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Preface

This volume contains the papers presented at the 18th International Conference on
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2018), which
was held in Varna, Bulgaria, during September 12–14, 2018. Initiated in 1984, this
biennial conference is a premier forum for exchanging information and research results
on artificial intelligence (AI) theory and principles along with applications of intelligent
system technology. The conference traditionally brings together academic and indus-
trial researchers from all areas of AI to share their ideas and experiences and learn
about the research in contemporary AI. As its name indicates, the conference is ded-
icated to AI in its entirety. However, AIMSA 2018 put an emphasis on deep learning as
it has been used successfully in many applications, and is considered one of the most
cutting-edge machine learning and AI techniques at present.

AIMSA continues to attract submissions from all over the world, with submissions
from 23 countries. We received 72 submissions in total, and accepted 22 papers for oral
and seven for poster presentations. Each paper was reviewed at least by two members
of the Program Committee. The papers included in this volume cover a wide range of
topics on AI: from natural language processing and deep learning to bioinformatics and
AI, from text mining to multiagent systems, from theoretical issues to real-world
applications.

AIMSA 2018 had three outstanding keynote speakers: John D. Kelleher (Dublin
Institute of Technology) presented his view on the role of machine learning and deep
learning in AI, Milica Gasic (University of Cambridge) discussed the necessary steps
needed to deploy deep reinforcement learning for dialogue policy optimization, and
Feiyu Xu (AI Lab, Lenovo Research, Lenovo Group) described a multilingual and
multimodal conversational agent for real-world call centers.

We would like to thank all authors for providing an excellent set of papers. We are
extremely grateful to the Program Committee for reviewing the submissions thor-
oughly, fairly, and very quickly. Our special thanks to our sponsors – the Bulgarian
National Science Fund and the Bulgarian Artificial Intelligence Association as well as
to the Institute of Information and Communication Technologies at the Bulgarian
Academy of Sciences for organizational support for the conference.

July 2018 Gennady Agre
Josef van Genabith
Thierry Declerck
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A New Approach to the Supervised Word
Sense Disambiguation

Gennady Agre1(&) , Daniel Petrov2, and Simona Keskinova2

1 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Sofia, Bulgaria

agre@iinf.bas.bg
2 Laboratory of Computer Graphics and Geographical Information Systems,

Technical University of Sofia, Sofia, Bulgaria
desolatora93@gmail.com, simona181212@gmail.com

Abstract. The paper presents a new supervised approach for solving the all-
words sense disambiguation (WSD) task, which allows avoiding the necessity to
construct different specialized classifiers for disambiguating different target
words. In the core of the approach lies a new interpretation of the notion ‘class’,
which relates each possible meaning of a word to a frequency with which it
occurs in some corpora. In such a way all possible senses of different words can
be classified in a unified way into a restricted set of classes starting from the
most frequent, and ending with the least frequent class. For representing target
and context words the approach uses word embeddings and information about
their part-of-speech (POS) categories. The experiments have shown that clas-
sifiers trained on examples created by means of the approach outperform the
standard baselines for measuring the behavior of all-words WSD classifiers.

Keywords: Word sense disambiguation � Word embedding � Classification
Neural networks � Random forest � Deep forest

1 Introduction

Word sense disambiguation (WSD) is defined as a task for identifying the correct
meaning of words in context in a computational manner. This task is considered as an
AI-complete problem [1], which means that its difficulty is of the same order as of such
central problem in AI as, for example, the Turing Test [2]. The complexity of the WSD
task is due to several reasons among which are the lack of a unified representation for
word senses, the use of different levels of granularity of sense inventories and a strong
dependence of the task on available knowledge sources. Currently, WordNet [3] is a
standard sense inventory for WSD for English texts. It represents a computational
lexicon for English created and maintained at Princeton University, which is based on
psycholinguistic principles. WordNet encodes concepts in terms of sets of synonyms
(called synsets) and its latest version, WordNet 3.1, contains about 155,000 words
organized in over 117,000 synsets. For the WSD task WordNet is used for constructing
machine-readable dictionaries that relate each word (word lemma) to a set of WordNet
sense identifiers.

© Springer Nature Switzerland AG 2018
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The knowledge resources used are the basis for clustering the existing approaches
for solving WSD task to two main groups – supervised and knowledge based. The
supervised approaches explore sense-annotated collections of texts (corpora). Since the
manual annotation of texts is a very time consuming task, most of the existing
supervised WSD systems use the largest manually annotated corpus - SemCor [4] as
their training set. SemCor comprises texts from the Brown Corpus1 and contains
around 234,000 words that are manually annotated with part-of-speech (POS) tags and
word senses from the WordNet inventory.

The semi-supervised WSD systems try to overcome the problem with the knowl-
edge acquisition bottleneck of supervised systems [5] by creating and using some
automatically sense annotated corpora or by exploring such corpora in conjunction with
manually annotated corpora. It has been shown that in some settings such semi-
supervised systems outperform purely supervised WSD systems [6].

Knowledge-based approaches do not need a sense annotated corpus and rely only
on lexical recourses such as a dictionary or a computational lexicon. One of the earliest
approaches in this group [8] is based on the computation of overlap between the
context of the target word and its definitions from the sense inventory. Several
approaches explore the distributional similarity between definitions and the context of
the target word [8, 9]. An important branch of knowledge-based systems are graph-
based systems that use some structural properties of semantic graphs for solving the
WSD task [10, 11, 21]. Such systems first create a graph representation of the input text
and then traverse the graph by different graph-based algorithms (e.g. PageRank) in
order to determine the most probable senses in the context. The knowledge-based
systems usually have lower accuracy than the supervised systems, but they have the
advantage of a wider coverage, thanks to the use of large-scale knowledge
resources [2].

The structure of the paper is as follows: in the next section we discuss some related
work. Section 3 is devoted to the detailed description of the proposed approach. The
experimental evaluation of the approach is presented in Sect. 4. The main character-
istics of the approach and our future plans are summarized in the last section.

2 Related Work

WSD can be considered as a classification task, in which word senses are the classes
and a classifier is used to assign each occurrence of a target word in a test text to one or
more classes based on some features extracted from the context of this word. There
exist two variants of this task – the lexical sample WSD and the all-words WSD. In the
first case only a restricted subset of target words should be disambiguated. Such words
usually occur one per sentence. The all-words WSD task requires finding senses for all

1 http://clu.uni.no/icame/manuals/RROWN/INDEX.HTM.
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open words in a sentence (i.e. nouns, verbs, adjectives, and adverbs). In the supervised
context the complexity of this task is higher because of:

1. A huge number of classes: a WordNet-based dictionary used for sense annotating a
text contains about 150,000 open words with average number of 1.4 senses per
word (from 1 to 75). Thus, assuming that each sense of a word constitutes a unique
class, the overall number of possible classes is about 210,000.

2. Data sparseness: it is practically impossible to have a training set of adequate size
that covers all open words in the dictionary, which leads to an impossibility to
create a good classification model for disambiguating all words.

Because of these reasons the existing supervised WSD systems try to solve the all-
words WSD task by constructing a set of classifiers (so called word experts) – one
specialized classifier per word. A training example for such word expert is represented
by a set of features extracted from the context of the corresponding word (a fixed
number of words occurring left and right to the target word in a sentence) and labeled
by a concrete sense of the word (class) selected from a set of possible word senses
presented in the dictionary.

One of the state-of-the-art supervised all-words WSD systems is IMS [13]. It
constructs a classifier for each type of open word w (noun, verb, adjective, or adverb).
The representation of each example (an occurrence of w in the text) includes three set
of features extracted from the context of w (a window with the size of three words left
and right to w). The first set consists of POS tags of the target word and of those context
(surrounding) words, which belong to the same sentence as the target word. The second
set contains a special binary representation of surrounding words in their lemma forms.
The size of such a binary vector is equal to the number of all different context words for
each word type found in the training set. The third feature set consists of 11 features –
local collocations between context words. The representation of examples constructed
by IMS can be used with different classifiers and the best results have been achieved by
a linear support vector machine (SVM).

A current tendency in the development of advanced supervised WSD systems is the
use of word embeddings instead of (or along with) ‘traditional’ discrete representation
of words. Word embeddings are a distributional representation of words that contains
some semantic and syntactic information [14]. Word embeddings have been used as a
means to improve the performance of ‘traditional’ WSD systems as well as for con-
structing specialized WSD systems that are based on recurrent neural network models.
The first approach includes different variants of integration of word embeddings with
the IMS system [15–17]. In most cases different combinations of word embeddings
over surrounding words were used as additional features. The extensive experiments
have shown [17] that such integration is able to improve the accuracy of IMS on the all-
word WSD task for several benchmark domains.

All IMS-based approaches for solving the all-words WSD task mentioned above
suffer from the following shortcomings:

• Necessity to construct separate classification models for each open word (or even
for each word type).

A New Approach to the Supervised Word Sense Disambiguation 5



• Relying on rather complicated procedures for feature extraction and their integration
with word embeddings.

• Ignoring the order of words in the context.

The second approach [7, 18–20] can be seen as an attempt to overcome the last two
shortcomings. It is based on a simple idea – first, the input context is transformed into
vectors in the embedding space, and then such vectors are mapped to the possible sense
vectors. Such systems usually use Bidirectional LSTM as a classifier and have received
promising results on the lexical sample task. However, this approach still has to
construct different models (with different sets of parameters) for each target word.

3 The Approach

The proposed here approach tries to overcome all three deficiencies of the existing
supervised WSD systems mentioned above. Similarly to the IMS system we emphasize
the feature extraction step, which aims at converting available text data into sets of
training and testing examples that can the be used with different machine learning
algorithms for solving the all-words WSD task.

We assume that three sources of knowledge are available: a WordNet-based dic-
tionary, training text data, and a set of word embeddings. The dictionary relates open
words (in their lemma forms) with their possible senses. Training text data may consist
of one or several text files, where each file contains a set of sentences and each sentence
is represented as a sequence of words in their lemma forms annotated by their POS
category. Additionally, all open words in a sentence are assumed to be annotated by
their senses2. A set of word embeddings relates words in their lemma form to their
distributional representation. In our approach we use the file containing word
embeddings as a parameter and are not interested in how they were created3. Testing
data is assumed to have the same format as the training data.

3.1 Creating Sets of Training and Testing Examples

In order to represent the all-words WSD problem as a classification task it is necessary
to convert the training and test text data into sets of training and test examples relating
each open word to its correct sense, as well as to a set of features extracted from the
word context. In our approach the creation of such examples is implemented as a three
phase process consisting of dictionary and text data analysis, generation of examples in
a symbolic form, and integration of examples with word embeddings.

The first phase begins with analyzing the dictionary. First of all, we determine in it
a list of monosemous words (i.e. words with only one meaning). It is clear, that it is not
necessary to construct examples for such words since their meaning does not depend on

2 In cases, when the training set is not available, SemCor [4], for example, may be used as a default
training set.

3 Moreover, we assume that all words (both in training and testing sets) that have no their embeddings
are removed from the corresponding sets.

6 G. Agre et al.



any context and can be determined directly from the dictionary. Then we analyze
available text data in order to infer some statics including the number of occurrences of
polysemous words (i.e. words with several meanings) in the training and test data
(which corresponds to the numbers of training and test examples), frequencies of
different word senses for each polysemous word in the training data, etc. Finally, for
each word in the dictionary we rearrange the list of word senses – from most frequent
to least frequent. Such rearrangement can be done based on the sense frequency data
available in the dictionary, the sense frequency data calculated over the training set, or
by mixing both types of such data. In the last case the sense frequency data calculated
over the training data is applied only for rearrangement of senses, which have no data
on their frequencies in the dictionary.

Generation of examples in a symbolic form is aimed at creating training and test
examples for the all-words WSD task in an intermediate form readable and easily
understandable by a human. Each example is represented as a pair <word_context,
word_class> , where vector word_context describes the target word (and its POS
category) and its context represented as words (and their POS categories) occurring left
and right to the target word in the context window, which length is a system parameter:

word context

¼ fwtarget � POStarget w�L � POS�L w�Lþ 1 � POS�Lþ 1���w1 � POS1...wR � POSR g;

where L and R are, respectively, the left and the right boundary of the context window.
We use a special symbol (/s) for marking the end of a sentence and the system allows
specifying whether the context window can include words from adjacent sentences or
not. In the last case the content in the corresponding position of the context window is
marked as 0-0.

We consider our representation of the class of the target word as the most important
contribution to a new formulation of the all-words WSD task. Up to now each sense of
a target word is considered as a unique class, which has its own encoding that makes
sense only for that word. In our approach we propose a unified interpretation of a word
sense class, which does not depend on the concrete word – the class of a target word is
interpreted as the place of the corresponding word sense in an ordered sequence of the
relative sense frequencies associated with the word in the modified dictionary. In other
words, the most frequently used sense of each target word is marked as class 1, the next
less frequent word sense is marked as class 2 and so on. The overall number of classes
is defined by the maximum number of possible senses for a word in the dictionary
(which is equal to 75 for our WordNet-based dictionary).

It should be noted, that according to this interpretation disambiguating an unknown
open word is a two-steps process – at the first step the class associated with the sense of
the tested word is determined by a classifier, and then the proper sense is retrieved from
the dictionary via WordNet sense identifier that corresponds to the class for the tested
word.

The last phase of the data preprocessing in our approach is intended for integrating
examples created during the previous phase with word embeddings and transforming
the examples into a format that may be used by different machine learning algorithms

A New Approach to the Supervised Word Sense Disambiguation 7



and environments. Our approach allows using words embeddings in two different ways
– in a full and in a compressed form. In the first case each word in the example (i.e.
context words and the target word itself) is replaced by its embedding. ‘Null’ words
(i.e. marked by 0 in the symbolic representation of the example) are replaced by ‘null’
embeddings – vectors with the same size as ‘normal’ embeddings but having all their
elements set to zero. In such a way, if the size of a word embedding vector is d (i.e.
300), and the size of the context widow is l (i.e. 10), such embedding-based repre-
sentation of the target word and its context will be described by a real valued vector
with dimension d x (l + 1) (i.e. 3300).

Since not all of the existing machine learning environments are able to work with
data of such dimensionality, we have developed an alternative approach for utilizing
word embeddings. The approach creates a ‘compressed’ real-valued representation of
the target word and its context, whose dimensionality does not depend on the
dimensionality of word embeddings used. In order to do this we replaced each word wi

in the context that has d-dimensional embedding Emb(wi) by a single value com-
pr_emb(wi), which measures the cosine similarity between Emb(wi) and Emb(wtarget)
– a d-dimensional embedding of the target word wtarget:

compr embðwiÞ ¼ simðEmbðwiÞ;EmbðwtargetÞÞ ¼

Pd

j¼1
EmbjðwiÞEmbjðwtargetÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

j¼1
Emb2j ðwiÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

j¼1
Emb2j ðwtargetÞ

s

In such a way, the same context of different target words will have different
‘compressed’ embedding representations depending on the similarity between the
concrete target word and the context words.

Compressed representation of the target word itself is created by measuring cosine
similarity between the embedding of the word and the ‘unitary’ embedding (1) – a d-
dimensional vector, whose arguments are all equal to one:

compr embðwtargetÞ ¼ simðEmbðwtargetÞ; 1Þ ¼

Pd

j¼1
EmbjðwtargetÞ

ffiffiffi
d

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

j¼1
Emb2j ðwtargetÞ

s

The encoding of the POS categories of the target and context words in an example
can be done in two ways. The first is to represent POS category of each word as a
separate nominal attribute that can have k + 1 different nominal values, where k is the
length of the list of POS categories to be included into context (k + 1th value is the
‘null’ category assigned to ‘null’ words and to the symbol/s used to mark the end of a
sentence). Another option (which is suitable for the neural network based classifiers) is
to represent each POS category of a word by a k-dimensional binary vector.
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3.2 Classification

As it has been already mentioned, our goal was to develop a flexible feature extraction
system that allows converting available training and test data into a format suitable for
learning effective WSD classifiers rather than to create a specialized classifier for
solving the all-words WSD task. That is why, the phase of learning and testing clas-
sification models, which are based on training and test sets of examples created by our
system, is not a part of the system. However, the system provides a possibility to
(implicitly) define a number of classifiers needed for solving the all-words WSD task.
At the final phase it is possible to select how the created training and test sets of
examples should be saved – as a single file or as a set of files. Saving data into a single
file allows creating a single classifier that is able to disambiguate all target words
occurring in the text. On the other side is a possibility to group examples based on a
concrete target word or even on a POS category of the target word. In such a way we
are able to create a set of word-specific training and test files that can be used for
creating ‘traditional’ word expert classifiers.

An ability to group examples according to the POS categories of target words is
situated between these two extremes. These four sets of examples can be used for
constructing four different classifiers specializing in solving the WSD task for nouns,
verbs, adverbs and adjectives. Such a flexible approach allows for the generating of
different classification models for different POS word categories depending on the
quality and quantity of available examples for each category. It should be mentioned,
that all such created data sets can be saved either as.txt or .arff files which makes it
possible to use them directly in such machine learning environments as WEKA4 or
Orange5.

4 Experiments and Results

The conducted experiments were aimed at achieving two main goals: the first was to
evaluate the performance of different classifiers trained on the sets of examples pre-
pared according to the proposed approach in relation to such commonly used measures
for evaluating WSD classifiers as Most Frequent Sense (MFS) and WordNet First
Sense (WNFS) baselines [7]. MFS is the accuracy of a classier that for each target word
selects the sense that occurs most frequently in the training data for the same word.
WNFS is the accuracy of a classifier that for each target word selects the most frequent
sense of that word according to WordNet.3.0.

The second goal was to compare the behavior of such classifiers with a knowledge-
based WSD system developed by our colleagues [21].The system is based on different
kinds of knowledge graphs and outperforms other knowledge-based WSD systems
created by means of the UKB6 tool and using standard knowledge graphs. The best

4 https://www.cs.waikato.ac.nz/ml/weka/.
5 https://orange.biolab.si/.
6 http://ixa2.si.ehu.es/ukb.
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reported accuracy achieved by the their system (calculated on the whole data set
including monosemous words) is 68.77%

We use the same training and test data that were extracted from SemCor 3.07

corpus – one third of available files (from br-a01 to br-f44) were used for testing and
the rest two third – for training. It should be noted that the files contain only open class
words. The sense annotation of words in the files has been done in accordance with
WordNet dictionary wnet30_v203.lex8 that contains 148,401 word lemmas with a
minimum number of senses per word – 1 and maximum number of sense per word – 75
(1.40 senses per word in average). The overall number of polysemous words in the
dictionary is 27,009. Table 1 and 2 summarize some features of these files at the level
of words and their occurrences in the corresponding text files.

As we have already mentioned, we construct examples only for polysemous words
– each occurrence of such words in the text data is converted to an example. The test
data contains 1,272 different polysemous words that are not present in the training data
(they occur 2,042 times in the test data - 5.8% of all test examples). Such ‘test-only’
words can be recognized by a classifier, but can not be correctly disambiguated by any
classification model constructed only from the given set of training examples. The best
alternative for solving such examples is to use the most frequent sense for the tested
word obtained from a WordNet dictionary (WNFS). That is why we excluded such
examples from the test set.

Table 1. Text data statistics.

Data Set Number
of
sentences

Average
number of
words per
sentence

Number
of different
words

Number of
different
monosemous
words

Number of
different
polysemous
words

Number
of unknown
words

Training
text data

15,231 10 16,465 6,838 9,627 0

Test text
data

4,669 10.9 9,584 6,302 3,282 0

Table 2. Some statistics on word occurrences.

Data Set Number of
word
occurences

Number of
occurences of
polysemous
words

Number of
occurrences of
monosemous
words

Maximum
number of
senses per
word

Number of
occurrences
of ‘test-only’
words

Number of
occurrences of
‘unsol-vable’
words

Training
text data

134,372 115,095 19,277 31 – –

Test text
data

49,541 42,296 7,245 23 2,042 3,594

7 http://web.eecs.umich.edu/*mihalcea/downloads/semcor/semcor3.0.tar.gz.
8 https://github.com/asoroa/ukb/blob/master/src/README.
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We call a word occurring in the test data ‘unsolvable’ if it is present in the training
data but its correct sense - is not. It is clear, that such words can never be disambiguated
correctly by any classifier learnt from the given training data. Since ‘unsolvable’ words
can not be recognized by any classifier, we use such data for calculating a so called
‘Best Case’ baseline that determines the upper bound of the classification accuracy that
can be theoretically achieved on this test set by a classifier learnt from the given
training set (for out training set this baseline is equal to 91.10%).

We used the words embeddings9 with 300 dimensions, that were trained over a
pseudo corpus generated from an extended WordNet-based knowledge graph (PCWN)
[21] by means of Word2Vec tool10 with the following settings: context window of
5 words, 7 iterations, 5 negative samples, and frequency cut sampling set to 7.

We have experimented with two types of classifiers – neural network based and
ensemble-based ones. Neural networks with different architecture were built in the
TensorFlow11 - an open source machine learning framework. For the ensemble based
classifiers we have selected Random Forest in its scikit-learn implementation12 and
GCForest13 implementation of the Deep Forest model [22].

The first set of experiments was conducted on data in which the ordering of classes
was done according to the frequencies of senses calculated over the training set. That is
why the results were compared to the Most Frequent Sense (MFS) baseline calculated
over the same training set. We have experimented with two methods for integrating
word embeddings - Table 3 presents the experiment results with word embeddings in
their full form and Table 4 – in their compressed form. The disambiguation was done
by four classifiers trained on the training sets corresponding to the four POS categories
(nouns, adverbs, adjectives and verbs). In all experiments with neural networks we
applied the same set of parameters – Sofmax evaluation function, ReLU activation
function, learning rate set to 0.003, dropout set to 0.5 and Adam optimizer.

Table 3. Results from the experiments with ‘full’ word embeddings and class ordering based on
the training set.

Classifier Random
Forest
(RF)

Deep Forest Linear
Classifier

Neural Network Neural Network MFS

Architecture 100 trees 2 RF
(100) + 2
ExtraTrees
(100)

3340
inputs > 75
outputs

3340 > 200 > 75 3340 > 500 > 200 > 75

Overall
Accuracy
(%)

64.35 64.72 64.09 64.17 64.20 59.81

9 WN30WNGWN30glConOneGraphRelSCOne-synsetEmbeddings.bin downloaded from http://
bultreebank.org/en/DemoSem/Embeddings.

10 https://code.google.com/archive/p/word2vec/.
11 https://www.tensorflow.org/.
12 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.
13 https://github.com/kingfengji/gcForestDeep.
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It can be seen that all classifiers easily ‘beat’ the MFS baseline as the best results
have been achieved by the ensemble-based classifiers. It should be noted that the
overall accuracy of classifiers trained on ‘compressed’ representation of word
embedding is almost the same as for that used the ‘full’ form of word embeddings.

Tables 5 and 6 present results of similar experiments – the only difference is that
the ordering of classes was done based on the sense frequencies specified in our
WordNet-based dictionary. That is why we have compared the results with the
WordNet First Sense (WNFS) baseline.

Although the baseline accuracy in this case is higher, all classifiers again outper-
form this baseline and again the ensemble-based classifiers have demonstrated better
behavior than neural network-based ones.

In order to compare our supervised approach with the knowledge-based approach
proposed in [21], we have to extend our classification schema to cover monosemous
words and words from the test data that are not present in the training data. All such
words are classified by means of WNFS heuristic14. As it can be seen from Table 7, the

Table 4. Results from the experiments with ‘compressed’ word embeddings and class ordering
based on the training set.

Classifier Random
Forest
(RF)

Deep Forest Linear
Classifier

Neural
Network

Neural Network MFS

Architecture 100 trees 2 RF (100) + 2
ExtraTrees (100)

51
inputs > 75
outputs

51 > 200 > 75 51 > 500 > 200 > 75

Overall
Accuracy
(%)

64.20 64.17 64.12 64.16 64.19 59.81

Table 5. Results from experiments with ‘full’ word embeddings and WordNet-based class
ordering.

Classifier Random
Forest
(RF)

Deep Forest Linear
Classifier

Neural Network Neural Network WNFS

Architecture 100 trees 2 RF
(100) + 2
ExtraTrees
(100)

3340
inputs > 75
outputs

3340 > 200 > 75 3340 > 500 > 200 > 75

Overall
Accuracy
(%)

70.65 70.62 70.42 70.42 70.42 64.89

14 It is clear, that the WNFS baseline for such extended test set will be also changed.
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supervised-based classifiers significantly outperform as the knowledge-based ones as
the WNFS baseline.

5 Conclusion and Future Work

In this paper we have described a new approach for solving the all-word WSD task in
the supervised context. The approach allows formulating this problem as a classifica-
tion task that can be solved by means of one or several classifiers that are trained on the
training set or on its different subsets. In all cases the training examples are represented
in a unified way, which is based on a new interpretation of the notion ‘class’ as a place
of the concrete word sense in a sequence of possible word senses ordered by the sense
frequencies calculated on some corpora. At the moment representation of examples
includes information about POS categories of the target word and words from its
context, as well as on the context itself. Both target and context words can be repre-
sented in two different ways via their embeddings. In the first case the full distributional
representation of embeddings as vectors is used, while in the second – each word is
coded only by a single real-valued number reflecting similarity between the target word
and the given context word. The conducted experiments have shown that classifiers
training on such created training examples outperform both Most Frequent Sense and
WordNet First Sense baselines for the test data.

At the moment our efforts are concentrated mainly in two directions – the first is to
evaluate the approach on a wider range of available data (i.e. Semeval-2, Semeval-3,
etc.) and to compare the results with several state-of-the-art supervised WSD systems.

Table 6. Results from experiments with ‘compressed’ word embeddings and WordNet-based
class ordering.

Classifier Random
Forest (RF)

Deep Forest Linear
Classifier

Neural
Network

Neural
Network

WNFS

Architecture 100 trees 2 RF (100) + 2
ExtraTrees (100)

51
inputs > 75
outputs

51 > 200 > 75 51 > 500>
200 > 75

Overall
Accuracy (%)

70.49 70.39 70.42 70.42 70.44 64.89

Table 7. Classification accuracy of some classifiers on all test examples.

Classifier RF(100) + ‘full’ word
embeddings + WordNet-
based class ordering

RF(100) +
‘compressed’ word
embeddings +
WordNet-based class
ordering

Knowledge-
based
classifier
[21]

WNFS

Accuracy
(%)

75.80 75.67 68.77 71.12
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The second is to extend the proposed approach by integrating it with more knowledge
sources, for example with information on context word collocations and with
embeddings over word senses.
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Abstract. Assigning sentiment labels to documents is, at first sight, a
standard multi-label classification task. As such, it seems likely that stan-
dard machine learning algorithms such as deep neural networks (DNNs)
will provide an effective approach. We describe an alternative approach,
involving the construction of a weighted lexicon of sentiment terms,
which significantly outperforms the use of DNNs. The moral of the story
is that DNNs are not a universal panacea, and that paying attention to
the nature of the data that you are trying to learn from can be more
important than trying out ever more powerful general purpose machine
learning algorithms.

Keywords: Sentiment mining · Shallow learning
Multi-emotion classification

1 Introduction

The key features when trying to assign sentiment labels to documents are the
words that they contain, and most approaches to this task involve either explic-
itly or implicitly constructing a sentiment lexicon. We explore below two ways
of constructing such a lexicon, either by explicitly counting the occurrences of
words in documents that have been assigned a (possibly empty) set of labels
drawn from a standard set of sentiment names or by building a DNN with the
set of words in the training set as input features and the sentiment names as
output features. In the latter case, the lexicon is implicit in the weights that
link the input layer, via the hidden layers, to the output layer. Such an implicit
lexicon is often referred to as a ‘word embedding’: in essence, however, it is just
a lexicon where each word is connected to a set of labels through a collection of
arithmetical calculations.
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Given that the task we are undertaking involves assigning a set of labels,
we have to be careful about how we use DNNs. There are two obvious ways
to proceed. (i) Given a set of features, it would be possible to train a set of
classifiers, one per feature. Each classifier will return YES/NO for the feature
it was trained on. Taken together the set of classifiers can be seen as a single
multi-label classifier. We refer to classifiers trained in this way as ‘multi-DNNs’
(ii) Train a single classifier with a node in the output layer for each feature and
then accept every label for which the output-layer node had an excitation level
above some threshold. We refer to this kind of classifier as ‘single-DNNs’.

Traditionally, emotion classification tasks have been tackled by obtaining a
large corpus, constructing feature sets and pre-processing in sophisticated ways
and then making use of any number of black box training algorithms [7,9].
Indeed, this approach is still prevalent nowadays [2,4,6]. We demonstrate that
with a small sized corpus and without using any black box algorithms our results
are comparable with systems that have been trained on millions (and sometimes
billions) of tweets.

We show that the approach through explicitly constructing a lexicon sub-
stantially outperforms either of the DNN algorithms outlined above, and we end
with some speculation about why this should be so.

2 Data

We used the data provided for the SemEval-2018 Task 1: Affect in Tweets task for
English and Arabic [5]. The task was to assign a possibly empty set of sentiment
labels, drawn from the set {anger, anticipation, disgust, fear, joy, love, optimism,
pessimism, sadness, surprise, trust}, to each member of a collection of English
and Arabic tweets. This consists of a training set of around 6.8K English tweets
(109K words) and 2.2K Arabic ones (62K words) and development sets of around
886 tweets (13.9K words) and 586 tweets (15.8K words) respectively1. It is worth
noting that Arabic tweets typically contain more words than English ones – 27
words per Arabic tweet, 16 words per English tweet. This reflects the fact that
Arabic is typically written in a very condensed form, in which the diacritics
(marks corresponding to short vowels and other phonetically relevant items) are
omitted. This is similar to the use of ‘textese’ in English, wherein a text like ‘This
message is heavily abbreviated ’ might be written as ‘This msg is hvly abbrvted ’.
The omission of diacritics from written Arabic introduces more ambiguity than
is the case for English written as textese, which makes Arabic tweets harder to
analyse than English ones. At the same time, it means that it is possible for
there to be significantly more words in an Arabic tweet than an English one2,

1 We are using the development set rather than the official test set here because the
Gold Standard annotation of the test set has not been released, and hence we cannot
use it for evaluating the systems described in this paper: our own scores on the official
test sets are similar to our scores on the development sets – see Table 2 – hence the
assumption is that the test and development sets have very similar characteristics.

2 This data was collected when tweets were limited to 140 characters.
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which makes the task easier, since the more words you have the more information
about what the tweet says you have. As we will see, the results we obtain for
the English and Arabic sets are extremely similar, hence we believe these two
effects cancel each other out.

For both datasets, we carry out a number of preprocessing steps:

1. Identify emoticons and emojis. As their names suggest, emoticons and emojis
are used to convey emotions, and hence are very significant for the current
task. It can be tricky to identify them, since the set is not fixed, but they are
undoubtedly important.

2. Tag and stem the remaining text. Stemming the words that appear in a tweet
is challenging, since the vocabulary used in tweets is very open, and includes
numerous slang items and (deliberate and accidental) misspellings, so that
stemmers that rely on a fixed lexicon (e.g. Madamira for Arabic [8]) do not
work well on tweets. We use a version of the stemmer described in [1] for
Arabic and a stemmer based on the NLTK casual tokenize function for
English.

3 Machine-Learning Algorithms

We applied three machine learning algorithms to the SemEval data, as follows.

