conditional attributes and may be either
nominal or numeric, i.e. with Va ⊆ R. Throughout this article n will denote
the number of objects in a decision system and k will denote the number of
conditional attributes.

Table 1 on the left shows a typical decision system with symbolic attributes
represented as a table. Attributes Diploma, Experience, French and Reference are
conditions, whereas Decision is the decision attribute. All conditional attributes
in this decision system are nominal.
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Table 1. A typical decision system with symbolic attributes (left) and a decision
system in which all conditional attributes are numeric (right)

For any B ⊆ A we define B-indiscernibility relation IND(B) ⊆ U×U as follows:

IND(B) = {(x, y) : ∀a∈B a(x) = a(y)}

and the decision-relative B-indiscernibility relation IND(B) ⊆ U × U by:

INDdec(B) = {(x, y) ∈ U × U : dec(x) = dec(y) ∨ ∀a∈B a(x) = a(y)}

The discernibility relation DISC(B) and decision-relative discernibility relation
DICSdec(B) are the complements of IND(B) and INDdec(B) correspondingly:

DISC(B) = U × U � IND(B) DISCdec(B) = U × U � INDdec(B)

A decision system D = (U, A ∪ {d}) is consistent if

∀x,y∈U dec(x) �= dec(y) =⇒ ∃a∈A a(x) �= a(y)

Proposition 1. For arbitrary B ⊆ A, IND(B) is an equivalence relation and
thus this relation induces a partitioning of U.

Definition 1. A decision-relative reduct or decision reduct of a decision sys-
tem D = (U, A ∪ {dec}) is a minimal subset of attributes B ⊆ A such that
INDdec(B) = INDdec(A).

If we loosen the assumption on the minimality of this set, we speak of a
decision superreduct:

Definition 2. A decision-relative superreduct or decision superreduct of a deci-
sion system D = (U, A ∪ {dec}) is a subset of attributes B ⊆ A such that
INDdec(B) = INDdec(A).

1.2 Sparse Decision System and Entity Attribute Value Model

In many situations a convenient way to represent the data set is in terms of
Entity-Attribute-Value (EAV) Model, which encodes observations in terms of
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triples. For an information system I = (U, A), the set of triples is {(u, a, v) :
a(u) = v}. This representation is especially handy for information systems
with numerous attributes, missing or default values. Instances with missing and
default values are not included in EAV representation, which results in compres-
sion of the data set.

In this paper we are only dealing with default values. Their interpretation
or semantics is the same as of any other attribute. In practice we store triples
corresponding to numeric attributes and to symbolic attributes in two separate
tables, and store decisions of objects in a separate vector (Table 2).

Table 2. EAV representation of decision systems in Table 1. The default values for
the left table (omitted in this representation) for consecutive attributes are ‘MBA’,
‘Low’, ‘Yes’ and ‘Excellent’. The default value for the right table (omitted in this
representation) for each attribute is 0.

There are various problems related to reduct calculation, e.g. finding all deci-
sion reducts or finding the shortest decision reduct [4] in a decision system. In
this paper we address the problem of finding a single short decision reduct. The
problem of finding the shortest decision reduct is an NP-hard [4], though various
heuristics were proposed for this problem, e.g. [1,6]. In this paper we focus on
an approximate solution to this problem assuming that the decision system is
sparse and is stored in data bases in the EAV Model.

2 Maximal Discernibility Heuristic for Reduct
Calculation

A convenient heuristic for the problem of finding a short decision reduct is “max-
imal discernibility heuristic” (MD-heuristic), presented in Algorithm 1 below.
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Definition 3. A conflict is an unordered pair of objects belonging to different
decision classes. For X ⊆ U we define a function which counts the number of
unordered conflicts:

conf(X) =
1
2
|{(x, y) ∈ U × U : dec(x) �= dec(y)}|

Finally, we define c : 2A → R as: c(R) =
∑

conf([x]R), where the summation
is taken over all equivalence classes of the partitioning induced by IND(R) and
[x]R := [x]IND(R).

Definition 4. For R ⊆ A, a ∈ A\R we define discernibility measure as follows:

discern(R, a) = c(R) − c(R ∪ {a})

For a fixed R ⊆ A, discern(R, a) counts the number of pairs of objects dis-
cerned by a, undiscerned by attributes from R alone, and can thus be interpreted
as an incremental measure of quality of attribute a.

Algorithm 1. MD-heuristic for superreduct calculation in a consistent
decision system.
Data: D = (U, A ∪ {dec}): a decision system.
Result: R: a semi-optimal decision superreduct

1 R ← ∅;
2 while c(R) �= 0 do
3 a ← argmaxa∈A\R discern(R, a);
4 R ← R ∪ {a};
5 end

Let k denote the number of attributes and n denote the number of objects
in the decision system. The calculation of discern in Algorithm 1 may require
iterating over each pair of objects. The argmax may further require iteration
over all attributes. Hence, a naive implementation of the algorithm presented
above leads to an algorithm with complexity O(|R|n3k). In further sections we
discuss more efficient implementations of this algorithm and its extension to
discretization problem.

3 MD-Heuristic for Discretization Problem

In this section we describe the problem of discretization of numeric attributes.
Let D = (U, A∪{dec}) be a decision system. An attribute a is numeric if Va ⊆ R.
A cut on a numeric attribute a ∈ A is a pair (a, v) such that v ∈ Va. We further
require that a(x) �= v for all x ∈ U (i.e. we can always tell whether an object is
to the left or to the right of a cutpoint).

Let D = (U, A ∪ {dec}) be a decision system and (a, c) be a cut. The cut
discerns objects x, y ∈ U if a(x) − c and a(y) − c are of different signs.
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A set of cuts P is called consistent with D if

∀x,y∈U dec(x) �= dec(y) =⇒ ∃(a,c)∈P (a(x) − c)(a(y) − c) < 0

and P is called optimal if it is the smallest set of cuts consistent with D.
While there are potentially infinitely many possible cuts on an attribute

a ∈ A, we will only consider cut points that fall in the middle of two consecutive
values attained on this attribute. By M(a) we denote the list of middle cuts
on attribute a ∈ A listed in ascending order. For example the lists of middle
cuts for the data set in Table 1 are as follows: M(a1) = 〈1.65, 3.5, 3.9〉, M(a2) =
〈0.95, 1.1, 1.25, 1.4, 2.1〉, M(a3) = 〈1.2, 2.45, 2.65, 3.2〉.

The problem of finding the optimal set of cuts is equivalent to the problem
of shortest reduct calculation [2] and thus is NP-hard [2] (Table 3).

Table 3. A discretized version of the decision system presented in Table 1

a1 a2 a3 Decision

x1 (−∞,+∞) (1.25,+∞) (−∞, 1.2] F

x2 (−∞,+∞) (−∞, 1.1] (−∞, 1.2] F

x3 (−∞,+∞) (1.25,+∞) (−∞, 1.2] F

x4 (−∞,+∞) (1.1, 1.25] (1.2,+∞) F

x5 (−∞,+∞) (1.25,+∞) (1.2,+∞) F

x6 (−∞,+∞) (1.25,+∞) (1.2,+∞) T

x7 (−∞,+∞) (−∞, 1.1] (1.2,+∞) T

Similarly to c and discern for attributes, we can define such functions for
cuts. For a set of cuts P let c(P) =

∑
conf([x]P), where the summation is taken

over all equivalence classes of the partitioning induced by the set of cuts P and
equivalence classes of this partitioning are denoted [x]P. For a set of cuts P and
a cut (a, c) /∈ P we define discern(P, (a, c)) = c(P) − c(P ∪ {(a, c)}).

The MD heuristic for optimal discretization problem is presented in Algo-
rithm 2. During the analysis of MD-heuristic for the discretization problem in
later sections of this paper it will be convenient to refer to c and discern for deci-
sion systems with different universes, e.g. (U1, A∪{dec}) and (U2, A∪{dec}). In
order to disambiguate, in such situations we will explicitly write cU1(P), cU2(P),
discernU1(P, (a, c)), discernU2(P, (a, c)).

Algorithm 2. MD-heuristic for discretization
Result: P: a semi-optimal set of cuts

1 R ← ∅;
2 while c(P) �= 0 do
3 (a, c) ← argmax(a,c):a∈A,c∈M(a) discern(P, (a, c));
4 P ← P ∪ {(a, c)};
5 end
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4 Contingency Table and Partitioning (CPS)

In this section we introduce a structure which simplifies implementation of sev-
eral algorithms, including MD heuristic for reduct calculation introduced earlier.
We call it Contingency Table and Partitioning, or CPS for short.

CPS is a structure that stores information about (a subset of) objects in the
database along with their partition membership. CPS consists of fields:

Φ = {φ1, . . . , φm} a set of labels describing partitions
pid a vector of partition identifiers for objects in the

underlying decision system
C = (aij) frequency matrix counting, for each decision value,

objects in each partition φi.

Definition 5. Let D = (U, A∪{dec}) be a decision system, Vdec = {d1, . . . , dD}
and let C = {C1, . . . , Cm} be a covering of U.

A frequency matrix for the pair (D, C) is an m × D matrix (aij) such that

aij = |{x ∈ U : x ∈ Ci ∧ dec(x) = dj}|

A contingency table is a frequency matrix in which columns and rows are
labeled.

Definition 6. Let Φ = 〈φ1, . . . , φm〉 be a list of labels. Let D = (U, A∪{dec}) be
a decision system, Vdec = {d1, . . . , dD} and let C = {C1, . . . , Cm} be a covering
of U. A contingency table for the tuple (D, Φ, C) is a pair (Φ,C), where C is the
frequency matrix for (D, C).

We will typically use contingency tables for families C that form partitionings
of U. It is convenient to enumerate partitions and represent the partitioning
P = {P1, . . . , Pm} by a vector pid ∈ {1, . . . ,m}|U|.

Definition 7. Let D = (U, A∪{dec}) be a decision system, Vdec = {d1, . . . , dD},
pid ∈ {1, . . . , m}|U| and let Φ = 〈φ1, . . . , φm〉 be a list of partition labels, i.e. label
φi corresponds to (or describes) objects u ∈ U with pid[u] = i.

A CPS (contingency table and partition system) for (D, Φ, pid) is a tuple
(Φ, pidΦ, C), where pidΦ : U → {1, . . . , m} and pidΦ(x) is the partition assigned
to object x, and where C is the frequency matrix for (D,P).

Since we discuss the problems of reduct calculation and discretization in this
paper, partitions pid and their labels Φ will be of a specific form.

Definition 8. Let D = (U, A∪{dec}) be a decision system, R = {ai1 , . . . , ail
} ⊆

A. A CPS (contingency table and partition system) for (D, R) is a tuple
(Φ, pid, C), where C is the contingency table for (D, Φ), and where Φ consists of
labels of the form (ai1 = vi1) ∧ . . . ∧ (ail

= vil
) and such that the term aij

= vij

appears in a label of an object x iff aij
(x) = vij

. This matches the conventional
definition of a contingency table.
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Table 4. Example contingency table for the decision system in Table 1 and R =
{Diploma, French}.

Table 4 is the illustration of contingency table for the decision system in
Table 1 and R = {Diploma, French} (a1 stands for Diploma and a3 for
French). The first column in this table lists all elements from Φ. Two columns
with numbers form a 5 × 2 contingency matrix.

It turns out that frequency matrices (and therefore contingency tables) pro-
vide a sufficient summary of the data for the calculation of functions c and
discern.

Definition 9. Let C = CT (D, Φ) and let IΦ denote the equivalence relation on
U × U defined as follows: (x, y) ∈ IΦ ⇐⇒ ∀φ∈Φ(φ(x) ⇐⇒ φ(y))

Proposition 1. (See [2], Proposition 23)
Let (aij) i = 1, . . . ,m; j = 1, . . . , D be the frequency matrix for (D, Φ) where
Φ = {φ1, . . . , φm}.

conf([x]IΦ
) =

1
2

⎛

⎜
⎝

⎛

⎝
D∑

j=1

aij

⎞

⎠

2

−
D∑

j=1

a2
ij

⎞

⎟
⎠

where i is such that φi(x) is satisfied (i.e. i = pid[x]) and [x]IΦ
denotes the

equivalence class of x with respect to relation IΦ.

Let D = (U, A ∪ {dec}). Proposition above shows that the frequency matrix
(aij) is a sufficient summary of the data for the calculation of c(R) or c(P), where
R ⊆ A or P is a set of cuts in D. In both cases c(R) and c(P) are given by the
formula for conf([x]IΦ

).
Finally, we rewrite the MD-heuristic for reduct calculation so that it explic-

itly calculates c and discern using contingency tables. For the algorithm below
we define discern as a function of contingency tables (further overloading the
definition) as follows: discern(C1, C2) = c(C1) − c(C2).
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Finally, we list methods associated with class CPS:

– Init(U, dec): Initialize the CPS, store contingency table for a trivial
partitioning

– Init(CPSold, npartitions): Initialize the CPS given CPSold while allocating
extra memory in the underlying contingency table for storing counts of a
larger number of partitions

– remove(object): remove the object from any partition it belongs to, decrease
appropriate count in the contingency table

– renumber(): Reset partition identifiers to 1, . . . ,m for some m, i.e. guarantee
there are no gaps in their numbering.

and several self-explanatory methods: getPartition(object), getLabel
(partition id), setPartition(object, partition id), setPartitionLabel
(partition id, labelopt), getConflicts(), maxPid().

Algorithm 3. getBestAttribute
Input: D = (U, A ∪ {dec}): A consistent decision table. For simplicity we

assume that Va = {1, . . . , |Va|} for each a ∈ A

Data: CPS: contingency and partition system for D and R
Data: CPSt: temporary contingency and partition system
Result: a: argmaxa∈A\Rdiscern(R, a)

1 M ← maxa∈A|Va|;
2 Init(CPSt, CPS,M · CPS.maxPid());
3 for a ∈ A \ R do
4 for x ∈ U do
5 p ← getPartition(CPS, x) ;
6 p′ ← p + a(x) · CPS.maxPid();
7 setPartition(CPSt, x, p′);
8 end
9 da ← getConflicts(CPS) − getConflicts(CPSt);

10 // reverse previous setPartition() operations
11 for x ∈ U do
12 setPartition(CPSt, x, getPartition(CPS, x));
13 end
14 end
15 a ← argmaxa∈Ada; // update CPS to reflect inclusion of a in R
16 CPSt ← CPS;
17 for x ∈ U do
18 p ← getPartition(CPS, x) p′ ← p + a(x) · CPS.maxPid();
19 setPartition(CPSt, x, p′);
20 end
21 renumber(CPSt);
22 CPS ← CPSt;
23 return a;
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5 MD-Heuristic with Contingency Tables

Instead of calculating argmaxa∈A\R discern(R, a) directly in Algorithm1 we
now call the function getBestAttribute which returns the result while preserving
CPS structure helpful for further iterations of the algorithm.

Algorithm 3 is a realization of MD-heuristic for reduct calculation. In this
algorithm discern is calculated using contingency tables, which in turn are cal-
culated based on dec and pidR assignments. Updating partition identifiers can
be done in O(n) time, and determining discern can be done in O(nD) time and
space.

Lemma 1. The time complexity of MD-heuristic (Algorithm 1) using proce-
dure getBestAttribute from Algorithm3 is O(|R|Dnk) and the space complexity
is O(n(k + D)) (the dependency on D = |Vdec| is typically neglected as D is
usually small for classification problems).

Proof. In each step of the algorithm, for each a ∈ A \ R, frequency matrix C
can be calculated in O(nD) time. Such a frequency matrix has size at most Dn
and further calculation of discern is linear in the size of this frequency matrix.
All such matrices are calculated |R|k times.

In MD-heuristic for the discretization problem we will use contingency tables
with labels Φ describing cuts.

Definition 10. Let D = (U, A ∪ {dec}) be a decision system, and let P =
{(ai1 , ci1), . . . , (ail

, cil
)}, with aij

∈ A, cij
∈ R, A CPS for (D, P) is a tuple

(Φ, pid, C), where C is the contingency table for (D, Φ), and where Φ consists of
labels of the form (b1(ai1 − ci1) < 0) ∧ . . . ∧ (bl(ail

− cil
) < 0) for bi ∈ {−1, 1}

(i = 1, . . . , l) and such that each object x ∈ U satisfies exactly one such formula.

Definition 11. Let P = {(ai1 , ci1), . . . , (ail
, cil

)}, with aij
∈ A, cij

∈ R, Vaij
⊆

R. A contingency table for the pair (D, P) is a contingency table for (D, Φ), where
Φ consists of formulas/labels of the form (b1(ai1−ci1) < 0)∧. . .∧(bl(ail

−cil
) < 0)

for bi ∈ {−1, 1} (i = 1, . . . , l) and such that each object x ∈ U satisfies exactly
one such formula.

From the requirement that each object satisfies exactly one such formula it
follows that for i = 1, . . . , l and x ∈ U, aij

(x) �= cij
, i.e. cut values never equal

values attained by objects in the decision system, and so it is always unambiguous
whether an object falls on the left or the right side of a cut point. In practice we
only consider middle cuts.

Definition 12. Let P = {(ai1 , ci1), . . . , (ail
, cil

)}, with aij
∈ A, cij

∈ R, Vaij
⊆

R. Let Φ consist of labels/formulas of the form

(b1(ai1 − ci1) < 0) ∧ . . . ∧ (bl(ail
− cil

) < 0)

for bi ∈ {−1, 1} (i = 1, . . . , l) and such that each object x ∈ U satisfies exactly
one such formula. We define the partition identifier pidP : U → {1, . . . , m} as
follows: For x ∈ U let pidP(x) denote the index of the formula φi ∈ Φ such that
φi(x) is satisfied.
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Table 5. Example contingency table for the decision system in Table 1 and cuts
P = {(a2, 1.25), (a3, 1.2)} and an example pidP assignment for this set of cuts

Table 5 shows contingency table for the decision system in Table 1 and
P = {(a2, 1.25), (a3, 1.2)}. The first column in this table lists all elements from Φ.

Table 5 also shows pidP assignment for the decision system in Table 1 and
P. The table on the right lists formulae in Φ. In practice the formulae do not
need to be stored as only partition identifiers (formulae indices) are necessary
for calculations.

The algorithm below keeps two contingency tables: for objects UL on the left
and for objects UR on the right side of a (variable) cut, and iterates over cuts
in M(a) (the list of middle cuts) in increasing order.

Lemma 2. Suppose that we are given a set U0 ⊆ U and a set of cuts P on U0.
If a cut (a, c) partitions U0 into two disjoint subsets U1 and U2, then

discernU0(P, (a, c)) = cU0(P) − cU1(P) − cU2(P)

Proof. Since any objects x1 ∈ U1, x2 ∈ U2 are discerned by (a, c), we have
cU0(P ∪ {(a, c)}) = cU1(P) + cU2(P).

Definition 13. Let frequency matrices for (U0, P), (U1, P) and (U2, P) be C0, C1

and C2. For the discretization problem we may thus define discern as a function
of contingency tables as: discern(C0, C1, C2) = cU0(P) − cU1(P) − cU2(P).

Notice that by iterating over cut points in increasing order, CL and CR can
be updated with minimal effort (only one entry needs to be changed in each of
these tables). Furthermore, discern does not need to be explicitly recalculated
in each of the iterations in the innermost loop, as it can be sequentially updated,
accessing only a few elements of the involved contingency tables as follows.

Suppose that the object x is counted in the i-th row in CR and is moved from
the right partition to the left partition, with U ′

R = UR \{x} and U ′
L = UL ∪{x}.

The following holds:

discern(C∗, C ′
L, C ′

R) = cU(P) − cU ′
L
(P) − cU ′

R
(P)

= cU(P) − (cUL
(P) + |{y ∈ [x]P ∩ UL : dec(x) �= dec(y)}|)

− (cUR
(P) − |{y ∈ [x]P ∩ UR : dec(x) �= dec(y)}|)

= discern(C∗, CL, CR) +
D∑

j=1

CL[i, j]I(dec(x) �= dj) −
D∑

j=1

CR[i, j]I(dec(x) �= dj)
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Algorithm 4. getBestCut
Data: D = (U,A ∪ {dec}): A consistent decision table.
Data: C: a set of cuts
Data: CPS: a contingency and partition system for D and a set of cuts P

Data: CPSL: a temporary contingency and partition system for the set of cuts
P with all counts equal 0

Data: CPSR: a temporary contingency and partition system for D and a set of
cuts P

Input: a ∈ A: attribute under consideration
Result: v: best cut value.
Result: dv: disc(P, (a, c))

1 for x ∈ U ordered by values of attribute a do
2 p ← getPartition(CPSR, x);
3 setPartition(CPSL, x, p);
4 remove(CPSR, x);
5 v ← a(x);
6 dv ← discern(C∗, C′

L, C
′
R);

7 end
8 Return v with maximal dv;

Only the row describing indiscernibility class containing x needs to be read
in order to update discern in this step. Moreover, if in addition to contingency
tables CL and CR we also store vectors with row totals, only four entries need
to be accessed at each step: one in CL, CR and one in each of the corresponding
totals.

Theorem 1. (See [2], Theorem 22)
The time complexity of MD-heuristic for discretization (Algorithm2) using pro-
cedure getBestCut from Algorithm4 is O(kn(|P|D + log n)) and the space com-
plexity is O(n(k + D)). The dependency on D = |Vdec| is typically neglected as
D is usually small for classification problems, and thus the time complexity is
O(kn(|P| + log n)).

6 MD-Heuristic for Sparse Decision Systems

We will now discuss the MD heuristic for superreduct calculation and for dis-
cretization problems for datasets in EAV format. In what follows, E(i), A(i), V (i)
will denote the entity, attribute and value of the i-th object, respectively. We will
assume that there are N EAV triples in the database. We focus on scenarios in
which N is much smaller than n × k.

In the algorithm for (super)reduct caculation, the contingency table was
recalculated from scratch each time an attribute was considered for addition
to the (super)reduct set. Thus, pid assignment had to be accessed for each of
the n objects.
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If we use EAV representation, it suffices to update assigned pid identifiers
only for objects that attain non-missing values on an attribute a. In other words,
suppose we consider a ∈ A and we are given pidR. We define pidR∪{a} as follows:
We can assume that an object xi retains its pid identifier if it has default value
on attribute a (so that the corresponding row is missing in the EAV database),
otherwise it gets a new pid assigned. We set the new pid identifier of xi to
pidR[i] + j · maxi′ pidR[i′], where j is the index of the attained attribute value
on the list of Va elements: v0 = ∗, v1, . . . , vj , . . . , vl.

There are at most maxa∈A\R |Va|maxi′ pidR[i′] values of new pidR∪{a}.
In order to simplify the notation, we will set m = maxi′pidR[i′] = |Φ|, where

|Φ| is the header in contingency table for (D, R).
In the version of the algorithm for sparse datasets, when we consider an

attribute a ∈ A for inclusion in R, we do not store the new (temporary) pidR∪{a}
unless we include a in the result.

For each a ∈ A \R we calculate the frequency matrix C of contingency table
CT (D, R ∪ {a}) and calculate discern(R, a) by using:

c(R) =
1
2

m∑

i=1

⎛

⎝

(
D∑

d=1

C∗
i,d

)2

−
D∑

d=1

(C∗
i,d)

2

⎞

⎠

c(R ∪ {a}) =
1
2

m∑

i=0

|Va|∑

j=0

⎛

⎝

(
D∑

d=1

Ci+jm,d

)2

−
D∑

d=1

(Ci+jm,d)2

⎞

⎠

where C∗ is the frequency matrix for (D, R), m is the number of rows in C∗, i.e.
m = |ΦR| and D is the number of decision classes. The temporary pid does not
need to be stored anywhere to perform these calculations.

Entries corresponding to j = 0 in the equation defining c(R ∪ {a}) count
objects with missing value on attribute a.

In getBestAttr algorithm for sparse decision systems we construct frequency
matrix C for an attribute aj while simultaneously updating discern calculation
for this frequency matrix. Similarly to discern calculation for discretization, only
the row describing indiscernibility class containing x needs to be read in order to
update discern in this step. Moreover, if in addition to C we also store the vector
with row totals (Ti), Ti =

∑D
d=1 Ci,d, only four entries need to be accessed at

each step: source row in C and T and destination row in C and T , where source
and destination describe the initial and final pid reassigned to the object.

Theorem 2. For sparse decision systems with N rows in EAV database the time
complexity of MD-heuristic (Algorithm 1) using procedure getBestAttribute from
Algorithm3 is O(N log N +|R|(Dn+N)) and the space complexity is O(N +nD)
(the dependency on D = |Vdec| is typically neglected as D is usually small for
classification problems).
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Proof. Storing pidR requires O(n) space, storing frequency matrices requires at
most O(nD) space (and storing headers is optional). EAV database may further
need to be sorted, hence O(N) space and O(N log N) time complexity.

Consider function getBestAttr. We initialize the frequency matrix C in
O(Dn) time. We iterate over the EAV database, sorted by attributes, and keep
track of frequency matrix C counting, for a given attribute aj , all objects with
default value on aj as well as all objects whose aj value was visited till that
point. We simulaneously update discern as described in the text preceeding this
lemma. Resetting matrix C (when a new attribute is found) imposes no addi-
tional cost as it corresponds to reversing previous operations. The summary cost
of these operations for all attributes is O(N). This step is repeated |R| times,
hence the time complexity bound.

Function getBestCut for discretization in sparse decision systems takes an
additional input parameter vmiss which denotes the default value for attribute
a. The algorithm iterates over permitted cut points in M(a) and updates con-
tingency tables CL, CR, vectors with totals TL, TR and corresponding discern
(or conflicts) moving points from UR to UL.

7 Experimental Results

The usefulness of decision reducts and discretization of numerical attributes was
illustrated in practice in numerous applications [2]. A natural question is whether
these algorithms remain useful for sparse decision systems.

Our first experiment focused on the study of select papers from the PubMed
Central Open Access Subset [3] repository. Each document was assigned several
medical headings-subheading pairs (MeSH) [5], i.e. medical terms from a fixed
ontology that describe documents. In our study we neglected MeSH headings and
focused on subheadings. The input files consited of NXML files which contained
either the full text, abstract or merely the metadata without the abstract. We
have only used input files with abstracts and/or full text papers in our experi-
ments. We focused on documents that were assigned either subheading “drug-
effects” (14202 documents) or “toxicity” (3928 documents), with 2175 doc-
uments assigned both of these subheadings. Our goal is to discern documents
pertaining to these two subheadings.

The number of words in each document has different characteristics for the
two subsets of document corresponding to different subheadings and is sum-
marized on histograms on Fig. 1. The number of words in the two subsets of
documents has slightly different characteristics: while both are bimodal with
similar peaks, the average (and the median) of the number of words in “drug-
effects” subset is larger than in “toxicity” subset This is due to the fact that
the underlying mixtures represent abstract-only and full-paper documents. Doc-
uments in “toxicity” subset have a much larger fraction of papers which are only
represented by abstracts.

In our first experiment we tried to assess whether the attributes obtained
during discretization are informative. We changed all letters to lowercase and
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Fig. 1. The number of words for subsets “drug-effects” and “toxicity”.

removed all non-alphanumeric characters. For the sake of simplicity, in this
experiment we removed duplicated words from each document. No additional
preprocessing (like stemming or stop words removal) was performed in the first
experiment. The consecutive attributes are:
ml, exposure, many, dose, toxicity, evidence, animals, activity, images, effects,
dna, development, these, health, compounds, from, studied, blood, this, caused,
induced, less, or, acid, various, on, clinical, are, assessed, as, examined, have,
human, lower, all, . . .

We obtained similar results when stemming was performed before applying
the discretization algorithm. Most of the words which were picked in the first
steps of the algorithm are informative on their own.

8 Conclusions

In this article we introduced sparse decision system versions of classical
algorithms for semi-optimal decision reduct calculation and for discretization
of numerical attributes. We analyzed the computational complexity of these
algorithms for sparse decision systems and their application to dimensionality
reduction in text mining.
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Abstract. Medical diagnosis from images supports clinicians in their
profession. In practical dentistry, diseases are found mainly on experi-
ence of dentists regarding dental structures and explicit symptoms of
patients. In this paper, in order to reduce errors in medical diagnosis
problem from images, we introduce a new diagnostic model based on
intuitionistic fuzzy distance measures with parameter learning. A new
intuitionistic fuzzy distance measure named Modified H-max is proposed
to calculate similarity degree between an input image and all patterns
of corresponding disease patterns. Parameters of the proposed measure
are trained to optimize performance. Hence, the new diagnosis model
has the advantages of using the cross-evaluation degree of H-max mea-
sure and weight optimization. The proposed algorithm is experimentally
validated on real datasets of Hanoi Medical University, Vietnam against
related methods.

Keywords: Distance measures · Dental features · X-ray images
Intuitionistic fuzzy sets · Similarity measures

1 Introduction

Fuzzy set (FS) of Zadeh was introduced to handle uncertainty [21]. It is char-
acterized by a membership function whose range is within the unit interval. In
1986, intuitionistic fuzzy set (IFS) proposed by Atanassov [1] generalizes FS
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by adding a non-membership function. It overcomes limitations of FSs in han-
dling conflicting information concerning memberships of objects. Intuitionistic
fuzzy distance measure [20] which is an important content in IFS theory was
used to calculate similarity degree between intuitionistic fuzzy information. It is
researched and applied in many different fields such as pattern recognition [3],
decision-making, medical diagnosis [8], etc.

Predicting dental diseases plays a significant role for treatment of patients,
especially in their early stage, as well as for studying the diseases in nature. It
is performed from examination of a dental X-ray image through its structures
namely bones, soft tissues, and teeth [4–6,9,13–19]. There are several machine
learning methods which have been recently used in supporting dental diagnosis.
The fuzzy inference system (FIS) [10], for instance, is a common diagnosis model
which uses fuzzy rules. The fuzzy k-nearest neighbor method (FKNN) [2], is used
in different problems of handling dental images. A hybrid approach combining
decision making, classification, and segmentation methods named Dental Diag-
nosis System (DDS) [12] was recently introduced. Some other methods such as
the kruskal spanning tree (GCK), the prim spanning tree (GCP), and the affinity
propagation clustering (APC) [18]. We have tested the previous methods on the
same dataset and have received the not low error except that of DDS. Moreover,
these methods are almost complex.

In this paper, in order to obtain lower error than those of the previous meth-
ods for dental diagnosis, we propose a new method denoted by DIMHM for
medical diagnosis from images based on intuitionistic fuzzy distance measures.
Here, instead of building fuzzy rules which require experts’ experience or using
a complex combination of many different algorithms, a new intuitionistic fuzzy
distance measure named Modified H-max is proposed to calculate similarity
degree between input and patterns of corresponding disease patterns. The largest
similarity degree implies diagnosis results. The Modified H-max measure adds
weights to the component functions in the H-max measure which is introduced
[7]. Based on the cross-evaluation degree, H-max is more effective than other
existing distance measures such as the intuitionistic Hamming, Euclidean and
Hausdorff measure, etc., in decision making.

Moreover, parameters of the proposed measure are trained to optimize the
mean absolute error of the DIMHM method. Hence, the new diagnosis model
has the advantages of using the cross-evaluation degree of H-max measure and
weight optimization. Besides, it can be seen that the approach of DIMHM is
not too complex. This algorithm is implemented and experimentally validated
against the related algorithms on the real dataset [12].

In what follows, Sect. 2 is the preliminary. Medical diagnosis method
from images with intuitionistic fuzzy distance measures is showed in Sect. 3.
The experiment results and performance comparison are presented in Sect. 4.
Section 5 highlights the conclusions.
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2 Preliminary

Let FS(U) and IFS(U) denote the sets of all FSs and IFSs in U, respectively.
Here, U is a space of points.

Definition 1 [21]. In a universal set U , a function μI named membership func-
tion determines a fuzzy set I which is given as follows:

I = { (x, μI (x))|x ∈ U, μI ∈ [0, 1]}. (1)

Definition 2 [20]. A function d : FS(U) × FS(U) → R is a distance measure
on FS(U) if it satisfies the following axioms:

1. d (I1, I2) ≥ 0,
2. d (I1, I2) = d (I2, I1),
3. d (I1, I2) = 0 ⇔ I1 = I2,
4. If I0 ⊆ I1 ⊆ I2 then d (I0, I2) ≥ d (I0, I1) and d (I0, I2) ≥ d (I1, I2),

where I0, I1 and I2 are in IF(U).

Definition 3 [1]. In a universal set U, two functions μI and νI named mem-
bership function and non-membership function, respectively, determine an IFS
I which is given as follows:

I = {〈x, μI (x) , νI (x)〉|x ∈ U ;μI , νI , and μI + νI ∈ [0, 1]} . (2)

Definition 4 [20]. A function d : IFS(U)×IFS(U) → R is a distance measure
on IFS(U) if it satisfies the following axioms:

1. d (I1, I2) ≥ 0,
2. d (I1, I2) = d (I2, I1),
3. d (I1, I2) = 0 ⇔ I1 = I2,
4. If I0 ⊆ I1 ⊆ I2 then d (I0, I2) ≥ d (I0, I1) and d (I0, I2) ≥ d (I1, I2),

where I0, I1 and I2 are in IFS(U).

3 Proposed Method

3.1 Problem Statement

Given a dental X-ray image, let us predict the disease that can occur on this
image. The disease set consists of missing teeth, resorption of periodontal bone,
incluse teeth, decay, and root fracture. The dataset taken from Hanoi Medi-
cal University Hospital includes 56 images of intraoral and panoramic images
(Fig. 1) [12].
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Fig. 1. The dental X-ray images with the corresponding diseases.

3.2 Extracted Dental Features

In this research, we extract and analyze five basis features of X-Ray images,
which are Entropy, edge-value and intensity (EEI); Gradient feature (GRA);
Local Patterns Binary feature (LBP); Patch level feature (Pat); and Red-Green-
Blue (RGB) [11].

GRA: The various tiny parts of teeth which are the enamel, gum, root canal,
and cementum are identified by the GRA. Firstly, the background noises of the
dental image is reduced by applying the Gaussian filter. Secondly, the gradient
of the image in 2D space is calculated by using Difference of Gaussian filter.
Lastly, each pixel is determined by a normalized gradient vector.

EEI: This feature plays a role in the simulation of the structure of the dental
image includes the background, teeth areas, and dental structure. In a certain
range, the achieved information has the randomness level which is measured by
Entropy in EEI. Besides, in a domain, in order to calculate the numbers of value
changes of pixels, we use Edge-value and intensity.

LBP: In the dental image, we use the LBP feature to effectively distinguish
clusters. In a given domain, the density order of pixels is ensured by LBP. For
any light intensity transformation, this order is considered to be unchanged.

RGB: Three types of color of the dental image which are Red, Green, and Blue
are measured by the RGB features.

Pat: In a patch of pixels, all gradient vectors are calculated by this feature.
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3.3 Proposed Measure

The novelty of the proposed method is the introduction of the weights to the
H-max measure which is trained and validated using cross-validation approach.

Definition 5. Let A and B be in IFS(U = {x1, x2, . . . , xm}) defined by the
membership and non-membership degrees μ1, ν1 and μ2, ν2 respectively. The
H-max measure is defined as,

d (A,B) =
1

3m

m∑

i=1

(dμ (xi) + dν (xi) + dμν (xi)). (3)

The modified H-max measure is:

d (A,B) =
m∑

i=1

wi (u1.dμ (xi) + u2.dν (xi) + u3.dμν (xi)), (4)

where

dμ (xi) = |μ1 (xi) − μ2 (xi)|, (5)
dν (xi) = |ν1 (xi) − ν2 (xi)|, (6)

dμν (xi) = |max {μ1 (xi) , ν2 (xi)} − max {μ2 (xi) , ν1 (xi)}|, (7)

and
m∑

i=1

wi = 1;
3∑

s=1

us = 1; wi(i=1,2,...,m) ≥ 0; us(s=1,2,3) ≥ 0. (8)

In (3), (4), and (7), dμν called the cross-evaluation function is a characteristic
of the H-max and modified H-max measures. The difference between A and B is
fully evaluated through this cross-evaluation. By adding the weights of xi, dμ, dν

and dμν , the modified measure provides a more flexible assessment than H-max
measure.

3.4 DIMHM Algorithm

The basic idea of DIMHM is to use the intuitionistic fuzzy distance measure
in Sect. 3.3 to calculate the similarity degrees between an input image and all
patterns of corresponding disease patterns. The largest similarity degree implies
diagnosis result for the input image.

Suppose we have m images {I1, I2, . . . , Im} and h diseases in numeric labels
{D1,D2, . . . , Dh}. The Hold-out or K-Fold cross-validation method is used to
divide the initial images dataset into two subdatasets, which are the training
and testing datasets. Here, the chosen values of K are 4, 5 and 6. The training
dataset is divided into the validation dataset and the Basic Medical Knowledge
by the Hold-out method.
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Let {I1, I2, . . . , It} be the Basic Medical Knowledge, {It+1, . . . , Ig} be the
validation dataset, and {Ig+1, . . . , Im} be the testing dataset. The proposed diag-
nosis method involves some basic steps:

1. Feature extraction: The images Ii (i = 1, 2, . . . ,m) are digitized by n
extracted dental features denoted by Fil (l = 1, 2, . . . , n) (see Sect. 3.2).

2. Fuzzification: The values Fil (l = 1, 2, . . . , n) of the images Ii(i = 1,
2, . . . ,m) are fuzzified in the form of (μFil

, νFil
):

μFil
=

μFil
− μFlmin

μFlmax − μFlmin

, and νFil
=

1 − μFil

1 + λμFil

, (9)

where
μFlmin = min

i
(μFil

) , μFlmax = max
i

(μFil
) , and λ ∈ [0, 1].

The values μFil
and νFil

are the degrees of membership and non-membership of
the image Ii in the features Fl (l = 1, 2, . . . , n), respectively. Table 1 illustrates
the fuzzified dataset, where yi(i=1,2,...,m) ∈ {D1,D2, ...,Dh}.

Table 1. The fuzzified dataset

F1 . . . Fl . . . Fn Class Y

I1 (μ11, ν11) . . . (μ1l, ν1l) . . . (μ1n, ν1n) y1

. . . . . . . . . . . . . . . . . .

Ii (μi1, νi1) . . . (μil, νil) . . . (μin, νin) yi

. . . . . . . . . . . . . . . . . .

Im (μm1, νm1) . . . (μml, νml) . . . (μmn, νmn) ym

3. Disease identification: the diagnosis of image Ii is identified based on the
calculating the modified H-max distance measures between the feature values of
the image Ii and those of all the images Ij (j = 1, 2, . . . , t) in the Basic Medical
Knowledge.

dij = d (Ii, Ij) =
n∑

l=1

wl. (u1.dμ (Fl) + u2.dν (Fl) + u3.dμν (Fl)), (10)

where

dμ (Fl) =
∣∣μFil

− μFjl

∣∣ , (11)

dν (Fl) =
∣∣νFil

− νFjl

∣∣ , (12)

dμν (Fl) =
∣∣max

{
μFil

, νFjl

} − max
{
μFjl

, νFil

}∣∣ , (13)
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and u1, u2, u3 are the parameters of the measure, wl are the weights of the
features Fl, which satisfy

n∑

l=1

wl = 1;
3∑

s=1

us = 1; wl(l=1,2,...,n) ≥ 0; us(s=1,2,3) ≥ 0. (14)

Let the measure value between feature of the image Ii and those of the image
Ij0 be the smallest, i.e.,

dij0 = d (Ii, Ij0) = min
j

(dij), (15)

and image Ij0 belongs to Dh0 disease group. Indeed, Dh0 is diagnosis result of
image Ii.

3.5 Training

Training Weights: Weights wl of features Fl, where l = 1, 2, . . . , n, are calcu-
lated based on the Pearson correlation coefficient function between Fl and Y on
the Basic Medical Knowledge:

wl =
Wl

n∑
l=1

Wl

, (16)

where

Wl =
|E[μFl

Y ] − E[μFl
]E[Y ]|

√
E[μ2

Fl
] − E[μFl

]2.
√

E[Y 2] − E[Y ]2
. (17)

Training Parameters: The training of parameters u = {u1, u2, u3} of the
modified H-max distance (Eq. 10) on the validation dataset is defined as an
optimization problem as follows:

F (u) = MAE (u) =
1
k

k∑

i=1

|ŷi(u) − yi| → min, (18)

where

u = [u1, u2, u3]
T ; u1, u2, u3 ∈ [0, 1],

3∑

i=1

ui = 1, (19)

and the objective function, F (u), is the mean absolute error (MAE) function
[12]. Here, k is the number of elements of the validation dataset, ŷi(u) is the
prediction result of the image Ii, and yi is the observed result of Ii.

In fact, we usually evaluate u1 = u2, therefore u1 = u2 = 1 − u3 = t ∈
[0, 1]. We use the proposed diagnosis method with trained weights of features to
diagnose for all the images in the validation dataset. For each set of parameters
u = {u1, u2, u3} of the measure (Eq. 10), we determine the set which gives the
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best MAE value of the proposed algorithm. The obtained u is corresponding to
the minimum MAE value on the validation dataset.

Testing: Finally, the proposed algorithm with the trained weights and param-
eters is used to diagnose for all the images in the testing dataset.

Fig. 2. Training parameters

Figures 2 and 3 illustrate the proposed medical diagnosis system from images
with the training process. In Fig. 2, the parameters in the modified H-max dis-
tance measure are trained on the validation dataset to obtain the best of MAE
value. Figure 3 presents the complete model, which uses the optimized parame-
ters. In this model, the input is a medical image and the output is the diagnosis
result of the input image.

Obviously, the proposed model which uses the modified H-max measure
(DIMHM) is better than that uses the H-max measure (DIHM) because the
parameters in the measure are trained to the optimal value.

4 Experiments

4.1 Experimental Environments

Database, Tools and Evaluation: Based on the same real dataset [12], the
proposed method is validated by MAE and MSE against the related methods
such as DIHM, FIS [10], FKNN [2], GCP, GCK, APC [18], and DDS [12] in
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Fig. 3. The model of DIMHM.

Matlab 2015a and R languages. In details, the dataset includes 56 dental X-ray
images with 5 labels which are Decay, Root fracture, Missing teeth, Resorption
of periodontal bone, and Incluse teeth; and 5 extracted features which are GRA,
EEI, LBP, RGB, and Pat. The link in Appendix provides the codes and the used
datasets of this paper.

Parameters: In the DIMHM algorithm, the K-fold cross-validation method is
used to divide the initial images dataset with K = 4, 5, 6. The chosen value of
the parameter λ in the Fuzzification step is 0.8.

Validity Indices: Two indices used to validate the methods are MSE (Mean
Squared Error) and MAE (Mean Absolute Error) as follows

MAE =
1
q

q∑

i=1

|ŷi − yi|, (20)

MSE =
1
q

q∑

i=1

(ŷi − yi)
2
, (21)

where ŷi and yi is the prediction result and observed result of the image Ii,
respectively, and q is the number of elements of the test dataset.
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4.2 Results

Table 2 presents the MAE and MSE values of the proposed method (DIMHM)
and the others. The MSE and MAE results of the GCP, GCK, APC, FIS, FKNN,
and DDS methods are cited from [12]. They are performed on the original dataset
including 87 dental X-ray images [12]. Currently, due to objective conditions, we
just only have the subdataset includes 56 dental X-ray images of the original
dataset. Hence, in this paper, the proposed method is validated on the sub-
dataset. Besides, we calculated the mean and variance values of MSE and MAE
from running DIHM and DIMHM 10 times on the dataset of 56 images.

The DIMHM algorithm is different from DIHM algorithm in that the compo-
nent measures in the H-max measure are weighted and these weights are trained
to optimize algorithm performance. From Table 2, it can be seen that for the
same Hold-out approach, the MAE value of DIHM, 0.0701±0.0122, is higher
than that of DIMHM, 0.0605±0.0134. That means the diagnostic results of the
DIMHM model are better than those of the DIHM method and the parameter
learning in DIMHM is really meaningful and efficient.

The variance values in the MAE and MSE results of DIHM and DIMHM
are quite small ranged in the narrow value domain from 0.0122 to 0.0187 (see
Table 2). Hence, they do not affect the comparison of the MAE and MSE results
of the algorithms, i.e., it just needs to pay attention to the mean MAE and MSE
values. For instance, Table 2 presents the MSE values of FKNN and DIMHM
based on the Hold-out approach, which are 0.2863 and 0.0605±0.0134,
respectively. It is obvious that the DIMHM diagnostic algorithm is more effi-
cient than FKNN.

Table 2. The performance of 7 methods.

Cross-validation MSE MAE

DDS Hold-out 0.0804 0.0804

FKNN Hold-out 0.2863 0.2346

FIS Hold-out 0.2098 0.1982

APC Hold-out 0.845 0.805

GCK Hold-out 1.908 1.007

GCP Hold-out 1.908 1.002

DIHM (using H-max) Hold-out 0.0701± 0.0122 0.0701± 0.0122

DIMHM (using the modified H-max) Hold-out 0.0605± 0.0134 0.0605± 0.0134

DIMHM (using the modified H-max) 4-fold 0.0558± 0.0175 0.0558± 0.0175

DIMHM (using the modified H-max) 5-fold 0.0469± 0.013 0.0469± 0.013

DIMHM (using the modified H-max) 6-fold 0.0477± 0.0187 0.0477± 0.0187

Obviously, on the same cross-validation method (Hold-out), the MSE and MAE
values of the proposed method are smaller than those of the other meth-
ods. Specifically, in Table 2, the MAE value of DIMHM with Hold-out is
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0.0605±0.0134 while those of DIHM, GCP, GCK, APC, FIS, FKNN, and
DDS are 0.0701±0.0122, 1.002, 1.007, 0.805, 0.1982, 0.2346, and 0.0804,
respectively. In all the cases of cross-validation (Hold-out, 4-fold, 5-fold, and
6-fold), DIMHM has the best result in the 5-fold cross-validation case with the
MSE and MAE values are both 0.0469±0.013. From Table 2, we also can see
that the higher the algorithmic performance is, the greater the equal ability of
MAE and MSE. The GCP method has the highest error, i.e., it is the worst
algorithm on the used dataset. For details, the MSE value of GCP is 1.908 and
the MAE value of GCP is 1.002.

In summary, the Modified H-max measure and parameter learning in the
proposed method (DIMHM) are efficient tools in decision making. On the same
dataset DIMHM has the best diagnostic error in the all considered methods for
the medical diagnosis problem from images.

5 Conclusions

Concerning Medical Diagnosis from Images, this paper proposed a new diagnos-
tic algorithm named DIMHM based on Intuitionistic Fuzzy Distance Measures.
It uses the H-max measure with trained weights. Hence, the new diagnosis model
has the advantages of using the cross-evaluation degree of H-max measure and
parameter optimization. DIMHM has the best performance when comparing to
7 other methods namely DIHM, GCP, GCK, APC, FIS, FKNN, and DDS on
the real medical datasets.

In this paper, the proposed method is also considered as the single nearest
neighbor (1-NN) method. In fact, the k-NN method can be used on the 56-image
dataset. The number of considered neighbors allow to capture the nature of a
processed set. However, it will be more complicated than choosing k = 1. In
the near future, we will research the appropriate k value on the bigger image
dataset.

Validating performance of the proposed method on larger datasets will be
performed in the future work. We will improve DIMHM by replacing fuzzification
functions for dental features by other functions.

Appendix

The link https://source-forge.net/projects/DIMHM/ provides the code and
dataset of this paper.
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Abstract. In the paper, the approach of using rough sets to verify-
ing sufficiency of a statistic is presented. The notions of the rough set
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1 Introduction

In the statistical inference problems of the parametric statistical structures (or
parametric statistical models), the sufficient statistics are used to replace the
entire data of a random sample because they exhaust all the information that a
sample has about the parameter. In some sense, because all the available infor-
mation about the parameter is contained in the observations (i.e. in a random
sample), using the sufficient statistics can be thought of as reducing the orig-
inal observation data or data compression without loss of information about
the parameter (see [4,5,12]). The formal definition of sufficiency is as follows:
for a given random sample X = (X1, · · · ,Xn) taking values in the statisti-
cal structure (X ,A,P), distributed according to a distribution from the family
P = {Pθ : θ ∈ Θ} (where (X ,A) is the sample space of X and Θ is a parameter
space), a statistic T = T (X) is sufficient for θ (or P) if the conditional distri-
bution of X given T does not depend on θ. This concept was introduced by
R. A. Fisher in 1922. It plays an important role in statistical methods because
the sufficient statistics preserve the Fisher information about parameters as in
a sample. Many topics on such statistics have been widely investigated by many
scholars (see [1,3,6–8]).

A method for finding the sufficient statistics was developed by R. A. Fisher
in 1922, J. Neyman in 1935, and P. R. Halmos and L. J. Savage in 1949 which
is known as the Neyman–Fisher factorization Theorem (see, e.g. [6]). Lehmann
and Scheffé proposed a method to find the minimal sufficient statistic [6], and
minimal sufficiency in statistics emerges from the observed likelihood functions
under weak conditions is established by Fraser in [2].
c© Springer Nature Switzerland AG 2018
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Notice that the Neyman–Fisher factorization Theorem only gives us a con-
venient way of finding sufficient statistics. In general, it is not easy to use this
factorization criterion to show that a given statistic is not sufficient. The theory
of rough sets, proposed by Pawlak [9], can be used as a tool for solving this
problem. In this paper, we consider the discrete version of statistical structures,
and introduce the notions of the rough set approximation operators on statis-
tics. Then, the concept of the consistency between statistics is defined and its
properties are also considered. The results on the sufficiency of a statistic are
given by using rough sets.

2 Preliminaries

In this section, we briefly recall some basic concepts in mathematical statistics
and rough set theory that are used in the next sections.

Concepts in Statistics:
A measurable space is a pair (Ω,F), where Ω is a non-empty set of elements

and F is a σ-field (or σ-algebra) on Ω, i.e., a collection of subsets of Ω satisfying
the conditions: (i) ∅ ∈ F ; (ii) A ∈ F implies Ac = Ω \ A ∈ F ; (iii)

⋃
n An ∈ F

for any countable family of subsets An belonging to F . If (Ω,F) is a measurable
space modeling an experiment, then the set Ω represents all possible outcomes of
the experiment, F contains all events of conceivable interest to the experimenter.

Let (Ω,F) and (X ,A) be two measurable spaces and let the mapping X :
Ω → X be (F ,A)-measurable, i.e. X−1(B) ∈ F for all B ∈ A. Then, X is
called a random element with values in X (or a X -valued random variable). If
(X ,A) = (R,B(R)) (where B(R) is the Borel σ-field on R), then X is called a
random variable.

A random sample of size n from a population is a set of n independent and
identically distributed observable random variables X1, . . . , Xn. We shall denote
the random sample by X = (X1, . . . , Xn). Note that the random sample X is a
R

n-valued random variable (i.e. (X ,A) = (Rn,B(Rn)), where B(Rn) is the Borel
σ-field on R

n, and this measurable space is called the sample space of X).
In this work, we only consider parametric statistical model as follows: let

(X ,A) be a measurable space and let P = {Pθ : θ ∈ Θ} be a family of
parametrized probability distributions on (X ,A) with the property that every
distribution Pθ is known, and where only the parameter θ is unknown and
belongs to a parameter space Θ of finite dimension. Then the triplet (X ,A,P)
is called a statistical structure. We say that a random sample X takes values in
the statistical structure (X ,A,P) if the sample space of X is (X ,A) and P is
family of distributions of X.

