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Abstract. Automated essay scoring (AES) attempts to rate essays
automatically using machine learning and natural language processing
techniques, hoping to dramatically reduce the manual efforts involved.
Given a target prompt and a set of essays (for the target prompt) to rate,
established AES algorithms are mostly prompt-dependent, thereby heav-
ily relying on labeled essays for the particular target prompt as training
data, making the availability and the completeness of the labeled essays
essential for an AES model to perform. In aware of this, this paper sets
out to investigate the impact of data sparsity on the effectiveness of sev-
eral state-of-the-art AES models. Specifically, on the publicly available
ASAP dataset, the effectiveness of different AES algorithms is compared
relative to different levels of data completeness, which are simulated with
random sampling. To this end, we show that the classical RankSVM and
KNN models are more robust to the data sparsity, compared with the
end-to-end deep neural network models, but the latter leads to better
performance after being trained on sufficient data.
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1 Introduction

Automated essay scoring (AES) is usually considered as a machine learning prob-
lem [3,7,20] where learning algorithms such as k-nearest neighbor (KNN) and
support vector machines for ranking (RankSVM) are applied to learn a rating
model for a given essay prompt, after being trained on a set of labeled essays
rated by human assessors [5]. Currently, the AES systems have been widely used
in large-scale English writing tests, e.g. Graduate Record Examination (GRE),
to reduce the human efforts in the writing assessments.

Existing AES systems rely on handcrafted features which encode intuitive
dimensions of semantics or writing quality, including lexical complexity, gram-
mar errors, syntactic complexity, organization and development, and coherence
etc. [21]. Such AES systems are mostly prompt-dependent in the sense that
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they can function well only on the essays for the prompt on which manually
labeled essays are available for training. Such prompt-dependent natures some-
times make it hard to apply AES in reality especially when limited rated essays,
if any, are available for training. For example, in a writing test, students are
asked to write essays for a target prompt without any rated examples, where
the prompt-dependent methods are unlikely to perform well due to the lack of
training data. Actually, as suggested by a recent study on the task-independent
features, the lack of prompt-specific training data is one of the major causes
for the degrading performance of current AES methods [23], highlighting the
importance of the completeness of training data for AES models. As far as our
knowledge, however, it is still not clear to what extent the incompleteness could
affect the performance of an AES model and, more importantly, what is the pre-
requisites for an AES model to function in terms of the number of training data.
To mitigate this gap, this paper attempts to investigate the influences of the
incompleteness of training data over several AES models by answering following
research questions.

— RQ1: How the data sparsity problem affects the performance of different AES
methods?

— RQ2: To make an AES model perform, how many rated essays are requested
at least for training?

By answering the above questions, we hope to understand the reliances on
the completeness of training data in different models and attempt to estimate
the least manual workloads that required to make an AES system to perform.
To this end, extensive empirical experiments are conducted on the standard
Automated Student Assessment Prize (ASAP) dataset!. As shown by the results,
the classical RankSVM and KNN models can learn effective AES models with
as few as 20 labeled essays, and they tend to converge when being trained on
200 rated essays. Meanwhile, the AES models based on deep neural network
normally require more training data, but could outperform the classical models
right after being trained on enough labeled data.

2 Related Work

2.1 Automated Essay Scoring Algorithms

Most of existed Automated Essay Scoring (AES) algorithms view automated
essay scoring as classification or regression problem [3,12-15]. They usually
directly learn a classification or regression model based on hand crafted features,
such as lexical and syntactic features, and estimate the score of an unseen essay
with the prediction of the learned model. In addition, there are also works seeing
AES as a ranking problem by applying pairwise learning to ranking algorithms
on AES problem [5,22]. Instead of directly utilizing the prediction of learned

! https://www.kaggle.com/c/asap-aes.
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model as the estimation of an unseen essay as classification or regression, they
transform the ranking score given by learning to rank model into the estima-
tion score of the unseen essay by heuristic or learning methods. Intuitively, AES
algorithms based on learn to rank take the relative writing quantity between a
given pair of essays compared to algorithms based on classification or regres-
sion. Experimental results in [5,22] also show the improvement of learning to
rank approaches over traditional classification and regression algorithms. Specif-
ically, Chen and He propose to incorporate the evaluation metric in AES into the
loss function to directly optimize the agreement between human and machine
raters [4].