Weighted Conditional Probabilities

The first algorithm, WCP, collects the conditional probabilities P (Wi|Sj) that a
tweet that expresses the sentiment Sj will contain the word Wi and constructs
a sentiment lexicon as follows:

Collect Raw Conditional Probabilities. For all words Wi, all sentiments Sj collect
the conditional probability P (Wi|Sj) that a tweet that expresses the sentiment
Sj will contain the word Wi.

Normalisation. For each Wi, calculate the average value A(Wi) of the probabili-
ties of that word over all sentiments, i.e. Σk

j=1P (Wi|Sj)/k and subtract that from
each of the individual probabilities P (Wi|Sj). This has the effect of downplay-
ing the significance of words that occur equally frequently in tweets expressing
different emotions.

Skew. For eachP (Wi|Sj), multiply by the variance
√

Σk
j=1(P (Wi|Sj)−A(Wi))2/k

of the probabilities of that word for any sentiment. This increases the significance
of words with very skewed distributions.

These initial steps produce a lexicon which links words to sentiments, as in
Table 1.

Positive words score highly in this table for positive sentiments (‘adorable’
scores well for joy and love), negative words score well for negative emotions
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Table 1. Extracts from the English sentiment lexicon

anger anticipation disgust fear joy love optimism pessimism sadness

. . .

admire −0.045 0.031 −0.046 0.006 0.009 0.088 −0.031 −0.091 −0.091

adorable −0.091 −0.091 −0.091 −0.091 0.107 0.616 0.004 −0.091 −0.091

. . .

outrage 0.226 −0.057 0.169 −0.009 −0.056 −0.066 −0.032 −0.049 −0.041

. . .

sick 0.045 −0.061 0.042 0.052 0.007 −0.091 0.012 0.019 0.157

. . .

the −0 0.004 −0.001 0.001 0.001 −0.012 0.005 0.005 −0.004

. . .

(‘outrage’ scores well for anger and disgust), neutral words score near 0 for
everything (‘the’). The entry for ‘sick ’ is interesting since it is a word that can
be used to express almost diametrically opposed sentiments. It makes a positive
contribution to a range of emotions, including joy and optimism, where its
contribution is comparable to or greater than that of ‘admire’. We return to this
in Sect. 4.

Autocorrection. We then autocorrect this lexicon by using it to reclassify the
training data and removing any words that have a positive score in the lexicon for
some sentiment but which actually occur in more tweets that do not express that
sentiment than ones that do. This removes a small number of words, typically
between 1% and 4%. Note that we carry out the reclassification on the original
training data. This is methodologically sound – we are not using the training
data for testing, we are reusing it as part of the overall training process. We
carried out experiments where we set aside a portion of the training data for
this purpose, but it turned out to be more effective to reuse the full set. It is
more important to have as much data as possible for this purpose than to keep
the training and retraining data separate.

Threshold-Setting. Finally, we set individual thresholds for each sentiment, to
reflect the fact that some sentiments are more common than others and hence
we should be more generous about predicting them. Again we set the thresholds
by running the classifier on the original training data and choosing the optimal
threshold for that data. Again this is a sound way to use the data – problems
arise only if you mix up training and test data.

This series of steps performs fairly well – as noted earlier, we came second in
the SemEval multi-label emotion task for Arabic, with a Jaccard score of 0.484
just 1% behind the winner with 0.489 – but some of the steps (particularly the
decision to multiply the adjusted individual probabilities by P (Wi|Sj) by the

variance from the average,
√

Σk
j=1(P (Wi|Sj)−A(Wi))2

k ), are motivated purely by
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the fact that they work. We therefore decided to try more traditional machine
learning algorithms on the same data to see how well they performed.

Deep Neural Nets

The task we are interested in is a multi-label classification. There are a number of
standard algorithms which can be exploited for such tasks, either directly or by
training a series of individual classifiers. We carried out a series of experiments
with SVMs, a version of Näıve Bayes and deep neural nets. The SVM and NB
algorithms performed extremely poorly on the SemEval data – the SVMs in par-
ticularly simply chose the majority class in each case. We therefore concentrated
on the DNN models3.

There are two obvious ways of using DNNs for multi-label tasks. A single
DNN is trained, the excitation levels of all the output nodes are inspected and all
the classes that surpass some specified threshold are chosen; or a DNN is trained
for each class and each is applied to the data being classified. It is worth noting
that the second strategy implicitly assigns individual thresholds to sentiments
as in the strategy outlined above.

We carried out both strategies on our data, with a DNNs with three hidden
layers, with the sizes of the three layers ranging from 50 to 400, from 20 to 80
and from 5 to 20 respectively. The numbers of nodes in the hidden layers made
very little difference to the outcomes: the results below were obtained with (200,
40, 10) nodes in the hidden layers for the single DNN model and (25, 20, 5) for
the multi-DNN model for Arabic, and (200, 80, 10) for the single and (25, 20,
5) for the multi-DNN model for English. Increasing the numbers of nodes in the
layers beyond this led to overtraining and worse performance.

The results of these three strategies for the Arabic and English data from the
SemEval task are given in Table 2. Mohammed et al. [5] include an SVM-based
algorithm as a baseline, and we have included their Jaccard results for that on
the SemEval test data in these tables4, since we were unable to obtain any useful
results using SVMs, alongside the scores for WCP on the test data.

Support Vector Machines

The SemEval competition results included a number of baselines, one obtained
by training an SVM on the distributed training data and one by making random
choices. The SVM baseline was higher than anything we have managed to achieve
using SVMs, and hence we are including it here for comparison with the other

3 We used the SciKit Multilayer-perceptron package, http://scikit-learn.org/stable/
modules/neural networks supervised.html, with sparse arrays for the DNN experi-
ments. While TensorFlow can be faster to train if you can take advantage of multi-
core processing, the functionality of the two packages is very much the same and it is
unlikely that using TensorFlow would have significantly improved the performance
of the DNN models.

4 We do not have their precision, recall and F-measure results.

http://scikit-learn.org/stable/modules/neural_networks_supervised.html
http://scikit-learn.org/stable/modules/neural_networks_supervised.html
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approaches. The SemEval scores were obtained on the competition test set, for
which we do not have the Gold Standard labels. Our own results were better on
the Gold Standard than on the development set, suggesting that in some sense
the Gold Standard test set was ‘easier’ than the development set. In order to
obtain a fair comparison of the various approaches, then, we are including the
results for WCP and the DNN-based approaches on the development set and
for WCP and the SVM on the competition test set. These results are recorded
in greyed out format in Table 2 to indicate that the SVM results were obtained
from an external source.

Table 2. Scores on Arabic and English SemEval data

Arabic English

precision recall F Jaccard precision recall F Jaccard

WCP 0.620 0.632 0.626 0.455 0.589 0.658 0.622 0.451

single DNN 0.601 0.537 0.567 0.396 0.624 0.488 0.587 0.416

multi-DNNs 0.611 0.528 0.567 0.395 0.624 0.546 0.582 0.411

(WCP 0.484 0.508)

(SVM-unigrams 0.380 0.442)

For both datasets the two DNN-algorithms have very similar scores. The
multi-DNN versions, however, take much longer to train, since they require
11 distinct classifiers to be trained and tested. The DNNs seem to outperform
the SVM, but it should be noted that the SVM was tested on the SemEval test
set, which may be easier than the development set. The ratios between WCP’s
scores on the development sets and the DNN’s scores are lower than the ratios
between WCP’s scores on the test sets and the SVM’s score (in plain English:
WCP beats the SVM by more than it beats the DNNs, the DNNs are better
than the SVM).

4 Interpretation and Analysis

The weighted conditional probability algorithm outperforms both the DNN algo-
rithms and the SVM on both sets of data. It would be interesting to know why
this should happen, and while it is very difficult to see inside a DNN, we do have
some speculations about how the differences arise.

We carried out a number of preprocessing steps on the data. The most impor-
tant of these were stemming and identification of emojis, which each had a sig-
nificant impact on the results. However, since we carried out exactly the same
preprocessing steps before applying WCP or either of the DNN algorithms, the
discrepancy in the results cannot be caused by these steps. It is impossible
to know what preprocessing steps Mohammed et al. carried out, but it is at
least worth noting they obtained substantially higher scores on English than on
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Arabic, where we obtain similar scores with each algorithm for both languages,
suggesting that our preprocessing steps for Arabic have a significant impact.

So what does make a difference? We will consider the main steps in our
algorithm in turn: the accuracy of WCP at each stage on the two datasets is
given in Table 3.

Table 3. Stages of WCP

Arabic English

Raw probabilities 0.324 0.340

Normalised 0.318 0.340

Skew 0.342 0.401

Autocorrection 0.370 0.431

Threshold setting 0.452 0.455

Collect Raw Conditional Probabilities. At this point we are simply collecting the
conditional probability P (Wi|Sj) that a tweet that expresses the sentiment Sj

will contain the word Wi. Given that what we want is P (Sj |Wi), it is hardly
to be expected that simply using the information gathered at this stage will be
very useful.

Normalisation. At this point, words which are evenly distributed across senti-
ments are marked down. The score for ‘the’ at this point, for instance, becomes
very close to 0 for all sentiments, since it occurs almost equally frequently in
every sentiment, so subtracting the mean across all sentiments from the value
for each sentiment leads to a set of scores that are very close to 0. This plays
practically the same role as dividing by document frequency (or log(document
frequency)) in algorithms that use TF-IDF. Note that we do not weight things
in terms of document frequency – downplaying words that contribute equally to
all sentiments is carried out at this point.

Skew. This step introduces a degree of non-linearity into the process. A word’s
score across all sentiments is boosted if the difference between the mean across all
sentiments and the score for each sentiment after the mean has been subtracted
from it is high. This effectively double-counts skew, because subtracting the mean
gives neutral words a score close to 0, and then multiplying the actual score for
each sentiment by this variance emphasises the sentiments for which the word
is significant. This step simultaneously allocates words to sentiments and gives
extra weight to words that are much more important for one sentiment than for
the others. This has the effect of implicitly paying attention to correlations and
anti-correlations between sentiments.

Autocorrection. The steps up to this point are approximate, and the weights
assigned to individual words are not reliable, any more than any other strategy
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can be trusted to give appropriate scores to individual words. We therefore run
a sanity check to remove words whose scores are obviously unreliable. If a word
has a positive score for some emotion, but actually appears in more tweets that
do not express that emotion than ones that do, we give it a fixed negative score
for that emotion. This is in some ways like the self-correction steps carried out in
transformation-based learning [3], though at a rather simpler level. If it looks as
though the classifier has made a mistake in the dictionary it fixes it (by altering
the contribution that the given word makes to the sentiment that it is wrongly
contributing to). This is an easy thing to do if the lexicon is explicit – much
harder if the lexicon is encoded in a combination of weights in a DNN (i.e. is a
word-embedding).

Threshold-Setting. Choosing a separate threshold for each sentiment has a sig-
nificant effect on the overall score. This step is implicitly carried out by the
multi-DNN models: when a DNN is used as a classifier, i.e. when there are two
output nodes, one for YES and one for NO, it calculates the optimal excitation
level for the YES node. Thus, when a set of DNNs is used for multi-classification,
each one will indeed have its own threshold. For the multi-DNN, it seems likely
that a single threshold is chosen for all the output nodes5. This step has a sig-
nificant impact on the performance of the WCP algorithm, since it implicitly
weighs up the likelihood of a given sentiment occurring at all, as well as being
sensitive to the fact that different sentiments may be expressed in different ways.
It cannot, however, be a major contributor to the difference between the WCP
algorithm’s performance on the target data and the multi-DNN’s performance,
since the multi-DNNs do also carry it out.

5 Conclusions

General purpose machine learning algorithms are, in general, good. If you do
not know much about the data you are trying to learn from, then using some
standard algorithm such as DNN or SVM is the easiest way to proceed. However,
in specific cases there may be information that is hard to encode for a general
purpose algorithm, and there may be interactions between classes that are dif-
ficult for such algorithms to capture. In the work described here we have shown
that designing an algorithm that is targeted at the specific task under investiga-
tion (assignment of sentiment labels to Arabic and English tweets in the current
study) can be more effective than just applying a standard general-purpose tool.

It may be, of course, that such algorithms have parameters that can be
tweaked to improve their performance, but randomly tweaking parameters is a
time-consuming and unilluminating activity. We believe that it is, in at least
some cases, better to think about the nature of the problem and design an
algorithm that works for it than to trust in the effectiveness of some pre-built
black-box learning algorithm.
5 The SciKit DNN tool is open-source, but that doesn’t mean that it’s easy to read

the code and work out what is going on.
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Abstract. Intent detection is one of the main tasks of a dialogue sys-
tem. In this paper we present our intent detection system that is based on
FastText word embeddings and neural network classifier. We find a sig-
nificant improvement in the FastText sentence vectorization. The results
show that our intent detection system provides state-of-the-art results
on three English datasets outperforming many popular services.

Keywords: Intent detection · Dialog system · Word embeddings

1 Introduction

In recent years with the development of deep learning techniques, solutions with
neural networks and machine learning are replacing more traditional ones. Dia-
logue systems are not an exception. There are several ways how machine learning
methods based on neural networks are used in dialogue systems. They can be
used for end-to-end systems [21,22,24,26,29] as well as separate components
such as understanding user’s input, generating the dialog system response, and
dialogue management [10,13,14,27]. Understanding user’s intent is essential for
successful interaction. Therefore, intent detection is one of the main tasks of a
dialog system.

The intent detection task is typically formulated in the following setting.
There are several possible predefined intents according to the dialogue system
domain and scope and the system should determine which one is the most rele-
vant to the user’s input. It can be solved by manually created list of patterns and
comparing if the user’s input matches any pattern [6,17,23,25]. However, this
method is relatively limited and the latest approach is to use machine learning
methods based on neural networks trained on example utterances [12,28,30].

The specifics of dialog systems are that generally only small amount of train-
ing data is available and the utterances are relatively short. It is further compli-
cated by the specific nature of chat language such as poorly-structured sentences,
presence of grammatical errors, usage of informal slang, abbreviations, etc.

c© Springer Nature Switzerland AG 2018
G. Agre et al. (Eds.): AIMSA 2018, LNAI 11089, pp. 25–35, 2018.
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2 Intent Detection

The input for the intent detection system is user’s utterance (typically a sentence
or a question). The task of the system is determine which of several predefined
intents is the most likely for the given utterance. The intent detection task can be
approached by dividing it into separate subtasks. The utterance is sequentially
preprocessed, vectorized and classified.

Table 1. Intent detection accuracy.

Method Words Stopwords removed Real auto1fix Fixed

Wit.ai baseline Original No 36.44% – 38.14%

FastText classifier Original No 28.14% 29.41% 30.59%

Yes 26.69% 28.05% 29.07%

Lemmatized No 27.29% 28.31% 29.41%

Yes 32.29% 34.41% 38.14%

FastText vectors Original No 23.73% 23.73% 24.49%

Yes 28.14% 28.64% 30.68%

Lemmatized No 25.93% 26.78% 27.71%

Yes 36.95% 39.24% 41.86%

FastText upgraded
vectors

Original No 38.22% 38.47% 38.73%

Yes 36.19% 37.03% 38.47%

Lemmatized No 35.25% 36.61% 37.97%

Yes 38.73% 40.76% 43.39%

2.1 Preprocessing

The preprocessing step typically consists of one or more of the following tasks:

– tokenization – in this step punctuation marks, words, email addresses, links,
numbers, abbreviations, etc. are properly separated into distinct tokens,

– automatic error-correction – the user grammatical errors are attempted to be
programmatically corrected,

– truecasing or lowercasing – the text is converted into lowercase or true case
(e.g. usa → USA),

– removal of punctuation marks and other symbols,
– lemmatization – words are transformed into canonical form,
– removal of stopwords – insignificant words (such as a, and, I, or, to, etc.) are

removed, either from a predefined stoplist or from a dynamically-generated
list based on the training data.
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2.2 Vectorization

During vectorization the utterance is transformed from a textual form to a
vector so it can be input to a machine learning algorithm. Common types of
vectorization include One-Hot vectorization and word embeddings. In One-Hot
vectors each dimension of the vector corresponds to a word in dictionary. The
utterance is vectorized so that the value in the respective dimension is 1, if a
word appears in the utterance, and 0 – otherwise.

Word embedding is a different approach to vectorization where words are
mapped to vectors of real numbers. This continuous representation can then be
used to perform a wide variety of natural language processing tasks.

There are several tools for generating word embeddings such as gloVe [18],
word2vec [15], fastText [2] and others [19,20].

2.3 Classification

During classification the vectorized utterances are classified, typically using some
machine learning algorithm such as some kind of neural network. The input for
the classifier is the vectorized representation of the utterance and the output is
a probability distribution over the possible intents.

3 Experimental Setup and Results

3.1 Dataset

We use an in-house dataset from a customer service system in Latvian language.
It has 121 defined intent. The training set consists of expert-written examples
with approx. 10 utterances per intent, in total 1231 utterances.

There are two variants of the test set. The test set Real is derived by 1000
randomly selected real user questions from the production system and by man-
ually assignment the most appropriate intent for each question. In this way only
for 236 utterances were classified, because others were not in the domain of the
dialog system. The test set Fixed is the same as Real but with the grammatical
errors manually corrected. Dataset auto1fix is obtained from the set Real by
automatically correcting the errors using methods described in the subsection
about automatic error correction.

3.2 Preprocessing

The utterances are tokenized and lowercased, and all non-alphanumeric charac-
ters are removed.

We compare several variants of preprocessing. The words in utterances are
either lemmatized or not. The stopwords obtained using a method from [1] are
either removed or not removed.
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3.3 Automatic Error Correction

Type of text generated by user in a chatroom conversation or in some social
media environment tend to be quite distant from the literary language. Sev-
eral authors consider normalizing text prior to performing some specific NLP
task [4,7]. To check how the quality of intent detection module is influenced by
the quality of the training data we have created a module for noisy chatroom
text correction. In this module, we integrated three different tools. The text cor-
rection tool allows to fix text with help of regular expressions, to fix it with a
spelling checker suggestions, to use a grammar checker or to use all three tools.
If all three methods are chosen, at first the regular expression module is applied,
then the spelling checking module, and finally the grammar checking module.

We have created a list of 770 regular expressions. The regular expression
module looks for a wrong pattern in a text phrase and replaces it with a correct
one. The errors covered can be divided into several groups.

Many users do not use diacritics in a chatroom conversation although in
Latvian a large part of words have them. 47% of the words contain diacritic
marks measured on Latvian UD Treebank v2.0 [16]. There are four long vowels
in Latvian: ā, ē, ı̄, ū. In a chatroom conversation, users might write them without
a diacritic mark: a, e, i, u, or by doubling them: aa, ee, ii, uu. Also consonants
ģ, ķ, ļ, ņ, č, ž, š, are written inconsistently as g, k, l, n, c, z, s or gj, kj, lj, nj,
ch, zh, sh.

The next common mistake is vowel dropping. Every syllable in Latvian should
contain a vowel. There is a list of words in which the regular expressions try to
fix this type of error, for example, words kpc, dzgn, mnpr, kkad should be kāpēc,
diezgan, manuprāt, kaut kad.

Some other errors covered by regular expressions - words written together
should be written separately or vice versa, wrong letter, dropped letter, extra
letter, colloquial speech, abbreviated word.

By analyzing Twitter data we have discovered some peculiarity in a lexicon.
Users are very creative. There are many neologisms, unusual compounds, English
words with a Latvian ending or some slang. In a future, some of the compounds
should be added to the spelling checker dictionary.

The spelling checker module not only checks if a word is misspelled but also
generates some suggestions for correction. Every misspelled word in a text phrase
is replaced by the first suggested correction if there is one. The spelling checker
is based on a general language lexicon.

The grammar checking module looks for the formatting errors, orthography
errors, morphology and syntax errors, punctuation errors as well as for some
style errors [5]. The grammar checker is developed as a rule-based system for
correction of the general texts.
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3.4 Baseline

As a baseline we use the Wit.ai service1 which is one of few popular chatbot
creation services that supports Latvian language. As seen in Table 1 the results
for the Fixed dataset are better than for the Real dataset as could be expected.
The overall accuracy is quite low which could be explained by the heterogenous
nature of the training and test sets.

3.5 FastText Classifier and Its Improvements

The first system we test is the FastText tool for vectorization and classification
[9]. We use 100-dimensional word embeddings that are pretrained on a large
text corpus containing 82M utterances (1368M words). For word embeddings the
large corpus is also preprocessed – tokenized, lowercased and nonalphanumeric
characters removed.

As demonstrated in Table 1 this approach does not beat baseline. One of
the problems with FastText classifier is that unseen words are not taken into
consideration. However, they could possibly be misspelled versions or rarer forms
of known words and could be vectorized using FastText vectorization which uses
subword-level information. Therefore, we examine a method that only uses the
vectorization part of FastText and makes the classification with a simple neural
network with one softmax layer as shown in Fig. 1.

Fig. 1. The architecture of the neural network.

It can be seen in Table 1 that the accuracy has increased in the setting
where stopwords are removed and decreased significantly when stopwords are
not removed. Therefore it might be inferred that this solution is very sensitive
to stopwords. As explained in the following, this is not a coincidence and can be
explained by the implementation of the FastText sentence vectorization.

1 https://wit.ai/.

https://wit.ai/
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FastText classifier calculates the sentence vector as the average of the word
vectors (normalized by their length). The sentence vector W is calculated as

W =
1
m

m∑

i=1

1
‖wi‖ · wi,

where w1, . . . , wm are the vectors of the sentence words and ‖wi‖ is the length
of the vector wi. The normalization by the length is a large source of noise. Less
important words typically have smaller vector length as seen in the Table 2.
Therefore, normalizing by length assigns them a relatively higher weight in the
resulting sentence vector.

Table 2. Lengths of the word vectors.

Word English translation Vector length

un and 1.78

kāda what 2.76

ir is 2.27

mana my 3.12

ip IP 3.96

adrese address 4.91

The accuracy can be significantly improved with a modified FastText vector-
izer that does not normalize the word vectors and creates the sentence vector
as W = 1

m

∑m
i=1 wi. As it demonstrated in Table 1 such modification gives a

significant improvement in the intent detection accuracy.

3.6 FastText Increase of Dimensionality

We examine whether an increase in the number of dimensions for the word
embedding leads to higher accuracy. The setting we use is the original sentence
without lemmatization or stopword removal. We examine word embeddings with
100, 300, 500, 1000 dimensions. As it can be seen in Table 3, increase of the
number of dimensions leads to increase of the intent detection accuracy.

However, from a practical perspective for the vectorization to happen fast
the word embedding model should be loaded in computer’s RAM. The size of
model grows linearly with the number of dimensions. So 100-, 300-, 500-, 1000-
dimensional word embeddings occupy 2.0GB, 6.0GB, 10.1GB, 20.1GB of space,
respectively, therefore putting corresponding requirements for the computer’s
RAM.
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Table 3. Intent detection accuracy for different number of dimensions for the FastText
word embeddings.

Dimensions Real Fixed

100 38.22% 38.73%

300 40.51% 43.05%

500 41.91% 44.24%

1000 44.32% 47.46%

Fig. 2. The architecture of the convolutional network.

3.7 Convolutional Network

We examine classification with a convolutional network with architecture similar
to [11]. The architecture of the network we use is presented in Fig. 2.

For practical reasons 300-dimensional word embeddings are used. We exam-
ine filter widths from 1 to 5 and the number of filters from 100 to 1000. We
try two regularization mechanisms – with L1 weight regularization and with a
dropout layer. The regularization with a dropout layer shows better results.

In Table 4 the change in accuracy is shown for the convolutional network
with dropout rate 0.5 compared to the result of the neural network classifier on
300-dimensional word embeddings (40.51%). It can be observed that depending
on the parameters (and on the run) the results are different. However, on aver-
age convolutional network shows improvement in accuracy over simple neural
network.

3.8 Language Simplification

We evaluated a method to deal with user errors in diacritical marks (omission
or, for example, writing long vowels as a double letter) by simplification of the
language. We replaced the letters with diacritical marks or their most common
substitutions with a simple letter according to the rules in Table 5.

However, this did not give an improvement to the accuracy. For the simple
neural network on 300-dimensional word embeddings on the simplificated lan-
guage the accuracy was 39.84% which is a little lower than for the Real dataset
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Table 4. Accuracy difference of the convolutional network.

Table 5. Language simplification replacement rules.

Letters Replace with

aa ā a

ee ē e

ii ı̄ i

uu ū u

ch č c

gj ģ g

kj ķ k

lj ļ l

nj ņ n

sh š s

zh ž z

ō o

ŗ r

(40.51%). The results for the convolutional network with dropout 0.5 can be
seen in Table 6. On average the accuracy is a bit lower (compared to Table 4).

4 Comparison with Other Systems

In this section we compare our solution with other popular dialog systems on
publicly available datasets. In the paper [3] authors compare the quality of
intent and entity detection of a few popular dialog systems, namely, Microsoft
LUIS, IBM Watson, Google API.ai (now called Dialogflow), and RASA, on three
datasets. Furthermore, in the Snips Github repository2 also Snips.ai and RASA

2 https://github.com/snipsco/nlu-benchmark.
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Table 6. Accuracy difference of the convolutional network on the simplified language.

Fig. 3. Comparison of the intent detection accuracy of different services.

Spacy is evaluated. We also add Wit.ai to the comparison as in [3] it was excluded
due to problems with automatic import.

In [3] the authors combine the results of intent detection and entity recogni-
tion and calculate the F-score on the aggregated result. However, from the raw
scores it is also possible to obtain other measures. As we focus exclusively on
intent detection and the relative frequency of different intents are similar, the
measure of intent detection accuracy is more appropriate to compare the differ-
ent systems. We use the same training and test sets as in [3]. The comparison
results are shown in the Fig. 3. We can see that our system achieves results that
are in line with other services.

For the vectorization we use publicly available FastText word embeddings
trained on English Wikipedia [8]. As the corpus used for obtaining the word
embeddings is not lowercased, but the utterances are lowercased these results
theoretically could be improved by properly preprocessing also the corpus used
for word embeddings.

Acknowledgments. The research has been supported by the European Regional
Development Fund within the project “Neural Network Modelling for Inflected Natural
Languages” No. 1.1.1.1/16/A/215.
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Abstract. This paper presents a method for structured information
extraction from patient status description. The proposed approach is
based on indirect association rules mining (IARM) in clinical text. This
method is language independent and unsupervised, that makes it suitable
for applications in low resource languages. For experiments are used data
from Bulgarian Diabetes Register. The Register is automatically gener-
ated from pseudonymized reimbursement requests (outpatient records)
submitted to the Bulgarian National Health Insurance Fund in 2010–
2016 for more than 5 million citizens yearly. Experiments were run on
data collections with patient status data only. The great variety of possi-
ble values (conditions) makes this task challenging. The classical frequent
itemsets mining algorithms identify just few frequent pairs only even for
small minimal support. The results of the proposed IARM method show
that attribute-value pairs of anatomical organs/systems and their condi-
tion can be identified automatically. IARM approach allows extraction
of indirect relations between item pairs with support below the minimal
support.

Keywords: Data mining · Text mining · Health informatics

1 Motivation

Structured information extraction of patient status is important for many
Healthcare Management tasks like diagnosis, treatment effect assessment,
patient profiling, etc. Usually outpatient records (ORs) contain detailed descrip-
tion of patient status as free text only. Raw clinical text usually used telegraphic
style of the patient status, rather than full sentences. There are also a lot of
typo and abbreviations, that makes difficult usage of standard syntax parsers.
Without of resources like lexicons and ontologies with medical terminology the
solution of task for complex events and relations extractions is almost impossible.
Still there is a lack of resources and natural language processing (NLP) tools for
non-English clinical texts processing [21] albeit there is an increasing research
efforts in this area. There are still non existing translations of SNOMED1,
1 SNOMED, https://www.snomed.org/.
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Medical Subject Headings (MeSH)2 and Unified Medical Language System
(UMLS)3 for the majority of languages.

Manual annotation of many clinical text documents is time and effort con-
suming task. The rich vocabulary of the medical terminology is one of the major
obstacles for scalability of methods developed and evaluated on the golden stan-
dard basis. Thus for NLP of clinical texts there are needed language independent
methods that are unsupervised and do not rely on resources. In previous research
we shown that some data mining algorithms for frequent patterns mining and
frequent sequence mining can be used efficiently to extract structured informa-
tion for risk factors and some complex relations between diagnosis [4,5].

The classical frequent itemsets mining and association rules generation algo-
rithms identify just few frequent pairs only even for small minimal support. The
infrequent data contain interesting and important information. Indirect associ-
ation rules mining (IARM) identify relations between items {X,Y } that rarely
occur together in the same transaction. In case the presence in transaction of
both items X and Y depend on presence of some other set M , then it is said
that X and Y are indirectly associated via M [24]. The set M is called mediator.
In text documents processing indirectly associated words corresponds to words,
used in different context of other word, or synonyms, or antonyms. We propose
a method based on IAR mining of clinical text. The aim of this research is to
identify attribute-value pairs of patient status descriptions.

The paper is structured as follows: Sect. 2 briefly overviews the research in
the area; Sect. 3 describes the data collection of clinical text used in the exper-
iments; Sect. 4 presents the formal presentation of the problem and describes
in details the proposed method for mining indirect association rules in clinical
text; Sect. 5 shows experimental results and discusses the method applications;
Sect. 6 contains the conclusion and sketches some plans for future work.

2 Related Work

Recently many data mining approaches were successfully used in NLP tasks [18].
Manimaran and Velmurugan show how Apriory [2] algorithm can be used for
text mining with application in medical informatics.

One of the earliest comprehensive studies of IAR algorithms for mining trans-
action data were presented by Tan and Vipin [22–24]. They present different
applications of the method for text, retail data, stock market data, Web click-
stream data.

Chen et al. [6] present an algorithm MG-Growth for temporal indirect asso-
ciation that takes into account the lifespan of items. Ha et al. [11] demonstrate
how IARM approach can be used to find hidden correlation among multimedia
semantic concepts.

Some attempts to define more efficient measures in IARM task was presented.
Abdullah et al. [1] introduce a new measure Definite Factor to indicate the degree
2 Medical Subject Headings—MESH, https://www.nlm.nih.gov/mesh/.
3 UMLS, https://www.nlm.nih.gov/research/umls/.

https://www.nlm.nih.gov/mesh/
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of certainty of association rules. Hamano and Sato [12] define a measure for
mining Negative Association rules effectively without domain knowledge. Wan
and An [26] describe HI-mine - an efficient algorithm, based on a novel data
structure, called HIstruct. Kazienko [17] proposes IDARM* Algorithm that uses
pre-calculated direct rules for complete IARM. He presents application of the
proposed algorithm for recommendation system for web pages.

There are many applications of IARM in the domain of medical informat-
ics. Tsuruoka et al. [25] present a real-time text mining system FACTA+ for
finding and visualizing indirect associations between biomedical concepts from
MEDLINE abstracts. Another interesting application of IARM in medical infor-
matics is presented by Kang and Wagacha [16]. They investigate ICD–94 disease
diagnosis associations in big collection of Electronic Health Records. Wright et
al. [27] apply IARM for identifying associations between medications, laboratory
results and problems.

3 Materials

Bulgarian National Diabetes Register [3] is automatically generated from a data
repository of about 262 million pseudonymized outpatient records (ORs) sub-
mitted to the Bulgarian National Health Insurance Fund (NHIF) in period 2010–
2016 for more than 5 million citizens yearly. The NHIF collects for reimburse-
ment purpose all ORs produced by General Practitioners and the Specialists
from Ambulatory Care for every patient clinical visit.

