
Robust Detection of Communities with
Multi-semantics in Large Attributed Networks

Di Jin1(&), Ziyang Liu1(&), Dongxiao He1, Bogdan Gabrys2,
and Katarzyna Musial2

1 School of Computer Science and Technology, Tianjin University,
Tianjin 300350, China

{jindi,liuziyang,hedongxiao}@tju.edu.cn
2 Advanced Analytics Institute, School of Software,

Faculty of Engineering and IT, University of Technology Sydney,
PO Box 123 Broadway, Ultimo, NSW 2007, Australia

{Bogdan.Gabrys,Katarzyna.Musial-Gabrys}@uts.edu.au

Abstract. In this paper, we are interested in how to explore and utilize the
relationship between network communities and semantic topics in order to find
the strong explanatory communities robustly. First, the relationship between
communities and topics displays different situations. For example, from the
viewpoint of semantic mapping, their relationship can be one-to-one, one-to-
many or many-to-one. But from the standpoint of underlying community
structures, the relationship can be consistent, partially consistent or completely
inconsistent. Second, it will be helpful to not only find communities more
precise but also reveal the communities’ semantics that shows the relationship
between communities and topics. To better describe this relationship, we
introduce the transition probability which is an important concept in Markov
chain into a well-designed nonnegative matrix factorization framework. This
new transition probability matrix with a suitable prior which plays the role of
depicting the relationship between communities and topics can perform well in
this task. To illustrate the effectiveness of the proposed new approach, we
conduct some experiments on both synthetic and real networks. The results
show that our new method is superior to baselines in accuracy. We finally
conduct a case study analysis to validate the new method’s strong inter-
pretability to detected communities.
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1 Introduction

Network science is a modern and significant discipline in many fields, such as social
and computer science. Networks, consisting of nodes and edges which connect a pair of
nodes, always occur in a variety of contexts [1]. The real-world networks usually share
the same characteristic: they exhibit strong community structure. The property of
community structure is: in which network nodes are joined together in tightly knit
groups, between which there are only looser connections [2]. For example, in
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Facebook, users who have consistent interests often gather together and form a com-
munity but there are only few connections between such communities. Community
structure reveals the fundamental functional modules of a network and enables us to
better understand the interactive behavior of the network.

Community detection has developed rapidly in recent years and various community
detection methods, which mainly focus on network topology, have been proposed, e.g.,
the agglomerative or divisive algorithms [3], modularity optimization based methods
[4], and spectral algorithms [5]. Further, it is well known that a node may belong to
multiple communities (i.e. overlapping community). As a result, lots of methods were
developed to detect overlapping community, such as k-clique community detection
algorithms [6], local expansion and optimization algorithms [7] and probabilistic
model-based algorithms [8]. Except for network topology, node attributes or link
attributes are also taken into account when discovering communities [9–11]. In addi-
tion to improving community detection, researchers have realized that community
detection should not only find community structure but also describe communities
semantically by the use of abundant verbal information in the textual content. These
descriptions can reveal why some nodes form a community and enable people to better
understand the functions or meanings of communities, and in a way, this has much
more practical value in real-world applications. Some methods have been proposed
which combine topology and content information and give reasonable and interpretable
communities [12, 13].

However, some problems still occur and need to be solved when network topology
and node contents are integrated. One of the most important issues is the mismatch
problem of topology and content. Traditional methods [12–14] typically assume that
the network topology and node contents share the same community membership, but in
many real social networks, this assumption does not always hold. For example, in a
Twitter network, social links usually directly reflect which users gather into a com-
munity, while users may generate diverse and disordered content information. Thus,
the community membership derived by network topology probably differs from the
cluster membership derived by node contents.

For the above problem, it is necessary to extract useful content information to assist
topology information in detecting more actual and accurate communities. In this paper,
we propose a new generative model different from the traditional generative model and
design a new community detection method, referred to as Robust and Strong
Explanatory Community Detection (RSECD). To be specific, based on nonnegative
matrix factorization (NMF), we are able to obtain the community membership matrix
for network topology and cluster membership matrix for node contents. More impor-
tantly, there exists some implicit relation between network communities and content
clusters, thus we introduce a transition probability matrix to depict it. As a result, even
though the content information does not match with topology information, our method
can still obtain accurate detection results by using the transition matrix with a suitable
prior. At last, we put network topology, node content and transition matrix into a
unified NMF framework, and optimize them altogether by designing effective updating
rules in order to achieve an integral balance of them.

