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Abstract. As a clustering approach with significant potential, the den-
sity peak (DP) clustering algorithm is shown to be adapted to different
types of datasets. This algorithm is developed on the basis of a few
simple assumptions. While being simple, this algorithm performs well
in many experiments. However, we find that local density is not very
informative in identifying cluster centers and may be one reason for the
influence of density parameter on clustering results. For the purpose of
solving this problem and improving the DP algorithm, we study the clus-
ter center identification process of the DP algorithm and find that what
distinguishes cluster centers from non-density-peak data is not the great
local density, but the role of density peaks. We then propose to describe
the role of density peaks based on the local density of subordinates and
present a better alternative to the local density criterion. Experiments
show that the new criterion is helpful in isolating cluster centers from
the other data. By combining this criterion with a new average distance
based density kernel, our algorithm performs better than some other
commonly used algorithms in experiments on various datasets.
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1 Introduction

Data clustering has wide applications in such fields as data mining, pattern
recognition and others. Many clustering algorithms of different types have been
developed and some of them have generated impressive results in application.
Some commonly used algorithms include k-means, spectral clustering [13,16],
DBSCAN [7], mean shift [5] and their variants. Recently, some new algorithms
have been proposed, including affinity propagation (AP) [3], robust spectral clus-
tering [19], dominant sets (DSets) [14]. Noticing that many algorithms require to
determine the number of clusters beforehand, [8,12] have presented some meth-
ods to solve this problem. Since some algorithms detect only spherical clusters,
density based algorithms have received a lot of attention [1,2].
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In density based clustering algorithms, DBSCAN relies on a density thresh-
old to detect cluster borders, and the density threshold is represented by two
parameters MinPts and Eps. While DBSCAN has been shown to perform well in
many experiments, it may not be easy to determine the appropriate parameters.
In addition, a fixed set of parameters imply a fixed density threshold, which may
not be appropriate for datasets where cluster densities vary significantly. Differ-
ent from DBSCAN-like algorithms, the density peak (DP) algorithm presented
in [15] accomplishes the clustering process on the basis of density relationship.
By treating local density peaks as the candidates of cluster centers, the DP algo-
rithm finds that cluster centers have both great ρ’s and great δ’s, and either the
ρ’s or δ’s of non-density-peak data are small. This algorithm then uses both ρ
and δ, or γ = ρδ, to identify cluster centers, and then group the other data
into clusters based on density relationship among neighboring data. Different
from cluster centers surrounded by data of smaller density, non-density-peak
data usually have the nearest neighbors greater density in the neighborhood,
corresponding to small δ’s. Consequently, the distance δ is effective in isolating
cluster centers from the non-density-peak data. While cluster centers usually
have greater local density than the neighboring non-density-peak data, the den-
sity of non-density-peak data may not be small in absolute magnitude. In other
words, non-density-peak data may have great or small local density, and the
ρ criterion is not very informative in strengthening the specificity of cluster
centers. For the purpose of solving this problem, we study the cluster center
identification process and find that the role of density peak is more important
for a cluster center than a great density. We then present an enhanced criterion
based on local density of subordinates to replace the original local density ρ.
Furthermore, a new density kernel is proposed to overcome the drawbacks of
the cutoff and Gaussian kernels. By combining the new criterion and density
kernel, our algorithm performs well in experiments and compares favorably to
some commonly used and recently proposed algorithms.

2 Density Peak Clustering Algorithm

An attractive property of density based clustering algorithms is that they detect
non-spherical clusters. While the DBSCAN algorithm based on a density thresh-
old, the DP algorithm makes use of the density information in a different manner.
We use examples to demonstrate how the DP algorithm identify cluster centers
and accomplish the clustering process. With the Aggregation [10] dataset, we
calculate ρ in the first step. The cutoff kernel defines the local density as the
count of data in the dc-radius neighborhood, where dc is the cutoff distance to
be specified. The distribution of ρ and δ of all the data is shown in Fig. 1(a).
Obviously only a few data have both great ρ and great δ and the majority of
the data have either small δ’s or small ρ’s. This makes it feasible to determine
cluster centers by selecting the data of great ρ’s and great δ’s. Noticing that with
Fig. 1(a) two thresholds are necessary to determine cluster centers, we sort the
data according to γ = ρδ in the decreasing order and show the distribution of γ
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Fig. 1. Decision graphs and clustering results with the cutoff kernel.

in Fig. 1(b), where a few data are with significantly greater γ than the others.
With the γ decision graph we only need one threshold to select out the cluster
centers.