ORs are stored in the repository as semi-structured files with predefined
XML-format. Structured information describe the necessary data for health man-
agement like visit date and time; pseudonymized personal data and visit-related
information, demographic data (age, gender, and demographic region), etc. All
diagnoses are presented by ICD–105 codes and the name according to the stan-
dard nomenclature. The most important information concerning patient status
and case history is provided like free text. ORs contain paragraphs of unstruc-
tured text provided as separate XML tags: “Anamnesis” (Disease history), “Sta-
tus” ,“Clinical tests” , and “Prescribed treatment”.

For experiments is used a data collections of ORs from Bulgarian National
Diabetes Register. For all experiments are used raw ORs, without any prepro-
cessing due to the lack of resources and annotated corpora. The text style for
unstructured information is telegraphic. Usually with no punctuation and a lot
of noise (some words are concatenated; there are many typos, syntax errors,
etc.). The Bulgarian ORs contain medical terminology both in Latin and Bul-
garian. Some of the Latin terminology is also used with Cyrillic transcription.
Bulgarian language uses inflections. For some Latin medical terms in addition to
the original Latin and Greek suffixes are used also prefixes and suffixes specific
for Bulgarian language. This makes the task for natural language processing of
the clinical text in Bulgarian quite challenging.
4 http://icd9.chrisendres.com/.
5 http://apps.who.int/classifications/icd10/browse/2016/en#/.
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The ORs are written in telegraphic style with phrases rather than full
sentences. Usually the ORs list attribute-value (A-V ) pairs - anatomical
organ/system and its status/condition. Attribute names contain phrases and
abbreviations in Cyrillic and Latin. Values can be long descriptions in case of
status complications. The order of A-V pairs can vary and parts of the value
descriptions can surround the attributes. It is also possible that some attributes
share the same value. Sample configurations are shown below.

A1V1, ..., AnVn|V1A1, ..., VnAn

V1...VkAVk+1...Vn

A1, A2, ..., AnV |V A1, A2, ..., An.

4 Methods

4.1 Indirect Association Rules Mining

The vocabulary used in all ORs of a data collection S will be called items
V = {v1, v2, ..., vn}. For the collection S we extract the set of all different ORs
R = {r1, r2, ..., rN}, where ri ⊆ V . This set corresponds to transactions; the
associated unique transaction identifiers (tids) will be called pids (patient iden-
tifiers). Each patient interaction with a doctor is viewed as a single OR in R.

Preliminary analysis of N-grams in data collections with AntConc tool6 show
that the majority of the identified N-gram candidates are mainly cliché phrases.
There are only seldom examples(about 15%) for true positive N-grams.

Therefore we treat documents as bags of words rather than sequences; they
are transformed to itemsets with single word occurrences only.

Given a set of pids S, the support of an itemset I is the number of pids in
S that contain I. We denote it as supp(I). We define a threshold called minsup
(minimum support). Frequent itemset (FI) I is one with at least minimum sup-
port count, i.e. supp(I) ≥ minsup. The task of FPM of S is to find all possible
frequent itemsets in S.

The following definition for indirect association rules was proposed by Tan
and Vipin [24]:

Definition 1 (Indirect associated pair). An itempair {X;Y } is indirectly asso-
ciated via a mediator set M if the following conditions hold :
1. sup(X;Y ) < minsup (Itempair Support Condition)
2. There exists a non-empty set M such that ∀Mi ∈ M :
(a) sup(X;Mi) ≥ ts ; sup(Y ;Mi) ≥ ts (Mediator Support Condition).
(b) d(X;Mi) ≥ conf ; d(Y ;Mi) ≥ conf where d(p;Q) is a measure of the depen-
dence between p and Q (Dependence Condition).

Condition (1) is needed because an indirect association is significant only if
there are seldom occurrences of both items in ORs, i.e. negatively correlated.
6 Laurence, A. AntConc (Version 3.4. 4w)(Computer software). Tokyo, Japan:Waseda

University. http://www.laurenceanthony.net/ (2014).
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Condition (2a) is needed to guarantee statistical significance of the mediator
set M. Condition (2b) is needed to guarantee that only items highly dependent
on both X and Y are used to form the mediator set M. Items in M form close
neighborhood.

4.2 Automatic Extraction of Patient Status

The workflow of the proposed method for automatic extraction of patient status
from clinical text is shown on Fig. 1. The processes are grouped in three main
subtasks:

Fig. 1. Workflow

– Preprocessing - converts raw ORs data into itemsets. This subtask starts
with tokenization of “Status” field only of ORs. The texts in “Status” section
is usually short and presented in telegraphic style and without punctuation.
Thus the majority of ORs are considered as single sentence only. The next
step is stemming that is necessary for reducing inflected words. For this step
is used Bulstem [20]. Unfortunately it doesn’t works for part of the medical
terminology which is in Latin but transliterated in Cyrillic. For next step
N-grams identification is used AntConc as we mentioned in the previous sub-
section. Some of the top ranked N-grams are replaced in the text by single
item. After that stop words are identified and removed. ORs contain many
numerical values in the “Status” section, like blood pressure, Body mass
index, height, weight, etc. All numerical values are replaced by symbol NUM.
The punctuation symbols are removed from the text, because they don’t mat-
ter when ORs are processed as bag of words. Finally itemsets are generated
by applying hashing - replacing each item (word/N-gram) by unique ID and
removing duplicates. The itemset is stored in increasing order of the items
ID in order to fasten the data mining process.
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– Data Analytics - applies data mining methods for IARM, FPM and Associa-
tion Rules (ARs) . For experiments are used Java implementations of the algo-
rithms IndirectRules [24], FPMax [9], and FPGrowthARL [13] from SPMF7

(Open-Source Data Mining Library) [8].
– Postprocessing - packs the result data. The first step is to return back the

hashed items in the indirect association rules and frequent itemsets. Present-
ing results for all indirect pairs and the corresponding mediators. Identifica-
tion of attributes and their values.

5 Experiments and Results

The associations of the following types are in primary interest of our task for
patient status extraction (Fig. 2). In Fig. 2b AX and AY are two attributes and
they share mediator set with common values. Such pairs of attributes can be the
Bulgarian and Latin terms used for an anatomical organ system.

Fig. 2. Attribute-Value indirect association rules

Example 1:
AX= qeren drob i slezka (Bulgarian) (liver and spleen)
AY=hepar et lien (Latin) (liver and spleen)
M=b.o. (without complications), ne se palpirat uvliqeni (do not palpate

enlarged)
Although “liver and spleen” describes a pair of attributes they can not be split

further, because there will be violation of the condition (1) of the Definition 1,
both indirectly associated items not to occur frequently together in ORs. There
is a direct association between them and they can be identified as frequent pair.

Another case for such interesting indirect pair is when an abbreviation and
full attribute name are used.

Example 2: For example for Cardiovascular system (CVS) s�rdeqno-
s�dovasistema (SSS):

AX=SSS(CVS )
AY=s�rce (heart), or
AY=cor (Latin)(heart).

7 http://www.philippe-fournier-viger.com/spmf/index.php.
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In Fig. 2a VX and VY are two values and they share mediator set with com-
mon attributes. Usually such values describe general conditions and observations.

Example 3:
VX = dobro(good)
VY = uvredeno(impaired)
M= obwo s�sto�nie (general condition)
Example 4:
VX = ne se palpirat uveliqeni (do not palpate enlarged)
VY = uveliqeni(enlarged)
M=limfni v�zli (lymph nodes) , qeren drob i slezka (liver and spleen)

Table 1. Summary of data parameters and results

S00 (General Practitioners) S05 (Endocrinology)

Patients 10,000 10,000

ORs 123,247 14,753

Sentences 791,420 157,448

Items (vocabulary) 8,408 2,111

Minimal support (minsup) 0.011 0.011

Mediator support (ts) 0.7 0.7

Minimal confidence (conf) 0.7 0.7

Maximal frequent patterns 81 43

Indirect pairs 195 2,670

Association rules 1,236 7,121

The experiments were run on 2 collections of ORs from clinical visits to differ-
ent specialists in Endocrinology (S05), and General Practitioners (S00). Dataset
S00 contain 791,420 sentences (transaction), and S05 - 157,448 sentences. Both
datasets are sparse with huge number of items (vocabulary) (Table 1). Although
the values of minsup are relatively small, there are only few frequent patterns
due to the huge variety of values for each attribute. For most of experiments are
used comparable values for minimal support (minsup = 0.015), mediator support
(ts = 0.7) and minimal confidence (conf = 0.7), i.e. mediator dependency. For
performance evaluation are used values for minsup in the range [0.015, 0.025]
(Fig. 3), and for conf are used values in the range [0.2, 0.9] (Fig. 4).

Even small increase in the minsup value (Fig. 3) causes significant drop down
of the total number of generated indirect association rules (IAR). Similarly
the quantity of generated IAR is exponential decay when minimal confidence
increases (Fig. 4).

For performance evaluation the datasets S00 and S05 are fractioned on
5 equal subsets (Fig. 5). There are presented results for two experiments -
with fixed relative value of minsup, i.e. as percentage of the dataset size.
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Fig. 3. Minimal support vs Total number of indirect association rules for ts = 0.7 and
conf = 0.7 for datasets S00 and S05

Fig. 4. Minimal confidence vs Total number of indirect association rules for ts = 0.7
and minsup = 0.015 for datasets S00 and S05

Fig. 5. S00 dataset size vs Total number of indirect association rules for ts = 0.7,
conf = 0.7 for datasets S00 and S05 with different minsup values - absolute and relative

Increasing the dataset size affects the the absolute value of the threshold an
it also increases. Thus the total number of IAR declines. For the second exper-
iment is used same threshold for generating IAR in all datasets. For smaller
datasets the IAR have not significant support and the cumulative effect can be
obtained for bigger datasets.
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Some examples for extracted indirect pairs from S05 are presented below.

(X= 1 Y= 7 | mediator= 2 )
sup(X,mediator)= 100 sup(Y,mediator)= 68
conf(X,mediator)= 1.0 conf(Y,mediator)= 0.9685

Where the ID 1 = BMI (Body Mass Index ) and 7 = sq - s�rdeqena qestota
((heart) frequency).

The mediator set contains ID 2 = NUM - the symbol by which are replaced all
numerical values in preprocessing subtask. In this example X and Y corresponds
to different attributes and mediator set contains the type of their value.

The next example presents extracted indirect pair from S00, where X and Y
corresponds to different possible values of the attribute presented in the media-
tor set.

(X= 7 Y= 60 | mediator= 9 )
sup(X,mediator)= 101 sup(Y,mediator)= 182
conf(X,mediator)= 0.9439 conf(Y,mediator)= 0.9479

The mediator set contains ID 9 = dixane (breath) and the ID 7 = otslabeno
(weakened) and 60 = ud�l�eno (prolonged).

For method accuracy evaluation are used standard metrics Precision Recall
and F1-measure, where F1 measure is defined as:

F1 = 2 × Precission × Recall

Precission + Recall
.

Experiments are provided by non-exhaustive cross-validation (5 iterations on
sets in ratio 4:1 training to test). For S00 are generated 1180 pairs of variable and
mediator, and 274 pairs of indirect associated concepts. The size of the test set
for S00 is 158,283 sentences. The precision is 0.85, recall is relatively low - 0.33
due to the small number of IAR and huge number of sentences in test set. This
dataset is based on ORs written by General practitioners, thus the diversity of
attribute-values pairs is higher. The overall evaluation for S00 is F1 = 0.49. For
dataset S05 - 74 pairs of variable and mediator were generated, and 344 pairs
of indirect associations. The size of the test set for S05 is 31,520 sentences. The
precision is 0.69, recall is 0.5 - slightly higher than those for S00, but still low.
The overall evaluation for S05 is F1 = 0.59. Better results for S05 are obtained
because it contains ORs written by specialist in Endocrinology, thus the text is
more consistent.

6 Conclusion and Further Work

This paper reports work in progress for patient status extraction from clini-
cal text. The experimental result show that the proposed IARM based method
can be successfully used for this task. All generated indirect association rules
contain attribute-value pairs of anatomical organs/systems and their status.
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Although relatively small number of generated IAR, and low recall, the method
can be combined with direct association rules to improve results. IARM is data-
driven and unsupervised method, i.e. when larger datasets are used for IAR
generation the overall evaluation will be improved. The proposed method finds
relations beyond simple terms only but also helps to identify attribute-value
relations in patient status description.

For more detailed further analyses of the generated IAR can be used “human-
in-the-loop” [15] approach. Patients phenotype will help to identify some specific
status descriptions. This can help to improve the precision. In subclustering task
also can be used “human-in-the-loop” approach to reduce the complexity and
dimensionality of the search space. Some structured information concerning age,
gender and demographic information of the patients can be used in the filtering
process to determine different IAR depending on the patient phenotype. Another
direction for further work is to investigate different measures for polarity between
pairs of items.

In the terminology extraction tasks [14] there are used successfully many
artificial intelligence (AI) approaches: linguistic, statistical, hybrid [19], neural
networks, machine learning [7], etc. The main reason for choosing IARM method
is that in healthcare data processing the most important characteristic of the
used method is the result to be explainable, i.e. so called “Explainable AI” [10].
This will make the decision making process more transparent and will allow
further generalization of the results.
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Abstract. Recent years have seen growing interest in conversational
agents, such as chatbots, which are a very good fit for automated cus-
tomer support because the domain in which they need to operate is
narrow. This interest was in part inspired by recent advances in neu-
ral machine translation, esp. the rise of sequence-to-sequence (seq2seq)
and attention-based models such as the Transformer, which have been
applied to various other tasks and have opened new research directions in
question answering, chatbots, and conversational systems. Still, in many
cases, it might be feasible and even preferable to use simple information
retrieval techniques. Thus, here we compare three different models: (i) a
retrieval model, (ii) a sequence-to-sequence model with attention, and
(iii) Transformer. Our experiments with the Twitter Customer Support
Dataset, which contains over two million posts from customer support
services of twenty major brands, show that the seq2seq model outper-
forms the other two in terms of semantics and word overlap.

Keywords: Customer support · Conversational agents · Chatbots
seq2seq · Transformer · IR

1 Introduction

The rapid proliferation of mobile and portable devices has enabled a number of
new products and services. Yet, it has also laid stress on customer support as
users now also expect 24 × 7 availability of information about their orders, or
answers to basic questions such as ‘Why is my Internet connection dead?’ and
‘What time is the next train from Sofia to Varna?’

Customer support has always been important to companies. Traditionally,
it was offered primarily over the phone, but recently a number of alterna-
tive communication channels have emerged such as e-mail, social networks,
forums/message boards, live chat, self-serve knowledge base, etc. As a result, it
has become increasingly expensive for companies to maintain quality customer
support services over a growing number of channels. First, they must find peo-
ple that have both good language and communication skills. Second, each new
employee must go through several training sessions before being able to operate
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in the target channel, which is inefficient and time-consuming. And finally, it is
difficult to have employees available for customer support 24× 7.

Chatbots are especially fit for the task as they are automatic: fully or par-
tially. Moreover, from a technological viewpoint, they are feasible as the domain
they need to operate in is narrow. As a result, chit-chat is reduced to a mini-
mum, and chatbots serve primarily as question-answering devices. Moreover, it
is possible to train them on real-world chat logs. Here, we experiment with such
logs from customer support on Twitter, and we compare two types of chatbots:
(i) based on information retrieval (IR), and (ii) on neural question answering. We
further explore semantic similarity measures since generic ones such as ROUGE
[8], BLEU [16] and METEOR [2], which come from machine translation or text
summarization, are not well suited for chatbots.

The remainder of this paper is organized as follows: Sect. 2 presents related
work. Section 3 describes the dataset and the preprocessing, and offers insights
about the dialogs. Section 4 focuses on the models. Section 5 describes the exper-
iments, the results, and the evaluation measures. Section 6 discusses the results.
Finally, Sect. 7 concludes, and suggests directions for future work.

2 Related Word

Sequence-to-sequence (seq2seq) models were first introduced in 2014 in the con-
text of machine translation [27]. Since then, they have been successfully applied
in other domains such as text summarization, question-answering, conversational
agents, etc. One of the first examples of a basic seq2seq model for chatbots was
proposed in 2015 by Vinyals et al. [29], who experimented with two datasets:
IT helpdesk tickets and Open Subtitles. They further pointed out to the follow-
ing issues: lack of context modeling for multi-turn dialogs, lack of “personality”
for models trained on different sources, and need for human evaluation of the
generated responses.

Another source of training data have been community Question Answering
forums. In 2015, Lowe et al. [12] introduced the Ubuntu Dialog Corpus, and
experimented with plain RNN vs. LSTM-based neural models, in addition to
retrieval-based approaches. An extension of this study, including several new
encoder-decoder architectures, was published recently [13]. In another related
work, Boyanov et al. [3] explored the utility of neural models on data from
SemEval-2016 task 3 on Community Question Answering [15]. They compared
seq2seq models with retrieval-based ones, performing model selection using ques-
tion answering measures, and studied the ability of the chatbot to answer free-
form questions.

Twitter data is particularly suitable for fitting neural conversational models
because of the length restriction, which encourages people to write short, more
precise tweets. Thus, it was used in a number of studies. Serban et al. [23]
improved seq2seq models using a hierarchical structure. Sordoni et al. [25] worked
on modeling the context. Shang et al. [24] proposed a neural network response
generator for short-text conversation, which was trained with a large number
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of one-round conversations from a micro-blogging service, and could generate
grammatically correct and content-wise appropriate responses.

Some interesting approaches for building customer support chatbots were
shown in [4,18], as a combination of retrieval and neural models. Cui et al. [4]
used information from in-page product descriptions, as well as user-generated
content from e-commerce web sites to improve online shopping experience. Their
approach incorporated four different components (fact database, FAQs, opinion-
oriented answers, and a neural-based chit-chat generator) into a meta-engine
that makes a choice between them. Qiu et al. [18] proposed an open-domain
chatbot engine that integrates results from IR and seq2seq models, and uses an
attentive seq2seq reranker to choose dynamically between their outputs.

3 Dataset

Overall, data and resources that could be used to train a customer support
chatbot are very scarce, as companies keep conversations locked on their own
closet, proprietary support systems. This is due to customer privacy concerns
and to companies not wanting to make public their know-how and the common
issues about their products and services. An extensive 2015 survey on available
dialog corpora by Serban et al. [22] found no good publicly available dataset for
real-world customer support.

Fig. 1. Number of user tweets with replies from customer support per company.
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Earlier this year, this situation has changed as a new open dataset, named Cus-
tomer Support on Twitter, was made available on Kaggle.1 It is a large corpus
of recent tweets and replies, which is designed to support innovation in natural
language understanding and conversational models, and to help study modern
customer support practices and impact. The dataset contains 3M tweets from 20
big companies such as Amazon, Apple, Uber, Delta, and Spotify, among others.
See Fig. 1 for detail.

As customer support topics from different organizations are generally unre-
lated to each other, we focus only on tweets related to Apple support, which
represents the largest number of tweets in the corpus. We filtered all utterances
that redirect the user to another communication channel, e.g., direct messages,
which are not informative for the model and only bring noise. Moreover, since
answers evolve over time, we divided our dataset into a training and a testing
part, keeping earlier posts for training and the latest ones for testing. We further
excluded from the training set all conversations that are older then sixty days.
For evaluation, we used dialogs from the last five days in the dataset, to simu-
late a real-world scenario for customer support. We ended up with a dataset of
49,626 dialog tuples divided in 45,582 for training and 4,044 for testing.

Table 1 shows some statistics about our dataset. In the top of the table, we
can see that the average number of turns per dialog is under three, which means
that most of the dialogs finish after one answer from customer support. The
bottom of the table shows the distribution of words in the user questions vs. the
customer support answers. We can see that answers tend to be slightly longer,
which is natural as replies by customer support must be extensive and helpful.

Table 1. Statistics about our dataset.

1 https://www.kaggle.com/thoughtvector/customer-support-on-twitter.

https://www.kaggle.com/thoughtvector/customer-support-on-twitter
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4 Method

4.1 Preprocessing

Since Twitter has its own specifics of writing in terms of both length2 and
style, standard text tokenization is generally not suitable for tweets. Therefore,
we used a specialized Twitter tokenizer [14] to preprocess the data. Then, we
further cleaned the data by replacing the shorthand entries, e.g., ’ll, ’d, ’re, ’ve,
with the most likely literary form, e.g., will, would, are, have. We also replaced
slang words, e.g., ’bout and ’til, with the standard words, e.g., about and until.
Similarly, we replaced URLs with the special word < url >, all user mentions
with < user >, and all hashtags with < hashtag >.

Moreover, we tried to mitigate the effect of missing context in long conversa-
tions by concatenating all previous turns to the current question. Finally, since
seq2seq models cannot be trained efficiently with a large vocabulary, we chose
the top N words when building the model (see Sect. 5 for detail), and we replaced
the instances of the remaining words with a special symbol < unk >.3

4.2 Information Retrieval

The Information Retrieval (IR) approach can be defined as follows: given a user
question q′ and a list of pairs of previously asked questions and their answers
(Q,A) = {(qj , aj)|j = 1, . . . , n}, find the most similar question qi in the training
dataset that a user has previously asked and return the answer ai that customer
support has given to qi. The similarity between q′ and qi can be calculated in
various ways, but most commonly this is done using the cosine between the
corresponding TF.IDF-weighted vectors.

a′ = arg max(qj ,aj) sim(q′, qj) (1)

4.3 Sequence-to-Sequence

Our encoder uses bidirectional recurrent neural network (RNN) based on long
short-term memory (LSTM) [6]. It encodes the input sequence x = (x1, . . . , xn)
and calculates a forward sequence of hidden states (

−→
h1, . . . ,

−→
hm) and also a back-

ward sequence (
←−
h1, . . . ,

←−
hm). The decoder is a unidirectional LSTM-based RNN,

and it predicts the output sequence y = (y1, . . . , yn). Each yi is predicted using
the recurrent state si, the previous predicted word yi−1, and a context vector ci.
The latter is computed using an attention mechanism as a weighted sum over
the encoder’s output (

−→
hj ,

←−
hj), as proposed by Bahdanau et. al [1].

2 By design, tweets have been strictly limited to 140 characters; this constrain has
been relaxed to 280 characters in 2017.

3 In future work, we plan to try byte-pair encoding instead [21].
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4.4 Transformer

The Transformer model was proposed in 2017 by Vaswani et al. [28], and it has
shown very strong performance for machine translation, e.g., it achieved state-
of-the-art results on WMT2014 data for English-German and English-French
translation. Similarly to the seqseq model, the Transformer has an encoder and
a decoder. The encoder is a stack of identical layers, based on multi-head self-
attention and a simple position-wise fully connected network. The decoder is
similar, but in addition to the two sub-layers in the encoder, it introduces a
third sub-layer, which performs multi-head attention over the encoders’ stack
outputs. The main advantage of the Transformer model is that it can be trained
significantly faster, as compared to recurrent or convolutional networks.

5 Experiments

We performed three experiments using the models described in Sect. 4. Below,
each model is abbreviated by its architecture name from Sect. 5.2.

IR is based on ElasticSearch4 (ES), as it provides out-of-the-box implemen-
tation of all the components we need. We fed the pre-processed training data
into an index with English analyzer enabled, whitespace- and punctuation-based
tokenization, and word 3-grams. For retrieval, we used the default BM25 algo-
rithm [19], which is an improved version of TF.IDF. For all training questions
and for all testing queries, we appended the previous turns in the dialog as
context. Given a user question from the testing set, we returned the customer
support answer for the top-ranked result from ES.

Seq2Seq contains one bi-directional LSTM layer with 512 hidden units per
direction (a total of 1,024). The decoder has two unidirectional layers connected
directly to the bidirectional one in the encoder. The network takes as input
words encoded as 200-dimensional embeddings. It is a combination of pre-trained
GloVe [17] vectors learned from 27B Twitter posts5 for the known words, and
a positional embedding layer, learned as model parameters, for the unknown
words. The embedding layers for the encoder and for the decoder are not shared,
and are learned separately. This separation is due to the fact that the words used
in utterances by customers are very different compared to posts by the support.
In our experiments, we used the top 8,192 words sorted by frequency for both
the embedding and the output. Based on the statistics presented in Sect. 3, we
chose to use 60 words (time-steps) for both the encoder and the decoder. We
avoid overfitting by applying dropout [26] with keep probability of 0.8 after each
recurrent layer. For the optimizer, we used Adam [7] with a base value of 1×10−3

and an exponential decay of 0.99 per epoch.
Transformer is based on two identical layers for the encoder and for the

decoder, with four heads for the self-attention. The dimensionality of the input
and of the output is dmodel = 256, and the inner dimensionality is dinner = 512.

4 https://www.elastic.co/products/elasticsearch.
5 https://nlp.stanford.edu/projects/glove/.

https://www.elastic.co/products/elasticsearch
https://nlp.stanford.edu/projects/glove/
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The input consists of queries with keys of dimension dk = 64 and values of
dimension dv = 64. The input and the output embedding are learned separately
with sinusoidal positional encoding. The dropout is set to 0.9 keep probability.
For the optimization, we use Adam with varying learning rate based on Eq. (2).
The hyper-parameter choice was guided by the experiments described by the
authors in the original Transformer paper [28].

lrate = d−0.5
model · min (step num−0.5, step num · warmup steps−1.5) (2)

5.1 Evaluation Measures

How to evaluate a chatbot is an open research question. As the problem is
related to machine translation (MT) and text summarization (TS), which are
nowadays also addressed using seq2seq models, researchers have been using MT
and TS evaluation measures such as BLEU [16], ROUGE [8], and METEOR [2],
which focus primarily on word overlap and measure the similarity between the
chatbot’s response and the gold customer support answer to the user question.
However, it has been argued [10,11] that such word-overlapping measures are not
very suitable for evaluating chatbots. Thus, we adopt three additional measures,
which are more semantic in nature.6

The embedding average constructs a vector for a piece of text by taking the
average of the word embeddings of its constituent words. Then, the vectors for
the chatbot response and for the gold human one are compared using cosine
similarity.

The greedy matching was introduced in the context of intelligent tutoring
systems [20]. It matches each word in the chatbot output to the most similar
word in the gold human response, where the similarity is measured as the cosine
between the corresponding word embeddings, multiplied by a weighting term,
which we set to 1, as shown in Eq. (3). Since this measure is asymmetric, we
calculate it a second time, with arguments swapped, and then we take the average
as shown in Eq. 4.

greedy(u1, u2) =

∑
v∈u1

weight(v) ∗ maxw∈u2 cos(v, w)
∑

v∈u1
weight(v)

(3)

simGreedy(u1, u2) =
greedy(u1, u2) + greedy(u2, u1)

2
(4)

The vector extrema was proposed by Forgues et al. [5] for dialogue systems.
Instead of averaging the word embeddings of the words in a piece of text, it
takes the coordinate-wise maximum (or minimum), as shown in Eq. (5). Finally,
the resulting vectors for the chatbot output and for the gold human one are
compared using cosine.

extrema(ui) =

{
maxui, if maxui ≥ |minui|
minui, otherwise

(5)

6 Note that we do not use measures trained on the same data as advised by [10].
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5.2 Results

Table 2 shows the results for the three models we compare (IR, seq2seq, and
Transformer) when using word overlap measures such as BLEU@2, which uses
unigrams and bigrams only, and ROUGE-L [9], which uses Longest Common
Subsequence (LCS).

Table 2. Results based on word-overlap measures.

Word overlap measures

BLEU@2 ROUGE-L

IR - BM25 13.73 22.35

Seq2Seq 15.10 26.60

Transformer 12.43 25.33

Table 3 shows the results for the same three systems, but using the above-
described semantic evaluation measures, namely Embedding Average (with
cosine similarity), Greedy Matching, and Vector Extrema (with cosine similar-
ity). For all three measures, we used Google’s pre-trained word2vec embeddings
because they are not learned during training, which helps avoid bias, as has been
suggested in [10,11].

Table 3. Results based on semantic measures.

Semantic evaluation measures

Embedding Average Greedy Matching Vector Extrema

IR - BM25 76.53 29.72 37.99

Seq2Seq 77.11 30.81 40.23

Transformer 75.35 30.08 39.40

6 Discussion

The evaluation results show that Seq2Seq performed best with respect to all five
evaluation measures. For the group of semantic measures, it outperformed the
other systems in terms of Embedding Average by +0.58, in terms of Greedy
Matching by +0.73, and in terms of Vector Extrema by +0.83 (points absolute).
Moreover, SeqSeq was also clearly the best model in terms of word-overlap eval-
uation measures, scoring 15.10 on BLEU@2 (+1.37 ahead of the second), and
26.60 on ROUGE-L (+1.27 compared to the second best system).

The Transformer model was ranked second by three of the evaluation mea-
sures: Greedy Matching, Vector Extrema, and ROUGE-L. This was unexpected
given the state-of-the-art results it achieved for neural machine translation.
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Table 4. Chatbot responses. The first column shows the original question and the gold
customer support answer, while the second column shows responses by our models.
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Higher Greedy Matching and Vector Extrema scores show that the Transformer
was able to capture the semantics of the gold answer. Moreover, lower Embed-
ding Average and BLEU@2 scores suggest that it chose different vocabulary or
used different word order. This is confirmed by lower ROUGE-L, which is based
on longest common subsequence.

Finally, the retrieval (IR) model achieved the second-best results in terms of
BLEU@2 and Embedding Average, but it was the worst according to the other
three evaluation measures. This shows the superiority of the generative neural
models over simple retrieval.

Table 4 shows some example responses generated by the three models. In the
first example (1), the IR model is off and retrieves an answer that addresses a
different customer problem. The Seq2Seq model is on the right track, because
it asks the user about his device. The Transformer suggests a similar utterance,
but it makes an assumption about the phone’s operating system, which was not
stated in the user’s question. In the second example (2), all models propose very
different ways of action to the user, compared to the original answer, and they all
seem plausible in this context; yet, the Transformer is a bit off. The next example
(3) illustrates the ability of the three models to distinguish between different
languages, and point the user in the right direction. The last example (4) is a
typical example when neural models fail. The particular question–answer tuple
is hard to answer as there are very few similar examples in the training data.
Thus, what the neural models generate ends up being off-topic. In contrast, the
retrieval approach was able to overcome this and to propose a very good answer.

7 Conclusion and Future Work

We have presented a study on automating customer support on Twitter using two
types of models: (i) retrieval-based (IR with BM25), and (ii) based on generative
neural networks (seq2seq with attention and Transformer). We evaluated these
models without the need of human judgments, using evaluation measures based
on (i) word-overlap (BLEU@2 and ROUGE-L), and (ii) semantics (Embedding
Average, Greedy Matching, and Vector Extrema). Our experiments have shown
that generative neural models outperform retrieval-based ones, but they struggle
when very few examples for a particular topic are present in the training data.