Traditional AES models require much work on feature engineering to be effec-
tive. Recent years there have been efforts in developing AES approaches based on
deep neural networks (DNN), for which feature engineering is no longer required.
Alikaniotis et al. propose to learn score-specific word embeddings and utilize a
two-layer bi-directional Long-Short Term Memory networks (bi-LSTM) followed
by several dense layers to predict essay score [1]. Taghipour and Ng explore a
variety of neural network model architectures based on recurrent neural networks
[17]. Tay et al. further extend [17] by incorporating neural coherence features
[18]. Some works first utilize CNN layers to learn representations of sentences
and then CNN [8] or RNN [9] layers are applied to further learn representations
of essays.

There are also some works working on the adaption problems between dif-
ferent essay prompts. Phandi et al. propose to apply correlated linear regression
to solve the domain adaption problem in AES [14]. They train their AES model
using the data from source prompt and a few target prompt essays, such as
10, 25, 50, 100 target prompt essays. Cummins et al. use a constrained multi-
task pairwise preference learning approach to combine the data from different
prompts to improve the performance [6]. They also find a few target prompt
essays is needed to obtain effective results in terms of kappa, a prime evaluation
metric for AES.

2.2 Pre-defined Essay Features

In this section, we introduce the hand crafted features used in this work for
traditional AES models, such as RankSVM and KNN. These features are widely
used in previous works [3,4,10,16] and are concluded in Table 1. The detailed
description of the pre-defined hand crafted features are as follows:

Lexical Features

— Statistics of word length: The number of words with length in characters
larger than 4, 6, 8, 10, 12 in each essay respectively. The mean and variance
of word length in characters in each essay. In general, hard words are likely
much longer in length. Statistics of word length are expected to reflect one’s
grasp of complex words.



A Study on Performance Sensitivity to Data Sparsity for AES 107

Table 1. Hand-crafted features.

Z
o

. | Feature

Mean and variance word length in characters

Mean length of clauses

Essay length in characters and words

Number of spelling errors

The number of prepositions and commas

Mean number of clauses per sentence

Mean and variance of sentence length in words

Maximum number of clauses of a sentence

©C|0 N |O| Ok W|( N~

Semantic vector similarity based on LSA

—
o

Mean cosine similarity of word vectors by tf-idf

—_
—_

The average height of the parser tree of each sentence in an essay

—
[\

Word bigram/trigram frequency tf divided by collection frequency TF

—
w

POS bigram/trigram frequency tf divided by collection frequency TF

— Unique words: The number of unique words in each essay, normalized by
the essay length in words. This is expected to reflect a student’s quantity of
vocabulary.

— Grammatical/Spelling errors: The number of grammatical or spelling errors
in each essay. An essay with too many grammatical or spelling errors usually
hints a bad grasp of word spelling.

Syntactical Features

— Statistics of sentence length: The number of sentences whose length in words
are larger than 10, 18 and 25 respectively. The mean and variance of sentence
length in words. The variety of the length of sentences potentially reflects the
complexity of syntactics.

— Clauses: The mean number of clauses in each sentence, normalized by the
number of sentence in an essay. The maximum number of clauses of a sentence
in an essay.

— Sentence structure: The average height of the parser tree of each sentence in
an essay. The average of the sum of the depth of all nodes in a parser tree of
each sentence in an essay.

— Preposition and Comma: The number of prepositions and commas in each
sentence, normalized by sentence length in words.

Grammar and Fluency Features

— Word bigram and trigram: The grammar and fluency of an essay can be
measured by the mean tf/TF of n-grams where tf is the frequency of n-gram
in a single essay and TF is the corresponding frequency in the whole essay



108 Y. Ran et al.

collection. A n-gram with high tf/TF generally indicates it is wrong use. We
utilize bigram and trigram tf/TF feature in this work.

— POS bigram and trigram: Similar with bigram and trigram features, the mean
t{/TF of POS bigrams and trigrams are also incorporated.