With the cluster centers available, the DP algorithm determines the labels
of the non-density-peak data based on data density relationship. The clustering
of non-density-peak data is on the basis of the assumption that one data and
the nearest neighbor of greater local density are in the same cluster. With this
assumption, the non-density-peak data can be assigned labels in the decreasing
order of their local density. This process involves only one scan of the data and
can be accomplished efficiently. While no proof shows that this assumption holds
in theory, the method works well in practice, as shown in the clustering results
in Fig. 1(c).

While Fig. 1 shows that cluster centers usually have great ρ, great δ and great
γ, they also indicate that it may not be easy to select out the cluster centers
with only the decision graphs. The reason is that the differences between great
and small ρ’s, δ’s and γ’s are not significant in many cases. For the purpose of
avoiding the influence from inappropriate thresholds, we specify the number of
clusters in this paper, and the data of the greatest γ’s are identified as cluster
centers.

3 Our Approach

Since cluster centers typically have both great ρ’s and great δ’s, we often uses
γ = ρδ to identify cluster centers. As density peaks, cluster centers are sur-
rounded by neighboring data of smaller local density. As a result, they are distant
from the nearest data of greater local density and have great δ’s. However, the
nearest neighbors of cluster centers may have only slightly smaller density than
the correspondingly cluster centers. In other words, non-density-peak data may
also have great density. As Fig. 1(a) shows, the local densities of the data are
distributed quite evenly, and there are a large amount of data with great local
density. This observation indicates that the local density ρ is not as informative
as δ in isolating cluster centers from non-density-peak data. In our opinion, this
also explains why the DP clustering results are influenced by density kernel types
and kernel parameters significantly.
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In order to relieve the problems resulted by the uninformative ρ criterion
in identifying cluster centers, we make a further study of the cluster center
identification process. One intention of the DP algorithm is to use some measures
to strengthen the specificity of cluster centers. Since cluster centers have both
great ρ’s and great δ’s, and either the ρ’s or δ’s of non-density-peak data are
small, the product γ = ρδ is used as the cluster center identification criterion.
We have observed that δ is indeed effective for cluster center identification, and
ρ is not so informative in comparison. However, if we remove ρ and uses only
δ to select cluster centers, it is likely that the outliers of datasets which are
far from other data are identified as cluster centers. In other words, the local
density ρ is still effective in preventing outliers from being identified as cluster
centers. Therefore instead of removing ρ completely, we propose to enhance the
discriminative ability of ρ.

In the DP algorithm, one important feature of cluster centers is that they are
surrounded by non-density-peak data of smaller local density. Here we see that
what differentiates cluster centers from non-density-peak data is not the great
density in absolute magnitude, but the role of density peaks. That is to say, it
doesn’t matter if one cluster center has a great density, but it matters if it has
a greater local density than the neighboring data. Hence we propose to use a
criterion measuring the role of density peaks to replace ρ in identifying cluster
centers.

In the following we take one data i for example, and denote the cluster
containing i as Ci. If i is the cluster center of Ci, it should be surrounded by
neighboring data of smaller density. Intuitively we can use the number Nn of
neighboring data with smaller density to measure the role of i being the cluster
center. A larger Nn means a larger possibility of i being the cluster center of Ci.
However, it is possible that the neighboring data with smaller density contain not
only the data in Ci, but also some data in other clusters. In this case, Nn cannot
measure the possibility of i being the cluster center accurately, and we need to
consider only the data in Ci. However, before the clustering is accomplished, the
cluster membership of Ci is unknown.