Let X be a random sample taking values in the statistical structure (X ,A,P)
and (T ,B) a measurable space. If the mapping T : X → T is (A,B)-measurable
and does not depend on any unknown parameter, then T is called a statistic (of
X). The statistic T of X is also sometimes written as T : (X ,A) → (T ,B). The
measurable space (T ,B) is called a range space of statistic T .
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Given any family U of subsets of a set S there is a smallest σ-field contain-
ing U , which is denoted by σ(U). We call σ(U) the σ-field generated by U . In
particular, if T : (X ,A) → (T ,B) is a statistic of the random sample X then
the smallest σ-field containing all the sets T−1(B) (B ∈ B) is called the σ-field
generated by T and is denoted by σ(T ),

σ(T ) = σ({T−1(B) : B ∈ B}).

Note that we have σ(T ) = {T−1(B) : B ∈ B}, i.e. the smallest σ-field such that
T is measurable.

Definition 1 (Sufficient statistic). Let X be a random sample taking values in
the statistical structure (X ,A,P) and let T be a statistic of X with range space
(T ,B). Then, the statistic T = T (X) is said to be sufficient for θ (or P) if the
conditional distribution of X given T = t does not depend on θ for any value of
t ∈ T .

Definition 2 (Minimal sufficient statistic). Let X be a random sample taking
values in the statistical structure (X ,A,P)and T a sufficient statistic for θ (of
X). Then T is called a minimal sufficient statistic if for any sufficient statistic
S of X there is a measurable function g such that T = g(S).

More detailed descriptions can be found in [4,11].

Concepts in Rough Set Theory:
Let U be a non-empty finite set of objects and R an equivalence relation on

U . The family of all equivalence classes of R is denoted by U/R. A set of objects
is characterized by a pair of definable concepts- called the lower and the upper
approximations. Formally, each subset X of U is associated with two subsets

R(X) = ∪{Y ∈ U/R | Y ⊆ X}
R(X) = ∪{Y ∈ U/R | Y ∩ X �= ∅},

which are called the R-lower and R-upper approximations of X respectively.
The set X(⊆ U) is said to be a definable (precise) set (with respect to R) if

X = R(X). Otherwise the set is undefinable (rough).
Let R and S be equivalence relations on U . The R-positive region POSR(·)

of S is defined by
POSR(S) =

⋃

X∈U/S

R(X).

For more details of rough sets can be found, e.g., in [9,10].

3 Rough Set Approximation Operators on Statistics

In this section, we introduce the notions of the rough set approximation operators
on statistics.



494 H. B. Tuyen et al.

Consider the statistical structures in a “usual” discrete setting: let X be a
random sample taking values in the statistical structure (X ,A,P), where X is a
non-empty discrete set, A is a σ-field on X (so, the measurable space (X ,A) is
a sample space); X is distributed according to a distribution from the family of
probability measures P = {Pθ : θ ∈ Θ} (on (X ,A)) that indexed by a parameter
space Θ. The statistics of X satisfy condition as usual that all singleton sets are
measurable.

Rough Set Approximation Operators on Statistics

Definition 3 (Basic granule of a statistic). Let S be a statistic of the random
sample X. For each element x of X , the basic granule of S containing x, denoted
by [x]S, is defined by

[x]S = {y ∈ X : S(y) = S(x)}.

The set [S] = {[x]S : x ∈ X} is called the set of all basic granules of S.

Definition 4. Let S, T be two statistics of the random sample X. For any x ∈
X , the approximations of a basic granule [x]S (in T ) are defined as:

– the lower approximation of [x]S in T :

app
T
([x]S) =

⋃{
Z ∈ [T ] : Z ⊆ [x]S

}

= {z ∈ X : [z]T ⊆ [x]S},

– the upper approximation of [x]S in T :

appT ([x]S) =
⋃{

Z ∈ [T ] : Z ∩ [x]S �= ∅
}

= {z ∈ X : [z]T ∩ [x]S �= ∅}.

From the above, the positive region of S in T is defined by:

POST (S) =
⋃

x∈X
app

T

(
[x]S

)
.

Notation 1. From the properties of the Pawlak’s rough sets (see [9]), we have

∀x ∈ X : app
T
([x]S) ⊆ [x]S ⊆ appT ([x]S),

and the basic granule [x]S is called a definable (precise) set in T iff [x]S =
app

T
([x]S), otherwise the set is undefinable (rough) in T .

Remark 1. Let S : (X ,A) −→ (J , C) be a statistic of X. Recall that σ(S) is the
σ-field generated by S (i.e. the smallest σ-field such that S is measurable)

σ(S) = S−1(C) = {S−1(C) : C ∈ C}.
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Using the fact that all singleton sets are measurable, we get by taking J = S(X )
and C = P(J ) (where P(J ) is the power set of J )

S−1(C) = S−1
( ⋃

s∈C

{s}
)

=
⋃

s∈C

S−1({s}) ∈ A for all C ⊆ J .

This implies that

σ(S) = σ({S−1(s) : s ∈ J }) = σ({[x]S : x ∈ X}) = σ([S]),

i.e. the σ-field generated by the set of all basic granules of S.

4 Consistency Between Statistics

In this section we present the concept of the consistency between statistics and
give its properties.

Definition 5. Let S, T be two statistics of the random sample X. T is called a
consistent statistic with respect to S if [x]T ⊆ [x]S for any x ∈ X .

The following proposition gives the equivalent conditions for the consistency of
statistics.

Proposition 1. Let S, T be two statistics of the random sample X. Then, the
following conditions are equivalent:

(i) T is consistent with respect to S;
(ii) app

T
([x]S) = [x]S ,∀x ∈ X ;

(iii) POST (S) = X .

Proof. [(i) ⇐⇒ (ii)] Assume that condition (i) is satisfied. By Notation 1, we
have that app

T
([x]S) ⊆ [x]S for any x ∈ X . Now use (i) to see that, for any

z ∈ [x]S , we have [z]T ⊆ [z]S = [x]S . This implies that [x]S ⊆ app
T
([x]S). So

condition (ii) is satisfied.
Conversely, assume that condition (ii) is satisfied. Then (i) follows imme-

diately from the definition of app
T
([x]S) and the fact that x ∈ [x]S (for any

x ∈ X ).
[(ii) ⇐⇒ (iii)] The implication (iii) ⇒ (ii) is trivial. To prove that (ii) implies
(iii), we see that if condition (ii) is satisfied, then

POST (S) =
⋃

x∈X
app

T

(
[x]S

)
=

⋃

x∈X
[x]S = X ,

so condition (iii) is satisfied. This completes the proof. �

We illustrate this proposition with an example.
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Example 1. Let X = (X1,X2,X3) be a random sample from a Bernoulli distri-
bution with probability of success θ(θ ∈ (0; 1)) [11]. Notice that X = {0; 1}3 and
A = P(X ). We consider the following two statistics of the random sample X

S = (X1 + X2,X3) and T =

⎧
⎪⎨

⎪⎩

( 13 , 0), if min{X1,X3} = 1,X2 = 0,

( 23 , 0), if min{X2,X3} = 1,X1 = 0,

S, otherwise.

The values of X,S and T are presented in Table 1.

Table 1. Values of X,S and T

X S T

(0, 0, 0) (0, 0) (0, 0)

(1, 0, 0) (1, 0) (1, 0)

(0, 1, 0) (1, 0) (1, 0)

(0, 0, 1) (0, 1) (0, 1)

(1, 1, 0) (2, 0) (2, 0)

(1, 0, 1) (1, 1) ( 1
3
, 0)

(0, 1, 1) (1, 1) ( 2
3
, 0)

(1, 1, 1) (2, 1) (2, 1)

From this we have the sets of all basic granules of S, T as follows:

[S] =
{
{(0, 0, 0)}, {(1, 0, 0), (0, 1, 0)}, {(0, 0, 1)}, {(1, 1, 0)},

{(1, 0, 1), (0, 1, 1)}, {(1, 1, 1)}
}

[T ] =
{
{(0, 0, 0)}, {(1, 0, 0), (0, 1, 0)}, {(0, 0, 1)}, {(1, 1, 0)},

{(1, 0, 1)}, {(0, 1, 1)}, {(1, 1, 1)}
}
.

Therefore the cardinalities of the lower approximations of all basic granules of
S in T are given in the following Table 2 (where |A| denotes the cardinality of
the set A). Hence

|POST (S)| =
∑

x∈X
|app

T

(
[x]S

)
| = 8 = |X |

i.e.,
POST (S) = X .

So by Proposition 1 it follows that T is consistent with respect to S.
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Table 2. Cardinalities of the lower approximations of all basic granules of S in T

[S] |app
T
([x]S)|

{(0, 0, 0)} 1

{(1, 0, 0), (0, 1, 0)} 2

{(0, 0, 1)} 1

{(1, 1, 0)} 1

{(1, 0, 1), (0, 1, 1)} 2

{(1, 1, 1)} 1

5 Rough Set Approach to Sufficient Statistics

This section presents the results on the sufficiency of a statistic by using rough
sets.

First we need the following lemma.

Lemma 1. Let X be a random sample taking values in the statistical structure
(X ,A,P) and S, T the statistics of X. Then

T is consistent with respect to S ⇐⇒ ∀x ∈ X : [x]S =
⋃

z∈[x]S

[z]T .

Proof. Assume that T is consistent with respect to S. Then, for any x ∈ X and
z ∈ [x]S , by S(z) = S(x), we have that

[z]T ⊆ [z]S = [x]S .

Therefore ⋃

z∈[x]S

[z]T ⊆ [x]S ⊆
⋃

z∈[x]S

[z]T

and hence [x]S =
⋃

z∈[x]S
[z]T .

Conversely, assume that [x]S =
⋃

z∈[x]S
[z]T for any x ∈ X . Then for each

x ∈ X , since x ∈ [x]S , we have

[x]T ⊆
⋃

z∈[x]S

[z]T = [x]S .

So T is consistent with respect to S. �

Theorem 1. Let X be a random sample taking values in the statistical structure
(X ,A,P) and S a sufficient statistic for θ of X. Let T be a statistic of X. If T
is consistent with respect to S, then T is also a sufficient statistic for θ of X.
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Proof. Assume that T is consistent with respect to S. Then by Remark 1 and
Lemma 1 we have

σ(S) = σ([S]) = σ({[x]S : x ∈ X}) = σ

(
{ ⋃

z∈[x]S

[z]T : x ∈ X
}
)

⊆ σ({[x]T : x ∈ X}) = σ([T ]) = σ(T ), (1)

so S is σ(T )-measurable.
For notational convenience, we shall assume that T and S are statistics with

range spaces (T ,B) and (J , C), respectively. Then by a classical result of Doob-
Dynkin (see, e.g. [4], Lemma 2.3.1) there exists a B-measurable function f such
that S(x) = f

(
T (x)

)
for all x ∈ X .

Now from the sufficiency of statistic S for θ and by the Neyman–Fisher
factorization Theorem (see, e.g. [4,6]), there exist nonnegative C-measurable
functions gθ and a nonnegative A-measurable function h such that Pθ(x) =
gθ[S(x)]h(x) for all x ∈ X and θ ∈ Θ. Hence we have

Pθ(x) = gθ[S(x)]h(x) = gθ

[
f
(
T (x)

)]
h(x)

= gθ ◦ f
(
T (x)

)
h(x) = uθ

(
T (x)

)
h(x),

where uθ denotes the composite function gθ ◦ f .
From this we get, again, by the Neyman–Fisher factorization Theorem, that

T is also a sufficient statistic for θ. �
Example 2. We return to Example 1. Since X is a random sample from a
Bernoulli distribution B(1; θ) with probability of success θ (θ ∈ (0; 1)), we have
the probability mass function Pθ(x) of X as follows [11]:

Pθ(x) = θ

3∑

k=1
xk

(1 − θ)
3−

3∑

k=1
xk

for each x = (x1, x2, x3) ∈ X .
Recall that we consider the following two statistics of the random sample X

S =(X1 + X2,X3) and

T =

⎧
⎪⎨

⎪⎩

( 13 , 0), if min{X1,X3} = 1,X2 = 0,

( 23 , 0), if min{X2,X3} = 1,X1 = 0,

S, otherwise.

Notice that the statistics S1 = X1 + X2 and S2 = X3 have the Binomial dis-
tributions B(2; θ) and B(1; θ), respectively. So we obtain the probability mass
function PS

θ (s) = Pθ(S = s) of S by using that S1 is independent of S2

PS
θ (s) = Ct1

2 θs1+s2(1 − θ)3−(s1+s2) for s = (s1, s2) ∈ {0; 1; 2} × {0; 1}.

Hence we may rewrite Pθ(x) as

Pθ(x) = C
S1(x)
2 θS1(x)+S2(x)(1 − θ)3−(S1(x)+S2(x))

1

C
S1(x)
2

for x ∈ X .
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From this we get, by applying the Neyman–Fisher factorization Theorem, that
S is a sufficient statistic for θ. Then, since T is consistent with respect to S (see
Example 1), by Theorem 1 we conclude that T is a sufficient statistic for θ.

The converse assertion of theorem above does not hold generally. To see
this, we consider another statistic of X as H = (X1,X2 + X3). Using the same
argument as with the statistic S, we obtain that H is also a sufficient statistic
for θ. Now consider the set of all basic granules of H

[H] =
{
{(0, 0, 0)}, {(1, 0, 0)}, {(0, 1, 0), (0, 0, 1)}, {(1, 1, 0), (1, 0, 1)},

{(0, 1, 1)}, {(1, 1, 1)}
}
.

Then the cardinalities of the lower approximations of all basic granules of S in
H are given in the following Table 3. We have

|POSH(S)| =
∑

x∈X
|app

H

(
[x]S

)
| = 3 �= 8 = |X |

i.e., POSH(S) �= X . So by Proposition 1 it follows that H is inconsistent with
respect to S.

Table 3. Cardinalities of the lower approximations of all basic granules of S in H

[S] |app
H

([x]S)|
{(0, 0, 0)} 1

{(1, 0, 0), (0, 1, 0)} 1

{(0, 0, 1)} 0

{(1, 1, 0)} 0

{(1, 0, 1), (0, 1, 1)} 0

{(1, 1, 1)} 1

Theorem 2. Let X be a random sample taking values in the statistical structure
(X ,A,P) and S a minimal sufficient statistic for θ of X. Let T be a statistic of
X. Then

T is sufficient for θ ⇐⇒ T is consistent with respect to S.

Proof. Recall that a statistic is said to be minimal sufficient for θ if and only if
it is sufficient for θ and is a measurable function of all other sufficient statistics
for θ. Now, assume that T is sufficient for θ. As mentioned above we assume that
T and S are statistics with range spaces (T ,B) and (J , C), respectively. Then,
since S is minimal sufficient for θ, again using the Doob-Dynkin Lemma leads
to that there exists a B-measurable function f such that S(x) = f

(
T (x)

)
for all

x ∈ X . Hence, for each x ∈ X we have

z ∈ [x]T ⇒ T (z) = T (x) ⇒ f
(
T (z)

)
= f

(
T (x)

)

⇒ S(z) = S(x) ⇒ z ∈ [x]S .
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This implies that [x]T ⊆ [x]S . So T is consistent with respect to S.
Conversely, assume that T is consistent with respect to S. Then the suffi-

ciency of statistic T for θ is immediate consequence of Theorem 1. �

Example 3. Let X be a random sample from a Bernoulli distribution with
probability of success θ and Pθ(x) the probability mass function of X as in
Example 2. We define two other statistics of the random sample X by putting
S = X1 + X2 + X3 and T = X1 + X2 − X3. Notice that the statistic S has the
Binomial distributions B(3; θ) and since ratio

Pθ(x)
Pθ(y)

=
θS(x)(1 − θ)3−S(x)

θS(y)(1 − θ)3−S(y)
=

( θ

1 − θ

)S(x)−S(y)

is independent of θ if and only if S(x) = S(y) (for all x, y ∈ X ), we obtain,
by the Lehmann-Scheffé Theorem for minimal sufficient statistics (see, e.g. [6]),
that S is a minimal sufficient statistic for θ. Table 4 gives the values of X,S and
T , respectively.

Table 4. Values of X,S and T

X S T

(0, 0, 0) 0 0

(1, 0, 0) 1 1

(0, 1, 0) 1 1

(0, 0, 1) 1 −1

(1, 1, 0) 2 2

(1, 0, 1) 2 0

(0, 1, 1) 2 0

(1, 1, 1) 3 1

We have the following sets of all basic granules of S, T

[S] =
{{(0, 0, 0)}, {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, {(1, 1, 1)}}

[T ] =
{{(0, 0, 1)}, {(0, 0, 0), (1, 0, 1), (0, 1, 1)}, {(1, 0, 0), (0, 1, 0), (1, 1, 1)}, {(1, 1, 0)}},

and the cardinalities of the lower approximations of all basic granules of S in T
are given in Table 5.

From this we have

|POST (S)| =
∑

x∈X
|app

T

(
[x]S

)
| = 2 �= 8 = |X |,

so by Proposition 1 it follows that T is inconsistent with respect to S. Hence,
by Theorem 2 we conclude that T is not a sufficient statistic for θ.
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Table 5. Cardinalities of the lower approximations of all basic granules of S in T

[S] |app
T
([x]S)|

{(0, 0, 0)} 0

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} 1

{(1, 1, 0), (1, 0, 1), (0, 1, 1)} 1

{(1, 1, 1)} 0

6 Conclusion

In this paper, we have studied the sufficiency of a statistic by using rough sets.
We introduced the concept of consistency between statistics, and based on this
concept, the results on the sufficiency of a statistic were given.

Acknowledgments. The authors would like to thank all the anonymous reviewers
for their comments to improve the quality of the paper.
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Abstract. We propose a generalization of the rough set model where
approximation operators are defined relative to a given collection of sub-
sets of the domain of objects. A modal logic with semantics based on
relative accessibility relations is also proposed, that can be used to rea-
son about the proposed approximations.

1 Introduction

Rough set theory, introduced by Pawlak in the early 1980s [13] offers an approach
to deal with the uncertainty inherent in real-life problems, more specifically that
stemming from inconsistency or vagueness in data. Pawlak’s rough set model
is based on the simple notion of approximation space (W,R), where R is an
equivalence relation on the domain W . Objects being in the same equivalence
class of R are indiscernible using knowledge provided by R. In general, a concept
X ⊆ W may not be precisely describable in terms of information provided by
the equivalence relation R. It is then approximated from ‘within’ and ‘outside’,
by its lower and upper approximations XR and XR, respectively, where

XR := {x ∈ W : R(x) ⊆ X} and XR := {x ∈ W : R(x) ∩ X �= ∅}. (1)

Here, R(x) denotes the set {y ∈ W : (x, y) ∈ R}.
With time, many generalizations of Pawlak’s rough set model have been

proposed in the literature (e.g. [5,11,14–17]). A useful natural generalization is
the one where the distinguishability relation R is not necessarily an equivalence.
For instance, in [8,15], a tolerance approximation space is considered, where R
is a tolerance (i.e., reflexive and symmetric) relation. The notions of lower and
upper approximations of a set in these generalized approximation spaces are
then defined naturally using (1).

Another natural generalization of Pawlak’s rough set model is one where we
consider a number of relations instead of just one. For instance, we have the
following notion of tolerance information structure.
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Definition 1. A tolerance information structure is defined as a tuple (W,
{RB}B⊆A), where A is a non-empty set of attributes, and for each B ⊆ A,
RB is a tolerance relation on the W satisfying (i) R∅ := W × W and (ii)
RB :=

⋂
a∈B R{a}.

The relations RB are intended to represent the similarity relations relative to
attribute set B obtained from the incomplete information systems (cf. [9,10]).
We note that in the original definition of information structure proposed in [12],
the relations RB were taken as equivalence relations as they were intended to
represent indiscernibility relations. But, in this article, our study will be based
on similarity relation and hence, accordingly, we made the necessary changes.

Let us return to the notions of approximations once again and note that the
definitions of the same given by (1) are defined relative to the whole domain
W of the (generalized) approximation space. But in some situation it may be
useful to consider a subset of the domain instead of the whole domain. Thus, we
consider the following notion of relative approximations.

Definition 2. Let (W,R) be a generalized approximation space and Y ⊆ W .
The lower and upper approximations of a set X ⊆ W relative to Y , denoted as
XR,Y and XR,Y , respectively, are defined as follows.

XR,Y := {x ∈ Y : R(x) ∩ Y ⊆ X} and XR,Y := {x ∈ Y : R(x) ∩ Y ∩ X �= ∅}.

Observe that XR,W and XR,W are the standard lower and upper approximations
defined on generalized approximation space.
We now propose the following generalization of the notion of information
structure.

Definition 3 (Tolerance Subset Information Structure). A tolerance sub-
set information structure, in brief TSIS, (W,σ, {RB}B⊆A) consists of a toler-
ance information structure (W, {RB}B⊆A) along with a non-empty collection σ
of subsets of W .

Here, σ ⊆ ℘(W ) gives the collection of subsets of W , called the sets of interest,
with respect to which we are interested to calculate the relative approximations
(cf. Definition 2).

Let us try to explain the above concept with the help of an example. Recall
the notion of incomplete information system (in brief, IIS) and similarity relation
defined on it. Consider a situation where there is a spread of an unknown disease,
and we aim to study its symptoms. Suppose the IIS K (cf. Table 1) provides
information gathered from a hospital, and we need to make decisions based
on this information. K contains four attributes a1, a2, a3, d representing three
symptoms a1, a2, a3 and the presence/absence of the disease, respectively. Let X
be the concept ‘infected with the disease’. Based on the information provided by
K, we obtain X := {P1, P6}. Let B := {a1, a2, a3}. Note that P1 and P2 belong to
the undecidable region XSimS

B
\XSimS

B
of the concept X. At this point, one may

like not to take into account the patients P4 and P5 as for these patients we do
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Table 1. IIS K

Patient a1 a2 a3 d Patient a1 a2 a3 d

P1 + + + Yes P4 + * * No

P2 + + − No P5 * * + No

P3 + − + No P6 + + * Yes

not have enough information. Therefore, one may wish to consider the relative
approximations XSimS

B ,Y and XSimS
B ,Y , where Y := {P1, P2, P3, P6}. Observe

that with respect to these approximations, P1 does not remain undecidable and
moves to the region XSimS

B ,Y .
Similarly, one may be interested in the approximations relative to the set
Z := {P1, P2, P3}, the set of patients about whom we have complete infor-
mation regarding the attributes. Thus, under the above circumstances, we may
be interested on the TSIS (W,σ, {SimK

B}B⊆{a1,a2,a3}), where W := {P1, . . . , P6}
and σ := {{P1, . . . , P4}, {P1, P2, P3}}.
In this article, we aim to study the behaviour of rough sets, more specifically,
relative approximations, under the framework of TSIS. In such a study many
natural questions arise. For example, which objects are ‘definitely’ (not) elements
of a concept relative to all the sets of interest? Or, which objects are definitely
elements of a concept relative to some sets of interest? Accordingly, we will
propose notions of approximations based on TSIS in Sect. 2 and some ensuing
properties will be discussed.

There have been extensive studies on the logics that can be used to rea-
son about the approximations of concepts. For a detailed survey on rough set
logics, we refer to [3,4]. In literature one can find several proposals of logics
with semantics based on relative accessibility relations where we have a family
of relations indexed with attribute sets (cf. e.g. [1,2,6,12]). These relations are
intended to capture the distinguishability relations (like indiscernibility, simi-
larity etc.) relative to different attribute sets. These proposals, as required, are
multi-modal logics with a modal operator [P ] for each subset P for the attribute
set. Modal operators [P ] are intended to capture the approximations of concepts
with respect to distinguishability relations relative to attribute set P . It should
be mentioned here that Or�lowska [12] cited the axiomatization of a logic with
semantics based on information structures as an open problem. Later, Balbiani
gave a complete axiomatization of the set of wffs valid in every information struc-
ture. In fact, in [2], complete axiomatizations of logics with semantics based on
various types of structures with relative accessibility relations are presented. One
of these is a logic for information structures (cf. [1]).

At this point, it is pertinent to mention that we have not come across any
proposals of rough set logics that can capture the approximations of concepts
relative to different subsets of the domain of the underlined (generalized) approx-
imation space. Hence we are not aware of a logic that can be used to reason about
the approximations of concepts proposed in this article (cf. Definitions 2 and 4).
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In Sect. 3, we will introduce such logic for TSISs, and it will be shown in Sect. 4
how the language can be used for this purpose. Section 5 concludes the article.

2 Relative Approximations and Tolerance Subset
Information Structure

Let us first recall the notion of relative approximations (cf. Definition 2) and
note the following properties.

Proposition 1. Let (W,R) be a tolerance approximation space and X,Y, V ⊆
W . Then the following hold.

– ∅R,V = ∅R,V = ∅ and XR,V = XR,V = V for all X ⊇ V.

– XR,V ⊆ V and XR,V ⊆ V.
– XR,V ⊆ X.

– X ⊆ XR,V if and only if X ⊆ V.
–

(
XcV

R,V

)cV = XR,V , where, for Y ⊆ W , Y cV denotes the set V \ Y.
– X ∩ Y R,V = XR,V ∩ Y R,V .
– XR,V ∪ Y R,V ⊆ X ∪ Y R,V .

– X ∪ Y R,V = XR,V ∪ Y R,V .
– X ∩ Y R,V ⊆ XR,V ∩ Y R,V .
– If X ⊆ Y , then XR,V ⊆ Y R,V and XR,V ⊆ Y R,V .

– X ⊆ XR,V
R,V

holds if X ⊆ V.

– XR,V ⊆ XR,V R,V
.

Next, we propose the following notions of approximations based on TSIS.
Let F := (W,σ, {RB}B⊆A) be a TSIS, and X ⊆ W.

Definition 4. The necessity lower approximation Ln
RB

(X), possibility lower
approximation Lp

RB
(X), necessity upper approximation Un

RB
(X), and possibil-

ity upper approximation Up
RB

(X) with respect to the relation RB, respectively,
are defined as follows.

Ln
RB

(X) :=
⋂

V ∈σ

XRB ,V ; Lp
RB

(X) :=
⋃

V ∈σ

XRB ,V ;

Un
RB

(X) :=
⋂

V ∈σ

XRB ,V ; Up
RB

(X) :=
⋃

V ∈σ

XRB ,V .

Thus, Lp
RB

(X) (Ln
RB

(X)) consists of objects that are in the lower approximation
of the concept X with respect to RB , relative to some (respectively, all) sets from
σ. Similarly, Up

RB
(X) (Un

RB
(X)) consists of objects that are in the upper approx-

imation of the concept X with respect to RB , relative to some (respectively, all)
sets from σ. At this point, it is important to note that the above-defined approxi-
mations are very different and based on the entirely different structure and ideas
from the possibility and necessity approximations considered in [7], although we
have used the same name.
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The obvious relationship between the defined approximations are:

Ln
RB

(X) ⊆ Lp
RB

(X), Un
RB

(X) ⊆ Up
RB

(X) and

Lp
RB

(X) ⊆ Un
RB

(X) if X ⊆
⋂

V ∈σ

V.

It is not difficult to see that a tolerance information structure (W, {RB}B⊆A)
can be viewed as the TSIS (W,σ, {RB}B⊆A), where σ := {W}. Moreover, in
such a TSIS, we obtain

Ln
RB

(X) := XRB
= Lp

RB
(X) and Un

RB
(X) := XRB

= Up
RB

(X).

Next proposition lists a few properties of the proposed approximations.

Proposition 2. 1. MRB
(X) ⊆ X for M ∈ {Ln, Lp}.

2. X ⊆ Up
RB

(X) if and only if for all x ∈ X, there exists a V ∈ σ such that
x ∈ V .

3. X ⊆ Un
RB

(X) if and only if X ⊆ ⋂
V ∈σ V .

4. Ln
RB

(X ∩ Y ) = Ln
RB

(X) ∩ Ln
RB

(Y ).
5. MRB

(X ∩ Y ) ⊆ MRB
(X) ∩ MRB

(Y ) for M ∈ {Lp, Up, Un}.
6. MRB

(X) ∪ MRB
(Y ) ⊆ MRB

(X ∪ Y ) for M ∈ {Ln, Lp, Un}.
7. Up

RB
(X ∪ Y ) = Up

RB
(X) ∪ Up

RB
(Y ).

8. Lp
RB

(W ) = W if and only if for all x, there exists a V ∈ σ such that x ∈ V .
9. MRB

(W ) = W if and only if σ := {W} for M ∈ {Ln, Un}.
10. MRB

(∅) = ∅ for M ∈ {Ln, Lp, Up, Un}.
11. Lp

RB
(Xc) ⊆ (Un

RB
(X))c, where Xc := W \ X.

12.
⋂

V ∈σ ∩Lp
RB

(Xc) ⊇ ⋂
V ∈σ ∩(Un

RB
(X))c.

13. Ln
RB

(Xc) ⊆ (Up
RB

(X))c.
14.

⋂
V ∈σ ∩Ln

RB
(Xc) ⊇ ⋂

V ∈σ ∩(Up
RB

(X))c.
15. IfX ⊆ Y , then MRB

(X) ⊆ MRB
(Y ) for all M ∈ {Ln, Lp, Un, Up}.

3 Proposal of a Logic with Semantics Based on the
Relative Accessibility Relations

In this section, we shall propose a logic that can be used to reason about rela-
tive approximations defined in Definition 2 with respect to similarity relations
corresponding to different set of attributes. The semantics of the logic will be
based on TSISs.

3.1 Syntax

The alphabet of the language L contains (i) a non-empty countable set PV of
propositional variables, (ii) a non-empty empty set A of attribute constants, and
(iii) the propositional constants 	, ⊥. The propositional variables p ∈ PV and
propositional constants 	,⊥ constitute the set of atomic well-formed formulae.
Using atomic well-formed formulae, the standard Boolean logical connectives ¬
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(negation) and ∧ (conjunction), the modal connectives �,�C where C ⊆ A, the
well-formed formulae (in brief, wffs) of L is then defined recursively as:

p | 	 | ⊥ | ¬α | α ∧ β | �α | �Cα,

where p ∈ PV and α, β are wffs. Apart from the usual derived connectives ∨,
→, ↔, we have the connectives ♦, and ♦C defined as follows:

♦Cα := ¬�C¬α, and ♦α := ¬�¬α.

We will make use of the same symbol L to denote the set of all wffs of the
language L.

3.2 Semantics

We have the following definition of model.

Definition 5. A model of L is a tuple M := (F, V ), where

– F := (W,σ, {RB}B⊆A) is a TSIS,
– V : PV → ℘(W ) is a valuation function.

The satisfiability of a wff α in a model M := (F, V ), where F := (W,σ,
{RB}B⊆A), at (x,U) with x ∈ U ∈ σ, denoted as M, x, U |= α, is defined
inductively as follows. We omit the cases of propositional constants and Boolean
connectives.

Definition 6.

M, x, U |= �Bα ⇐⇒ for all y ∈ U with xRBy, M, y, U |= α.
M, x, U |= �α ⇐⇒ for all V ∈ σ with x ∈ V, M, x, V |= α.

The satisfiability conditions of the derived connectives are then obtained as
follows.

Proposition 3.

M, x, U |= ♦Bα ⇐⇒ there exists a y ∈ U with xRBy such that M, y, U |= α.
M, x, U |= ♦α ⇐⇒ there exists a V ∈ σ with x ∈ V such that M, x, V |= α.

For any wff α, model M and U ∈ σ, let

[[α]]M,U := {x ∈ W : M, x, U |= α}.

[[α]]M := {(x,U) ∈ W × σ : x ∈ U & M, x, U |= α}.

Let us use L∗ to denote the set of all wffs α such that for all models M, object
x and U ∈ σ, we have,

M, x, U |= α ⇐⇒ M, x, V |= α for all V ∈ σ with x ∈ V.
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That is, the satisfiability of wffs from L∗ do not depend on the elements from σ.
Therefore, for α ∈ L∗, we will use [[α]]∗M to denote the set

{x ∈ W : M, x, U |= α for some U ∈ σ}.

Observe that wffs that do not involve modal operators �C and ♦C belong to the
set L∗.

A wff α is said to be valid in M, notation: M |= α, if [[α]]M = {(x,U) :
W × σ : x ∈ U}. α is said to be valid if M |= α for all M.

4 Rough Set Interpretation

Let us consider a model M := (F, V ), where F := (W,σ, {RB}B⊆A). Then, we
have the following.

Proposition 4. For a model M, α ∈ L and β ∈ L∗, we have the following.

1. [[�Bα]]M,U = [[α]]M,U
RB ,U

, [[♦Bα]]M,U = [[α]]M,U RB ,U ;

2. [[�Bβ]]M,U = [[β]]∗MRB ,U
, [[♦Bβ]]M,U = [[α]]∗MRB ,U ;

3. [[�α]]M,U =
⋂

V ∈σ

[[α]]M,V , [[♦α]]M,U =
⋃

V ∈σ

[[α]]M,U .

From Items 1 and 2, it is evident that the operators �B and ♦B capture lower and
upper approximations, respectively, with respect to the relation RB relative to
the set at which the wffs are evaluated. The operator �B can be combined with
the operator � to capture necessity and possibility approximations, as shown
by the following proposition. Let us define the following connectives for each
B ⊆ A.

�n
Bα := ��Bα, �p

Bα := ♦�Bα,

�p
Bα := ¬�n

B¬α, �n
Bα := ¬�p

B¬α.

Proposition 5. For a model M and β ∈ L∗, we have the following.

1. [[�n
Bβ]]M,U = Ln

RB
([[β]]∗M), [[�p

Bβ]]M,U = Up
RB

([[β]]∗M);
2. [[�p

Bβ]]M,U = Lp
RB

([[β]]∗M), [[�n
Bβ]]M,U = Un

RB
([[β]]∗M).

It follows from Proposition 5 that if β ∈ L∗, then we also have �n
Bβ, �p

Bβ, �n
Bβ,

�p
Bβ ∈ L∗. The properties listed in Propositions 1 and 2 translate into valid wffs

of the language L. We end this section with the following proposition that lists
a few such valid wffs.

Proposition 6. The following wffs are valid in the model M := (F, V ), where
F := (W,σ, {RB}B⊆A).

– �Bα → α.
– α → ♦Bα.
– �B(α ∧ β) ↔ �Bα ∧ �Bβ.
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– �Bα ∨ �Bβ → �B(α ∨ β).
– α → �B♦Bα.
– �n

Bα → α.
– �p

B	 ↔ 	.
– �p

Bα → α if α ∈ L∗.
– α → �p

Bα.
– �n

B(α ∧ β) ↔ �n
Bα ∧ �n

Bβ.
– �p

B(α ∧ β) → �p
Bα ∧ �p

Bβ.
– �p

B(α ∨ β) ↔ �p
Bα ∨ �p

Bβ.
– �n

Bα ∨ �n
Bβ → �n

B(α ∨ β).

5 Conclusions

In this article, we proposed a generalization of the rough set model where approx-
imation operators are defined relative to a given collection of subsets of the
domain of objects. A few properties of the proposed approximations are stud-
ied, but a detailed study on the proposed generalization covering the standard
notions like definability, membership function, dependency etc. needs to be done.
Similarly, the axiomatization and decidability problems of the proposed logic also
need to be answered.

References

1. Balbiani, P.: Axiomatization of logics based on Kripke models with relative accessi-
bility relations. In: Or�lowska, E. (ed.) Incomplete Information: Rough Set Analysis,
pp. 553–578. Physica Verlag, Heidelberg, New York (1998)

2. Balbiani, P., Or�lowska, E.: A hierarchy of modal logics with relative accessibility
relations. J. Appl. Non-Class. Log. 9(2–3), 303–328 (1999)

3. Banerjee, M., Khan, M.A.: Propositional logics from rough set theory. In: Peters,
J.F., Skowron, A., Düntsch, I., Grzyma�la-Busse, J., Or�lowska, E., Polkowski, L.
(eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 1–25. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-71200-8 1

4. Demri, S., Or�lowska, E.: Incomplete Information: Structure, Inference, Complexity.
Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04997-6

5. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst.
17, 191–209 (1990)

6. Farinas Del Cerro, L., Or�lowska, E.: DAL - a logic for data analysis. Theor. Com-
put. Sci. 36, 251–264 (1985)

7. Khan, M.A.: A probabilistic approach to rough set theory with modal logic per-
spective. Inf. Sci. 406–407, 170–184 (2017)

8. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial.
In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in
Decision-Making, pp. 3–98. Springer, Singapore (1999)

9. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inf. Sci.
112, 39–49 (1998)

10. Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113, 271–292
(1999)

https://doi.org/10.1007/978-3-540-71200-8_1
https://doi.org/10.1007/978-3-662-04997-6


510 Md. A. Khan and V. S. Patel

11. Lin T.Y., Yao, Y.Y.: Neighborhoods system: measure, probability and belief func-
tions. In: Proceedings of the 4th International Workshop on Rough Sets and Fuzzy
Sets and Machine Discovery, pp. 202–208, November 1996

12. Or�lowska, E.: Kripke semantics for knowledge representation logics. Studia Logica
49, 255–272 (1990)

13. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
14. J. A. Pomyka�la. Approximation, similarity and rough constructions. ILLC pre-

publication series for computation and complexity theory CT-93-07, University of
Amsterdam (1993)

15. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Inform. 27,
245–253 (1996)
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Abstract. Some classes of topological quasi-Boolean algebras, including
algebraic structures related with rough sets, are enriched with residuated
and adjoint pairs. The strong finite model property for these classes of
algebraic structures is established. The decidability of equational theories
of these classes of algebras is derived from the finite model property.
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1 Introduction

Rough set theory was introduced by Z. Pawlak in 1982 [8]. It was immediately
observed that rough set models have both algebraic and topological components.
Investigations on both these aspects exist abundantly. In this paper we shall deal
with only the algebraic aspect. We wish to mention that Pomykala’s work [9]
probably was the beginning of this research direction. There are also many other
researches who make contributions to this area [1,3,11,12].

Classical rough set theory starts with approximation spaces which are pairs
of the form 〈X,R〉, where X is a non-empty set, and R is an equivalence relation
on X that gives a partition. In the literature (cf. e.g. [8]), for any subset A of
X, the pair 〈A,A〉 is called a rough set in the approximation space 〈X,R〉. The
sets A and A are called lower and upper approximations of A respectively, and
they are formally defined as follows:

A = {x ∈ X | [x]R ⊆ A} and A = {x ∈ X | [x]R ∩ A �= ∅}
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where [x]R is the equivalence class of x ∈ X with respect to R. Now we define
meet (	), join (
) and complementation (¬) on rough sets as follows:

〈A,A〉 	 〈B,B〉 = 〈A ∩ B,A ∩ B〉.
〈A,A〉 
 〈B,B〉 = 〈A ∪ B,A ∪ B〉.

¬〈A,A〉 = 〈Ac, A
c〉.

One can observe from [2,3] that the algebraic structure of rough sets forms a
quasi-Boolean algebra (qBa), the formal definition of which will be given in the
next section. If R discretizes X totally, that is, if each equivalence class is a
singleton, the qBa becomes a Boolean algebra viz. the power set algebra P(X).
In a slightly modified definition [10], rough sets form a topological quasi-Boolean
algebra (tqBa) with respect to a topological operator. In the present work, we
shall use this modified definition (cf. [3]).

From the perspective of tqBa, a rough set is a pair 〈D1,D2〉 such that D1 ⊆
D2 ⊆ X where D1 and D2 are unions of equivalence classes with respect to
R. Such unions are called definable sets. Let D = {〈D1,D2〉 | D1 ⊆ D2}. The
structure D = 〈D,	,
,¬, 〈∅, ∅〉, 〈X,X〉〉 is a qBa. It is also observed that the
approximations A and A are definable sets and A ⊆ A. Furthermore, we define
the unary operator ♦ on D by ♦〈D1,D2〉 = 〈D2,D1〉. Then 〈D,♦〉 forms a tqBa.

The aim of this work is to enhance some algebraic structures in [11] with
two additional binary operators: the product (•) and implication/residual (→).
In such a way, we can obtain more logical properties of algebraic structures
related with rough sets using tools from partially ordered residuated algebras
(cf. e.g. [4]). We shall explore the finite model property (FMP) of these enriched
algebraic structures. Although the study of FMP of algebraic structures has a
long tradition, in order to make this work as self contained as possible, we shall
give the definition of FMP, strong finite model property (SFMP) and related
concepts in the next section.

It should be mentioned that current investigations on rough set theory have
already traversed a long way form the original starting point of a set X with
an equivalence relation. First, in place of an equivalence relation, any arbitrary
relation has been taken and lower/upper approximations of a set are defined.
This gives immediate connection with Kripke frames and modal logic (cf. e.g.
[5,13,14,16]). Second, in place of a partition of X due to the equivalence relation,
a general covering is taken and this has emerged a wide branch called covering-
based rough sets (cf. e.g. [6,15]). Abstract algebraic studies in the former case
have been carried out [2,3,11,12]. There have been category-theoretic studies as
well [7]. But to our best knowledge, there are no attempts to enrich algebraic
structures with residuation pairs. We hope that a new branch of logical-algebraic
studies in abstract rough sets will emerge out of the present research.

2 Pre-rough Algebras

As mentioned in the introduction, rough algebra are algebraic structures based
on quasi-Boolean algebras.
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Definition 1. A quasi-Boolean algebra (qBa) is an algebra A = (A,∧,∨,
¬, ⊥,�) where (A,∧,∨,⊥,�) is a bounded distributive lattice, and ¬ is an
unary operation on A such that the following conditions hold for all a, b ∈ A:

(DN) ¬¬a = a.
(DM) ¬(a ∨ b) = ¬a ∧ ¬b.

The lattice order ≤ on A is defined by: a ≤ b if and only if a ∧ b = a, or
equivalently a ∨ b = b.

Definition 2. A topological quasi-Boolean algebra (tqBa) is an algebra A =
(A,∧,∨,¬,⊥,�,�) where (A,∧,∨,¬,⊥,�) is a qBa, and � is an unary opera-
tion on A such that the following conditions hold for all a, b ∈ A:

(N�) �� = �.
(T�) �a ≤ a.
(K�) �(a ∧ b) = �a ∧ �b.
(4�) �a ≤ ��a.

A topological quasi-Boolean 5 algebra (tqBa5) is a tqBa A such that the following
condition holds for all a ∈ A:

(B) ♦�a = a,

where ♦ is the unary operation on A defined by ♦a := ¬�¬a. We use qBa,
tqBa and tqBa5 to denote classes of quasi-Boolean algebras, topological quasi-
Boolean algebras and topological quasi-Boolean 5 algebras, respectively.

Definition 3. An intermediate algebra of type 1 (IA1) is a tqBa5 A satisfying
the following condition for all a ∈ A:

(IA1) ¬�a ∨ �a = 1.

An intermediate algebra of type 2 (IA2) is a tqBa5 A satisfying the following
condition for all a, b ∈ A:

(IA2) �(a ∨ b) = �a ∨ �b.

An intermediate algebra of type 3 (IA3) is a tqBa5 A satisfying the following
condition for all a, b ∈ A:

(IA3) if �a ≤ �b and ♦a ≤ ♦b, then a ≤ b.

A pre-rough algebra (Pra) is an IA1, IA2 or IA3. We use IA1, IA2, IA3 and
Pra to denote classes of intermediate algebras of type 1, intermediate algebras
of type 2, intermediate algebras of type 3 and pre-rough algebras, respectively.

Now we shall introduce equational logics of topological quasi-Boolean alge-
bras. Let X be a denumerable set of variables.
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Definition 4. The set T (X) of all terms for tqBa is defined as follows:

T (X) � ϕ ::= x | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ¬ϕ | Iϕ, where x ∈ X.

Terms are denoted by ϕ,ψ, χ etc. We define Cϕ := ¬I¬ϕ. An equation is an
expression of the form ϕ ≈ ψ where ϕ,ψ ∈ T (X). Equations are denoted by s, t
etc. with or without subscripts. A quasi-equation is an expression of the form
(s1 & · · · & sn) ⊃ sn+1.

An assignment in a tqBa A is a function σ : X → A. An assignment σ is
extended homomorphically to all terms, and σ(ϕ) is the value of ϕ. An equation
ϕ ≈ ψ is valid in A, if σ(ϕ) = σ(ψ) for any assignment σ in A. A quasi-equation
(ϕ1 ≈ ψ1 & . . . & ϕn ≈ ψn) ⊃ ϕ0 ≈ ψ0 is valid in A, if for any assignment σ in
A, σ(ϕi) = σ(ψi) for all 1 ≤ i ≤ n imply σ(ϕ0) = σ(ϕ0).

An equation or quasi-equation is valid in a class of algebras K if it is valid
in all algebras in K. Let K be any class of algebras. The equational theory of K
is defined as the set Eq(K) of all equations which are valid in K. For any set
of equations or quasi-equations Σ, let Alg(Σ) be the class of all algebras which
validate all equations in Σ. A class of algebras K is called a variety if there is
a set of equations Σ such that K = Alg(Σ). A class of algebras K is called a
quasi-variety if there is a set of quasi-equations Θ such that K = Alg(Θ).

It is obvious that qBa, tqBa, tqBa5, IA1 and IA2 are varieties since they
are defined by equations. IA3 and Pra are quasi-varieties since they are defined
by quasi-equations. Now, given a variety or quasi-variety K, a natural question
is the decidability of its equational theory Eq(K).

We shall prove some decidability results in terms of finite model property. A
class of algebras K has the finite model property (FMP), if any equation which
is not valid in K is refuted by a finite member of K. The FMP of K yields the
decidability of the equational theory Eq(K).

Given a set of equations Φ and an equation ϕ ≈ ψ, a more general ques-
tion is whether ϕ ≈ ψ is valid in K if all equations in Φ are valid in K. A
positive answer to this question follows from the strong finite model property
of the Horn theory of K. A Horn sentence is a universal sentence of the form
∀x1 . . . xm(s1 & · · · & sn ⊃ sn+1) where n,m ≥ 0 and each si (1 ≤ i ≤ n + 1)
is an equation. The Horn theory of K, denoted by Horn(K), is the set of all
Horn sentences that are valid in K. We say that a quasi-variety K has the strong
finite model property (SFMP), if any Horn sentence not valid in K is refuted in
a finite member of K. If K has the SFMP, Horn(K) is decidable.

3 Residuated Pre-rough Algebras

Definition 5. A bounded commutative residuated groupoid (crg) is a partially
ordered algebraic structure G = (G, ·,→,�.⊥,≤) where (G,≤) is poset, ⊥ and
� are the least and greatest elements in G, and · and → are binary operations
on G satisfying the following conditions for all a, b, c ∈ G:

(COM) a · b = b · a.
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(RES) a · b ≤ c if and only if a ≤ b → c.

Let crg be the class of all bounded commutative residuated groupoids.

Definition 6. A quasi-Boolean commutative residuated groupoid (qBacrg) is
an algebra G = (G, ·,→,⊥,�,∧,∨,¬) where (i) (G,∧,∨,⊥,�) is an bounded
distributive lattice, and (ii) the following double negation law holds:

(DNE)¬¬a ≤ a

where ¬ is the unary operation on G defined by ¬a = a → ⊥ for all a ∈ G, and
(iii) (G, ·,→,⊥,�,≤) is a crg where ≤ is the lattice order. Let qBacrg be the
class of all quasi-Boolean commutative residuated groupoid.

Example 1. Let B = (B,∧,∨,⊥,�,¬, ·,≤B) be a Boolean algebra and ≤B be
the lattice order on B. Let · be a binary operator on B such that for all a, b ∈ B:

(1) if a ≤B b, then c · a ≤B c · b and a · c ≤B b · c.
(2) a · ⊥ = ⊥.

Let A = {〈a, b〉 ∈ B × B | a ≤B b}. We define the binary relation ≤ and the
operations 	,
,∼ and � on A as follows:

〈a, b〉 ≤ 〈a′, b′〉 iff a ≤ a′ and b ≤ b′.

〈a, b〉 	 〈a′b′〉 = 〈a ∧ a′, b ∧ b′〉.
〈a, b〉 
 〈a′b′〉 = 〈a ∨ a′, b ∨ b′〉.

∼ 〈a, b〉 = 〈¬b,¬a〉.
〈a, b〉 � 〈a′, b′〉 = 〈a · a′, b · b′〉.

Then Q(B) = (A,≤,
,	,∼, 〈0, 0〉, 〈1, 1〉,�) is a partially ordered quasi-Boolean
algebra with the binary operator � satisfying the following conditions:

(1) if 〈a, b〉 ≤ 〈a′, b′〉, then (c, c′) � 〈a, b〉 ≤ (c, c′) � 〈a′, b′〉 and 〈a, b〉 � (c, c′) ≤
〈a′, b′〉 � (c, c′).

(2) 〈a, b〉 � 〈0, 0〉 = 〈0, 0〉.
(3) 〈a, b〉 � 〈c, d〉 = 〈c, d〉 � 〈a, b〉
Now we define an implication operation → on A as follows:

〈a, b〉 → 〈b, c〉 =
∨

{〈a′′, b′′〉 ∈ A | 〈a, b〉 � 〈a′′, b′′〉 ≤ 〈a′, b′〉}.

Since 〈a, b〉 � 〈0, 0〉 = 〈0, 0〉, the supermum
∨{〈a′′, b′′〉 ∈ A | 〈a, b〉 � 〈a′′, b′′〉 ≤

〈a′, b′〉} exists. It is easy to show that

〈a, b〉 � 〈a′, b′〉 ≤ 〈a′′, b′′〉 if and only if 〈a, b〉 ≤ 〈a′, b′〉 → 〈a′′, b′′〉.

Then (A,≤,
,	,∼, 〈0, 0〉, 〈1, 1〉,�,→) is qBacrg.
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Example 2. Let G = (G, ·) be a commutative groupoid. We define the binary
operation � on the powerset P(G) as follows:

X • Y = {a · b | a ∈ X and b ∈ Y }.

Consider the algebraic structure B = (P(G), •,∪,∩, c, ∅,P(G),⊆) where the
reduct (P(G),∪,∩, c, ∅,P(G)) is the powerset Boolean algebra. Clearly • satisfies
the following conditions for all X,Y,Z ∈ P(G):

(1) if X ⊆ Y , then Z • X ⊆ Z • Y and X • Z ⊆ Y • Z.
(2) X • ∅ = ∅.

Let A = 〈X,Y 〉 ∈ P(G) × P(G) | X ⊆ Y }. Using the construction in
Example 1, we obtain a qBacrg on A.