Content and Prompt-Specific Features

— Essay length: The number of words and characters in an essay. Since the
fourth root of essay length in words is proved to be highly correlated with
the essay score [16], we use the fourth root of the essay length measured by
the number of words and characters in experiments.

— Word vector similarity: Mean cosine similarity of word vectors, in which the
element is the term frequency multiplied by inverse document frequency (tf-
idf) of each word. It is calculated as the weighted mean of cosine similarities
and the weight is set as the corresponding essay score.

— Semantic vector similarity: Semantic vectors are generated by Latent Seman-
tic Analysis. The calculation of mean cosine similarity of semantic vectors is
the same with word vector similarity.

All the features are normalized through min-max method to avoid several fea-
tures are dominant compared to other features. For traditional models, it is
important to have elaborate feature engineering procedures if we want obtain
effective performance. These features are proved to be effective in previous
works [3,4,10,16], thus chosen in this work.

3 Data Sparsity Simulation

In this section, we introduce the simulation method of data sparsity in automated
essay scoring. We start with a brief introduction to the dataset and the evaluation
metric used, followed by the data sparsity simulation method.

Dataset. The dataset used in the experiments is the Automated Student Assess-
ment Prize (ASAP) dataset, the dataset used in the ASAP competition by Kag-
gle, which is widely used for AES [1,4,9]. The statistics of the dataset are summa-
rized in Table 2. There are 8 sets of essays in the dataset from different prompts.
All essays are written by students ranging in grade 7 to grade 10. And the essays
are different in essay length and score range.

Evaluation Metric. Quadratic weighted Kappa (QWK) is used to measure
the agreement between the predicted scores and the corresponding scores from
human raters. It is the official evaluation metric in the ASAP competition and
is widely used in previous works [1,4,22]. QWK is calculated as follows:

i wi0iy
20 Wi Ei

where w, O and F are matrices of weights, observed scores and expected scores.
O;,; is the number of essays that receive a score i from the first rater and a

k=1
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score j from the second rater. w; ; = (i — j)?/(N — 1)2, where N is the number
of possible scores. F is the outer product between the score vectors of the two
raters, normalized to have the same sum as O.

Simulating Data Sparsity. For each of the eight essay sets in ASAP, we
divide the dataset into training, validation and testing subsets in line with [1] by
utilizing the ids set of validation and test set essays released by them. Concretely,
80% of each essay set are used for training and the remaining 20% for testing.
Additionally, 20% of the training data are reserved for validation. The remaining
training essays are then deemed a complete training set, out of which essays
are sampled to simulate data incompleteness. A simple way of doing so is to
randomly select essays from the training set. However, a drawback of this simple
simulation would be that the random sample may not reflect the actual score
distribution in the complete training set, which in turn biases the training of
the AES model. Therefore, in this paper, in order to simulate the data sparsity,
the training essays are first sorted by their actual scores, and then partitioned
into 5 equal-size bins. From each bin, equal number of essays are randomly
sampled as the incomplete training set. In this work, the following training set
sizes are sampled to simulate the data sparsity: [5, 10, 15, 20, 25, 30, 50, 100,
150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100]. In consideration of the
randomness may lead to large variance especially when training set size is small,
the random sampling is repeated 10 time for each sample size, and the average
performance trained from the 10 random samples are reported. Compared to the
simple simulation that samples from the whole training set, sampling from the
sorted bins is expected to preserve the score distribution such that the effect of
the random sampling on learned AES model can be minimized.

Table 2. Statistics for the ASAP dataset.

Prompt | #Essays | Grade level | Avg length | Score range
1 1783 8 350 2-12

2 1800 10 350 1-6

3 1726 10 150 0-3

4 1772 10 150 0-3

5 1805 8 150 04

6 1800 10 150 04

7 1569 7 250 0-30

8 723 10 650 0-60

4 Experimental Setup

In this section, we first introduce the dataset, AES models and evaluation metric.
Then we describe the details about how we simulate the data sparsity.
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4.1 AES Models

This study uses two classical AES methods based on RankSVM and k-nearest
neighbor algorithms, respectively. In addition, a recent state-of-the-art AES
model based on end-to-end deep neural networks is also involved in this study.
Details of the AES models used are given below.