We present the following method to make use of only the data in Ci before
the cluster membership is available. It is assumed in the DP algorithm that
one data and the nearest data of greater local density are in the same cluster.
If one data n is the nearest neighbor of greater local density of data m, we
call n as the superior of m, and m as the subordinate of n, and denote this
relationship by m → n. Evidently one data and all its subordinates should be
in the same cluster. Since cluster centers are density peaks, they usually have a
large amount of subordinates. On the contrary, the number of subordinates of
non-density-peak data may be small or zero. Therefore for the data i, we can
use the number Ns of subordinates to measure the probability of i being the
cluster center. Furthermore, the local density of subordinates also plays a role
in measuring the possibility. In summary, we use the sum of local density of the
subordinates to measure the possibility of i being the cluster center, and define
the enhanced version of ρ as
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ηi =
∑

j∈S,j �=i

ζ(i, j)ρj , (1)

where

ζ(x, y) =

{
1, y → x,

0, otherwise.
(2)

Then we can use η to replace ρ and identify cluster centers based on γ′ = ηδ.
It is worth mentioning that we only use η in determining the cluster centers.
The original ρ is still used in grouping non-density-peak data on the basis of
density relationship, as it measures the density relationship among neighboring
data more accurately.

In addition, we make use of the average distance to a limited amount of
nearest data to evaluate the local density. The density kernel obtained this way
is presented as a compromise between the cutoff and Gaussian kernels. The
cutoff kernel makes use of only the count of data in a neighborhood and discards
the distance information to these data. This information loss may influence the
local density precision. While the Gaussian kernel makes use of the distance
information, it takes into account both the nearest neighbors and the farthest
data. In this case, the density kernel may measure the distribution of data in a
large region but not a small neighborhood, if the parameter dc is not selected
appropriately. Between these two extremes, our new kernel makes use of the
distance to a limited number of neighboring data, and is shown to perform well
in experiments.

4 Experiments

In our work η is presented as an enhanced version of local density ρ to improve
the discriminative ability, and then use a new density kernel to overcome the
drawbacks of existing ones. In this part we firstly validate the effectiveness of
the enhanced local density criterion. After that, the whole algorithm is tested
and compared with existing commonly used and recently proposed algorithms.

4.1 Enhanced Local Density

The ρ-δ decision graph in Fig. 1 shows that the distribution of data in the range
of the local density ρ is quite even, indicting that ρ is not very informative in
strengthening the specificity of cluster centers. We are motivated to replace ρ
by η to help isolate cluster centers from non-density-peak data. Here we test if
η really works in serving this purpose. By replacing ρ with η, we show the η-δ
decision graphs and the corresponding ρ-δ decision graphs on the Aggregation
and Flame datasets in Fig. 2. Evidently the majority of the data have small η
values, and only a few data are with great η. The comparison between ρ-δ graphs
and η-δ graphs indicates that η is helpful in isolating cluster centers from non-
density-peak data, and is more suitable to serve as a cluster center identification
criterion than ρ.
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Fig. 2. The η-δ decision graphs and corresponding ρ-δ decision graphs. The left two
figures belong to the Aggregation dataset, and the right two correspond to the Flame
dataset.