Definition 7. A topological quasi-Boolean commutative residuated groupoid
(tqBacrg) is an algebra G = (G, ·,→,♦,�↓,⊥,�,∧,∨) where (G, ·,→,⊥,�,
∧,∨) is a qBacrg, and ♦ and �↓ are unary operations on G satisfying the fol-
lowing conditions for all a, b ∈ G,

(Adj) ♦a ≤ b if and only if a ≤ �↓b.
(4♦) ♦♦a ≤ ♦a.
(T♦) a ≤ ♦a.

The condition (Adj) is called the adjointness law for the pair (♦,�↓). Let
tqBacrg be the class of all topological quasi-Boolean commutative residuated
groupoids. (Note that the algebra (G,∧,∨,⊥,�,¬,�) is a tqBa.)

A topological quasi-Boolean 5 commutative residuated groupoid (tqBacrg5) is
a tqBacrg G satisfying the following condition for all a ∈ G:

(5♦�) ♦a ≤ �♦a.

Let tqBacrg5 be the class of all topological quasi-Boolean 5 commutative resid-
uated groupoids.

Definition 8. A pre-rough algebra with commutative residuated groupoid
(Pracrg) is a tqBacrg5 G satisfying the following conditions for all a, b ∈ G:

(IA1♦) ♦a ∧ ¬♦a ≤ ⊥.
(IA2♦) ♦a ∧ ♦b ≤ ♦(a ∧ b).
(IA3♦) if �a ≤ �b and ♦a ≤ ♦b, then a ≤ b.

Let Pracrg be the class of all pre-rough algebra with commutative residuated
groupoids. Intermediate algebras of type 1 (IA1crg), type 2 (IA2crg), type 3
(IA3crg), and their combinations IA12crg and IA23crg, are defined naturally.

We consider all algebras between tqBacrg and Pracrg (including tqBacrg
and Pracrg) defined above. These classes of algebras are quasi-varieties. The
algebras presented in Sect. 2 can be expanded to corresponding algebras defined
above. An algebra A′ is called an expansion of A, if A′ is obtained from A by
adding new operations such that A is a reduct of A′.
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Lemma 1. The following hold:

(1) Every qBa is expanded to a qBacrg.
(2) Every tqBa is expanded to a tqBacrg.
(3) Every tqBa5 is expanded to a tqBacrg5.
(4) Every IA1 is expanded to a IA1crg.
(5) Every IA2 is expanded to a IA2crg.
(6) Every IA3 is expanded to a IA3crg.
(7) Every IA12 is expanded to a IA12crg.
(8) Every IA23 is expanded to a IA23crg.
(9) Every Pra is expanded to a Pracrg.

We present a construction of powerset algebra from a residuated algebra
defined above, which will be essentially used in the proof of SFMP.

Definition 9. Let G = (G, ·, †) be a commutative groupoid with an unary oper-
ation † on G. We define the following operations on the powerset P(G):

U � V = {a · b ∈ G : a ∈ U, b ∈ V },

♦U = {†a ∈ G : a ∈ U},

U → V = {a ∈ G : U � {a} ⊆ V },

�↓U = {a ∈ G : †a ∈ U},

U ∨ V = U ∪ V,

U ∧ V = U ∩ V.

where U, V ⊆ G. Let P(G) = (P(G),�,♦,→,�↓,∨,∧, ∅, G).

Definition 10. Let G = (G, ·, †) be a commutative groupoid with an unary
operation † on G. An operation C : P(G) → P(G) is called a closure operator
on P(G), if the following conditions are satisfied:

(C1) U ⊆ C(U).
(C2) if U ⊆ V , then C(U) ⊆ C(V ).
(C3) C(C(U)) ⊆ C(U).
(C4) C(U) � C(V ) ⊆ C(U � V ).
(C5) ♦C(U) ⊆ C(♦U).

A subset U ⊆ G is called C-closed, if U = C(U). The set of all C-closed subsets
of G is denote by C(G). The operations ⊗,�,∨C on C(G) are defined as follows:

U ⊗ V = C(U � V ), �U = C(♦U), U ∨C V = C(U ∨ V ).

Clearly C(G) is closed under ⊗,� and ∨C .

Let C(G) = (C(G),⊗,→,∧,∨C ,�,�↓, C(∅), C(G)) where the operations →
and �↓ are defined as in Definition 9. One can prove that C(G) is closed under
→ and �↓. Moreover, C(G) is a lattice with a residuated pair (⊗,→) and an
adjoint pair (�,�↓). We define ¬U := U → C(∅). If C(G) is distributive and
¬¬U ⊆ U for all U ∈ C(G), then C(G) is a qBacrg. C(G) can be any algebra
between tqBacrg and Pracrg if (�,�↓) satisfies corresponding conditions.
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4 Sequent Calculi

In this section, we shall introduce sequent calculi for residuated algebras. The
language is defined inductively as follows:

ϕ ::= p | ⊥ | � | (ϕ • ϕ) | (ϕ → ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �↓ϕ,

where p ∈ Prop is a propositional variable. Formula trees are defined inductively
as follows:

Γ ::= ϕ | (Γ ◦ Γ ) | 〈Γ 〉
where ϕ is a formula. The binary operation ◦ and unary operation 〈〉 corre-
sponded to connectives • and ♦ respectively.

A context is a formula tree containing one occurrence of special atom −
(a place for substitution). If Γ [−] is a context, then Γ [Δ] is the formula tree
obtained from Γ [−] by substituting Δ for −. A sequent is an expression of the
form Γ ⇒ ϕ where Γ is a formula tree and ϕ is a formula.

Definition 11. The sequent calculus for tqBa, denoted by StqBacrg, consists
of the following axioms and rules:

– Axioms:
(Id) ϕ ⇒ ϕ (⊥) Γ [⊥] ⇒ ϕ (�) Γ ⇒ �

(DN1) ¬¬ϕ ⇒ ϕ (D) ϕ ∧ (ψ ∨ χ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

– Inference rules:

(→ L)
Δ ⇒ ϕ Γ [ψ] ⇒ χ

Γ [(Δ ◦ ϕ → ψ)] ⇒ χ
(→ R)

(ϕ ◦ Γ ) ⇒ ψ

Γ ⇒ ϕ → ψ

(•L)
Γ [(ϕ ◦ ψ)] ⇒ χ

Γ [ϕ • ψ] ⇒ χ
(•R)

Γ ⇒ ϕ Δ ⇒ ψ

(Γ ◦ Δ) ⇒ ϕ • ψ

(♦L)
Γ [〈ϕ〉] ⇒ ψ

Γ [♦ϕ] ⇒ ψ
(♦R)

Γ ⇒ ϕ

〈Γ 〉 ⇒ ♦ϕ

(�↓L)
Γ [ϕ] ⇒ ψ

Γ [〈�↓ϕ〉] ⇒ ψ
(�↓R)

〈Γ 〉 ⇒ ϕ

Γ ⇒ �↓ϕ

(∧L)
Γ [ϕi] ⇒ ψ

Γ [ϕ1 ∧ ϕ2] ⇒ ψ
(∧R)

Γ ⇒ ϕ Γ ⇒ ψ

Γ ⇒ ϕ ∧ ψ

(∨L)
Γ [ϕ1] ⇒ ψ Γ [ϕ2] ⇒ ψ

Γ [ϕ1 ∨ ϕ2] ⇒ ψ
(∨R)

Γ ⇒ ϕi

Γ ⇒ ϕ1 ∨ ϕ2

In (∧L) and (∨R), the subscript i equals 1 or 2.
– Structural rules:

(Com)
Γ [(Δ1 ◦ Δ2)] ⇒ ϕ

Γ [(Δ2 ◦ Δ1)] ⇒ ϕ
(S4)

Γ [〈Δ〉] ⇒ ϕ

Γ [〈〈Δ〉〉] ⇒ ϕ
(T)

Γ [〈Δ〉] ⇒ ϕ

Γ [Δ] ⇒ ϕ
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– Cut rule:

(Cut)
Δ ⇒ ϕ Γ [ϕ] ⇒ ψ

Γ [Δ] ⇒ ψ

StqBa5crg is obtained from StqBacrg by adding the following rule:

(♦�↓)
(〈Γ 〉1 ◦ Γ2) ⇒ ⊥
(Γ1 ◦ 〈Γ2〉) ⇒ ⊥

Sequent calculi SIA1crg, SIA2crg, SIA3crg, and Spracrg are obtained from
StqBa5crg by adding the following corresponding axioms and rules:

(IA1♦) ♦ϕ ∧ ¬♦ϕ ⇒ ⊥ (IA2♦) ♦ϕ ∧ ♦ψ ⇒ ♦(ϕ ∧ ψ)

(IA3♦)
♦ϕ ⇒ ♦ψ �↓ϕ ⇒ �↓ψ

ϕ ⇒ ψ

The cut elimination does not hold for all these sequent calculi. We first show
an interpolation property for all these sequent calculi. And then in Sect. 4, by
interpolation property and model-theoretic method, we obtain the SFMP.

Henceforth, let S be one of sequent calculi StqBacrg, StqBa5crg,
SIA1crg, SIA2crg, SIA12crg, SIA3crg, SIA23crg and Spracrg. Let T be
a set of formulas. A sequent Γ ⇒ ϕ is call a T -sequent if all formulas appearing in
it belong to T . A derivation of a T -sequent Γ ⇒ ϕ is called a T -derivation if all
sequents appearing in the derivation are T -sequents. The notation �S Γ ⇒T ϕ
means that Γ ⇒ ϕ has a T -derivation in S. In the following lemma, we assume
that T contains ⊥, � and is closed under taking subformulas as well as operations
∨, ∧ and ¬. Let Φ be any finite set of sequents of the form ϕ ⇒ ψ.

Lemma 2 (Interpolation). If Φ �S Γ [Δ] ⇒T ϕ, then there exists χ ∈ T such
that Φ �S Δ ⇒T χ and Φ �S Γ [χ] ⇒T ϕ.

5 Strong Finite Model Property

Let Alg(S) be the class of algebras corresponding to S. We show the SFMP of
Alg(S). Let T be a nonempty set of formulas. By T ∗ we denote the set of all
formula trees built from formulas in T . Let T ∗[−] be the set of all contexts in
which all formulas belong to T . Then G(T∗) = (T ∗, (− ◦ −), 〈−〉) is a groupoid
with a unary operation 〈−〉. Let Γ [−] ∈ T ∗[−] and ϕ ∈ T . We define

[Γ [−], ϕ] = {Δ | Δ ∈ T ∗ and Φ �S Γ [Δ] ⇒T ϕ},

[ϕ] = {Γ | Γ ∈ T ∗ and Φ �S Γ ⇒T ϕ}.

Let B(T ) be the family of all sets of the form [Γ [−], ϕ] defined above. We define
the function CT : ℘(T∗) → ℘(T∗) on the powerset of T∗ as follows:

CT (U) =
⋂

{[Γ [−], ϕ] ∈ B(T ) | U ⊆ [Γ [−], ϕ]}.
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Proposition 1. CT is a closure operator.

Then CT(G(T∗)) is a lattice with residuated pair (⊗,→) and adjoint pair
(�,�↓). We define ¬U := U → C(∅). Then U ⊆ ¬¬U . One can easily show
that ��U ⊆ �U and U ⊆ �U in CT(G(T∗)). Moreover, if S is not StqBacrg,
then ��↓U ⊆ U . The following equations hold in CT(G(T∗)) provided that all
formulas appearing in them belong to T :

[ϕ] ⊗ [ψ] = [ϕ • ψ] [ϕ] → [ψ] = [ϕ → ψ]

�[ϕ] = [♦ϕ] �↓[ϕ] = [�↓ϕ]
[ϕ] ∧ [ψ] = [ϕ ∧ ψ] [ϕ] ∨C [ψ] = [ϕ ∨ ψ].

Let T be a finite nonempty set of formulas such that �,⊥ ∈ T . Let T be the
smallest set of formulas containing all formulas in T and is closed under taking
subformulas and ∧, ∨, ¬, ♦ and �↓. For any ϕ,ψ ∈ T , we say that ϕ and ψ are
T -equivalent with respect to S, notation ϕ ∼S ψ, if �S ϕ ⇒ ψ and �S ψ ⇒ ϕ.

Lemma 3. T is finite up to the equivalence relation ∼S.

Let r(T ) be the set of all representatives in the quotient of T with respect to
∼S. Clearly r(T ) is a nonempty finite subset of T .

Lemma 4. For any set U ∈ CT(T
∗
), there exists ϕ ∈ r(T ) with U = [ϕ].

By Lemma 4, we can show that CT(G(T∗)) is a qBa, and that it satisfies
the defining conditions of Alg(S).

Lemma 5. The algebra CT(G(T
∗
)) is finite and belongs to Alg(S).

Lemma 6. Let T be the set of all formulas appearing in Γ ⇒ A or Φ. If Φ ��S

Γ ⇒T A, then CT(G(T
∗
)) �|= Γ ⇒ A.

Theorem 1. Alg(S) has the SFMP.

Let Alg∗(S) be the class of algebras obtained from Alg(S) by deleting oper-
ators • and →.

Theorem 2. Alg∗(S) has the SFMP.

Theorem 3. Alg(S) and Alg∗(S) are decidable.

6 Conclusion

In this extended abstract, we describe the model-theoretic approach to show the
strong finite model property of residuated algebras related with rough sets from
which the decidability of equational theories of some classes of rough algebras
follows. In a forthcoming full paper, we shall construct decision algorithm for
these sequent calculi. Furthermore, the approach given in the present paper can
be extended to more general algebraic structures. For example, we can introduce
non-distributive topological quasi-Boolean algebras, and obtain results on the
strong finite model property and decidability.
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Abstract. In decision-making, three-way decisions play an essential role
and have been widely used in many fields and disciplines. In this paper,
we propose a conflict analysis model based on three-way decisions, so as
to explore the inter structure of conflict situation. Firstly, by adopting
including degree, two pairs of evaluation functions are defined specifically
based on the conflict situation. After that, with restricting the evalua-
tions, three regions of agent set and issue set can be obtained. Comparing
with existing conflict analysis models, this trisection model is more effi-
cient, practical and pragmatical. Finally, the trisection of agent set and
issue set could be used to ascertain sub-optimal feasible consensus strate-
gies, and determine the scope of the kernel issues in conflict situation,
respectively.

Keywords: Three-way decisions · Conflict analysis · Including degree

1 Introduction

Conflict, as an essential characteristic of human life, exists in a wide variety of
social problems. To make proper decisions in conflict situations, conflict study
is of significance both in theory and practice. Conflict analysis, purposed to
explore the structure of conflict, has attracted enormous attention [1–13]. For
example, Pawlak initially proposed discernibility matrix and distance functions
based on rough set [2,3], then presented an approach dividing the agent set
into several coalitions. Deja [4,5] subsequently extended Pawlak conflict analysis
model through adding three basic questions:

(1) What are the intrinsic reasons for the conflict?
(2) How can a feasible consensus strategy be found?
(3) Is it possible to satisfy all the agents?

To tackle the problems mentioned by Deja, Sun et al. [6,7] developed a rough
set-based conflict analysis model. However, there are still many problems should
c© Springer Nature Switzerland AG 2018
H. S. Nguyen et al. (Eds.): IJCRS 2018, LNAI 11103, pp. 522–532, 2018.
https://doi.org/10.1007/978-3-319-99368-3_41
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be studied further, such as the more feasible strategy. Ali et al. [8] provided a
new conflict analysis model based on soft preference relation and soft dominance
relation, disclosing the information more efficiently. Nevertheless, this model paid
more attention to domination relations between agents, so that the relations
between issues and agents were ignored. That would end up with missing more
benefit strategies.

In conflict situations, the main problem is how find an efficient way to model
uncertainty in conflict situations [4,5]. For a feasible consensus strategy, the way
of model uncertainty is to ascertain the agents’ attitudes towards any strategy:
agreed, opposed or neutral.

The notion of three-way decisions was proposed and used to interpret three
regions in rough set. More specifically, positive, negative and boundary region are
viewed respectively as acceptance, rejection, and non-commitment in a ternary
classification [14–17]. The intrinsic ideas of three-way decisions has been widely
applied to many fields, for instance, medical decision-making [18], management
sciences [19], and peering review process [20].

The essential ideas of three-way decisions are described in terms of a ternary
classification according to the evaluations of a set of criteria [17]. This kind
of classification is, to some extent, consensus with the trisection of agent set
based on every agent’s attitude to a specific strategy, and the trisection of issue
set based on agent group’s whole attitude to every single issue. Therefore, our
main research are as follows. On the one hand, we define a pair of evaluation
functions to estimate the extent to which agent u accepts or opposes a strategy
Y . Then, the three regions of agents could be determined through restricting the
value of the evaluation function subsequently; On the other hand, another pair
of evaluation functions is also defined to estimate the extent to which an issue
a is accepted or opposed by the whole agent group X. Then, three regions of
issues could be determined as well. Finally, we can find that this model is more
appropriate than existing conflict analysis models.

Basic notions of Sun’s conflict analysis model and three-way decisions are
recalled in Sect. 2. Then, the conflict analysis model based on three-way deci-
sions is proposed in Sect. 3. Finally, we conclude our researches and give further
research directions in Sect. 4.

2 Preliminaries

Conflict situation consists of agents and their attitudes to some issues. In
Pawlak’s model, conflict situation can be presented as a pair (U, V ), where
U = {u1, ..., um } is the universe of agents, and V = { a1, ..., an } is the universe
of issues. The attitude of agent u to an issue a can be interpreted as a function
a : U → Va, where Va = {+,−, 0}. a(u) = + represents agent u agrees with issue
a, a(u) = − means agent u objects to issue a, and a(u) = 0 means agent u is
neutral towards issue a. An example of conflict situation is presented in Table 1.
The relationship of each agent ui to a specific issue aj could be clearly shown in
this table.
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Table 1. The conflict situation of the Middle East conflict.

a1 a2 a3 a4 a5

u1 − + + + +

u2 + 0 − − −
u3 + − − − 0

u4 0 − − 0 −
u5 + − − − −
u6 0 + − 0 +

Sun et al. [7] focused on the first two questions proposed by Deja [4,5], “What
are the intrinsic conflict reasons” and“How can a feasible consensus strategy be
found”. Inspired by Pawlak’s model, they tried to introduce a new analysing
method of conflict situation based on rough set theory over two universes.

According to [7], for any subset Y ⊆ V , Y is called a strategy. Subsequently,
Y is called a feasible consensus strategy if it satisfies all agents. A sub-optimal
feasible consensus strategy Y satisfies the agents as many as possible. The fea-
sible consensus strategy does not exist usually since there are different opinions
for every issue. Thus, it is more meaningful to determine sub-optimal feasible
consensus strategies. In order to find a sub-optimal feasible consensus strategy,
the most important thing is to determine the attitudes of all agents to every
strategy. On the basis of Pawlak rough set, Sun et al. [7] described an agent’s
attitude in the conflict situation as follows:

Let f = {f+, f−} be the set valued mappings from U to P (V ), where

f+ : U → P (V ), f+(u) = {a ∈ V |a(u) = +}, ∀u ∈ U,
f− : U → P (V ), f−(u) = {a ∈ V |a(u) = −}, ∀u ∈ U.

The image of f+ represents the subset of issue universe V which satisfy agent
u. The image of f− represents the subset of issue universe V which are opposed
by agent u.

For any strategy Y ⊆ V , the lower and upper approximations are:

apr+
f
(Y ) = {u ∈ U |f+(u) ⊆ Y }, apr+f (Y ) = {u ∈ U |f+(u) ∩ Y �= ∅};

apr−
f

(Y ) = {u ∈ U |f−(u) ⊆ Y }, apr−
f (Y ) = {u ∈ U |f−(u) ∩ Y �= ∅}.

Then the agreement subset, disagreement subset, neutral subset for the strat-
egy Y are denoted as follows:

Agreement subset: R+
f (Y ) = apr+

f
(Y ) − apr−

f
(Y );

Disagreement subset: R−
f (Y ) = apr−

f
(Y ) − apr+

f
(Y );

Neutral subset: R0
f (Y ) = U − R+

f (Y ) ∪ R−
f (Y ).

Thus, a sub-optimal feasible consensus strategy Y can be found through
selecting the maximum cardinality of the agreement subset R+

f (Y ).
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Example 1. We consider the Middle East conflict in Table 1. Given strategy
Y = {a2, a3, a5} ⊆ V , and then apr+

f
(Y ) = {u6}, apr+f (Y ) = {u1, u6},

apr−
f

(Y ) = {u4, u6}, apr−
f (Y ) = {u2, u3, u4, u5, u6}. According to Sun et al.

[7], there is no agent agrees with the strategy Y , since R+
f (Y ) = ∅. Addition-

ally, the agents in R−
f (Y ) = {u4} oppose the strategy Y , and all the agents in

R0
f (Y ) = {u1, u2, u3, u5, u6} hold neutral attitude.

The following facts can be observed: (1) For agents u4 and u5, they agree
on strategy Y , but they are grouped into different coalitions. (2) In Table 1,
the issues in Y are all agreed by agent u1, but according to the above method,
agent u1 is considered neutral about strategy Y . Both of the two aspects are not
very suitable for assuring the agents’ attitude to a specific strategy in practice.
Moreover, more feasible strategy may be missed. Actually, the reason for these
confusions is the inconformity between the approximation in rough set based on
two universes and semantics of the three subsets of agents for a strategy. There-
fore, we need more efficient conflict analysis model to determine the structure
in conflict situation.

The theory of three-way decisions can be used to interpret the regions of
acceptance, rejection, and non-commitment in a ternary classification. This the-
ory is applicable to divide agent universe U into three subsets according to their
attitude to a strategy. Three kinds of evaluation-based three-way decisions are
proposed in [17], and then the corresponding three-way decision models are intro-
duced and studied. Among these three kinds of models, the first one as follows
is more consensus to the semantics of determining the three subsets in conflict
analysis.

Definition 1 [17]. Suppose U is a finite nonempty set and (La,	a), (Lr,	r)
are two posets. A pair of functions va : U → La and vr : U → Lr is called an
acceptance evaluation and a rejection evaluation, respectively. For u ∈ U , va(u)
and vr(u) are called the acceptance and rejection values of u, respectively.

In conflict situation (U, V ), the acceptance value va(u) and rejection value
vr(u) can be constructed by evaluating the extent to which agent u agrees with
or disagrees with strategy Y , respectively. What’s more, if the agent u1 accepts
strategy Y , va(u1) must be in a certain subset of La representing the acceptance
region of La. Similarly, va(u2) included in the rejection region of Lr means agent
u2 reject strategy Y to a large extent. Therefore, La and Lr should be defined.
These values are called designated values for acceptance and designated values
for rejection, respectively. Based on the two sets of designated values, one can
easily obtain three regions for three-way decisions.

Definition 2 [17]. Let ∅ �= L+
a ⊆ La be a subset of La called the designated

values for acceptance, and ∅ �= L−
r ⊆ Lr be a subset of Lr called the designated
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values for rejection. The positive, negative, and boundary regions of three-way
decisions induced by (va, vr) are defined by:

POS(L+
a ,L−

r )(va; vr) = {u ∈ U |va(u) ∈ L+
a ∧ vr(u) �∈ L−

r },

NEG(L+
a ,L−

r )(va; vr) = {u ∈ U |va(u) �∈ L+
a ∧ vr(u) ∈ L−

r },

BND(L+
a ,L−

r )(va; vr) = (POS(L+
a ,L−

r )(va, vr) ∪ NEG(L+
a ,L−

r )(va, vr))c

= {u ∈ U |(va(u) �∈ L+
a ∧ vr(u) �∈ L−

r ) ∨ (va(u) ∈ L+
a ∧ vr(u) ∈ L−

r )}.

From the above analysis, we know that there are two essential problems.
One is how to evaluate the extent to which agent u agrees and disagrees with
a certain strategy Y , and the other is how to define the designated values for
acceptance and rejection.

3 Conflict Analysis Model Based on Three-Way Decisions

This section mainly introduces an conflict analysis model on the basis of three-
way decisions, which is considered from two perspectives. Based on three-way
decisions, Sect. 3.1 shows how to obtain three subsets of agents subjecting to
each agent’s attitude to a specific strategy, which helps to determine the sub-
optimal feasible consensus strategy. Similarly, Sect. 3.2 proposes an approach to
get trisection of the issue set related to the unitary attitude of an agent group to
a specific strategy. The outcome helps to determine the scope of the core issues
causing conflict. Furthermore, compared with Sun’s conflict analysis model, the
superiorities of this model are showed as well.

3.1 Trisection of Agent Set Based on Each Agent’s Attitude
to a Specific Strategy

To trisect the agent set, we just have to tackle the problems in the last para-
graph of Sect. 2. That is how to evaluate the extent to which agent u agrees and
disagrees with strategy Y , and how to define the designated values for accep-
tance and rejection. Including degree can be adopted to estimate the extent to
which agent u accepts or opposes strategy Y . Then the designated values can
be determined through restricting the including degree.

Definition 3 [21]. Let (L,≤) be a partially ordered set. If for any X,Y ⊆ L,
there is a real number D(Y/X) with the following properties:

(1) 0 ≤ D(Y/X) ≤ 1
(2) X ⊆ Y implies D(Y/X) = 1
(3) X ⊆ Y ⊆ Z implies D(X/Z) ≤ D(X/Y )

then D is called an including degree on L.
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The including degree D(Y/X) represents the extent to which set Y contains
the set X. It is obvious that D(Y/X) = |X∩Y |

|X| is an including degree.

Definition 4. Let (U, V ) be a conflict situation. ([0, 1],≤) a totally ordered set.
Y ⊆ V , Y is a strategy. A pair of evaluation functions va and vr are defined as:

va : U × P (V ) → [0, 1], va(u, Y ) = D(f+(u)|Y ),

vr : U × P (V ) → [0, 1], vr(u, Y ) = D(f−(u)|Y ).

va is called agent acceptance evaluation function, and va(u, Y ) evaluates the
extent to which agent u accepts strategy Y ; vr is called agent rejection evaluation
function, and vr(u, Y ) evaluates the extent to which agent u rejects strategy Y ,
where, D(f+(u)|Y ) and D(f−(u)|Y ) are defined as

D(f+(u)|Y ) =
|f+(u) ∩ Y |

|Y | , D(f−(u)|Y ) =
|f−(u) ∩ Y |

|Y | .

Property 1. Let (U, V ) be a conflict situation. ∀u ∈ U , Y ⊆ V , we have va(u, Y )+
vr(u, Y ) ≤ 1.

Proof. It is obvious that f+(u)∩f−(u) = ∅. Then (f+(u)∩Y )∩(f−(u)∩Y ) = ∅,
so |f+(u) ∩ Y | + |f−(u) ∩ Y | ≤ |Y |. Therefore, |f+(u)∩Y |

|Y | + |f−(u)∩Y |
|Y | ≤ 1. That

is, va(u, Y ) + vr(u, Y ) ≤ 1.

Example 2. Consider the Middle East conflict presented in Table 1. For strategy
Y = {a2, a3, a5} ⊆ V , we obtain the following results:

Table 2. Evaluations for the Middle East conflict.

U u1 u2 u3 u4 u5 u6

va(ui, Y ) 1 0 0 0 0 2
3

vr(ui, Y ) 0 2
3

2
3

1 1 1
3

From Table 2, we know that the extent to which agent u6 accepts strategy Y
is 2

3 , and the extent to which agent u6 opposes strategy Y is 1
3 and so on.

Let α ≥ 0.5, β ≥ 0.5, and then (α, 1] represent the designated values for
acceptance, which are used to restrict the extent to which an agent accepts
strategy Y in the agreement subset. (β, 1] represent the designated values for
rejection, which are used to restrict the extent to which an agent rejects the
strategy Y in the disagreement subset. On the basis of two sets of designated
values, we can easily obtain three regions of agents based on their attitudes to
strategy Y .
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Definition 5. Let (U,A) be a conflict situation, (α, 1] the designated values
for acceptance, (β, 1] the designated values for rejection, Y ⊆ V a strategy,
va(u, Y ) = D(f+(u)|Y ) and vr(u, Y ) = D(f−(u)|Y ). Then, we denote:

ASα,β(Y ) = {u ∈ U |va(u, Y ) ∈ (α, 1] ∧ vr(u, Y ) �∈ (β, 1]},

DSα,β(Y ) = {u ∈ U |va(u, Y ) �∈ (α, 1] ∧ vr(u, Y ) ∈ (β, 1]},

NSα,β(Y ) = U − ASα,β(Y ) ∪ DSα,β(Y ).

We call ASα,β(Y ) the (α, β)−agreement subset of strategy Y , DSα,β(Y ) the
(α, β)−disagreement subset of strategy Y , and NSα,β(Y ) the (α, β)−neutral sub-
set of strategy Y .

Remark. It should be noted that when α ≥ 0.5 and β ≥ 0.5, we have va(u, Y ) ∈
(α, 1] ⇐⇒ vr(u, Y ) �∈ (β, 1], and va(u, Y ) �∈ (α, 1] ⇐⇒ vr(u, Y ) ∈ (β, 1]. It can
be proved easily through Property 1, va(u, Y ) + vr(u, Y ) ≤ 1. Therefore, the
definition of ASα,β(Y ) and DSα,β(Y ) can be simplified as

ASα(Y ) = {u ∈ U |va(u) ∈ (α, 1]},

DSβ(Y ) = {u ∈ U |vr(u) ∈ (β, 1]}.

Similarly, ASα(Y ) is named the α−agreement subset of strategy Y , and DSβ(Y )
is called the β−disagreement subset of strategy Y . Therefore, the agents in
ASα(Y ) agree with strategy Y to designated value α, the agents in DSβ(Y )
object to strategy Y to designated value β, and the agents in NSα,β(Y ) have
neutral attitude for strategy Y to designated values (α, β).

Proposition 1. Let (U,A) be a conflict situation, Y ⊆ V a strategy. α ≥ 0.5,
and β ≥ 0.5. The following relations hold: ASα(Y ) ∩ DSβ(Y ) = ∅, ASα(Y ) ∩
NSα,β(Y ) = ∅, and DSβ(Y ) ∩ NSα,β(Y ) = ∅.

Proof. For any u ∈ ASα(Y ), we have va(u, Y ) > α ≥ 0.5. Since va(u, Y ) +
vr(u, Y ) ≤ 1, then vr(u, Y ) ≤ 1 − va(u, Y ) < 1 − α ≤ 0.5, so vr(u, Y ) �> 0.5,
which means u �∈ DSβ(Y ). Thus, we obtain ASα(Y ) ∩ DSβ(Y ) = ∅. According
to the definition of neutral subset NSα,β(Y ), we have ASα(Y ) ∩ NSα,β(Y ) = ∅

and DSβ(Y )∩NSα,β(Y ) = ∅. Therefore, the three regions are pair-wise disjoint.

For simplicity, we denote I1 = ASα(Y ), I2 = DSβ(Y ), and I3 = NSα,β(Y ).

Proposition 2. Let (U,A) be a conflict situation, Y ⊆ V a strategy. ∀u1, u2 ∈
U , if f+(u1)∩Y = f+(u2)∩Y and f−(u1)∩Y = f−(u2)∩Y , then u1 ∈ It ⇐⇒
u2 ∈ It, t = {1, 2, 3}.
Proof. If f+(u1) ∩ Y = f+(u2) ∩ Y , and f−(u1) ∩ Y = f−(u2) ∩ Y , then
va(u1, Y ) = va(u2, Y ) and vr(u1, Y ) = vr(u2, Y ). Furthermore, we have that

u1 ∈ I1 ⇐⇒ va(u1, Y ) > α ⇐⇒ va(u2, Y ) > α ⇐⇒ u2 ∈ I1;

u1 ∈ I2 ⇐⇒ vr(u1, Y ) > β ⇐⇒ vr(u2, Y ) > β ⇐⇒ u2 ∈ I2;
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u1 ∈ I3 ⇐⇒ va(u1, Y ) < α&vr(u1, Y ) < β

⇐⇒ va(u2, Y ) < α&vr(u2, Y ) < β ⇐⇒ u2 ∈ I3.

The proposition is proved.

This proposition shows that if two agents of universe U have the same atti-
tude to strategy Y , they will be grouped together. That is to say, in the terms
of determining agreement subset, disagreement subset and neutral subset for
strategy Y , the model proposed in this paper improves the first inconformity in
Sun’s model, which is presented in Example 1.

Proposition 3. Let (U,A) be a conflict situation, Y ⊆ V a strategy. ∀u1, u2 ∈
U , if va(u1, Y ) ≥ va(u2, Y ), and u2 ∈ ASα(Y ), then we have u1 ∈ ASα(Y ); Sim-
ilarly, if vr(u1, Y ) ≥ vr(u2, Y ), and u2 ∈ DSβ(Y ), then we have u1 ∈ DSβ(Y ).

Proof. If va(u1, Y ) ≥ va(u2, Y ) and u2 ∈ ASα(Y ), then we have va(u1, Y ) > α,
which means u1 ∈ ASα(Y ). Similarly, If vr(u1, Y ) ≥ vr(u2, Y ) and u2 ∈ DSβ(Y ),
then we conclude vr(u1, Y ) > β, which means u1 ∈ DSβ(Y ).

From above we can know that if agent u agrees with all issues of strategy Y ,
then u would be grouped into the α−agreement subset. This conclusion is tenable
for any α ∈ [0.5, 1]. Similarly, the model proposed in this paper improves the
second inconformity in Sun’s model, which is presented in Example 1. Therefore,
compared with the outcomes of Sun’s conflict analysis model in Sect. 2, the
approach to determine the three regions of agent set proposed in this paper is
more appropriate.

Example 3 (continued from Example 2). Consider the Middle East conflict pre-
sented in Table 1. For strategy Y = {a2, a3, a5}, let α = 0.6, β = 0.6, and we
obtain the following results: AS0.6(Y ) = {u1, u6}, DS0.6(Y ) = {u2, u3, u4, u5}
and NS0.6,0.6(Y ) = ∅.

Therefore, the agents in AS0.6(Y ) = {u1, u6} agree with strategy Y to des-
ignated value 0.6, the agents in DS0.6(Y ) = {u2, u3, u4, u5} object to strategy
Y to designated value 0.6, and no agent has neutral attitude for strategy Y
to designated values (0.6,0.6). Furthermore, the agents u4 and u5 are grouped
together, besides, u1 is assigned to the 0.6-agreement subset because of its full
agreements with the issues in Y .

In this section, we proposed an effective approach to determine three regions
of agents for any strategy Y . The result can be used to resolve some problems,
such as finding the sub-optimal feasible consensus strategy by selecting the max-
imum cardinality of the α−agreement subset [7].

3.2 Trisection of Issue Set Based on the Whole Attitude of Agent
Group to Every Issue

We call X ⊆ U an agent group. This subsection defines two evaluation func-
tions to estimate the extent to which the issue a is accepted or opposed by
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the whole agent group X. Then three regions of issues: α−agreement strategy,
β−disagreement strategy and (α, β)−noncommittal strategy are determined as
well. Since the theories in this section are dual to that in Sect. 3.1. We omit the
proofs of theories in this section.

Let g = {g+, g−} be the set valued mappings from V to P (U), where

g+ : V → P (U), g+(a) = {u ∈ U |a(u) = +}, ∀a ∈ V,
g− : V → P (U), g−(a) = {u ∈ U |a(u) = −}, ∀a ∈ V.

Definition 6. Let (U,A) be a conflict situation, ([0, 1],≤) a totally ordered set,
X ⊆ U an agent group. A pair of evaluation functions wa and wr are defined
as:

wa : V × P (U) → [0, 1], wa(a,X) = D(g+(a)|X),

wr : V × P (U) → [0, 1], wr(a,X) = D(g−(a)|X).

wa is called issue acceptance evaluation function, and wa(a,X) evaluates the
extent to which agent group X accepts issue a; wr is called issue rejection evalu-
ation function, and wr(a,X) evaluates the extent to which agent group X rejects
issue a, where D(g+(a)|X) and D(g−(a)|X) are defined as

D(g+(a)|X) =
|g+(a) ∩ X|

|X| , D(g−(a)|X) =
|g−(a) ∩ X|

|X| .

Property 2. Let (U,A) be a conflict situation. ∀a ∈ V , X ⊆ U , we have
wa(a,X) + wr(a,X) ≤ 1.

The designated values for acceptance and rejection of issue set are identical
to that in Sect. 3.1 numerically. Therefore, the three regions of issues can be
determined similarly.

Definition 7. Let (U,A) be a conflict situation, (α, 1] the designated values for
acceptance, (β, 1] the designated values for rejection, X ⊆ U an agent group.
wa(a,X) = D(g+(a)|X) and wr(a,X) = D(g−(a)|X), then we denote:

ATα(X) = {a ∈ V |wa(a,X) ∈ (α, 1]},

DTβ(X) = {a ∈ V |wr(a,X) ∈ (β, 1]},

NTα,β(X) = U − ATα(X) ∪ DTβ(X).

We name ATα(X) the α−agreement strategy of agent group X, which rep-
resents the issues agreed by agent group X to designated value α; DTβ(X)
is called the β−disagreement strategy of agent group X, which represents the
issues disagreed by agent group X to designated value β; NTα,β(X) is called the
(α, β)−noncommittal strategy of agent group X, which represents the noncom-
mittal issues to designated values (α, β).

From Definition 7, the (α, β)−noncommittal strategy contains issues with
wa(a,X) ≤ α and wr(a,X) ≤ β. Thus, the attitude of the whole agent group X
to issue a would be not inclined to agree or disagree greatly. Consequently, and
the issues in NTα,β(X) could be essential points causing the conflict.
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Proposition 4. Let (U,A) be a conflict situation, X ⊆ U an agent group. α >
0.5, β > 0.5. The following relations hold: ATα(X) ∩ DTβ(X) = ∅, ATα(X) ∩
NTα,β(X) = ∅, DTβ(X) ∩ NTα,β(X) = ∅.

For simplicity, we denote F1 = ATα(X), F2 = DTβ(X), and F2 = NTα,β(X).

Proposition 5. Let (U,A) be a conflict situation, X ⊆ U an agent group.
∀a1, a2 ∈ V , if g+(a1) ∩ X = g+(a2) ∩ X and g−(a1) ∩ X = g−(a2) ∩ X,
then a1 ∈ Ft ⇐⇒ a2 ∈ Ft, t = {1, 2, 3}.

This proposition shows that if the agents in group X have the same attitude
to issues a1 and a2, then the two issues will be assigned to identical strategy.

Proposition 6. Let (U,A) be a conflict situation, X ⊆ U an agent group.
∀a1, a2 ∈ V , if wa(a1,X) ≥ wa(a2,X), and a2 ∈ ATα(X), then we have
a1 ∈ ATα(X); Similarly, if wr(a1,X) ≥ wr(a2,X), and a2 ∈ DTβ(X), then
we have a1 ∈ DTβ(X).

4 Conclusion

A new conflict analysis model based on three-way decisions is proposed in this
paper. This model analyzes the structure of conflict situation from two aspects.

On the one hand, we define a pair of evaluation functions, through including
degree, to estimate the extent to which agent u accepts or opposes a strategy
Y , and then trisect the agent set into three regions. Those ideas are all based
on the theory of three-way decisions. Subsequently, the better strategy can be
acquired.

On the other hand, another pair of evaluation functions are defined to esti-
mate the extent to which issue a is accepted or opposed by an agent group X,
and trisection of issue set is confirmed as well. Then the core conflict issues of
agent group would be contained in (α, β)−noncommittal strategy. Moreover, we
conclude that this model is more suitable to our cognizance than the existing
models.

Open problems remaining for future research include: the algorithm of finding
the sub-optimal feasible consensus strategy should be acquired; the determina-
tion of core conflict issues need to be studied explicitly further.
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Abstract. The rough approximation operations are induced to incom-
plete contexts, two binary relation from the object set to the attribute set
of an incomplete context are defined, by means of the rough approxima-
tion operators based on which, four pairs of rough approximation opera-
tors are constructed. The relationships and equivalence among them are
discussed in detail.
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1 Introduction

Rough set theory [1], proposed by Pawlak in 1982, is an effective mathematic
approach, which can be used to deal with vague and uncertain information,
therein unknown concepts are approximated by two known concepts called lower
and upper approximations respectively. In the classical rough sets, equivalence
relations are used to depict the known concepts. In order to generalize the rough
set theory, various approaches for concept description are introduced, for exam-
ple, relation-based rough sets [2], probabilistic rough sets [3], covering rough sets
[4], etc.

The traditional rough set theory is usually used for knowledge discovery
in complete information systems. Making decision with partial information is
ultimately inevitable [5], so it is very important that the rough set technique
are taken to deal with incomplete information systems. An incomplete informa-
tion systems means a system with unknown values, the unknown values have
two explanations [6,7]: all unknown values are “do not care” condition, or lost.
With incomplete information systems, some important results on rough set have
been obtained [8–10]. Recently, Du and Hu [11] investigate dominance-based
rough sets in incomplete ordered information systems. Liu et al. [12] introduce
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three-way decision analysis in incomplete information systems. Dai et al. [13]
examine the uncertainty measurements of rough approximations based on α-
weak similarity in incomplete interval-valued information systems.

Formal context is a primary notion in formal concept analysis. In this frame-
work, Wille [14] first establishes the formal concept analysis. Yao [15] and
Duntsch [16] introduce rough approximation operations in formal contexts, so
the object oriented concept lattices and the attribute oriented concept lattices
are defined, and Shao et al. [17] explore the attribute reduction of the two con-
cept lattices. Kent [18] and Pagliani [19] introduce the approaches of rough sets
into concept lattices, so that the concept approximations of formal concepts are
put forward. Li et al. [20] define four pairs of rough approximation operators in
formal contexts, and compare them. Being analogous to incomplete information
systems, incomplete contexts have unknown relation values for many objects
and attributes [21]. The unknown values in incomplete contexts are generally
considered as being lost, which exist or can not be determined on the current
condition.

Many results have been gained for concept analysis and its application in
incomplete contexts [22–25]. Li et al. [23] propose one kind of definitions of
formal concepts in incomplete contexts, and explore the rule extraction and the
attribute reduction. Li and Wang [24] construct approximate concepts based
on the theory of three-way decision in incomplete contexts, and present the
attribute reduction approaches. Yao [25] introduce interval sets in formal concept
analysis of incomplete contexts, so some existing studies on concept analysis are
interpreted and extended better. As well known, the theory of rough sets and
the formal concept analysis are closely related in formal contexts. However, most
studies focus on formal concept analysis in incomplete contexts, and there are
few studies on rough set theory. The objective of this paper is to introduce rough
set approaches for knowledge discovery in incomplete contexts, and our focus is
on the construction of rough set models with a novel approach, and the models
proposed are mostly related to tolerance relations.

The rest of this paper is organized as follows. We briefly review in the next
section some basic notions and knowledge related to the work. In Sect. 3 we define
two binary relations in an incomplete context, by means of the rough approxima-
tion operators based on the relations, construct some new rough approximation
operators, and investigate the properties of these operators. The paper is then
concluded with a brief summary.

2 Preliminaries

In this section, a lot of basic knowledge about rough approximations in formal
contexts are reviewed briefly.



Tolerance Relations and Rough Approximations 535

2.1 Rough Approximations Based on Binary Relations

Let U be a finite and nonempty set called the universe of discourse. The family
of all subsets of U will be denoted by P(X). The complement of a subset A in
U will be denoted by ∼ A, that is, ∼ A = {x ∈ U |x �∈ A}.

Let U and W be two finite and nonempty universes of discourse, and R a
binary relation from U to W , that is, R ⊆ U × W . The inverse relation of R,
denoted by R−1, is defined as R−1 = {(x, y) ∈ W ×U |(y, x) ∈ R}. For any x ∈ U
the successor neighborhood of x is R(x) = {y ∈ W |(x, y) ∈ R}. For any y ∈ W
the predecessor neighborhood of y is R−1(y) = {x ∈ U |(x, y) ∈ R}.

When W = U , the relation R is said to be reflexive if x ∈ R(x),∀x ∈ U ; R
is said to be symmetric if y ∈ R(x) ⇒ x ∈ R(y),∀x, y ∈ U . If R is reflexive and
symmetric, then R is said to be a tolerance relation on U .

Let R be a binary relation from U to W . The triple (U,W,R) is called a
generalized approximation space in [26]. For X ∈ P(W ), the generalized lower
and upper rough approximations of X with respect to (w.r.t.) (U,W,R), denoted
by R(X) and R(X) respectively, are defined by

R(X) = {x ∈ U |R(x) ⊆ X}, R(X) = {x ∈ U |R(x) ∩ X �= ∅}. (1)

The basic properties of the rough approximation operators, R and R, are
enumerated as follows: ∀X,Y ∈ F(W ),

(L1) R(X) =∼ (R(∼ X)), (U1) R(X) =∼ (R(∼ X));
(L2) R(W ) = U, (U2) R(∅) = ∅;
(L3) R(X ∩ Y ) = R(X) ∩ R(Y ), (U3) R(X ∪ Y ) = R(X) ∪ R(X);
(L4) X ⊆ Y ⇒ R(X) ⊆ R(Y ), (U4) X ⊆ Y ⇒ R(X) ⊆ R(Y ).

Properties (L1) and (U1) show that R and R are dual to each other. The
rough approximation operators based on a variety of binary relations have dif-
ferent properties, conversely some kinds of binary relations can be characterized
by corresponding rough approximation operators [26,27].

2.2 Rough Approximations Induced in Formal Contexts

Definition 1. A formal context is a triple (U,A, I), where U is a nonempty
and finite set of objects, A is a nonempty and finite set of attributes, and I is a
binary relation from U to A with (x, a) ∈ I indicating that the object x has the
attribute a and (x, a) �∈ I indicating the opposite.

A formal context (U,A, I) can be represented by a two-dimensional table
filled with, for example, 1 and 0 numbers, where I(x, a) = 1 indicates the
object x has the attribute a and I(x, a) = 0 indicates the opposite. For con-
venience, I(x, a) = 1 and I(x, a) = 0 can also denoted as a(x) = 1 and a(x) = 0,
respectively.
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Example 1. Table 1 shows a formal context T = (U,A, I), where

U = {x1, x2, x3, x4, x5, x6}, A = {a1, a2, a3, a4, a5, a6}.

In this table, for example, the object x4 has the properties a1, a3 and a6, and
does not have a2, a4 and a5.

Table 1. A formal context T = (U, A, I)

U a1 a2 a3 a4 a5 a6

x1 1 0 0 1 0 0

x2 0 1 0 1 1 0

x3 0 1 1 0 0 1

x4 1 0 1 0 0 1

x5 0 1 0 0 1 0

x6 1 0 0 1 0 1

A formal context (U,A, I) can be viewed as a generalized approximation
space, for B ⊆ A, the lower approximation I(B) and the upper approximation
I(B) are subsets of U . In [20], the four types of rough approximation opera-
tors are defined on (U,A, I), that is, (apri, apri), (aprii, aprii), (apriii, apriii),
and (apr, apr) from P(A) to P(U), It should be noted that for any B ⊆ A,
the approximation subsets, apri(B), apri(B), aprii(B), aprii(B), apriii(B),
apriii(B), apr(B), and apr(B), are included in the another universe U .

Considering the relevance to this work, aprii and aprii, re-denoted as SI and
SI respectively, are reviewed as follows:

A tolerance relation SI on U defined on (U,A, I) is

SI = {(x, y) ∈ U × U |I(x) ∩ I(y) �= ∅}.

For any X ⊆ U , SI(X) and SI(X) are represented as

SI(X) = {x ∈ U |SI(x) ⊆ X}, SI(X) = {x ∈ U |SI(x) ∩ X �= ∅}.

By generalized rough approximation operators SI(X) and SI(X) can be
expressed as

SI(X) = I(I−1(X)), SI(X) = I(I−1(X)), ∀X ⊆ U. (2)

Equation (2) shows that SI and SI are the compositions of the general-
ized lower and upper approximation operators respectively, and the internal and
external operators are respectively based on I and I−1.

The next proposition will be used in the following.
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Proposition 1. Let (U,R1) and (U,R2) be two approximation spaces. Then

(1) R2(X) ⊆ R1(X) or R1(X) ⊆ R2(X),∀X ⊆ U if and only if R1 ⊆ R2;
(2) ∀X ⊆ U , R1 ∪ R2(X) = R1(X) ∩ R2(X), R1 ∪ R2(X) = R1(X) ∪ R2(X).

Proof. (1) If R1 ⊆ R2, then ∀x ∈ U , R−1
1 (x) ⊆ R−1

2 (x). For any X ⊆ U we have

R1(X) =
⋃

x∈X

R1({x}) =
⋃

x∈X

R−1
1 (x) ⊆

⋃

x∈X

R−1
2 (x) =

⋃

x∈X

R2({x}) = R2(X).

From the duality it follows that R2(X) ⊆ R1(X),∀X ⊆ U.

Conversely, if R1(X) ⊆ R2(X),∀X ⊆ U , then R1({x}) ⊆ R2({x}),∀x ∈ U ,
thus R−1

1 (x) ⊆ R−1
2 (x),∀x ∈ U , which implies that R1 ⊆ R2.

(2) For any X ⊆ U , we have

R1 ∪ R2(X) = {x ∈ U |(R1 ∪ R2)(x) ⊆ X}
= {x ∈ U |R1(x) ∪ R2(x) ⊆ X}
= {x ∈ U |R1(x) ⊆ X} ∩ {x ∈ U |R2(x) ⊆ X}
= R1(X) ∩ R2(X).

By the duality we have R1 ∪ R2(X) = R1(X) ∪ R2(X),∀X ⊆ U .

3 Rough Sets in Incomplete Contexts

In this section, we investigate some binary relations induced from incomplete
contexts, and explore properties of the rough approximation operators based
on them.

3.1 Incomplete Contexts

Definition 2. An incomplete context is a quadruple (U,A, {1, ∗, 0}, I) where U
and A are sets of objects and attributes respectively, {1, ∗, 0} is the set of values,
I is a mapping from U × A to {1, ∗, 0} such that

I(x, a) = 1 or a(x) = 1 means the object x has the attribute a,
I(x, a) = 0 or a(x) = 0 means the object x does not have the attribute a,
I(x, a) = ∗ or a(x) = ∗ means it is unknown whether or not the object x has
the attribute a.

Example 2. Table 2provides an exemplary incomplete context (U,A, {1, ∗, 0}, I)
in which U = {x1, x2, x3, x4, x5, x6} and A = {a1, a2, a3, a4, a5, a6}. In this table,
for example, the two asterisks in line 3 means that it is unknown whether or not
the object x3 has the attribute a2 or a4.
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Table 2. An incomplete context (U, A, {1, ∗, 0}, I)

U a1 a2 a3 a4 a5 a6

x1 1 0 0 1 0 0

x2 0 1 0 ∗ 1 0

x3 0 ∗ 1 ∗ 0 1

x4 ∗ 0 1 0 0 1

x5 ∗ 1 0 0 1 0

x6 1 0 0 1 0 ∗

Let (U,A, {1, ∗, 0}, I) be an incomplete context. Four neighborhood operators
can be induced as follows: ∀x ∈ U,∀a ∈ A,

f(x) = {a ∈ A|a(x) = 1}, f∗(x) = {a ∈ A|a(x) = 1 or a(x) = ∗};

g(a) = {x ∈ U |a(x) = 1}, g∗(a) = {x ∈ U |a(x) = 1 or a(x) = ∗}.
Then f and f∗ correspond to two binary relation from U to A, meanwhile
g and g∗ correspond to two binary relation from A to U . It is obvious that
∀x ∈ U,∀a ∈ A, a ∈ f(x) and x ∈ g(a), and a ∈ f∗(x) and x ∈ g∗(a) are
equivalent, respectively. Furthermore, f(x) ⊆ f∗(x), g(a) ⊆ g∗(a).