In future work, we plan to combine the three approaches into an ensemble.
Another interesting direction that we would like to explore is handling questions
whose correct answers evolve over time, e.g., due to service updates or to new
products being released.
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58 M. Hardalov et al.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with
improved correlation with human judgments. In: Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, Ann Arbor, Michigan, pp. 65–72 (2005)

3. Boyanov, M., Nakov, P., Moschitti, A., Da San Martino, G., Koychev, I.: Building
chatbots from forum data: model selection using question answering metrics. In:
Proceedings of the International Conference Recent Advances in Natural Language
Processing, RANLP 2017, Varna, Bulgaria, pp. 121–129 (2017)

4. Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., Zhou, M.: SuperAgent: a customer
service chatbot for e-commerce websites. In: Proceedings of the Association for
Computational Linguistics 2017, System Demonstrations, ACL 2017, Vancouver,
Canada, pp. 97–102 (2017)
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Abstract. Automatic identification of intended tag meanings is a challenge in
large image collections where human authors assign tags inspired by emotional
or professional motivations. Algorithms for automatic tag disambiguation need
“golden” collections of manually created tags to establish baselines for accuracy
assessment. Here we show how to use the MIRFLICKR-25000 collection to
evaluate the performance of our algorithm for tag sense disambiguation which
identifies meanings of image tags based on WordNet or Wikipedia. We present
three different types of observations on the disambiguated tags: (i) accuracy
evaluation, (ii) evaluation of the semantic similarity of the individual tags with
the image category and (iii) the semantic similarity of an image tagset to the
image category, using different word embedding models for the latter two. We
show how word embeddings create a specific baseline so the results can be
compared. The accuracy we achieve is 78.6%.

Keywords: Image tagging � Tag sense disambiguation � Semantic relatedness
WordNet � MIRFLICKR-25000 � Word embeddings

1 Introduction

Nowadays word sense disambiguation (WSD) remains an issue in natural language
processing and computational linguistics. Usually automatic WSD of some word is
performed in texts where the context supports the automatic identification of the
intended meaning. Tag sense disambiguation (TSD) is a similar task, especially for
images and video annotation, but it deals with isolated keyword metadata assigned to
visual or multimedia objects. Systems that annotate images automatically need to be
aware of multiple tag meanings in order to make a decision which keyword to assign;
this is important because awareness about the correct tag senses facilitates the auto-
matic tag translation to other languages, description aggregation etc. In the opposite
direction, given images already annotated by auto-tagging or humans, one can think
about automatic recognition of intended senses when the tags have multiple meanings.
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Then the surrounding context, i.e. the remaining tags, are the only explicit semantic
hints that may help to resolve the ambiguity. However, the large number of possible
context words might also reduce the precision of sense identification, both in terms of
computational effort and outcome quality.

Here the aim is to assess a tag disambiguation approach proposed in [1] using a
publicly available collection with significant size – MIRFLICKR-250001 (previously it
has been evaluated only using relatively small image sets collected by our team).
MIRFLICKR-25000 consists of 25,000 Creative Common images downloaded from
the social photography site Flickr with complete manual annotations [2]. Our TSD
algorithm makes use of WordNet (WN) [3] and employs the synset information for
polysemous tags for all possible senses. In this way the algorithm we proposed works
on an extended tagset including the original image tags coming from MIRFLIKR as
well as the synonyms from all WordNet senses. Due to lack of golden standards for
TSD reference we show how word embeddings can be used to establish a specific
baseline for evaluation of TSD results.

The paper is organized as follows: Sect. 2 considers related work and results
suggesting certain baseline (regardless the lack of direct comparison using the same
datasets). In Sect. 3 we briefly consider the MIRFLICKR-25000 collection and
describe how we build our image tagsets. Section 4 presents the experimental results
and their evaluation. Finally, Sect. 5 presents the conclusion.

2 Related Work

Integrating vision and language is a principal goal of AI since many years but there is
still no considerable progress in this area of research. Ambitious projects approach
language and vision from images to videos. The linguistic resources and image datasets
are crucial for advancing the field. In this context, the TSD task is somewhat specific
and few researchers studied it in the last decade.

The survey [4] considers datasets which enable training/testing and set benchmarks
for performance evaluation. Available datasets are grouped in three categories: (i)
captioned images with one or multiple tags per image; (ii) video datasets aligned with
descriptions and (iii) n-gram language resources paired with scene-level understanding
of an image. These datasets were used in automatic tasks such as image and video
captioning, summarization, visual question answering and conversational robots
grounded in the visual world. The conclusion of [4] is that “it is unclear how different
methods generalize beyond the datasets they are evaluated on, and what data may be
useful for moving the field beyond a single task, towards solving larger AI problems”.

A model using a dictionary and text contexts of web images to disambiguate image
senses is presented in [5, 6]. Latent Dirichlet Allocation (LDA) discovers a latent sense
space and makes the model robust despite the very limited dictionary definitions. The
definition text is used to learn a distribution over the empirical text topics that best
represents the sense. As a final step, a discriminative classifier is trained on the

1 http://press.liacs.nl/mirflickr/.

Evaluation of Automatic Tag Sense Disambiguation 61

http://press.liacs.nl/mirflickr/


re-ranked mixed-sense images that can predict the correct sense for novel images.
Experiments included retrieval of the ground truth sense and classification of unseen
images; evaluation was performed on over 10,000 images consisting of search results
for five polysemous words. In retrieval, the dictionary model improved compared to the
baseline search engine precision by re-ranking the images according to sense proba-
bility. In classification, the method outperformed a baseline algorithm that attempts to
refine the search by generating sense-specific search terms from WordNet entries. The
results averaged over the categories; for 300 training images the accuracy exceeds 77%.

A TSD method working in a social tagging environment is presented in [7]. The
authors exploit the collective intelligence of Web 2.0 in defining the Neighbor tags by
using the tag co-occurrences. They showed that TSD can be applied to the vocabulary
of social tags, thereby clarifying the tag vocabulary through Wikipedia. The precision
is about 80% but the evaluation settings and the test dataset remain unclear.

Sense-tagged keywords-based annotations are built by combining WordNet (a
priori knowledge) and visual knowledge in [8]. On the first stage, a graph-based
technique assigns a bag of keywords to a query image. Then, a WSD algorithm named
Structural Semantic Interconnections is adopted to TSD to determine the sense of each
keyword. The authors used the LabelMe corpus for their experiments. Terms that are
not found in WordNet 3.0 were removed from the annotations. In the final dataset,
some 3,118 classes (32%) of all annotations in LabelMe were aligned to WordNet
synsets, by identifying words including in one or several WordNet synsets. Among
these annotations, 1,735 are polysemous entries in WordNet i.e. 55% of all classes. No
real assessment of accuracy is presented; experimental results are illustrated on one tag
(“mouse”).

The authors of [9] proposed to make feature selection based on the Shapley Value
(SV) − a coalitional game theory related metrics, measuring the importance of a
component within a coalition. By including in the feature set only the words with the
highest Shapley Value, they obtained good quality and performance improvements.
The exponential complexity of the exact SV computation is discussed in [9]. The
effectiveness of this method and sampling results are illustrated by using both a syn-
thetic language corpus and a real linguistic corpus. The evaluation is presented as a
synthesis of the performance comparison in two settings: with feature selection based
on the Shapley Value of the words (top 100 Shapley values) and on the word frequency
(top 100 frequency words). For the first case F1 = 92% is reported, for the second –

F1 = 75%.
A somewhat similar work deals with image captions which in general have length of

one or two sentences [10]. In contrary to tags that are assigned as isolated keywords, the
captions might provide useful contexts for the WSD task. The authors show how visual
features can improve the accuracy of unsupervised WSD when the textual context is
very short. Their previous work in unsupervised text-only disambiguation is extended
with methods that integrate text and images. The corpus is constructed by using Amazon
Mechanical Turk to capture sense tagged images gathered from ImageNet. Using an
Yarowsky-inspired algorithm, they showed that gains can be made over text-only dis-
ambiguation, as well as multimodal approaches such as Latent Dirichlet Allocation. The
assessment is presented for 20 ambiguous tags only. The average accuracy is calculated

62 O. Kanishcheva et al.



across all five sets of data. WSD based only on the text features had accuracy 76% while
WSD based on combined text and visual features achieved 78% accuracy.

Research in TSD is done with different datasets by using different techniques. Due
to this variety we cannot make comparisons and set a baseline. The success rates
reported here seem to be around 80% for somewhat limited amount of tags. One of the
major open problems is that we do not know how to integrate the knowledge about
image content and the senses of the tags to be selected, especially when the keywords
are not included in lexical resources such as WordNet.

New NLP trends, using deep learning, might be promising in TSD as well because
they aim at a large-scale discovery of relations [11] or objects meant by a word [12].

3 Source Tag Set and Construction of Extensions

The collection MIRFLICKR-25000 consists of 25,000 images downloaded from
Flickr.com through its public API with manual annotations mostly in English and
software for similarity search and classification. There are 1,386 tags which occur in at
least 20 images; average number of tags per image is 8.94. Tags are given as: (i) raw
form submitted by the users and (ii) a processed form where the raw tags have been
cleaned by Flickr [2]. “Cleaning” includes removal of capitalization, spaces and var-
ious special characters. In addition to the raw tags, each image is assigned categories
(one or more). Figure 1 shows an image in the categories plant and water as well as its
raw tags and their cleaned form (called tags).

Table 1 shows all general categories and subcategories in the collection. We pro-
cess the ones in bold: Animals, Food, Plant life, People, Sunset. An image can be
assigned several (sub-)categories, e.g. Image-8 in Fig. 1 belongs to plant life and water.

MIRFLICKR-25000 was developed as a dataset primarily oriented to content-based
image retrieval so the annotators chose a particular order of the tags. They were asked
to interpret the content in a wide sense and narrow sense, starting from the most general
topics in the wide sense [2]. Especially in this paper we do not consider the tag order
but in the future we plan to integrate it and define error rankings.

Categories: plant || water

Tags: dew || grass || wet || green || macro || 
small || wee || blade || pointy || 
flickrgolfclub || reflection || light || glassy || 
shiny

Raw tags: DEW || GRASS || WET || GREEN 
|| MACRO || SMALL || WEE || BLADE || 
POINTY || FLICKR GOLF CLUB || 
REFLECTION || LIGHT || GLASSY || SHINY

Fig. 1. Annotation of Image-8 in MIRFLICKR-25000

Evaluation of Automatic Tag Sense Disambiguation 63



We used WordNet [3] to expand the tagsets, thus generating longer context needed
for TSD. WordNet (WN) contains a comprehensive list of word senses with synonyms
and short textual definitions called glosses. Similar senses are manually grouped in
“synsets” structured in a “is-a” hierarchy. Our TSD approach combines knowledge-
based methods (Lesk algorithm and Hyponym Heuristics) and semantic measures [1].
It takes as input the image tags and tag features provided by WordNet – synonyms and
possible senses, glosses and hypernyms. The semantic similarity measure used for
disambiguation employs the WordNet semantic network. The algorithm outputs a
single WordNet sense for each image tag/word included in WordNet, which is the basic
linguistic resource in this case.

4 Experiments and Evaluation

MIRFLICKR-25000 is a rich source of image tags to experiment with, however
without any gold standard for TSD. Therefore, one of the ideas we want to explore
through this study is whether we can incorporate word embeddings (WE) as an
alternative to a gold standard. We demonstrate that by applying the TSD algorithm on
the tags of an image, we can get semantically closer to the category of that particular
image, in means of WEs. The WEs we use are vector representations of the words as
they are introduced by [13]. We employ three different models of WEs, trained on
distinct datasets, and comment the semantic similarity at tag and at image level.

4.1 Input Data

We evaluate this study on the categories Animals, Food, People, Plant life, and Sunset.
These are in total 19,529 images but 3,498 of them have no tags, so we end up with
16,031 input images. Due to assignment of multiple categories we actually work with

Table 1. MIRFLICKR-25000 categories

General topic Subcategories Number of images

sky clouds 7912
water sea/ocean, river, lake 3331
people portrait, boy/man,

girl/woman, baby
18222

night 3380
plant life tree, flower 8763
animals dog, bird 3216
man-built structures architecture, building,

house, city/urban,
bridge, road/street

9992

sunset 2135
indoor 8313
food 990
transport car 2895
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20,926 image-category pairs. In addition, we made experiments at tag level, there are
85,227 tag-category pairs in the above mentioned collection.

4.2 TSD Output

For each tag, included in WordNet as an English word, the TSD algorithm considers
also the Lemma, Synset, Gloss, and Synonyms in WordNet for all possible senses. It
outputs one sense suggested as the most probable intended meaning for the tag [1].
Figure 2 illustrates the output. Image-100 has MIRFLICKR-25000 categories “female,
people, plant life” (categories and subcategories are listed together) and raw tags
“Farmer, Cisauk, rice field, D300, 18-200VR, Nikkor, TeeJe, Serpong, West Java,
Indonesia, platinumphoto, A Big Fave”. Two of these tags are included in WordNet:
“Farmer” and “Indonesia”. Our TSD algorithm suggests that “Farmer” is “a person
who operates a farm”. Now another system may offer machine translation of this tag
into other languages.

4.3 Objective of the Experiments

We performed separate experiments with the features extracted from WordNet -
lemma, synset, gloss, and synonyms. Comparing their embeddings to the image cat-
egory embedding we study how much these semantic features contribute to the
semantic closeness of particular tags to the image category.

As we said above, there is no gold standard built on MIRFLICKR-25000 for TSD
therefore we apply two alternative approaches to measure the success of our algorithm:

• manual evaluation of the tag sense disambiguation in means of accuracy,
• assessment of the contribution of the WordNet features to the semantic closeness of

image tags to the image category. Our assumption is that if the TSD is successful,
then the WEs calculated using the WordNet features (lemmas, glosses, synsets) will
be closer in the vector space to the image category embedding than the embeddings
calculated on tags only. In other words, we compare the semantic relatedness of the

Input: 
Image tags in WN: Farmer, Indonesia 

TSD Output:
Lemmas: farmer, Indonesia 
Synsets: farmer.n.01, indonesia.n.01 
Synonyms: farmer, husbandman, granger, sodbuster,
Indonesia, Republic_of_Indonesia, Dutch_East_Indies
Glosses of suggested senses: “a person who operates a farm”, 
“a republic in southeastern Asia on an archipelago including 
more than 13,000 islands; achieved independence from the 
Netherlands in 1945; the principal oil producer in the Far East 
and Pacific regions”

Fig. 2. Output of the TSD algorithm for Image-100: tags, additional features extracted from
WordNet and suggested senses after TSD
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raw image tags to the image category and the semantic relatedness of the tags
enriched with WordNet features (after TSD) to the image category, with the help of
WEs.

4.4 Word Embeddings Models

We used three alternative WE models, all with 300-dimensional vectors:

Model-1: We started our experiments with pre-trained word and phrase vectors trained
on part of Google News dataset (about 100 billion words). The model2 contains vectors
for 3 million words and phrases [13]. It is rather generic as it was trained on news
corpora, in addition on separate wordforms without lemmatization, and due to these
reasons we looked for other available models integrating linguistic knowledge.

Model-2: Since we are assessing WordNet word senses, a natural choice is to select a
WE model which is trained on the WordNet semantic network. To this purpose, we
follow the methodology outlined in [14]. One of the best performing vector space
models described there is called “WN30+WN30glConOne C15”. We have reused the
same knowledge graph (WN30+WN30glConOne) used to generate the artificial
(pseudo) corpus for training the model as well as the Word2Vec settings. The artificial
corpus consists of 200 million random walks along the graph structure. Next to each
synset ID in the random walks, a randomly chosen lemma from the synset is inserted,
so that the artificial sentences effectively double in size. This Model-2 provides rep-
resentations only for lemmas and only for open-class words (nouns, verbs, adjectives
and adverbs). Therefore, some input words (mostly functional ones) do not have
matching vectors.

Model-3: It is employed to overcome the issue with missing functional words. Model-3
is trained using the same approach as Model-2 [15]; however, knowledge from Wiki-
pedia is also included in an attempt to enlarge the coverage of lemmas and thus include
functional words as well as to add more syntagmatic knowledge. A Wikipedia dump is
lemmatized and concatenated to the pseudo corpus fromWordNet which is used in [14].
This allows the neural network model to explore both types of knowledge, to learn
representations of words excluded from WordNet and to relate them to the synsets. This
model contains embeddings for lemmas, synsets and other words included by the
Wikipedia dump.

4.5 Computation of Embeddings

We explored several settings in calculations of embeddings and made various com-
parisons in order to study how close tag and category embeddings are. To aggregate
information about numerous image tags, we compute the mean vector of separate WEs.
Experiments I, II and III study the behaviour of image-category pairs.

2 https://code.google.com/archive/p/word2vec/.
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Experiment I: Using Model-1 we obtained the following WEs for each image-
category pair:

• the mean vector of the WEs of the raw image tags (MRTE – Mean Raw Tags
Embeddings), this vector characterizes the image tags;

• the mean vector of the WEs (MWE) of the words in the tag’ glosses obtained after
the TSD with stop words removed (MGE – Mean Gloss Embedding), this vector
characterizes the glosses of intended senses for the image tags;

• the MWE of the raw tags and their synonyms obtained after the TSD (MTSE –

Mean Tags and Synonym Embeddings), this vector characterizes disambiguated
image tags enriched with synonyms;

• the word/phrase embedding of the image category (CE – category embedding).

Experiments II and III: Since Model-1 is limited to wordforms only, we employ
Model-2 and Model-3 to extend our experiments towards the usage of lemmas and
make similar calculations, with the exception that in Model-2 there are no embeddings
for synsets because the synset evaluation was done with Model-3 only. We obtain the
following embeddings for each image-category pair:

• the MWE of the raw image tags (MRTE – Mean Raw Tag Embeddings);
• the MWE of the lemmatized raw tags (MLTE – Mean Lemmatized TE);
• the MWE of the lemmatized words in the tag glosses obtained after the TSD with

stop words removed (MLGE – Mean of Lemmatized Gloss Embeddings);
• the MWE of the raw tags and tag synonyms obtained after the TSD, with the

synonyms from WordNet in lemmatized form (MLTSE);
• the MWE of the synsets of the raw tags, only for Model-3 (MSE);
• the word/phrase embedding of the image category (CE).

We found out that the values of MRTE and MLTE differ very rarely. Probably this
is due to the fact that human annotators usually tag by lemmas. Since Model-2 and
Model-3 are trained on lemmatized data, we used MLTE and ignored MRTE.

With Model-3 we calculate the cosine similarity between the embeddings above
(MLTE, MLGE, MLTSE, MSE) and the category embedding (CE) and check whether
MLGE, MLTSE, and MSE are closer to CE in comparison to MLTE. With Model-2 we
do the same excluding MSE, because this model does not contain synset embeddings.

Experiment IV: With Model-3, considered as the most detailed and suitable for our
task, we perform one more experiment on each tag-category pair, by calculating the
following embeddings:

• the tag lemma embedding for each raw image tag (TE);
• the MWE of the lemmatized words of the tag gloss, obtained after the TSD and the

tag lemma, with stop words removed (MLGE1);
• the MWE of the raw tag lemma and tag synonyms in lemmatized form, obtained

after the TSD (MLTSE1);
• the MWE of the raw tag synset and tag lemma (MSE1);
• word/phrase embedding of the category (CE).
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4.6 Results

We report three types of observations. At first we consider the manual accuracy
evaluation of the extracted WordNet senses for raw tags. Then we present findings
about cosine similarity: on the one hand, cosine similarity of raw tagset embeddings to
the category embeddings and, on the other hand, cosine similarity of the embeddings of
the enriched tagset with WordNet features to the category embeddings. Comparisons
are summarized in two settings: at image (tagset) level – Experiments I, II and III,
Tables 4 and 5, and at tag level (using the tag-category pairs) – Experiment IV,
Table 7.

Manual accuracy evaluation. We evaluated the accuracy of the TSD algorithm for
the MIRFLICKR-25000 collection on a randomly selected subset of images from each
category. The algorithm performs with highest accuracy on the category Food – 87%,
followed by Sunset – 86%, Animals – 85%, People – 68%, and Plant life – 67%, with
macro-averaged accuracy of 78.6%. The precision varies strongly, it depends on the
category and the inclusion of tags in WordNet. For instance many images in Plant life
are tagged by botanic terms which are wrongly disambiguated and hence the accuracy
is lower.

Manual error analysis reveals the most common recurring mistake – to assign a
WordNet sense which is a verb. Table 2 presents noun tags which are interpreted as
verbs by the TSD algorithm. Verbs are rarely used as image tags so we plan to improve
our TSD algorithm by introducing lower weights for verb senses. Another problem is
the named entity resolution – names of locations are often erroneously resolved to
personal names, see Table 3. Third often occurring problem is that among the raw
image tags there are camera metadata such as camera model and photograph settings,
and these are get wrongly assigned WordNet meanings.

Embeddings-based assessment of semantic relatedness of tagsets to image cate-
gory. Here we use the embeddings calculated for experiments I, II and III. Tables 4
and 5 present results about images as a whole. Instead of individual tags we evaluate
there the semantic closeness between the original tagset and the image category.
Table 4 (based on Model-1) shows that for 82% of the images, when we compare the
MWE of the glosses (MGE) to the category embeddings (CE), we obtain higher cosine
similarity than when we use the original tagset WEs only (MRTE). When instead of the

Table 2. Samples of wrongly disambiguated noun tags

Noun tag Meaning of the verb proposed by the TSD algorithm

landscape do landscape gardening
mouse manipulate the mouse of a computer
bus send or move around by bus
lipstick apply lipstick to
dress dress in a certain manner
belt fasten with a belt
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gloss embeddings we use the tag synonyms embeddings together with the original tags
(MTSE), we obtain higher similarity only in 50% of the cases. Enriching tags by
glosses provides better evidence for disambiguation.

Table 5 summarizes respective results for Model-2 and Model-3 (which contain
lemmas, glosses and other word embeddings). Here we show similarities calculated by
using lemma embeddings instead of wordform embeddings like in Model-1. We
observe that using the gloss embeddings (MLGE) improves the similarity to the cat-
egory embedding with respect to the lemmatized raw tags embedding (MLTE) in 88%
of the cases when using Model-2, and in 93% of the cases by applying Model-3
(Table 5 column 2). When we compare how much the synonyms help to improve the
semantic similarity to the category in the embedding vector space, we see that this is in
50% of the cases when using Model-2 and in 53% of the cases when using Model-3
(Table 5 column 3). With Model-3, we can also observe the synsets contribution to the
similarity to the image category - and this happens in 75% of the cases. (Table 5
column 4). Again, enriching tags by glosses seems to provide better disambiguation
context.

Embeddings-based assessment of semantic relatedness of single tags to image
category. The example in Table 6 shows more details about calculation of tag
embeddings and their interpretation. It is easier to follow it because a single tag is being
processed. The parameters calculated for Experiment IV are used here. Table 6 con-
tains the tag lemma, an image category and the words in a gloss as well as the

Table 3. Samples of wrongly disambiguated names of locations

Tag location Personal name proposed by the TSD algorithm

Berkeley Irish philosopher and Anglican bishop who opposed the materialism of
Thomas Hobbes (1685–1753)

London US writer of novels based on experiences in the Klondike gold rush (1876–
1916)

Houston US politician and military leader who fought to gain independence for Texas
from Mexico and to make it a part of the US (1793–1863)

Table 4. Improvement of the similarity to the category embedding using Model-1

Model cos(MGE, CE) – cos(MRTE, CE) > 0 cos(MTSE, CE) – cos(MRTE, CE) > 0

Model-1 82% 50%

Table 5. Improvement of the similarity to the category embedding using Model-2 and Model-3

Model cos(MLGE, CE) –
cos(MLTE, CE) > 0

cos(MLTSE, CE) –
cos(MLTE, CE) > 0

cos(MSE, CE) –
cos(MLTE, CE) > 0

Model-2 88% 50% N/A
Model-3 93% 53% 75%
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calculation of MLGE1 – the mean vector embedding of lemmatized words in the tag
gloss, obtained after the TSD with stop words removed and the tag lemma. We see that
the cosine similarity between the raw tag lemma and the category is 0.32. Enriching the
tag with the lemmas of the suggested correct sense gloss, we obtain a semantic vector
which is closer to the category vector (76%). In terms of the experiment objective, as
stated in Sect. 4.3, we conclude that the TSD is successful.

Table 7 summarizes observations how the WordNet features – glosses, synonyms
and synsets obtained after the TSD contribute to the semantic similarity of a given
single raw tag to the image category. By computing the mean the WEs of the gloss
terms of a given tag and the tag itself, we get semantically closer in the embeddings
space to the image category embedding in 98% of the cases (column 2). Similarly, by
taking the MWE of the synonyms of a given tag and the tag itself, we obtain higher
cosine similarity with the category WE again in 98% of the cases. When using the
synset of the tag and the tag itself, we achieve increase in the cosine similarity in 92%
of the cases.

Our interpretation of the figures in Table 7 is that in case of isolated tags, the
synonyms and synsets seem to contribute to the semantic closeness to the image
category as much as the gloss of the correct sense.

At the end of our result report, we can make the conclusion that Model-3 is the
most suitable for our task. It is trained on WordNet and also includes Wikipedia words
and phrases which improves its coverage and carries additional context about the
relationships between lemmas, synsets and other words. We also notice that the glosses
contribute the highest for achieving higher semantic similarity of tags to the image
category. This is true for experiments on single tag level and at image (tagset) level. By
saying so, we consider that the TSD contributes to uncovering the correct sense of the
image tags.

Table 6. Image tag features and calculation of embeddings

Image tag Embeddings with lemmas and gloss without stop words

Raw image tag: bridge
Tag gloss from WordNet,
suggested after TSD:
“something resembling a bridge
in form or function”
Image category: plant_life

cos(WE(bridge), WE(plant life)) = 0.32
cos(MLGE1(“something resembling bridge form
function”, bridge), WE(plant life)) = 0.76
Interpretation: closeness increase from 32% to 76%
Conclusion: TSD is correct

Table 7. Improvement of the similarity to the category embedding using Model-3 at tag level

Model cos(MLGE1, CE) –
cos(TE, CE) > 0

cos(MLTSE1, CE) –
cos(TE, CE) > 0

cos(MSE1, CE) –
cos(TE, CE) > 0

Model-3 98% 98% 92%
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5 Conclusion

We report here about one attempt to interpret the assessment of tag sense disam-
biguation as a task for calculation of semantic similarity among vectors in a 300-
dimensional space of word embeddings. This exercise is inspired by the belief that in
the big data era we need novel scenarios for revealing latent interdependencies among
entities using the relatively imprecise instruments we have at hand. This is the case
with the TSD tool we have produced earlier. Its manual evaluation on MIRFLICKR-
25000 suggests average accuracy of 78.6% which is somewhat insufficient per se. But
combined with calculation of word embeddings it might turns to be a reasonably good
component that resolves ambiguity for tags included in external linguistic resources
like WordNet (alternatively, in the future, another resource providing words, definitions
and senses can be used for disambiguation e.g. Wikipedia). Our results also suggest
that word embeddings seem to be an alternative approach to TSD because they help to
reveal the semantic relatedness of image tags and image categories. The contribution of
our TSD tool is essential too, because it delivers explicit context of synonyms, gloss
and synset for each successfully disambiguated tag. It would be interesting to continue
our experiments with integration of the so-called sense embeddings, a further deep
learning development which helps to distinguish word senses [16].

By improving the approaches for TSD and obtaining high quality synsets for the
image tags, we are actually supporting the machine translation of the large image
collections. A resource of the size of MIRFLICKR-25000 would be of great interest to
many researchers working on image recognition for languages other than English and
steps towards the automatic translation of its annotation are needed.
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Abstract. The current developments in the area report on numerous
applications of recurrent neural networks for Word Sense Disambigua-
tion that allowed the increase of prediction accuracy even in situation
with sparse knowledge due to the available generalization properties.
Since the traditionally used LSTM networks demand enormous compu-
tational power and time to be trained, the aim of the present work is to
investigate the possibility of applying a recently proposed fast trainable
RNN, namely Echo state networks. The preliminary results reported here
demonstrate the applicability of ESN to WSD.

Keywords: Word sense disambiguation · Word embedding
Sense embedding · Echo state network

1 Introduction

Word Sense Disambiguation (WSD) is a very important task for NLP and thus
it enjoys constant interest. Only recently Neural Networks became predominant
approaches in this area. In our paper we report on preliminary experiments from
having applied Echo state networks (ESN) to WSD. Echo state networks are a
member of the reservoir computing family [1] proposed first in [2]. The main aim
was the development of fast trainable recurrent neural networks (RNN) and it
was achieved by generating a random and sparsely connected recurrent reservoir
of neurons and linear readout that can be tunned in one shot (presenting each
training sample only once).

ESN were widely used for modeling of dynamic systems [3]. Applications
of ESN in NLP started recently so there are only few works in this area. In
[4,5] ESNs were applied for semantic role labeling in a multi-modal robotic
architecture with natural language feedback. Other NLP applications are in the
area of speech processing—[6,7], and in the area of language modeling—[8].
To the best of our knowledge, there are not yet examples for applications of
ESNs for WSD since another promising RNN architecture (LSTM) was widely
explored [9]. However, the LSTM networks training has been done by gradient
algorithm (usually backpropagation). It is much slower and demanding more
c© Springer Nature Switzerland AG 2018
G. Agre et al. (Eds.): AIMSA 2018, LNAI 11089, pp. 73–82, 2018.
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computational resources than the training algorithm (one shot least squares)
of ESN. Hence the aim of the present work is to investigate the possibility of
applying the ESN instead of LSTM to the WSD task, and observe whether the
former is a good alternative to the latter.

The experiments we report here use an artificially created corpus (pseudo-
corpus) for training as well as for testing. The motivation for this is that we
could control the size of both corpora and also the coverage over the vocabulary.
For the generation of the pseudo-corpus we used the UKB System.1

The structure of the paper is as follows: the next section discusses the related
work. Section 3 presents the data used in the experiments and the basics of Echo
state networks. In Sect. 4 we describe the Echo state network model for WSD
and the results from our preliminary experiments. The last section concludes the
paper.

2 Related Work

Here we present two of the most popular approaches to WSD – the knowledge-
based one and the supervised one. For more details on different approaches the
interested reader is referred to [10]. The WSD task means assignment of the
correct meaning of a word form within its specific context of use. The most
used source for English in that respect is the Princeton English WordNet – [11].
WordNet represents meaning in terms of synonymic sets (synsets) containing
lexical items that share the same meaning. The meaning is determined by the
relations between the synsets within WordNet. Such relations are hyperonymy,
meronymy, antonymy, etc. Additionally, the meaning is explicated by a gloss
(definition of the meaning) and an example of usages of the lexical items in
the synset. The lexical items are represented by their lemma. The supervised
systems require a reasonable amount of manually annotated data which is very
expensive to be built. As an alternative approach to the manually annotated data
is the automatically constructed one like the one-million-word corpus created for
the training of the IMS system—[12] which uses an SVM algorithm to perform
the disambiguation. Currently the preferred framework for the supervised WSD
systems are the Neural Networks including deep ones—[9]. In our work we also
use the Neural Network approach, but in the special form of Echo state networks
as discussed in the introduction.

Knowledge-based systems for WSD have proven to be a good alternative to
the supervised systems. The knowledge-based systems require only a knowledge
base and no additional corpus-dependent information. An especially popular
knowledge-based disambiguation approach has been the use of popular graph-
based algorithms known under the name of “Random Walk on Graph” [13].
Most approaches exploit variants of the PageRank algorithm [14]. Agirre and
Soroa (2009) [15] apply a variant of the algorithm to the WSD by translating
WordNet into a graph in which the synsets are represented as nodes and the
relations between them are represented as arcs. The resulting graph is called a
1 http://ixa2.si.ehu.es/ukb/.
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knowledge graph in this paper. In our work reported here we exploit the idea
of Random walk on graphs in order to generate the pseudo-corpus used for the
training and testing phases in our experiments.