— RankSVM is a pairwise learning to rank algorithm and is applied on AES
problem in many works [5,22]. RankSVM regards AES problem as a ranking
problem by taking the relative writing quality for a given essay pair into
consideration. First, it assigns a ranking score to each essay in both training
and testing essay sets. Then the predicted score of an essay in the testing
set is estimated by averaging the human rated score of the K training essays
whose ranking scores are nearest the testing essay’s. The value of K is chosen
from [6, 8, 10, 12, 14] by maximizing the performance on validation set. The
linear kernel RankSVM? is used with the parameter C' amongst [3, 4, 5, 6, 7).

— K nearest neighbors. K nearest neighbors (KNN) [2] is a simple non-
parametric algorithm, of which the main idea is to estimate one’s properties
by considering its K nearest neighbors. In this work, we estimate the score
of an essay in testing set by averaging the human rated scores of it’s K
nearest neighbor essays in training set. The distance is measured by euclidean
distance. The value of K is also amongst [4, 6, 8, 10, 12, 14].

— Neural Model. Deep Neural network (DNN) is popular in recent years for
their good performance on many tasks without feature engineering and has
already been successfully applied on AES [1,9,17,18]. In this work, we utilize
the architecture of the neural network in [17], which is a state-of-art neural
model for AES. First, a LSTM network is applied on the word embedding
sequence of a given essay to obtain a list of hidden states. Then these hidden
states are averaged and fed into a dense layer with sigmoid activation to get
the predicted score, ranging in [0, 1]. The RMSProp optimization algorithm is
used to minimized the mean squared error (MSE) loss. The batch size are set
to 32. Since the human rated scores are not in [0, 1], we transform the original
scores into [0, 1] for training and back into the original range for evaluation.
Word embeddings are initialized by the pre-trained embeddings released by
[24]. Other setups are also completely in line with [17], we recommend to refer
to [17] for space reason.

5 Results and Analysis

In this section, we present the experimental results. The kappa performance of
RankSVM, KNN and DNN on incomplete training sets with different sizes are
presented in Tables3, 4 and 5, respectively. As it is widely accepted that the
human-machine agreement of an AES system, measured by Kappa, should be

2 http://svmlight.joachims.org/.
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Table 3. The kappa performance of RankSVM on incomplete training sets with dif-
ferent sizes.

Size

Prompt Id

1

2

0.3212

0.2350

0.1793

0.3454

0.2611

0.3292

0.2687

0.2697

10

0.6063

0.4560

0.4141

0.5120

0.5997

0.4808

0.5050

0.4750

15

0.6592

0.5378

0.5041

0.5432

0.6695

0.5933

0.5654

0.5099

20

0.7031

0.5899

0.5736

0.5665

0.7492

0.6524

0.5973

0.5316

25

0.7424

0.6192

0.5533

0.5797

0.749

0.6570

0.6255

0.5674

30

0.751

0.6457

0.5679

0.5805

0.7613

0.6601

0.6436

0.5524

50

0.7515

0.6522

0.5675

0.6386

0.771

0.6772

0.6609

0.5666

100

0.7613

0.6726

0.5943

0.6613

0.7818

0.7005

0.6974

0.5651

150

0.7815

0.6746

0.6318

0.6617

0.7900

0.7130

0.6981

0.5846

200

0.7848

0.6732

0.6378

0.6715

0.7983

0.7261

0.7120

0.5928

300

0.7983

0.6824

0.6378

0.6811

0.8082

0.7504

0.7297

0.5985

400

0.8006

0.6875

0.6378

0.6856

0.8072

0.7471

0.7349

0.5945

500

0.8009

0.6876

0.6461

0.6868

0.8116

0.7508

0.739/

0.5945

600

0.8041

0.6885

0.6492

0.6908

0.8153

0.7522

0.7442

700

0.8125

0.6885

0.6471

0.6945

0.8201

0.7478

0.7469

800

0.8137

0.6897

0.6471

0.6939

0.8168

0.7499

0.7416

900

0.8137

0.6897

0.6471

0.6963

0.8181

0.7499

0.7412

1000 | 0.8133

0.6895

0.6471

0.6968

0.8191

0.7499

1100 | 0.8144

0.6895

0.6520

0.6968

0.8169

0.7499

(a) Prompt 1

(b) Prompt 2

(c) Prompt 3

(d) Prompt 4

(e) Prompt 5

Fig. 1. The human rated score distribution of each prompt’s training essays.
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Table 4. The kappa performance of KNN on incomplete training sets with different
sizes.