Based on the above four neighborhood operators and Eq. (1), four pairs of
rough approximation operators can be constructed as follows: ∀X ⊆ U, ∀B ⊆ A,

f(B) = {x ∈ U |f(x) ⊆ B}, f(B) = {x ∈ U |f(x) ∩ B �= ∅};
f∗(B) = {x ∈ U |f∗(x) ⊆ B}, f∗(B) = {x ∈ U |f∗(x) ∩ B �= ∅};
g(X) = {a ∈ A|g(a) ⊆ X}, g(X) = {a ∈ A|g(a) ∩ X �= ∅};
g∗(X) = {a ∈ A|g∗(a) ⊆ X}, g∗(X) = {a ∈ A|g∗(a) ∩ X �= ∅}.

Formal contexts defined in Definition 1 are called complete contexts w.r.t. the
incomplete contexts defined in Definition 2. Complete contexts and incomplete
contexts are all called contexts.

A complete context (U,A, I ′) is called a completion of the incomplete context
(U,A, {1, ∗, 0}, I) if ∀x ∈ U,∀a ∈ A, I(x, a) �= ∗ implies I ′(x, a) = I(x, a).

An incomplete context (U,A, {1, ∗, 0}, I) is called regular [23] if it satisfies
the following conditions:

(1) ∀x ∈ U , ∃a, b ∈ A such that a(x) = 1, b(x) = 0,
(2) ∀a ∈ A, ∃x, y ∈ U such that a(x) = 1, a(y) = 0.

In this paper, we assume that all incomplete contexts are regular.

3.2 Tolerance Relations and Rough Approximations in Incomplete
Contexts

Let (U,A, {1, ∗, 0}, I) be an incomplete context. It can be seen that the operators
f , f , f∗, and f∗ are from P(A) to P(U), and g, g, g∗, and g∗ are all from P(U)



Tolerance Relations and Rough Approximations 539

to P(A). Imitating the right sides of Eq. (2) and using the compositions of the
generalized lower and upper approximation operators based on f , g, f∗, and g∗,
we can establish four pairs of operators as follows: ∀X ⊆ U ,

(I) I1(X) = f(g(X)), I1(X) = f(g(X));
(II) I2(X) = f(g∗(X)), I2(X) = f(g∗(X));
(III) I3(X) = f∗(g(X)), I3(X) = f∗(g(X));
(V) I5(X) = f∗(g∗(X)), I5(X) = f∗(g∗(X)).

Theorem 1. Let (U,A, {1, ∗, 0}, I) be an incomplete context, and

S1 = {(x, y) ∈ U × U |f(x) ∩ f(y) �= ∅},
S2 = {(x, y) ∈ U × U |f(x) ∩ f∗(y) �= ∅},
S3 = {(x, y) ∈ U × U |f∗(x) ∩ f(y) �= ∅},
S5 = {(x, y) ∈ U × U |f∗(x) ∩ f∗(y) �= ∅},

then ∀X ⊆ U,

I1(X) = S1(X), I1(X) = S1(X),

I2(X) = S2(X), I2(X) = S2(X),

I3(X) = S3(X), I3(X) = S3(X),

I5(X) = S5(X), I5(X) = S5(X).

Proof. Since the proofs are similar, as an example, we only give the proof for S1

as follows.
For any X ⊆ U , by (U3) it can be proved easily that I1(X) =

⋃
x∈X I1({x})

and S1(X) =
⋃

x∈X S1({x}). For any x ∈ U , we have

I1({x}) = {y ∈ U |f(y) ∩ g({x}) �= ∅}
= {y ∈ U |∃a ∈ A(a ∈ f(y), a ∈ g({x}))}
= {y ∈ U |∃a ∈ A(a ∈ f(y), x ∈ g(a))}
= {y ∈ U |∃a ∈ A(a ∈ f(y), a ∈ f(x))}
= {y ∈ U |(y, x) ∈ S1}
= S−1

1 (x)

= S1({x}).

Hence I1(X) = S1(X),∀X ⊆ U , by the duality we get I1(X) = S1(X).

Theorem 1 indicates that the four pairs of operator, (I), (II), (III) and (V),
are all rough approximation operators based on binary relation on U . It can
be verified that S2 and S3 are inverse to each other, S1 and S5 are two toler-
ance relations on U . In fact, S1 and S5 can be induced from two completions
of (U,A, {1, ∗, 0}, I). Let (U,A, I0) be the completion of (U,A, {1, ∗, 0}, I) by
replacing the relation values ∗ in (U,A, {1, ∗, 0}, I) with 0, and (U,A, I1) the
completion of (U,A, {1, ∗, 0}, I) by substituting 1 for ∗ in (U,A, {1, ∗, 0}, I), then
S1 = SI0 and S5 = SI1 . However, S2 and S3 may be not tolerance relations.
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Example 3. For the incomplete context in Example 2, the successor neighbor-
hoods of all elements of U for the binary relations S2 and S3 are listed as follows:

S2(x1) = U, S2(x2) = {x2, x3, x5}, S2(x3) = {x3, x4, x6},
S2(x4) = {x3, x4, x6}, S2(x5) = {x2, x3, x5}, S2(x6) = U ;
S3(x1) = {x1, x6}, S3(x2) = {x1, x2, x5, x6}, S3(x3) = U,
S3(x4) = {x1, x3, x4, x6}, S3(x5) = {x1, x2, x5, x6}, S3(x6) = {x1, x3, x4, x6}.

Then x2 ∈ S2(x1) and x1 ∈ S3(x2), but x1 �∈ S2(x2) and x2 �∈ S3(x1). Hence, S2

and S3 are not tolerance relations.

3.3 Comparison Among Rough Approximations

Let (U,A, {1, ∗, 0}, I) be an incomplete context. For the relations S1, S2, S3 and
S5 defined in Theorem 1, we have that

S1 ⊆ S2 ∩ S3 ⊆ S2(or S3) ⊆ S2 ∪ S3 ⊆ S5. (3)

From S2 = S−1
3 , or equivalently S3 = S−1

2 , we know that S2 ∩S3 and S2 ∪S3

are two tolerance relations. But S1 and S2∩S3 , S2∩S3 and S2∪S3, and S2∪S3

and S5 may not be equal, respectively.

Example 4. For the incomplete context shown in Table 2, referring to Example
3 we can get the successor neighborhoods of all elements of U for S2 ∩ S3 and
S2 ∪ S3, and list them as follows:

(S2 ∩ S3)(x1) = {x1, x6}, (S2 ∩ S3)(x2) = {x2, x5},
(S2 ∩ S3)(x3) = {x3, x4, x6}, (S2 ∩ S3)(x4) = {x3, x4, x6},
(S2 ∩ S3)(x5) = {x2, x5}, (S2 ∩ S3)(x6) = {x1, x3, x4, x6};
(S2 ∪ S3)(x1) = U, (S2 ∪ S3)(x2) = {x1, x2, x3, x5, x6},
(S2 ∪ S3)(x3) = U, (S2 ∪ S3)(x4) = {x1, x3, x4, x6},
(S2 ∪ S3)(x5) = {x1, x2, x3, x5, x6}, (S2 ∪ S3)(x6) = U.

It can be seen that S2 ∩S3 des not equal S2 ∪S3. In order to compare S2 ∩S3

and S1, and S2 ∪ S3 and S5, the successor neighborhoods of all elements of U
for S1 and S5 are wrote as follows:

S1(x1) = {x1, x6}, S1(x2) = {x2, x5}, S1(x3) = {x3, x4},
S1(x4) = {x3, x4}, S1(x5) = {x2, x5}, S1(x6) = {x1, x6};
S5(x1) = U, S5(x2) = {x1, x2, x3, x5, x6}, S5(x3) = U,
S5(x4) = {x1, x3, x4, x5, x6}, S5(x5) = U, S5(x6) = U.

From (S2 ∩ S3)(x3) = {x3, x4, x6} and S1(x3) = {x3, x4}, and (S2 ∪ S3)(x5) =
{x1, x2, x3, x5, x6} and S5(x5) = U , we know that S2 ∩S3 is not equal to S1, and
S2 ∪ S3 is not equal to S5.

Denote S2 ∪ S3 as S4, and S4 and S4 as I4 and I4 respectively, we have

Proposition 2. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then ∀X ⊆ U ,

I4(X) = I2(X) ∩ I3(X), I4(X) = I2(X) ∪ I3(X).
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Proof. It directly follows from Proposition 1 and S4 = S2 ∪ S3.

With the rough approximation operators w.r.t Si, i = 1, 2, 3, 4, 5, we have

Theorem 2. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then ∀X ⊆ U ,

I5(X) ⊆ I4(X) ⊆ I2(X)(or I3(X)) ⊆ I1(X);

I1(X) ⊆ I2(X)(or I3(X)) ⊆ I4(X) ⊆ I5(X).

Proof. It directly follows from Proposition 1 and Inequation (3).

Example 5. With the incomplete context shown in Table 2, if we take X =
{x1, x2, x3, x5, x6}, then I5(X) = {x2}, I4(X) = {x2, x5}, I3(X) = {x1, x2, x5},
I2(X) = {x2, x5}, I1(X) = {x1, x2, x5, x6}. Thus

I5(X) ⊂ I4(X) = I2(X) ⊂ I3(X) ⊂ I1(X).

Choosing Y = {x2, x5}, we have I1(Y ) = {x2, x5}, I2(Y ) = {x1, x2, x5, x6},
I3(Y ) = {x2, , x3, x5}, I4(Y ) = {x1, x2, x3, x5, x6}, I5(Y ) = U . Hence

I1(Y ) ⊂ I2(Y ) ⊂ I4(Y ) ⊂ I5(Y ),

I1(Y ) ⊂ I3(Y ) ⊂ I4(Y ) ⊂ I5(Y ).

But I2(Y ) �⊆ I3(Y ) and I3(Y ) �⊆ I2(Y ).
In the following, we examine the equivalence among the five pairs of rough

approximation operators.
Firstly, with the equivalence between I1 and I2, or I3, or I1 and I2, or I3,

The following conclusions hold.

Theorem 3. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then the following
statements are equivalent:

(1) S1 = S2,
(2) S1 = S3,
(3) (c1) ∀x, y ∈ U , if f(x) ∩ f(y) = ∅ then f(x) ∩ f∗(y) = ∅.

Proof. (1) ⇒ (2) If S1 = S2, then S3 = S−1
2 = S−1

1 , since S1 is symmetric, so
S1 = S3.

(2) ⇒ (1) It can be proved similarly.
(1) ⇒ (3) Assume that S1 = S2, then S2 ⊆ S1, that is, ∀x, y ∈ U , if (x, y) ∈ S2

then (x, y) ∈ S1. In terms of the definition S1 and S2, we have that ∀x, y ∈ U , if
f(x)∩f∗(y) �= ∅ then f(x)∩f(y) �= ∅. Equivalently, ∀x, y ∈ U , if f(x)∩f(y) = ∅
then f(x) ∩ f∗(y) = ∅, that is, the condition (c) holds.

(3) ⇒ (1) It can be proved similarly.

From Theorem 3 it follows immediately that S1 = S4 is equivalent to the
condition (c1), and the following corollary hold.
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Corollary 1. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then the follow-
ing statements are equivalent:

(1) I1(X) = I2(X), or I1(X) = I2(X), ∀X ⊆ U ,
(2) I1(X) = I3(X), or I1(X) = I3(X), ∀X ⊆ U ,
(3) the condition (c1) holds.

Secondly, the following conclusions show the equivalence between I4 and I2,
or I3, or I4 and I2, or I3.

Theorem 4. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then the following
statements are equivalent:

(1) S2 = S4,
(2) S3 = S4,
(3) (c2) ∀x, y ∈ U , if f(x) ∩ f∗(y) = ∅ then f∗(x) ∩ f(y) = ∅.

Proof. (1) ⇒ (2) If S2 = S4, then by S4 = S2 ∪ S3 we have S3 ⊆ S2. By the
definitions of S2 and S3, we have that ∀x, y ∈ U , if f∗(x) ∩ f(y) �= ∅ then
f(x) ∩ f∗(y) �= ∅. That is to say, ∀x, y ∈ U , if (x, y) ∈ S3 then (y, x) ∈ S3. Thus,
S3 is symmetric, of course S2 is symmetric, so S2 = S3. Clearly S3 = S4.

(2) ⇒ (1) Similarly it can be proved.
(1) ⇒ (3) If S2 = S4, according to the above proof we have that ∀x, y ∈ U , if

f∗(x)∩f(y) �= ∅ then f(x)∩f∗(y) �= ∅. Equivalently, ∀x, y ∈ U , if f(x)∩f∗(y) = ∅
then f∗(x) ∩ f(y) = ∅, that is, the condition (c2) holds.

(3) ⇒ (1) Similarly it can be proved.

From Theorem 4 we can see that S2 or S3 is symmetric if and only if the
condition (c2) holds, and the following corollary follows.

Corollary 2. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then the follow-
ing statements are equivalent:

(1) I2(X) = I4(X), or I2(X) = I4(X), ∀X ⊆ U ,
(2) I3(X) = I4(X), or I3(X) = I4(X), ∀X ⊆ U ,
(3) the condition (c2) holds.

For the conditions (c1) and (c2) we have the following conclusion.

Proposition 3. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then the con-
dition (c1) implies the condition (c2).

Furthermore, the below conclusions depict the equivalence between I4 and
I5, or I4 and I5.

Theorem 5. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then S4 = S5 if
and only if (c3) ∀x, y ∈ U , f∗(x) ∩ f(y) = ∅ and f(x) ∩ f∗(y) = ∅ implies
f∗(x) ∩ f∗(y) = ∅.
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Proof. If S4 = S5, that is, S4 ⊇ S5, then by the definitions of S4 and S5 we have
that ∀x, y ∈ U , if f∗(x) ∩ f∗(y) �= ∅ then f∗(x) ∩ f(y) �= ∅ or f(x) ∩ f∗(y) �= ∅.
Equivalently, the condition (c3) holds.

Conversely, if the condition (c3) holds, then it can be proved similarly that
S4 = S5.

Similarly the next corollary can be gotten.

Corollary 3. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then I4(X) =
I5(X), or I4(X) = I5(X), ∀X ⊆ U if and only if the condition (c3) holds.

With respect to the equivalence of the five pairs of rough approximation
operators, the next conclusions can be proved similarly.

Theorem 6. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then S1 = S5 if
and only if (c4) ∀x, y ∈ U , f(x) ∩ f(y) = ∅ implies f∗(x) ∩ f∗(y) = ∅.

Corollary 4. Let (U,A, {1, ∗, 0}, I) be an incomplete context. Then I1(X) =
I5(X), or I1(X) = I5(X), ∀X ⊆ U , if and only if the condition (c4) holds.

4 Summaries

Much attention has been paid on formal concept analysis in incomplete con-
texts, however little study on data analysis in incomplete contexts by rough set
approaches has been made, thus it is significant to find suitable way to exploit
the knowledge hide in incomplete contexts. In this paper, two binary relations
in an incomplete context are induced, by the lower and upper rough approx-
imation operators based on the relations, four pairs of rough approximation
operators are constructed via compound operation. The derived rough approxi-
mation operators are all relation-based rough approximation operators, two pairs
of them are based on tolerance relations, and the other two are based on reflex-
ive relations. Furthermore, the comparison among the operators are made, so
an ordered relation among them are gained, and the equivalence among them is
also characterized by different ways.

It is well known that attribute reduction is a key issue in rough set theory,
as for the rough approximation operators proposed in the paper, we will study
attribute reduction of incomplete contexts in the future.
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Abstract. In this work we have proposed a new technique of granula-
tion in the family of methods inspired by Polkowski standard granulation
algorithm. The new method is called epsilon homogenous granulation.
The idea is to create the epsilon granules around the training objects
lowering the r-indiscernibility ratio until the group of objects is homoge-
nous in the sense of their belongingness to decision class of central object.
We use epsilon granules, which means that during granulation process
of numerical data we consider indiscernibility ratio of descriptors. The
main advantage of this method in addition to reduction in the num-
ber of training objects is that there is no need to estimate the optimal
granulation radii. The process of granulation is run only once, and the
radii for particular objects are formed in automatic way - dependent on
indiscernibility ratio of data and their homogeneity in decision concepts.
Next step is to cover the original decision system with formed granules
and get the final granular decision system by ε-majority voting method.
We have performed preliminary experiments with use of multiple cross
validation methods. We have used selected data sets from University of
California, Irvine machine learning repository for our research. To verify
the quality of approximation we used k-NN classifier designed for our
granulation method. The method seems to be comparable with the ones
of previous algorithms, with satisfying effectiveness in classification and
significant reduction in number of training data.

Keywords: Epsilon homogenous granulation · Rough sets
Decision systems · Classification

1 Introduction

Data approximation methods play a crucial role in big data analysis. One of the
most important paradigm, in which researchers consider the problem of data
approximation, is granular rough computing. In the granular rough computing
we deal with granules in terms of rough sets theory [4]. The term ‘granule’ was
initially used by Zadeh [27] to define the group of objects put together with
respect to a similarity relation.

c© Springer Nature Switzerland AG 2018
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One of the approximation techniques family, in the frame of rough set theory,
was proposed by Polkowski in [10,11]; it was a brilliant, simple idea of data
approximation using rough inclusions. The main idea was to create granules of
r-indiscernible objects and to cover the original training data using a selected
strategy, where finally the granular reflections of granules are formed by majority
voting. This process was named as standard granulation.

This idea was the source of many new techniques and their applications
([1–3], Polkowski [9–14], and Polkowski and Artiemjew [17–24]. Recent years
showed use of such granulation among other applications of data approximation
process, classification and missing values absorption - see [16].

In this family of methods, were developed new techniques such as concept-
dependent and layered granulation variant, also the variants with descriptors
indiscernibility ratio based on weak rough inclusions. The methods were exten-
sively checked in experiments and turned out to be effective in data reduction
with maintenance of internal knowledge in terms of classification effectiveness.

In this particular work we have proposed a new technique of data granulation
called epsilon homogenous granulation. Detailed description is to be found in the
next sections.

The motivation to conduct this research was to consider the idea in which
we are lowering the r-indiscernibility ratio during granulation until the granule
is homogenous in the sense of their decision class.

The new method turned out to be different from previously proposed tech-
niques - where the r-indiscernibility ratio for objects is set in automatic way.
The optimal radius estimation is not needed.

The approximation level is up to 50% of the original training size - and
the effectiveness in terms of classification suggests that internal knowledge, in
comparison with original training set, is preserved.

The rest of the paper has the following content. In Sect. 1 we introduce the
theoretical introduction to granular rough computing. In Sect. 2 we detail the
description of our new granulation method. In Sect. 3 we present the classifier
used in experimental part. In Sect. 4 we show the results of the experiments, and
we conclude the paper in Sect. 5.

The granulation process consists of three basic steps, the granules are formed
around the training objects, the covering of universe of training objects is chosen,
and finally granular reflection from covering granules is obtained by majority vot-
ing procedure. We begin with the basic notions of rough inclusions to introduce
the first step.

1.1 Theoretical Background - Granular Rough Inclusions

The models for rough mereology which give us methods by which the rough
inclusions are defined are presented in Polkowski [6–10]; a detailed discussion
may be found in Polkowski [15].

For a rough inclusion μ on the universe U of a decision system D =
(U,A, d). We introduce the parameter rgran, the granulation radius with val-
ues 0, 1

|A| ,
2

|A| , ..., 1. For each object u ∈ U , and r = rgran, the standard granule
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g(u, r, μ), of radius r about u, is defined as

g(u, r, μ) is {v ∈ U : μ(v, u, r)}. (1)

The standard rough inclusion is defined as

μ(v, u, r) ⇔ |Ind(u, v)|
|A| ≥ r (2)

where

IND(u, v) = {a ∈ A : a(u) = a(v)}, (3)

It follows that this rough inclusion extends the indiscernibility relation to a
degree of r.

1.2 ε–modification of the Standard Rough Inclusion

Given a parameter ε valued in the unit interval [0, 1], we define the set

Indε(u, v) = {a ∈ A : dist(a(u), a(v)) ≤ ε}, (4)

and, we set

με(v, u, r) ⇔ |Indε(u, v)|
|A| ≥ r (5)

The rough inclusion extends the indiscernibility relation to a degree of r.

1.3 Covering of Decision System

In this step the universe of training objects should be covered by computed
granules using a selected strategy. One of the most effective methods among the
studied ones (see [24]) is simple random choice and thus this method is selected
for our experiments. In the next section there is a description of the last step of
the granulation process.

1.4 Granular Reflections

Once the granular covering is selected, the idea is to represent granules by single
objects. The strategy for obtaining it can be the majority voting MV , so for
each granule g ∈ COV (U, μ, r), the final representation is formed as follows

{MV ({a(u) : u ∈ g}) : a ∈ A ∪ {d}} (6)

where for numerical data we treat the descriptors as indiscernible in case
|ai(u)−aj(u)|
maxa−mina

≤ ε, i, j are the numbers of objects in granule.
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The granular reflection of the decision system D = (U,A, d), (where U is
the universe of objects, A the set of conditional attributes and d is decision
attribute), (COV (U, μ, r)) is formed from granules.

v ∈ gcd
r (u) if and only if μ(v, u, r) and (d(u) = d(v)) (7)

for a given rough (weak) inclusion μ.

In the next section we introduce our new method of granulation.

2 Epsilon Homogenous Granulation

The method is defined in the following way,

gε,homogenous
ru

= {v ∈ U : |gε−cd
ru

| − |gε
ru

| == 0, for minimal ru fulfills the equation}

where

gε,cd
ru

(u) = {v ∈ U :
INDε(u, v)

|A| ≤ ru AND d(u) == d(v)}

and

gε
ru

(u) = {v ∈ U : INDε(u,v)
|A| ≤ ru}

ru = { 0
|A| ,

1
|A| , ...,

|A|
|A|}

INDε(u, v) = {a ∈ A : |a(u)−a(v)|
maxa−mina

≤ ε}

where maxa, mina are the maximal and minimal attribute values for a ∈ A in
the original data set (Table 1).

2.1 Metrics for Granulation and Classification

The Hamming metric - for symbolic data is defined as

dH(u, v) = |{a ∈ A : a(u) �= a(v)}|. (8)

ε-normalized Hamming metric is a modification for numerical, for given ε,
is defined as

dH,ε(u, v) = |{a ∈ A :
|a(u) − a(v)|
maxa − mina

> ε}|. (9)
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Fig. 1. Exemplary toy demonstration for objects represented as pairs of attributes.
We have two decision concepts circles and rectangles. Epsilon homogenous granules
can be gε

0.5(ob1) = {ob1, ob5}, gε
1(ob2) = {ob2}, gε

0.5(ob3) = {ob3}, gε
1(ob4) = {ob4},

gε
0.5(ob1) = {ob5, ob1}. The set of possible radii is { 0

2
, 1
2
, 2
2
}. The descriptors can be

shifted in the range determined by ε and still were treated as indiscernible.
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Table 1. Training data system (Utrn, A, d), (a sample from australian credit data set),
for varepsilon = 0.05

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 d

u1 1 20.17 8.17 2 6 4 1.96 1 1 14 0 2 60 159 1

u2 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1

u3 1 58.58 2.71 2 8 4 2.415 0 0 0 1 2 320 1 0

u4 1 29.58 4.5 2 9 4 7.5 1 1 2 1 2 330 1 1

u5 0 19.17 0.58 1 6 4 0.585 1 0 0 1 2 160 1 0

u6 1 23.08 2.5 2 8 4 1.085 1 1 11 1 2 60 2185 1

u7 0 21.67 11.5 1 5 3 0 1 1 11 1 2 00 1 1

u8 1 27.83 1 1 2 8 3 0 0 0 0 2 176 538 0

u9 1 41.17 1.33 2 2 4 0.165 0 0 0 0 2 168 1 0

u10 1 41.58 1.75 2 4 4 0.21 1 0 0 0 2 160 1 0

u11 1 22.5 0.12 1 4 4 0.125 0 0 0 0 2 200 71 0

u12 1 33.17 3.04 1 8 8 2.04 1 1 1 1 2 180 18028 1

u13 1.234 22.08 11.46 2 4 4 1.585 0 0 0 1 2 100 1213 0

u14 0 58.67 4.46 2 11 8 3.04 1 1 6 0 2 43 561 1

u15 1 33.5 1.75 2 14 8 4.5 1 1 4 1 2 253 858 1

u16 0 18.92 9 2 6 4 0.75 1 1 2 0 2 88 592 1

u17 1 20 1.25 1 4 4 0.125 0 0 0 0 2 140 5 0

u18 1 19.5 9.58 2 6 4 0.79 0 0 0 0 2 80 351 0

u19 0 22.67 3.8 2 8 4 0.165 0 0 0 0 2 160 1 0

u20 1 17.42 6.5 2 3 4 0.125 0 0 0 0 2 60 101 0

u21 1 41.42 5 2 11 8 5 1 1 6 1 2 470 1 1

u22 1 20.67 1.25 1 8 8 1.375 1 1 3 1 2 140 211 0

u23 1 48.08 6.04 2 4 4 0.04 0 0 0 0 2 0 2691 1

u24 0 28.17 0.58 2 6 4 0.04 0 0 0 0 2 260 1005 0

2.2 Toy Example of Epsilon Homogenous Granulation

Considering training decision system

Epsilon Homogenous granules for all training objects:

g0.571429(u1) = (u1),
g0.5(u2) = (u2, u4, u15, u21),
g0.571429(u3) = (u3, u9, u19, u20),
g0.5(u4) = (u1, u2, u4, u6, u21),
g0.5(u5) = (u5, u10, u19, u24),
g0.5(u6) = (u1, u4, u6),
g0.5(u7) = (u7),
g0.5(u8) = (u8, u9, u11, u17),
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g0.642857(u9) = (u9, u10, u11, u17, u19, u20),
g0.642857(u10) = (u9, u10, u19),
g0.642857(u11) = (u9, u11, u17, u19, u20),
g0.642857(u12) = (u12),
g0.571429(u13) = (u13),
g0.428571(u14) = (u2, u14, u16, u21),
g0.5(u15) = (u2, u12, u15, u21),
g0.5(u16) = (u1, u14, u16),
g0.642857(u17) = (u9, u11, u17, u20),
g0.642857(u18) = (u18),
g0.571429(u19) = (u3, u9, u10, u11, u17, u19, u20, u24),
g0.642857(u20) = (u9, u11, u17, u19, u20),
g0.5(u21) = (u2, u4, u14, u15, u21),
g0.642857(u22) = (u22),
g0.642857(u23) = (u23),
g0.642857(u24) = (u24),

Granules covering training system by random choice:

Covering granules: g0.5(u2) = (u2, u4, u15, u21),
g0.571429(u3) = (u3, u9, u19, u20),
g0.5(u5) = (u5, u10, u19, u24),
g0.5(u6) = (u1, u4, u6),
g0.5(u7) = (u7),
g0.5(u8) = (u8, u9, u11, u17),
g0.642857(u12) = (u12),
g0.571429(u13) = (u13),
g0.5(u16) = (u1, u14, u16),
g0.642857(u18) = (u18),
g0.642857(u20) = (u9, u11, u17, u19, u20),
g0.5(u21) = (u2, u4, u14, u15, u21),
g0.642857(u22) = (u22),
g0.642857(u23) = (u23),

Granular decision system from above granules is as follows (Table 2):
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Table 2. Granular decision system formed from Covering granules

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 d

g0.5(u2) 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1

g0.571429(u3) 1 58.58 2.71 2 8 4 0.165 0 0 0 0 2 320 1 0

g0.5(u5) 0 19.17 0.58 2 6 4 0.21 1 0 0 0 2 160 1 0

g0.5(u6) 1 20.17 8.17 2 6 4 1.96 1 1 14 1 2 60 159 1

g0.5(u7) 0 21.67 11.5 1 5 3 0 1 1 11 1 2 0 1 1

g0.5(u8) 1 27.83 1.33 1 2 4 0.165 0 0 0 0 2 176 1 0

g0.642857(u12) 1 33.17 3.04 1 8 8 2.04 1 1 1 1 2 180 18028 1

g0.571429(u13) 1.234 22.08 11.46 2 4 4 1.585 0 0 0 1 2 100 1213 0

g0.5(u16) 0 20.17 8.17 2 6 4 1.96 1 1 14 0 2 60 561 1

g0.642857(u18) 1 19.5 9.58 2 6 4 0.79 0 0 0 0 2 80 351 0

g0.642857(u20) 1 22.5 1.33 2 4 4 0.165 0 0 0 0 2 168 1 0

g0.5(u21) 1 34.92 5 2 14 8 7.5 1 1 6 1 2 0 1001 1

g0.642857(u22) 1 20.67 1.25 1 8 8 1.375 1 1 3 1 2 140 211 0

g0.642857(u23) 1 48.08 6.04 2 4 4 0.04 0 0 0 0 2 0 2691 1

In the Fig. 1 we have added a simple visualization of granulation process.

3 k-NN Method for Evaluation of Epsilon Homogenous
Granulation

The k-NN classifier use modified epsilon Hamming metric, where the descriptors
are treated as indiscernible in case |a(u)−a(v)|

maxa−mina
≤ ε. The similar form of this

classification was proposed in [24].
Procedure

Step 1. Granulated training data set (Gtrn
rgran

, A, d) and the test decision set
(Utst, A, d) have been chosen, where A is a set of conditional attributes,
d the decision attribute, and, rgran a granulation radius.

Step 2. Classification of test objects by means of granules of training objects is
performed as follows.

For all conditional attributes a ∈ A, training objects v ∈ Gtrn, and test
objects u ∈ Utst, we compute weights w(u, v) based on the ε-normalized Ham-
ming metric.

In the voting procedure of the kNN classifier, we use optimal k estimated by
CV5 (Cross Validation with 5 folds citeboosting), details of the procedure are
highlighted in next section.

If the cardinality of the smallest training decision class is less than k, we
apply the value for k = |the smallest training decision class|.



554 K. Ropiak and P. Artiemjew

The test object u is classified by means of weights computed for all training
objects v. Weights are sorted in increasing order as,

wc1
1 (u, vc1

1 ) ≤ wc1
2 (u, vc1

2 ) ≤ . . . ≤ wc1
|C1|(u, vc1

|C1|);
wc2

1 (u, vc2
1 ) ≤ wc2

2 (u, vc2
2 ) ≤ . . . ≤ wc2

|C2|(u, vc2
|C2|);

. . .
wcm

1 (u, vcm
1 ) ≤ wcm

2 (u, vcm
2 ) ≤ . . . ≤ wcm

|Cm|(u, vcm

|Cm|),

where C1, C2, ..., Cm are all decision classes in the training set.
Based on computed and sorted weights, training decision classes vote by

means of the following parameter, where c runs over decision classes in the
training set,

Concept weightc(u) =
k∑

i=1

wc
i (u, vc

i ). (10)

Finally, the test object u is classified into the class c with a minimal value of
Concept weightc(u).

After all test objects u are classified, the quality parameter of accuracy, acc
is computed, according to the formula

acc =
number of correctly classified objects

number of classified objects
.

3.1 Parameter Estimation in kNN Classifier

The parameter for experiments were estimated in [24]. The optimal k is presented
in Table 3.

Table 3. Estimated parameters for kNN based on 5 × CV5

Name Optimal k

Australian-credit 5

German-credit 18

Heartdisease 19

Hepatitis 3

4 Experimental Session

To verify effectiveness and to obtain first sight on behaviour of epsilon homoge-
nous granulation we have performed a series of experiments with data from
UCI Repository [26] - see Table 4. We have implemented the tests in C++.
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Table 4. Data sets description

Name Attr type Attr no. Obj no. Class no.

Australian-credit categorical, integer, real 15 690 2

German-credit categorical, integer 21 1000 2

Heartdisease categorical, real 14 270 2

Hepatitis categorical, integer, real 20 155 2

Table 5. The result for homogenous granulation (HG) and for epsilon homogenous
granulation (ε − HGS) - 5 times CV5 method; HG acc = average accuracy for HG,
ε − HG acc average accuracy for ε − HGS, HGS size = HG decision system size,
ε − HGS size = ε − HGS decision system size, TRN size = training set size,
HGT RN red = reduction in object number in training set for HG, ε − HGS size =
reduction in object number in training set for ε − HGS, HG r range = spectrum of
radii for HG, ε − HG r range = spectrum of radii for ε − HGS

Results Australian-credit German-credit Heartdisease Hepatitis

HG acc 0.835 0.725 0.833 0.88

ε − HG acc 0.842 0.725 0.831 0.87

HGS size 286.52 513.3 120.5 46.16

ε − HGS size 274.52 503 109.4 46.2

TRN size 552 800 216 124

HGT RN red 48.1% 35.8% 44.2% 62.8%

εHGT RN red 50.3% 37.1% 49.4% 62.7%

HG r range ru ≥ 0.5 ru ≥ 0.6 ru ≥ 0.461 ru ≥ 0.579

ε − HG r range ru ≥ 0.571 ru ≥ 0.65 ru ≥ 0.615 ru ≥ 0.579

The model we used is multiple cross validation 5. The main classifier used to
verify the protection of internal knowledge in the process of granulation was
k-NN with modified epsilon hamming metric. The optimal values of k that were
used in this research where the ones identified in [24] and presented in Table 3.
Seeing the results for considered data in [24] we used ε = 0.05 in granulation
and classification.

The result of experiments is presented in Table 5. The approximation quality
seems to be comparable with our best previous methods. To show the differ-
ence we published the result for concept dependent granulation in Table 6. In
Table 5 we can see also the result for homogenous granulation dedicated to sym-
bolic data. We observed a slight lowering of granular decision system size for
varepsilon-homogenous granulation in comparison with homogenous granula-
tion with similar result of classification. Due to the lack of space we have shown
only exemplary results.
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Table 6. Summary of results, k-NN vs Naive Bayes Classifier, granular and non granu-
lar case, acc = accuracy of classification, red = percentage reduction in object number,
r = granulation radius, method = variant of Naive Bayes classifier

Name k − NN(acc, red, r) k − NN.nil(acc)

Australian-credit 0.851, 71.86, 0.571 0.855

Car Evaluation 0.865, 73.23, 0.833 0.944

Diabetes 0.616, 74.74, 0.25 0.631

German-credit 0.724, 59.85, 0.65 0.73

Heartdisease 0.83, 67.69, 0.538 0.837

Hepatitis 0.884, 60, 0.632 0.89

Nursery 0.696, 77.09, 0.875 0.578

SPECTF Heart 0.802, 60.3, 0.114 0.779

5 Conclusions

The paper contains theoretical introduction and experimental effectiveness ver-
ification of a new granulation technique called epsilon homogenous granulation.
This is a method from the family of techniques proposed by Polkowski in [10,11].
This new method is based on granules created as r-indiscernible group of objects
by lowering the granulation radius until the granules are homogenous in the sense
of their decision class. There is no need to estimate any optimal granulation
radii in this method, this being its main advantage. Another positive conclusion
which came out after experimental verification of classification effectiveness using
granule data set was reduction of training dataset size by up to ca. 50% while
retaining internal knowledge in a high degree. The radii for ε homogenous gran-
ulation are in many cases larger than for homogenous granulation, because the
granules move faster to homogenous form. The result of classification for both
methods are comparable, but in case of ε homogenous granulation we obtained
better reduction in training set size. In the future works we have a plan to check
the effectiveness of the new method in the process of missing values absorbtion.
Another direction of research is to find the most effective classifier and to check
the boosting effect in the Ensemble models for homogenous granulation. As a
further research one could provide a tolerance level in acceptance of objects from
the other classes to check the influence on the internal knowledge preservation.
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in fuzzy DLs under the Gödel semantics. We also provide a theorem on
the Hennessy-Milner property for fuzzy bisimulations in fuzzy DLs under
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1 Introduction

In traditional machine learning, objects are usually described by attributes, and
a class of objects can be specified, among others, by a logical formula using
attributes. Decision trees and rule-based classifiers are variants of classifiers
based on logical formulas. To construct a classifier, one can restrict to using
a sublanguage that allows only essential attributes and certain forms of formu-
las. If two objects are indiscernible w.r.t. that sublanguage, then they belong to
the same decision class. Indiscernibility is an equivalence relation that partitions
the domain into equivalence classes, and each decision class is the union of some
of those equivalence classes.

There are domains in which objects are described not only by attributes but
also by binary relations between objects. Examples include social networks and
linked data. For such domains, description logics (DLs) are a suitable formalism
for representing knowledge about objects. Basic elements of DLs are concepts,
roles and individuals (objects). A concept name is a unary predicate, a role
name is binary predicate. A concept is interpreted as a set of objects. It can be
built from atomic concepts, atomic roles and individual names (as nominals) by
using constructors. As DLs are variants of modal logics, indiscernibility in DLs
is characterized by bisimilarity. The bisimilarity relation of an interpretation I
w.r.t. a logic language is the largest auto-bisimulation of I w.r.t. that language.
It has been exploited for concept learning in DLs [6,10,15,17,18].

In practical applications, data and knowledge may be imprecise and vague,
and fuzzy logics can be used to deal with them. Fuzzy DLs have attracted
researchers for two decades (see [1,3] for overviews and surveys). If objects are
described by attributes and binary relations, and data about them are vague,
then one of the possible ways to specify classes of objects is to use concepts in
fuzzy DLs. Bisimilarity in fuzzy DLs can be used for learning such concepts.
Thus, bisimilarity and bisimulation in fuzzy DLs are worth studying.

There are different families of fuzzy operators. The Gödel, �Lukasiewicz, Prod-
uct and Zadeh families are the most popular ones. The first three of them use
t-norms for defining implication. The Gödel and Zadeh families define conjunc-
tion and disjunction of truth values as infimum and supremum, respectively.
Each family of fuzzy operators represents a semantics, which is extended to
fuzzy DLs appropriately (see, e.g., [2]).

The objective of this paper is to introduce and study bisimulations in fuzzy
DLs under the Gödel semantics. Apart from the works [7,12,14] on bisimula-
tion/bisimilarity in traditional or paraconsistent DLs and the earlier mentioned
works on using bisimilarity for concept learning in traditional DLs, other notable
related works are [5,8,9]. In [8] Eleftheriou et al. presented (weak) bisimulation
and bisimilarity in Heyting-valued modal logics and proved the Hennessy-Milner
property for those notions. A Heyting-valued modal logic uses a Heyting algebra
as the space of truth values. There is a close relationship between Heyting-valued
modal logics and fuzzy modal logics under the Gödel semantics, as every linear
Heyting algebra is a Gödel algebra [8] and every Gödel algebra is a Heyting alge-
bra with the Dummett condition [4]. In [5] Ćirić et al. introduced bisimulations
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for fuzzy automata. Such a bisimulation is a fuzzy relation between the sets of
states of the two considered automata. One of the results of [5] states that there
is a uniform forward bisimulation between fuzzy automata A and B iff there is
a special isomorphism between the factor fuzzy automata of them w.r.t. their
greatest forward bisimulation fuzzy equivalence relations. It is a kind of the
Hennessy-Milner property. In [9] Fan introduced fuzzy bisimulations for some
Gödel modal logics, which are fuzzy modal logics using the Gödel semantics.
The considered logics include the fuzzy monomodal logic K and its extensions
with converse and/or involutive negation. She proved that fuzzy bisimulations
in those logics have the Hennessy-Milner property. The work [9] follows the app-
roach of [5] in defining bisimulation as a fuzzy relation and expressing conditions
of bisimulation by using relational composition. As discussed in [9], there is a
relationship between fuzzy bisimulations in Gödel modal logics and weak bisim-
ulations in Heyting-valued modal logics [8], especially for the case when the
underlying Heyting algebra is linear.

In this paper, we define fuzzy bisimulation and (crisp) bisimilarity for fuzzy
DLs under the Gödel semantics. The considered logics are fuzzy extensions of
the DL ALCreg with additional features among inverse roles, nominals, qualified
number restrictions, the universal role and local reflexivity of a role. The DL
ALCreg is a variant of Propositional Dynamic Logic (PDL) [16]. It extends the
basic DL ALC with role constructors like program constructors of PDL. We give
results on invariance of concepts as well as conditional invariance of TBoxes and
ABoxes for bisimilarity in fuzzy DLs under the Gödel semantics. Moreover, we
provide a theorem on the Hennessy-Milner property for fuzzy bisimulations in
fuzzy DLs under the Gödel semantics. Roughly speaking, it states that, if fuzzy
interpretations I and I ′ are witnessed and modally saturated, then Z : ΔI ×
ΔI′ → [0, 1] is the greatest fuzzy bisimulation between I and I ′ iff Z(x, x′) =
inf{CI(x) ⇔ CI′

(x) | C is a concept} for all x ∈ ΔI and x′ ∈ ΔI′
, where ⇔

denotes the Gödel equivalence.
The motivations of our work are as follows:

– (Fuzzy) bisimulation has potential applications to concept learning in fuzzy
DLs, i.e., for machine learning in information systems based on fuzzy DLs. It
was not studied for fuzzy DLs under the Gödel semantics.

– The class of fuzzy DLs studied in this paper is large. In comparison with [9],
not only are they variants of multimodal (instead of monomodal) logics, but
they also allow PDL-like role constructors, qualified number restrictions, nom-
inals, the universal role and the concept constructor that represents local
reflexivity of a role.

– To deal with qualified number restrictions, the approach of using relational
composition for defining conditions of (fuzzy) bisimulation in [5,9] is not suit-
able, and we have to use “elementary” conditions for defining bisimulation.
Consequently, when restricting to the fuzzy monomodal logic K, our notion
of fuzzy bisimulation is different in nature from the one introduced by Fan [9]
(see Remark 3), although the greatest fuzzy bisimulation relations specified by
these two different approaches coincide. This means that our study on fuzzy
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bisimulations in fuzzy DLs under the Gödel semantics is not a simple exten-
sion of Fan’s work [9] on fuzzy bisimulations in Gödel monomodal logics. Due
to the mentioned difference, proofs of our results are more complicated.

– This paper serves as a starting point for studying bisimulation and bisimilar-
ity in fuzzy DLs under other t-norm based semantics (e.g., �Lukasiewicz and
Product).

The remainder of this paper is structured as follows. In Sect. 2, we formally
specify the considered fuzzy DLs and their Gödel semantics. In Sect. 3, we define
fuzzy bisimulations. In Sect. 4, we present our results on invariance of concepts,
TBoxes and ABoxes for bisimilarity in fuzzy DLs under the Gödel semantics.
Section 5 contains our results on the Hennessy-Milner property of fuzzy bisim-
ulations. Concluding remarks are given in Sect. 6. Due to the lack of space, all
proofs of our results are omitted. They will be made available online or published
in an extended version of the paper.

2 Preliminaries

In this section, we recall the Gödel fuzzy operators, fuzzy DLs under the Gödel
semantics and define related notions that are needed for this paper.

2.1 The Gödel Fuzzy Operators

The family of Gödel fuzzy operators are defined as follows, where p, q ∈ [0, 1]:

p � q = min{p, q}
p � q = max{p, q}

�p = (if p = 0 then 1 else 0)
(p ⇒ q) = (if p ≤ q then 1 else q)
(p ⇔ q) = (p ⇒ q) � (q ⇒ p).

Note that (p ⇔ q) = 1 if p = q, and (p ⇔ q) = min{p, q} otherwise.
For a set Γ of values in [0, 1], we define �Γ = inf Γ and �Γ = supΓ , where

the extrema are taken in the complete lattice [0, 1].
Given R,S : Δ×Δ′ → [0, 1], if R(x, y) ≤ S(x, y) for all 〈x, y〉 ∈ Δ×Δ′, then

we write R ≤ S and say that S is greater than or equal to R. We write R � S to
denote the function of type Δ × Δ′ → [0, 1] defined as follows:

(R � S)(x, y) = R(x, y) � S(x, y).

If Z is a set of functions of type Δ × Δ′ → [0, 1], then by �Z we denote the
function of the same type defined as follows:

(�Z)(x, y) = �{Z(x, y) | Z ∈ Z}.

Given R : Δ × Δ′ → [0, 1] and S : Δ′ × Δ′′ → [0, 1], the composition R ◦ S is
a function of type Δ × Δ′′ → [0, 1] defined as follows:

(R ◦ S)(x, y) = �{R(x, z) � S(z, y) | z ∈ Δ′}.
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2.2 Fuzzy Description Logics Under the Gödel Semantics

By Φ we denote a set of features among I, O, Q, U and Self, which stand for
inverse roles, nominals, qualified number restrictions, the universal role and local
reflexivity of a role, respectively. In this subsection, we first define the syntax of
roles and concepts in the fuzzy DL LΦ, where L extends the DL ALCreg with
fuzzy (truth) values and LΦ extends L with the features from Φ. We then define
fuzzy interpretations and the Gödel semantics of LΦ.

Our logic language uses a set C of concept names, a set R of role names,
and a set I of individual names. A basic role of LΦ is either a role name or the
inverse r− of a role name r (when I ∈ Φ).

Roles and concepts of LΦ are defined as follows:

– if r ∈ R, then r is a role of LΦ,
– if R, S are roles of LΦ and C is a concept of LΦ,

then R ◦ S, R 
 S, R∗ and C? are roles of LΦ,
– if I ∈ Φ and R is a role of LΦ, then R− is a role of LΦ,
– if U ∈ Φ, then U is a role of LΦ, called the universal role

(we assume that U /∈ R),
– if p ∈ [0, 1], then p is a concept of LΦ,
– if A ∈ C, then A is a concept of LΦ,
– if C, D are concepts of LΦ and R is a role of LΦ, then:

• C � D, C → D, ¬C, C 
 D, ∀R.C, ∃R.C are concepts of LΦ,
• if O ∈ Φ and a ∈ I, then {a} is a concept of LΦ,
• if Q ∈ Φ, R is a basic role of LΦ and n ∈ N,

then ≥nR.C and ≤nR.C are concepts of LΦ,
• if Self ∈ Φ and r ∈ R, then ∃r.Self is a concept of LΦ.

The concept 0 stands for ⊥, and 1 for �.
By L0

Φ we denote the largest sublanguage of LΦ that disallows the role con-
structors R ◦ S, R 
 S, R∗, C? and the concept constructors ¬C, C 
 D, ∀R.C,
≤nR.C.

We use letters A and B to denote atomic concepts (which are concept names),
C and D to denote arbitrary concepts, r and s to denote atomic roles (which
are role names), R and S to denote arbitrary roles, a and b to denote individual
names.

Given a finite set Γ = {C1, . . . , Cn} of concepts, by
�

Γ we denote C1 � . . .�
Cn, and by

⊔
Γ we denote C1 
 . . . 
 Cn. If Γ = ∅, then

�
Γ = 1 and

⊔
Γ = 0.

Definition 1. A (fuzzy) interpretation is a pair I = 〈ΔI , ·I〉, where ΔI is a non-
empty set, called the domain, and ·I is the interpretation function, which maps
every individual name a to an element aI ∈ ΔI , every concept name A to a
function AI : ΔI → [0, 1], and every role name r to a function rI : ΔI ×
ΔI → [0, 1]. The function ·I is extended to complex roles and concepts as
follows (cf. [2]):
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UI(x, y) = 1
(r−)I(x, y) = rI(y, x)
(C?)I(x, y) = (if x = y then CI(x) else 0)

(R ◦ S)I(x, y) = �{RI(x, z) � SI(z, y) | z ∈ ΔI}
(R 
 S)I(x, y) = RI(x, y) � SI(x, y)

(R∗)I(x, y) = �{�{RI(xi, xi+1) | 0 ≤ i < n} |
n ≥ 0, x0, . . . , xn ∈ ΔI , x0 = x, xn = y}

pI(x) = p

{a}I(x) = (if x = aI then 1 else 0)
(¬C)I(x) = �CI(x)

(C � D)I(x) = CI(x) � DI(x)
(C 
 D)I(x) = CI(x) � DI(x)

(C → D)I(x) = (CI(x) ⇒ DI(x))
(∃r.Self)I(x) = rI(x, x)

(∃R.C)I(x) = �{RI(x, y) � CI(y) | y ∈ ΔI}
(∀R.C)I(x) = �{RI(x, y) ⇒ CI(y) | y ∈ ΔI}

(≥ nR.C)I(x) = �{�{RI(x, yi) � CI(yi) | 1 ≤ i ≤ n} |
y1, . . . , yn ∈ ΔI , yi �= yj if i �= j}

(≤ nR.C)I(x) = �{(�{RI(x, yi) � CI(yi) | 1 ≤ i ≤ n + 1} ⇒
�{yj �= yk | 1 ≤ j < k ≤ n + 1}) | y1, . . . , yn+1 ∈ ΔI}. �

For definitions of the Zadeh, �Lukasiewicz and Product semantics for fuzzy
DLs, we refer the reader to [2].

Remark 1. Observe that (≤nR.C)I(x) is either 1 or 0. Namely, (≤nR.C)I(x)=
1 if, for every set {y1, . . . , yn+1} of n + 1 pairwise distinct elements of ΔI, there
exists 1 ≤ i ≤ n + 1 such that RI(x, yi) � CI(yi) = 0. Otherwise, (≤ nR.C)I

(x)=0. �

Example 1. Let R = {r}, C = {A} and I = ∅. Consider the fuzzy interpretation
I illustrated and specified below:

u : A0

v2 : A 0.9v1 : A 0.5 v3 : A 0.6

0.9 0.8 0.7



Fuzzy Bisimulations in Fuzzy Description Logics Under the Gödel Semantics 565

– ΔI = {u, v1, v2, v3},
– AI(u) = 0, AI(v1) = 0.5, AI(v2) = 0.9, AI(v3) = 0.6,
– rI(u, v1) = 0.9, rI(u, v2) = 0.8, rI(u, v3) = 0.7,

and rI(x, y) = 0 for other pairs 〈x, y〉.

We have that:

– (∀r.A)I(a) = 0.5, (∃r.A)I(a) = 0.8, (≤1 r.A)I(a) = 0, (≥2 r.A)I(a) = 0.6,
– for C = ∀(r 
 r−)∗.A and 1 ≤ i ≤ 3: CI(vi) = 0,
– for C = ∃(r 
 r−)∗.A : CI(v1) = 0.8, CI(v2) = 0.9 and CI(v3) = 0.7. �

A fuzzy interpretation I is witnessed (w.r.t. LΦ) [11] if any infinite set under
the prefix operator � (resp. �) in Definition 1 has the smallest (resp. biggest)
element. The notion of being “witnessed w.r.t. L0

Φ” is defined similarly under the
assumption that only roles and concepts of L0

Φ are allowed. A fuzzy interpretation
I is finite if ΔI , C, R and I are finite, and is image-finite w.r.t. Φ if, for every
x ∈ ΔI and every basic role R of LΦ, {y ∈ ΔI | RI(x, y) > 0} is finite. Observe
that every finite fuzzy interpretation is witnessed and every image-finite fuzzy
interpretation w.r.t. Φ is witnessed w.r.t. L0

Φ.
A fuzzy assertion in LΦ is an expression of the form a

.= b, a � .= b, C(a) �� p
or R(a, b) �� p, where C is a concept of LΦ, R is a role of LΦ, ��∈ {≥, >,≤, <}
and p ∈ [0, 1]. A fuzzy ABox in LΦ is a finite set of fuzzy assertions in LΦ.