3 Experimental Set-Up

In this section we present the creation of the pseudo corpus used in our experi-
ments and the basics of the Echo state networks.

3.1 The Creation of the Pseudo Corpus

For the generation of pseudo corpus we exploit the UKB system, which provides
graph-based methods for WSD and for measuring the lexical similarity. In the
experiments reported here we exploit it as a generator of pseudo corpora. Such
pseudo corpora can be the output from the Random Walk algorithm, when
it is set to the mode of selecting sequences of nodes from a knowledge graph
(KG)—see [16] for the generation of pseudo corpora from a WordNet knowledge
graph and [17] for the generation of pseudo corpora from RDF knowledge graphs
such as DBPedia, GeoNames, FreeBase. The UKB system uses a set of random-
walk-on-graph algorithms, described in [15]. The tool can also build a knowledge
graph over a set of relations that can be induced from different types of resources,
such as WordNet or DBPedia. The UKB tool requires two resources. First is a
lexicon in which each record is represented as a lemma and a list of associated
sense identifiers, taken from WordNet in our case:

predicate 06316813-n:0 06316626-n:0 01017222-v:0

After each sense identifier a number following a colon indicates the frequency of
the word sense, calculated on the basis of a tagged corpus. The second resource
represents the relations between the different senses. These relations are used to
form the knowledge graph where the nodes are the sense identifiers and the arcs
are the relations between them. We use the resource files for WordNet version
3.0. The standard lexical relations from WordNet are hypernymy, meronymy, etc.
In addition to the standard relations we use other relations that were extracted
from different sources—[18]. The format of the relations in the KG is as follows:

u:SynSetId01 v:SynSetId02 s:Source d:w

where SynSetId01 is the identifier of the first synset in the relation, SynSetId02
is the identifier of the second synset, Source is the source of the relation, and
w is the weight of the relation in the graph. In the experiments reported in the
paper, the weight of all relations is set to 0. The generation of the pseudo corpus
was done by the system in the following way:

1. An empty sequence is created.
2. A node in the graph is selected randomly.
3. The assigned to the node synset ID is added to the sequence.
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4. A probability for the sequence is calculated.
5. If the probability is less than a threshold, the sequence is printed and made

empty. The execution proceeds with step 2.
6. If the probability surpasses the threshold, then if there are arcs going out

from the current node, one of these arcs is selected randomly and traversed
to the corresponding node. The execution proceeds with step 3.

7. After the construction of N sequences the process stops.

The result from this procedure is called sense pseudo corpus. From a sense
pseudo corpus we generate a lemma pseudo corpus selecting randomly for each
synset a lemma from the synset. In this way we have a corpus of pseudo sen-
tences such that for each lemma the corresponding sense is known. We consider
each sequence in the pseudo corpus a lexical chain corresponding to some real
sentence. Here is an example of such a pseudo sentence:

goldbrick dupery take_in gull dupe person laugh_at

Executing the system several times we produce several pseudo corpora on
which we train lemma and sense embeddings and also train the Echo state net-
work model for WSD. Needless to say, different pseudo corpora are used for the
different tasks.

3.2 Echo State Network Basics

The structure of ESN is shown on Fig. 1. It incorporates a dynamic reservoir of
neurons with randomly generated recurrent connections and linear readout:

out(k) = W out[in(k), R(k)] (1)

Here, in(k) is the vector of network inputs and R(k) the vector of the reservoir
neuron states; W out is a nout × (nin + nR) trainable matrix (here nout, nin and
nR are the sizes of the corresponding vectors out, in and R).

The neurons in the reservoir have a simple sigmoid output function, usually
hyperbolic tangent, that depends on both the ESN input in(k) and the previous
reservoir state R(k − 1):

R(k) = (1 − a)R(k − 1) + a tanh(W inin(k) + W resR(k − 1)) (2)

Here W in and W res are nin × nR and nR × nR matrices that are randomly
generated and are not trainable; the parameter a, called leaking rate, influences
the reservoir short term memory and in many applications was omitted, i.e. a
was set to 1. The only trainable parameters of ESN are the output connection
weights contained in the nout × (nin + nR) dimensional matrix W out.

According to recipes in [2] the reservoir connection matrix W res should be
generated so as to guarantee “echo state property” of the ESN, i.e. the changes
in the input vector must be reflected like “echo” at the output vector (that
means the response effect should vanish gradually with time). This is achieved
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Fig. 1. Echo state network structure.

by proper normalization of the matrix W res so that its spectral radius become
smaller that 1.

The output weights can be tunned by solving the linear regression equation
(least squares approach) in one shot after single presentation of all input/output
training samples or iteratively using its recursive version (RLS) presenting each
training input/output sample one by one [2].

4 Echo State Network for WSD

The input vector of our ESN for WSD was composed by embeddings of a
sequence of words taken from training set of lemmas using a fixed-length (three
words) window omitting the middle word. The ESN was trained to predict the
embedding of the middle word synonyms, thus reflecting its sense. The size of
word embedding vectors was 300. Thus the input vector of our ESN contained
600 elements while the output vector had 300 elements.

For the aim of ESN training and simulation, a software on python was devel-
oped. It includes both LS and RLS tuning algorithms but since the size of the
training dataset was quite big (for the first tests we generated about 9000 exam-
ples for training and testing respectively), we used the recursive version.

Figure 2 represents the changes of the root mean square error (RMSE):

RMSE(k) =
1

nout

√
√
√
√

nout∑

i=1

(outESN (i) − outtraink (i))2 (3)

during RLS training. Each training sample k was presented once and the cor-
responding RMSE was calculated. It was observed that after first 3000 samples
the training error remains almost the same although it continued to decrease
slightly.
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Fig. 2. RMSE during RLS training of ESN.

We trained reservoirs of different sizes (from 100 up to 1200 neurons). The
other parameters of the ESN that were investigated are the leaking rate a and
sparsity (percentage of non-zero elements) of the reservoir weight matrix W res.
Table 1 presents mean values of RMSE for all training/testing data:

RMSE =
1

ndata

ndata∑

k=1

RMSE(k) (4)

for different set of ESN parameters and Table 2 - the variances of the correspond-
ing errors from Table 1.

From Table 1 we conclude that the bigger the reservoir size, the smaller the
achieved training and testing errors. However, for the biggest reservoir size (1200
neurons) the testing error slightly increased in comparison to the other investi-
gated cases.

The differences between the errors are not too big but we observed that
with the increase of the reservoir matrix sparsity (that means more recurrent
connections in the reservoir), the training and testing errors slightly decreased.
The same was the effect of the decreased leaking rate (a = 0.5) that in practice
led to increased duration of the ESN short memory.

From Table 2 we conclude that the variance of the achieved testing and train-
ing errors decreases with the increase of the reservoir size no matter what was
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Table 1. RMSE from training and testing of ESN for WSD having different leaking
rate and reservoir connection matrix sparsity.

nR W ressparsity a RMSEtrain RMSEtest

100 0.2 1 0.001807 0.001981

100 0.8 1 0.001804 0.001979

100 0.5 0.5 0.001794 0.001969

300 0.2 1 0.001751 0.001969

600 0.2 1 0.001685 0.001969

1200 0.2 1 0.001575 0.001996

Table 2. Variances of the training and testing RMSE of ESN for WSD having different
leaking rate and reservoir connection matrix sparsity.

nR W ressparsity a RMSEtrain
var RMSEtest

var

100 0.2 1 4.2466e−9 4.5899e−9

100 0.8 1 3.9920e−9 4.7130e−9

100 0.5 0.5 3.8663e−9 4.5110e−9

300 0.2 1 3.0145e−9 3.7606e−9

600 0.2 1 2.4161e−9 3.1849e−9

1200 0.2 1 1.7818e−9 2.7443e−9

the leaking rate or reservoir connection matrix sparsity. Since all variances are
quite small, we can expect good disambiguation of the predicted word synonyms.

Next we trained an ESN using as input vector the embeddings of all three
words form the window, thus having input vector with size 900 and output vector
again of size 300. The obtained testing and training errors decreased significantly
as it is shown in Tables 3 and 4 even in the case of a smaller reservoir size (100
neurons only).

Table 3. RMSE from training and testing of ESN for WSD using the full window of
three words as input.

nR W ressparsity a RMSEtrain RMSEtest

100 0.5 1 0.001469 0.001679

Next we tested the last ESN model with data generated from 1581 sentences
taken from SemCor (See [19])—16827 testing input/output data pairs. Since the
text contained phrases like “infact”, “incommon” etc. for which there were no
synonym embeddings, we replaced them with zero vectors. The achieved testing
RMSE and its variance were similar to those from previous test data set, namely
RMSEtest = 0.001341 and RMSEtest

var = 1.7852e−9 respectively.
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Table 4. Variances of the training and testing RMSE of ESN for WSD using the full
window of three words as input.

nR W ressparsity a RMSEtrain
var RMSEtest

var

100 0.5 1 0.8383e−9 1.1423e−9

Table 5. Evaluation over 1581 sentences from SemCor.

Baseline ESN

70.68 % 51.75 %

Our ESN model maps the input embeddings for the lemmas to the output
embeddings for the corresponding senses (synsets in WordNet). Of course, during
the test the mapping is not exact. Thus, for the actual task of WSD we need
to interpret the output of ESN as embeddings for the synsets. We have used
the cosine measure for similarity between the gold sense embeddings and the
output vector of our ESN model. In this evaluation we have used the model
trained on complete three grams reported in Tables 3 and 4. We first evaluated
the model over the test set from the pseudo corpus. The precision is 69.41 %. The
results over SemCor are represented in Table 5. The baseline was calculated on
the basis of the most frequent sense in WordNet. The results show that the first
experiments with ESN, despite giving relatively good results with respect to the
RMSE measure, perform very poorly. In order to gain some insights about the
reasons for this, we performed error analysis. The main errors can be classified
into the following two groups:

– a wrong POS (noun instead of verb or vice versa);
– a wrong meaning in words with high polysemy (as to be, man).

The words with good prediction represent:

– more specific lexicalizations (witness, doubt);
– named entities (Atlanta, Georgia; names of the week and months, professions
like attorney, mayor, governor).

We noted that among the 29 examples with the highest dissimilarity (more
than 0.5) there are the abstract verbs, such as: have, state, act, being, as well as
cognitive verbs, such as: concern, matter, refer prevail. From this we conclude
that although ESN demonstrate good performance with respect to RMSE, it do
not capture good estimation on lexical items with a high degree of polysemy.

There, however, also some abstract nouns are spotted, such as: thing, object,
animal, sound, abstraction. Here the wrong POS is not only between a noun and
a verb (matter, concern, act), but also between an adjective and a verb (sound;
live); an adjective and a noun (green, whole).
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5 Conclusion

In the paper we report preliminary results from experiments with Echo state
network for WSD. Although the results over the SemCor are very pessimistic,
we think that some useful insights for future work can be derived. In the first
place, the generation of the pseudo corpus always follows the paths of relations
within WordNet knowledge graph with step one. This was useful for training
word embeddings (see [16,20]). Our initial intuition that the pseudo sentences
represent potential lexical chains in texts failed. The pseudo sentences contain
the lexical items that could be found in a lexical chain, but the word order in
the pseudo sentences reflects the one-step paths of relations in WordNet. Such a
word order is rare in real texts. For that reason, ESN performs well on the test
set extracted from the pseudo corpus, but fails on the test set extracted from
real texts. Another reason is that the three-word context is very small for the
task of WSD. Knowledge-based approaches and LSTM architectures consider
the whole sentence as a context or a window of at least 20 words.

Our plans are to train the model on manually annotated real text data. With
respect to the generation of pseudo corpus more work is necessary in order to
generate pseudo sentences that approximate in a better way the lexical chains
in the texts.

Also we plan to construct a larger model comprising subnetworks with sev-
eral reservoirs for solving several tasks simultaneously including POS tagging,
lemmatization, coreference resolution and WSD. In this way we hope to rule out
some of the errors that follow from the pipeline model.
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Abstract. A wide range of algorithms for computing textual similarity
have been proposed. Much recent work has been aimed at calculating
lexical similarity, but in general such calculations have to be treated
as components in larger algorithms for computing similarity between
sentences.

In the current paper we describe a refinement of the well-known
dynamic-time warping (DTW) algorithm for calculating the string edit
distance between a pair of texts. The refined version of this algorithm
allows for a range of constrained permutations without increasing the
complexity of the underlying algorithm.

Keywords: Text similarity · Alignment

1 Introduction

Spotting that two sentences are similar is useful in a wide range of applica-
tions – news aggregation services, where it is desirable to avoid repeating closely
matched texts obtained from multiple sources, information retrieval tasks, pla-
giarism detection algorithms, . . . Techniques for carrying out this task vary con-
siderably in computational complexity, from simple bag-of-words algorithms,
where the time taken to match a pair of sentences is proportional to the sum of
their lengths, to systems that carry out deep reasoning over formal paraphrases
of the two texts, which can be anywhere from exponential in the lengths of the
texts to semi-decidable (if the translation is to first-order logic) or undecidable
(if the translation is to something more expressive).

In the current paper we propose an extension to the standard ‘weighted
dynamic time warping’ algorithm. The standard algorithm finds the least cost
sequence of string edits (i.e. insertion, deletion or exchange of items) to
turn one string into another. If the cost of exchange is made sensitive to the
similarity of the words being exchanged, as suggested by [8], then this algorithm
can detect sentences that have similar meanings. Consider, for instance, #1 and
#2 (the elided elements of #1 are identical and hence have been deleted to keep
the pairings printable):

c© Springer Nature Switzerland AG 2018
G. Agre et al. (Eds.): AIMSA 2018, LNAI 11089, pp. 83–92, 2018.
https://doi.org/10.1007/978-3-319-99344-7_8
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(1) . . . had argued that he had never personally killed or beaten anyone

. . . had discussed that he had never killed or beaten anyone

(2) the rock icon is said to have cheated death on numerous occasions

the rock singer is said to have cheated death on many occasions

In #1, most of the words are direct matches (indicated by the dotted lines
connecting them to their partners), the words ‘discussed ’ and ‘argued ’ are rea-
sonably similar, though not identical, and the word ‘personally ’ has to be deleted
from the first sentence to make it match the second. In #2 we have two pairs
of non-identical but similar words, ‘icon’/‘singer ’ and ‘numerous’/‘many ’. If we
make the cost of exchanging one for another depend on the ‘similarity’ of the
two words then this technique works reasonably well for calculating the similar-
ity of the two sentences: the similarity of a pair of sentences is their string-edit
distance where the cost of exchange depends on the similarity of the matched
words. Any similarity measure can be plugged into this definition. In the exam-
ples in this paper we are using Wu-Palmer similarity [6] for simplicity, but other
kinds of measure, e.g. one based on word embeddings [3,4], could be used. The
work reported here relates to the use of such measures within the calculation of
the string-edit distance, not to the measures themselves.

The time and space complexity of the standard dynamic time warping algo-
rithm are N2 × sim, where N is the length of the shorter of the two sequences
to be matched and sim is the time taken to compare two words. This bound
can be improved if we assume that the pair of sentences being matched do have
something in common, since it is then possible to concentrate on a ‘corridor’ of
fixed width, in which case the complexity is N ×C × sim, where N is the length
of the shorter sentence and C is the width of the corridor [5]. The standard
algorithm, however, is order-preserving. Given a pair of sentences such as the
ones in #3, it cannot spot that the words have been swapped around:

(3) the raised money will go to the Mount Vernon cancer centre

all the money raised will go to the Mount Vernon cancer centre

The best that the standard algorithm can do is to match one of the swapped
words, ‘money ’ and ‘money ’ in the current example, and delete a copy of the
other from one sentence and insert one into the other.

The standard algorithm attempts to use the set of recurrence relations in
Eq. 4 to find the cheapest set of edit operations for transforming a source
sequence S1 into a target sequence S2 by systematically traversing a grid Ai,j
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whose axes are defined by the elements of the two sequences:

cost(Ai,j) = min

⎧
⎨

⎩

cost(Ai−1,j−1) + exch(S1
i , S

2
j )

cost(Ai−1,j) + insert(S1, i)
cost(Ai,j−1) + delete(S2, j)

⎫
⎬

⎭
(4)

Damerau [2] suggested adding a new edit step, swap, to the standard three.
swap involves exchanging S1

i for S2
i+1 and S1

i+1 for S2
i , where Si

k denotes the kth
word of sentence i. The cost of this operation is the cost of doing each of the
exchanges plus some fixed penalty K for the two words being out of order. This
leads to the set of recurrence relations in Eq. 5:

cost(Ai,j) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cost(Ai−1,j−1) + exch(S1
i , S

2
j )

cost(Ai−1,j) + insert(S1, i)
cost(Ai,j−1) + delete(S2, j)
cost(Ai−2,j−2) + exch(S1

i−1, S
2
j )

cost(Ai−2,j−2) + exch(S1
i , S

2
j−1) + K

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5)

Note that the cost of a swap here is based on the cost of a standard exchange.
Given that we are calculating the cost of exchanges in terms of some measure of
lexical similarity, swaps will also favour cases where both the pairs of words being
swapped are similar. In the case of #3 this leads to the following alignment, at
a lower cost than in #3 since both the exchanges are zero cost so the cost of the
swap is just K:

(6) the raised money will go to the Mount Vernon cancer centre

all the money raised will go to the Mount Vernon cancer centre

Equation 5 contains an extra step, but as with insert, delete and exchange
it is a fixed cost step that is performed once for every element of the array and
hence has no effect on the complexity of the algorithm.

Swaps do not, however, only involve adjacent items. Consider #7:

(7) bhs was sold to arcadia but fell into administration 13 months later

13 months later bhs was sold to arcadia but fell into administration

We propose a further extension to the basic algorithm which makes it possible
to match swapped sequences, rather than simply swapped words, thus enabling
us to deal with cases like #7 as in #7a:

(7a) BHS was sold to Arcadia but fell into administration 13 months later

13 months later BHS was sold to Arcadia but fell into administration
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It is easier to explain the extension to DTW that allows us to cope with [#7a
by looking at it algorithmically than by adapting the recurrence relations above.

The standard DTW algorithm involves making a 2D array, where the axes
are the sequences being compared, and then trying to find the cheapest route
through this array. This can be done backwards: systematically visit each point
and look at the ways you could have arrived at this point, or forwards: sys-
tematically visit each point and look at all the places you could get to from
here. The version employed here runs forwards: a slightly abstracted version
is given in Fig. 1. S1 and S2 are the two sequences, costInsert, costDelete
and costExchange are functions for calculating the cost of inserting or deleting
an item or exchanging two items (these are often taken to be fixed values, but
greater flexibility can be obtained by making them functions).

def dtw(S1, S2):

A = array(S1, S2)

for i in range(len(S1)):

for j in range(len(S2)):

extend(A, S1, S2, i, j)

def extend(A, S1, S2, i, j):

insert = A[i][j]+costInsert(S1[i+1])

if insert < A[i+1][j]:

A[i+1][j] = insert

delete = A[i][j]+costDelete(S2[j+1])

if delete < A[i][j+1]:

A[i][j+1] = delete

exchange = A[i][j]+costExchange(S1[i+1], S2[j+1])

if exchange < A[i+1][j+1]:

A[i+1][j+1]

Fig. 1. Basic DTW algorithm

This algorithm visits every cell in the array A and carries out three fixed cost
operations at each. The time complexity is hence len(S1) × len(S2). The cor-
rectness is proved inductively. Assume that the value at A[i][j] represents the
least cost sequence of inserts, deletes and exchanges that will turn S1[0:i] into
S2[0:j]. After extend(A, S1, S2, i, j) has been carried out, A[i+1][j],
A[i][j+1] and A[i+1][j+1] will contain the lowest costs that can be obtained
by extending this sequence by inserting, deleting or exchanging something. Even-
tually every point in the array will have been explored as the result of an insert,
a delete or an exchange, and it will have a score that reflects which of these was
the cheapest.

It is also useful to keep a backpointer showing where the last step that led
to each point came from. Figure 2 shows a couple of intermediate steps during
the execution of this algorithm for the sequences abcxyz and abyrz, using fixed
costs of 2 for insert and delete and 3 for exchange if the two items are different.
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a:1 b:2 c:3 x:4 y:5 z:6
a:1 0 2 4 6 8 10

b:2 2 0 2 4 6 8

y:3 4 2 3 5 4 6

r:4 6 4 5 6 6 7

z:5 8 6 7 8 9

a:1 b:2 c:3 x:4 y:5 z:6
a:1 0 2 4 6 8 10

b:2 2 0 2 4 6 8

y:3 4 2 3 5 4 6

r:4 6 4 5 6 6 7

z:5 8 6 7 8 8 6

Fig. 2. Stages in aligning abcxyz and abyrz

In the left-hand picture, we have reached the point (5, 4) in the array.
The cheapest sequence of edits to get to here is match(a,a), match(b,b),
delete(c), delete(x), match(y,y), insert(r), at a total cost of 6. We can
get from here to (6, 4), by deleting z, but that would cost 6+2, which is greater
than the cost of the current cheapest route to this point, so we do not do it; to
(6, 5), by matching z and z, at a cost of 6+2. Since we have not visited (6, 5)
at all at this point. this is the best value so far for getting to here, so we will
update the array; and to (5, 5), by inserting z, at a cost of 6+2. Since this is
cheaper than the existing value at (5, 5), we also update the array for this point.

This is all, of course, completely standard. But we now add a new edit oper-
ation to extend. This operation comes in two parts:

1. Find the longest possible sequence S2j , . . . , S2j+k such that

k∑

i=1

costExchange(S1i, S2j+i) ≤ 1

2. Find the standard string edit distance between S1j , . . . , S2j+k and S2i, . . . ,
S2j

Step 1 looks for sequences in S2 that have been right-shifted, step 2 matches
the material in S2 over which they were shifted with the material in S1 that
follows the matched segment.

When this step applies an entry will be made in the array that is some
way away from the cell under inspection. Consider, for instance, the sequences
abcdxypq and abxyzcdpq, where cd has been shifted over xy, which has itself
morphed into xyz. At the point when we have matched the occurrences of a and
b and are considering the places it is possible to get to, we will spot this match
and hence the array will look as in Fig. 3.

The dotted line indicates that the cost of 2 at (6, 7) arises from doing a swap
that started at (2, 2): this cost is obtained by the cost of getting to (2, 2) in
the first place + the cost of aligning the sequences x, y and x, y, z. The final
array for this pair is given in Fig. 4.

The final cost of aligning the two sequences is 2, using a sequence that
includes the exchange of cd|xy and xyz|cd. Note that when we get to (5, 6) and
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a:1 b:2 c:3 d:4 x:5 y:6 p:7 q:8
a:1 0 2 4 6 8 10 12 14

b:2 2 0 2 7 9 11 13 15

x:3 4 2 3

y:4

z:5

c:6

d:7 2

p:8

q:9

Fig. 3. Spotting the swap between cd|xy and xyz|cd

a:1 b:2 c:3 d:4 x:5 y:6 p:7 q:8
a:1 0 2 4 6 8 10 12 14

b:2 2 0 2 4 6 8 10 12

x:3 4 2 3 5 4 6 8 10

y:4 6 4 5 6 6 4 6 8

z:5 8 6 7 8 8 6 7 9

c:6 10 8 6 8 10 8 9 10

d:7 12 10 8 6 8 2 4 6

p:8 14 12 10 8 9 4 2 4

q:9 16 14 12 10 11 6 4 2

Fig. 4. Final alignment of abcdxypq and abxyzcdpq

try the diagonal match of y and d we get a score of 8+3 which is greater than
the score of 2 that we already have, and hence we do not choose this option, and
similarly for inserting d at (5, 7) or deleting y at (6, 6).

2 Textual Similarity

We have applied this extended version of DTW, which we will refer to as XDTW,
to texts collected from different news RSS feeds. We collected material from a
number of RSS feeds 1, matched articles in the various sources by cosine/TF-IDF
similarity, and then matched sentences within the matched articles by the same

1 BBC English //www.bbc.co.uk/news, The Guardian www.theguardian.com/uk,
Independent http://www.independent.co.uk/news/uk/rss, Reuters uk.reuters.com/
news/uk, and Express feeds.feedburner.com/daily-express-uk-.

http://www.bbc.co.uk/news
http://www.theguardian.com/uk
www.independent.co.uk/news/uk/rss
http://uk.reuters.com/news/uk
http://uk.reuters.com/news/uk
http://feeds.feedburner.com/daily-express-uk-
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technique. This gave us numerous potentially matching sentence pairs, which we
then applied the standard and extended DTW algorithms to.

There were a number of striking examples where XDTW produced good
matches which were missed by the standard version. #8–#10 show a number of
such cases:

(8) Rebecca Hilsenrath the EHRC chief executive added we know . . .

the EHRC chief executive Rebecca Hilsenrath added we know . . .

(9) she stopped messaging me last night about 3:00pm Parkin said

Parkin said she stopped messaging me last night about 3:00pm

(10) . . . identified by Newham CCG and the community as key health issue

. . . identified as key health issue by Newham CCG and the community

The swapped material generally consists of modifiers (#8 and #10), but there
are examples, such as #9, where the items that have been swapped are arguments
(‘she stopped messaging me about 3:00pm’ is the complement of ‘said ’).

3 Conclusions

The algorithm described above extends the standard dynamic time warping algo-
rithm so that it can detect chunks of text that have been moved around whole-
sale. As such, it makes it possible to assess textual similarity between sentence
pairs that would not have scored well under the standard DTW algorithm, even
with the extra recurrence relation added in Eq. 4. Two questions remain: how
common are examples like #8 to #10], and what is the complexity of the new
version of the algorithm? If examples like these are very rare, or if the extension
has a catastrophic effect on the complexity, then it may be that while it does
catch some examples the cost/benefit ratio is too poor to make it worthwhile.
How common are examples like #8 to #10? We tested the algorithm on
a subset of the corpus described above. This corpus contained just under 3000
sentence pairs, but these included a substantial number of pairs which were
clearly not related. We therefore found the cosine TF-IDF score at which around
50% appeared to be related, which gave us 299 pairs, and had these annotated
as being mutually entailing or not by a team of annotators (each sentence was
annotated by five annotators to try to ensure that the annotation was robust).

Applying XDTW to these produced twelve examples which scored 0 (i.e. were
regarded as identical), in addition to the four which scored 0 under the standard
DTW by virtue of containing a pair of synonyms, as in #11 and #12:
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(11) around 50 civilians have been trapped in Fallujah which has . . .

about 50 civilians have been trapped in Fallujah which has . . .

(12) concerns have been raised about the participation of UK science . . .

fears have been raised about the participation of UK science . . .

There are, however, also a few examples of sentences in this data where
a block of text has been moved and altered, either by substitution of a near
synonym or by insertion or deletion of a single word:

(6) the raised money will go to the Mount Vernon cancer centre

all the money raised will go to the Mount Vernon cancer centre

(13) Labour MP for Barnsley Central Dan Jarvis said know . . .

Dan Jarvis the Labour MP for Barnsley Central said know . . .

It seems, then, that at least for news articles, which are commonly obtained
from a shared source and then slightly rewritten2, looking for cases where chunks
of text have been shifted does produce a useful improvement in recall without
damaging precision (every case that was found by the extended algorithm was
unanimously marked as an instance of textual equivalence by the annotators).
What is the complexity of XDTW? The new algorithm adds a new step to
the three standard operations that are applied at every cell (i, j) in the array, i.e.
len(S1) × len(S2) times. To analyse the complexity of this step it is convenient
to use S1i and S2j to denote the subsequences of S1 and S2 starting at i and j
respectively, and S1[i:j] to denote the slice of S from i to j. This step has two
stages: (i) look for the maximal sequence in S2j+1 which matches a prefix of S1i.
To do this we initialise a table showing the locations of every word type in S2,
e.g. if S2 were the cat sat on the mat then this table would be {‘on’: [3],
‘the’: [4, 0], ‘sat’: [2], ‘mat’: [5], ‘cat’: [1]}. Then when we are
searching for occurrences of prefixes of S1i in S2j , we know exactly where they
might start. Since the average number of places where a given word from S1
appears in S2 is barely more than 1, the task of finding the longest sequence
S2j+o:j+o+k which matches a prefix S1[i:i+k] of S1i is linear in the length of the
longest such prefix. (ii) when we find such a prefix, we have to align S2[j:j+o]

(the part of S2 that we skipped over when finding the matched segment) with a
portion S1[i+k:???] of S1 starting at i+k. In almost all cases, the difference in the

2 Just like student essays!.
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lengths of S2[j:j+o] and S1[i+k:???] is no more than 1. We therefore only need to
look at, at most, S1[i+k:i+k+o−1]S1[i+k:i+k+o] and S1[i+k:i+k+o+1] Furthermore,
we can safely assume that there is at most one insertion or deletion involved in
aligning these sequence, since the swapped element never turns out to contain
multiple insertions and deletions, which means that we only need to look at very
restricted corridor when doing the alignment. This step therefore also turns out
to be linear in the length of the length of the swapped item. If we insist that the
swapped sections have the same length we can use a corridor of size 0 (i.e. we
just look at the diagonal elements). This improves the speed substantially while
having very little effect on the recall – XDTW 1 in Table 13 requires the swapped
segments to be the same length, XDTW 2 allows their lengths to differ by 2.
‘Close matches’ in this table are cases where a single word has been inserted or
deleted or where two similar4 words have been matched.

Table 1. Timing on news stories (299 sentences, 4960 words)

Time (seconds) Identical matches Close matches

Basic algorithm 0.88 4 26

XDTW 1 1.84 16 27

XDTW 2 4.12 16 28

Both versions of XDTW discovered a useful set of sentences where a word or
phrase has been shifted without change (16/299, i.e. 5% of the entire collection).
They also discovered a small number of cases where a phrase was shifted and
there was one other change (these are in fact #8 and #13 above). XDTW thus
carries out the task that tree-edit distance algorithms [1,7] aim to solve, at a
much lower theoretical cost and indeed at very little extra practical cost over
standard DTW, without requiring the text to be parsed. The key here is that
groups of words that get shifted around intact do generally constitute phrases:
after all, moving a group that is not a phrase will generally lead to gibberish.
XDTW exploits this observation to allow us to spot paraphrases which would
be missed by the standard DTW algorithm, at much lower cost than is incurred
when using tree-edit distance.

3 Timings are average of 10 runs, MacBook Pro 2.8 Ghz processor.
4 according to WUP, which all three algorithms use for calculating the cost of exchang-

ing one word for another.
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Abstract. Dialog act recognition is an important step for dialog systems
since it reveals the intention behind the uttered words. Most approaches
on the task use word-level tokenization. In contrast, this paper explores
the use of character-level tokenization. This is relevant since there is
information at the sub-word level that is related to the function of the
words and, thus, their intention. We also explore the use of different
context windows around each token, which are able to capture impor-
tant elements, such as affixes. Furthermore, we assess the importance of
punctuation and capitalization. We performed experiments on both the
Switchboard Dialog Act Corpus and the DIHANA Corpus. In both cases,
the experiments not only show that character-level tokenization leads to
better performance than the typical word-level approaches, but also that
both approaches are able to capture complementary information. Thus,
the best results are achieved by combining tokenization at both levels.