4.2 Comparison

We now compare the proposed algorithm with some commonly used and recently
proposed clustering algorithms with experiments on eight datasets, including
Aggregation, Compound [18], Spiral [4], D31 [17], R15 [17], Flame [9] as well as
the Wine and Iris datasets from UCI machine learning repository. Aside from
the well-known k-means and DBSCAN algorithms, the normalized cuts (NCuts)
[16], AP, DSets, one improved version of DSets presented in [11] and SPRG
[19] are also adopted in comparison. Since our work is proposed to improve the
DP algorithm, we also compare with two versions of the DP algorithm, one of
which with cutoff kernel (DP-c) and the other with Gaussian kernel (DP-G).
We experiment on the same eight datasets as in previous sections, and report
clustering results evaluated with NMI. Except for the algorithm in [11], all these
algorithms require to input one or more parameters. The k-means, SPRG and
NCuts algorithms involve the number of clusters, and we set this parameter as
the ground truth. As to DBSCAN which has two parameters MinPts and Eps,
we set MinPts = 3 which is selected from 2, 3, · · · , 10, and then determine
Eps based on MinPts [6]. The AP algorithm involves the preference value p,
and the authors of [3] provide a method to obtain the range [pmin, pmax] of
this parameter. We sample this range and select p = pmin + 9.2ξ, where ξ =
(pmax − pmin)/10. In the DSets algorithm, s(x, y) = exp(−d(x, y)/σ) is used to
evaluate the data similarity, and we manually select σ = 10d to obtain the best
overall result, with d denoting the mean pairwise distance. With the DP-c and
DP-G algorithms the parameter dc is determined by including 1.1% and 2.0%
of data into the neighborhood for DP-c and DP-G, respectively. We report the
clustering results of these algorithms in Table 1.

We firstly look at the comparison between the original DP algorithms DP-
c, DP-G and our algorithm. On D31 and R15 datasets, both DP-c and DP-
G algorithms generate very good results, and our algorithm performs as well
as these two. On the Compound, Spiral, Flame, Wine and Iris datasets, our
algorithm compares favorably with the two algorithms. Only on the Aggregation
dataset the two DP algorithms outperform ours evidently. These comparisons
demonstrate the effectiveness of our improvements to the original DP algorithm.
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Table 1. Clustering results (NMI) of some algorithms.

k-means NCuts DBSCAN AP [19] DSets [11] DP-c DP-G Ours

Aggregation 0.85 0.76 0.92 0.82 0.70 0.79 0.89 0.98 0.99 0.88

Compound 0.72 0.67 0.89 0.81 0.55 0.76 0.92 0.79 0.73 0.77

Spiral 0.00 0.00 0.71 0.00 0.00 0.32 0.66 0.36 1.00 1.00

D31 0.92 0.96 0.84 0.59 0.90 0.90 0.67 0.96 0.96 0.96

R15 0.96 0.99 0.87 0.74 0.94 0.86 0.91 0.98 0.99 0.99

Flame 0.39 0.44 0.83 0.57 0.30 0.50 0.90 1.00 0.41 1.00

Wine 0.43 0.36 0.38 0.39 0.87 0.77 0.43 0.61 0.71 0.74

Iris 0.74 0.76 0.75 0.79 0.73 0.64 0.56 0.66 0.66 0.86

mean 0.63 0.62 0.77 0.59 0.62 0.69 0.74 0.79 0.81 0.90

Comparatively, our algorithm is shown as the best-performing or near-best-
performing one on 5 out of the 8 datasets, and our algorithm generates the best
overall result. Especially on the Spiral dataset, on which k-means, NCuts and AP
fail completely in clustering, our algorithm generate the perfect result. Even if
our algorithm is outperformed by some algorithms on Aggregation, Compound
and Wine datasets evidently, it is always among the 5 best-performing algo-
rithms. These observations indicate that our algorithm has nice generality and
performs well on various types of datasets.

5 Conclusions

An enhanced cluster center identification criterion and a new density kernel are
presented to improve the DP clustering algorithm in this paper. By treating local
density peaks as candidates of cluster centers, the DP algorithm uses local den-
sity and the distance to the nearest data of greater local density to represent the
data and identify cluster centers. By studying the cluster center identification
process, we find that local density is not very effective in strengthening the speci-
ficity of cluster centers. We introduce the concept of subordinates and present
an alternative criterion to local density based on the subordinates. Furthermore,
we make use of the average distance to neighboring data to evaluate the local
density, in an endeavor to overcome the drawbacks of the cutoff and Gaussian
kernels. Experiments show that the new criterion strengthens the specificity of
cluster centers, and our algorithm performs well in comparison with some com-
monly used and recently proposed algorithms.
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