Size | Prompt Id
1 2 3 4 5 6 7 8
510.2770 |0.23740.0480|0.2619 | 0.2842 |0.1022 | 0.1379 | 0.1649
10| 0.5488 | 0.4603 | 0.2648 | 0.5135 | 0.5674 |0.3773 | 0.3701 | 0.4085
15/0.5998 | 0.5266 | 0.4573 | 0.5684 | 0.6614 | 0.5205 | 0.4341 | 0.4480
20 0.6520 |0.5451|0.5504 | 0.5853 | 0.7056 | 0.5634 | 0.4924 | 0.4458
250.6500 |0.5580|0.5712 | 0.6016 | 0.7192 | 0.5864 | 0.5418 | 0.4782
30/0.6547 |0.5737/0.5972 | 0.6166 | 0.7222 |0.6050 | 0.5472 | 0.5040
50 0.6706 |0.5754|0.5999 |0.6161 | 0.7373 | 0.6155 | 0.5637 | 0.5481
100 | 0.7119 | 0.5877 | 0.6008 | 0.6313 | 0.7616 |0.6288 | 0.5897 | 0.5789
150 | 0.7201 |0.6205 | 0.6062 | 0.6330 | 0.7660 |0.6442 | 0.6218 | 0.5969
200 | 0.7324 |0.6432|0.6078 | 0.6564 | 0.7656 | 0.6443 | 0.6400 | 0.6216
300 | 0.7386 |0.6523 | 0.6082 | 0.6579 | 0.7678 | 0.6527|0.6423 | 0.6177
400 | 0.7471 |0.6505 | 0.6034 | 0.6547 | 0.7695 | 0.6692|0.6575| 0.6190
500 | 0.7641 |0.6508 | 0.6093 | 0.6605 | 0.7802 | 0.6817|0.6682 | 0.6162
600 | 0.7617 |0.65310.6178 | 0.6611 | 0.7812 |0.6791 | 0.6675 | -
700 | 0.7639 |0.6535|0.6178  0.6594 | 0.7812 |0.6790 | 0.6734 | -
800 | 0.7693 |0.65350.6178 | 0.6613 | 0.7825 |0.6790 | 0.6753 | -
900 | 0.7658 |0.6591 | 0.6188 | 0.6613 | 0.7825 |0.6857 | 0.6744 | -
1000 | 0.7654 |0.6585|0.6184 | 0.6589 | 0.7841 |0.6881 |- -
1100 | 0.7821 |0.6549|0.6184 | 0.6589 | 0.7841 |0.6938 |- -

at least 0.70 [19], a training data set is considered sufficient if the learned model
results in a performance that meets the 0.70 requirement. Therefore, in the
tables, the kappa values larger than 0.70 are in italic, and the results improved
from below 0.70 are in bold. From the experimental results in Tables 3, 4 and
5, we attempt to answer the two main research questions raised in Sect.1 as
follows.

For RQ1, the performance of traditional classification models (RankSVM and
KNN) increases fast even if the number of training essays are very small, from 5
to 30. A likely cause for this observation is that the classical RankSVM and KNN
models have relatively high tolerance to data sparsity, and can achieve reasonable
performance with a small number of training data. Compared to RankSVM and
KNN, the performance of the deep neural network model (DNN) appears to be
sensitive to data sparsity. When the training set is small, the performance of
DNN is much lower than RankSVM and KNN, and the Kappa value is lower
than 0.70 on all 8 prompts until the training set size is increased to 200 (see
Table5). We believe this is due to the fact that, compared to RankSVM and
KNN, the deep neural network model is complicated, with many parameters to
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Table 5. The kappa performance of DNN on incomplete training sets with different
sizes.