Keywords: Dialog act recognition · Character-level
Switchboard dialog act corpus · DIHANA corpus · Multilinguality

1 Introduction

Dialog act recognition is important in the context of a dialog system, since it
reveals the intention behind the words uttered by its conversational partners [24].
Knowing that intention allows the system to apply specialized interpretation
strategies, accordingly. Recently, most approaches on dialog act recognition focus
on applying different Deep Neural Network (DNN) architectures to generate seg-
ment representations from word embeddings and combine them with context
information from the surrounding segments [9,11,14,15]. However, all of these
approaches look at the segment at the word level. That is, they consider that a
segment is a sequence of words and that its intention is revealed by the combi-
nation of those words. However, there are also cues for intention at the sub-word
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level. These cues are mostly related to the morphology of words. For instance,
there are cases, such as adverbs of manner and negatives, in which the function,
and hence the intention, of a word is related to its affixes. On the other hand,
there are cases in which considering multiple forms of the same lexeme inde-
pendently does not provide additional information concerning intention and the
lemma suffices. Thus, it is interesting to explore dialog act recognition approaches
that are able to capture this kind of information. In this paper, we explore the
use of character-level tokenization with different context windows surrounding
each token. Although character-level approaches are typically used for word-level
classification tasks, such as Part-of-Speech (POS) tagging [23], they have also
achieved interesting results on short-text classification tasks, such as language
identification [8] and review rating [27]. In addition to the aspects concerning
morphological information, using character-level tokenization allows us to assess
the importance of aspects such as capitalization and punctuation. Additionally,
we assess whether the obtained information can be combined with that obtained
using word-level tokenization to improve the performance on the task. In this
sense, in order to widen the scope of our conclusions, we performed experiments
on two corpora, the Switchboard Dialog Act Corpus [10] and DIHANA [3], which
have different characteristics, including domain, the nature of the participants,
and language – English and Spanish, respectively.

In the remainder of this paper we start by providing an overview of previous
approaches on dialog act recognition, in Sect. 2. Then, in Sect. 3, we discuss why
using character-level tokenization is relevant for the task. Section 4 describes our
experimental setup, including the used datasets, classification approach, and
word-level baselines. The results of our experiments are presented and discussed
in Sect. 5. Finally, Sect. 6 states the most important conclusions of this study
and provides pointers for future work.

2 Related Work

Automatic dialog act recognition is a task that has been widely explored over the
years, using multiple machine learning approaches, from Hidden Markov Models
(HMMs) [25] to Support Vector Machines (SVMs) [6]. The article by Král and
Cerisara [13] provides an interesting overview of most of those approaches on the
task. However, recently, similarly to many other Natural Language Processing
(NLP) tasks [7,16], most approaches on dialog act recognition take advantage
of different DNN architectures.

To our knowledge, the first of those approaches was that by Kalchbrenner
and Blunsom [11]. They used a Convolutional Neural Network (CNN)-based
approach to generate segment representations from randomly initialized 25-
dimensional word embeddings and a Recurrent Neural Network (RNN)-based
discourse model to combine the sequence of segment representations with speaker
information and output the corresponding sequence of dialog acts.

Lee and Dernoncourt [14] compared the performance of a Long Short-Term
Memory (LSTM) unit against that of a CNN to generate segment representations
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from 200-dimensional Global Vectors for Word Representation (GloVe) embed-
dings [21] pre-trained on Twitter data. Those segment representations were then
fed to a 2-layer feed-forward network that combined them with context infor-
mation from the preceding segments. The best results were obtained using the
CNN-based approach combined with information from two preceding segments
in the form of their representation.

Ji et al. [9] used a Discourse Relation Language Model (DRLM) with a
hybrid architecture that combined a Recurrent Neural Network Language Model
(RNNLM) [19] with a latent variable model over shallow discourse structure.
This way, the model can learn vector representations trained discriminatively,
while maintaining a probabilistic representation of the targeted linguistic ele-
ment which, in this context, is the dialog act. In order to function as a classifier,
the model was trained to maximize the conditional probability of a sequence of
dialog acts given a sequence of segments.

The previous studies explored the use of a single recurrent or convolutional
layer. However, the top performing approaches use multiple of those layers. On
the one hand, Khanpour et al. [12] achieved their best results by combining the
outputs of a stack of 10 LSTM units, in order to capture long distance relations
between tokens. On the other hand, Liu et al. [15] combined the outputs of three
parallel CNNs with different context window sizes, in order to capture different
functional patterns. Both studies used Word2Vec [20] embeddings as input to
the network. However, their dimensionality and training data varied.

Additionally, Liu et al. [15] explored the use of context information con-
cerning speaker changes and from the surrounding segments. Concerning the
latter, they used approaches that relied on discourse models, as well as others
that combined the context information directly with the segment representation.
Similarly to our previous study using SVMs [22], they concluded that providing
that information in the form of the classification of the surrounding segments
leads to better results than using their words. Furthermore, both studies have
shown that the first preceding segment is the most important and that the influ-
ence decays with the distance.

3 Character-Level Tokenization

It is interesting to explore character-level tokenization because it allows us to
capture morphological information that is at the sub-word level and, thus, cannot
be directly captured using word-level tokenization. Considering the task at hand,
that information is relevant since it may provide cues for identifying the intention
behind the words. When someone selects a set of words to form a segment that
transmits a certain intention, each of those words is typically selected because
it has a function that contributes to that transmission. In this sense, affixes
are tightly related to word function, especially in fusional languages. Thus, the
presence of certain affixes is a cue for intention, independently of the lemma.
However, there are also cases, such as when affixes are used for subject-verb
agreement, in which the cue for intention is in the lemmas and, thus, considering
multiple forms of the same lexeme does not provide additional information.
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Information concerning lemmas and affixes cannot be captured from single
independent characters. Thus, it is necessary to consider the context surround-
ing each token and look at groups of characters. The size of the context window
plays an important part in what information can be captured. For instance,
English affixes are typically short, but in other languages, such as Spanish, there
are longer commonly used affixes. Furthermore, to capture the lemmas of long
words, and even inter-word relations, wider context window sizes must be con-
sidered. However, using wide context windows impairs the ability to capture
information from short groups of characters, as additional irrelevant characters
are considered. This suggests that, in order to capture all the relevant informa-
tion, multiple context windows should be used.

Using character-level tokenization also allows us to consider punctuation,
which is able to provide both direct and indirect cues for dialog act recognition.
For instance, an interrogation mark provides a direct cue that the intention is
related to knowledge seeking. On the other hand, commas structure the segment,
indirectly contributing to the transmission of an intention.

Additionally, character-level tokenization allows us to consider capitalization
information. However, in the beginning of a segment, capitalization only sig-
nals that beginning and, thus, considering it only introduces entropy. In the
middle of a segment, capitalization is typically only used to distinguish proper
nouns, which are not related to intention. Thus, capitalization information is not
expected to contribute to the task.

Finally, note that previous studies have shown that word-level information
is relevant for the task. In this sense, it is interesting to assess whether that
information can be captured using character-level tokenization or if there are
specific aspects that require specialized approaches.

4 Experimental Setup

In order to assess the validity of the hypotheses proposed in the previous section,
we performed experiments on different corpora and compared the performance
of word- and character-level tokenization. The used datasets, classification app-
roach, and word-level baselines are described below.

4.1 Datasets

In order to widen the scope of the conclusions drawn in the study, we selected
two corpora with different characteristics to perform our experiments on. On
the one hand, the Switchboard Dialog Act Corpus [10], henceforth referred to
as Switchboard, is the most explored corpus for dialog act recognition. It fea-
tures 1,155 manually transcribed human-human dialogs in English, with variable
domain, containing 223,606 segments. The set is partitioned into a training set
of 1,115 conversations, a test set of 19 conversations, and a future use set of
21 conversations [25]. In our experiments, we used the latter as a validation set.
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In terms of dialog act annotations, we used the most used version of its tag set,
which features 42 domain-independent labels.

On the other hand, the DIHANA corpus [3] consists of 900 dialogs in Span-
ish between human speakers and a Wizard of Oz (WoZ) telephonic train infor-
mation system. The total number of annotated segments is 23,542, with 9,712
corresponding to user segments and 13,830 to system segments [2]. The set is
partitioned into five folds to be used for cross-validation [17]. The dialog act
annotations are hierarchically decomposed in three levels [18]. The first level
represents the domain-independent intention of the segment, while the remain-
ing are task-specific. In our experiments we focused on the first level, which has
11 different tags, out of which 5 are common to user and system segments.

4.2 Classification Approach

As a classification approach, we adapted the state-of-the-art word-level app-
roach by Liu et al. [15] to use characters instead of words as tokens. As shown in
Fig. 1, the token embeddings are passed through a set of parallel temporal CNNs
with different context window sizes followed by a max pooling operation. The
results of those operations are then concatenated to form a representation of
the segment. To achieve the state-of-the-art results, additional features concern-
ing context information are appended to that representation before it is passed
through a dimensionality reduction layer. Since our study focuses on the dif-
ference between using character- and word-level tokenization, we only included
that information in a final experiment for comparison with the state-of-the-art.
Finally, the reduced segment representation is passed through a dense layer with
the softmax activation to obtain its classification.

t0

t1

tn-1

tn

... Dense
(Dim. Reduction) 

CNN
(w = 1)

CNN
(w = 2)

CNN
(w = 3)

Max Pooling

Max Pooling

Max Pooling Dense
(Softmax) 

Additional Features

Dialog Act  Label

Fig. 1. The generic architecture of the network used in our experiments. ti corresponds
to the embedding representation of the i-th token. w corresponds to the context window
size of the CNN. The number of parallel CNNs and the respective window sizes vary
between experiments. Those shown in the figure correspond to the ones used by Liu
et al. [15] in their experiments.

In order to assess whether the character- and word-level approaches capture
complementary information, we also performed experiments that combined both
approaches. In that scenario, we used the architecture shown in Fig. 2. In this
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case, two segment representations are generated in parallel, one based on the
characters in the segment and other on its words. Those representations are
then concatenated to form the final representation of the segment. The following
steps do not differ from the architecture with a single branch. That is, context
information can be added to the segment representation before it is passed to
the two dense layers.

c0 c1 cn-1 cn... 

Dense
(Dim. Reduction) 

CNN
(w = 3)

CNN
(w = 7)

Max
Pooling

Max
Pooling

Max
Pooling

Dense
(Softmax) 

Additional Features

Dialog Act  Label

CNN
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w0 w1 wn-1 wn... 

CNN
(w = 1)

CNN
(w = 3)

Max
Pooling

Max
Pooling

Max
Pooling

CNN
(w = 2)

Fig. 2. The architecture of the network that combines the character- and -word-level
approaches. ci corresponds to the embedding representation of the i-th character while
wi corresponds to the embedding representation of the i-th word. The context window
sizes of the CNNs in the character-level branch refer to those that achieved best per-
formance in our experiments. Those on the word-level branch correspond to the ones
used by Liu et al. [15] in their experiments.

We used Keras [5] with the TensorFlow [1] backend to implement the net-
works. The training phase stopped after 10 epochs without improvement on the
validation set. The results presented in the next section refer to the average (μ)
and standard deviation (σ) accuracy values over 10 runs.

4.3 Baselines

In order to assess the performance of the character-level approach, in comparison
to the word-level approach, we defined two baselines. One of them uses randomly
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initialized word embeddings that are adapted during the training phase, while
the other uses fixed pre-trained embeddings. The latter were obtained by apply-
ing Word2Vec [20] on the English Wikipedia1 and the Spanish Billion Word
Corpus [4]. Additionally, we defined a third baseline that replicates the state-of-
the-art approach by Liu et al. [15]. It consists of the baseline with pre-trained
embeddings combined with context information from three preceding segments
in the form of their gold standard annotations and speaker change information
in the form of a flag. Similarly to Liu et al. [15], we used three parallel CNNs
with context window sizes one, two, and three in all the baselines.

5 Results

Starting with the word-level baselines, in Table 1 we can see that, in comparison
to using randomly initialized word embeddings, using fixed pre-trained embed-
dings led to an average accuracy improvement of .64 and .88 percentage points
on the validation (SWBD-V) and test (SWBD-T) sets of the Switchboard cor-
pus, respectively. However, that was not the case on the DIHANA corpus, where
the improvement was negligible. This can be explained by the difference in the
nature of the dialogs between corpora. Since the Switchboard dialogs have a large
variability in terms of style and domain, the performance on the validation and
test sets is impaired when overfitting to the training data occurs. On the other
hand, since most DIHANA dialogs are similar, the cross-validation performance
is not impaired and may actually benefit from it. The improvement provided by
context information is in line with that reported by Liu et al. [15]. Our results on
the Switchboard corpus vary from those reported in their paper mainly because
they did not use the standard validation and test partitions.

Table 1. Accuracy results of the word-level baselines.

SWBD-V SWBD-T DIHANA

μ σ μ σ μ σ

Random .7617 .0019 .7223 .0020 .9196 .0013

Pre-trained .7681 .0032 .7311 .0026 .9198 .0012

Pre-trained + Context .8129 .0030 .7835 .0036 .9826 .0004

Regarding the character-level experiments, in Table 2 we can see that, as
expected, considering each character individually is not the appropriate app-
roach to capture intention. By considering pairs of characters, the performance
improved by over 5 percentage points on both corpora. Widening the window
up to five characters leads to a nearly 3 percentage point improvement on the
Switchboard corpus, but less than 1 percentage point on the DIHANA corpus.
However, it is important to note that while the results are above 90% accuracy
1 https://dumps.wikimedia.org/enwiki/.

https://dumps.wikimedia.org/enwiki/
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on the DIHANA corpus, they are below 80% on the Switchboard corpus. Thus,
improvements are expected to be less noticeable on the first. Using a window of
seven characters still improves the results on the Switchboard corpus, but is not
relevant on the DIHANA corpus. Considering wider windows is harmful on both
corpora. However, note that, similarly to what Liu et al. [15] have shown at the
word level, different context windows are able to capture complementary infor-
mation. Thus, it is beneficial to combine multiple windows. In our experiments,
the best results on both corpora were achieved using three context windows,
which considered groups of three, five, and seven characters, respectively. The
sizes of these windows are relevant, since the shortest window is able to capture
most affixes in English and the small affixes in Spanish, the middle window is
able to capture the larger Spanish affixes and most lemmas in both languages,
and the widest window is able to capture larger words and inter-word informa-
tion. Finally, it is relevant to note that the results on the DIHANA corpus are
already above the word-level baselines.

Table 2. Accuracy results using different token context windows.

SWBD-V SWBD-T DIHANA

Window Size(s) μ σ μ σ μ σ

1 .6542 .0017 .6081 .0023 .8571 .0029

2 .7221 .0047 .6752 .0054 .9154 .0014

3 .7432 .0055 .7000 .0035 .9217 .0010

4 .7456 .0019 .7064 .0049 .9222 .0014

5 .7509 .0052 .7091 .0038 .9228 .0011

7 .7535 .0023 .7086 .0034 .9224 .0013

10 .7510 .0036 .7097 .0035 .9216 .0013

(3, 5, 7) .7608 .0033 .7208 .0042 .9244 .0012

In Sect. 3, we hypothesized that capitalization is not relevant for dialog act
recognition. In Table 3, we can can see that the hypothesis holds for the Switch-
board corpus, as the results obtained when using capitalized segments do not
significantly differ from those obtained using uncapitalized segments. However,
on the DIHANA corpus, using capitalized segments led to an average improve-
ment of 1.81 percentage points. Since this was not expected, we looked for the
source of the improvement. By inspecting the transcriptions, we noticed that,
contrarily to user segments, the system segments do not contain mid-segment
capitalization. Thus, proper nouns, such as city names which are common in the
dialogs, are capitalized differently. Since only 5 of the 11 dialog acts are common
to user and system segments, identifying its source reduces the set of possible
dialog acts for the segment. Thus, the improvement observed when using capi-
talization information is justified by the cues it provides to identify whether it
is a user or system segment.
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Table 3. Accuracy results using different segment preprocessing approaches.

SWBD-V SWBD-T DIHANA

μ σ μ σ μ σ

Capitalized .7604 .0028 .7194 .0026 .9425 .0015

Punctuated .7685 .0021 .7317 .0032 .9371 .0007

Capitalized + Punctuated .7673 .0025 .7314 .0040 .9548 .0004

Lemmatized .7521 .0027 .7140 .0012 .9239 .0006

In Table 3, we can also see that, as expected, punctuation provides relevant
information for the task, improving the performance around 1 percentage point
on both corpora. Using this information, the character-level approach surpasses
the randomly initialized word-level baseline and is in line with the one using
pre-trained word embeddings on the Switchboard corpus. Also expectedly, the
decrease in performance observed when using lemmatized segments proves that
affixes are relevant. However, that decrease is not drastic, which suggests that
most information concerning intention can be transmitted using a simplified
language that does not consider variations of the same lexeme and that those
variations are only relevant for transmitting some specific intentions.

Table 4. Accuracy results using the combination of word and character-level repre-
sentations.

SWBD-V SWBD-T DIHANA

μ σ μ σ μ σ

Char + Word .7800 .0016 .7401 .0035 .9568 .0003

Char + Word + Context .8200 .0027 .7901 .0016 .9910 .0004

Finally, Table 4 shows the results obtained by combining the word and
character-level approaches. We can see that the performance increases on both
corpora, which means that both approaches are able to capture complementary
information. This confirms that information at the sub-word level is relevant for
the task. When using context information, the combination of both approaches
leads to results that surpass the state-of-the-art word-level approach on the
Switchboard corpus by around .7 percentage points and to a nearly perfect score
on the DIHANA corpus. Concerning the latter, it is not fair to compare our
results with those of previous studies, since the only one that focused on Level 1
labels did not rely on textual information [26].

6 Conclusions

We have shown that there is important information for dialog act recognition at
the sub-word level which cannot be captured by word-level approaches. We used
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character-level tokenization together with multiple context windows with differ-
ent sizes in order to capture relevant morphological elements, such as affixes and
lemmas, as well as long words and inter-word information. Furthermore, we have
shown that, as expected, punctuation is important for the task since it is able
to provide both direct and indirect cues regarding intention. On the other hand,
capitalization is irrelevant under normal conditions. Finally, our experiments
revealed that the character- and word-level approaches capture complementary
information and, consequently, their combination leads to improved performance
on the task. In this sense, by combining both approaches with context informa-
tion we achieved state-of-the-art results on the Switchboard corpus and a nearly
perfect score on the DIHANA corpus.

It is important to note that while one of the corpora used in our experiments
features variable-domain human-human interactions in English, the other fea-
tures fixed-domain interactions in Spanish between a WoZ dialog system and its
users. Thus, the importance of information at the sub-word level is not domain-
dependent and it is not limited to a single language.

In terms of morphological typology, although English has a more analytic
structure than Spanish, both are fusional languages. Thus, as future work
it would be interesting to assess whether the conclusions of this study hold
for analytic languages, such as Chinese, and agglutinative languages, such as
Turkish.
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Abstract. Sentence compression produces a shorter sentence by remov-
ing redundant information, preserving the grammaticality and the impor-
tant content. We propose an improvement to current neural deletion
systems. These systems output a binary sequence of labels for an input
sentence: one indicates that the token from the source sentence remains
in the compression, whereas zero indicates that the token should be
removed. Our main improvement is the use of a Conditional Random
Field as final layer, which benefits the decoding of the best global
sequence of labels for a given input. In addition, we also evaluate the
incorporation of syntactic features, which can improve grammaticality.
Finally, this task is extended into a cross-lingual setting where the mod-
els are evaluated on English and Portuguese. The proposed architecture
achieves better than or equal results to the current state-of-the-art sys-
tems, validating that the model benefits from the modification in both
languages.

Keywords: Sentence compression · Deep neural networks
Cross-language Learning

1 Introduction

Sentence compression is a Natural Language Processing (NLP) task that returns
a shorter version of a sentence, maintaining its readability and the most impor-
tant information. Sentence compression systems can be applied, for example, in
news digests, subtitle generation, and automatic summarization systems.

A compression system is often formulated as deletion-based, which indicates
that the output is a sequence of labels, namely zeros and ones, representing
if a token should be deleted or not from the source sentence. This approach
is often called extractive sentence compression and it will be the focus of this
work. These type of systems are mostly used in a monolingual setting because
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each language has its grammatical rules and it may be difficult to generate
readable sentences across languages. Developing a method that performs well
across languages is a challenge. This challenge can be addressed by learning
cross-lingual representations that project different languages into a shared space.

Tree-based methods are often used to sentence compression: a sentence is
parsed by a dependency parser and the process of compression is done by remov-
ing dependency edges from the parse tree. Although this approach often works,
if a sentence is ambiguous and have multiple possible parses, the compression
can lead to grammatical errors. Thus, instead of using the parse tree as output,
the former systems prefer to use it a feature. Another popular approach is to
formulate sentence compression as an Integer Linear Programming (ILP) prob-
lem using dependency trees features as constraints in addition to other linguistic
features to ensure the grammaticality of the output [4]. Recent work focus on
deep neural networks, which, even without any linguist features, generate com-
pressions grammatically correct [7]. The incorporation of syntactic features has
been shown to improve these models [23].

In this paper, the proposed architecture uses a combination of a bi-directional
Long Short-Term Memory (BiLSTM) with a Conditional Random Field (CRF)
as final layer, which finds globally the best label sequence, instead of a softmax
layer used by the current systems [7,23]. In addition, we evaluate the proposed
model in a cross-lingual setting using English and Portuguese. We do not rely
on a parallel corpus to learn the cross-lingual word embeddings. Instead, we fol-
low the work of Conneau et al. [5] that build a synthetic bilingual dictionary
and learns a mapping from a source to a target space to learn the cross-lingual
embeddings. Our models are evaluated on the same sentence pairs used by the
previous work [7,23], achieving similar results or better. In addition, we want to
research the following question: is it relevant to incorporate syntactic features
across models? While models with syntactic features had achieved competitive
results in a monolingual setting, we demonstrate, when evaluating on Portuguese
data, that the model does not benefit from the incorporation of syntactic fea-
tures. However, both languages benefit from the use of a CRF as the last layer.

The structure of the paper is as follows. First, in Sect. 2, we describe the
related work. In Sect. 3, we introduce our proposed method. In Sect. 4, we
describe our experiments and summarize the results, and in Sect. 5, we state
our conclusions and discuss future work.

2 Related Work

Early work on this task relies heavily on syntactic trees. Knight and Marcu [14]
propose two alternative methods: a probabilistic noisy-channel model and a
deterministic decision-based, both using syntactic parse trees. McDonald [16]
presents a discriminative large-margin learning framework, which makes use of
a large set of syntactic features as soft evidence in their model. Clarke and
Lapata [4] formulate sentence compression as an optimization problem and
solve it using ILP. The objective function includes a word importance score
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and a trigram language model score. In order to assure the grammaticality of
the output, some linguistic constraints are included. Filipova and Strube [9]
present an unsupervised approach that relies on a dependency tree. A sentence
is parsed by a dependency parser, which is then transformed in order to guar-
antee grammaticality when pruning. The compression task is formulated as an
ILP problem and the best sub-tree is the one with highest score given by the
objective function. Finally, the words of the compressed sentence are presented
in the same order as the source sentence. Filipova and Altun [8] use previ-
ous work [9] to create a compression corpus of about two hundred thousand
instances of sentence-compression pairs. Moreover, they also improve the com-
pression method by adding structured prediction based on lexical, syntactic, and
other types of features. A joint framework is also proposed by Berg-Kirkpatrick
et al. [3] and Almeida and Martins [2], where they use sentence compression for
multi-document summarization. Their model jointly extracts and compresses
sentences using an ILP approach.

Recent work focus on neural network models. Filipova et al. [7] propose a
deletion-based Long Short-Term Memory (LSTM) model which outputs readable
and informative compressions without any linguistic features. Wang et al. [23]
expand the latter architecture by using a BiLSTM which allows to capture con-
textual information of a sequence in both directions. Moreover, they propose two
alternatives to compress sentences: to incorporate syntactic information in order
to use this model in a cross-domain setting and to introduce syntactic constraints
through ILP making the model more robust across different domains.

Ive and Yvon [12] propose to extend the task to a bilingual context, using two
alternative methods: dynamic programming and ILP. Their goal was to generate
parallel compressions of parallel sentences. Cross-lingual systems need to perform
well across languages which is always a challenge. One way to tackle this problem
is by projecting the word embeddings of each language to a common space.
There are various models for learning cross-lingual representations [21]. The
approach that we follow is the monolingual mapping which consists in training
monolingual word embeddings on a large monolingual corpora and then learn a
linear mapping from a source to a target space. Conneau et al. [5] leverage on
adversarial training to learn this mapping and also contribute with a bilingual
synthetic dictionary that results from the shared embedding space.

Deletion-based sentence compression can be considered a sequence label-
ing problem such as named entity recognition (NER) and part-of-speech (POS)
tagging. State-of-the-art sequence labeling systems leverage on neural networks
architectures. The combination of a BiLSTM with a CRF produced the most
promising results among different architectures [11,15,20] for the above men-
tioned tasks. In this work, we extend the sentence compression task into a
cross-lingual setting without parallel data. Instead of using softmax as final out-
put [7,23] we focus on the same architecture applied in other sequence labeling
tasks which is a combination of a BiLSTM with a CRF classifier as the final
layer.
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3 Sentence Compression

Inspired by the work of Filipova et al. [7], we also consider the task of sentence
compression a deletion-based problem. The output of a system is a sequence
of binary labels which represents if a word is deleted or not from the original
sentence. In addition, we extend our approach for a cross-lingual setting where
we use English and Portuguese datasets to evaluate our model. We propose an
architecture based on a combination of two stacked BiLSTMs followed by a CRF
classifier as the last layer, whereas previous work [7,23] use softmax as the output
layer. The use of a CRF as the output layer has achieved state-of-art results [20]
in other sequence labeling tasks, such as POS and NER [11,15]. Sequence labeling
tasks benefit from the use of BiLSTMs [6], since they process information from
past and future into two hidden states which are concatenated to form the final
output. The use of a CRF as final layer helps to guarantee that the sequence
of labels is globally consistent, jointly decoding the best chain of labels for a
certain input. Consider an input sequence of words as s = (w0, w1, . . . , wn).
Each wi belongs to a vocabulary, wi ∈ V , which contains English and Portuguese
words. Since the output is a shorter or equal length sequence, there are words
in s that may be deleted, thus the compressed sentence is represented by a
sequence of binary labels y = (y0, y1, . . . , yn), where yi ∈ 0, 1 (yi = 0 represents
a token that should be deleted from the original sequence and yi = 1 indicates
that the token remains). We use 80 tokens as the input sequence maximum
length. Each wi is mapped to a 300-dimension pre-trained embedding. We use
fastText embeddings [17]: each word is represented by a sum of representations of
character n-grams, allowing a better representation of misspelled and rare words.

For cross-lingual systems, learning cross-lingual embeddings is essential to
represent different languages in a shared space. In this way, words from dif-
ferent languages but meaning the same are close to each other. We rely on a
bilingual dictionary of Portuguese-English pairs that was released by Conneau
et al. [5], aligning monolingual word embedding spaces in an unsupervised way.
The cross-lingual embeddings are learned using a method that leverages adver-
sarial training to learn a linear mapping from a source to a target space [5].
These embeddings are fed into a BiLSTM, one at a time, processing a sequence
from left to right and in reverse, capturing contextual information from both
directions. The hidden vectors go through a dropout layer to prevent overfit-
ting [22] and are fed into another BiLSTM. The concatenated output of the last
BiLSTM is mapped with a dense layer and then a linear-chain CRF maximizes
the best sequence of labels for each input sequence, as shown in Fig. 1.

On sequence labeling tasks such as POS tagging and NER [11,15], this archi-
tecture has achieved state-of-art results [20]. The incorporation of syntactic
features into neural network models has shown improvements [7,23]. Consid-
ering the set of Universal POS tags illustrated on Table 1, we used the spaCy1

parser [10] to POS tag each input sentence, which has an embedding vector
associated that needs to be learned during training. For each sequence, it is also

1 https://spacy.io/.

https://spacy.io/
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Fig. 1. Architecture of the network.

Table 1. Universal POS tags.

Open-class words Closed-class words Other

ADJ
ADV
INTJ
NOUN
PROPN
VERB

ADP
AUX
CCONJ
DET
NUM
PART
PRON
SCONJ

PUNCT
SYM
X

performed dependency parsing. Each word is replaced by the dependency rela-
tion connecting to its head. During the training, the weights of this embedding
are learned. We also experimented different combinations between these features:
Word + POS embeddings; Word + POS + Dependency relation embeddings;
Word + POS + Parent word + POS parent embeddings; and, Word + POS +
Parent word + POS parent + Dependency relation embeddings.

4 Experimental Evaluation

In this section, we describe the datasets used, and summarize the results.
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4.1 Data

The English dataset was publicly2 released by Filipova and Altun [8]. It con-
tains 200,000 sentence compression pairs for training and 10,000 sentence pairs
for testing. A pre-processing step was applied before using the raw data. Some
sentence pairs were removed from the training set, because there were compres-
sions which contained words that were not in the same order as in the original
sentence. The numbers were replaced by a special NUMB token and a word
embedding is assigned to it. In addition, tokens not found in the vocabulary of
the pre-trained embeddings are replaced by an UNK token.

The Portuguese dataset was publicly3 released by Almeida et al. [1]. This cor-
pus contains 801 documents split in 80 topics. Each topic has two human-made
summaries of about 100 words which were built performing only sentence and
word deletion. Although created for multi-document summarization, following
some ideas of Nóbrega and Pardo [19] is possible to transform it for the sentence
compression task. Considering that each human-made summary is a document
composed by several sentences, each sentence is compressed using word deletion
from the source documents. In order to create sentence compression pairs some
heuristics were followed: a compressed sentence must be smaller or equal length
in respect to the original sentence; the compression must be a sub-sequence of
words from the source sentence; the words present in the compression sentence
must be in the same order. After applying these rules, a new sentence compres-
sion dataset was created with 799 sentence compression pairs.

4.2 Automatic Evaluation

The system was evaluated by taking the first 1,000 sentences pairs from the
English test set, following the same practise as Filipova et al. [7] and Wang
et al. [23]. We compare our approaches with the current neural deletion-based
baselines that were evaluated on the same data set:

– LSTM: This is the basic model of Filipova et al. [7] using a sequence to
sequence paradigm. In short, the architecture of the network is based on
three stacked LSTM layers with a softmax output layer;

– LSTM+: Filipova et al. [7] propose a version of their model which uses the
same architecture but the input concatenates the current word embedding,
parent word embedding of the current word in the dependency tree, and three
bits indicating if the parent word has been seen in the compression;

– BiLSTM: In this setting, Wang et al. [23] use as base model an architecture
of three-layered BiLSTM with a softmax as the last input layer;

– BiLSTM+SynFeat: Wang et al. [23] also propose an advanced version where
they incorporate syntactic features into their model. In the input layer, they
combine word, POS, and dependency embeddings into a single vector.

2 https://github.com/google-research-datasets/sentence-compression.
3 http://labs.priberam.pt/Resources/PCSC.aspx.

https://github.com/google-research-datasets/sentence-compression
http://labs.priberam.pt/Resources/PCSC.aspx
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We consider four metrics for automatic evaluation: per-sentence accuracy,
word-based F1-score, compression rate, and accuracy. The first represents the
percentage of compressions that were fully reproduced; the second computes the
recall and precision in terms of tokens kept in the reference and the generated
compression; compression rate is the number of characters in the compression
divided by the number of characters in the original sentence; finally, accuracy is
defined as the percentage of total tokens correct in the compression.