In the experiments, we use artificial networks to analyze the parameter in the
objective function and to demonstrate the effectiveness and robustness of our approach.
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Next, we conduct experiments on seven real-world network datasets and compare
RSECD with eight baseline methods in terms of both disjoint community and over-
lapping community evaluation metrics. Experimental results show that RSECD can
significantly improve the performance in all comparisons, which further illustrates our
approach’s robustness. And finally, in order to verify that RSECD is strong-explanatory
to communities, we use a case study on a musical social network to semantically explain
the hidden meanings of some topics and tell the ‘true stories’ behind communities.

2 Related Work

Various community detection methods, which only take the network topology into
account, have been proposed. For example, hierarchical clustering methods [3] which
include agglomerative and divisive hierarchical algorithms. Optimal modularity
approaches (such as spectrum optimization method [5]) can find communities by the
use of modularity optimization. Another approach [4] applies modularity into graphs of
different networks by correcting modularity, such as symbolized networks. By mapping
a network into a Laplacian matrix and calculating its eigenvector values, spectral
methods can find each node’s corresponding community accurately.

With in-depth analysis and research of complex network, the content information of
complex networks shows its value and some community detection methods, which
integrate the content information with network topology, have been developed. For
instance, a subgraph overlapping clustering algorithm combining network structure and
content information is proposed [9]. This method applies expectation-maximization
(EM) algorithm to maximize likelihood function to generate stationary candidate
subgraphs, and then uses k-means algorithm to cluster edges in order to obtain the
overlapping community structure. A new generative probabilistic model is proposed
which is learned by using a nested expectation-maximization algorithm and can
describe the generalized communities [10]. In [11], a co-learning strategy is developed
to jointly train the two parts (communities and semantics) in the model by combining a
nested EM algorithm and belief propagation.

Recently, researchers have also realized that community detection should not only
find communities, but also use rich verbal information in the text to give semantic
description of communities. The description information reveals why some nodes
gather into a community and helps people better understand the functions or impli-
cations of communities. For example, the approach in [12] using nonnegative matrix
factorization integrates two tasks of community detection and user profiling into a
unified model, and then achieves community profiling by a linear operator integrating
the profiles of users. A joint community profiling and detection (CPD) model [13] is
proposed which describes communities by published content and friendship links of
users. In addition, the method SCI [14], which can detect and describe communities,
has also been proposed. This method uses nonnegative matrix factorization to integrate
topology and content information into a unified model, and achieves relatively high
detection accuracy in comparison with other methods. More importantly, SCI can not
only detect communities, but also analyzes the semantics of detected communities. In
general, this type of method has more practical value than others without semantics.
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However, the methods mentioned above mainly focus on how to effectively fuse
topology structure and content information to improve the performance of community
detection while do not further consider how to detect communities more robustly,
especially when the node contents do not match well with network communities.
Moreover, most of these methods can only interpret each community using a single
topic, which is far from satisfactory in many real applications.

3 RSECD: The Network Model

Our proposed RSECD approach extends the previous SCI approach by introducing a
transition probability matrix with a suitable prior to represent the hidden relationship
between network communities and content clusters. In this section, firstly, we illustrate
the difference between traditional generative model and our proposed new generative
model; then we give some notations. Finally, we elaborate how to model RSECD.

3.1 Traditional Generative Model vs. New Generative Model

Most of community detection methods [9–14] follow traditional generative model
which generally assumes that network topology and node contents share the same
community structure (as shown in Fig. 1(a)). While in many real-world networks,
network topology and node contents may implicate different community structures, so
that we modify the traditional generative model and design a more reasonable gener-
ative model, as shown in Fig. 1(b). In this new model, node contents N implicates topic
cluster T (not community structure C) and topic cluster T is generated by community
structure C and transition probability matrix X together.