A fuzzy GCI (general concept inclusion) in LΦ is an expression of the form
(C � D) � p, where C and D are concepts of LΦ, � ∈ {≥, >} and p ∈ (0, 1]. A
fuzzy TBox in LΦ is a finite set of fuzzy GCIs in LΦ.

Given a fuzzy interpretation I and a fuzzy assertion or GCI ϕ, we say that
I validates ϕ, denoted by I |= ϕ, if:

– case ϕ = (a .= b) : aI = bI ,
– case ϕ = (a � .= b) : aI �= bI ,
– case ϕ = (C(a) �� p) : CI(aI) �� p,
– case ϕ = (R(a, b) �� p) : RI(aI , bI) �� p,
– case ϕ = (C � D) � p : (C → D)I(x) � p for all x ∈ ΔI .

A fuzzy interpretation I is a model of a fuzzy ABox A, denoted by I |= A,
if I |= ϕ for all ϕ ∈ A. Similarly, I is a model of a fuzzy TBox T , denoted by
I |= T , if I |= ϕ for all ϕ ∈ T .

Two concepts C and D are equivalent, denoted by C ≡ D, if CI = DI

for every fuzzy interpretation I. Two roles R and S are equivalent, denoted by
R ≡ S, if RI = SI for every fuzzy interpretation I.

We say that a role R is in inverse normal form if inverse constructor is applied
in R only to role names. In this paper, we assume that roles are presented in
inverse normal form because every role can be translated to an equivalent role
in inverse normal form using the following rules:

U− ≡ U (R ◦ S)− ≡ S− ◦ R−

(R−)− ≡ R (R 
 S)− ≡ R− 
 S−

(C?)− ≡ C? (R∗)− ≡ (R−)∗.
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Remark 2. The concept constructors ¬C and C 
 D can be excluded from LΦ

and L0
Φ because

¬C ≡ (C → 0)
C 
 D ≡ ((C → D) → D) � ((D → C) → C). �

3 Fuzzy Bisimulations

Let Φ ⊆ {I,O,Q,U, Self} be a set of features and I, I ′ fuzzy interpretations.
A function Z : ΔI × ΔI′ → [0, 1] is called a fuzzy LΦ-bisimulation (under the
Gödel semantics) between I and I ′ if the following conditions hold for every
x ∈ ΔI , x′ ∈ ΔI′

, A ∈ C, a ∈ I, r ∈ R and every basic role R of LΦ:

Z(x, x′) ≤ (AI(x) ⇔ AI′
(x′)) (1)

∀y ∈ ΔI ∃y′ ∈ ΔI′
Z(x, x′) � RI(x, y) ≤ Z(y, y′) � RI′

(x′, y′) (2)

∀y′ ∈ ΔI′ ∃y ∈ ΔI Z(x, x′) � RI′
(x′, y′) ≤ Z(y, y′) � RI(x, y); (3)

if O ∈ Φ, then

Z(x, x′) ≤ (x = aI ⇔ x′ = aI′
); (4)

if Q ∈ Φ, then, for any n ≥ 1,

if Z(x, x′) > 0 and y1, . . . , yn are pairwise distinct elements of ΔI such

that RI(x, yj) > 0 for all 1 ≤ j ≤ n, then there exist pairwise distinct

elements y′
1, . . . , y

′
n of ΔI′

such that, for every 1 ≤ i ≤ n, there exists (5)

1 ≤ j ≤ n such that Z(x, x′) � RI(x, yj) ≤ Z(yj , y
′
i) � RI′

(x′, y′
i),

if Z(x, x′) > 0 and y′
1, . . . , y

′
n are pairwise distinct elements of ΔI′

such that RI′
(x′, y′

j) > 0 for all 1 ≤ j ≤ n, then there exist pairwise

distinct elements y1, . . . , yn of ΔI such that, for every 1 ≤ i ≤ n, there (6)

exists 1 ≤ j ≤ n such that Z(x, x′) � RI′
(x′, y′

j) ≤ Z(yi, y
′
j) � RI(x, yi);

if U ∈ Φ, then

∀y ∈ ΔI ∃y′ ∈ ΔI′
Z(x, x′) ≤ Z(y, y′) (7)

∀y′ ∈ ΔI′ ∃y ∈ ΔI Z(x, x′) ≤ Z(y, y′); (8)

if Self ∈ Φ, then

Z(x, x′) ≤ (rI(x, x) ⇔ rI′
(x′, x′)). (9)

For example, if Φ = {I,Q}, then only Conditions (1)–(3), (5) and (6) are
essential. By definition, the function λ〈x, x′〉 ∈ ΔI × ΔI′

.0 is a fuzzy LΦ-
bisimulation between I and I ′.
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Remark 3. Observe that Condition (2) (resp. (3)) together with the qualification
over x and x′ implies Z−1 ◦ RI ≤ RI′ ◦ Z−1 (resp. Z ◦ RI′ ≤ RI ◦ Z). However,
in general, the converse does not hold. �

Example 2. Let R = {r}, C = {A}, I = ∅ and Φ = ∅. Consider the fuzzy inter-
pretations I and I ′ illustrated below (and specified similarly as in Example 1).

I I ′

u : A0

v : A 0.8 w : A 0.9

u′ : A0

v′ : A 0.8 w′ : A 0.9

0.7 1 1 0.9

If Z is a fuzzy LΦ-bisimulation between I and I ′, then:

– Z(v, w′) ≤ 0.8 and Z(w, v′) ≤ 0.8 due to (1),
– Z(u, u′) ≤ 0.8 due to (3) for x = u, x′ = u′ and y′ = v′,
– Z(u, v′) = Z(u,w′) = Z(v, u′) = Z(w, u′) = 0 due to (1).

It can be check that the function Z : ΔI × ΔI′ → [0, 1] specified by

– Z(v, v′) = Z(w,w′) = 1,
– Z(v, w′) = Z(w, v′) = Z(u, u′) = 0.8,
– Z(u, v′) = Z(u,w′) = Z(v, u′) = Z(w, u′) = 0

is a fuzzy LΦ-bisimulation between I and I ′, and hence is the greatest fuzzy
LΦ-bisimulation between I and I ′. �

Proposition 1. Let I, I ′ and I ′′ be fuzzy interpretations.

1. The function Z : ΔI × ΔI → [0, 1] specified by

Z(x, x′) = (if x = x′ then 1 else 0)

is a fuzzy LΦ-bisimulation between I and itself.
2. If Z is a fuzzy LΦ-bisimulation between I and I ′, then Z−1 is a fuzzy LΦ-

bisimulation between I ′ and I.
3. If Z1 is a fuzzy LΦ-bisimulation between I and I ′, and Z2 is a fuzzy LΦ-

bisimulation between I ′ and I ′′, then Z1 ◦ Z2 is a fuzzy LΦ-bisimulation
between I and I ′′.

4. If Z is a finite set of fuzzy LΦ-bisimulations between I and I ′, then �Z is
also a fuzzy LΦ-bisimulation between I and I ′.

The proof of this proposition is straightforward.

Remark 4. It seems that the assertion 4 of Proposition 1 cannot be strengthened
for infinite Z. So, the greatest fuzzy LΦ-bisimulation between I and I ′ may
not exist. As stated later by Theorem 4, if I and I ′ are witnessed w.r.t. L0

Φ

and modally saturated w.r.t. L0
Φ (see Definition 2), then the greatest fuzzy LΦ-

bisimulation between I and I ′ exists. �
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Let I and I ′ be fuzzy interpretations. For x ∈ ΔI and x′ ∈ ΔI′
, we write

x ∼Φ x′ to denote that there exists a fuzzy LΦ-bisimulation Z between I and I ′

such that Z(x, x′) = 1. If x ∼Φ x′, then we say that x and x′ are LΦ-bisimilar
to each other. Let ∼Φ,I be the binary relation on ΔI such that, for x, x′ ∈ ΔI ,
x ∼Φ,I x′ iff x ∼Φ x′. By Proposition 1, ∼Φ,I is an equivalence relation. We
call it the LΦ-bisimilarity relation of I. If I �= ∅ and there exists a fuzzy LΦ-
bisimulation Z between I and I ′ such that Z(aI , aI′

) = 1 for all a ∈ I, then we
say that I and I ′ are LΦ-bisimilar to each other and write I ∼Φ I ′.

4 Invariance Results

A concept C of LΦ is said to be invariant for LΦ-bisimilarity between witnessed
interpretations if, for any witnessed interpretations I, I ′ and any x ∈ ΔI and
x′ ∈ ΔI′

, if x ∼Φ x′, then CI(x) = CI′
(x′).

Theorem 1. All concepts of LΦ are invariant for LΦ-bisimilarity between wit-
nessed interpretations.

This theorem is a corollary of the following stronger result.

Lemma 1. Let I and I ′ be witnessed interpretations and Z a fuzzy LΦ-
bisimulation between I and I ′. Then, the following properties hold for every
concept C of LΦ, every role R of LΦ, every x ∈ ΔI and every x′ ∈ ΔI′

:

Z(x, x′) ≤ (CI(x) ⇔ CI′
(x′)) (10)

∀y ∈ ΔI ∃y′ ∈ ΔI′
Z(x, x′) � RI(x, y) ≤ Z(y, y′) � RI′

(x′, y′) (11)

∀y′ ∈ ΔI′ ∃y ∈ ΔI Z(x, x′) � RI′
(x′, y′) ≤ Z(y, y′) � RI(x, y). (12)

The following lemma differs from Lemma 1 in that L0
Φ is used instead of LΦ.

Its proof is a shortened version the one of Lemma 1, as (11) and (12) are the
same as (2) and (3) when R is a role of L0

Φ, respectively, and we can ignore the
cases when C is ∀R.D or ≤nR.D.

Lemma 2. Let I and I ′ be witnessed interpretations w.r.t. L0
Φ and Z a fuzzy

LΦ-bisimulation between I and I ′. Then, for every concept C of L0
Φ, every x ∈

ΔI and every x′ ∈ ΔI′
, Z(x, x′) ≤ (CI(x) ⇔ CI′

(x′)).

A fuzzy TBox T is said to be invariant for LΦ-bisimilarity between witnessed
interpretations if, for every witnessed interpretations I and I ′ that are LΦ-
bisimilar to each other, I |= T iff I ′ |= T . The notion of invariance of fuzzy
ABoxes for LΦ-bisimilarity between witnessed interpretations is defined similarly.

Theorem 2. If U ∈ Φ and I �= ∅, then all fuzzy TBoxes in LΦ are invariant for
LΦ-bisimilarity between witnessed interpretations.

Theorem 3. Let A be a fuzzy ABox in LΦ. If O ∈ Φ or A consists of only fuzzy
assertions of the form C(a) �� p, then A is invariant for LΦ-bisimilarity between
witnessed interpretations.
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5 The Hennessy-Milner Property

Definition 2. A fuzzy interpretation I is said to be modally saturated w.r.t. L0
Φ

(and the Gödel semantics) if the following conditions hold:

– for every p ∈ (0, 1], every x ∈ ΔI , every basic role R of LΦ and every infinite
set Γ of concepts in L0

Φ, if for every finite subset Λ of Γ there exists y ∈ ΔI

such that RI(x, y) � CI(y) ≥ p for all C ∈ Λ, then there exists y ∈ ΔI such
that RI(x, y) � CI(y) ≥ p for all C ∈ Γ ;

– if Q ∈ Φ, then for every p ∈ (0, 1], every x ∈ ΔI , every basic role R of
LΦ, every infinite set Γ of concepts in L0

Φ and every n ∈ N, if for every
finite subset Λ of Γ there exist n pairwise distinct y1, . . . , yn ∈ ΔI such that
RI(x, yi)�CI(yi) ≥ p for all 1 ≤ i ≤ n and C ∈ Λ, then there exist n pairwise
distinct y1, . . . , yn ∈ ΔI such that RI(x, yi) � CI(yi) ≥ p for all 1 ≤ i ≤ n
and C ∈ Γ ;

– if U ∈ Φ, then for every p ∈ (0, 1] and every infinite set Γ of concepts in L0
Φ,

if for every finite subset Λ of Γ there exists y ∈ ΔI such that CI(y) ≥ p for
all C ∈ Λ, then there exists y ∈ ΔI such that CI(y) ≥ p for all C ∈ Γ . �

Clearly, every finite fuzzy interpretation is modally saturated w.r.t. L0
Φ for

any Φ. If U /∈ Φ, then every image-finite fuzzy interpretation w.r.t. Φ is modally
saturated w.r.t. L0

Φ.

Theorem 4. Let I and I ′ be fuzzy interpretations that are witnessed w.r.t. L0
Φ

and modally saturated w.r.t. L0
Φ. Let Z : ΔI × ΔI′ → [0, 1] be specified by

Z(x, x′) = �{CI(x) ⇔ CI′
(x) | C is a concept of L0

Φ}.

Then, Z is the greatest fuzzy LΦ-bisimulation between I and I ′.

Given fuzzy interpretations I, I ′ and x ∈ ΔI , x′ ∈ ΔI′
, we write x ≡Φ x′

to denote that CI(x) = CI′
(x′) for every concept C of LΦ. Similarly, we write

x ≡0
Φ x′ to denote that CI(x) = CI′

(x′) for every concept C of L0
Φ.

Corollary 1. Let I, I ′ be fuzzy interpretations and let x ∈ ΔI , x′ ∈ ΔI′
.

1. If I and I ′ are witnessed w.r.t. L0
Φ and modally saturated w.r.t. L0

Φ, then

x ∼Φ x′ iff x ≡0
Φ x′.

2. If I and I ′ are image-finite fuzzy interpretations w.r.t. Φ, then

x ∼Φ x′ iff x ≡0
Φ x′.

3. If I and I ′ are witnessed w.r.t. LΦ and modally saturated w.r.t. L0
Φ, then

x ≡Φ x′ iff x ∼Φ x′ iff x ≡0
Φ x′.

The assertion 1 (resp. 3) directly follows from Theorem 4 and Lemma 2
(resp. 1). The assertion 2 directly follows from the assertion 1. The following
corollary directly follows from Theorem4 and Lemma 1.

Corollary 2. Let I and I ′ be fuzzy interpretations that are witnessed w.r.t. LΦ

and modally saturated w.r.t. L0
Φ. Then, I and I ′ are LΦ-bisimilar iff aI ≡0

Φ aI′

for all a ∈ I.
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6 Concluding Remarks

We have defined fuzzy bisimulations and (crisp) bisimilarity relations for a large
class of fuzzy DLs under the Gödel semantics. We have provided results on
invariance of concepts as well as conditional invariance of TBoxes and ABoxes for
such bisimilarity. We have also provided results on the Hennessy-Milner property
for such bisimulations. As far as we know, this is the first time fuzzy bisimulations
are defined and studied for fuzzy DLs under the Gödel semantics.

As mentioned in the Introduction, we use “elementary” Conditions (2), (3)
and (5)–(8) instead of the ones based on relational composition for defining
bisimulations. Consequently, our notion of fuzzy bisimulation is different in
nature from the one introduced by Fan [9], although the greatest fuzzy bisimula-
tion relations specified by these two different approaches coincide when restrict-
ing to the fuzzy modal logics without involutive negation considered in [9]. Fur-
thermore, in comparison with [9], not only is the class of logics considered by
us much larger, we also study invariance of TBoxes and ABoxes for bisimilarity,
and our theorem on the Hennessy-Milner property is formulated for witnessed
and modally saturated interpretations, which are more general than image-finite
interpretations.

Like the relationship between [9] and [8], our notion of fuzzy bisimulation is
also related to the notion of weak bisimulation introduced by Eleftheriou et al. [8]
for Heyting-valued modal logics, especially for the case when the considered logic
is K and the underlying Heyting algebra is the complete lattice 〈[0, 1],≤〉. In
this case, the latter notion can be treated as a cut-based variant of our notion
(see [9] for a more detailed discussion). The differences are that the considered
classes of logics are essentially different and our approach uses fuzzy relations
as in [5,9], while the approach of [8] uses families of crisp relations, where each
of the families is specified by a cut-value. Following [9], we use the term “fuzzy
bisimulation” instead of“bisimulation” to emphasize its fuzziness.

Our notions and results have potential applications to concept learning in
fuzzy DLs. As future work, apart from such applications, it is also worth studying
bisimulation and bisimilarity in fuzzy DLs under other t-norm based semantics
(e.g., �Lukasiewicz and Product). Recently, Nguyen [13] studied bisimilarity in
fuzzy DLs under the Zadeh semantics, which does not use t-norms for defining
implication. His approach is essentially different, as it uses (crisp) simulation
instead of (fuzzy) bisimulation because the latter notion does not seem to be
definable for fuzzy DLs under the Zadeh semantics.

Acknowlegements. This paper was partially supported by VNU-UET and VNU.
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Abstract. Recently, hybrid approaches, which combine an FP-tree-like data
structure with an interaction-based approach, are efficient approaches for mining
frequent itemsets. However, applying those approaches for sequential pattern
mining arose some challenges. In this paper, we introduce a hybrid approach for
a specific version of sequential pattern mining, clickstream pattern mining, with
our proposed B-List structure and SMUB algorithm. The SMUB algorithm
exploited the B-List structure that is generated from the SPPC tree and the B-
List intersection are used to discover all sequential patterns in the given
sequence database. Via our experiments on various databases, SMUB has been
shown to be more efficient than the current state-of-the-art algorithm, CM-
Spade, in terms of runtime, and scalability, especially on huge databases with
very small thresholds.

Keywords: Data mining � Clickstream pattern � Sequence pattern

1 Introduction

The problem of sequential pattern mining was first brought up by Srikant and Agrawal
in 1995 [2]. Since then, there have been quite a lot of approaches and algorithms
proposed to solve this problem. However, finding an effective method is still chal-
lenging. Recently, hybrid approaches using DiffNodeSets [10], N-List [9] data struc-
tures are reported as very efficient for mining frequent itemsets. But can those
approaches be applied for mining pattern with a sequential order? To the best of our
knowledge, there have not any work that was based on the hybrid approaches using
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those data structures. Itemset patterns are easier to deal with because each item only
appears once at most in each transaction of the database, and the order of items in the
itemsets can be assigned by users. On the other hand, sequential patterns consist of
multiple transactions in sequential or timely order. Thus, each item can appear more
than one in a sequence, in various transactions, and in an order that users cannot
predict.

In this paper, we propose the SMUB algorithm to tackle a part of sequential pattern
mining problem by solving clickstream pattern mining, a special version of sequential
pattern mining. SMUB is a hybrid-based approach algorithm, based on B-List, an
extension of N-List data structure. B-Lists are generated from an SPPC tree. Via our
experiments on various datasets have shown that SMUB was more efficient than the
recent state-of-the-art algorithm, CM-Spade [11], with respect to runtime, especially on
huge datasets with low minimum support thresholds.

We organized this paper as follows. In Sect. 2, we describe the basic concepts. In
Sect. 3, we introduce related work. In Sect. 4, we introduce SPPC tree and definitions.
In Sect. 5, we present our B-List and SMUB algorithm for clickstream pattern mining.
In Sect. 6, we present our experiments. In Sect. 7, we conclude our study and present
our future work.

2 Basic Concepts

Let I ¼ i1; i2; . . .; ij
� �

be a set of distinct elements, each element is called an item.
A sequence is a list of items that are ordered. A clickstream sequence S is denoted as
s1; s2; . . .; sq
� �

, where sp 2 S 1� p� qð Þ is an item. The number of items in clickstream
is called the size or length of the clickstream. A clickstream sequence having length k is
denoted as k-sequence. A clickstream sequence Sa ¼ a1; a2; . . .; anh i is a subsequence
of another clickstream sequence Sb ¼ b1; b2; . . .; bmh i, denoted by Sa�Sb, if there exist
integers x1\x2\ � � �\xy that at ¼ bxy with all of at. In other words, Sb is called a
super sequence of Sa.

A clickstream sequence database SDB is a collection of clickstream and each
sequence has a unique id (called sid). Support of a clickstream pattern P is defined as
the number of clickstreams in SDB that are the super sequences of P. Given a threshold,
a clickstream sequence is a frequent clickstream pattern if its support is more than or
equal to the given threshold. The clickstream pattern mining task is discovering all
frequent clickstream patterns in SDB.

Table 1. A clickstream sequence database

SID Clickstream

100 <2,5,1>
200 <2,5,1,5,1>
300 <2,3>
400 <1,5,1,5,1>
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3 Related Work

Several algorithms have been proposed for sequential pattern mining such as AproriAll
[2], GSP [3] and SPADE [5]. All of them find all sequential patterns by using “generate
and test candidate” approach which consumes a lot of time and memory. PrefixSpan
[6], FUSP [7] and Sequential Pattern Tree [8] does not generate any candidate
sequences, but the structure of the tree is complex; thus, they create lots of projected
databases and in order to find new sequential patterns, they need to completely scan the
projected databases.

SPADE algorithm [5] identifies all frequent items (viz., 1-sequences) at the
beginning, converts the database to the vertical database format and identify the rest of
sequential pattern by BFS or DFS based on lattice decomposition concept. Though
experiments, it is more efficient than the GSP algorithm. However, SPADE needs to
convert database from horizontal to the vertical format, so the memory usage for
storing the databases increased and it is even bigger than the original databases.

In 2008, Lin et al. proposed FUSP-tree [7] data structure and its maintenance
algorithm for mining sequential patterns in incremental databases. FUSP-tree consists
of one root node and a set of prefix subtrees as the children branches of the root. Each
node in the prefix subtrees contains three values: item� name represents the node
contains that item, count is the number of sequences represented by the section of the
path reaching the node and node� link links to the next node of the same item in
another branch of the FUSP-tree. The FUSP-tree contains a Header-Table which stores
frequent items, their count and the link to the first occurrence in the tree corresponding
to the item. This table assists on finding appropriate items or sequences in the tree.

Fournier-Viger et al. proposed CM-Spade in 2014 [11]. In their work, they proposed
the CMAP data structure to store co-occurrence information of items and used the
CMAP to produce a candidate pruning mechanism. Basically, CM-Spade integrates
CMAP data structure into the SPADE algorithm. It was reported to have better perfor-
mance than previous algorithms, SPADE and SPAM. But CM-Spade still suffers from
spending much time evaluating candidates that do not exist in the sequence database.

There have been quite a few several efficient algorithms recently for mining fre-
quent itemset from transaction databases [1] such as FP-growth [4], N-List [9] and
DiffNodeSets [10].
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In 2012, Deng proposed PrePost [9] algorithms. PrePost was based on the N-List
structure that was generated from PPC-tree, which was a new structure for representing
transaction databases. This data structure saves all information of itemsets. By com-
bining the approach of candidate-generation-and-test and the approach of mining
sequence itemset directly without candidate generation, PrePost was reported as an
efficient algorithm for mining frequent itemsets. PPC-tree structure includes a root node
and a set of children nodes, the structure of each node includes five properties: item-
name, count, children-list, pre-order, and post-order. Item-name registers which item
this node represents, count registers the number of transactions presented by the portion
of the path reaching this node, children-list registers all children of the node, pre-order
is the pre-order rank of the node and post-order is the post-order rank of the node. PPC-
tree structure is like an FP-tree [4].

4 SPPC-Tree Structure

Definition 1. SPPC-tree is a tree data structure. The tree consists of a root and a set of
item prefix subtrees as the children of the root. Each node of the tree consists of eight
fields: item-name, count, first-child, first-father, right-sibling, label-sibling, pre-order,
post-order. Item-name is the item that the current node represents. Count is the number
of sequences that have the same path reaching to the current node. First-child is a list
that contains the first children of the node. First-father is the first previous node that is
reached from the root node. Right-sibling is the first sibling node of the current node.
Label-sibling is a list of nodes that have the same item-name even they may be in
different branches of the tree. Pre-order is a list of pre-order ranks that were generated
by pre-order traversal of the tree. Post-order is a list of post-order ranks that were
generated by post-order traversal of the tree. SPPC-tree is derived from PPC-tree [9].
However, there are two differences between SPPC-tree and PPC-tree:

1. The support of frequent item is not the sum of all counts of nodes with same item
name on SPPC-tree.

2. The item-name of an item can appear more than in one node in the same branch of
SPPC tree.
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Based on Definition 1, an SPPC-tree can be built by the following algorithm.

For example, assuming that we use an example sequence database SDB in Table 1
with minimum support threshold n = 0.5. First, we convert the value of minimum
support from a double value to an integer value: 4 * 0.5 = 2. Then, we scan SDB to find
the frequent items with their support count greater than or equal to n. The final set is
SP1 = {<1>,<2>,<5>} with their support counts. With all infrequent items eliminated,
we have a newly transformed sequence database as in Table 2.
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Based on the newly transformed database, we build an SPPC-tree by the following
steps. First, we create an empty node and assign it as a root node, then we add sequence
100 to the tree. The adding process starts at the root node. From there, each item in the
sequence will have a node created and appended to the tree in a sequential order. The
first item of the sequence will be appended to the root, the second will be appended to
the first node and so on. The tree will look like in Fig. 1a the sequence 100 is added.
After which, we add sequence 200 to the tree. Because the subsequence <2,5,1> was
previously added into the tree during adding sequence 100, so we increase the count of
each same node, the process for the rest of the items the same as adding sequence 100.
After the sequence 200 is added, the tree will be like Fig. 1b and so on. However, the
sequence 400 does not start with the same start item with other previous sequences.
Thus, we create a new branch and add each item in this sequence into the tree like what
we did to 100. The tree then will be like in Fig. 1d. Considering the node 2:2, it means
that this is the node of item 2 and its support count is 2.

After adding all sequences in SDB in Table 2 into the tree, we travel the tree using
depth-first search (DFS) algorithm to add pre-order and post-order for each node. The
tree looks like in Fig. 1e, which depicts the final result tree from SDB in Table 2 after
executing the Algorithm 1. The node (0,4)2:3 mean this is the node of item 2, the count
is 3, and the pre-order and post-order of the node is 0 and 4 respectively.

5 Sequential Pattern Mining Using B-Lists

In this section, we describe the idea and step by step of our proposed SMUB algorithm
(sequential clickstream mining using B-List). SMUB is a hybrid approach for mining
frequent sequences. Main steps of SMUB algorithm include: (1) build SPPC-tree and
identify all frequent 1-sequences (2) based on SPPC-tree, conduct the B-List for each
frequent 1-sequence (3) mine the remaining frequent k-sequences (k > 1). The details
of the algorithm are presented in Sect. 5.2.

Definition 2 (SPP-code). Given an SPPC-tree Str and a node N 2 Str , an SPP-code of
N is an element represented in the form of (N.pre-order, N.post-order):count.

Definition 3 (B-List of a frequent item; viz., frequent 1-sequence). Given an SPPC-
tree, the B-List of a specified frequent item is an ordered set of all the SPP-codes of
nodes having the same item-name with respect to the frequent item. The SPP-codes are
sorted in an ascending order based on their pre-order values and the B-List is repre-
sented in the form of x1; y1ð Þ : z1 ! � � � ! xn; ynð Þ : zn. For each SPP-code in a B-List,
there should always be a node in SPPC-tree that is registered with the SPP-code.

Table 2. The new sequence database with infrequent items already removed

SID Clickstream

100 <2,5,1>
200 <2,5,1,5,1>
300 <2>
400 <1,5,1,5,1>
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Definition 4 (Support count of a B-List). Given a B-List BL ¼ x1; y1ð Þ : z1 ! � � � !
xn; ynð Þ : zn, and BLm ¼ BLnf x; yð Þ : z 2 BL 9 xi; yið Þ : zi 2 BL : xj ixi ^ y\yig. The
support of BL can be calculated via BLm by the sum of all zk with xk; ykð Þ : zk 2 BLm.
For example, consider the B-List of the frequent 1-sequence <1> in Table 3, its BLm is
(2,2):2 ! (5,9):1. So the support count would be 3.

5.1 B-List Generation for k-Sequences

Let BL1 and BL2 be the B-Lists of two k-frequent sequences P1 ¼ i1; i2; . . .; ik�1; xh i
and P2 ¼ i1; i2; . . .; ik�1; yh i, P1 and P2 share the same (k − 1) prefix, the B-List of (k +
1)-sequence P3 ¼ i1; . . .; ik�1; x; yh i is formed by following the procedure in Algorithm
2. In other words, BL_intersection only works between two frequent k-patterns that
share (k − 1) prefix. A special case is that frequent 1-sequences are considered sharing
an empty prefix.

Fig. 1. Step by step SPPC-Tree construction: (a) after adding sequence 100 (b) after adding
sequence 200 (c) after adding sequence 300 (d) after adding sequence 400 (e) after adding pre-
order and post-order

Table 3. The B-Lists of frequent 1-sequences

Frequent 1-sequence B-List

1 (2,2):2 ! (4,0):1 ! (5,9):1 ! (7,7):1 ! (9,5):1
2 (0,4):3
5 (1,3):2 ! (3,1):1 ! (6,8):1 ! (8,6):1
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For example, assuming that we have frequent 1-sequence <5> and we want to
generate the B-List of 2-sequence <5,5> . As shown in Table 3, the B-List of <5> is
(1,3):2 ! (3,1):1 ! (6,8):1 ! (8,6):1. The generation of the B-List of <5,5> is done
by combining the B-List of <5> with itself. First, we check (1,3):2 with every element
in the B-List of itself. However, the pre-order of the SPP-code (1,3):2 is 1, which is not
greater than the pre-order of (1,3):2 itself. So we move to (3:1):1. The pre-order of
(3:1):1 is 3, which is higher than pre-order of (1,3):2. The post-order of (3:1):1 is 1,
which is less than post-order of (1,3):2. So (3:1):1 is added to the B-List of <5,5> .
Finishing the BL_intersection, we have the B-List of <5,5> , which is
(3,1):1 ! (8,6):1.

5.2 Mining Clickstream Sequential Patterns

Based on previous definitions, Algorithm 3 illustrates the process of SMUB with high-
level pseudocodes.
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For example, considering the minimum support n = 3, we have SP1 as the set of
frequent 1-sequences <5>, <2> and <1> mined from the example database SDB and
their respective B-List set BL1. Running 3, we first join <5> with <5>, <2> and <1>
to form 2-sequence candidates <5,5> , <5,1> and <5,2> . By generating B-Lists for
aforementioned candidates, we can use them to check for support count of each can-
didate. Only <5,5> and <5,2> have their support counts higher than n, so they are
frequent 2-sequences and are added into the set of frequent 2-patterns SP2. In the same
way, <2> is joined with <5>, <2> and <1>, and <1> is joined with <5>, <2>
and <1>. The resultant frequent 2-patterns are added into SP2 and their respective B-
Lists are added into BL2. Recursively, we re-run mining_L procedure with SP2 and BL2
and so on, until no candidate can be generated. Figure 2 illustrates the full set of
frequent clickstream patterns.

580 B. V. Bui et al.



6 Experimental Evaluation

In this section, we performed experiments to assess the performance of the proposed
algorithm. We performed experiments on a computer running Intel Core i7 2.2 GHz
CPU, 16 GB memory, and macOS Sierra 10.12.6 operating system. We configured
JVM with the flags of -Xmx10G -Xms10G (viz., the maximum memory allowed was
10 GB). The state-of-art algorithm, CM-Spade, for sequential pattern mining that was
proved more efficient than previous algorithms, which were GSP, PrefixSpan and
FUSP in [11]. So, in this paper we just compared the proposed algorithm, SMUB, with
CM-Spade. We use Kosarak, FIFA, MSNBC, and BMS2 datasets (Table 4) for testing
performance. We implemented the SMUB in Java 8. The experiments are conducted on
each database by decreasing the minimum support thresholds until algorithm took too
long time to execute (more than 2000s) or ran out of memory. The running time is the
total execution time of the algorithm.

Figure 3 shows the running time of SMUB and CM-Spade on Kosarak, FIFA,
MSNBC, and BMS2 correspondingly. Generally, SMUB ran faster than CM-Spade
and the gap kept getting bigger at smaller minimum support. Thus, we can see that
SMUB is more efficient than CM-Spade at low minimum support threshold.

Fig. 2. The tree of frequent clickstream patterns

Table 4. Database description

Database Sequences Unique items Average sequence length

Kosarak 990,002 41,270 8.1
FIFA 20,450 2,990 34.74
MSNBC 989,818 17 4.75
BMS2 77,512 3,340 4.62
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7 Conclusions and Future Work

In this paper, we proposed a novel data structure, B-List, for compressing and storing
information for clickstream patterns. Based on B-Lists, we developed an algorithm,
SMUB, for fast mining clickstream patterns in clickstream databases. The advantages
of the SMUB algorithm compared to other previous algorithms are as follow: First, it
uses a compact data structure, B-List, which is usually substantially smaller than the
original databases, and thus avoids costly database scans in the subsequent mining
processes. Second, counting the support of sequence is transformed into the intersec-
tion of B-Lists and it employs an efficient strategy with the complexity of O(m + n) for
intersecting two B-Lists, where m and n are the cardinalities of the two B-Lists
respectively. We have implemented the SMUB algorithm and studied its performance
in comparison with CM-Spade, a well-known sequential pattern mining algorithm, on a
variety of real and synthetic datasets. Our performance study shows that the SMUB
algorithm is more efficient than CM-Spade.

In future work, we will further explore our method to fully work with sequential
pattern mining problem (viz., there is more than one element in itemsets). We also
consider using the parallel approach for SMUB so that it can work even bigger
databases.

Fig. 3. Runtime of SMUB and CM-Spade
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Abstract. In this article we define transformation semigroups for rough
sets. Basic constructions such as closures, products, coverings and par-
titions for transformation semigroups are defined. A decomposition the-
orem for reset transformation semigroups is given. A connection with
automata is also presented by defining a semiautomaton for rough sets.

Keywords: Transformation semigroups · Rough sets · Automata

1 Introduction

Rough set theory [13] has been studied extensively over the years, from appli-
cational as well as foundational points of view. One of the directions of work on
foundational aspects, is the study of categories of rough sets and generalizations
(cf. [12]). An instance of the generalizations is found to be the special class of
categories RSC(M-Set) for monoids M, which yields the definition of monoid
actions on rough sets [12]. Monoid or semigroup actions have direct connection
with ‘transformation semigroups’ and automata theory [5]. We follow this line
of study in the present article to explore semigroup actions on rough sets.

An important class of semigroups is the collection PF (Q) of all partial func-
tions from a finite set Q to itself, representing transformations of Q. The binary
operation involved is function composition, and in fact, results in a monoid struc-
ture, with the identity function on Q as the identity element. Any subset S of this
collection that is closed under function composition is a subsemigroup of PF (Q).
The pair (Q,S) for such S, is called a transformation semigroup (ts) [4,5,7]. We
observe that the objects of the category RSC(M-Set) mentioned above, may
be interpreted as transformations for rough sets. By taking the more general
structure of semigroups instead of monoids, we obtain here a natural definition
of a transformation semigroup for a rough set. The algebra of these transforma-
tion semigroups is developed in this article, by defining basic constructions of
ts theory such as resets, coverings, products and admissible partitions for the
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structures (cf. Sects. 3 and 4). Our main goal is to look for a Krohn-Rhodes
style decomposition result (cf. [1]) for these semigroups. Here, we present the
first step towards that direction by obtaining a decomposition theorem for the
special case of reset transformation semigroups (cf. Sect. 5).

One of the reasons to study transformation semigroups has been a natural
connection with automata theory [7]. We shall also study this connection in case
of rough sets, by defining a semiautomaton for a rough set (cf. Sect. 6). Rough
sets have been connected with automata theory and transformation semigroups
earlier, by Basu and Tiwari [2,15]. Our approach differs from theirs, and a com-
parison is presented in Sect. 6. We conclude in Sect. 7.

In the next section, we present preliminaries of transformation semigroups
that are required for this work. We shall follow the notations and terminologies
of [7] throughout the paper.

2 Transformation Semigroups

Semigroup actions give an alternative and equivalent way of viewing transfor-
mation semigroups [4]. Recall that an action of a semigroup S on the set Q is a
function δ : Q × S → Q satisfying δ(δ(q, s1), s2) = δ(q, s1s2), for all q ∈ Q and
s1, s2 ∈ S., where s1s2 denotes the application of the binary operation of S on
s1 and s2. If the function δ is partial, δ is called a partial semigroup action of S
on the set Q. Then we have the following definition.

Definition 1 (Transformation semigroups) [5]. A transformation semi-
group is a pair A := (Q,S) consisting of a finite set Q, a finite semigroup S,
along with a partial semigroup action δ of S on Q that satisfies:

for any s1, s2 ∈ S, if δ(q, s1) = δ(q, s2) for all q ∈ Q, then s1 = s2. (1)

Observation 1. Condition (1) is termed the faithfulness of the action δ. For
a fixed s ∈ S, the partial function δs := δ(−, s) : Q → Q can be viewed as
a transformation of the set Q, and δ can also be interpreted as a set {δs}s∈S

of transformations of Q. Faithfulness of δ ensures a bijection between S and
{δs}s∈S . Thus both the definitions of transformation semigroup are equivalent.

Notation 1. Hereafter, δ(q, s) shall be denoted by ‘qs’ and Qs := {qs | q ∈ Q}.

Constant functions motivate the definition of a special kind of ts: a ts A :=
(Q,S) is called reset if |Qs| ≤ 1 for any s ∈ S. Given a ts A := (Q,S), the closure
A of A is the subsemigroup of PF (Q) that is generated by the set S∪{q | q ∈ Q},
where q represents a constant function on Q mapping any element of Q to q. In
notation, A := (Q, 〈S ∪ {q | q ∈ Q}〉).
Example 1. A trivial example of a reset ts is the pair (Q, ∅). If |Q| = n, the ts
(Q, ∅) is denoted as n. Then n := (Q, {q | q ∈ Q}), which is again a reset ts.
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Observation 2

1. Let Q be a finite set, S a finite semigroup and δ a partial semigroup action
of Q on S. Does (Q,S) form a ts? Not necessarily, as δ may not be faithful.
One then defines a relation ∼ on S by s ∼ s′ ⇔ qs = qs′ for all q ∈ Q. ∼ is
a congruence relation on S and S/∼ is a quotient semigroup of S. The pair
(Q,S/∼) forms a ts with the action defined by q[s] := qs, for all q ∈ Q, [s] ∈
S/∼. If Q = ∅ then S/∼ is the singleton {S}.

2. Two different definitions of restriction of a given ts are found in literature [5].
Consider a ts A := (Q,S), P ⊆ Q and the inclusion function i : P → Q.

(a) Define a subsemigroup T := {s | s ∈ S and Ps ⊆ P}. Using part (1) of
this observation, AP := (P, T/∼) forms a ts.

(b) Define a partial function i−1 from Q to P given by i−1(q) = q for all q ∈ P
and not defined for q /∈ P . Let S′ be the semigroup generated by the
partial functions s′ = isi−1 : P → P for all s ∈ S. Then A|P := (P, S′)
is also a ts.

In some cases, these definitions coincide [5]:

Proposition 1 For a ts A := (Q,S) and P ⊆ Q, if Ps ⊆ P for all s ∈ S, then
A|P = AP .

2.1 Algebra on Transformation Semigroups

Consider two ts A := (Q,S) and B := (P, T ). Let α : Q → P be a set func-
tion and β : S → T a semigroup homomorphism such that α(qs) = α(q)β(s),
whenever qs is defined for any q ∈ Q and s ∈ S. The pair (α, β) is called a trans-
formation semigroup homomorphism from A to B. If both α and β are bijective
maps then A is said to be equivalent to B and this is denoted by A ∼= B.

Therefore, one can easily see that ts constitute a category.

Definition 2 (The category TS of transformation semigroups). Objects
of TS are ts and morphisms of TS are ts homomorphisms.

Note that the object class of TS is different from the class TS defined in [5].
For ts A := (Q,S) and B := (P, T ), A × B := (Q × P, S × T ) is also a ts,

called the direct product of A and B. The semigroup operation/action involved
is defined componentwise.

Consider a ts A := (Q,S) and π := {Hi}i∈I a set of non-empty subsets of Q.
π is called a partition of Q if

⋃
i∈I Hi = Q and Hi ∩ Hj = ∅ for any i, j ∈ I. π is

called admissible if for every Hi ∈ π and s ∈ S, if His is non-empty then there
exists Hj ∈ π such that His ⊆ Hj . Note that such a choice for Hj would be
unique for the Hi. Then a partial semigroup action ∗ of S on π can be defined
as follows: For any Hi ∈ π, s ∈ S,
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(1) Hi ∗ s := Hj if His ⊆ Hj ; (2) Hi ∗ s is not defined if His = ∅.

This action may not be faithful. However as discussed in Observation 2(1), one
can obtain the quotient ts A/〈π〉 := (π, S/∼), using the congruence relation ∼.
When |Q| > 2, π is said to be non-trivial if 1 < |Hi| < |Q| for some i ∈ I.

For a non-trivial admissible partition π := {Hi}i∈I on ts (Q,S), if there exists
another non-trivial admissible partition τ := {Kj}j∈J such that |Hi ∩ Kj | ≤ 1
for all i ∈ I and j ∈ J , then π is called an orthogonal partition on Q [7]. The
condition ‘|Hi ∩ Kj | ≤ 1 for all i ∈ I and j ∈ J ’ is denoted as ‘π ∩ τ = 1Q’.

Definition 3 (Coverings) [7]. A ts B := (P, T ) covers the ts A := (Q,S),
written as A � B, if there exists a partial surjective function η : P → Q such
that for each s ∈ S, there is ts ∈ T satisfying η(p)s = η(pts) whenever η(p)s is
defined for any p ∈ P . η is called a covering of A by B, or B is said to cover A
by η. ts is said to cover s.

Using the definition and the fact that any element in the semigroup 〈S〉 generated
by S can be written as a finite product of elements of S, one gets

Proposition 2. For ts (Q, 〈S〉) and (P, T ), the following are equivalent.

(a) (Q, 〈S〉) � (P, T ).
(b) There exists a partial surjective function η : P → Q satisfying the following

property: for each s ∈ S there exists a ts ∈ T such that for any p ∈ P , if
η(p)s is defined then η(p)s = η(pts).

3 Transformation Semigroup for Rough Sets

Iwiński [8] gave a generalized interpretation of rough sets based on a Boolean
algebra. A pair (A1, A2) is called an I-rough set of the rough universe (U,B),
where U is the domain, B is a subalgebra of the power set Boolean algebra P(U)
and A1, A2 in B are such that A1 ⊆ A2. Observe that any pair of sets (Q1, Q2),
where Q1 ⊆ Q2 ⊆ C for some set C, can then be interpreted as an I-rough
set of the rough universe (C,P(C)). This approach was followed in defining the
category RSC [9] of I-rough sets, which was shown to be equivalent to the
category ROUGH defined earlier (cf. [12]). I-rough sets are referred to simply
as rough sets. A generalization of RSC leads to the class of categories RSC(M-
Set) for monoids M; the properties of objects and morphisms therein yield the
definition of monoid actions on rough sets [12]. We apply the definition to the
more general structure of semigroups, and to rough sets (Q1, Q2) with Q2 finite.

Definition 4 (Semigroup action on rough sets). A semigroup action on a
rough set (Q1, Q2) with Q2 finite, is a triple (Q1, Q2, δ) where δ : Q2 × S → Q2

is an action of a semigroup S on Q2 such that the restriction δ|Q1
: Q1×S → Q1

is an action of S on Q1. Note that δ|Q1
((q, s)) := δ((q, s)), for all q ∈ Q1, s ∈ S.
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Using Observation 2(1), we get a ts (Q2, S/∼2) for δ, where s1 ∼2 s2 if
and only if qs1 = qs2 for all q ∈ Q2. As Q2 is finite, S/∼2 is also finite. Now
consider the action δ′ : Q2 × S/∼2 → Q2 associated with the ts (Q2, S/∼2).
By Observation 1, we can identify {δ′

[s]∼2
}s∈S with S/∼2 which is a semigroup

of transformations of Q2. These transformations also restrict Q1 to Q1. Thus,
(Q1, S/∼1) forms another ts, where s1 ∼1 s2 if and only if qs1 = qs2 for all
q ∈ Q1. We now arrive at the definition of a ts for a rough set. Henceforth, when
the contexts are clear, we shall drop suffixes and simply write ∼.

Definition 5 (Transformation semigroups for rough sets). A transfor-
mation semigroup for a rough set (Q1, Q2) is a triple A := (Q1, Q2, S), where
(Q2, S) is a ts and Q1 ⊆ Q2 such that Q1s ⊆ Q1 for all s ∈ S. (Q2, S) is called
the upper ts and (Q1, S/∼) the lower ts for A, where s1 ∼ s2 if and only if
qs1 = qs2 for all q ∈ Q1.

Observation 3

1. Relating Definitions 4 and 5: Given a semigroup action (Q1, Q2, δ) on rough
set (Q1, Q2), we can obtain a ts (Q1, Q2, S/∼2) for the same rough set
(Q1, Q2). Conversely, a ts (Q1, Q2, S) for a rough set (Q1, Q2) gives a semi-
group action (Q1, Q2, δ) on (Q1, Q2), where δ is the action associated with ts
(Q2, S) (cf. Definition 1).

2. Relating Definitions 1 and 5: For a ts A := (Q,S), (Q,Q, S) is a ts for
rough set for which, trivially, A is the upper ts, and also the lower ts up to
isomorphism. (Q,Q, S) shall also be denoted as (Q,S), by abuse of notation.
A is also the upper ts for the ts (∅, Q, S) for rough set (∅, Q). The lower ts of
(∅, Q, S) is (∅, S/∼), where S/∼ is a 1-element semigroup.

3. For ts (Q1, Q2, S), (Q1, S/∼) = (Q2, S)Q1 = (Q2, S)|Q1. Indeed, recall Obser-
vation 2(2) and Proposition 1. Since Q1s ⊆ Q1 for all s ∈ S, we have
(Q2, S)Q1 = (Q2, S)|Q1. Moreover by definition, (Q2, S)Q1 is just (Q1, S/∼).

Example 2. Consider the ts (Q2, S) from [10] where Q2 := {1, 2, 3, 4, 5, 6, 7} and
S := {si | 1 ≤ i ≤ 7} is the semigroup with s1 := 1Q2 and

s2 :=
(

1 2 3 4 5 6 7
1 2 4 3 6 5 7

)

s3 :=
(

1 2 3 4 5 6 7
1 5 6 7 1 1 1

)

s4 :=
(

1 2 3 4 5 6 7
1 5 7 6 1 1 1

)

s5 :=
(

1 2 3 4 5 6 7
1 6 5 7 1 1 1

)

s6 :=
(

1 2 3 4 5 6 7
1 6 7 5 1 1 1

)

s7 :=
(

1 2 3 4 5 6 7
1 1 1 1 1 1 1

)

Take Q1 := {1, 5, 6, 7}. Since Q1si ⊆ Q1 for all si ∈ S, the triple (Q1, Q2, S)
forms a ts for rough set (Q1, Q2). The upper ts is (Q2, S) and the lower ts is
(Q1, S/∼), where S/∼ = {{s1}, {s2}, {s3, s4, s5, s6, s7}}.

We should remark here that a notion of rough transformation semigroup was
defined in [15], and was motivated by the rough finite semi-automaton defined
by Basu [2]. We shall make a comparison of all the structures in Sect. 6.
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3.1 Resets and Closures

What could be an appropriate definition for a reset ts here?

Definition 6 (Reset ts for rough sets). (Q1, Q2, S) is a reset if the upper
ts (Q2, S) is a reset, that is, |Q2s| ≤ 1 for all s ∈ S.

It is then easy to observe that the lower ts (Q1, S/∼) is also a reset.

Example 3. Recall Example 1. A trivial reset ts for a rough set (Q1, Q2) is the
triple A := (Q1, Q2, ∅). The reset ts (Q1, ∅) and (Q2, ∅) are respectively the lower
and upper ts. If |Q1| = m ≤ n = |Q2|, A shall be denoted by (m,n, ∅).

For defining closure of a ts A := (Q1, Q2, S), we note that for q ∈ Q2\Q1, the
constant functions q on Q2 do not restrict Q1 into Q1. We have the following.

Definition 7 (Closure of transformation semigroup for a rough set).
The closure of A := (Q1, Q2, S) is defined as

A := (Q1, Q2, S
′) with S′ := 〈S ∪ {q | q ∈ Q1} ∪ {q̃ | q ∈ Q2 \ Q1}〉, where

q is the constant function on Q2 mapping any element of Q2 to q,
q̃ is the partial constant function on Q2 mapping the elements of Q2 \ Q1 to q
and not defined otherwise.

Observation 4

1. If Q1 = ∅ or Q1 = Q2 then the semigroup S′ in A is just the semigroup in
(Q2, S), as expected.

2. Let ∅Q2 denote the empty partial function, i.e. it is not defined for any q ∈ Q2.
If Q1 �= ∅ and Q1 �= Q2, then S′ contains the following:
(a) all q̃ for q ∈ Q2, since if q ∈ Q1 then q̃ = q̃′q ∈ S′ for any q′ ∈ Q2 \ Q1,
(b) ∅Q2 , because ∅Q2 = q′q̃ ∈ S′ for any q ∈ Q2 \ Q1 and q′ ∈ Q1.

3. Closure is idempotent, i.e. A = (A).

Example 4. Consider the reset ts (m,n, ∅) (Example 3). For m �= n and m �= 0,

(m,n, ∅) := (m,n, S′), where S′ = {q | q ∈ Q1} ∪ {q̃ | q ∈ Q2} ∪ {∅Q2}.

In particular, for Q2 := {0, 1} and Q1 := {0}, S′ := {0, 1̃, 0̃, ∅Q2}. Diagram-
matically, the upper ts (Q2, S

′) is the following.

1 0
0,0̃

1̃ 0

Note that the upper ts (Q2, S
′) of the closure (1, 2, ∅) of ts (1, 2, ∅) is not isomor-

phic to the closure 2 of the upper reset ts 2 of (1, 2, ∅) (cf. Example 1). The lower
ts (Q1, {{0}, {∅Q2 , 0̃, 1̃}}) of the closure (1, 2, ∅) of (1, 2, ∅) is also not isomorphic
to the closure 1 of the lower reset ts 1 of (1, 2, ∅). However, the following holds.



590 A. K. More and M. Banerjee

Proposition 3. For ts A := (Q1, Q2, S),

(a) the closure of the upper ts of A covers the upper ts of the closure of A,
(b) the closure of the lower ts of A covers the lower ts of the closure of A.