The word embeddings used were the 300-dimension fastText pre-trained
embeddings [18]. The POS and dependency embeddings have a 10-dimensional
and a 40-dimensional vector, respectively, and their weights are updated dur-
ing training. The main architecture has two stacked BiLSTM interleaved with a
dropout [22] layer whose value is 0.2. We defined the value 80 as maximum for
an input sequence.

The model was trained, with early stopping, using Adam [13] as optimizer,
with a learning rate initialized as 0.001, and a batch size of 32. The dimension of
the hidden-layers of BiLSTM is 200. The majority of the parameters above were
selected based on the work of Reimers and Gurevych [20], which describes the
best parameters to achieve a good performance on sequence labeling tasks. Before
evaluating the previous model on Portuguese, due to the small data set it was
re-trained using a strategy of 5-fold cross validation with the same architecture
and parameters.

The architecture of the model LSTM+Softmax consists in two stacked LSTM
with a softmax classifier as the last layer. For the next model, BiLSTM+Softmax,
we just replaced the LSTM with a BiLSTM keeping the same structure. BiL-
STM+CRF model uses a combination of a BiLSTM with a CRF classifier as
the last layer. The previous models use only word embeddings as input. The
set of features that achieved the best results was composed by word, POS, and
dependency relation embeddings, which resulted in the following model: BiL-
STM+CRF+SynFeat. The results of the automatic evaluation on the Google
News dataset are reported in Table 2.

Table 2. Automatic evaluation of the systems on the Google News data set.

Word
F1

Per-sentence
accuracy

Accuracy Compression
ratio

LSTM [7] 0.8 0.3 - 0.39

LSTM+PAR+PRES [7] 0.82 0.34 - 0.38

BiLSTM [23] 0.75 - 0.76 0.43

BiLSTM+SynFeat [23] 0.8 - 0.82 0.43

LSTM+Softmax 0.79 0.16 0.83 0.41

BiLSTM+Softmax 0.83 0.25 0.86 0.39

BiLSTM+CRF 0.83 0.29 0.86 0.40

BiLSTM+CRF+SynFeat 0.84 0.31 0.87 0.41
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The previous models were also evaluated on the Portuguese dataset, which
contains 799 sentence compression pairs. Due to the size of the data, the re-
training of the model in this language uses a 5-fold cross validation. The Por-
tuguese and English embeddings were projected into a shared space, making
it possible to use in Portuguese the previously trained models on the English
dataset. The results are reported in Table 3.

Table 3. Automatic evaluation of the models on the Portuguese dataset.

Word
F1

Per-sentence
accuracy

Accuracy Compression
ratio

BiLSTM+Softmax 0.73 0.07 0.73 0.57

BiLSTM+CRF 0.75 0.19 0.74 0.57

BiLSTM+CRF+SynFeat 0.7 0.11 0.7 0.57

4.3 Discussion

When evaluating the proposed architecture, BiLSTM+CRF, on English, even
the model with no syntactic features outperforms the current neural deletion
sentence compression systems in terms of word-based F1 score and accuracy.
Although the incorporation of syntactic features could lead to a better per-
formance of the model by capturing grammatical relations, the results are not
markedly better. Some compressions predicted by our model can be seen at
Table 4.

Even though the majority of compressions seems to be grammatically correct,
there are some examples in which the model decides to remove all the words from
the source sentence. This might happen because there is not any constraint to
ensure a minimum size. Although the word-based F1 score is better, the per-
sentence accuracy metric was not better or equal: we think this is due to the size
of the training dataset. While Filipova et al. [7] trained with about 2,000,000
sentence compression pairs, the training of our models were made with 200,000
instances, leading to an inferior result on this metric.

Since the Portuguese dataset was developed in this work, there are not pre-
vious models to which we can compare our results. However, it is possible to
verify that the models with a CRF layers benefit when fully reproducing the
compressions on the test set. It is interesting to verify that the model which per-
forms better is the one without any syntactic features. Although previous work
reports, in most cases, better performances using syntactic features, here we can
verify that across models there is no benefit in adding these type of features.
One of the reasons could be the size of training data, which did not allow the
model to capture some important grammatical rules when compressing.

The results achieved demonstrated that this task benefits from the use of the
CRF classifier as the last layer. The ability to decode the best global sequence
of labels taking into account the correlations between labels allows to output a
better compression on both languages.



112 F. Rodrigues et al.

Table 4. Sentences and compressions from the English data set. S: Input. G: Ground
truth. P: Compressed sentences predicted by BiLSTM+CRF+SynFeat model.

S: In response to a question from NDP Treasury Board critic, Mathieu Ravignat
on Tuesday, Clement told the House of Commons Tuesday that contracting out
government services reduces costs

G: Clement told the House of Commons Tuesday that contracting out government
services reduces costs
P: Contracting out government services reduces costs

S: Floyd Mayweather is open to fighting Amir Khan in the future, despite snubbing
the Bolton-born boxer in favour of a May bout with Argentine Marcos Maidana,
according to promoters Golden Boy.

G: Floyd Mayweather is open to fighting Amir Khan in the future

P: Floyd Mayweather is open to fighting Amir Khan

S: Studies and surveys have found that men and women dream differently

G: Men and women dream
P: Men and women dream differently

S: Interethnic relations are not a field for political games, Kazakhstan’s President
Nursultan Nazarbayev declared in his speech at the Assembly of People of Kaza-
khstan, Tengrinews reports

G: Interethnic relations are not a field for political games

P: Interethnic relations are not a field for political games

5 Conclusions and Future Work

We propose a different neural architecture for sentence compression and evaluate
it in a cross-lingual setting. We show that the current neural deletion sentence
compression systems benefit from the use a CRF classifier. The proposed archi-
tecture achieves better or close results when compared to the current neural
deletion approaches. Although the incorporation of syntactic features improved
the architecture, the results are not significant better than the base model with
only word embeddings. Across languages, the proposed architecture also shows
a better performance than baseline models. However, it is interesting to verify
that the inclusion of syntactic features has a negative impact on the Portuguese
results. This could be due to the size of the dataset which did not enable the
model to learn enough syntactic information.

In the future, it would be interesting to modify the method proposed by
Filipova and Altun [8] to build a larger corpus of sentence compression pairs
in Portuguese. Furthermore, the use of a larger corpus for the English language
may increase the performance of the per-sentence accuracy metric, generating
more readable and comprehensible compressions. One way to improve the pre-
diction of the neural compression system, and avoid the problem of sentences
with all the words removed, would be the use of an auxiliary loss function which
would take into account the size of each sentence. This function could help the
grammaticality of a compression.



Neural Methods for Cross-Lingual Sentence Compression 113

References

1. Almeida, M., Almeida, M.S., Martins, A., Figueira, H., Mendes, P., Pinto, C.:
Priberam compressive summarization corpus: a new multi-document summariza-
tion corpus for European Portuguese. In: Proceedings of the 9th International
Conference on Language Resources and Evaluation, pp. 146–152 (2014)

2. Almeida, M., Martins, A.: Fast and robust compressive summarization with dual
decomposition and multi-task learning. In: Proceedings of the 51st Annual Meeting
of the ACL, pp. 196–206 (2013)

3. Berg-Kirkpatrick, T., Gillick, D., Klein, D.: Jointly learning to extract and com-
press. In: Proceedings of the 49th Annual Meeting of the ACL, pp. 481–490 (2011)

4. Clarke, J., Lapata, M.: Global inference for sentence compression: an integer linear
programming approach. J. Artif. Intell. Res. 31, 399–429 (2008)

5. Conneau, A., Lample, G., Ranzato, M., Denoyer, L., Jégou, H.: Word translation
without parallel data. arXiv:1710.04087 (2017)

6. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based
dependency parsing with stack long short-term memory. In: Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics (2015)

7. Filippova, K., Alfonseca, E., Colmenares, C.A., Kaiser, L., Vinyals, O.: Sentence
compression by deletion with LSTMs. In: Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing (2015)

8. Filippova, K., Altun, Y.: Overcoming the lack of parallel data in sentence com-
pression. In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1481–1491 (2013)

9. Filippova, K., Strube, M.: Dependency tree based sentence compression. In: Pro-
ceedings of the Fifth International Natural Language Generation Conference, pp.
25–32. Association for Computational Linguistics (2008)

10. Honnibal, M., Johnson, M.: An improved non-monotonic transition system for
dependency parsing. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 1373–1378. Association for Computational
Linguistics (2015)

11. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
arXiv:1508.01991 (2015)

12. Ive, J., Yvon, F.: Parallel sentence compression. In: Proceedings of COLING 2016:
Technical Papers, pp. 1503–1513 (2016)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of the International Conference on Learning Representations (2015)

14. Knight, K., Marcu, D.: Statistics-based summarization - step one: sentence com-
pression. In: Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pp. 703–710. Association for the Advancement of Artificial Intelligence Press (2000)

15. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-
CRF. In: Proceedings of the 54th Annual Meeting of the ACL, pp. 1064–1074
(2016)

16. McDonald, R.: Discriminative sentence compression with soft syntactic evidence.
In: 11th Conference of the European Chapter of the ACL (2006)

17. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. arXiv:1712.09405 (2017)

18. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: Proceedings of the International Con-
ference on Language Resources and Evaluation (LREC 2018) (2018)

http://arxiv.org/abs/1710.04087
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1712.09405


114 F. Rodrigues et al.
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Abstract. We present the construction of an annotated corpus of PubMed
abstracts reporting about positive, negative or neutral effects of treatments or
substances. Our ultimate goal is to annotate one sentence (rationale) for each
abstract and to use this resource as a training set for text classification of effects
discussed in PubMed abstracts. Currently, the corpus consists of 750 abstracts.
We describe the automatic processing that supports the corpus construction, the
manual annotation activities and some features of the medical language in the
abstracts selected for the annotated corpus. It turns out that recognizing the
terminology and the abbreviations is key for determining the rationale sentence.
The corpus will be applied to improve our classifier, which currently has
accuracy of 78.80% achieved with normalization of the abstract terms based on
UMLS concepts from specific semantic groups and an SVM with a linear kernel.
Finally, we discuss some other possible applications of this corpus.

Keywords: Annotated rationales � Corpus construction
Automatic discovery of effects � PubMed abstracts
Terminology identification � Text classification

1 Introduction

PubMed is a large-scale database consisting of more than 28 million references and
abstracts of biomedical publications. Using it as a knowledge discovery resource is
tempting but challenging due to the highly specialized biomedical language with rich
terminology and numerous abbreviations. Yet, PubMed abstracts are freely available,
which is in contrast to other narratives in medical AI, e.g., clinical notes, which are
inaccessible according to privacy regulations and requirements for in-domain knowl-
edge. Other attractive features of PubMed as a text corpus include the fact that
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biomedical publications are written with grammatically correct sentences and more or
less have a predefined discourse structure. This facilitates the application of Natural
Language Processing (NLP) tools and supports various research tasks that rely on
automatic identification of terminology and its patters of use.

Nowadays, text mining of PubMed abstracts is often the first step in the creation of
annotated corpora as language resources supporting further information extraction
tasks. Ambitious projects such as the development of databases with structured
biomedical data and discovery of valuable associations between concepts depend on
the correct automatic identification of the key semantic “carriers”: terms, which also
need normalization, values of essential attributes, and sentences that summarize the
findings and the conclusions. The relevant literature shows that annotated corpora are
usually prepared using a combination of automatic text processing and manual anno-
tation and refinement.

In our task, we develop a manually annotated corpus in order to improve text
classification. We want to identify one most important key sentence in every PubMed
abstract that reports about negative, positive or neutral effects of some potential catalyst
X on some medical condition Y. During the annotation process, we try to identify
patterns about how these effects are verbalized in the texts and what the relation
between the terms and abbreviations in the title and the rationale sentence is. Obvi-
ously, developing a large-scale corpus of this type is too expensive, slow and almost
impossible, and thus we attempt to address this bottleneck primarily by pre-selecting
PubMed abstracts that contain explicitly the key phrases negative effect, positive effect
or no effect in their titles. In this way, we incorporate the authors’ judgment about the
abstract content and continue with the manual annotation of rationale sentences.

This paper is structured as follows. Section 2 lists some related work on corpus
construction and text classification using PubMed abstracts; only few articles are
mentioned among the numerous research papers dealing with PubMed texts. Section 3
explains specific aspects in the development of our manually annotated corpus using
automatically selected, structured abstracts; various linguistic modalities encountered
in these texts are considered as well as frequent patterns for the verbalization of
negative, positive and neutral effects. Section 4 presents the application scenarios we
intend to explore. Section 5 contains the conclusion and outlines plans for future work.

2 Related Work

We consider some research work dealing with corpus development. Information
extraction was used on a corpus of PubMed abstracts to automatically identify and
categorize biologically relevant entities and predicative relations by Zaremba et al. [1].
The relations include the following: Genes; Gene Products and their Roles; Gene
Mutations and the resulting Phenotypes; and Organisms and their associated
Pathogenicity. A total of 465 abstracts were collected and randomly split into a training
set (327 abstracts) and a test set (138 abstracts). The training set was used for developing
a lexicon and extraction rules. Specific annotation guidelines for entities and relations
were elaborated by two molecular biologists and a computational linguist. Manual
mark-up was performed by one biologist and reviewed by the other. Evaluations have
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shown very good accuracy, esp. given the relatively small training set: F-measure higher
than 90% for entities (genes, operons, etc.) and over 70% for relations (gene/gene
product to role, etc.).

Doğan et al. [2] present the disease corpus developed in the US National Center for
Biotechnology Information (NCBI), which contains disease name and concept anno-
tations in a collection of 793 PubMed abstracts. Each abstract was manually annotated
by two annotators with disease mentions and their corresponding concepts in the
medical vocabulary MeSH and the online catalog OMIM. Much attention was paid to
achieving high inter-annotator agreement. The public release of this corpus contains
6,892 disease mentions mapped to 790 unique disease concepts. The corpus was used
as a means for improving the recognition of disease names in real texts (so-called
disease normalization, which is as a very difficult task). Using the corpus, three dif-
ferent disease normalization methods were compared, achieving an F-measure of
63.7%. The authors concluded that “these results show that the NCBI disease corpus
has the potential to significantly improve the state-of-the-art in disease name recog-
nition … by providing a high-quality gold standard thus enabling the development of
machine-learning based approaches for such tasks”.

Another dataset is PubMed 200k RCT, which contains about 200,000 abstracts of
randomized controlled trials (RCT), and a total of 2.3 million sentences [3]. Each
sentence is labelled with its role in the corresponding abstract: background, objective,
method, result, or conclusion. Only PubMed articles with MeSH index D016449,
corresponding to RCTs, were included in the dataset. In addition, these abstracts were
explicitly structured into 3–9 sections and contained no sections labelled “None”,
“Unassigned”, or “empty”. When the labels of each section were originally given by
the abstracts’ authors, PubMed mapped them into a smaller set of standardized labels:
“background”, “objective”, “methods”, “results”, “conclusions”, “None”, “Unas-
signed”, or “” (an empty string). According to [3], more than half of the RCT abstracts
in PubMed were unstructured. The expectation was that the public release of this
dataset would accelerate the development of algorithms for sequential sentence clas-
sification; such tools in turn would facilitate sentence label prediction and hence,
efficient browsing of literature because readers would be able to access selected sec-
tions only.

Concerning the amount of annotation samples necessary for a successful classifier
training, Zaidan et al. [4] proposed to reduce the number of training examples needed,
but to ask human annotators to provide hints to a machine learner by highlighting
contextual “rationales” for each of their annotations. In this way, the annotator can
identify features of the document that are particularly relevant and mark related por-
tions of the example. Annotating rationales does not require the annotator to think
about the classification feature space, nor even to know anything about it. So they
demonstrated a method eliciting extra knowledge from naïve annotators, in the form of
“rationales” for their annotations, which has significantly better performance than two
strong baseline classifiers. It is interesting that their approach worked for positive and
negative movie reviews across four annotators who had different rationale-marking
styles.

Going deeper into the idea of using rationales (short and coherent pieces of input
text, sufficient to provide motivations), we mention the work of Lei et al. [5] who have
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shown how to design a generator (for automatic generation of rationales) and an
encoder (for predicting justification). The generated rationales are subsets of the words
from the input sentences with two key properties: first, they represent short and
coherent pieces of text (e.g., phrases) and, second, the selected words must alone
suffice for prediction as a substitute of the original text. Here, we are interested in their
manually annotated test corpus, which provided the evaluation of multi-aspect senti-
ment analysis on beer reviews. The evaluation was done on sentence-level annotations
on around 1,000 beer reviews with multiple sentences describing five features: the
appearance, smell (aroma), palate, taste and overall impression of a beer. The anno-
tation of each sentence indicates what aspect this sentence covers. In addition to the
written text, the reviewers provided the ratings for each aspect (originally on a scale
from 0 to 5 stars) as well as an overall rating. However, we notice that the generator
learns phrases as rationales, not full sentences. Moreover, there can be several phrases
generated as rationales for the same input text and the same aspect. Here, we work with
several rationales per abstract as well.

Text classification is a common approach for clinical text mining, as a single
technique or as a component in more complex NLP environments. Usually, such
systems are focused on specific diseases, drugs or facts. For instance, simple text
classification helps to detect misdiagnoses of epilepsy West syndrome in pediatric
hospital narratives [6]. A retrospective analysis was conducted on 27,524 patient
records with diagnoses and a corpus of 3,744 records was constructed (for 144 patients
as positive examples and 3,600 randomly selected ones as negative examples). Without
any additional annotation, multinomial Naïve Bayes and Support Vector Machine
(SVM) classifiers were run and compared, with SVM achieving precision 76.8%, recall
66.7% and F-measure of 71.4% when evaluated with 10-fold cross-validation. The
authors note that “the use of domain knowledge is not a necessary requirement to
achieve reasonable results” [6].

A more sophisticated example is a hybrid pipeline for heart disease risk factor
identification that analyzes clinical texts and recognizes diseases, associated risk fac-
tors, associated medications, and the time they are presented [7]. This pipeline inte-
grated rule-based processing and classification and achieved an F-measure of 92.68% at
Track 2 of the 2014 i2b2 clinical NLP challenge. After preprocessing, this system
extracted phrase-based, logical and discourse tags. Time attribute identification was
interpreted as a classification task, which was solved using an SVM. The system
generated candidate sentences, containing risk factors, and passed them to classifiers.
The authors concluded that a possible improvement could be to generate less negative
samples by limiting the candidates to those that contain medical concepts in UMLS.

Finally, we consider a more general approach for classifying patient portal mes-
sages [8]. This task is important because patient portals are increasingly adopted as
communication means: patients express various needs and medical experts deliver
recommendations as well as informal opinions. The main categories are informational,
medical, logistical, social, and other communications, with subcategories including
prescriptions, appointments, problems, tests, follow-up, contact information, and
acknowledgements. Secure portal messages might contain more than one type of
communication. The performance of the classifiers was evaluated using a gold corpus
of 3,253 manually annotated portal messages.
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3 Corpus Construction and Annotation

3.1 Selection of PubMed Abstracts

We want to find PubMed abstracts discussing the effect of some potential catalyst X on
some Y under conditions Z. With the intension to collect the corpus faster, our first idea
was to filter out PubMed abstracts that contain in their titles explicit statements about
effect type: negative, positive and neutral. A sample title with this preferred structure is
“Positive effect of direct current on cytotoxicity of human lymphocytes”. However, even
for these abstracts, the subsequent manual annotation showed that the justification of
the decisions about the effect of catalysts X on certain Y is hard. There is a considerable
amount of abstracts entitled “the effect of X1 and X2 on Y” or “the effect of X on Y1 and
Y2”, for instance the title “The mumps and rubella vaccination: no effect of feedback of
vaccination scores in general practice” and the title “Positive effect of treatment with
synthetic steroid hormone tibolon on intimal hyperplasia and restenosis after experi-
mental endothelial injury of rabbit carotid artery”. The variety of patterns and
potentially misleading constructions make the titles difficult to interpret and annotate:

• “Negative effect of age, but not of latent cytomegalovirus infection on the antibody
response to a novel Influenza vaccine strain in healthy adults”

• “Calcium influx inhibition: possible mechanism of the negative effect of tetrahy-
dropalmatine on left ventricular pressure in isolated rat heart”

• “Positive effect of etidronate therapy is maintained after drug is terminated in
patients using corticosteroids”.

Table 1 shows the amount of abstracts extracted initially from PubMed because
their titles contained explicit description of the effect as negative, positive and neutral.
In order to produce quickly a dataset where the annotation of the rationale will be
maximally simple for naïve annotators, we removed all abstracts with “problematic”
titles from the corpus. Table 2 contains the numbers of remaining abstracts after the
removal of titles that contain “and”, “or”, “but”, “review”, “study”, “meta-analysis”,
etc. Another problematic case are titles where the polarity is determined by a modifier
preceding the statement about negative, positive and no effect, for instance in a title
starting by “Absence of positive effect …” or, e.g., in the title “Association of cystic
fibrosis transmembrane-conductance regulator gene mutation with negative outcome
of intracytoplasmic sperm injection pregnancy in cases of congenital bilateral absence
of vas deferens”. In this way, we eventually ended up with 750 abstracts as shown in
Table 3.

Table 1. Abstracts with positive/negative/no effect in the title.

Pattern in the title Effect of Impact of Influence of Total

Positive 242 133 52 427
Negative 247 238 50 535
No 782 84 127 993
Total 1,271 455 229 1,955
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Note that by keeping only abstracts where the phrase positive/negative/no effect
occurs in the beginning of the title, we avoid titles containing e.g. “dominant negative
effect”. The latter is ambiguous because “dominant negative” is a term in molecular
biology, meaning a mutation whose gene product adversely affects the normal, wild-
type gene product within the same cell. So, domain terminology is another important
factor that needs to be taken into consideration when constructing the corpus. Further
potentially ambiguous titles are treated properly, e.g., “No effect of negative mood on
the alcohol cue reactivity of in-patient alcoholics” contains the word “negative”, but it
is considered in the neutral class because “no effect” is the first phrase of the title.

3.2 Annotating the Rationale

In Sect. 2, we listed approaches to classification based on rationales (one sentence or
phrases [4, 5] that represent short and coherent pieces of text that must suffice to
express the polarity of the effect presented in the text). However, both approaches [4, 5]
deal with product reviews: [4] works with one rationale while [5] (dealing with multi-
aspect classification) allows multiple rationales per input text. Here, we apply the same
idea to biomedical abstracts, which are scientific publications, i.e., their primary aim is
not to assess some specific product (movie, bier, etc.). Thus, the rationale is often
expressed in several sentences listing results of tests with target patients groups. We
found that the summarizing concluding sentences usually generalize the findings and
provide some argumentation about the polarity of the effect, but the latter is often
expressed by domain-specific verbalizations. One sample abstract is shown in Fig. 1. In
contrast to product reviews that contain numeric scores in addition to the text, the
variability of nuances in PubMed abstracts is much higher and we need biomedical
expertise to decide about the “most important, most convincing” sentence or phrases
that must suffice to express alone the polarity of the effect.

Table 2. Abstracts without and/or/but/review/study/meta analysis, etc. in the title.

Pattern in the title Effect of Impact of Influence of Total

Positive 135 74 27 236
Negative 171 140 31 342
No 406 40 82 528
Total 712 254 140 1,106

Table 3. Abstracts with positive/negative/no effect at the beginning of the title.

Pattern in the title Effect of Impact of Influence of Total

Positive 86 57 19 162
Negative 63 73 18 154
No 341 30 63 434
Total 490 160 100 750
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In Fig. 1, the rationales (short and coherent pieces of text) are underlined. We see
that the automatic recognition and processing of abbreviations is very important
because often the rationales contain abbreviated versions of the basic terms that are
defined in the particular abstract.

We should also note the complexity of assigning a category to each biomedical
abstract. Naïve annotators, who are not medical professionals, have limited capacity to
comprehend and to interpret the abstract content, and thus they tend to make decisions
based on general lexica, but they might be confused by the sentiment expressed in the
text, as shown in the abstract on Fig. 2. The underlined sentences convince the ordinary
reader that no negative effect has been observed, and in this way the title is a bit
misleading and the abstract should be annotated as reporting about a “neutral effect”.
Only experts might judge whether the phrases in italic (pleural thickening, small foci of
collagen) are dangerous deviations in the “formation of 8-hydroxydeoxyguanosine in
DNA”, which is the subject according to the title. The Japanese authors of this abstract
perhaps intended title to be “On the negative effect of …”. This example shows that all

Title : Negative effect of aging on psychosocial functioning of adults with 
congenital heart disease
ABSTRACT: 
BACKGROUND: Improvements in life expectancy among adults with congenital 
heart disease (ACHD) provide them with unique challenges throughout their lives 
and age-related psychosocial tasks in this group might differ from those of healthy 
counterparts. This study aimed to clarify age-related differences in psychosocial 
functioning in ACHD patients and determine the factors influencing anxiety and 
depression.
METHODS AND RESULTS:A total of 133 ACHD patients (aged 20-46) and 117 
reference participants (aged 20-43) were divided in 2 age groups (20 s and 30 s/40 
s) and completed the Hospital Anxiety and Depression Scale, Independent-
Consciousness Scale, and Problem-Solving Inventory. Only ACHD patients com-
pleted an illness perception inventory. ACHD patients over 30 showed a signifi-
cantly greater percentage of probable anxiety cases than those in their 20 s and the 
reference group. Moreover, ACHD patients over 30 who had lower dependence on 
parents and friends, registered higher independence and problem-solving ability 
than those in their 20 s, whereas this element did not vary with age in the reference 
participants. Furthermore, ACHD patients may develop an increasingly negative 
perception of their illness as they age. The factors influencing anxiety and depres-
sion in patients were aging, independence, problem-solving ability, and NYHA 
functional class.
CONCLUSIONS: Although healthy people are psychosocially stable after their 20 
s, ACHD patients experience major differences and face unique challenges even 
after entering adulthood. 

Fig. 1. Phrases with abbreviations supporting the polarity in Results and Conclusions (https://
www.ncbi.nlm.nih.gov/pubmed/25391256).
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texts included in the initially selected corpus of PubMed abstracts need careful manual
assessment and refinement. Only few such abstracts were found and removed so far, all
of them authored by non-native speakers.

3.3 Typical Expressions and Frequent Patters

The typical titles of the PubMed abstracts we consider have the following structure:

[the|a] negative effect of X on|in|for Y
[the|a] positive effect of X on|in|for Y
[the|a] no|neutral effect of X on|in|for Y

The grammatical correctness of the PubMed titles enables easier automatic
recognition of terms and their abbreviations. While progressing with the annotation, we
discover also typical patterns of phrases that signal the effect polarity, for instance:

• In the “no effect” abstracts: “Overall results disclosed no significant effect of this
drug on …”, “no significant difference was observed …”, “there were no notable
changes”, “X is unlikely to cause clinically significant interactions”, “X does not
have any detrimental effect on the longevity and clinical outcomes”

• In the “positive effect” abstracts: “X can facilitate the normalization of Y”, “X may
be effective in leading to Y”, “X is likely to be worthwhile and unlikely to be harmful
for Y”, “X leads to improved quality of life over 96 weeks”, “X was found to
increase in yeast cells”, “Patients exposed to the integrated care model exhibited
significantly fewer depressive symptoms”.

Title : Negative effect of long-term inhalation of toner on formation of 8-
hydroxydeoxyguanosine in DNA in the lungs of rats in vivo
ABSTRACT: 
We assessed the effects of long-term inhalation of toner on the pathological changes 
and formation of 8-hydroxydeoxyguanosine (8-OH-Gua) in DNA in a rat model. 
Female Wistar rats (10 wk old) were divided evenly into a high concentration 
exposure group (H: 15.2 mg/m(3)), a low concentration exposure group (L: 5.5 
mg/m(3)), and a control group. The mass median aerodynamic diameter of the toner 
was 4.5 microm. The rats were sacrificed at the termination of a 1-yr or 2-yr 
inhalation period. Pathological examination was performed on the left lung, and the 
level of 8-OH-Gua in DNA from the right lung was measured using a high-
performance liquid chromatography (HPLC) column. The pathological findings 
showed that lung cancer was not observed in any of the exposed or control groups, 
though pleural thickening and small foci of collagen were observed in toner-exposed 
rat lungs. Inhalation of the toner for 1 and even 2 yr did not induce the formation of 
8-OH-Gua in DNA in rat lungs. These data suggest that long-term inhalation of 
toner may not induce lung tumors. 

Fig. 2. An abstract that might look neutral to naïve annotators (https://www.ncbi.nlm.nih.gov/
pubmed/16195210).
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• In the “negative effect” abstracts: “the prolonged use of X may have a negative effect
on Y”, “X has a relationship not only with Y, but also with a poor outcome”, “X is a
significant prognostic factor for low overall survival”, “Development of X is
associated with worse long-term outcomes”.

When selecting the rationale sentences, we choose among the candidates those that
contain the terminology mentioned in the abstract’s title.

4 Current Classification Experiments

In previous work, we studied the classification of PubMed abstracts without using any
manually annotated corpus [9]. Various experiments were performed with text pre-
processing options, semantic indexing using UMLS and MetaMap, and classification
algorithms like Bernoulli/Multinomial Naïve Bayes classifiers and Linear/RBF SVM.

Abstracts are represented as bags of words, but they can have sections (segments)
with subtitles: e.g., Background, Results, Conclusions, etc. This structure is either
provided by PubMed or we induce it automatically. Segment names are not fixed and,
in addition to discovering the segments, we also map their names to a predefined set –
Background and Objectives, Methods, Results, Conclusions and Others. The label
“Others” is assigned to text fragments without any explicitly assigned subtitle.

Different variants are proposed for preprocessing the collected abstracts, which
include the use of concepts from semantic networks such as UMLS and MeSH. The
semantic indexing is performed by MetaMap [10, 11] – the conceptual search engine of
UMLS that provides indexing of terms from the given text by user-selected vocabu-
laries included in UMLS. In one of the experiments, UMLS concepts were limited by
semantic groups to a predefined set.

One group of tests explicates the role of the different abstract sections. We give
different inputs to the classifiers – the full abstract, only the Conclusions or the Results
section, or both Results and Conclusions. We specifically chose the Results and the
Conclusions sections because the usefulness of the effect should be most explicit there.
A second cycle of experiments used the results of the initial ones, e.g., if the best results
for linear SVM are achieved using the full abstract, then the full abstract will be
considered in further experiments when classifying with Linear SVM. The second type
of experiments determines the importance of domain knowledge by importing names of
concepts found in UMLS and MeSH, where the concepts might be limited by semantic
groups. In these experiment, concepts from UMLS or the MeSH hierarchy will be
added to or replace the corresponding terms in the sentences where they occur.

We also included the title in these experiments. We tried to define the sentence
from the Results or the Conclusions section that has the largest word overlap (without
stop words and punctuation) with the title and to classify the given example only based
on this ‘best sentence’. Word overlap is defined as the overlap of raw words from the
original text or as overlap of the found UMLS/MeSH concepts. Then we use the
concepts from UMLS and MeSH that are found in the title; the idea is to normalize the
abstract by replacing each occurrence of the UMLS/MeSH concept from the title with
the tags X1, X2, .. , Xn where n is the number of concepts found in the title.
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We define two baselines to compare with the results of our system. The first one is a
‘majority classifier’ that always predicts the most frequent class in our dataset. Its
accuracy is 57.87%. The second baseline predicts the class of the example by searching
for the same signaling phrases as in the title, but this time in the article’s abstract and
choosing the most frequent class as per these phrases, breaking ties using the first
baseline; the accuracy for this second baseline is 61.60%.