3.2 Notations

For an undirected network G with n nodes and e edges, we represent it by a binary-
valued adjacency matrix A 2 Rn�n. Each node i has its attributes Si, which may be the

Fig. 1. A comparison of traditional generative model and our proposed new model. (a) is the
traditional generative model where community structure C directly generates network topology G
and node contents N. (b) is RSECD’s generative model where node contents N implicates topic
cluster T (not community structure C) and topic cluster T is generated by community structure C
and transition probability matrix X together. In addition, identity matrix I, as the transition
matrix’s prior, plays a key guiding role in fusing these two types of information.
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semantic information of the node. Si is in the form of an m-dimensional binary-valued
vector. All of Si form an attribute matrix S 2 Rn�m. The community detection task is:
when A and S are observed, on topology, we need to find k different communities; on
content cluster with semantics, we need to find k′ different topics and infer the
semantics for each community. Because all of the baseline algorithms assume that the
number of communities is equal to that of topics, we still assume k = k′ in this paper.
However, our RSECD algorithm can also apply equally to k = k′.

3.3 Modeling Network Topology

Our network topology model is based on the following intuitive properties: (1) if two
nodes belong to the same community, they are more likely to be connected; (2) if two
nodes have similar community memberships, they have a high probability to be linked.
We define the propensity of node i belonging to community c as uic. Then we have a
community membership of all nodes denoted as U = (uic)n�k. Based on the first
propensity, we can use uicujc to represent the expected number of edges between nodes
i and j in community c. Based on the second propensity, we can achieve that the
expected number of edges between nodes i and j in the whole network is

Pk
c¼1 uicujc.

Considering all nodes, we have the following loss function:

min
U� 0
jjA� UUTjj2F ð1Þ

3.4 Modeling Node Attributes

We define the propensity of topic t having attribute q as cqt and the propensity of node
i belonging to topic t as vit. Then we have an attribute membership of all topics denoted
as C = (cqt)m�k and a topic cluster membership of all nodes denoted as V = (vit)n�k. In
addition, we define the propensity of a node i having attribute q as siq, which is an
element of attribute matrix S. We suppose that if node i belongs to topic t, node i and
topic t will have similar attributes information. It can be represented as
siq ¼

Pk
t¼1 vitctq. Then we have the following loss function:

min
C� 0;V� 0

jjS� VCTjj2F ð2Þ

3.5 Modeling Transition Probabilities

Transition probability is an important concept of Markov chain and is defined as the
probability of transferring from one state to another. We introduce transition proba-
bilities to represent the relationship between network communities and topic clusters.
Here the probability transferring from community c to topic t is defined as xct, the
probability vector transferring from community c to any topic is defined as xc (xc
satisfies a probability distribution) and the probability matrix transferring from any
community to any topic is defined as X. Moreover, to effectively guide the fusion of
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topology and content, we employ identity matrix I as the prior of X. Then we have the
following loss function:

min
X� 0
jjUX� Vjj2Fþ jjX1Tk � 1Tk jj2Fþ jjI� Xjj2F ð3Þ

where 1Tk 2 Rk�1 and all of its elements are 1.

3.6 The Unified Model

By combining the objective functions of the above formulas (including (1) to (3)), we
obtain RSECD’s overall loss function:

min
U� 0;V� 0;
C� 0;X� 0

L ¼ jjA - UUTjj2F + ajjS - VCTjj2F + jjUX - Vjj2F + jjX1Tk - 1Tk jj2Fþ jjI - Xjj2F ð4Þ

where a is a balance parameter between network topology and node contents.
Our RSECD model can deal with the topology and content’s mismatch problem in

networks well. To be specific, (1) when topology matches with content very well, the
first two parts of unified model (network topology model and node attributes model)
work so that topology and content can reinforce each other in order to find more exact
community structure. (2) When only some parts of content match with network
topology, RSECD can also extract useful material from content information to assist
topology information in detecting more actual and accurate communities by the
mapping and tractive function of transition matrix X. (3) When content does not match
with topology at all, matrices U and V are almost orthogonal, thus matrix X is close to a
random matrix and the final result is equal to that of using only topology information.
In addition, the optimized X essentially represents the mapping relationship between
communities and topics, so that we can also use X to explain the detected communities.
So our RSECD is robust and strong-explanatory to community detection. We will
further use extensive experiments (including a case study) to demonstrate these cases.