Proof. We refer to A as in Definition 7. The coverings η (cf. Definition 3) are
the maps 1Q2 and 1Q1 for cases (a) and (b) respectively. It is then easy to find
covers for elements of S′ and S′/∼ in the two cases, using Proposition 2. ��

4 Algebra on Transformation Semigroups for Rough Sets

Consider two ts A := (Q1, Q2, S) and B := (P1, P2, T ) for rough sets (Q1, Q2)
and (P1, P2) respectively, and the ts homomorphism (α, β) from the upper ts
(Q2, S) to the upper ts (P2, T ) (cf. Sect. 2.1) satisfying the condition α(Q1) ⊆ P1.
Would this imply that the pair (α|Q1 , β̂) is a ts homomorphism from (Q1, S/∼)
to (P1, T/∼′), where β̂ : S/∼ → T/∼′ is defined as β̂([s]∼) := [β(s)]∼′ , s ∈ S?
The answer is no, as β̂ may not be well-defined: consider the ts (Q1, Q2, S) from
Example 2. By Observation 3(2), (Q2, Q2, S) is also a ts for rough set with lower
ts identifiable with (Q2, S). (1Q2 , 1S) : (Q2, S) → (Q2, S) is a ts homomorphism
and 1Q2(Q1) ⊆ Q2. 1̂S : S/∼ → S is such that 1̂S([si]∼) := si, si ∈ S; however,
[s3]∼ = [s7]∼ but s3 �= s7. So we have the following.

Definition 8 (Homomorphisms). (α, β) is a ts homomorphism from A :=
(Q1, Q2, S) to B := (P1, P2, T ), provided

(a) (α, β) is a ts homomorphism between the upper ts (Q2, S) and (P2, T ),
(b) α(Q1) ⊆ P1, and
(c) for any s, s′ ∈ S,

if qs = qs′ for all q ∈ Q1 then pβ(s) = pβ(s′) for all p ∈ P1. (2)

Observation 5

1. Condition (2) ensures that the pair (α|Q1 , β̂) is a ts homomorphism between
the lower ts (Q1, S/∼) and (P1, T/∼).

2. If α|Q1 is a bijection, (2) is always true.

How are ts for rough sets and ts for sets related? A direct relationship may
be observed using category theory. Recall Definition 2 of the category TS of
transformation semigroups for sets.

Definition 9 (The category RTS of transformation semigroups for
rough sets). Objects are ts for rough sets and morphisms are homomorphisms
of ts for rough sets.
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Using Observation 3(2) and Definition 8 of homomorphisms, we easily obtain

Theorem 1. The category TS is isomorphic to each of the following categories:

(a) the full subcategory of RTS with objects of the type (Q,Q, S), and
(b) the full subcategory of RTS with objects of the type (∅, Q, S).

Let us now define the direct product of ts for rough sets.

Definition 10 (Direct products). The direct product A × B of ts A :=
(Q1, Q2, S) and B := (P1, P2, T ) is defined as the ts (Q1 × P1, Q2 × P2, S × T ).

Note that the direct product is indeed a ts, as for any (q, p) ∈ Q1 × P1, we have
(q, p)(s, t) = (qs, pt) ∈ Q1 × P1.

The relation between the upper (lower) ts of the direct product and the direct
product of the upper (lower) ts is given by the following.

Proposition 4

(a) (Q2 × P2, S × T ) = (Q2, S) × (P2, T ).
(b) (Q1 × P1, (S × T )/∼) ∼= (Q1, S/∼) × (P1, T/∼).

We next move to admissible partitions and quotients.

Definition 11 (Admissible partitions and quotients). Let A := (Q1, Q2,
S) be a ts for rough set (Q1, Q2) and π2 := {Hi}i∈I be an admissible partition
on Q2 in ts (Q2, S). Consider the quotient ts (π2, S/∼), and let π1 := {Hi ∈
π2 | Hi ∩ Q1 �= ∅}. If π1 satisfies the condition:

π1 ∗ [s] ⊆ π1 for all [s] ∈ S/∼, (3)

then π := (π1, π2) is termed an admissible partition on rough set (Q1, Q2) in
A, and the quotient of A with respect to π is the ts A/〈π〉 := (π1, π2, S/∼). An
admissible partition π in A is non-trivial, if π2 is non-trivial on Q2 in ts (Q2, S).

Does (π1, π2, S/∼) form a ts, if condition (3) is not satisfied? No: let us consider
the reset ts (2, 4, ∅) (Example 4). (2, 4, ∅) := (Q1, Q2, S) where Q1 := {q1, q2},
Q2 := {q1, q2, q3, q4} and S := {q1, q2, q̃1, q̃2, q̃3, q̃4, ∅Q2}. Consider the admis-
sible partition π2 := {{q1, q3}, {q2}, {q4}} on Q2 in the ts (Q2, S). Then
π1 = {{q1, q3}, {q2}}. For {q1, q3} ∈ π1 and [q̃4] ∈ S/∼, {q1, q3}∗[q̃4] = {q4} /∈ π1,
i.e. π1 ∗ [s] � π1 for some [s] ∈ S/∼. Therefore (π1, π2, S/∼) is not a ts.

Definition 12 (Orthogonal partitions). For a ts A := (Q1, Q2, S), a non-
trivial admissible partition π := (π1, π2) on rough set (Q1, Q2) in A is called
orthogonal if there exists a non-trivial admissible partition τ := (τ1, τ2) on rough
set (Q1, Q2) in A such that π2 ∩ τ2 = 1Q2 and π1 ∩ τ1 = 1Q1 .

It is clear that τ is also orthogonal.
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Example 5. Consider the ts A := (Q1, Q2, S) of Example 2. Define a partition
π2 on Q2 as π2 := {{1}, {2, 3, 4}, {5, 6, 7}}. π2 is an admissible partition on
Q2 in the ts (Q2, S). The semigroup S/∼ = {{s1, s2}, {s3, s4, s5, s6}, {s7}} and
π1 = {{1}, {5, 6, 7}}. For [s1] ∈ S/∼, π1 ∗ [s1] = π1, while π1 ∗ [si] = {{1}} ⊆ π1

for i = 3, 7. Therefore π := (π1, π2) is an admissible partition on (Q1, Q2) in
A. Another admissible partition on (Q1, Q2) in A is τ := (τ1, τ2), where τ1 =
{{1, 7}, {5}, {6}} and τ2 := {{1, 7}, {2}, {3}, {4}, {5}, {6}}. Then π2 ∩ τ2 = 1Q2

and π1 ∩ τ1 = 1Q1 . Therefore π is an orthogonal partition on (Q1, Q2) in A.

We now come to the last definition in this work. If A and B are ts for rough
sets, a covering of A by B should result in two coverings (cf. Definition 3): one
of upper ts of A by upper ts of B and another of lower ts of A by lower ts of B.

Definition 13 (Coverings). A ts A := (Q1, Q2, S) is covered by ts B :=
(P1, P2, T ), written as A � B, if there exists a surjective partial morphism η :
P2 → Q2 such that

(a) η restricts P1 onto Q1, that is η(P1) = Q1, and
(b) η is a covering of (Q2, S) by (P2, T ).

It is then straightforward to show that

Proposition 5. If η is a covering of A := (Q1, Q2, S) by B := (P1, P2, T ), η|P1

is a covering of the lower ts (Q1, S/∼) of A by the lower ts (P1, T/∼) of B.
The following results on coverings can be obtained, and will be helpful in the

study of decomposition theorems of ts for rough sets. We omit the proofs, as the
required coverings are not difficult to obtain.

Proposition 6. Let A,B, C,D be ts for rough sets.

(a) A � A = (A).
(b) If A � B then A � B.
(c) If A � C and B � D then A × B � C × D.
(d) If A � B and B � C then A � C.
Proposition 7. A reset ts A := (Q1, Q2, S) is covered by the reset ts (Q1, Q2, ∅).

Proof. The covering η will be 1Q2 , and then we argue for the two cases obtained
by Observation 4: (1) Q1 = ∅ or Q1 = Q2, and (2) Q1 �= ∅, Q1 �= Q2. ��

5 Decomposition Theorems

In ts theory, a (‘useful’) ‘decomposition’ of a ts A is a covering of A by products
of some Ai’s where each Ai is ‘smaller’ than A – in terms of cardinality of com-
ponents in the pairs constituting the ts. Products involved in the decomposition
may not always be direct products; there are other products defined on ts, e.g.
wreath or cascade products. Our goal is to study decomposition results of the
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above kind in the case of a ts A := (Q1, Q2, S) for rough sets. So we shall look
for coverings of A by products of the closure of non-decomposable and smaller ts
Ai := (Q1i, Q2i, Si), i ∈ I. We present our first result in this direction here, for
the special case of reset ts. In ts theory, the decomposition result obtained for
reset ts is the following.

∏k Ai denotes the direct product of Ai, i = 1, . . . , k.

Proposition 8 [7]. Any reset ts can be covered by
∏k 2.

In the case of reset ts for rough sets, we prove

Theorem 2. For a reset ts A := (Q1, Q2, S) for rough set (Q1, Q2) with |Q2| =
n, |Q1| = m ≥ 2 and Q1 �= Q2, we have

(Q1, Q2, S) � (1, n − m + 1, ∅) ×
m−1∏

(2, 2, ∅).

Proof. Since |Q2| = n is finite, let us enumerate the elements {qi}n
i=1 of Q2 such

that the first m elements belong to Q1 = {qi}m
i=1.

Using Proposition 7, A � B := (Q1, Q2, ∅). Therefore we shall focus on the
reset B. By Example 4, B := (Q1, Q2, S

′) where S′ = {qi |qi ∈ Q1} ∪ {q̃i |qi ∈
Q2} ∪ {∅Q2}.

Case 1: |Q1| = 2 and |Q2| > 2. We have Q1 = {q1, q2}. Define the following
partitions on Q2.

π2 := { {q1}, Q2 \ {q1} }
τ2 := { {q1, q2}, {q3}, {q4}, {q5}, . . . , {qn} }

Then π := (π1, π2), where π1 = π2 = {Hi ∈ π2 | Hi ∩ Q1 �= ∅}, is an admissible
partition on (Q1, Q2). The semigroup in B/〈π〉 := (π1, π2, S

′/∼π2) is

S′/∼π2 = { {q1}, {q2}, {q̃1}, {q̃i | 2 ≤ i ≤ n}, {∅Q2} },

and the reset (π1, π2, S
′/∼π2) � (2, 2, ∅), using Proposition 7. The semigroup in

the quotient B/〈τ〉 := (τ1, τ2, S′/∼τ2) is

S′/∼τ2 = { {q1, q2}, {q̃1, q̃2}, {q̃i}n
i=3, {∅Q2}}.

Further, τ1 = {Ki ∈ τ2 | Ki ∩ Q1 �= ∅} = {{q1, q2}} and τ1 ∗ [s] ⊆ τ1 for all [s] ∈
S′/∼τ2 . Thus, τ := (τ1, τ2) is also an admissible partition on (Q1, Q2). In fact
π and τ are orthogonal admissible partitions on (Q1, Q2) because π2 ∩ τ2 =
1Q2 , and π1 ∩ τ1 = 1Q1 .

We claim that B � B/〈π〉 × B/〈τ〉. Define the map η : π2 × τ2 → Q2 as
follows: For Hi ∈ π2 and Kj ∈ τ2,

η(Hi,Kj) := qk if Hi ∩ Kj = {qk}, and
η(Hi,Kj) is not defined if Hi ∩ Kj = ∅.
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– η is well-defined and onto because τ2 is orthogonal to π2.
– η is a covering of (Q2, S

′) by (π2, S
′/∼π2) × (τ2, S′/∼τ2), where

• q1 ∈ S′ is covered by ([q1]π2 , [q1]τ2) ∈ S′/∼π2 × S′/∼τ2 ,
• q2 ∈ S′ is covered by ([q2]π2 , [q1]τ2) ∈ S′/∼π2 × S′/∼τ2 , and
• q̃i ∈ S′ is covered by ([q2]π2 , [q̃i]τ2) ∈ S′/∼π2 × S′/∼τ2 for all 3 ≤ i ≤ n.

– η restricts π1 × τ1 to Q1.

Therefore η is a covering of B by B/〈π〉 × B/〈τ〉. Observe the following for the
quotient ts B/〈τ〉 for rough set (τ1, τ2).

1. |τ1| = 1, |τ2| = |Q2| − 1, and
2. B/〈τ〉 is again a reset ts for rough set, and can be covered by (1, n − 1, ∅).

Thus we have, using Proposition 6(c) and (d),

A � B � B/〈π〉 × B/〈τ〉 � (2, 2, ∅) × (1, n − 1, ∅).

Case 2: |Q1| > 2. {q1, q2, q3} ⊆ Q1. We consider the following partitions on Q2.

π2 := { {q1, q2}, Q2 \ {q1, q2} }
τ2 := { {q1, q3}, {q2}, {q4}, {q5}, . . . , {qn} }

This results in orthogonal admissible partitions π := (π1, π2) and τ := (τ1, τ2)
on (Q1, Q2) and B/〈π〉 := (π1, π2, S

′/∼π2) � (2, 2, ∅) by Proposition 7. It can
be shown as in Case 1 that B � B/〈π〉 × B/〈τ〉. Moreover, |τ1| = |Q1| − 1,
|τ2| = |Q2| − 1, and B/〈τ〉 is a reset ts covered by (m − 1, n − 1, ∅). Thus as in
Case 1, using Proposition 6(c) and (d), we get

A � B � B/〈π〉 × B/〈τ〉 � (2, 2, ∅) × (m − 1, n − 1, ∅).

By repeating the above process m − 2 times, we obtain the following decompo-
sition:

A �
m−2∏

(2, 2, ∅) × (2, n − m + 2, ∅)

Applying Case 1 on (2, n − m + 2, ∅), we have

A �
m−1∏

(2, 2, ∅) × (1, n − m + 1, ∅) ��
What about other cases for reset ts – when Q1 = Q2, or |Q1| = 0, or |Q1| = 1?

Case 3: |Q1| = |Q2| = 2. (Q1, Q2, S) � (2, 2, ∅), by Proposition 7.

Case 4: |Q1| = |Q2| �= 2. Consider the reset ts (n, n, ∅) with n > 2. The proof
of its decomposition is similar to the proof of Case 2 in Theorem 2: define the
sets π2 and τ2 as in the proof. We have τ1 = τ2, π1 = π2 and the partition
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π = (π1, π2) is admissible and orthogonal. Proceeding similarly as above and
repeating the process n − 2 times, we obtain

(n, n, ∅) �
n−1∏

(2, 2, ∅)

Case 5: |Q1| = 0. For the reset ts (0, n, ∅) where n > 2, the proof of decomposition
is again similar as that of Case 2 in Theorem 2, with the change that π1 = τ1 = ∅.
We get in this case

(0, n, ∅) �
n−1∏

(0, 2, ∅)

Combining all the cases, we have the following.

Corollary 1. Any reset ts A := (Q1, Q2, S) of the rough set (Q1, Q2) with Q2 �=
∅, can be covered by the direct product of the resets (0, 2, ∅), (2, 2, ∅) and (1, n, ∅).

6 Rough Sets and Automata Theory

We now focus on connections of transformation semigroups with semiautomata,
and how these could apply to the study here in the context of rough sets. Semi-
automata are automata without outputs, defined in the following way [7]. Note
that in literature, a semiautomaton is sometimes referred to as an ‘automaton’
or as a ‘state machine’. Here, we shall use the term ‘semiautomaton’ only.

Definition 14 (Semiautomaton). A semiautomaton is a tripleM:=(Q,Σ, δ),
where Q and Σ are finite sets, and δ : Q × Σ → Q is a partial function.

A semiautomaton M can be associated with the free semigroup Σ∗, and the
partial function δ can be extended to define a semigroup action of Σ∗ on the set of
states Q. So Σ∗ can be seen as a collection of transformations of Q. The relation
between semiautomata and transformation semigroups of finite sets is given as
follows. Given any semiautomaton M := (Q,Σ, δ), one can obtain a ts by forcing
the action of the free semigroup Σ∗ on Q to be faithful, as done in Observation
2(1) by defining a congruence relation ∼ on Σ∗. The pair TS(M) := (Q,Σ∗/∼)
forms a ts. Conversely, given a ts A := (Q,S), the triple SM(A) := (Q,S, δ) is
a semiautomaton, where δ is the semigroup action associated with the ts A.

Definition 15 [7]. For semiautomata (Q,Σ, δ) and (P,Λ, γ), consider the
functions α : Q → P and β : Σ → Λ such that if α(δ(q, s)) is defined then

α(δ(q, s)) = γ(α(q), β(s)) for any q ∈ Q and s ∈ Σ.

The pair (α, β) is called a semiautomaton homomorphism.

It can be shown that for a ts A and a semiautomaton M, TS(SM(A)) is iso-
morphic to A, while there is a homomorphism from M to SM(TS(M)).
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6.1 Semiautomata for Rough Sets

As mentioned earlier, our aim is to see how the ts for rough sets that we study in
this work, are related to an appropriate notion of semiautomaton that may be
defined in the context of rough sets. We must use the concept of a ‘subautomaton’
for the purpose. Substructures of an automaton were first defined by Ginsburg
[6], and studied extensively by others – the literature contains various definitions
of subautomata depending on the applications. A discussion can be found in [11].
We consider the following.

Definition 16 (Subautomaton) [3]. M′ := (Q′, Σ, ν) is a subautomaton of
the semiautomaton M := (Q,Σ, δ) if Q′ ⊆ Q and ν = δ on Q′ × Σ.

This definition suits us here, as a natural relation with ts for rough sets in the
lines described above (for ts and semiautomata) may be arrived at, if the input
states constitute a rough set and Σ is fixed.

Definition 17 (Semiautomaton for a rough set). A semiautomaton for
a rough set (Q1, Q2) is a quadruple M := (Q1, Q2, Σ, δ), where (Q2, Σ, δ) is
a semiautomaton and Q1 ⊆ Q2 such that (Q1, Σ, δ |Q1

) is a subautomaton of
(Q2, Σ, δ).

Remark. Let us compare semiautomaton for rough sets with Basu’s definition
[2,14] of rough semi-automaton, and also compare rough transformation semi-
groups defined in [15] with the ts for rough sets considered in this work.

1. A rough semi-automaton generalizes the concept of a non-deterministic
automaton, in which the transition function maps an input state to a set
of input states. For the definition in [2], the set Q of input states has a
partition R yielding an approximation space on Q. For a given state and an
input symbol, the transition function gives an output that is a rough set on
the approximation space (Q,R).

In our case also, there is an underlying partition R of a set Q of states; for
some subset X of Q in the approximation space (Q,R), Q1, Q2 may be taken
respectively as the set of equivalence classes contained in X and the set of
equivalence classes properly intersecting X. On any given input symbol, the
transition function from (Q1, Q2) to (Q1, Q2) maps each equivalence class in
Q2 to an equivalence class in Q2 such that classes in Q1 remain in Q1.

2. Rough transformation semigroups are derived from rough semi-automata
[2], and thus involve transformations of the set Q into the collection of
rough sets on the approximation space on Q. In contrast, if we consider the
interpretation given above for ts for rough sets defined here, these structures
are semigroups of transformations of the set Q2 of equivalence classes to itself
that also preserve the set Q1.

Now to get the exact connection with ts for rough sets, we define homomor-
phisms. Recall Definition 15.
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Definition 18 (Homomorphisms). Let M := (Q1, Q2, Σ, δ) and N :=
(P1, P2, Λ, γ) be two semiautomata for rough sets (Q1, Q2) and (P1, P2) respec-
tively. The semiautomaton homomorphism (α, β) from (Q2, Σ, δ) to (P2, Λ, γ)
such that α(Q1) ⊆ P1 is called a semiautomaton homomorphism for rough sets.

Let us now consider a ts A := (Q1, Q2, S) for a rough set (Q1, Q2). The tuple
(Q1, Q2, S, δ) is a semiautomaton for rough set, denoted by RSM(A), where
δ is the partial semigroup action associated with the upper ts of A. On the
other hand, starting from a semiautomaton M := (Q1, Q2, Σ, δ) for a rough
set (Q1, Q2), we have TS(Q2, Σ, δ) := (Q2, Σ

∗/∼) as a ts. As Q1 ⊆ Q2 and
q[s] ∈ Q1 for all q ∈ Q1, s ∈ Σ∗, (Q1, Q2, Σ

∗/∼) forms a ts for rough set – it is
denoted as RTS(M).

Theorem 3. Consider a ts A := (Q1, Q2, S) for a rough set (Q1, Q2) and
a semiautomaton M := (P1, P2, Σ, δ) for a rough set (P1, P2). The following
results hold.

(a) RTS(RSM(A)) ∼= A, and
(b) there exists a homomorphism from M to RSM(RTS(M)).

Proof. (a) RTS(RSM(A)) = RTS(Q1, Q2, S, δ) = (Q1, Q2, S
∗/∼). The semi-

group S∗/∼ is isomorphic to S, because S∗ ∼= S and the congruence relation ∼
is the identity. Thus RTS(RSM(A)) ∼= A.

(b) RTS(M) = (P1, P2, Σ
∗/∼) and RSM(RTS(M)) = (P1, P2, Σ

∗/∼, δ̃).
Define the semiautomaton homomorphism (1P2 , β) from (P1, Σ, δ) to
(P2, Σ

∗/∼, δ̃), where β : Σ → Σ∗/∼ maps s to [s] for all s ∈ Σ. Since
1P2(P1) ⊆ P1, we have the required semiautomaton homomorphism from M
to RSM(RTS(M)). ��

Due to Theorem 3, studying any one of semiautomata for rough sets or
transformation semigroups for rough sets is enough to get similar results for the
other. In particular, all the concepts defined in our work on ts for rough sets can
be carried over to semiautomata for rough sets.

7 Conclusion

The theory of transformation semigroups has two strong motivations – one from
semigroup theory, and other from automata theory. This work marks the begin-
ning of a study of transformation semigroups for rough sets, that is distinct from
the notion of rough transformation semigroups defined earlier by [15]. A goal is
to obtain decomposition results; the work introduces some basic notions for the
purpose, culminating in a decomposition theorem for reset ts for rough sets.

There are various other concepts such as wreath products, heights, admissible
subset systems that can be the subject of further investigation, and one can try
for a Krohn-Rhodes style decomposition or holonomy decomposition result.

The decomposition theorem for reset ts for rough sets presented here, differs
from that for reset ts in that the basic entities in the decomposition are not just
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transformations of the 2-element set, rather n-element reset ts of type (1, n, ∅).
We expect that these may not be further decomposable. If true, this will be a
major deviation of the theory of ts for rough sets from ts theory.

In this work we have mainly focused on the algebraic side of the transfor-
mation semigroups or automata theory. However, an important goal of studying
automata theory is to understand real world models. Rough sets have appli-
cations in various fields. It would be interesting to find some applications of
automata theory, where the set of states are taken as rough sets. One particular
application which seems promising is in cellular automata.

Acknowledgments. We are grateful to the anonymous referees for their suggestions
and valuable remarks.
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8. Iwiński, T.B.: Algebraic approach to rough sets. Bull. Polish Acad. Sci. Math. 35,
673–683 (1987)

9. Li, X.S., Yuan, X.H.: The category RSC of I-rough sets. In: Fifth International
Conference on Fuzzy Systems and Knowledge Discovery, vol. 1, pp. 448–452, Octo-
ber 2008. https://doi.org/10.1109/FSKD.2008.106

10. Linton, S.A., Pfeiffer, G., Robertson, E.F., Ruškuc, N.: Groups and actions in
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Abstract. The main task in consensus clustering is to produce an
optimal output clustering based on a set of input clusterings. The co-
association matrix based consensus clustering methods are easy to under-
stand and implement. However, they usually have high computational
cost with big datasets, which restricts their applications. We propose a
sequential three-way approach to constructing the co-association matrix
progressively in multiple stages. In each stage, based on a set of input
clusterings, we evaluate how likely two data points are associated and
accordingly, divide a set of data-point pairs into three disjoint positive,
negative and boundary regions. A data-point pair in the positive region
is associated with a definite decision of clustering the two data points
together. A pair in the negative region is associated with a definite deci-
sion of separating the two data points into different clusters. For a pair
in the boundary region, we do not have sufficient information to make
a definite decision. The decision on such a pair is deferred into the next
stage where more input clusterings will be involved. By making quick
decisions on early stages, the overall computational cost of constructing
the matrix and the consensus clustering may be reduced.

Keywords: Sequential three-way decision · Consensus clustering
Co-association matrix

1 Introduction

Given a set of data points described by a set of attributes or features, the
main task of clustering is to divide these data points into groups such that
the data points in the same group are as similar as possible and those in differ-
ent groups are as dissimilar as possible. Each group is called a cluster, and the
family of all groups is called a clustering. The results of some popular clustering
methods [2,4,5,8,16] depend on their initial configurations that involve a priori
parameters such as a given number of clusters. In order to improve the robust-
ness and accuracy, these methods are usually repeatedly applied with different
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initial configurations. The family of produced clusterings are then combined into
a single clustering via consensus clustering. This is one of the main motivations
for consensus clustering that produces a final clustering by synthesizing a set of
input clusterings.

The consensus clustering methods based on co-association matrix [6,7,12,
13,21,22] are very popular and well studied in the literature. The first step in
the main procedure is to synthesize the set of input clusterings into an n × n
co-association matrix where n is the total number of data points. The values
in the matrix reflect how likely the corresponding two data points are clustered
together in the input clusterings. The second step is to obtain the final clus-
tering by applying a basic clustering method to the matrix. These consensus
clustering methods are easy to understand and implement. However, since they
focus on all data-point pairs when constructing the matrix, they usually have
high computational cost when applied to large datasets, which restricts their
applications.

The consensus clustering can be viewed as a decision making process. In the
co-association matrix based methods, we make decisions of whether to cluster
two data points together or not based on the information provided by input
clusterings. The theory of three-way decisions [23] offers a framework of decision
making by dividing a set of objects into three disjoint decision regions according
to some criterion. Each region is associated with a specific decision. Generally, the
three regions include the positive, negative and boundary regions. The objects
in the positive region are associated with an acceptance decision, that is, we
accept that these objects satisfy the criterion. The objects in the negative region
are associated with a rejection decision, that is, we decide that these objects
do not satisfy the criterion. Those in the boundary region cannot be definitely
determined to satisfy the criterion or not. They are associated with a third non-
commitment decision due to the uncertainty. The theory of three-way decisions
has been applied to basic clustering methods by researchers [27–30].

The sequential three-way decision model [26] iteratively applies the three-way
decision model to refine the boundary region and reduce the uncertainty. Definite
decisions (i.e., acceptance and rejection) are made on objects in each stage if
sufficient information is available. Otherwise, the decision on the objects will
be postponed into the next stage where more detailed and sufficient information
will be involved. It has been applied to many real-world applications such as face
recognition in [14,15]. Four modes of sequential three-way decisions are examined
in [26], including multiple levels of granularity, probabilistic rough set theory,
multiple models of classification, and ensemble classifications. Our presented
approach in this paper follows a similar mode as ensemble classifications.

The presented approach integrates the sequential three-way decision model
into the construction of a co-association matrix. In each stage, based on a set
of input clusterings, we put a data-point pair into a positive region if the corre-
sponding value in the matrix is high enough or into a negative region if the value
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is low enough. The corresponding entry in the matrix is then updated with the
largest value 1 or the smallest value 0, respectively. Otherwise, the pair is put
into a third boundary region and the corresponding entry is to be determined in
the next stage that involves more input clusterings. In this way, we determine
the entries in the matrix and correspondingly, make quick decisions on the clus-
tering of some data points in early stages. As a result, we may be able to reduce
the overall computational cost of constructing the matrix.

The remaining part of this paper is arranged as follows. Section 2 reviews
consensus clustering methods based on co-association matrix. The sequential
three-way approach to constructing the matrix is presented in Sect. 3. Section 4
shows the experimental results. Section 5 concludes the paper and discusses pos-
sible directions for the future work.

2 A Review of Co-association Matrix Based Consensus
Clustering Methods

The main task of consensus clustering is to combine different clusterings of a
dataset into one single clustering, usually without referring to the original fea-
tures or attributes of the data points. A general framework of consensus clus-
tering includes two steps [20], namely, the Generation and Consensus steps. The
Generation step generates the set of input clusterings for a given dataset. They
can be produced by different basic clustering methods or multiple applications
of the same method with different parameters. The Consensus step combines
the input clusterings into a final consensus clustering according to a particular
consensus function.

A co-association matrix based method includes two steps in the main pro-
cedure. The first step is to synthesize the input clusterings into an intermediate
representation called a co-association matrix. Each entry in the matrix measures
how many times the two corresponding data points are associated or clustered
together in the input clusterings. The second step is to get the final consensus
clustering by applying a basic clustering method to the matrix.

Suppose X = {x1, x2, · · · , xn} is a given dataset and C
in = {C1, C2, · · · , Cm}

is a set of input clusterings on X. In a co-association matrix based method, an
input clustering Ck(1 ≤ k ≤ m) is commonly represented by an n × n matrix.
Moreover, the input clusterings are widely assumed to be hard clusterings where
a data point belongs to exactly one cluster. Thus, the entries in a matrix Ck(1 ≤
k ≤ m) are formally defined as: for 1 ≤ i ≤ n and 1 ≤ j ≤ n,

Ck(i, j) =
{

1, if xi and xj are clustered together,
0, otherwise. (1)

Based on the set C
in, a simple way to construct the co-association matrix Mn×n

is to use the proportion of input clusterings where the two corresponding data
points are associated, which is the evidence accumulation framework proposed
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in [7]. Accordingly, M is constructed as: for 1 ≤ i ≤ n and 1 ≤ j ≤ n,

M(i, j) =
1
m

m∑
k=1

Ck(i, j). (2)

More complex measures are proposed to construct the matrix by taking into
account more information. The Connected-Triple based Similarity (CTS) and
SimRank based Similarity (SRS) [12] consider the transitivity property of clus-
tering data points. A Weighted Co-Association Matrix is presented in [21] which
takes into consideration the size of the clusters containing the two data points
and the total number of clusters in the corresponding input clustering. The Prob-
ability Accumulation Matrix [22] considers the size of the clusters containing the
two data points and the number of attributes used to describe the data points.

To cluster the data points based on the co-association matrix, two hierarchi-
cal clustering methods are proposed in [7,13]. A graph based method proposed
in [19] generates a similarity graph based on the matrix and obtains the final
clustering by partitioning the graph. Two threshold based methods are presented
in [6,7].

The co-association matrix based methods are advantageous in several
aspects. They use the co-association idea to avoid the labeling correspondence
problem which is a common difficulty in some popular categories of current con-
sensus clustering methods. For instance, in the relabeling and voting based meth-
ods [20], the first step is to relabel the input clusters in all the input clusterings
where the labeling correspondence problem needs to be solved in order to find
the correspondence between clusters in different clusterings. The labeling corre-
spondence problem can only be solved, with certain accuracy, when the input
clusterings have the same number of clusters, which is a very restrictive condition
in these methods. Besides, the co-association matrix based methods are easy to
understand and implement since the constructions of the matrix and the basic
clustering methods are usually quite intuitive. However, since they need to com-
pute the value for each data-point pair to construct the co-association matrix,
they usually have high computational cost with big datasets, which restricts
their applications.

3 A Sequential Three-Way Approach to Constructing
a Co-association Matrix

Based on a general framework of sequential three-way decisions proposed in [26],
we present a sequential three-way approach to progressively constructing a co-
association matrix in multiple stages.

3.1 An (α, β)-cut of a Co-association Matrix

The values in a co-association matrix quantitatively evaluate how likely two data
points are clustered together. In order to decide whether two data points should
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be clustered together in the final clustering, it may be sufficient to qualitatively
know whether they are likely enough to be associated, that is, whether the
corresponding value in the matrix is large enough. Similarly, to decide whether
they should be separated into different clusters, a qualitatively small enough
value may be sufficient. Based on this idea, we can use a pair of thresholds to
cut the values and divide the data-point pairs into three decision regions. The
matrix is then updated by assigning different values to the pairs in different
regions.

Suppose (α, β) is a pair of thresholds with 0 ≤ β < α ≤ 1 and eval : X×X →
[0, 1] is a measure to evaluate how likely two data points are associated based
on a set of input clusterings (e.g., Eq. (2)). By using the pair (α, β) to cut the
evaluation values, the set of data-point pairs X = X × X is divided into three
disjoint positive POS, negative NEG and boundary BND regions:

POS(X) = {(xi, xj) ∈ X | eval(xi, xj) ≥ α},

NEG(X) = {(xi, xj) ∈ X | eval(xi, xj) ≤ β},

BND(X) = {(xi, xj) ∈ X | β < eval(xi, xj) < α}. (3)

The entries in the co-association matrix Mn×n are accordingly determined as:

(MP) If (xi, xj) ∈ POS(X), then M(i, j) = 1,
(MN) If (xi, xj) ∈ NEG(X), then M(i, j) = 0,
(MB) If (xi, xj) ∈ BND(X), then M(i, j) = eval(xi, xj) or a constant value

v ∈ (0, 1).

As a result, for two data points xi and xj , if their evaluation value eval(xi, xj)
is high enough to indicate that they are associated (i.e., eval(xi, xj) ≥ α), then
we cluster them together by assigning the largest evaluation value 1 to the entry
M(i, j). If the evaluation value is low enough to indicate that they are not
associated (i.e., eval(xi, xj) ≤ β), then we separate them into different clusters
by assigning the smallest evaluation value 0 to the entry M(i, j). Otherwise, we
cannot make a definite decision due to insufficient information. The entry M(i, j)
may take the original evaluation value or a default constant value v ∈ (0, 1) such
as 0.5.

3.2 An l-stage Sequential Three-Way Approach to Constructing a
Co-association Matrix

In the (α, β)-cut discussed in the previous subsection, a definite decision can-
not be made on the data-point pairs in the boundary region due to insufficient
information provided by the input clusterings. By involving more input cluster-
ings, we may be able to refine the boundary region, which results in a sequential
three-way approach to constructing a co-association matrix.
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Suppose we have the following sequence of sets of input clusterings:

C
in
1 � C

in
2 � · · · � C

in
l . (4)

The proper subset relationship C
in
k � C

in
k+1(1 ≤ k < l) ensures that C

in
k+1

contains at least one more input clustering than C
in
k , which gives more infor-

mation about the clustering of data points. By using these sets one by one,
we can obtain an l-stage sequential three-way approach to constructing the co-
association matrix. Suppose X is the given dataset and Xk is the set of data-
point pairs considered in the kth stage. The three regions in the kth stage are
constructed as: let X1 = X × X and Xk = BNDk−1(Xk−1)(1 < k ≤ l),

POSk(Xk) = {(xi, xj) ∈ Xk | eval(xi, xj |Cin
k ) ≥ αk},

NEGk(Xk) = {(xi, xj) ∈ Xk | eval(xi, xj |Cin
k ) ≤ βk},

BNDk(Xk) = {(xi, xj) ∈ Xk | βk < eval(xi, xj |Cin
k ) < αk}, (5)

where eval(xi, xj |Cin
k ) is the evaluation value of xi and xj calculated based on the

set C
in
k , and the thresholds satisfy the condition 0 ≤ βk < αk ≤ 1. Accordingly,

the entries in the co-association matrix Mn×n are determined as follows:

(MP
k ) If (xi, xj) ∈ POSk(Xk), then M(i, j) = 1,

(MN
k ) If (xi, xj) ∈ NEGk(Xk), then M(i, j) = 0,

(MB
k ) If (xi, xj) ∈ BNDk(Xk), then M(i, j) = eval(xi, xj |Cin

k ).

One may take special actions to deal with a nonempty final boundary region
BNDl(Xl) instead of using the original evaluation values. For example, one may
use a two-way process with a threshold r (e.g., 0.5) to clean up the boundary
region or use a fixed value (e.g., 0.5) to replace the original evaluation values.

There are several assumptions in the above sequential three-way approach.
Firstly, it is assumed that we are more biased towards putting the data-point
pairs into the boundary region in an early stage where limited information is
available. It leads to the relationships of all the thresholds [25]: 0 ≤ β1 ≤ β2 ≤
· · · ≤ βl < αl ≤ αl−1 ≤ · · · ≤ α1 ≤ 1. By using a more restrictive pair of
thresholds in an early stage, a data-point pair is more likely to be put into
the boundary region, which indicates a more conservative opinion due to limited
information. A third assumption is that we do not go back to update the positive
and negative regions constructed in earlier stages. In other words, the definite
decisions associated with these regions are not updated although they might
be inappropriate when more input clusterings are available in some stage later
on. Consequently, in each stage, we only focus on refining the boundary region
constructed in the previous stage.
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Example 1. We illustrate the construction of a co-association matrix by the pre-
sented approach. Suppose the data set is X = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.
The set C

in of all input clusterings on X includes the following ten clusterings:

C1 =
{{o1, o2, o8}, {o3, o9, o10}, {o4, o6, o7}, {o5}

}
,

C2 =
{{o1, o4, o6}, {o2, o5, o8}, {o3, o7, o9, o10}

}
,

C3 =
{{o1, o4, o6}, {o2, o8}, {o3, o5, o9, o10}, {o7}

}
,

C4 =
{{o1, o2, o7, o8}, {o3, o5, o9, o10}, {o4, o6}

}
,

C5 =
{{o1, o2, o7, o8}, {o3, o9, o10}, {o4, o5, o6}

}
,

C6 =
{{o1, o4, o6}, {o2, o3, o5, o9}, {o7}, {o8, o10}

}
,

C7 =
{{o1, o4, o6, o7}, {o2, o3, o8}, {o5, o9, o10}

}
,

C8 =
{{o1, o3, o7, o9, o10}, {o2, o8}, {o4, o6}, {o5}

}
,

C9 =
{{o1, o2, o4}, {o3, o5, o9, o10}, {o6, o7, o8}

}
,

C10 =
{{o1, o4, o6}, {o2, o7, o8}, {o3, o5, o9, o10}

}
.

We use Eq. (2) to calculate the evaluation values, which is a symmetric measure.
Thus, we need to compute the entries in the top right half of the matrix, not
including the diagonal line. Suppose C

in
1 = {C1, C2, C3, C4, C5, C6}. The evaluation

values are given in Table 1(a). By using thresholds (1, 0), the entries with grey
background are in the boundary region and the remaining entries are in either
the positive or negative region. In stage 2, C

in
2 = C

in
1 ∪ {C7}. The evaluation

values for the previous boundary region are modified and given in Table 1(b).
By using thresholds (0.9, 0.1), the previous boundary region stays the same. In
stage 3, C

in
3 = C

in
2 ∪ {C8} and the evaluation values are given in Table 1(c).

By using thresholds (0.8, 0.2), some entries in the previous boundary region are
moved to either the positive or negative region and the corresponding values
in the matrix are changed to either 1 or 0. This process goes on with stage 4
using C

in
4 = C

in
3 ∪ {C9} and thresholds (0.7, 0.3) and stage 5 using C

in
5 = C

in

and thresholds (0.6, 0.4). If we do not allow overlap between clusters (i.e., we
consider the hard clusterings) and assume that two data points are clustered
together if they are both clustered together with a third data point, then the
nonempty boundary region in stage 5 can be cleaned up and the final consensus
clustering is

{{o1, o4, o6}, {o2, o8}, {o3, o5, o9, o10}
}
.

3.3 Two Issues in the Presented Approach

The first issue in the presented sequential three-way approach is to avoid an easy
agreement on a definite decision in early stages where we have limited input clus-
terings. In other words, the data-point pairs should be less likely to be put into
the positive and negative regions in early stages. There are at least two possi-
ble solutions to this issue. One solution is to use very restrictive thresholds in
early stages, such as (1, 0) in the first few stages. Another solution is to care-
fully select the input clusterings used in an early stage so that it is not easy



606 M. Hu et al.

Table 1. The construction of a co-association matrix in Example 1
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for them to agree on a definite decision. This involves the determination of a
proper total number of input clusterings and the selection of the basic clustering
methods to generate the input clusterings. Intuitively, the group of input clus-
terings should be large enough since a small group is more likely to agree on
a definite decision. The basic clustering methods that are used to generate the
input clusterings should be as various as possible so that we can capture different
views of clustering the data points. Repeated applications of the same method,
such as k-means, are likely to produce similar clusterings although they start
with different initial configurations. We should involve basic clustering methods
in various categories, such as density-based clustering methods [5] that model
clusters as areas with high density and EM algorithms [2] that model clusters
as probability distributions.

The second issue is the determination of thresholds. The computation and
interpretation of thresholds have been studied with respect to one-step three-
way decisions, such as a probabilistic approach proposed in [24], a game-theoretic
approach proposed in [9], and a decision-theoretic approach proposed in [3]. In
order to apply these studies in the presented approach, we need to generalize
the current methods with respect to the sequential case and the specific topic of
consensus clustering.

These two issues can also be empirically solved by tuning related parameters
in the experiments. For instance, one may use a fixed decreasing step and a fixed
increasing step to update α and β in each stage. The two step lengths can be
tuned though experiments to find the optimal lengths.

4 Experiments

The experiments are implemented using R Studio (IDE) based on Microsoft R
Open 3.4.2. The implemented algorithm, which is called a Sequential THREE-
Way algorithm to Consensus Clustering based on Co-Association Matrix
(S3WCC-CAM), constructs a co-association matrix based on a set of input
matrices representing the input clusterings and applies a hierarchical clustering
method to generate the final clustering. The main procedure in S3WCC-CAM
is given as follows.

Input:
– A set C

in of n × n matrices where n is the number of data points in the
dataset. The values in these matrices are in the unit interval [0,1].

– A number m of input matrices to be used in the first iteration.
– A number r(r ≥ 1) used to refine the thresholds.

Output: A hierarchical final clustering HC of the dataset.
Step 1: Construct the co-association matrix Mn×n.

(1) Generate a sequence Seq of thresholds refined by r.
(2) Initialize all the entries in the co-association matrix Mn×n to be N/A

(i.e., not available) and the subset C
in
it of input matrices used in the next

iteration to be empty. As a result, C
in
it is the set of visited input matrices

in C
in and (Cin − C

in
it ) is the set of non-visited input matrices.
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(3) Perform the following steps iteratively until either the boundary region
or the set (Cin − C

in
it ) is empty:

– Get the next pair of thresholds (α, β) from the sequence Seq.
– If it is the first iteration, select a set of m matrices from (Cin − C

in
it )

and add them to C
in
it . Otherwise, select one matrix from (Cin − C

in
it )

and add it to C
in
it .

– Based on the set C
in
it , update the evaluation values of all data-point

pairs in the current boundary region, divide these pairs into three
regions and update the entries in M accordingly.

(4) If the boundary region is not empty, update all entries in the boundary
region with 0.5.

Step 2: Generate the hierarchical clustering HC by applying a hierarchical clus-
tering method to M .

The input matrices in C
in are produced by applying basic clustering algo-

rithms to a dataset. These basic clustering algorithms include 12 algorithms imple-
mented in the package diceR [1], namely, AP, BLOCK, CMEANS, GMM, SC,
SOM, DIANA Euclidean, HC Euclidean, HDBSCAN, KM Euclidean, NMF Scd
(or NMF Lee), and PAM Euclidean. Every clustering algorithm can be repeatedly
applied with different sets of tuning parameters, such as a given number of clusters
and a distancemeasure. In the current implementation,we only considerEuclidean
distance and run each algorithm three times with the number of clusters as 3, 4,
and 5, respectively. In total, they produce 36 clusterings represented by 36 n × n
matrices that comprise the input set C

in.
The sequence Seq of thresholds starts from the most restrictive pair (1, 0).

The other pairs are generated according to two step lengths, one δα for decreasing
α and another δβ for increasing β. In the current implementation, we consider
a simple case where δα = δβ = δ. The step length δ is calculated as:

δ =
1

2 ∗ (|Cin| − m + 1) − 1
· 1
r
, (6)

where the number |Cin| − m + 1 is the maximum number of iterations.
Each iteration in (3) of Step 1 represents a stage in the presented sequential

three-way approach. In order to use as various input clusterings as possible,
when selecting matrices from (Cin − C

in
it ), we prefer the matrices produced by

non-visited clustering algorithms, that is, these algorithms do not produce any
matrix in C

in
it that is the set of visited matrices. If there are more candidate

matrices than required, we randomly select a required number of matrices from
them. To deal with a nonempty boundary region after the iterations, we update
all the entries in the boundary region with a value 0.5. The hierarchical clustering
method used in Step 2 adopts an agglomerative strategy using the average linkage
(UPGMA) [18] to find and merge similar clusters, which is implemented in the
package diceR [1].
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The algorithm S3WCC-CAM is applied to two datasets, that is, iris1 from
UCI and hgsc2 from the diceR package. The dataset iris includes 150 data points
described by 4 attributes. A fifth attribute of class labels is ignored in the clus-
tering process and used as an external reference in the evaluations. The dataset
hgsc includes 489 data points described by 321 attributes without an attribute
of class labels. Due to the limitation of our experimental environments, the algo-
rithm is not applied with large datasets in the current experiments. This might
be a direction of our future work. The evaluation value of a data-point pair
is computed as the proportion of times that the two data points are clustered
together out of the times that they are chosen in the bootstrap resampling [1],
which is implemented in the package diceR. Table 2 lists the configurations of m
and r considered in our experiments.

Table 2. Configurations of m and r in the experiments

id m r id m r id m r id m r

c1 3 1 c5 6 1 c9 9 1 c13 12 1

c2 3 3 c6 6 3 c10 9 3 c14 12 3

c3 3 6 c7 6 6 c11 9 6 c15 12 6

c4 3 9 c8 6 9 c12 9 9 c16 12 9

The results of S3WCC-CAM are compared with Cluster-based Similarity
Partitioning Algorithm (CSPA) [19] and Link-based Cluster Ensemble method
(LCE) [11]. The clustering results are measured by both internal and exter-
nal indices implemented in the package diceR [1]. The internal indices include
avg within that measures the average distance within clusters, avg between that
measures the average distance between clusters and avg silwidth that measures
the average distance between clusters based on Silhouette width. Thus, a smaller
avg within, a bigger avg between and a bigger avg silwidth indicate a better clus-
tering. The external indices measure the similarity of two clusterings by using
the class labels as an external reference. The two external indices used in our
experiments are the corrected Rand index (corrected rand) [10] and Meila’s vari-
ation index (vi) [17]. The corrected Rand index ranges from −1 to 1 with −1
indicating no agreement and 1 indicating perfect agreement. The Meila’s vari-
ation index measures the variation of information for two clusterings based on
mutual information. It has an upper bound log n where n is the number of data
points in the dataset. A smaller Meila’s variation index indicates a better clus-
tering. Table 3 summarizes the results of all the above indices. Besides, Table 3
also shows the run time (run time) and the percentage of boundary region when
the iterations stop (BND perc) in S3WCC-CAM. Since the dataset hgsc does
not contain the class labels, only internal indices are evaluated.
1 https://archive.ics.uci.edu/ml/datasets/Iris.
2 https://www.rdocumentation.org/packages/diceR/versions/0.3.2/topics/hgsc.

https://archive.ics.uci.edu/ml/datasets/Iris
https://www.rdocumentation.org/packages/diceR/versions/0.3.2/topics/hgsc
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Table 3. A summary of the experiment results

As shown in Table 3, S3WCC-CAM generally produces as good clustering
results as CSPA and LCE based on the internal and external indices. In terms
of the run time, S3WCC-CAM outperforms LCE with all the configurations and
CSPA with most configurations, especially on the dataset hgsc. Different config-
urations of m and r in S3WCC-CAM have a significant influence on run time and
BND perc. A further study, either experimental or theoretical, on the optimal
configuration is necessary and might be a direction for future work.
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5 Conclusions and Future Work

We present a sequential three-way approach to progressively constructing a co-
association matrix in multiple stages. In each stage, we calculate the evaluation
values based on a set of input clusterings. A pair of thresholds is then used
to cut the evaluation values, and accordingly, the data-point pairs are divided
into three disjoint positive, negative and boundary regions. The entries in the
co-association matrix corresponding to the positive and negative regions are
updated with the highest evaluation value 1 and the lowest evaluation value 0,
respectively. Accordingly, a definite decision of either clustering two data points
together or separating them is associated. By gradually involving more input
clusterings, we are able to refine the evaluation values in the boundary regions
and make a definite decision if possible. By determining some entries to be 1
or 0 once sufficient information can be obtained from the input clusterings, the
presented approach makes quick definite decisions on the clustering of some data
points in early stages. In this way, we may reduce the overall computational cost
of constructing the co-association matrix and obtaining the final clustering.

One direction of the future work is to solve the two issues in the presented
approach as mentioned. A second direction is to generalize the presented sequen-
tial approach with respect to other consensus clustering methods that do not use
co-association matrix. A third direction is a further experimental study, includ-
ing the optimal configuration of S3WCC-CAM as well as its applications on
larger datasets.
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Abstract. In recent years, researchers have proposed fuzzy rough set
based attribute reduction methods direct on original decision tables to
improve the accuracy of the classification model. Most of the previously
proposed methods are filter methods, which means that the classification
accuracy is evaluated after finding reduct. Therefore, the obtained reduct
is not optimal both in terms of number of attributes and classification
accuracy. In this paper, we propose a fuzzy partitioning distance and a
fuzzy partitioning distance based algorithm to find approximate reduct
according to filter-wrapper approach. Experimental results on some data
sets show that the classification accuracy on reduct of proposed algorithm
is more efficient than that of traditional filter algorithms. Furthermore,
by using distance measurements, the execution time of the proposed
algorithm is more efficient than the execution time of entropy based
filter-wrapper algorithms.

Keywords: Fuzzy rough set · Fuzzy equivalence relation
Fuzzy distance · Decision tables · Attribute reduction · reduct

1 Introduction

Attribute reduction is an important problem in the preprocessing step. The
objective of attribute reduction is to eliminate redundant attributes to increase
the efficiency of data mining algorithms. Rough set theory proposed by Pawlak
[25] is considered to be an effective tool for solving attribute reduction problem.
According to rough set approach, the researchers have proposed different mea-
sures based on the cardinality of equivalence classes, typically positive region,
discernibility function, information entropy, information granule, distance mea-
sure. Using these measures, the researchers have proposed attribute reduction
algorithms in decision tables. In the proposed measures, distance is considered
to be an effective measure to solve attribute reduction problem [7–9,22]. How-
ever, rough set based attribute reduction algorithms are implemented on tables
with discrete value domain. It is clear that discrete methods do not preserve the
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original differences between objects in the original data. Therefore, the classifi-
cation accuracy on the obtained reduct is reduced. To improve the classification
accuracy, researchers have proposed a fuzzy rough set approach.