Size | Prompt Id
1 2 3 4 5 6 7 8
510.1077 |0.2116 | 0.3265|0.3391 |0.2611 | 0.2099 |0.2509 |0.2173
10| 0.2826 |0.1861|0.3634 |0.4574 |0.3172 |0.1809 |0.3704 |0.1581
1510.2097 |0.2604 | 0.3264 | 0.5000 |0.3909 |0.2187 |0.3838 |0.2568
20 0.2643 |0.2537/0.3624 | 0.5299 |0.3283 |0.2319 |0.3517 |0.2551
2510.2921 |0.2576 | 0.3635|0.5327 | 0.3973 |0.2373 |0.4440 |0.2507
30/0.2134 |0.2061 | 0.3902 | 0.4673 | 0.406 0.2878 |0.4020 |0.2872
50 0.2764 |0.2982|0.4903 |0.5462 |0.4741 |0.3373 |0.5146 |0.2981
100 0.3294 |0.3432|0.5082|0.6191 |0.6417 |0.4088 |0.6079 |0.3441
150 0.4274 |0.3757 | 0.5563 | 0.6411 | 0.6618 |0.5000 |0.6696 |0.4792
200 |0.4537 |0.3953 0.6184 1 0.6803 | 0.7200 | 0.5398 |0.6993 |0.4788
300 |0.5371 |0.4806 | 0.6469 | 0.7183 | 0.7808 |0.6174 | 0.7194 | 0.5107
400 | 0.5746 |0.5138 | 0.6747 | 0.7508 | 0.7971 |0.6507 | 0.7595 |0.5676
500 | 0.6075 |0.55100.6845 | 0.7590 | 0.7991 |0.6987 | 0.8029 |0.5651
600 | 0.6172 |0.5828 | 0.6933 | 0.7647 | 0.8063 | 0.7404 | 0.8106 |-
700 | 0.6615 |0.6310|0.6867 | 0.7615 | 0.8107 | 0.7564 | 0.8189 | -
800 | 0.7740 | 0.6348 | 0.6857 | 0.7828 | 0.8142 | 0.7667 | 0.8254 |-
900 | 0.7780 |0.6852 |0.6975 | 0.7809 | 0.8148 | 0.7632 | 0.8281 |-
1000 | 0.7894 |0.6774]0.6916 | 0.7889 | 0.8225 | 0.7859 |- -
1100 | 0.8097 |0.6998 | 0.6945 | 0.7955 | 0.8195 | 0.7870 |- -

learn, and consequently, requires a large amount of training data. On the other
hand, the neural network model outperforms the two classical models with the
use of all training data available, showing that the deep model has strong ability
in learning rating patterns out of sufficient training data.

For RQ2, we find that the Kappa values of RankSVM on prompts 1 and 5
are larger than 0.7 when the training set size is only 20. In addition, RankSVM
achieves Kappa > 0.7 on prompts 6 and 7 with training set sizes of 100 and
200, respectively. As for KNN, it achieves Kappa > 0.7 on prompts 1 and 5 with
training set size of 100 and 20. Compared to traditional methods, DNN needs
much more training data to surpass the 0.70 threshold, of which the sizes are
800, 300, 200, 600 and 300 for prompts 1, 4, 5, 6, 7, respectively. Overall, the
minimal number of training essays required to learn an effective prompt-specific
AES model depends on the data and the learning algorithm used. For example,
RankSVM requires only 20 training essays to reach the Kappa=0.70 threshold
on prompts 1 and 5, but is unable to outperform this threshold on prompts 2—4
even if all training data available are used. To investigate this issue, we plot
the real score distribution of essays for all 8 prompts in Fig.1. As we can see
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Table 6. The performance loss in Kappa in percentage against the use of all training
data available.