4 Optimization

Since the objective function in (4) is not convex, it is hard to obtain the global optimal
solution. Fortunately, the local minima of (4) can be obtained using the Majorization-
Minimization framework [16]. Here we describe an algorithm that iteratively updates U
with V, C, X fixed, updates V with U, C, X fixed, updates C with U, V, X fixed, and
updates X with U, V, C fixed, which guarantees that our objective does not increase
and the parameters keep nonnegative (with any nonnegative initial seeds) after each
iteration. The specific formulas are shown in the following subproblems.
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4.1 U-Iteration

When updating U, we need to solve the following problem:

min
U� 0

LðUÞ ¼ jjA� UUTjj2Fþ jjUX� Vjj2F ð5Þ

An arbitrary matrix M satisfies jjMjj2F ¼ trðMMT), so we transform this problem as:

LðUÞ ¼ trðATA� ATUUT � UUTAþUUTUUTÞþ trðXTUTUX� XTUTV
� VTUXþVTVÞ ð6Þ

We then take a derivative with respect to U and get the following formula:

@L(U)
@U

= - 2(AT + A)U + 2(UX - V)XT + 4UUTU ð7Þ

In order to reduce computational cost, we use a multiplicative update algorithm
based on the Oja’s iterative learning rule [15] to update U. We decompose (7) into two
sets:

rULðUÞ ¼ rþ �r� ð8Þ

where rþ (r�) is the sum of all positive (negative) components, then we have:

Unew = Uold
r�
rþ ð9Þ

In (7), the negative terms are 2ATU, 2AU, 2VXT and the positive terms are
2UXXT, 4UUTU. So we have the updating rule of U as:

uij  uij(
ATU + AU + VXT

UXXT + 2UUTU
)ij ð10Þ

4.2 V-Iteration and C-Iteration

When updating V, we need to solve the following problem:

min
V� 0

L(V) ¼ ajjS - VCTjj2Fþ jjUX - Vjj2F ð11Þ

In order to iterate V, we transform this problem into the following equation:

LðVÞ ¼ a � trðSTS� STVCT � CVTSþCVTVCTÞþ trðXTUTUX� XTUTV
� VTUXþVTVÞ ð12Þ
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We then take a derivative with respect to V and get the next formula:

@L(V)
@V

¼ - 2aSC - 2UX + 2aVCTC + 2V ð13Þ

Similar to (10), we then obtain the updating rule of V as:

vij  vij(
aSC + UX
aVCTC + V

)ij ð14Þ

When updating C, similar to the steps from (11) to (14), we obtain the updating rule
of C as:

cij  cij(
STV
CVTV

)ij ð15Þ

4.3 X-Iteration

When updating X, we need to solve the following problem:

min
X� 0

LðXÞ ¼ jjUX � Vjj2Fþ jjI� Xjj2Fþ jjX1Tk � 1Tk jj2F ð16Þ

To iterate X, we can transform this problem into the following equation:

L(X) = tr(XTUTUX - XTUTV - VTUX + VTV)

+ tr(1kX
TX1Tk - 1kXT1Tk - 1kX1Tk + 1k1Tk ) + tr(I - X� XTþXTX)

ð17Þ

We then take a derivative with respect to X and get the next formula:

@L(X)
@X

¼ - 2UTV� 2I� 2Mþ 2UTUXþ 2XMþ 2X ð18Þ

where M 2 Rk�k and its elements are all 1. In (18), the negative terms are 2UTV, 2I,
2M and positive terms are 2UTUX, 2XTM, 2X. So we obtain the updating rule of X:

xij  xijð UTVþ IþM
UTUXþXMþX

Þij ð19Þ

5 Experiments

Here we first use artificial networks to analyze the influence of parameter a in the
objective function and demonstrate that our approach can solve the mismatch problem
well. We then compare our method with eight state-of-the-art algorithms on seven real
datasets in terms of four well-known metrics. And finally, we discuss a case study
analysis to show that our method has a strong explanatory capability to communities.
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5.1 Artificial Networks

We use the Newman’s model [2] to generate artificial benchmark networks. Each
network has 128 nodes which have been divided into 4 communities. Each node has zin
edges connecting to the nodes of the same community and zout edges connecting to the
nodes of different communities (zin + zout = 16). In addition, all nodes are partitioned
into 4 clusters corresponding to 4 communities. To be specific, for each node in the sth
cluster, we use a binomial distribution with mean pin = hin/h to generate a h-dimen-
sional binary vector as its ((s − 1) � h + 1)-th to (s � h)-th attributes and use a
binomial distribution with mean pout = hout/(3 h) to generate its rest attributes. In our
experiment, we set h = 50, zout = hout = 8 and use normalized mutual information
(NMI) [19] as the metric. To simulate real-world networks’ mismatch problem, we use
pmis (ranging from 0 to 1) to reveal the mismatch rate between network topology and
node contents. For example, if pmis = 0.8, then in this network, there are 20% of nodes
whose contents match with topology and 80% of nodes whose contents do not match
with topology. In the first experiment, based on experience, we consider four choices
for parameter a (a = 1, jjAjj2F, 1/jjSjj2F, or jjAjj2F/jjSjj2F) and respectively compute the
average NMI values under them. The results are shown in Fig. 2(a), when pmis is less
than 0.6 (this corresponds to most cases in real-world networks), the result under
a = jjAjj2F is greater than the others, so we conclude that choosing a = jjAjj2F as the
default value may be better than the other three choices.