Fuzzy rough set proposed by Dubois et al. [2] is considered as an effective tool
for solving attribute reduction problem direct on original decision tables, with-
out data preprocessing step. In fuzzy rough set, a fuzzy equivalence relation is
defined on the attribute value domain. Based on the fuzzy equivalence, the con-
cepts in traditional set theory are redefined as: fuzzy lower approximation, fuzzy
upper approximation, fuzzy domain region some measures are rebuilt as fuzzy
discernibility matrix, fuzzy entropy and some fuzzy rough set based attribute
reduction methods are proposed. In recent years, many researches have pro-
posed fuzzy rough set based attribute reduction methods, typically fuzzy domain
region based methods [11,13,17–21,24], fuzzy discernibility matrix based meth-
ods [3,4], fuzzy entropy based methods [6,12,13,23] and fuzzy distance methods
[1,10]. For fuzzy domain region based methods, Jensen et al. [17–19] proposed
the QUICKREDUCT algorithm to find reduct. Bhatt et al. [21] improved the
QUICKREDUCT algorithm to improve the execution time. Jensen et al. [20] pro-
posed three improved directions of QUICKREDUCT to optimize the obtained
reduct. Hu et al. [13] proposed the FAR-VPFRS algorithm to find a reduct on
hybrid decision tables. Qian et al. [24] proposed improved versions of approxi-
mations and proposed the FA-FPR algorithm to minimize the execution time.
Authors in [11] proposed an algorithm for finding reduct using fuzzy dependency
function on real-valued decision tables. Chen et al. [3,4] proposed algorithms to
find reduct based on fuzzy discernibility matrix. For fuzzy entropy based meth-
ods, Hu et al. [12,13] constructed fuzzy entropies and proposed some attribute
reduction algorithms using fuzzy entropies. Dai et al. [6] constructed a fuzzy gain
ratio and developed the GAIN-RATION-AS-FRS algorithm to find a reduct.
Using fuzzy distance, authors in [1,10] constructed a fuzzy Jaccard distance and
proposed the algorithm F-DBAR to find reduct. The experimental results in the
above publications show that fuzzy rough set based attribute reduction methods
has a higher classification accuracy than traditional rough set based methods.
Furthermore, fuzzy distance based methods are more effective than other meth-
ods on both classification accuracy and execution time. However, most of the
above attribute reduction methods are filter approach, which means that the
classification accuracy is evaluated after obtaining reduct. Therefore, the reduct
of the above methods has not optimized both the cardinality of reduct and the
classification accuracy, which means that the obtained reduct does not have the
best classification accuracy.

In order to improve the classification accuracy on the obtained reduct, Zhang
et al. [23] proposed a filter-wrapper algorithm using -fuzzy entropy. With this
approach, the filter phase finds candidates for reduct, called the approximate
reduct, the wrapper phase finds the reduct with the highest classification accu-
racy. The experimental results on some data sets show that the filter-wrapper
algorithm reduced significantly the cardinality of reduct and increase signifi-
cantly the classification accuracy. The execution time of the algorithm is higher
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than traditional filter algorithms due to the time cost of computational the
classification accuracy in the wrapper phase. However, the filter-wrapper algo-
rithm in [23] computed fuzzy positive region to compute and computed logarithm
expressions in the fuzzy entropy formula. Therefore, the execution time increases
compared with the fuzzy distance formula calculated in [1,10].

In this paper, we propose a filter-wrapper algorithm to find approximate
reduct using a fuzzy partition distance measure. First of all, we construct a
new fuzzy partition distance, which is to improve the fuzzy Jaccard distance in
[1,10]. Using the fuzzy partition distances, we propose a filter-wrapper algorithm
to find the approximate reduct with the best classification accuracy. Experimen-
tal results on some data sets show that the proposed algorithm reduced the
execution time compared with the filter-wrapper algorithm using -fuzzy entropy
in [23]. Furthermore, the proposed algorithm has a higher classification accuracy
than filter algorithms using fuzzy distance in [1,10]. The structure of paper is
as follows. Section 2 presents some basic concepts. Section 3 shows the method
to construct a fuzzy partition distance between two sets of attributes. Section 4
proposes fuzzy partition distance based attribute reduction method. In Sect. 5,
we present experimental results on some data sets. Finally, the conclusion and
further research directions.

2 Some Basic Concepts

A decision tables is a pair DS = (U,C ∪ D) in which U is a finite set of non-
empty objects; C is a conditional attribute set, D is a decision attribute set
where C ∩ D = ∅.

Pawlak’s rough set theory [25] uses the equivalence relation to approximate
the set. Consider the decision table DS = (U,C ∪ D), each attribute subset
P ⊆ C defines an equivalence relation on the attribute value domain, denoted
by RP .

RP = {(x, y) ∈ U × U |∀a ∈ P, a (x) = a (y)}
where a(x) is the value of the attribute a of the object x. The relation RP

determines a partition on U, denoted by K (P ) = U/Rp = {[x]P |x ∈ U } where
[x]P is the equivalence class contains the object x, [x]P = {y ∈ U |(x, y) ∈ RP }.
For X ⊆ U , the lower approximation and the upper approximation of X are
PX = {x ∈ U |[x]P ⊆ X }, PX = {x ∈ U |[x]P ∩ X �= ∅} respectively. The pair〈
PX,PX

〉
is called rough set of X with respect to RP .

Fuzzy rough set proposed by Dubois et al. [2] uses a fuzzy equivalence to
approximate fuzzy sets. Let us consider the decision table DS = (U,C ∪ D), a
relation R̃ defined on the attribute value domain is called a fuzzy equivalence
relation if it satisfies the following conditions:

(1) Reflectivity: R̃ (x, x) = 1;
(2) Symmetry: R̃ (x, y) = R̃ (y, x);
(3) Max-min transitive: R̃ (x, z) ≥ min

{
R̃ (x, y) , R̃ (y, z)

}
for any x, y, z ∈ U ;
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Given two fuzzy equivalence relations R̃P , R̃Q defined on P,Q ⊆ C, then for
any x, y ∈ U we have [14]:

(1) R̃P = R̃Q ⇔ R̃P (x, y) = R̃Q (x, y)
(2) R̃ = R̃P ∪ R̃Q ⇔ R̃ (x, y) = max

{
R̃P (x, y) , R̃Q (x, y)

}

(3) R̃ = R̃P ∩ R̃Q ⇔ R̃ (x, y) = min
{

R̃P (x, y) , R̃Q (x, y)
}

(4) R̃P ⊆ R̃Q ⇔ R̃P (x, y) ≤ R̃Q (x, y)

The relation R̃P is represented by the fuzzy equivalent matrix M
(
R̃P

)
=

[pij]n×n as follows:

M(R̃P ) =

⎡

⎢⎢
⎣

p11 p12 ... p1n
p21 p22 ... p2n
... ... ... ...
pn1 pn2 ... pnn

⎤

⎥⎥
⎦

where pij = R̃P (xi, xj) is the value of the relationship between two objects xi

and xj on the attribute set P, pij ∈ [0, 1].
For P,Q ⊆ C, as indicated in [14], we have R̃P = ∩a∈P R̃a and R̃P∪Q =

R̃P ∩ R̃Q, that is for any x, y ∈ U , R̃P∪Q (x, y) = min
{

R̃P (x, y) , R̃Q (x, y)
}

.

Assume that M
(
R̃P

)
= [pij]n×n and M(R̃Q) = [qij]n×n are the fuzzy equivalent

matrices of R̃P , R̃Q, then fuzzy equivalent matrix on the attribute set S = P ∪Q
is:

M(R̃S) = M
(
R̃P∪Q

)
= [sij]n×n where sij = min {pij, qij}

For P ⊆ C, U = {x1, x2, ..., xn}, fuzzy equivalence relation R̃P determines a
fuzzy partition π

(
R̃P

)
= U/R̃P on U

π
(
R̃P

)
= U/R̃P =

{
[xi] ˜P

}n

i=1
=

{
[x1] ˜P , ..., [xn]

˜P

}

where [xi] ˜P = pi1/x1 + pi2/x2 + ... + pin/xn is a fuzzy set as a fuzzy equivalence
class of object xi. Membership functions of objects is determined by μ[xi] ˜P

(xj) =
μ

˜RP
(xi, xj) = R̃P (xi, xj) = pij for any xj ∈ U . Then, the cardinality of fuzzy

equivalence class [xi] ˜RP
is calculated by

∣∣[xi] ˜P

∣∣ =
n∑

j=1

pij .

Assume that P is the set of all fuzzy partition on U defined by fuzzy equiv-
alence relations on attribute sets, then P is called a fuzzy partition space on
U. Let us consider fuzzy partition π

(
R̃P

)
=

{
[xi] ˜P

}n

i=1
. Specially, if pij = 0

for 1 ≤ i, j ≤ n then
∣∣[xi] ˜P

∣∣ = 0 for i ≤ n, π
(
R̃P

)
is called finest, denoted as

π (ω̃). If pij = 1 for 1 ≤ i, j ≤ n then
∣∣[xi] ˜P

∣∣ = |U | for i ≤ n,π
(
R̃P

)
is called

coarseness, denoted as π
(
δ̃
)
.
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For π
(
R̃P

)
, π

(
R̃Q

)
∈ P, a partial order relation ≺ is defined as [15]: π

(
R̃P

)

≺π
(
R̃Q

)
⇔ [xi] ˜RP

⊆ [xi] ˜RQ
, i ≤ n ⇔ pij ≤ qij , i, j ≤ n, R̃P≺R̃Q for short.

Equality π
(
R̃P

)
= π

(
R̃Q

)
⇔ [xi] ˜RP

= [xi] ˜RQ
, i ≤ n ⇔ pij = qij , i, j ≤ n,

R̃P = R̃Q for short. π
(
R̃P

)
≺ π

(
R̃Q

)
⇔ π

(
R̃P

)
≺π

(
R̃Q

)
and π

(
R̃P

)
�=

π
(
R̃Q

)
, R̃P ≺ R̃Q for short.

3 Fuzzy Partition Distance and Its Properties

Given a decision table DS = (U,C ∪ D) where U = {x1, x2, ..., xn}, P,Q ⊆ C

and K (P ) = {[xi]P |xi ∈ U }, K (Q) =
{

[xi]Q |xi ∈ U
}

are two crisp partitions
on P and Q. Liang et al. [7] indicated

D (K (P ) ,K (Q)) =
1

|U |
|U |∑

i=1

⎛

⎝
|[xi]P | ⊕

∣
∣∣[xi]Q

∣
∣∣

|U |

⎞

⎠

where |[xi]P | ⊕
∣∣∣[xi]Q

∣∣∣ =
∣∣∣[xi]P ∪ [xi]Q

∣∣∣ −
∣∣∣[xi]P ∩ [xi]Q

∣∣∣ is the distance between
partitions K(P) and K(Q). Based on above partition distance, in this section we
construct a fuzzy partition distance according to fuzzy rough set approach.

3.1 Fuzzy Distance Between Two Fuzzy Sets

First of all, in this section we construct a distance measure between two fuzzy
sets, called fuzzy distance.

Lemma 1 [10]. Given three fuzzy sets Ã, B̃, C̃ on the object set U. Then we
have

∣
∣∣Ã

∣
∣∣ −

∣
∣∣Ã ∩ B̃

∣
∣∣ +

∣
∣∣C̃

∣
∣∣ −

∣
∣∣C̃ ∩ Ã

∣
∣∣ ≥

∣
∣∣C̃

∣
∣∣ −

∣
∣∣C̃ ∩ B̃

∣
∣∣.

Proposition 1. Given two fuzzy sets Ã, B̃ on U. Then d
(
Ã, B̃

)
=

∣∣
∣Ã ∪ B̃

∣∣
∣ −

∣∣∣Ã ∩ B̃
∣∣∣ is a distance between fuzzy sets Ã and B̃.

Proof. It is clear that
∣
∣∣Ã ∪ B̃

∣
∣∣ ≥

∣
∣∣Ã ∩ B̃

∣
∣∣, so d

(
Ã, B̃

)
≥ 0. Furthermore,

d
(
Ã, B̃

)
= d

(
B̃, Ã

)
. Next, we have to prove triangle inequality d

(
Ã, B̃

)
+

d
(
Ã, C̃

)
≥ d

(
B̃, C̃

)
. According to Lemma 1 we have:

∣∣∣Ã
∣∣∣ −

∣∣∣Ã ∩ B̃
∣∣∣ +

∣∣∣C̃
∣∣∣ −

∣∣∣C̃ ∩ Ã
∣∣∣ ≥

∣∣∣C̃
∣∣∣ −

∣∣∣C̃ ∩ B̃
∣∣∣ (1)

∣∣∣Ã
∣∣∣ −

∣∣∣Ã ∩ C̃
∣∣∣ +

∣∣∣B̃
∣∣∣ −

∣∣∣B̃ ∩ Ã
∣∣∣ ≥

∣∣∣B̃
∣∣∣ −

∣∣∣B̃ ∩ C̃
∣∣∣ (2)
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Adding (1) to (2), we have
(∣
∣∣Ã

∣
∣∣ +

∣
∣∣B̃

∣
∣∣ − 2

∣
∣∣Ã ∩ B̃

∣
∣∣
)

+
(∣
∣∣Ã

∣
∣∣ +

∣
∣∣C̃

∣
∣∣ − 2

∣
∣∣Ã ∩ C̃

∣
∣∣
)

≥
∣
∣∣B̃

∣
∣∣ +

∣
∣∣C̃

∣
∣∣ − 2

∣
∣∣B̃ ∩ C̃

∣
∣∣

(3)

On the other hand, for any two real numbers a, b we have max (a, b) =
a+ b−min (a, b). So we have for any xi ∈ U , max

(
μ

˜A (xi) , μ
˜B (xi)

)
= μ

˜A (xi)+

μ
˜B (xi)−min

(
μ

˜A (xi) , μ
˜B (xi)

)
, that is

∣∣∣Ã ∪ B̃
∣∣∣ =

∣∣∣Ã
∣∣∣+

∣∣∣B̃
∣∣∣−

∣∣∣Ã ∩ B̃
∣∣∣. From (3)

we obtain
(∣∣
∣Ã ∪ B̃

∣∣
∣ −

∣∣
∣Ã ∩ B̃

∣∣
∣
)

+
(∣∣
∣Ã ∪ C̃

∣∣
∣ −

∣∣
∣Ã ∩ C̃

∣∣
∣
)

≥
∣∣
∣B̃ ∪ C̃

∣∣
∣ −

∣∣
∣B̃ ∩ C̃

∣∣
∣ or

d
(
Ã, B̃

)
+ d

(
Ã, C̃

)
≥ d

(
B̃, C̃

)
. Finally, d

(
Ã, B̃

)
is a fuzzy distance between

two fuzzy sets Ã, B̃. Based on this fuzzy distance, we construct a fuzzy partition
distance in next section.

3.2 Fuzzy Partition Distance and Its Properties

Proposition 2. Given DS = (U,C ∪ D) where U = {x1, x2, ..., xn} and
π

(
R̃P

)
, π

(
R̃Q

)
is two fuzzy partitions induced by P,Q ⊆ C. Then

D
(
π

(
R̃P

)
, π

(
R̃Q

))
=

1
n2

n∑

i=1

(∣∣∣[xi] ˜P ∪ [xi] ˜Q

∣∣∣ −
∣∣∣[xi] ˜P ∩ [xi] ˜Q

∣∣∣
)

(4)

is a distance between fuzzy partitions π
(
R̃P

)
and π

(
R̃Q

)
.

Proof. It is clear that D
(
π

(
R̃P

)
, π

(
R̃Q

))
≥ 0 and D

(
π

(
R̃P

)
, π

(
R̃Q

))
=

D
(
π

(
R̃Q

)
, π

(
R̃P

))
. Next, we have to prove triangle inequality

D
(
π

(
R̃P

)
, π

(
R̃Q

))
+ D

(
π

(
R̃P

)
, π

(
R̃S

))
≥ D

(
π

(
R̃Q

)
, π

(
R̃S

))
for

any π
(
R̃P

)
, π

(
R̃Q

)
, π

(
R̃S

)
. According to Proposition 1, for any xi ∈ U we

have: D
(
[xi] ˜P , [xi] ˜Q

)
+ D

(
[xi] ˜P , [xi]˜S

) ≥ D
(
[xi] ˜Q, [xi]˜S

)
. Then

D
(
π

(
R̃P

)
, π

(
R̃Q

))
+ D

(
π

(
R̃P

)
, π

(
R̃S

))

=
1
n2

n∑

i=1

(∣∣∣[xi] ˜P ∪ [xi] ˜Q

∣∣∣ −
∣∣∣[xi] ˜P ∩ [xi] ˜Q

∣∣∣
)

+
1
n2

n∑

i=1

(∣∣[xi] ˜P ∪ [xi]˜S

∣
∣ − ∣

∣[xi] ˜P ∩ [xi]˜S

∣
∣)

=
1
n2

n∑

i=1

d
(
[xi] ˜P , [xi] ˜Q

)
+

1
n2

n∑

i=1

d
(
[xi] ˜P , [xi]˜S

) ≥ 1
n2

n∑

i=1

d
(
[xi] ˜Q, [xi]˜S

)

= D
(
π

(
R̃Q

)
, π

(
R̃S

))
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It’s easy to see that D
(
π

(
R̃P

)
, π

(
R̃Q

))
achieves the minimum value of 0 if

and only if π
(
R̃P

)
= π

(
R̃Q

)
and D

(
π

(
R̃P

)
, π

(
R̃Q

))
achieves the maximum

value of 1 if and only if π
(
R̃P

)
= π (ω̃) and π

(
R̃Q

)
= π

(
δ̃
)

(or π
(
R̃P

)
=

π
(
δ̃
)

and π
(
R̃Q

)
= π (ω̃), so 0 ≤ D

(
π

(
R̃P

)
, π

(
R̃Q

))
≤ 1.

Proposition 3. Given DS = (U,C ∪ D) where U = {x1, x2, ..., xn} and R̃ is a
fuzzy equivalence relation. Then fuzzy partition distance between C and C ∪ D
is defined as

D
(
π

(
R̃C

)
, π

(
R̃C∪D

))
=

1
n2

n∑

i=1

(∣∣[xi] ˜C

∣∣ − ∣∣[xi] ˜C ∩ [xi] ˜D

∣∣) (5)

Proof. According to Proposition 2 we have D
(
π

(
R̃C

)
, π

(
R̃C∪D

))
= 1

n2

n∑

i=1(∣∣
∣[xi] ˜C ∪ [xi]

˜C∪D

∣∣
∣ −

∣∣
∣[xi] ˜C ∩ [xi]

˜C∪D

∣∣
∣
)

= 1
n2

n∑

i=1

(∣∣[xi] ˜C ∪ (
[xi] ˜C ∩ [xi] ˜D

)∣∣ − ∣∣[xi] ˜C ∩ [xi] ˜D

∣∣)

= 1
n2

n∑

i=1

(∣∣[xi] ˜C

∣∣ − ∣∣[xi] ˜C ∩ [xi] ˜D

∣∣)

We have 0 ≤ D
(
π

(
R̃C

)
, π

(
R̃C∪D

))
≤ 1− 1

n . D
(
π

(
R̃C

)
, π

(
R̃C∪D

))
= 0

when π
(
R̃C

)
≺ π

(
D̃

)
and D

(
π

(
R̃C

)
, π

(
R̃C∪D

))
= 1 − 1

n when π
(
R̃C

)
=

π
(
δ̃
)

and [xi]D = {xi} where 1 ≤ i ≤ n.

Proposition 4. Given DS = (U,C ∪ D) where U = {x1, x2, ..., xn}, B ⊆ C

and R̃ is a fuzzy equivalence relation. Then

D
(
π

(
R̃B

)
, π

(
R̃B∪D

))
≥ D

(
π

(
R̃C

)
, π

(
R̃C∪D

))

Proof: From B ⊆ C, according to [15] we have π
(
R̃C

)
≺π

(
R̃B

)
, that is [xi] ˜C ⊆

[xi] ˜B where 1 ≤ i ≤ n, so
∣
∣[xi] ˜C

∣
∣ ≤ ∣

∣[xi] ˜B

∣
∣ where 1 ≤ i ≤ n. Consider the object

xi ∈ U we have:

∣
∣[xi] ˜C

∣
∣ − ∣

∣[xi] ˜C ∩ [xi] ˜D

∣
∣ =

n∑

j=1

μ[xi] ˜C
(xj) −

n∑

j=1

min
{

μ[xi] ˜C
(xj) , μ[xi]

˜D
(xj)

}

∣∣[xi] ˜B

∣∣ − ∣∣[xi] ˜B ∩ [xi] ˜D

∣∣ =
n∑

j=1

μ[xi] ˜B
(xj) −

n∑

j=1

min
{

μ[xi] ˜B
(xj) , μ[xi]

˜D
(xj)

}

(1) For xj ∈ [xi]D we have μ[xi]
˜D

(xj) = 1, so
∣∣[xi] ˜C

∣∣ − ∣∣[xi] ˜C ∩ [xi] ˜D

∣∣ = 0 =∣∣[xi] ˜B

∣∣ − ∣∣[xi] ˜B ∩ [xi] ˜D

∣∣
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(2) For xj /∈ [xi]D we have μ[xi]
˜D

(xj) = 0, so
∣∣[xi] ˜C

∣∣−∣∣[xi] ˜C ∩ [xi] ˜D

∣∣ =
∣∣[xi] ˜C

∣∣ ≤∣∣[xi] ˜B

∣∣ =
∣∣[xi] ˜B

∣∣ − ∣∣[xi] ˜B ∩ [xi] ˜D

∣∣.

From (1), (2) we have
∣∣[xi] ˜B

∣∣ − ∣∣[xi] ˜B ∩ [xi] ˜D

∣∣ ≥ ∣∣[xi] ˜C

∣∣ − ∣∣[xi] ˜C ∩ [xi] ˜D

∣∣

⇔ 1
n2

n∑

i=1

(∣∣[xi] ˜B

∣∣ − ∣∣[xi] ˜B ∩ [xi] ˜D

∣∣) ≥ 1
n2

n∑

i=1

(∣∣[xi] ˜C

∣∣ − ∣∣[xi] ˜C ∩ [xi] ˜D

∣∣)

⇔ D
(
π

(
R̃B

)
, π

(
R̃B∪D

))
≥ D

(
π

(
R̃C

)
, π

(
R̃C∪D

))
.

The equality D
(
π

(
R̃B

)
, π

(
R̃B∪D

))
= D

(
π

(
R̃C

)
, π

(
R̃C∪D

))
if and

only if
∣∣[xi] ˜B

∣∣ =
∣∣[xi] ˜C

∣∣ for any xi ∈ U .
Zhang et al. [23] indicated that fuzzy conditional entropy does not satisfy

monotonicity with the cardinality of conditional attribute set in inconsistent
fuzzy decision tables. Thus, fuzzy entropy based attribute reduction methods in
[6,12,13,23] are limited by the use of fuzzy conditional entropy to evaluate the
criterion for selecting attributes. Proposition 4 shows that the fuzzy partition-
ing distance satisfies the monotonicity with the cardinality of the conditional
attribute set, that is, the smaller the cardinality of condition attribute set, the
greater the fuzzy partition distance. Thus, the fuzzy partitioning distance can be
used as the criterion for selecting attributes in a heuristic algorithm, as shown
in the following section.

4 Fuzzy Partition Distance Based Attribute Reduction
in Decision Tables

First of all, we present the traditional method of finding reduct using proposed
fuzzy partition distance according to the filter approach. The proposed method
consists of the following steps: defining a reduct, defining the importance of the
attribute, and constructing a heuristic algorithm to find a reduct.

Definition 1. Given a decision table DS = (U,C ∪ D) where B ⊆ C, R̃B, R̃C

is two fuzzy equivalence relations on B, C. If

(1) D
(
π

(
R̃B

)
, π

(
R̃B∪D

))
= D

(
π

(
R̃C

)
, π

(
R̃C∪D

))

(2) ∀b ∈ B, D
(
π

(
R̃B−{b}

)
, π

(
R̃{B−{b}}∪D

))
�= D

(
π

(
R̃C

)
, π

(
R̃C∪D

))

then B is a reduct of C based on fuzzy partition distance.

Definition 2. Given a decision table DS = (U,C ∪ D) where B ⊂ C and b ∈
C − B. The attribute significance of b with respect to B is defined as

SIGB (b) = D
(
π

(
R̃B

)
, π

(
R̃B∪D

))
− D

(
π

(
R̃B∪{b}

)
, π

(
R̃B∪{b}∪D

))

By Proposition 4 we have SIGB (b) ≥ 0. SIGB (b) characterizes the classifi-
cation quality of the attribute b with respect to D and it used as the attribute
selection criteria for the following heuristic algorithm.
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Algorithm. F FPDAR (Filter - Fuzzy Partition Distance based Attribute
Reduction)

Input: A decision table DS = (U,C ∪ D), a fuzzy equivalence relation R̃
Output: Reduct B of C
1. B ← ∅; D

(
π

(
R̃B

)
, π

(
R̃B∪D

))
= 1;

2. Compute fuzzy partition distance D
(
π

(
R̃C

)
, π

(
R̃C∪D

))
;

3. While D
(
π

(
R̃B

)
, π

(
R̃B∪D

))
�= D

(
π

(
R̃C

)
, π

(
R̃C∪D

))
do

4. Begin
5. Foreach a ∈ C − B compute

SIGB (a) = D
(
π
(
R̃B

)
, π

(
R̃B∪D

))
− D

(
π
(
R̃B∪{a}

)
, π

(
R̃B∪{a}∪D

))

6. Select am ∈ C − B satisfying SIGB (am)= Max
a∈C−B

{SIGB (a)} ;

7. B = B ∪ {am} ;
8. End;
Return B ;

Assume that D = {d} and |C| , |U | are the cardinality of C, D respectively.
The time complexity of computing fuzzy partition distance in command line 2
is O

(
|C| ∗ |U |2

)
. The time complexity of While loop from command line 3 to

8 is O
(
|C|2 ∗ |U |2

)
. Therefore, the time complexity of algorithm F FPDAR is

O
(
|C|2 ∗ |U |2

)
.

Let us consider the decision table DS = (U,C ∪ D) where C =
{a1, a2, ..., am}. Let ω = D

(
π

(
R̃C

)
, π

(
R̃C∪D

))
, according to algorithm

F FPDAR, asumme that the attributes ai1 , ai2 , ... are added to the empty set by
the maximum value of the attribute significance until there exists t ∈ {1, 2, ...m}
satisfying D

(
π

(
R̃{ai1 ,ai2 ,...,ait}

)
, π

(
R̃{ai1 ,ai2 ,...,ait}∪D

))
= ω. When the algo-

rithm terminates, we obtain the reduct B = {ai1 , ai2 , ..., ait}. The classification
accuracy of attribute sets does not compute in the process of finding reduct.
Therefore, F FPDAR is a filter algorithm.

On the other hand, according to Proposition 4 we have
D

(
π

(
R̃{ai1}

)
, π

(
R̃{ai1}∪D

))
≥ D

(
π

(
R̃{ai1 ,ai2}

)
, π

(
R̃{ai1 ,ai2}∪D

))
≥

... ≥ D
(
π

(
R̃{ai1 ,...,ait}

)
, π

(
R̃{ai1 ,...,ait}∪D

))
= ε. For given threshold ε > ω,

let Bk = {ai1 , ..., aik} satisfying D
(
π

(
R̃Bk

)
, π

(
R̃Bk∪D

))
≥ ε and

D
(
π

(
R̃Bk∪{aik+1}

)
, π

(
R̃Bk∪{aik+1}∪D

))
< ε. Then, Bk is called a ε-

approximate reduct.
For the purpose of finding approximate reduct with the best classification

accuracy, we proposed a hybrid filter-wrapper approach, in which the filter phase
searches for approximation reduct, the wrapper phase searches for the approxi-
mate reduct with the best classification accuracy. However, the execution time
of the filter-wrapper algorithm will be larger compared with filter algorithm.
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Our filter-wrapper algorithm finds approximate reduct using fuzzy partition-
ing distance as follows:

Algorithm. FW FPDAR (Filter-Wrapper Fuzzy Partition Distance based
Attribute Reduction).

Input: A decision table DS = (U,C ∪ D), a fuzzy equivalence relation R̃
Output: The best reduct Bbest

1. B ← ∅; T ← ∅ ; D
(
π

(
R̃B

)
, π

(
R̃B∪D

))
= 1;

// Filter phase: find approximate reducts as candidates for the best reduct
2. Compute fuzzy partition distance D

(
π

(
R̃C

)
, π

(
R̃C∪D

))
;

3. While D
(
π

(
R̃B

)
, π

(
R̃B∪D

))
�= D

(
π

(
R̃C

)
, π

(
R̃C∪D

))
do

4. Begin
5. Foreach a ∈ C − B

SIGB (a) = D
(
π
(
R̃B

)
, π

(
R̃B∪D

))
− D

(
π
(
R̃B∪{a}

)
, π

(
R̃B∪{a}∪D

))

6. Select am ∈ C − B satisfying SIGB (am) = Max
a∈C−B

{SIGB (a)} ;

7. B = B ∪ {am} ;
8. T = T ∪ {B} ;
9. End;
// Wrapper phase: find the reduct with the best classification acurracy
10. Let t = |T | //t is the number of elemenst of T, T contains the selected

attribute strings, that is T = {{ai1} , {ai1 , ai2} , ..., {ai1 , ai2 ..., ait}};
11. Let T1 = {ai1} , T2 = {ai1 , ai2} , ..., Tt = {ai1 , ai2 , ..., ait}
12. For j = 1 to t
13. Begin
14. Compute the classification accuracy of Tj by a classifier and use the

10-fold cross validation;
15. End
16. Bbest = Tjo where Tjo has the best classification accuracy.
Return Bbest

The time complexity of filter phase is O
(
|C|2 ∗ |U |2

)
. The time complexity of

wrapper phase depends on the time complexity of the classifier. Assume that the
time complexity of the classifier is O (T ), then the time complexity of wrapper
phase is O (|C| ∗ T ). Therefore, the time complexity of algorithm FW FPDAR
is O

(
|C|2 ∗ |U |2

)
+ O (|C| ∗ T ).

5 Experiments

The objective of our experiment is to compare the proposed algorithm
FW FPDAR with algorithm FEBAR [23] and F DBAR [1]. The proposed filter-
wrapper algorithm FW FPDAR finds the best approximate reduct based on
fuzzy partition distance, while filter-wrapper algorithm FEBAR [23] finds the
best approximate reduct based on λ-fuzzy entropy and filter algorithm F DBAR
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[1] finds a reduct based on fuzzy Jaccard distance. The comparison is based on
two criteria: classification accuracy and execution time.

The experiments was performed on 8 datasets from Machine Learning Repos-
itory (UCI) [26] (see Table 1). On each dataset, for each real value attribute, we
normalized data domain in [0, 1] by using the following formula

a0 (xi) =
a (xi) − min (a)

max (a) − min (a)

where max(a), min(a) is the maximal and the minimal value on the value domain
of attribute a respectively. We use the following fuzzy equivalence relation on
the attribute a

R̃a (xi, xj) = 1 − |a (xi) − a (xj)| where xi, xj ∈ U

For a ∈ C has nominal or binary value, we use the following equivalence
relation where xi, xj ∈ U

Ra =
{

1, a (xi) = a (xj)
0, otherwise

We use the equivalence relation R{d} on the decision attribute d. Partition

U/R{d} =
{

[x]{d} |x ∈ U
}

where [x]{d} =
{
y ∈ U

∣∣R{d}(x, y) = 1
}

is an equiv-
alence class. Then, the equivalence class [x]d can be seen as a fuzzy equivalence
class, denoted as [x]

˜d, where membership fuction μ[x]
˜d
(y) = 1 if y ∈ [x]d and

μ[x]
˜d
(y) = 0 if y /∈ [x]d.

For the filter-wrapper algorithm FW FPDAR and FEBAR [23], we use the
CART classifier to compute classification accuracy in the wrapper phase. For
the filter algorithm F DBAR [1], we also use the CART classifier to evaluate
the classification accuracy after finding the reduct. We used the 10-fold cross
validation method, which means that the original dataset was divided into 10
equal parts, randomly one part as a test data set, and the remainder as the
training data set. The process is repeated 10 times. Classification accuracy is
expressed by v ± σ, in which v is the mean and σ is the standardized error.
The implementation tool is Matlab. The experimental environment is a PC with
Intel (R) Core (TM) i7-3770CPU @ 3.40 GHz configuration, running Windows
7, 32 bit.

The classification accuracy of three algorithms are described in Table 2. In
which, |C| is the cardinality of attributes of the original dataset, |B| is the car-
dinality of attributes of obtained reduct. The results in Table 2 show that, the
cardinality of reduct of proposed filter-wrapper FW FPDAR is much smaller
compared with filter fuzzy Jaccard distance based algorithm F DBAR [1], espe-
cially for Horse, Heart, Credit, German data sets. Meanwhile, the accuracy of
FW FPDAR and F DBAR is approximately equal. Therefore, the execution time
and the generalization of classification rules of FW FPDAR are much higher
than F DBAR. For filter-wrapper algorithm FEBAR based on λ-fuzzy entropy
[23], the cardinality of reduct of FW FPDAR is approximately equal to FEBAR
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Table 1. Data sets for experiment

No Data sets Description Table size Type of attributes Number of classes

(#obj × #attr) Nominal Real-valued

1 Lympho Lymphography 148 × 18 18 0 2

2 Wine Wine 178 × 13 0 13 3

3 Libra Libras movement 360 × 90 0 90 15

4 WDBC Wisconsin diagnostic 569 × 30 0 30 2

5 Horse Horse colic 368 × 22 15 7 2

6 Heart Statlog (heart) 270 × 13 7 6 2

7 Credit Credit approval 690 × 15 9 6 2

8 German German credit data 1000 × 20 13 7 2

Table 2. The classification acurracy of algorithms

No Data sets Original data set FW FPDAR FEBAR F DBAR

|C| Accuracy |B| Accuracy |B| Accuracy |B| Accuracy

1 Lympho 18 0.776± 0.008 4 0.768± 0.085 4 0.768± 0.085 6 0.788± 0.062

2 Wine 13 0.910± 0.066 5 0.893± 0.072 5 0.893± 0.072 7 0.908± 0.058

3 Libra 90 0.566± 0.137 7 0.658± 0.077 8 0.605± 0.103 26 0.556± 0.205

4 WDBC 30 0.924± 0.037 4 0.968± 0.058 3 0.952± 0.027 6 0.925± 0.644

5 Horse 22 0.829± 0.085 5 0.806± 0.052 4 0.788± 0.066 12 0.836± 0.058

6 Heart 13 0.744± 0.072 3 0.803± 0.074 3 0.803± 0.074 12 0.752± 0.055

7 Credit 15 0.826± 0.052 3 0.865± 0.028 2 0.846± 0.048 14 0.820± 0.078

8 German 20 0.692± 0.030 6 0.716± 0.029 5 0.702± 0.043 11 0.725± 0.024

Table 3. The execution time of algorithms (s)

No Data sets FW FPDAR FEBAR F DBAR

Filer phase Wrapper phase Total Filer phase Wrapper phase Total

1 Lympho 0.32 0.50 0.82 0.38 0.52 0.90 0.34

2 Wine 0.46 1.21 1.67 0.51 1.18 1.69 0.48

3 Libra 46.28 86.18 132.46 55.12 88.26 143.38 48.48

4 WDBC 20.15 8.74 28.89 26.38 8.22 34.60 22.32

5 Horse 4.85 2.68 7.53 5.26 2.65 7.91 4.98

6 Heart 1.22 1.52 2.74 1.45 1.78 3.23 1.26

7 Credit 16.58 3.42 20.00 19.26 3.98 23.24 18.02

8 German 52.48 8.64 61.12 71.22 8.28 79.50 54.65

(more on some datasets). The classification accuracy of FW FPDAR is approxi-
mately or slightly higher than FEBAR on some datasets. However, the execution
time of FW FPDAR is smaller than FEBAR. The reason is that FEBAR must
calculate the value of λ based on the fuzzy positive region and calculate fuzzy
entropies contained logarithm formulas. This is shown in Table 3.



626 V. T. Nguyen et al.

The results of the comparison of the execution time in Table 3 show that
FW FPDAR has a significantly less execution time than FEBAR [23], mainly
filter phase. However, filter-wrapper algorithms FW FPDAR and FEBAR have
a greater execution time than the filter algorithm F DBAR [1] because they have
to implement the classifier to compute the classification accuracy of approximate
reduct in wrapper phase.

6 Conclusions

The objective of the attribute reduction is to find the smallest subset of attributes
to improve the efficiency of classification models. On the obtained reduct, the
generalizability of classification rules is higher. The classification accuracy of
fuzzy rough set based attribute reduction algorithms is higher that of tradi-
tional rough set based attribute reduction algorithms since they execute directly
on original decision tables without preprocessing data. However, most of them
are filter algorithms which finds a reduct preserving the given measure, does not
compute the classification accuracy on candidates reduct in the process of finding
reduct. So, the obtained reduct is not optimal for the cardinality of attributes and
classification accuracy. In this paper, we proposed the filter-wrapper algorithm
FW FPDAR to find the best approximate reduct using a fuzzy partition dis-
tance. Experimental results on some data sets show that the proposed algorithm
is more efficient than filter algorithms on classification accuracy and the cardi-
nality of obtained reduct, typically the filter algorithm F DBAR [1]. Moreover,
the execution time of proposed algorithm is less than that of the filter-wrapper
algorithm FEBAR [23] using λ-fuzzy entropy. The next research direction is to
propose some incremental algorithms to find reduct in dynamic decision tables.
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Abstract. We investigate different notions of decision superreducts,
their interrelations, their way of dealing with inconsistent data and their
so-called discernibility characteristics. We refer to superreducts under-
stood as attribute subsets that are aimed at maintaining – when com-
pared to original sets of attributes – unchanged rough set approximations
of decision classes, positive regions and generalized decision values. We
also include into our studies superreducts that maintain the same data-
driven conditional probability distributions (known as rough membership
functions), as well as those which let discern all pairs of objects belonging
to different decision classes that are also distinguishable using all avail-
able attributes. We compare strengths of the corresponding attribute
reduction criteria when applied to the whole data sets, as well as families
of their subsets (which is an idea inspired by so-called dynamic reducts).
We attempt to put together mostly known mathematical results concern-
ing the considered criteria and prove several new facts to make overall
picture more complete. We also discuss about importance of developing
attribute reduction criteria for inconsistent data sets from the perspec-
tives of machine learning and knowledge discovery.

Keywords: Rough sets · Inconsistent decision tables
Dynamic decision reducts
Discernibility characteristics of decision reducts

1 Introduction

The theory of rough sets is a tool to formalize vague, imprecise concepts [1].
Its approach towards approximating a concept can be easily explained through
tabular data sets, usually referred as information systems. Any information sys-
tem (U,A) describes a set of objects (U) with respect to a set of attributes (A).
Based on (U,A) two objects become indistinguishable, with respect to a set of
attributes B ⊆ A, if they have the same descriptions or values for each attribute
of B. Thus, U is partitioned into disjoint classes. Respective equivalence relation
c© Springer Nature Switzerland AG 2018
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is known as indiscernibility relation generated by B, denoted as Ind(B). Any
subset X ⊆ U is now approximated by two sets. One is the union of all classes
that are completely included in X (surely belonging to X). The other is the
union of all classes that have some overlap with X (possibly belonging to X).
This pair of sets gives an approximation of X with respect to Ind(B).

Being such a simple concept, rough set approximations have a great impact
in decision making with incomplete information and knowledge representation.
However, representing knowledge of a set of objects or a concept greatly depends
on a chosen set of attributes. Often, in practice we need to deal with a big set of
data described by a large set of attributes. Based on this large set of attributes,
a set of objects falling into a decision class, i.e., with a specific decision value,
is approximated by its sure and possible cases. As dealing with a large set of
attributes is not convenient from different practical perspectives, finding a suit-
ably smaller B ⊆ A generating (almost) the same description of decision classes
as the whole set A, has a lot of significance in research. In rough set literature,
such a set of attributes that can suitably replace the original set of attributes
without losing significant information is known as a decision superreduct. If there
is no proper subset of such a set satisfying a property of not losing significant
information, then it is called a decision reduct [2].

There can be different ways of understanding phrases the same description
of decision classes and without losing significant information. Based on different
interpretations of these phrases different definitions of decision superreducts are
available in the literature. In [3]1, we can find a comparative study among differ-
ent ways of attribute reduction following classical rough set methods, including
rough set approximations, rough membership functions and generalized decision
functions. In [5], one can find more detailed information about models and mech-
anisms based on generalized decision functions, with their comparison to classical
notions known from the theory of relational databases. In [6], there is more back-
ground on superreducts based on rough membership functions, including the first
steps toward specifying approximate attribute reduction criteria allowing for pay-
ing no attention to a need of distinguishing between almost the same probability
distributions. Let us refer, e.g., to [7] for further examples how to handle rough
memberships – or, in other words, conditional probabilities of decision classes
derived from the data – in attribute reduction processes.

One may say that all variations of attribute reduction criteria mentioned above
(as well as others discussed in this paper) are meaningful only when dealing with
inconsistent decision tables (U,A ∪ {d}), where two elements indiscernible by A
can be distinguished by decision attribute d. Indeed, for consistent decision tables
all considered decision superreduct formulations are equivalent to each other.

1 The paper [3] is a highly valuable source of information about different ways of
specifying data reduction criteria. However, we cannot refer to this in context of
“knowledge reduction”, as by finding superreducts and reducts we extend – rather
than reduce – our knowledge about analyzed data sets. This is analogous to the
tasks of reducing complexity – or in other words, searching for simpler solutions –
in other fields of data exploration and modeling [4].
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Thus, one may say that this kind of study is of no practical use as data tables
considered for learning purposes are usually consistent. However, quite often, we
need to operate with inconsistent data, especially for the tasks that are actually
not related to prediction or classification of specific decision values [4,6]. More-
over, inconsistencies may need to be handled even for consistent data sets, e.g., in
the area of feature selection, where people often construct inconsistent subtables
composed of relatively small subsets of attributes and then, they need some cri-
teria to reduce them by removing redundant attributes [8,9]. Finally, a goal may
not be to learn a single model providing the same description of decision classes as
the whole set of attributes; but rather to learn a collection of weaker models, each
of which able to manage its inconsistencies, that communicate with each other in
order to reach to a joint knowledge about approximated concepts [5,10].

The paper is organized as follows. In Sect. 2, we recall different variants of
decision superreducts in inconsistent decision tables. In Sect. 3, interrelations
among these variants are established. In Sect. 4, we introduce new characteris-
tics – inspired by dynamic decision reducts [11] – of a classical attribute reduction
criterion according to which all pairs of objects belonging to different decision
classes need to remain distinguished, if only it is so with respect to the whole set
of attributes A. In Sect. 5, for each considered variant of decision superreduct
a way of constructing respective consistent decision table is presented and a
one-to-one connection between a specific definition of decision superreduct and
its respective way of translating inconsistent decision table to a consistent one
is shown. We also discuss various aspects of practical meaning of such trans-
lations, e.g., from the perspective of adaptation of popular attribute reduction
algorithms [12]. In Sect. 6, we conclude the paper.

For conceptual and mathematical perspectives, the following paper’s frag-
ments are worth special attention. First, in Theorem1, equivalence of variants
D2-D5 seems to be common knowledge but there was no single publication
that would gather all these criteria together. Moreover, the fragment D7⇒D6
was partially formulated in [6] but it has never been shown explicitly. Further,
Theorem 2 provides brand new characteristics, although to some extent it refers
to [6] from the perspective of criterion D6. Finally, Theorem3 gathers more or
less known facts except its fragment devoted to criterion D7 that has never been
stated before. All other results are already proved in earlier papers, although we
recall (and sometimes re-polish) their proofs for completeness.

2 Rough Set Criteria for Attribute Reduction
in Decision Tables

As already outlined, different notions of decision superreducts, for different pur-
poses, are available in the literature. Let us first present a preliminary back-
ground for the existing definitions and then explore interrelations among them.
Some of those interrelations are already well-known for researchers specialized
in the rough set theory [3] while others are delivered as new observations. Actu-
ally, paper [3] is a good starting point for analyzing mathematical properties of
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decision superreducts recalled and introduced herein. Readers are also referred
to [2,5,6] for more detailed information about discernibility criteria, generalized
decision functions and rough membership functions, respectively. Certainly, we
realize that a list of cited publications should be far longer. We attempt to refer
to just a few of them given space constraints.

Let (U,A ∪ {d}) be a decision table where U is a set of objects, A is a set of
conditional attributes and d is a decision attribute. For each a ∈ A ∪ {d} there
is a set of values Va such that a : U �→ Va, where elements of Vd will be called
decision values (determining decision classes). For any B ⊆ A, we write B(u)
to denote a vector of values that u receives under each attribute of B. We now
present some basic prerequisites to characterize different formulations of decision
superreducts as a next step.

Definition 1. Given (U,A∪{d}), B ⊆ A and X ⊆ U , lower and upper approx-
imations of X induced by B, denoted as XB and XB, are defined as sets
∪{[u]B : [u]B ⊆ X} and ∪{[u]B : [u]B ∩ X 	= ∅}, respectively.

Definition 2. Given (U,A ∪ {d}) and B ⊆ A, positive region induced by B is
defined as POS(B) = {u ∈ U : ∀u′∈[u]Bd(u) = d(u′)} or, equivalently, a set-
theoretic sum of lower approximations of decision classes Xi = {u ∈ U : d(u) =
vi}, i = 1, . . . , |Vd|.
Definition 3. Given (U,A ∪ {d}) and B ⊆ A, generalized decision function
induced by B is defined as ∂B(u) = {d(u′) : u′ ∈ [u]B} for each u ∈ U .

Definition 4. Given (U,A ∪ {d}) and B ⊆ A, rough membership function
induced by B is defined as μi

B(u) = |{u′∈[u]B :d(u′)=vi}|
|[u]B | for each u ∈ U and

i = 1, . . . , |Vd|.
Definition 5. Given (U,A ∪ {d}), a subset B ⊆ A is said to be a decision
superreduct, if and only if Ind(B) ⊆ Ind({d}). Additionally, if there is no proper
subset of B that satisfies analogous inclusion, then B is called a decision reduct.

The last out of the above definitions specifies the background for rough set
approaches to data exploration. There are various useful representations (includ-
ing Boolean representations) of problems of searching for decision reducts in
large decision tables [2]. Many heuristic algorithms are also designed to cope
with the corresponding computational problems with reasonable time complex-
ity [12]. However, in many practical situations, such reducts do not exist. Below
we present seven modified variants of the notion of decision superreduct that
can replace condition Ind(B) ⊆ Ind({d}).

Definition 6. For decision table (U,A∪{d}) and B ⊆ A, consider the following
criteria:

Variant D1. B should generate the same positive region as A:
POS(B) = POS(A), i.e., the same lower approximations of decision classes
X1, . . . , X|Vd| as A.
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Variant D2. B should generate the same upper approximation of each decision
class as A: ∪{[u]B : [u]B ∩ Xi 	= ∅} = ∪{[u]A : [u]A ∩ Xi 	= ∅} for each
i = 1, . . . , |Vd|.

Variant D3. B should generate the same lower and upper approximations of
each decision class as A: ∪{[u]B : [u]B ⊆ Xi} = ∪{[u]A : [u]A ⊆ Xi} and
∪{[u]B : [u]B ∩ Xi 	= ∅} = ∪{[u]A : [u]A ∩ Xi 	= ∅}.

Variant D4. B should generate the same lower and upper approximations of
each set-theoretic sum of decision classes as A: ∪{[u]B : [u]B ∩ Y 	= ∅} =
∪{[u]A : [u]A ∩ Y 	= ∅} as well as ∪{[u]B : [u]B ⊆ Y } = ∪{[u]A : [u]A ⊆ Y }
where Y = ∪jn

i=j1
Xi for j1, . . . , jn ∈ {1, . . . , |Vd|}.

Variant D5. B should generate the same values of generalized decision function
as A: for every u ∈ U , there is ∂B(u) = ∂A(u), i.e., {d(u′) : u′ ∈ [u]B} =
{d(u′) : u′ ∈ [u]A}.

Variant D6. B should generate the same values of rough membership function
as A: for every u ∈ U , there is −→μB(u) = −→μA(u) where each i-th component of
vector −→μB(u) is given by rough membership μi

B(u).
Variant D7. B should discern the same pairs of objects with different decision

values as A: for every u, u′ ∈ U , there is d(u) 	= d(u′) ∧ A(u) 	= A(u′) ⇒
B(u) 	= B(u′).

When (U,A ∪ {d}) is consistent, which means that Ind(A) ⊆ Ind({d}) (or,
in other words, every pair of objects belonging to different decision classes is
discerned with respect to A), then all variants D1–D7 are equivalent to classical
formulation given in Definition 5. However, in the next sections we show that for
inconsistent decision tables these variants may differ from each other, in quite
surprising ways.

Table 1. Example of decision table (U,A ∪ {d}), where U = {o1, . . . , o9} and A =
{a1, a2, a3}.

a1 a2 a3 d

o1 Average Close Moderate High

o2 Average Close Moderate High

o3 Average Close Moderate High

o4 More than average Far High Moderate

o5 More than average Far High Low

o6 More than average Far Low Low

o7 Average Close Moderate High

o8 More than average Far Low Low

o9 More than average Far Low High
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3 Interrelations Between Different Decision Superreduct
Variants

Below we gather together interrelations that are mostly well-known in the rough
set community. Majority of them were reported in [3], although some of proper-
ties were published earlier, e.g. in [6], while others were not formulated up to now.
Perhaps the most interesting aspects of all these interrelations are the following:

– There is a substantial difference between the requirement of holding lower
approximations versus the requirement of holding both lower and upper
approximations of decision classes during attribute reduction. This fact is
often forgotten as this difference does not exist for decision tables with only
two decision classes. It arises only when there are three or more decision
classes.

– Requirement D7, which is widely applied in the (rough set [9], but not only
rough set [8]) literature, is actually more restrictive than others, including even
D6 (which can be compared to the notion of Markov blanket [4]). This may
seem to be quite counterintuitive as D6 operates with probability estimates
that are usually unexpected to hold fully precisely while removing conditional
attributes, while D7 – which means that all pairs of objects with different
decision values that can be discerned by full set of attributes need to remain
discerned also by the considered subset – has been always perceived as quite
a natural criterion [2].