Size | Model Prompt Id
1 2 3 4 5 6 7 8
30 | RankSVM | 8.38 | 6.82 | 14.8 | 20.1 7.73114.0|16.1 |8.35
KNN 19.5/14.9|3.62| 7.26 |8.57|14.723.4|23.3
DNN 279 1239 |78.8|70.0 102 | 173 | 106 |97.6
50 | RankSVM | 8.37 | 5.76 | 14.9| 9.11 |6.37|11.1|13.0|5.64
KNN 16.6 | 14.6 | 3.16 | 7.34 |6.35|12.7|19.8|13.4
DNN 192 | 134 |42.3145.6 |73.5|133 |60.9|90.4
100 | RankSVM | 6.97 | 2.55|9.71| 5.36 |4.90|7.39|7.10|5.91
KNN 9.86|12.1/3.00| 4.75 |2.95/10.3|14.5|7.39
DNN 145 1104 |37.3|28.5 |28.1]92.5/36.2|65.0
150 | RankSVM |4.21 /2.25[3.19| 5.30 |3.81|5.51|7.00]2.39
KNN 8.60|6.23 |2.08| 4.48 |2.36|7.70|8.60|4.14
DNN 89.586.325.424.1 24.3|57.423.7|18.5
200 | RankSVM  3.772.46|2.22| 3.77 | 2.73|3.59|4.91|0.970
KNN 6.7812.46 |1.82| 0.750|2.41|7.69|5.52|0
DNN 78.5|77.012.8|16.9 14.2145.818.4|18.6

from this figure, the score distributions of essays written for prompts 1 and 5 are
more diverse than those written for prompts 2—4, and it is likely the case that
a majority of essays written for prompts 2—4 are of medium quality such that
the learned model is unable to differentiate between essays with similar quality.
Similar observation can also be made from the score distribution of prompt 8,
where most essays receive scores from 30 to 50, and in particular, more than 20%
of the training essays (100 out of 500) are rated 40. As a result, it is difficult
for the AES model to learn the nuances between essays with very close ratings
(e.g. 39 and 40). Note that for some of the prompts, the performance of the AES
model can never reach the kappa = 0.70 threshold. We suggest that this is caused
by the biased distribution of essays scores, and in this case, more training essays
with diverse quality are needed for learning an effective AES model.

To further investigate, we present the performance loss in Kappa, with respect
to the use of all training data available, with training data sizes of 30, 50, 100,
150, and 200 essays, in Table 6. When training set sizes are too small, we can find
the performances of DNN are far from the corresponding best performance, i.e.
the last row in Table 5. From Table 6 we find that when there are only 30 essays
in training set, RankSVM is able to achieve good performances on prompts 2
and 5, of which the kappa losses compared to the best performance obtained
on much more training essays are only 6.82% and 7.73% respectively. For KNN,
the kappa losses on prompts 3, 4 and 5 at training set size 30 are 3.62%, 7.26%
and 8.57%, showing that this model converges with only a small number of
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training essays. The kappa losses on all eight prompts at training sizes 100 and
200 are within 10% and 5% respectively for RankSVM. This demonstrates that
traditional methods are able to achieve relatively stable performance with a few
training essays at the cost of small kappa losses, whereas the DNN model requires
a large amount of training data to learn, and can indeed lead to the performance
that is better than RankSVM and KNN with the availability of enough training
data, as shown in the results in Tables 3, 4 and 5.

6 Conclusions

This paper has conducted comprehensive experiments to investigate two key
research questions (RQs) regarding the data sparsity problem in automated essay
scoring. According to the results, for RQ1, compared to the classical RankSVM
and KNN models, the recent deep neural networks are much more sensitive to
data sparsity due to its model complexity. For RQ2, in general, the classical
models like RankSVM and KNN require a small number of training essays due
to their tolerance to data sparsity. They can learn an effective AES model with
as few as 20 training essays. Both RankSVM and KNN converge with about 200
training essays at most. The DNN model, in contrast, is relatively data-hungry
due to its model complexity. According to the results, the DNN model does not
appear to converge even if all training data available are used. Even though, the
performance of the AES model learned by DNN is better than RankSVM and
KNN in most cases when more than 1,000 training essays are used.

As indicated by the results, in real-life applications, for a given essay prompt,
i.e. there are only very few rated essays for training, or even no rated essays at
all, it is recommended to use RankSVM for its high tolerance to data sparsity.
It is also recommended to rate 20-100 essays by human assessors in order to
learn an effective AES model by RankSVM. On the other hand, if there are
enough, namely more than 1,000 rated essays available for a given prompt, it
is recommended to use neural network model to learn the AES model to fully
utilize DNN’s power in learning patterns out of sufficient training data. Finally,
the results indicate that the performance of prompt-independent AES [11] can
be potentially improved by including a small number of labeled essays written
for the target prompt.
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