Next, to illustrate RSECD’s robustness, we compare three methods—Topo, SCI
and RSECD. Topo is a variant of RSECD using topology information alone. SCI is a
NMF-based method using topology and content information together but did not
consider the mismatch problem [14]. As shown in Fig. 2(b), Topo keeps a stable
detection accuracy no matter how pmis changes because the topology information
existing in the network is fixed. When pmis is less than 0.3, as SCI combines topology
and content information together, it has higher accuracy than Topo. However, because
SCI fails to solve the mismatch problem, when pmis is greater than 0.4, the performance
of SCI gradually weakens and is worse than Topo. RSECD, as the extended work of
SCI, has better performance than Topo and SCI when pmis is less than 0.7. Moreover,
when pmis is larger than 0.7 (i.e., a high mismatch rate in the network), RSECD is just
slightly worse than Topo but much better than SCI. In summary, the result demon-
strates that: (1) when content match with topology well, RSECD can better combine
topology and content to find communities; (2) when content does not match with
topology, RSECD can also solve the mismatch problem well. Therefore, RSECD is
robust.

Finally, because the cluster structure implicated by content information may be
indistinct in the real-world networks, we design a third experiment. In this part, we set
pmis = 0 and relieve the constraint hout = 8, making hout vary from 0 to 12. The larger
hout is, the higher distinct degree is. The final result is shown in Fig. 2(c). As we can
see, RSECD’s accuracy is almost always higher than that of SCI. Even though when
the cluster structure is very indistinct, RSECD’s accuracy does not decline too much
and is very close to that of Topo.
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5.2 Real-World Networks

Datasets. We use 7 real networks [17, 18] with node attributes and ground-truth
community labels. These datasets are often used in the field of community detection by
researchers and their detailed information is shown in Table 1. In this table, the number
of attributes represents the total number of attributes in the network.

Metrics. To test RSECD’s performance, we conduct a quantitative analysis of the final
detection results using two types of metrics (disjoint community metrics and over-
lapping community metrics). For disjoint community metrics, we choose accuracy
(AC) [19] and normalized mutual information (NMI) [19]. AC is used to measure the
percentage of correct labels obtained. In clustering applications, NMI is used to
measure how similar two sets of clusters are. For overlapping community metrics, we
choose F-score [20] and Jaccard similarity [20]. Both of them are common metrics
which are used to quantify the performance in terms of the agreement between the
ground-truth communities and the detected communities.

Baselines. To illustrate RSECD’s effectiveness, we choose three types of baseline
algorithms including two topology-based methods (DCSBM [21] and BigCLAM [22]),
one content-based method (AP [23]), and five methods using both topology and content
(CESNA [24], DCM [25], PCL-DC [26], Block-LDA [27] and SCI [14]).

Fig. 2. Results on artificial networks. (a) is the NMI results under 4 different choices of
parameter a. (b) is 3 different methods’ NMI results when the mismatch rate pmis varies from 0 to
1. (c) is 3 different methods’ NMI results when hout varies from 0 to 12 under pmis = 0.

Table 1. Datasets used.

Dataset Communities Nodes Edges Attributes Ground truth

Facebook 14 226 3,417 131
p

Cornell 5 877 1,608 1,703
p

Texas 5 877 1,608 1,703
p

Washington 5 877 1,608 1,703
p

Wisconsin 5 877 1,608 1,703
p

Citeseer 6 3,312 4,732 3,703
p

Uai2010 19 3,363 45,006 4,972
p

Robust Detection of Communities with Multi-semantics in Large Attributed Networks 371



Setting. In the experiments, first for each network we uniformly set a to be jjAjj2F
based on previous parameter analysis. We then repeat RSECD algorithm 20 times with
different random seeds. We obtain the result which corresponds to the smallest loss
function value as the final result.