Theorem 1. 1. Criteria D2, D3, D4 and D5 are equivalent to each other.
2. D1 is implied by D2-D5, but not the converse.2

3. D6 implies D5, but not the converse.
4. D7 implies D6, but not the converse.

Proof. 1. Below we omit cases D3⇒D2, D4⇒D2 and D4⇒D3, as they are
obvious.
D2⇒D3. We assume D2. Let u′ ∈ ∪{[u]B : [u]B ⊆ Xi}. Then u′ ∈ [u]B

for some [u]B ⊆ Xi. As B ⊆ A, we have [u]A ⊆ [u]B . Hence, there is
[u]A ⊆ Xi. If u′ ∈ [u]A we are done. If not, then let us consider [u′]A. We
know [u′]A ⊆ [u′]B = [u]B as u′ ∈ [u]B . So, as [u]B ⊆ Xi we have a class
[u′]A ⊆ Xi. So, u′ ∈ ∪{[u]A : [u]A ⊆ Xi}. Hence, ∪{[u]B : [u]B ⊆ Xi} ⊆
∪{[u]A : [u]A ⊆ Xi}.
Conversely, let u′ ∈ ∪{[u]A : [u]A ⊆ Xi}. So, u′ ∈ [u]A for some [u]A ⊆ Xi.
So, [u]A ∩ Xj = ∅ for any j 	= i. Now, as [u]A ⊆ [u]B , [u]B ∩ Xi 	= ∅. We
claim that [u]B ⊆ Xi. If not, then [u]B ∩ Xj 	= ∅ for some j 	= i. So,
there is some u′′ ∈ [u]B such that u′′ ∈ Xj . Hence, [u′′]A ∩ Xj 	= ∅. As
u′′ ∈ [u]B , u ∈ [u′′]B . However, u /∈ [u′′]A because if u ∈ [u′′]A, then
[u′′]A ∩ Xj = ∅. So, u ∈ ∪{[u]B : [u]B ∩ Xj 	= ∅}, but as u /∈ [u′′]A such
that [u′′]A ∩Xj 	= ∅, u /∈ ∪{[u]A : [u]A ∩Xj 	= ∅}. This contradicts D2. So,

2 As already mentioned, D1 is equivalent to D2–D5 for decision tables with two deci-
sion classes. However, in this paper we consider the case of their arbitrary amount.
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[u]B ⊆ Xi. Thus, u′ ∈ [u]A ⊆ Xi implies u′ ∈ [u]B and [u]B ⊆ Xi. Thus,
we have other side, i.e., ∪{[u]A : [u]A ⊆ Xi} ⊆ ∪{[u]B : [u]B ⊆ Xi}.

D2⇒D4. Let us assume D2 and consider an Y = Xi ∪ Xj for i 	= j.

∪{[u]B : [u]B ∩ Y �= ∅} = ∪{[u]B : [u]B ∩ (Xi ∪ Xj) �= ∅}
= ∪{[u]B : ([u]B ∩ Xi) ∪ ([u]B ∩ Xj) �= ∅}
= ∪{[u]B : [u]B ∩ Xi �= ∅} ∪ ∪{[u]B : [u]B ∩ Xj �= ∅}
= ∪{[u]A : [u]A ∩ Xi �= ∅} ∪ ∪{[u]A : [u]A ∩ Xj �= ∅}
= ∪{[u]A : [u]A ∩ Y �= ∅}

Now, let u′ ∈ ∪{[u]B : [u]B ⊆ Xi ∪ Xj}. Thus, u′ ∈ [u]B for some
[u]B such that either [u]B ⊆ Xi or [u]B ⊆ Xj or [u]B ∩ Xi 	= ∅, [u]B ∩
Xj 	= ∅ and [u]B ⊆ Xi ∪ Xj . For the first two cases, as D2 and D3
are equivalent, we have u′ ∈ ∪{[u]A : [u]A ⊆ Xi} and u′ ∈ ∪{[u]A :
[u]A ⊆ Xj} respectively. For the third case we have that u′ belongs to
∪{[u]B : [u]B ∩ Xi 	= ∅} ∩ ∪{[u]B : [u]B ∩ Xj 	= ∅}, which is equal to
∪{[u]A : [u]A ∩ Xi 	= ∅} ∩ ∪{[u]A : [u]A ∩ Xj 	= ∅}. Thus, u′ ∈ [u]A where
[u]A ∩ Xi 	= ∅, [u]A ∩ Xj 	= ∅ and [u]A ⊆ Xi ∪ Xj . So, by combining all
above cases we have u′ ∈ ∪{[u]A : [u]A ⊆ Xi ∪ Xj}. Hence, we proved
that ∪{[u]B : [u]B ⊆ Xi ∪ Xj} ⊆ ∪{[u]A : [u]A ⊆ Xi ∪ Xj}.
Now, let u′ ∈ ∪{[u]A : [u]A ⊆ Xi ∪ Xj}. Thus, u′ ∈ [u]A for some [u]A
such that either [u]A ⊆ Xi, or [u]A ⊆ Xj or [u]A ∩ Xi 	= ∅, [u]A ∩ Xj 	= ∅
and [u]A ⊆ Xi ∪ Xj . For the first two cases, as before, we can show
u′ ∈ ∪{[u]B : [u]B ⊆ Xi} and u′ ∈ ∪{[u]B : [u]B ⊆ Xj} respectively. For
the third case, we want to prove that [u]B ⊆ Xi ∪ Xj . If not, then there
is some u′′ ∈ [u]B such that u′′ ∈ Xk where k 	= i, j. So, [u′′]A ∩ Xk 	= ∅.
Now as u′′ ∈ [u]B , u ∈ [u′′]B . However, u /∈ [u′′]A as [u]A 	= [u′′]A and
[u]A ∩ Xk = ∅. So, this violates D2 as u ∈ ∪{[u′′]B : [u′′]B ∩ Xk 	= ∅} but
u /∈ ∪{[u′′]A : [u′′]A ∩ Xk 	= ∅}. Hence [u]B ⊆ Xi ∪ Xj and u′ ∈ ∪{[u]B :
[u]B ⊆ Xi ∪ Xj}. Thus, it is proved that ∪{[u]A : [u]A ⊆ Xi ∪ Xj} =
∪{[u]B : [u]B ⊆ Xi ∪ Xj}. The case of set theoretic sum of finitely many
decision classes can be shown similarly.

D2⇒D5. Let ∪{[u]B : [u]B ∩ Xi 	= ∅} = ∪{[u]A : [u]A ∩ Xi 	= ∅} and let
vi ∈ ∂B(u). Thus, [u]B ∩Xi 	= ∅. So, as [u]A ⊆ [u]B ⊆ ∪{[u]B : [u]B ∩Xi 	=
∅} = ∪{[u]A : [u]A ∩ Xi 	= ∅}, we can conclude that [u]A ∩ Xi 	= ∅. Thus,
vi ∈ ∂A(u).
Conversely, let vi ∈ ∂A(u). Thus, [u]A ∩Xi 	= ∅ and – as [u]A ⊆ [u]B – we
have [u]B ∩ Xi 	= ∅. So, vi ∈ ∂B(u). Hence, D5 is proved.

D5⇒D2. Let ∂B(u) = ∂A(u) for all u ∈ U . First, we know that ∪{[u]A :
[u]A∩Xi 	= ∅} ⊆ ∪{[u]B : [u]B ∩Xi 	= ∅} is immediate. To prove the other
direction, let us assume u′ ∈ ∪{[u]B : [u]B ∩ Xi 	= ∅}. So, for some u′′ ∈
[u]B , we have u′′ ∈ Xi, i.e., d(u′′) = vi. So, vi ∈ ∂B(u) = ∂A(u). Hence,
[u]A ∩ Xi 	= φ. Now if u′ ∈ [u]A we have u′ ∈ ∪{[u]A : [u]A ∩ Xi 	= ∅}. If
u′ /∈ [u]A, we consider [u′]A. Since [u′]A ⊆ [u′]B = [u]B , [u′]B ∩ Xi 	= ∅.
Hence, there is vi ∈ ∂B(u′) = ∂A(u′). So, we have [u′]A ∩ Xi 	= ∅ and
u′ ∈ ∪{[u]A : [u]A ∩ Xi 	= ∅}. Finally, we have ∪{[u]B : [u]B ∩ Xi 	= ∅} ⊆
∪{[u]A : [u]A ∩ Xi 	= ∅}, so D2 is proved.
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2. D3⇒D1 is obvious. The converse is as follows:
Example for D1 does not imply D2. Let U = {o1, o2, o3, o4, o5, o6,

o7, o8, o9} be a set of hotels and a set of attributes is given by A =
{a1, a2, a3} where a1 reflects amenities, a2 – distance from public trans-
port and a3 – the price. Let d reflect hotel demand and B = {a1, a2}.
Now, let us refer to Table 1. Partitions with respect to A and B
are as follows: U/A = {{o1, o2, o3, o7}, {o4, o5}, {o6, o8, o9}}, U/B =
{{o1, o2, o3, o7}, {o4, o5, o6, o8, o9}}. Let X1,X2,X3 be decision classes
corresponding to values high, low, moderate for decision attribute d,
respectively, and d be given as d(o1) = d(o2) = d(o3) = d(o7) =
d(o9) = high, d(o5) = d(o6) = d(o8) = low and d(o4) = moderate.
So, POS(A) = {o1, o2, o3, o7} = POS(B). Thus, D1 holds. However,
∪{[u]A : [u]A ∩ X3 	= ∅} = {o4, o5} and ∪{[u]B : [u]B ∩ X3 	= ∅} =
{o4, o5, o6, o8, o9}. So, D2 does not hold.

3. D6⇒D5: Let μB(u) = μA(u) for each u ∈ U . Thus, for each vj ∈ Vd,
μj

B(u) = μj
A(u) for each u ∈ U . Now as [u]A ⊆ [u]B , ∂A(u) ⊆ ∂B(u). So, we

need to prove that ∂B(u) ⊆ ∂A(u). Let vi ∈ ∂B(u). Thus, for some u′ ∈ [u]B ,
there is d(u′) = vi. Hence μi

B(u) 	= 0. Now as μi
B(u) = μi

A(u), vi ∈ ∂A(u).
Thus, we obtain D5.
Example for D5 does not imply D6. Let us consider a slightly

changed Table 1. Let partitions with respect to A and B be the same
as before, i.e., U/A = {{o1, o2, o3, o7}, {o4, o5}, {o6, o8, o9}}, U/B =
{{o1, o2, o3, o7}, {o4, o5, o6, o8, o9}}. Let decision attribute be such that
d(oi) is the same as in Table 1 for i = 1, . . . , 8, but d(o9) = moderate.
So, for i = 1, 2, 3, 7, ∂d|A(oi) = ∂d|B(oi) = {high} and for i = 4, 5, 6, 8, 9,
∂d|A(oi) = {low, moderate} = ∂d|B(oi). On the other hand, μd|A(o4) =
〈 12 , 1

2 , 0〉 but μd|B(o4) = 〈 35 , 2
5 , 0〉. So, D5 holds but D6 does not.

4. D7⇒D6: Following D7, if u′ ∈ [u]B , then u′ ∈ [u]A or d(u) = d(u′). Now,
[u]B can consist of elements from a single decision class or more than one
decision classes. If [u]B is contained in a single decision class Xi, then so is
[u]A. Moreover, μi

B(u) = μi
A(u) = 1 and μj

B(u) = μj
A(u) = 0 for j 	= i. If [u]B

contains elements of different decision classes, then [u]B = [u]A and hence
they have the same rough membership function with respect to B and A.

Example for D6 does not imply D7. Let us consider U = {o1, o2, o3, o4},
where partitions with respect to A and B ⊆ A are as follows: U/A =
{{o1, o2}, {o3, o4}} and U/B = {o1, o2, o3, o4}. Let values corresponding
to decision attribute d be d(o1) = v1, d(o2) = v2, d(o3) = v1 and d(o4) =
v2. So, for each i = 1, 2, 3, 4, μA(oi) = 〈 12 , 1

2 〉 and μB(oi) = 〈 24 , 2
4 〉 = 〈 12 , 1

2 〉.
So, D6 is satisfied. However, D7 does not hold as for o1, o4 ∈ U , though
[o1]A 	= [o4]A and d(o1) 	= d(o4), [o1]B = [o4]B . ��
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4 Characterizations in Terms of Dynamic Superreducts

As we already know, criterion D7 is the strongest – most restrictive, allowing
potentially to remove the smallest amount of attributes – out of all seven variants
discussed in Sect. 3. Interestingly, the theorem below shows that D7 holds, if and
only if any of those criteria hold for all subtables of a given decision table, created
by taking arbitrary subsets of its universe. Thus, strict implications expressed by
Theorem 1 become equivalences when required for all subuniverses. Moreover, in
our opinion, these equivalences stand for an additional illustration that D7 is
significantly stronger than all other considered criteria.

This kind of derivation was first formulated for D6 in [6]. More precisely, the
following was shown:

– Criterion D6 holds for each decision subtable (U ′, A∪{d}) obtained by taking
any subset of objects U ′ from U , if and only if dependency B ⇒ A∨d holds in
(U,A ∪ {d}), i.e., for each u ∈ U we have [u]B ⊆ [u]A (which basically means
equality [u]B = [u]A) or [u]B is fully contained in one of decision classes.

Although therein it was not noticed that B ⇒ A∨d is an equivalent formulation
of D7, we can still think about paper [6] as the first step toward Theorem 2 below.
Before proceeding further, let us just comment on the fact of using term dynamic
reducts in the title of that paper. Actually, dynamic reducts were introduced
in [11] as a tool for conducting more robust attribute reduction by comparing
decision reducts obtained from a sample of different randomly selected subsets
of the universe of objects. On the other hand, in [6], we followed this idea from a
more theoretical than empirical perspective – by taking into account all subsets
U ′ ⊆ U instead of random samples.

Definition 7. For each variant Di introduced in Definition 6, i = 1, . . . , 7, we
define:

Variant Di’. For the considered decision table (U,A ∪ {d}), B ⊆ A should
satisfy variant Di over all subtables (U ′, A ∪ {d}), for all non-empty subsets
U ′ ⊆ U .

Theorem 2. For each i = 1, . . . , 7, the following holds:

– Given (U,A∪{d}), a subset B ⊆ A satisfies D7, if and only if it satisfies Di’.

Proof. First, note that D7 implies D7’. Second, by Theorem1, we know that D7
implies D6, D6 implies D2-D5 and D2-D5 implies D1. Surely, it holds also at the
level of subsets U ′ ⊆ U . Therefore, the only thing to show is that D1’ implies D7.

Let D1 hold for any U ′ ⊆ U . We want to prove that ∀u,u′(d(u) 	= d(u′) ∧
A(u) 	= A(u′) ⇒ B(u) 	= B(u′)). Consider U ′ = {u, u′} such that [u]B = [u′]B .
We have d(u) = d(u′) or d(u) 	= d(u′). Let us denote by POS′(A) and POS′(B)
positive regions induced by A and B in (U ′, A ∪ {d}). If d(u) 	= d(u′), then
u, u′ /∈ POS′(B). Hence, u, u′ /∈ POS′(A). Now, as [u]A ⊆ [u]B , either [u]A =
[u]B or [u]A � [u]B . If [u]A = [u]B , then it is immediate that [u]A = [u′]A.
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If [u]A � [u]B , then [u]A = {u} and [u′]A = {u′}. So, being single element
decision classes, u, u′ ∈ POS′(A). This contradicts that u, u′ /∈ POS′(A). So,
[u]A = [u′]A. Hence, D7 is proved as for B(u) = B(u′), we have d(u) = d(u′) or
A(u) = A(u′). ��

5 Discernibility Characterizations of Decision
Superreducts

Up to now, we examined interrelations among different criteria for decision
superreducts in inconsistent decision tables. In this section, for each considered
variant D1-D7, we present a translation of decision attribute d, for a given table
(U,A ∪ {d}), into a new decision attribute d#i , i = 1, . . . , 7, in such a way that:

– d#i agrees with d for all objects u for which equivalence class of [u]A is con-
tained in a single decision class.

– Di holds for a given B ⊆ A in (U,A ∪ {d}), if and only if there is inclusion
Ind(B) ⊆ Ind({d#i }) in consistent decision table (U,A ∪ {d#i }).

This kind of replacement of decision attribute, which actually makes a resulting
decision table consistent as values of d#i are assigned to indiscernibility classes
[u]A, is a well-known mechanism in rough set literature [2,6]. From this per-
spective, such discernibility representations gathered in the theorem below are
mostly common knowledge, although the fragment related to D7 is a brand new
result.

Definition 8. For decision table (U,A∪{d}) and B ⊆ A, consider the following
criteria:

Variant D1#. There is Ind(B) ⊆ Ind({d#1 }), where d#1 is defined as

d#1 (u) =
{

d(u) if u ∈ POS(A)
# otherwise

where # /∈ Vd is a new value assigned to objects suffering from inconsistencies.
Variant D5#. There is Ind(B) ⊆ Ind({d#5 }), where d#5 is defined as

d#5 (u) = ∂A(u)

Variant D6#. There is Ind(B) ⊆ Ind({d#6 }), where d#6 is defined as

d#6 (u) = −→μ A(u)

Variant D7#. There is Ind(B) ⊆ Ind({d#7 }), where d#7 is defined as

d#7 (u) =
{

d(u) if u ∈ POS(A)
#m(u) otherwise

where #m(u) /∈ Vd are new decision values indexed by ordinal numbers of
the corresponding indiscernibility classes [u]A, such that #m(u) 	= #m(u′) if
[u]A 	= [u′]A.
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Let us note that domains of decision values are modified in each of the above
cases. For D1# and D7#, Vd is changed to subsets (as some of original values
and/or new values may not occur) of Vd ∪{#} and Vd ∪{#m(u) : u ∈ U}, respec-
tively. In case of D5# and D6#, we begin to operate with domains embedded
into a family of non-empty subsets of Vd and a simplex of probability distribu-
tions over Vd, whereby original decision values are interpreted as singletons and
zero-one distributions, respectively.

Table 2. New decisions constructed for Table 1. Column m denotes ordinal numbers of
indiscernibility classes induced by the whole set of conditional attributes that objects
belong to.

m d d#1 d#5 d#6 d#7

o1 1 High High {High} 〈1, 0, 0〉 High

o2 1 High High {High} 〈1, 0, 0〉 High

o3 1 High High {High} 〈1, 0, 0〉 High

o4 2 Moderate # {Medium, Low} 〈0, 1
2
, 1
2
〉 #2

o5 2 Low # {Medium, Low} 〈0, 1
2
, 1
2
〉 #2

o6 3 Low # {High, Low} 〈 1
3
, 0, 2

3
〉 #3

o7 1 High High {High} 〈1, 0, 0〉 High

o8 3 Low # {High, Low} 〈 1
3
, 0, 2

3
〉 #3

o9 3 High # {high, low} 〈 1
3
, 0, 2

3
〉 #3

Theorem 3. For each i = 1, 5, 6, 7, the following holds:

– Given (U,A∪{d}), a subset B ⊆ A satisfies Di, if and only if it satisfies Di#.

Proof. D1⇔D1#. Let POS(B) = POS(A). We want to prove that if u′ ∈ [u]B ,
then d#1 (u) = d#1 (u′). Now for u′ ∈ [u]B either u′ ∈ POS(B) or u′ /∈ POS(B).
If u′ ∈ POS(B), then u′ ∈ POS(A). Thus, [u]A is contained in a single
decision class and hence d#1 (u) = d#1 (u′). If u′ /∈ POS(B), u′ /∈ POS(A).
Then [u]A is not contained in any single decision class. So, d#1 (u) = d#1
(u′) = #.
Conversely, let Ind(B) ⊆ Ind({d#1 }). As B ⊆ A, we know [u]A ⊆ [u]B . So,
POS(B) ⊆ POS(A). Now let u ∈ POS(A). So, for all u′ ∈ [u]A, d(u) = d(u′)
and hence d#1 (u) = d#1 (u′). We want to prove that u ∈ POS(B). If not, then
for some u′′ ∈ [u]B , there is d(u) 	= d(u′′). So, u′′ /∈ [u]A. Hence d#1 (u) 	=
d#1 (u′′). Thus, B(u) 	= B(u′′) as Ind(B) ⊆ Ind({d#1 }). This contradicts with
assumption that u′′ ∈ [u]B .
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D5⇔D5#. Let us assume that D2 holds. We want to prove that if u′ ∈ [u]B ,
then d#5 (u) = d#5 (u′). Let u′ ∈ [u]B . Now we know that either [u]B ∩ Xi 	= ∅
or [u]B ∩ Xi = ∅. If [u]B ∩ Xi 	= ∅, then u′ ∈ ∪{[u]B : [u]B ∩ Xi 	= ∅} =
∪{[u]A : [u]A ∩ Xi 	= ∅}. Now, as u′ ∈ [u]B , for all Xi’s, [u]B ∩ Xi 	= ∅, if
and only if [u′]B ∩ Xi 	= ∅. Thus, for any Xi, u ∈ ∪{[u]A : [u]A ∩ Xi 	= ∅},
if and only if u′ ∈ ∪{[u]A : [u]A ∩ Xi 	= ∅}. Hence ∂A(u) = ∂A(u′). Thus,
d#5 (u) = d#5 (u′). Thus we have Ind(B) ⊆ Ind({d#5 }).
Conversely, let Ind(B) ⊆ Ind({d#5 }). Thus, for any u′ ∈ [u]B , ∂A(u) =
∂A(u′). Let vi ∈ ∂A(u) = ∂A(u′). Then [u]A ∩ Xi 	= ∅ and [u′]A ∩ Xi 	= ∅. As
[u]A ⊆ [u]B , we know ∪{[u]A : [u]A ∩ Xi 	= ∅} ⊆ ∪{[u]B : [u]B ∩ Xi 	= ∅}.
So, let us consider u′ ∈ ∪{[u]B : [u]B ∩ Xi 	= ∅}. Now, as for any u′ ∈ [u]B
such that [u]B ∩ Xi 	= ∅, ∂A(u) = ∂A(u′), [u′]A ∩ Xi 	= ∅. So, u′ ∈ ∪{[u]A :
[u]A ∩ Xi 	= ∅}. So, ∪{[u]B : [u]B ∩ Xi 	= ∅} ⊆ ∪{[u]A : [u]A ∩ Xi 	= ∅}. Thus,
∪{[u]B : [u]B ∩ Xi 	= ∅} = ∪{[u]A : [u]A ∩ Xi 	= ∅}.

D6⇔D6#. Let −→μ A(u) = −→μ B(u) and u′ ∈ [u]B . We want to show d#6 (u) =
d#6 (u′). As u′ ∈ [u]B , for any decision class Xi, we have μi

B(u) =
|{u′′∈[u]B :d(u′′)=vi}|

|[u]B | = μi
B(u′). So, −→μ B(u) = −→μ B(u′). This is same as −→μ A(u) =

−→μ A(u′) and hence d#6 (u) = d#6 (u′).
Conversely, let Ind(B) ⊆ Ind({d#6 }). Thus, for any u′ ∈ [u]B , d#6 (u) =
d#6 (u′), or in other words, −→μ A(u) = −→μ A(u′). We want to prove that−→μ A(u) = −→μ B(u). We know [u]A ⊆ [u]B . Now, if [u]A = [u]B , then the
proof is immediate. Let [u]A � [u]B . Now, for any decision class Xi, if
[u]B ∩ Xi 	= ∅, then [u]A ∩ Xi 	= ∅ as well, as for an u ∈ [u]A ⊆ [u]B
and for an u′ ∈ [u]B \ [u]A, |{u′′∈[u]A:d(u′′)=vi}|

|[u]A| = |{u′′∈[u′]A:d(u′′)=vi}|
|[u′]A| . Thus,

for any u′ ∈ [u]B \ [u]A, [u′]A ∩ Xi 	= ∅ also. So, there can be a number of
disjoint equivalence classes [u]A, [u1]A, . . . , [un]A included in [u]B , such that
each has elements from decision class Xi and union of these classes covers
[u]B . Now, for simplicity let us assume that there are only two elements
u, u′ ∈ [u]B such that [u]A ∩ [u′]A = ∅ and [u]A ∪ [u′]A = [u]B . Therefore,
|{u′′∈[u]A:d(u′′)=vi}|

|[u]A| = |{u′′∈[u′]A:d(u′′)=vi}|
|[u′]A| and we have the following relation:

μi
B(u) = |{u′′∈[u]B :d(u′′)=vi}|

|[u]B | = |{u′′∈[u]A:d(u′′)=vi}|+|{u′′∈[u′]A:d(u′′)=vi}|
|[u]A|+|[u′]A| =

|{u′′∈[u]A:d(u′′)=vi}|
|[u]A| = μi

A(u). Hence, −→μ B(u) = −→μ A(u).
D7⇔D7#. Assume that D7 is true. Consider u′ ∈ [u]B . Now [u]B can contain

elements from a single decision class or more than one decision class. If [u]B
contains element from a single decision class, then so do [u]A and [u′]A. Thus,
d(u) = d(u′) and u, u′ ∈ POS(A). So, d#7 (u) = d(u) = d(u′) = d#7 (u′). If [u]B
contains elements from more than one decision class, then by D7, we have
[u]A = [u]B . Thus, as u′ ∈ [u]B , there is [u]A = [u′]A. So, d#7 (u) = d#7 (u′) =
#m(u). Hence, Ind(B) ⊆ Ind({d#7 }).
Conversely, let for any u′ ∈ [u]B be d#7 (u) = d#7 (u′). Then, either [u]A and
[u′]A are both contained in the same decision class or [u]A = [u′]A. This
proves D7. ��
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In Definition 8, we did not formulate the cases of D2–D4 as their are equiva-
lent to D5, therefore, they are addressed by D5#. It is also worth pointing out
that Theorem 3 provides an additional insight into interrelationships regarding
strengths of criteria D1–D7. By conducting a simple comparative analysis of a
nature of newly constructed decision values d#1 , d#5 , d#6 and d#7 , one can design
alternative proofs of components of Theorem 1, with some of “but not converse”
examples displayed in Table 2.

Moreover, Theorem 3 is highly important from algorithmic perspective. This
is because it allows us for adapting a variety of efficient methods for searching for
most useful decision reducts developed originally for consistent decision tables [2]
to deal with all considered variants of inconsistencies. This ability – and in par-
ticular ability of encoding specifications of different decision superreduct criteria
in terms of so-called discernibility characteristics – is essential to take advan-
tage of various techniques of accelerating computations, available in different
frameworks [7].

Let us also recall that many rough-set-based attribute reduction methods
implicitly assume that decision superreduct criteria are in some sense monotonic
with respect to set-theoretic inclusion, i.e., if B ⊆ A is a decision superreduct,
then its superset C (B ⊆ C ⊆ A) is a decision superreduct too [12]. Theorem 3
delivers this kind of property for all variants of attribute reduction considered in
this paper. If we recall the aforementioned analogy between decision superreducts
and Markov blankets, known from probability-based graphical models [4], then
this kind of monotonicity could be interpreted as so-called weak union of con-
ditional independence statements. Indeed, the facts that some subsets B ⊆ A
are decision superreducts for particular variants of handling inconsistencies in
decision tables may be rephrased as saturated conditional independences [13].
We already know that properties of some of decision superreduct formulations
are actually quite similar to those of classical probabilistic independence state-
ments [5]. Nevertheless, this knowledge is still incomplete. In future, we intend
to investigate further interrelations between the property of weak union and the
property of discernibility characteristics for different models of superreducts.

In the remainder of this section, we focus on better understanding how new
decision attributes d#i encode inconsistencies inherited from original decision
tables. Indeed, deriving from each given (potentially inconsistent) (U,A∪{d}) a
consistent (U,A∪{d#i }) seems to be something more than just a technical trick.
This is transformation of criteria formulated by means of preserving particular
kinds of decision representations into criteria aimed at comparing representations
of indiscernibility classes that can be merged during attribute reduction. Below
we provide some comments, case by case:

– Following D1, a decision superreduct B is such that POS(A) = POS(B).
Herein, different forms of inconsistency are simply ignored by putting a
dummy decision value # for all elements, indiscernible by Ind(A) but hav-
ing different decision values. The only aspect that matters is to distinguish
between inconsistent and consistent cases, so positive regions do not decrease
while reducing attributes.
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– In case of D2 to D4, B has to generate the same lower and/or upper approx-
imations of decision classes or their set theoretic sums as in case of A. As
for D5, the set of all decision values of an equivalence class with respect to
Ind(A) should be the same as with respect to Ind(B). In all these variants,
inconsistency occurring within a given [u]A is handled by assigning a set of
all possible decision values to each element of that class. Thus, if for some
u ∈ U , there is u /∈ POS(A), then each element of [u]A would have new
decision value ∂A(u). Thus, in contrast to D1, herein values corresponding to
inconsistent elements are not completely erased from the new decision table.
Those cases are rather grouped together with regard to how diverse sets of
decision values particular indiscernibility classes can assume.

– As for D6, decision superreduct B should generate the same rough mem-
bership function as A. Thus, if objects u and u′ are indistinguishable with
respect to Ind(A) but have different decision values, then they are unified
with probability distribution. In a consistent decision table, no information
regarding different decision values of a particular equivalence class is lost.
They are now encoded with their probabilities. Therefore, we have analogous
groupings of different indiscernibility classes as in case of D5, although now
encoded information is richer.

– In case of D7, B should preserve discernibility of elements belonging to dif-
ferent decision classes, whenever it is possible with a usage of all attributes in
A. Herein, each of equivalence classes [u]A for which inconsistency in decision
arises, is assigned to a unique decision #m(u). Thus, in contrast to D1, for each
element of an inconsistent equivalence class [u]A, a dummy value, indexed by
ordinal number of that particular equivalence class, is assigned. Therefore, in
the new consistent decision table, though a dummy value is assigned to each
inconsistent element, the value still reflects an origin of a given element. Actu-
ally, one can try to compare the meanings of dummy decision values # and
#m(u) with analogous differences in handling unknown values of conditional
attributes in incomplete information systems [14]. Therein, two undetermined
values could be – among other strategies – regarded as potentially the same
(which is an analogy to #) or potentially different (which is an analogy to
#m(u)). Like in our case, such two approaches to interpreting undetermined
values can lead toward totally different results.

6 Conclusion

The study of decision reducts gives a practical way of abstracting significant
knowledge and reason about the data, ignoring redundant attributes. In this
paper, we attempted to gather together the most popular formulations of rough-
set-based attribute reduction criteria, summarizing their interdependencies, out-
lining their alternative representations and providing some missing mathematical
results that were not proved or sufficiently exposed up to now. From this per-
spective, one may pay a special attention on Theorem 2, as well as the part of
Theorem 3 that corresponds to criterion D7. However, we also believe that an
overall picture delivered by Theorems 1–3 can be helpful.
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Redundancy of attributes can have different senses as it is clear from differ-
ent considered ways of obtaining decision reducts. From case by case analysis,
it can be noticed that by following criterion D1 (or equivalently D1#) a way of
obtaining a decision superreduct B is the simplest one, as it completely ignores a
nature of inconsistent cases. For variants D2–D5, the whole set of decision values
that an equivalence class can take is assigned to every element of that class, but
how frequently those values are taken by its different elements is ignored. As
pointed out in [5], this strategy of dealing with data-driven information is analo-
gous to a way of formulating multi-valued dependencies in relational databases.
In case of D6/D6#, information about probabilities with which different decision
values are taken by elements of particular equivalence classes is nicely encoded
in respective consistent decision table (U,A ∪ {d#6 }). Thus, from a point of view
of probabilities, no information from original decision table is lost, though from
computational perspective this approach might be more complex than others.
For D7 (or equivalently D7’/D7#), respective consistent decision table seems
to be more informative than in case of D1 as a dummy value assigned to each
element of a given inconsistent equivalence class also carries an index specifying
ordinal number of that class. These differences, somewhat similar to different
ways of working with unknown values as summarized in [14], can have a huge
impact on results of attribute reduction. One might even claim that D7 repre-
sents the most rigoristic criterion out of possible formulations (not only those
stated as D1–D6) of decision superreducts.

Certainly, being the most rigoristic does not need to mean being inappropri-
ate. As an example, let us discuss a situation of decision superreduct B, selected
by following D6, that does not reflect a finer distinction when criterion D7 is
applied. Consider U that is partitioned into three equivalence classes [u1]A, [u2]A,
[u3]A under Ind(A). Imagine that there are only two decision values – v1 and v2 –
and their probability distributions are given by −→μ (u1) = 〈 13 , 2

3 〉, −→μ (u2) = 〈 13 , 2
3 〉

and −→μ (u3) = 〈 12 , 1
2 〉. Now, if we take one element u′

1 from [u1]A and one element
u′
2 from [u2]A such that d(u′

1) = v1 and d(u′
2) = v2, then – when following D7

– u′
1 and u′

2 must be distinguished. However, if superreduct B is to be obtained
using D6, then – as both u′

1 and u′
2 have the same vectors of rough membership

degrees – these two elements do not need to kept in separate indiscernibility
classes while removing attributes. This example shows that a deeper analysis of
advantages and disadvantages of using different notions of decision superreduct
is required, as it is not so obvious in what situations one can truly agree to
think about such cases as potentially indistinguishable. Thus, one of our fur-
ther research directions is to explore a meta-theoretic investigation regarding
which kind of attribute reduction criterion would be suitable for which practical
context.
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Abstract. In process mining, trace clustering is an important technique that at-
tracts the attention of researchers to solve the large and complex volume of
event logs. Traditional trace clustering often uses available data mining algo-
rithms which do not exploit the characteristic of processes. In this study, we
propose a new trace clustering algorithm, especially for the process mining,
based on the using trace context. The proposed clustering algorithm can auto-
matic detects the number of clusters, and it does not need a convergence iter-
ation like traditional ones like K-means. The algorithm takes two loops over the
input to generate the clusters, thus the complexity is greatly reduced. Experi-
mental results show that our method also has good results when compared to
traditional methods.

Keywords: Event log � Process mining � Trace context � Clustering algorithm

1 Introduction

Most today’s modern information systems have collection of data that describes all the
events of the user occur during the execution of the software system so-called event
logs. Event logs play an important role in modern software systems, they record
information about the system in real-time including a set of events that contain several
information, e.g., case id; event id; timestamp; activity, etc., Table 1 introduces some
examples about an event log. The events in the same case are ordered by timestamp and
have the same “case id”. These are valuable data for managers to analyze and evaluate
the company’s business processes.

Process mining includes three tasks process discovery, conformance checking and
enhancement is the field that allows the use of the event log data for analysis and
improvement of the processes.
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The target of process discovery is to generate a process model that captures all of
the behaviors found in the event log [23]. The generated model can be used to analyze
what is actually applied in daily activities of the company. It can be used to verify
whether the formal process is strictly followed, or to enhance the formal process.

The event log quality is an important factor in process model generation. If the
event log is homogeneous and small enough, the process model is easy to analyze as
one example in Fig. 1a. However, real-life event logs are extremely huge with diverse
characteristics, thus, the discovered process model may be diffuse and very hard to
understand as an example in Fig. 1b. To overcome this problem, clustering a complex
event log into sub-logs/clusters is one of the most widely used solution. The generated
model from an event sub-log will have much lower complexity [5, 7, 9–11, 15–18, 21].

Traditional approaches use the data mining clustering algorithms such as
Agglomerative Hierarchical Clustering, K-Means, K-Modes, etc., to cluster event logs.
These algorithms are designed and used in the field of data mining, they do not exploit
the specific characteristics of business processes.

In this paper, we propose a new trace clustering algorithm based on a specific
characteristic of process, i.e., the context of traces in a process. The contribution of the
paper includes: (1) defining a new trace context; (2) introducing a context tree;
(3) giving a new event log clustering algorithm. The proposed algorithm can auto-
matically detect the suitable number of clusters, and it does not need a convergence
iteration which takes lot of time. The experimental results show that our method has
significant contributions to improving the efficiency and the performance time of the
process discovery task.

Table 1. A fragment of the event log [23]

Case id Event id Properties
Timestamp Activity Resource Cost …

1 4423 30-12-2010:11.02 Register request Pete 50
4424 31-12-2010:10.06 Examine thoroughly Sue 400
4425 06-01-2011:15.12 Check ticket Mike 100
4426 07-01-2011:11.18 Decide Sara 200
4427 07-01-2011:14.24 Reject request Pete 200

2 4483 30-12-2010:11.32 Register request Mike 50
4485 30-12-2010:12.12 Check ticket Mike 100
4487 30-12-2010:14.16 Examine casually Pete 400
4488 06-01-2011:11.22 Decide Sara 200
4489 08-01-2011:12.06 Pay compensation Ellen 200

3 4521 30-12-2010:14.32 Register request Pete 50
4522 30-12-2010:15.06 Examine casually Mike 400
4524 30-12-2010:16.34 Check ticket Ellen 100
4525 06-01-2011:09.18 Decide Sara 200
4526 08-01-2011:12.18 Reinitie request Sara 200
…
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The rest of this article is organized as follows: First, we give an overview of the
process discovery. Section 3 introduces the trace context in process mining and the
new trace clustering. The experimental evaluation is described in Sect. 4. Section 5
introduces the related work. Conclusions and future work are shown in the last section.

2 The Brief Summary of Process Discovery Task in Process
Mining

Event Logs
An event log is the starting point of process mining. Table 1 shows a fragment of the
event log related to the handling of compensation requests of an airline. There are three
cases corresponds to three compensation requests. The case 1 has five events with id
from 4423 to 4427 that are ordered by execution time, i.e., property timestamp. For
example, event 4423 executes activity “register request” at “30-12-2010:11.02” occurs
before event 4424 which executes activity “examine thoroughly” at “31-12-
2010:10.06”. Each event in event log also is described by resources property, i.e.,
the persons executing the activities or the cost of the activity.

In process mining, the “case id” and “activity” are minimum properties that can be
used to represent a case. For example, case 1 is represented by a sequence of five
activities Register request, Examine thoroughly, Check ticket, Decide, Reject request.
Such a sequence of activities is called a trace. For the sake of simplicity for compu-
tation, each activity name is assigned by a distinct letter label, e.g., a denotes activity
register request. Hence, the event log in Table 1 has a more compact representation
shown in Table 2, e.g., case1 is represented by a trace a; b; d; e; hh i. This representation
is used for computation, such as clustering. For example, in K-means a trace is con-
verted into a vector as the input to the algorithm.

Table 2. The trace in an event log (where a = “register request”, b = “examine thoroughly”,
c= “examine casually”, d = “check ticket”, e = “decide”, f = “reinitiate request”, g = “pay
compensation”, h = “reject request”)

Case id Trace

1 a; b; d; e; hh i
2 a; d; c; e; gh i
3 a; c; d; e; f ; b; d; e; gh i
4 a; d; b; e; hh i
5 a; c; d; e; f ; d; c; e; hh i
6 a; c; d; e; gh i
… …
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Process Discovery Task
Process discovery is the first task of process mining. It takes an event log as an input
data and produces a model represented in a process modeling language, e.g., Petri net
(Fig. 1), which describes the behaviors recorded in the event log by applying a process
discovery algorithm, e.g., a-algorithm [23].

a-Algorithm
The a-algorithm was one of the first process discovery algorithms. It generates the
process model by reconstructing causality from a set of sequences of events in the
event logs.

Fig. 1. The process model discovered from the event log by the a-algorithm

Fig. 2. Typical process patterns in Petri net [23]
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Given an event log of a business process L, a-algorithm scans L to find the rela-
tionships between activities based on the execution order. There are four ordering
relations, e.g., direct succession; causality; parallel; choice. Let a; b are two activities in
L.

1. Direct succession a[ b: if some case a is followed by b.
2. Causality a ! b: if activity a is followed by b but b is never followed by a.
3. Parallel ajjb: if activity a is followed by b and b is followed by a.
4. Choice a#b: if activity a is never followed by b and b is never followed by a.

To reflect those dependencies, the Petri net has corresponding notations to connect
activities as illustrated in Fig. 2.

As mentioned above, to mine easy-to-understand process models from the complex
event log, the trace clustering is the effective approach. The key idea of trace clustering
algorithms is to create clusters that the traces within a cluster are more similar to each
other than the traces in the different clusters. Next section we introduce our proposed
trace clustering algorithm.

3 A Context Approach to Trace Clustering

3.1 Context in Process Mining

In the middle of the 1990s, the context was mentioned by many researchers [2, 3, 14].
It had the important contribution to improving the performance of practical systems.
Each different research fields usually have different ideas and definitions of context. It
is defined as the object’s location, environment, identity and execution time or object’s
emotional state as well as hobbies and habits of objects, etc. [12].

In process mining, the context was defined as the environment surrounding a
business process, e.g., the weather conditions or holiday seasons [13]. In another study,
the context was defined as the time, location, and frequency of events as well as related
communication, tools, devices, or operators [22]. In [19], the context of activity a was
the set of two surrounding activities xy, i.e., xay, by using 3-g in an event log.

3.2 Trace Context

In this paper we introduce a new context definition based on the fact that each business
process has a number of different procedures. For example, the credit process has
procedures for personal loan, corporate loan, home loan, consumer loan, etc. Each
procedure may start with a set of common activities which are the clue to separate
traces into different clusters. In this paper we define common activities as the trace
contexts.

Definition 1. Let L ¼ t0; t1;. . .
� �

be an event log, where ti is a trace. Let p be the
longest common prefix p of a trace subset, i.e., SP ¼ t 2 Ljt ¼ pjdf g, such that
SPj j[ 1, where d is a sequence of activities, notation ‘|’ in pjd denotes sequence
concatenation operation, then p is called as a trace context.
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3.3 Context Tree

Since the common prefix of traces can be represented by a prefix tree, to efficiently
identify the context, we introduce a Context-tree based on the idea of frequent pattern
tree (FP-tree) [8].

Definition 2. A context tree is a tree that has:

1. One root labeled as “root” to form a complete tree.
2. A header table helps to access the tree faster during tree construction and traversal.

Each entry in the Context-tree header table consists of two fields, (1) activity-name,
and (2) head of node-link which points to the first node below the root carrying this
activity.

3. Each node in the context tree consists of three fields except for the root node:

activity-name: registers which activity is represented by the node;
count: the number of traces that travel to this node;
node-link: the pointers to its children, or null if there is none.

4. A trace in the event log is placed on a certain branch of the tree with the top- down
fashion. Traces with the same prefix share a chunk of branch from the root node.

Fig. 3. (a) Header table; (b) The context-tree
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The idea is to map traces with the same prefix into the same chunk of tree branch as
depicted in Fig. 3. The context tree construction procedure is described as follows:

Let L = [<aceh>, <acfdh>10, <acebg>, <acbeg>, <bdceg>, <bdcfg>] be an event log,
which includes 15 traces, the trace acfdhh i appears 10 times. The corresponding context-
tree is illustrated in Fig. 3.

Mapping the context tree with the Definition 1 it is clear that, for each trace on the
tree, the longest common prefix is the sequence of activities that have count[ 1. From
the context-tree in Fig. 3, the set of trace contexts of L is ace; acfdh; ac; bdcf g.

If a trace is distinct from the others, then it has no context. The following procedure
is responsible for identifying the context of a given trace.
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3.4 Context Trace Clustering Algorithm

A new trace clustering algorithm called ContextTracClus which aims at creating
clusters of traces based on contexts is proposed. The algorithm consists of two distinct
phases: (1) Determining trace contexts and Building clusters; (2) Adjusting clusters.

The first phase, Determining trace contexts and Building clusters, includes two
steps.

Step 1 builds a compact data structure called the Context-tree that stores quantitative
information about activities of each trace in a event log. Step 2 traverses the Context-tree
for each trace to find its trace context, and assigns the trace to the cluster corresponding
to this context. Based on the Context-tree construction process, for any trace t in event
log, there exists a path p in the Context-tree starting from the root. The trace context of
this trace is the sequence of nodes of p that have count � 2. In case a trace has no
context, a new cluster is created for storing this trace for later adjustment in Phase 2.

The second phase, Adjusting clusters, handles the case where small clusters are
generated. If a cluster size, i.e., the number of traces in the cluster, is smaller than a
given minimum cluster size threshold mcs (e.g., each cluster size should be at least 10%
of the number of traces in the event log), this cluster will be added to its closest cluster.
The distance between to clusters is defined as the distance between two corresponding
trace contexts. In the case that a trace has no context, it will be added to the cluster
whose trace context includes the maximum number of duplicate activities with this
trace. The pseudo-code of the proposed algorithm, denoted ContextTracClus, is shown
in Algorithm 4.
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Our algorithm can automatically detect a suitable number of clusters. Unlike tra-
ditional clustering algorithms which need convergence loops, our algorithm takes only
one loop to identify the clusters, and one loop to merge small clusters.

In K-means algorithm, it randomly selects some data points as the initial center of
clusters, and the quality of clustering greatly depends on this selection, especially on
event log, where a same trace can occur several times as depicted in Fig. 3, where the
trace acfdh repeats 10 times. The repeated traces with a big number of times should be
a cluster candidate. One more advantage of the algorithm is the ability to put repeated
traces into a cluster candidate and removes the uncertainty of random.
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The proposed algorithm needs one loop for context tree construction, one loop for
clustering. Thus, its complexity is much less than that of traditional clustering algorithms
such as K-means, K-modes. Furthermore, the proposed algorithm does not need to
transform trace in an intermediate representation (e.g., binary, k-gram, maximal pair,
maximal repeat, super maximal repeat and near super maximal repeat, etc.), convert this
representation into vector, since it works directly with the traces, then the pre-processing
time is greatly reduced.

3.5 An Application Framework for ContextTracClus Algorithm

In process discovery application, we propose a framework as described in Fig. 4, which
consists of 5 steps.

Fig. 4. An application framework of the ContextTracClus algorithm
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The Pre-processing step transforms the input event log into a list of traces, i.e.,
merger all the events with the same caseid in the event log into a sequence of activities
(sorted by recorded time) to form a trace [20, 23].

Step 2 and 3 use ContextTracClus algorithm to determine the contexts that appear
in the event log, and generate n clusters. After adjustment, the number of clusters is k,
where k� n. Each cluster is used to create a sub-log for process discovery.

In step 4, the a-algorithm is used to generate the sub-process models corresponding
to each event sub-log.

The Evaluating model step evaluates the quality of each generated process models
by two Fitness and Precision. The fitness measure determines whether all traces in the
log can be replayed by the model from beginning to end. The precision measure
determines whether the model has behavior very different from the behavior seen in the
event log. Additional explanation about the fitness: consider an event log L of 600
traces, and M is the correspondingly generated model. If only 548 traces in L can be
replayed correctly in M, then the fitness of M is 548

600 ¼ 0:913. The range of those
measures is between 0 and 1, its best value is 1 meaning that the generated process
models have the highest quality. Since k models are generated corresponding to k
clusters, the final measures, i.e., fitness and precision, are calculated as formula (1).

wavg ¼
Xk

1

ni
n
wi ð1Þ

where wavg is the aggregated value of the fitness or precision measure, k is the number
of clusters, n is the number of traces in the event log, ni and wi are the number of traces
and the value of the measure in the ith cluster, correspondingly [18].

4 Experimental Result Evaluation

To evaluate the effectiveness of the proposed trace clustering algorithm, we compare
our proposed algorithm with K-means clustering algorithm, on three different event
logs, i.e., Lfull1, prAm62 and prHm6 (see Footnote 2). Lfull includes 1391 cases with
7539 events; prAm6 consists of 1200 cases with 49792 events; and prHm6 contains
1155 cases with 1720 events.

In the experiment with K-means clustering algorithm, the k-grams trace represen-
tation k ¼ 1; 2; 3ð Þ for binary vectors was used. To generate the process model and
evaluate the processes, ProM 6.63, a process mining tool, was used. The experimental
results are shown in Table 3.

1 www.processmining.org/event_logs_and_models_used_in_book/Chapter7.zip
2 http://data.3tu.nl/repository/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49
3 http://www.processmining.org/prom/start
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The experimental results show that ContextTracClus always has a higher precision,
i.e., it ensures that the generated process model has the least behaviors not seen in the
event log. This is because the traces in a cluster have the same context, i.e., they have
the same set of actions so the generated model will have at least superfluous behaviors.

In the scenario 1, we found out the most suitable number of clusters for the data set
is 3 after trying with different numbers of clusters, such as 2, 3, 4, 5. The scenario 2
automatically detected the number of clusters based on the input size threshold.

5 Related Work

Greco et al. [4] proposed a clustering solution on traces in event log using bag-of-
activities trace representation for K-means algorithm.

Song et al. [11] presented a trace clustering approach based on log profiles which
captured the information typically available in event logs e.g., activity profile, origi-
nator profile. In their approach, the K-means, Quality Threshold, Agglomerative
Hierarchical Clustering, and SelfOrganizing Maps clustering algorithms were used.

Jagadeesh Chandra Bose et al. [20] proposed a trace representation method based
on using some control-flow context information e.g., Maximal Pair, Maximal Repeat,
Super Maximal Repeat and Near Super Maximal Repeat. They used some of the
clustering algorithms such as Agglomerative Hierarchical Clustering, K-means.

Weerdt et al. [6] proposed the ActiTraC algorithm, a three-phase algorithm for
clustering an event log into a collection of sub-logs to increase the quality of the
process discovery task. The ActiTraC algorithm includes three phases: Selection, Look
ahead, and Residual trace resolution. The important idea of this algorithm is the
sampling strategy, i.e., a trace is added to the current cluster if and only if it does not
decrease the process model accuracy too much.

Ha et al. [18] provided a trace representation solution based on the distance graph
model for K-Modes, K-means clustering algorithms. In this representation, it can
describe the ordering and the relationship between the activities in a trace. Distance
graphs order k of a trace describe the activity pairs which has distance at most k
activities in the trace.

Table 3. Results of K-means and ContextTracClus trace clustering algorithm

Algorithm Event log

Lfull prAm6 prHm6
Fitness Precision Fitness Precision Fitness Precision

Scenario 1: Using K-means algorithm
1-g 0.991 0.754 0.968 0.809 0.902 0.66
2-g 0.951 0.958 0.968 0.809 0.902 0.66
3-g 0.955 0.962 0.968 0.809 0.902 0.66
Scenario 2: Using ContextTracClus algorithm

0.982 1 0.975 0.904 0.922 0.673
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Baldauf et al. [12] presented a survey on an architecture of context-aware systems,
which includes the design principles, the common context models. They introduced the
existent context-aware systems and discussed their advantages and disadvantages.
Their paper mentioned a number of different definitions of “context” such as location,
identities of nearby people, objects and changes to those objects (Schilit and Theimer
1994); The user’s location, environment, identity and time (Ryan et al. 1997); The
user’s emotional state, focus of attention, location and orientation, date and time, as
well as objects and people in the user’s environment (Dey 1998); The aspects of the
current situation (Hull et al. 1997). The elements of the user’s environment which the
computer knows about (Brown 1996).

Becker et al. [22] introduced the support of context information in analyzing and
improving processes in logistics. They defined the context as time, location, and fre-
quency of events, tools, devices, or operators. In the experiments, they used the fre-
quency of a process and its overall cycle time as the context data. In addition, they used
K-Medoids clustering algorithm for the identification of process groups and for the
evaluation of context information.

Bolt et al. [1] presented an unsupervised technique to detect relevant process
variants in event logs by applying existing data mining techniques. This technique
splits a set of instances based on dependent and independent attributes.

Leyer [13] presented a new approach to identify the effect of context factors on
business process performance in the aspect of processing time. They proposed a two-
stage approach to identify the relevant data and to determine the context impact by
applying the statistical methods.

6 Conclusions and Future Work

This paper proposed a definition of context in business process and a new trace
clustering algorithm base on contexts. A context tree was introduced to make the
complexity of the algorithm is reduced with two loops over the input for finding
clusters, and one small loop over the clusters for adjustment. The ability to work
directly with the traces without transforming to an immediate representation is an
additional advantage of the algorithm. Another ability to automatically detect the
optimal number of clusters makes algorithm to remove the disadvantage of traditional
clustering algorithms and produce determined results. As future work, we plan to study
the impact of the context in other tasks of the process mining.
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