Table 2. Performance comparison of different methods using disjoint community metrics. Here
“topo”, “cont”, “both” denote methods using topology, contents, and topology-and-contents.

Metrics
(%)

Methods Datasets
Type Name Cornell Texas Washington Wisconsin Citeseer Uai2010

AC topo DCSBM 37.95 48.09 31.80 32.82 26.57 2.60
both PCL-DC 30.26 38.80 29.95 30.15 24.85 28.82
both Block-LDA 46.15 54.10 39.17 49.62 24.35 16.04
both SCI 36.92 49.73 46.09 46.42 29.53 29.51
both RSECD 53.85 61.50 58.70 69.43 48.67 47.21

NMI topo DCSBM 9.69 16.65 9.87 3.14 4.13 31.22
cont AP 25.27 31.02 31.79 32.48 13.28 41.60
both PCL-DC 7.23 10.37 5.66 5.01 2.99 26.92
both Block-LDA 6.81 4.21 3.69 10.09 2.42 5.70
both SCI 6.80 12.49 6.83 13.28 7.17 23.39
both RSECD 30.24 32.67 35.10 45.32 22.34 45.73

Table 3. Performance comparison of different methods using overlapping community metrics.

Metrics
(%)

Methods Datasets
Type Name Cornell Texas Washington Wisconsin Facebook Citeseer Uai2010

F-score topo DCSBM 34.08 36.14 32.83 29.47 44.92 26.83 30.12
topo BigCLAM 13.23 20.64 13.35 12.84 47.40 9.30 16.99

cont AP 21.10 23.59 24.11 20.53 23.60 12.92 13.23
both CESNA 23.48 23.54 21.91 23.17 52.51 3.38 32.32
both DCM 14.38 11.15 12.45 10.45 41.29 2.50 9.65
both PCL-DC 32.03 34.30 30.38 27.83 39.49 25.49 29.71
both Block-

LDA
36.77 32.55 28.95 31.36 39.57 22.49 18.58

both SCI 26.94 30.99 28.06 27.06 24.94 26.18 29.66
both RSECD 53.26 44.89 47.44 53.54 52.73 45.77 43.86

Jaccard topo DCSBM 21.20 24.14 20.06 17.92 32.18 15.78 18.81
topo BigCLAM 7.18 12.18 7.25 7.01 34.25 5.01 9.87
cont AP 13.32 16.39 16.26 12.51 13.63 7.39 7.88

both CESNA 13.47 13.57 12.40 13.14 39.82 1.73 21.26
both DCM 7.95 6.03 6.72 5.54 33.60 1.27 5.77
both PCL-DC 19.02 21.56 18.99 16.27 26.99 14.75 19.17
both Block-

LDA
24.29 22.51 18.20 20.31 26.61 12.80 11.08

both SCI 17.10 21.98 18.72 17.15 15.65 15.26 19.11
both RSECD 37.12 33.32 34.04 41.47 41.67 31.49 32.39
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Results. We show the final results in Tables 2 and 3. It is worth noting that AP cannot
compute accuracy (AC) value, and CESNA and DCM are only applicative to over-
lapping community metrics. In the tables, we use bold to mark the best results. Table 2
shows the comparison results in terms of AC and NMI. In AC, our method RSECD
performs best among all the five methods. In NMI, RSECD still achieves the best
results in comparison to the other methods. All the comparison results using different
algorithms under overlapping community metrics are shown in Table 3. In these
results, RSECD again has the best performance in comparison to the other tested
approaches. In summary, the main reasons that our algorithm achieves such superior
performance are as follows: (1) RSECD assumes that topology and content do not
share the same community structure, so that those harmful content information will not
interfere with topology information’s important role in community detection; (2) tran-
sition probability matrix, as a filter of content information, can retain beneficial content
information which can assist topology information in detecting more actual, accurate
communities and remove harmful content information which has wrong guidance in
community detection. Therefore, RSECD can solve the mismatch problem well and the
final performance results are relatively high and stable in any case.

Efficiency. As like standard nonnegative matrix factorization, the calculational com-
plexity of RSECD is OðTðn2kþ 2mnkþ nk2ÞÞ where T is the number of iterations,
n the number of nodes, k the number of communities (k << n) and m the number of
attributes. By taking into account the sparsity of the adjacency matrix A and attribute
matrix S, RSECD needs OðTðekþ 2e0kþ nk2Þ time where e is the number of edges
(e << n) and e’ the number of nonzero elements in the attribute matrix S (e′ << m).
Thus, the computational complexity of RSECD is near linear with the number of nodes.
We also report RSECD’s running time. It needs 2.893 s (here “s” denotes seconds),
8.9 s, 8.233 s, 10.952 s, 14.041 s, 6248.029 s and 5760.169 s, respectively, on the
datasets Facebook, Cornell, Texas, Washington, Wisconsin, Citeseer and Uai2010.

5.3 A Case Study on Lastfm

We select LASTFM dataset1, which comes from a musical social network, as our
dataset for the case study analysis. This dataset contains 1,892 users and the total
number of attributes in the network is 11,946. These attributes reveal users’ favorite
songs or singers. LASTFM does not have the ground-truth of community labels. While,
all the methods used in this work need the number of communities to be given. So, as
did in [14], we use Louvain method [28] to set the number of communities in this
network to 38. Two vivid examples to interpret the communities derived are shown in
Figs. 3 and 4 in the form of word clouds. Word clouds can graphically show different
attribute words’ importance degree in one community in order to explain the current
community’s semantics. That is, in a word cloud, the size of a word is proportional to
the probability that it belongs to this community.

The first example is the 30th community which contains two dominant topics, i.e.,
topics 1 and 32. Topic 1, as shown in Fig. 3(a), is highly related to electronic pop

1 http://ir.ii.uam.es/hetrec2011/datasets.html.
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music. The total of “electronic”, “electropop” and “electronica” has a high proportion
in all attribute words and illustrates that the theme of topic 1 is pop electronic music. In
addition, “australian”, “8-bit”, “synth pop”, “big beat” and “dark pop” are different
styles of pop electronic music. On the other hand, topic 32, as shown in Fig. 3(b),
mainly denotes synth pop music. Synth pop music origins from “new wave”, “post-
punk” and is popular in “80 s”. “new romantic” is a synth pop song of Taylor Swift.
“depeche mode” is a British band in style of alternative dance and synth pop. “elec-
troclash” is another name of “tech pop” which contains the style of synth pop. “synth”
and “synth pop” also appear here. It is worth noting that, these two topics which
corresponds to electronic pop music of multiple styles and synth pop music, respec-
tively, both belong to electronic pop music although being the different branches.
Therefore, the 30th community will be a group of fans adoring electronic pop music
mainly including synth pop music.

Our second example is the 16th community which contains three dominant topics,
i.e., topic 13, 24 and 36. They are shown in Fig. 4(a), (b) and (c), respectively. Similar
to the previous analysis, we found out that topic 13 is related to opera music (for
example, “diva”, “female vocalist” appear here); topic 24 is related to country music
and pop music (for example, “country”, “pop” appear here); and topic 36 is related to
dance music (for example, “dance”, “disco” appear here). Simultaneously, these three
topics have the same theme, i.e., female singer. So, we can conclude that the 16th
community’s dominant topic is female singers and the three topics (topic 13, 24, 36) in
this community all have their own accurate semantics, respectively. Specifically, topic
13, 24, 36 respectively reflects opera music, country music and dance music.

Fig. 3. Word clouds for the 30th community. (a) denotes topic 1 and (b) denotes topic 32, both
of which are dominant topics of the 30th community.

Fig. 4. Word clouds for the 16th community. This community contains three dominant topics,
in which (a) denotes topic 13, (b) denotes topic 24 and (c) denotes topic 36.
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6 Conclusion

In this paper, we proposed a new community detection method (RSECD) which is able
to detect communities and in the same time analyze the semantics of founded com-
munities. We introduced a nonnegative matrix factorization model to depict the rela-
tionships between nodes, topics and communities more accurately. A transition
probability matrix with a suitable prior was also introduced to show their hidden
relationships to improve the robustness of the new model, especially when node
contents do not match well with network topology. Through artificial benchmark
networks, we analyzed the influence of parameter a in the objective function and
demonstrated RSECD’s high level of robustness. On real-world networks, we showed
that RSECD outperforms all of the baseline methods. Finally, the case study analysis
on a musical social network showed how the semantic explanation of communities
derived by RSECD works. This helps people to understand and interpret communities
more precisely and in a human-readable form in many real applications.
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