The best results for the experiment that defines the role of the different parts of text
is achieved by using the full abstract and linear or RBF-based kernel SVM, with
accuracy of 76.27% and 75.47%, respectively. When we use the full abstract and we
limit the concepts from UMLS by semantic type, we achieve slightly better accuracy of
76.80%. If the classification is done only by using the ‘best sentence’, the accuracy
decreases to 74.50%. This can be explained by the fact that although one sentence has
the largest word overlap with the title, this does not necessarily mean that it will most
clearly determine the polarity of the abstract. Our best accuracy of 78.80% is achieved
with UMLS normalization of the abstract, limited by semantic type, and using a linear
SVM classifier. We are not aware of other experiments that consider in such details the
textual structure of the abstracts, the weight of the title’ words and the role of semantic
terminology processing. We expect that training on the manually annotated rationales,
the accuracy will improve further.

5 Conclusion and Future Work

We have presented our on-going efforts towards the construction of a corpus containing
PubMed abstracts annotated with rationales. Previous work has shown that using
rationales provides substantial improvements for classifying product reviews [4, 5], and
now we want to test this idea on PubMed abstracts. Several questions remain open at
this stage of our work, e.g., whether it is better to mark one rationale per abstract or we
can annotate several ones. Another open question is whether a corpus of 750 abstracts
will allow us to see significant improvements on the classification task given the large
medical vocabulary and the comprehensive PubMed archive.

In future work, we plan experiments with various techniques for abstract classifi-
cation, e.g., using clustering [12] and deep learning [5]. We consider very important the
automatic processing of abstract terminology with special focus on the abbreviations, to
enable term normalization and reference to the abbreviated forms. This will help to
connect the terms in the abstract titles and the abbreviations occurring in the rationale
phrases and sentences. In this way, we could incorporate rule-based analysis in the
preprocessing phase. Another promising research direction is on using summarization
[13] techniques to find the most important part of the abstract, and then performing
classification based on this abstract, or using attention mechanism to focus the model
on sentences in the abstract that are most similar to the title; the latter is typically done
in an unsupervised way, but we could use our manual rationales to train a supervised
attention mechanism [14]. We also plan to experiment using various word represen-
tations, which have been shown useful for biomedical text classification [15].
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Abstract. We present a supervised approach for style change detec-
tion, which aims at predicting whether there are changes in the style in
a given text document, as well as at finding the exact positions where
such changes occur. In particular, we combine a TF.IDF representation
of the document with features specifically engineered for the task, and we
make predictions via an ensemble of diverse classifiers including SVM,
Random Forest, AdaBoost, MLP, and LightGBM. Whenever the model
detects that style change is present, we apply it recursively, looking to
find the specific positions of the change. Our approach powered the win-
ning system for the PAN@CLEF 2018 task on Style Change Detection.

Keywords: Multi-authorship · Stylometry · Style change detection
Style breach detection · Stacking ensemble
Natural language processing · Gradient boosting machines

1 Introduction

There are numerous tasks related to authorship attribution, but most of the
research has been concentrated on large documents. An interesting problem to
tackle for smaller texts is the one of style change detection: given a text doc-
ument, identify whether style change occurs anywhere in it. This formulation
usually entails a uniform distribution of text segments from multiple authors. A
version of it is the intrinsic plagiarism detection problem, in which it is consid-
ered that there is a dominant author of the document being examined. Another
variation is the task of detecting style change positions: determine the exact loca-
tion of style breaches in the text. Historically, this has proven to be a difficult but
interesting task, and performance in terms of accuracy has been low, leaving a
lot of room for potential improvements over the state-of-the-art. Here, we target
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two tasks: (i) predicting whether style change occurs (Style Change Detection1),
and (ii) finding the exact position of the change (Style Breach Detection2).

2 Related Work

Authorship Attribution. Previous work on authorship attribution and related
problems (e.g., author obfuscation [3,4,12,15]) used primarily term frequen-
cies [5,9] and features from stylometry [8,9,18]. We borrowed ideas for traditional
features from [2,13], but we also designed some new ones, related to tautology,
grammar contractions, quote use discrepancies, beginning and ending author
statement words, and named entity spellings (see Sect. 3.4).

Style Breach Detection. See [19] for a summary of previous work on style breach
detection and related tasks. Here we outline some of the most relevant work.
Karaś et al. [5] used TF.IDF, POS tags, stop words and punctuation to repre-
sent paragraphs in the text, and applied a Wilcoxon Signed Rank test to check
whether two segments are likely to come from the same distribution. They moved
a sliding window over the sentences, computing similarity statistics and using
dictionaries with common English words and sentiment. Then, they used a pre-
defined threshold to determine whether a style breach between two sentences was
likely. Safin and Kuznetsova [16] explored techniques typically used for intrinsic
plagiarism detection. They vectorized sentences using pre-trained skip-thought
models and looked for outliers using cosine-based distance between vectors.

3 Style Change Detection

Here, we describe our approach, which powered the winning system [20] for the
PAN@CLEF 2018 task on Style Change Detection [7].

3.1 Data

We used data provided by the organizers of the CLEF-2018 PAN task on Style
Change Detection [7], which was based on user posts from StackExchange cover-
ing different topics with 300–1,000 tokens per document. It included a training
set of 3,000 documents and a validation set of 1,500 documents.

3.2 Preprocessing

We pre-process the data in two phases. The first phase is applied before any
feature extraction has taken place, and it replaces URLs and long numbers with
specific tokens. The second phase is applied during feature computation. It filters
the stream of words and replaces file paths, long character sequences and very
1 http://pan.webis.de/clef18/pan18-web/author-identification.html.
2 http://pan.webis.de/clef17/pan17-web/author-identification.html.

http://pan.webis.de/clef18/pan18-web/author-identification.html
http://pan.webis.de/clef17/pan17-web/author-identification.html
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long words with special tokens. Additionally, an attempt is made to split long
hyphenated words (with three or more parts) by checking whether most of the
sub-words are present in a dictionary of common words (from the NLTK words
corpus [11]). The objective of all these steps is to reduce the impact of long
words, which could adversely affect features that take word length into account.
Such features are those from the lexical group and preprocessing is applied to
them only, since it might have undesirable effect on the rest of the features.

3.3 Text Segmentation

Style changes in text documents entail that parts of the text would differ in
some way. In an attempt to spot such differences, we split the document into
four segments of roughly equal length (measured in terms of word tokens), we
calculated the feature vectors for each of the segments, and we found the maxi-
mum difference between the values for each feature for any pair of segments. We
chose the number of segments (namely, four) based on the distribution of the
number of style changes across the entire training dataset. In order to obtain
more potential data points, we applied a sliding window across each document
with an overlap of one third of the segment size (see Fig. 1). We applied this
segmentation procedure for four of the feature groups, three of which used a
sliding window. See Sect. 3.4 for more details.

Fig. 1. Applying a sliding window on the text.

3.4 Text Representation

Below, we describe the features we engineered specifically for the task of discov-
ering style changes. The dimensionality of each of them is shown in Table 1.

Tautology: At a grammatical and, one might say, psychological level, writers
attempt to avoid using repetitive statements. We account for this by looking at
the average number of occurrences of each one to five word-grams in the entire
document, and we use a vector of size five with the respective averages for text
representation.
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Table 1. Dimensionality of our features.

Features Dimensionality

Tautology 5

Grammar contractions 29

Beginning and ending of author statements 1

Quotation marks 1

Readability 9

Frequent words 415

Lexical 34

Vocabulary richness 2

Named entity spellings 2

Grammar Contractions: Another viewpoint we look at is based on the
discrepancies in words, which have contracted forms or shortened version of
words such as I will (I’ll), are not (aren’t), and they are (they’re). Because most
people favor one or the other, contraction apostrophes are suitable discriminative
features (even more so in formal contexts) for identifying whether a piece of text
is likely to be single- or multi-authored.

Frequent Words: Frequent words include stop words (taken from
NLTK [11]) and function words (compiled from three separate lists3,4,5). Each
frequent word is counted per text segment.

Lexical: The lexical features are computed as ratios per text segment using
a sliding window and can be divided into the following three types:

Character-Based: Spaces, digits, commas, colons, semicolons, apostrophes,
quotes, parenthesis, number of paragraphs, and punctuation in general.

Word-Based: We POS-tag the segment using NLTK, and we extract features
such as ratios of pronouns, prepositions, coordinating conjunctions, adjectives,
adverbs, determiners, interjections, modals, nouns, personal pronouns and verbs.
Other word-based features include words with 2 or 3 characters, words with over
6 characters, average word length, all-caps words, and capitalized words.

Sentence-Based: Those include ratios of question, period, exclamation sen-
tences, short and long sentences, and average sentence length.

Quotation Marks: Normally used in pairs, different people might consis-
tently prefer using either single or double quotation marks. We first exclude
every shortened word with apostrophe (from a grammar contraction words dic-
tionary), and then we use the variance in the number of single and double quotes
as a single-feature representation of the documents.
3 http://semanticsimilarity.files.wordpress.com/2013/08/jim-oshea-fwlist-277.pdf.
4 http://www.sequencepublishing.com/1/academic.html.
5 http://www.edu.uwo.ca/faculty-profiles/docs/other/webb/essential-word-list.pdf.

http://semanticsimilarity.files.wordpress.com/2013/08/jim-oshea-fwlist-277.pdf
http://www.sequencepublishing.com/1/academic.html
http://www.edu.uwo.ca/faculty-profiles/docs/other/webb/essential-word-list.pdf
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Vocabulary Richness: Similarly to [2], vocabulary richness is represented
by averaged word frequency class. Using the Google Books common words list,6

the frequency class of a word x is computed as log2
f(X)
f(x) , where f is the frequency

function and X is the most frequent word in the corpus, in our case the. Two
features are extracted per segment: the average frequency class of all words in it,
and the ratio of unknown words (words not present in the common words list).

Table 2. The 12 most frequent beginning and ending words in author statements (after
stopword removal).

Readability: The following readability features are computed per text seg-
ment via the Textstat7 Python package: Flesch reading ease, SMOG grade,
Flesch-Kincaid grade, Coleman-Liau index, automated readability index, Dale-
Chall readability score, difficult words, Linsear write formula, and Gunning fog.

Beginning and Ending of Author Statements: As can be seen in
Table 2, author statements begin and end with very different types of words.
This can be used to locate points in documents where word clusters of small size
contain high amount of these terms. We tried two approaches, applied after stop-
word removal, and we experimented with word phrases of sizes 1, 2 and 3, with
single-terms yielding the best results. The first approach assigns scores to words
to be rescaled (min-max normalized): it counts the number of times the target
word is at a beginning or at an ending position relative to the author statement.
A bit more sophisticated approach scores words based on how close they are to
such a position. Each word is processed using a very steep half-sigmoid function
(Eq. 1, with k denoting the steepness), taking its relative position and rewarding

6 http://norvig.com/google-books-common-words.txt.
7 http://github.com/shivam5992/textstat.

http://norvig.com/google-books-common-words.txt
http://github.com/shivam5992/textstat
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those that are extremely close to a beginning or to an ending. Then, each word
list of position scores is averaged across all documents.

x =
|statementLength

2
− (position + 1)|

statementLength

2

Score(positionstatement) =
(0 + k) ∗ x

(1 + k) − x

(1)

Finally, the document feature vector is represented by looking at local document
clusters of three words, containing multiple high-scored words, indicating there
may be an end of author statement immediately followed by a beginning of a
new one. This document representation was not added as part of the stacking
classifier (Sect. 3.5.2), but nevertheless has a strong performance on its own,
yielding 65% accuracy.

Named Entity Spellings: Different named entity spellings can reflect per-
sonal preferences, rather than cultural ones. We use Damerau-Levenshtein string-
edit distance [1,10] to find inconsistencies in the wording of the same named
entities within an edit distance of 1. The feature vector consists of the minimum
counts between the different spellings for each found named entity.

3.5 Classification

3.5.1 LightGBM
Our gradient boosting approach combines LightGBM [6] with Logistic Regres-
sion and TF.IDF vector representation. Note that we use the test data when
calculating the IDF statistics. This is not cheating as we do not use the labels for
the examples, we only calculate word frequencies. Then, we use feature impor-
tance weights with a Logistic Regression estimator to select the best TF.IDF
features; moreover, we only select features with weight greater than 0.1. We
tune the Logistic Regression hyper-parameters using cross-validation. The best
results are achieved with Stochastic Average Gradient descent, and inverse of
the regularization strength C of 2. We trained using bagging with five folds. A
simple LightGBM baseline achieved 73% accuracy on the validation set. Tuning
the LightGBM hyper-parameters increased the accuracy to 86%, supported by
a CV score of 85%. These parameters can be seen in Table 4.

3.5.2 Stacking
The basic idea behind our Stacking Ensemble classifier was to take into account
different independent points of view in the context of distinguishing multi-
authored documents and to learn dependencies between them. At the bot-
tom level, we train four different non-linear classifiers—SVM, random forest,
AdaBoost trees, multi-layer perceptron (described in Table 4)—for each feature
vector derived from the representations in Sect. 3.4 on 75% of the training data.
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Then, each one of them predicts on the remaining 25% and is assigned a weight,
based on its accuracy, relative to the remaining classifiers with the same input
feature vectors. Those groups form a single vector each with prediction class
probabilities, based on the weights and the outputs of its classifiers. These vec-
tors, together with the predictions of the LightGBM classifier (see Sect. 3.5.1),
serve as an input to a simple linear Logistic Regression meta-learner. The process
of training is visualized in Fig. 2.

Before predicting, each classifier is trained again on the whole dataset (except
for LightGBM, which is not weighted across groups). For each new sample,
the zero-level classifiers use the same weights learned in training to transform
the given sample as an input vector of probabilities for the meta-learner. This
yields accuracy of 87%. The coefficients learned by the meta-model for each text
representation and their standalone accuracies can be seen in Table 3.

Table 3. Style Change Detection: model coefficients and accuracy for different feature
representations (in isolation).

Representation Coefficient Accuracy

Tautology 1.50 67.4

Grammar Contractions 1.25 61.0

Quotation Marks 0.05 55.8

Readability −0.25 61.0

Frequent Words 0.81 63.3

Lexical 0.27 64.9

Vocabulary Richness −1.46 51.0

LightGBM with TF-IDF 5.01 88.5

4 Style Breach Detection

In this section, we describe our approach to the more complex task of finding
the positions where style breach occurs, which we address using the supervised
model from the previous Sect. 3.

4.1 Data

We use the dataset from the PAN-2017 competition8 [19], which consists of 187
documents each containing 1,000–2,400 word tokens. About 20% of the texts
have no style changes and the rest have between 1 and 8 changes. Switches of
authorships9 may only occur at the end of sentences, not within. The exact
positions of the style changes in the multi-authored documents are provided as
part of the dataset, but we did not use them for training.
8 http://pan.webis.de/clef17/pan17-web/author-identification.html.
9 In this dataset, style change also means switch of authorship.

http://pan.webis.de/clef17/pan17-web/author-identification.html


Recursive Style Breach Detection With Multifaceted Ensemble Learning 133

Fig. 2. Training the stacking classifier.

This dataset is hard due to its small size and to class imbalance. Applying
our model from the previous section on it poses further challenges as we have
originally developed the model to identify the presence of changes in shorter
texts (300–1,000 tokens) and with fewer style breaches (up to 3).

4.2 Method

Given a document to analyze, we first apply our model from the previous Sect. 3
to predict whether there is style change in it. If style change is detected, we split
the document in two: each half containing the same number of sentences. Then,
we perform the same check for style change on each of the two parts, and if the
results for both parts are negative then the exact position of the breach would
be where the text was split in half. We repeat this procedure of splitting and
searching for changes recursively until the length of the text fragment becomes
less than 20 sentences, in which case, we return the middle point and we perform
no more checks on the respective fragment.

Note that at training time, the model checks for the presence of changes on
the full text, while at testing time it is applied to fragments of various sizes:
starting with documents that are larger than those seen in training and going
down to fragments whose size decreases exponentially. This discrepancy in the
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Table 4. Meta and zero-level hyper-parameters for the classifiers in Fig. 2.

Classifier Hyper-parameter Value

Support Vector Machine Kernel Radial basis function

Penalty C 1.0

Tolerance 0.001

Class weight Balanced

Random Forest Estimators 300

With replacement Yes

AdaBoost Trees Base estimator Decision tree

Estimators 300

Multi-layer Perceptron Layers 1

Layer size 100

Activation ReLU

Optimization Adam

Regularization L2

Regularization term 0.0001

Learning rate 0.001

Mini-batch size 200

Maximum iterations 10000

LightGBM Learning rate 0.1

Number of leaves 31

Feature fraction 0.6

L1 regularization term 1.0

L2 regularization term 1.0

Minimum data in leaf 20

Logistic Regression
(meta-classifier)

Optimization Liblinear

Regularization L2

Penalty C 1.0

Tolerance 0.0001

Maximum iterations 100

fragment sizes at training and testing makes the model’s task harder. In order to
alleviate the problem, we chose a relatively large minimum size for the text frag-
ments of 20 sentences, assuming that shorter texts would not be easily handled
by the model; we later confirmed this suspicion experimentally.

The next issue is that due to class imbalance, the model is much more likely
to predict the positive class, which results in a lot of false positive, i.e., many
non-existent style breaches being predicted in a document. On many occasions,
the recursive procedure predicted an unreasonable number of breaches in a single
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document in the range of 20 or even 30, considering that the maximum number
of style changes in a document in the training data was only 8. This is not
completely unexpected though, as during training the model was never told the
exact number of changes, just that there should exist at least one. Our strategy
to cope with this was to increase the threshold for predicting that there is a
style breach from 50% to 75%. This resulted in a significant drop in the average
number of breaches predicted by the model from over 10 to 3.265.

4.3 Results

We evaluated the performance of our model for predicting the location of the
style breaches using the following two evaluation measures:

– WindowDiff [14], which is standard in general text segmentation evaluation,
and returns an error rate between 0 and 1 (0 indicating perfect prediction)
for predicting the exact location of the breaches by penalizing near-misses
less severely compared to other/complete misses or to predicting more style
breach locations than there are to be found.

– WinPR [17], which computes common information retrieval measures, preci-
sion (WinP) and recall (WinR), and thus makes a more detailed, qualitative
statement about the model performance.

We assessed our results by comparing them to the two baselines from [19]:

1. BASELINE-rnd randomly places between 0 and 10 borders at arbitrary posi-
tions inside a document.

2. BASELINE-eq also decides on a random basis how many borders should be
placed (again 0–10), but then places these borders uniformly, i.e., so that all
resulting segments are of equal size with respect to the tokens contained.

Table 5 shows the average results we achieved by applying our model using
5-fold cross-validation as well as the scores for the two baselines above. We can
see that our stacking approach managed to outperform the two baselines on both
evaluation measures. Our results are also close to the ones achieved at the PAN-
2017 edition [5], although they cannot be compared directly, as the systems that
participated in the PAN competition were evaluated on a different test dataset.

Table 5. Style Breach Detection: results for predicting the location of the breach.

windowDiff winP winR winF

BASELINE-rnd 0.6088 0.2779 0.5477 0.2366

BASELINE-eq 0.6345 0.3326 0.6368 0.2907

Stacking 0.5719 0.3395 0.6132 0.3302
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5 Conclusion and Future Work

Detecting style change in texts is a difficult task for humans: we, ourselves, found
it hard to discern between texts with and without style change while exploring
the dataset. Nonetheless, our experiments have shown that it is possible for
machine learning algorithms to achieve good performance for this problem.

The idea of applying a model recursively to find the exact style breach posi-
tions came to us as a natural experiment after tackling the simplified binary task
of style change detection, for which we achieved an accuracy of 89%. Our results
for the more complex style breach position task are very close to the current
state-of-the-art without the need for much adaptation of the original solution.

We believe that the results can be improved further if training is done on text
pieces of different lengths, given that during validation, the recursive procedure
has to be applied to smaller and smaller fragments of the original document.
Tuning the model to work better for the case of imbalanced classes can also be
a source of improvement.
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1 Introduction

Premature termination of psychosocial treatments is a general challenge in psy-
chotherapy which affects up to 30% of all outpatients. The problem is even higher
when it comes to non-specific treatments of patients with severe personality disorders,
where dropout rates rise up to 67%. But also special treatments such as Dialectical
Behavior Therapy (DBT) [1–4] reveal average attrition rates of 27% [5]. Premature
termination of evidence based treatments mostly has negative consequences on dif-
ferent levels: The patient receives only parts of evidence-based treatments and thus
benefits less. Both, the patient and the therapist might be demoralized and the resources
have not been used efficiently, resulting also in negative financial consequences for the
healthcare system and longer waiting times for other patients in need [6]. Research in
the last decades has revealed some predictors of premature termination depending on
characteristics of the patient (e.g. type of diagnosis or pattern of comorbidity), the
treatment used (e.g. format of treatment delivery and treatment setting), the therapist, or
interactions among these (e.g. therapeutic alliance) [7, 8]. However, previous research
on the identification of these predictors has some limitations that make it difficult to
apply these findings in psychotherapeutic practice: First, these predictors were iden-
tified post-hoc and contain only mean-based group calculations, which do not allow a
conclusive assessment of premature termination risk for an individual patient. Second,
the assessment of these variables does not consider dynamic processes (e.g. mood
states), which are likely to fluctuate over time during the therapy process (especially in
BPD-patients [9]) and might play a key role in the continuation or termination of
therapy. Consequently, these findings give only indirect hints for the dropout risk of an
individual patient and can therefore not be used by the therapist during a specific
patient treatment.

To address this issue, we have introduced an IT-based approach to assist therapists
in the early detection of an increased dropout risk of a single patient during therapy
[10]. The concept includes multiple data collections with each patient during ongoing
therapy. Based on these data, the therapist will be alerted if a patient is at risk for
premature treatment termination.

This paper presents a detailed analysis based on the Borderline Symptom List-23
(BSL 23) [11], a disorder-specific sensitive questionnaire for patients with borderline
personality disorder (BPD). BPD is a severe and common psychiatric disorder, which
affects about 1% of the adult German population. The goal was to identify relevant
features for a possible dropout prediction within this group of patients with sufficient
accuracy. As a second step, we describe the development and feasibility of a new
questionnaire form, called Personal Digital Therapy Diary (PDTD), and provide first
data. Furthermore we describe the process of alerting the therapist on the risk of
premature termination of therapy of an individual patient.
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2 Related Work

A systematic literature research indicates that reasons for a premature termination of
treatment are still mostly unknown and corresponding literature are partly contradict-
ing. Anderson [12] indicates that a socioeconomic deprivation is no indication for a
premature termination, while Zimmermann [13] concluded that mostly male patients
with a low educational level or high levels of histrionic features are in danger of
dropping out. These two studies alone show that dropouts can hardly be divided into
homogenous groups, which in turn makes classification difficult.

Some additional potential weak features could be the patient’s age and therapists’
experience. Anderson [12] indicated that patients under the age of 25 and those treated
by inexperienced therapists have a higher risk of early termination. However, a strong
indication could also be identified in the form of substance abuse or drug addiction.
Anderson [12] and Gene [14] have introduced three categories for early termination of
treatment:

1. Environmental obstacles, which can be logistic problems, e.g. no child care,
financial problems, etc.

2. Problem improvement, when patients already feel better before completing the
therapy and therefore think they do not need any further treatment.

3. Dissatisfaction with service, when patients are not satisfied with the advances in
therapy and cannot make a sense of it anymore.

In summary, there is no clear statement for which features could predict a pre-
mature termination of therapy.

3 Predicting Premature Termination from Therapy
Questionnaire Data

Our research focuses on the question whether premature termination of an established
residential psychosocial treatment program (DBT) [1] in patients with BPD can be
predicted from periodically collected questionnaire data. To concretize, we focus on the
symptom questionnaires BSL-23 [11] including 11 items on problematic behavior (E11;
e.g. self-injury) for BPD-patients receiving DBT [15]. We measure prediction perfor-
mance by F1-measure [16] of the class treatment termination, based on a cross vali-
dation approach [17]. We consider prediction performance to be sufficient if F1-measure
of the class termination is 0.8 or better.

The baseline for the analysis were 1159 BSL-23 and E11 questionnaires. These
questionnaires originated from a total of 137 patients of which 92 completed the
residential treatment program and 45 terminated treatment prematurely.

Figure 1 shows an overview of the average answer values of all BSL23 and E11
questions. Values are indicated as lines, the shaded areas show the standard deviation
for each question. The graph indicates no clear distinction in the questionnaire
answering behaviour of terminators and completers. However, it can be seen that some

Improving Machine Learning Prediction Performance 143



questions show a higher distinction than others, e.g., BSL23-Q8 and E11-Q4 (i.e.
binge-eating).

We employed the following state-of-the-art machine learning approaches for
classifying patients as terminators or completers according to their questionnaire
answering behaviour:

1. Logistic Regression classifier: A statistical model with one or more independent
variables, with the goal to find the best fitting model to describe the relationship
between the input and the outcome [18].

2. Linear Discriminant Analysis: A technique to reduce the dimensionality of a dataset
from n to k (k � n–1), while retaining the class discriminatory information [17].

3. Decision Tree: A method which learns simple decision rules inferred from data
features in order to predict the value of a target variable [19].

4. AdaBoost classifier: A meta classifier, which starts with a single classifier, where
each subsequent classifier’s weights of incorrectly classified instances are modified;
these classifiers focus on cases which are more difficult to classify [20].

5. Random Forest: An algorithm used to build multiple decision trees and merging
them for a more accurate prediction [21].

6. Gaussian Naive Bayes: A probabilistic classifier based on Bayes’ theorem with the
assumption of independence between the input features [22].

7. C-Support Vector classification: A discriminative classifier using hyper-planes to
categorize new samples and the option to minimize the misclassification for each
training sample by an additional parameter C [23].

Fig. 1. Average answer values to BSL23 and E11 questions by therapy terminators (blue) and
completers (red), as well as the corresponding standard deviation for each question. (Color figure
online)

144 M. Bohus et al.



8. Multi-Layer Perceptron classifier: A classifier based on feedforward artificial neural
networks with multiple layers of nodes with weights and bias, applying an acti-
vation function and employing backpropagation for the learning model [24–27].

Application of the above algorithms to the complete dataset with all features gave a
maximum F-Score of 0.50 for the Logistic Regression algorithm. Since some of the
questions show a higher distinction between completers and terminators, we performed
a dimensionality reduction in order to identify the most significant features and apply
the algorithms only to a selection of features available. Using Analysis of Variance
[27], the ten most significant features were identified. In order of their significance
(most to least) these were: E11-Q5, E11-Q4, BSL23-Q19, BSL23-Q8, E11-Q6,
BSL23-Q23, BSL23-Q10, E11-Q7, E11-Q8 and BSL23-Q20.

Table 1 shows the resulting prediction performance following a cross validation,
where 727 questionnaires labeled as completed and 179 questionnaires labeled as ter-
minated were used for training. The remaining 157 questionnaires (completed) and 96
(terminated) were used for validation. Grouping the dataset by patient id and splitting it
into a training and validation set was done via SciKit-Learn’s GroupShuffleSplit algorithm
[28]. In order to compensate the majority of cases for the label completed, the decision
tree, C-support vector and logistic regression classifier were weighted in two different
ways: a weight of 1.0 on the class completed and a weight of 10 on the class terminated.
The custom weight was computed by n_samples/(n_classes * np.bincount(y)).

The Logistic Regression classifier with fixed weight exhibits the best prediction
performance (0.56) but is by far worse than the aspired F1 measure of 0.8 or better.

Table 1. Performance of evaluated classifiers with selected significant features.

Classifier Class Precision Recall F-Score

Logistic Regression Classifier Terminated 0.17 0.01 0.02
C-Support Vector classification Terminated 0.50 0.01 0.02
Linear Discriminant Analysis Terminated 0.50 0.02 0.04
Decision Tree (Fixed Weight) Terminated 0.27 0.09 0.14
Multi-Layer Perceptron classifier Terminated 0.80 0.08 0.15
Random Forest Terminated 0.52 0.12 0.20
K-Nearest Neighbor Terminated 0.45 0.14 0.21
AdaBoost Classifier Terminated 0.45 0.19 0.26
Decision Tree (Custom Weight) Terminated 0.40 0.20 0.27
Gaussian Naive Bayes Terminated 0.55 0.19 0.28
C-Support Vector classification (Custom Weight) Terminated 0.43 0.30 0.36
Decision Tree Terminated 0.57 0.28 0.38
Logistic Regression Classifier (Custom Weight) Terminated 0.43 0.50 0.46
C-Support Vector classification (Fixed Weight) Terminated 0.36 0.46 0.40
Logistic Regression Classifier (Fixed Weight) Terminated 0.40 0.92 0.56
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4 Private Digital Therapy Diary

4.1 Concept

In this section, we introduce an open-ended questionnaire which we call Private Digital
Therapy Diary (PDTD); For an overview on the concept of a diary used in psy-
chotherapy see Thiele et al. [29]. Based on the method of ecological momentary
assessment (EMA) [30], the aim of the PDTD is to assess the dynamic processes of a
patient’s subjective perception of their treatment in real time between therapy sessions
[31]. Van de Leemput et al. [32] have recently shown that the pattern of EMA-recorded
mood dynamics predicted the onset and termination of a depressive episode of patients
and suggest the possibility to use such information within early warning systems for
psychiatric disorders. In line with this research, the aim of our approach is to use the
PDTD to identify the risk of premature termination of treatment and to create an
application platform to realize and test an early warning system for therapists.

Patients are asked to fill in a smartphone-based electronic diary on a daily basis, as
part of their patient application (see [10]). The use of the diary is voluntary and in the
patient’s own discretion. However, patients get reminded once a day by receiving a
push notification. The content is private and is not communicated to the therapist.
Therefore we assume that the patients will fill out the PDTD truthfully. The diary is
structured in the following five questions, where any question may be skipped:

1. What would I tell the therapist team? (free text input)
2. What was special about today? (free text input)
3. I would like to continue/terminate the therapy (slider values 0..100)
4. What’s my current mood? (slider values 0..100)
5. Is there anything that went well today? (free text input)

As diaries are not only relevant for data-assessment but might also support psy-
chotherapy, patients can create and read an archive of their own diary entries [29].

Patients are asked to sign an informed consent form which allows further analysis
of the anonymized data for research purposes and use of the data by the machine
learning component of the software system in order to predict an imminent premature
termination and potentially alert the therapist.

4.2 Research Questions

In order to figure out if the PDTD is a valid data source for predicting premature
termination, we performed a detailed analysis of patients’ answers with in respect to the
following research questions:

1. Acceptance: Is the PDTD accepted by patients and is it filled out regularly, par-
ticularly PDTD-Q3 (continue/terminate therapy)?

2. Truthfulness: Are questions answered truthfully, particularly PDTD-Q3 (continue/
terminate therapy)?

3. Prediction: Can premature termination of the therapy be predicted from PDTD data
with sufficient prediction performance?
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As a preliminary proof of concept we have performed the analysis on 14 patients
with a total of 218 PDTD questionnaire entries. All patients have completed the
therapy, but one patient has terminated the study, e.g. the use of the PDTD. Given the
size of the collected dataset, no final assessment can be made at this stage. However,
we have made several observations.

4.3 RQ1: Acceptance

We were pleased by the acceptance of the PDTD by patients. One patient filled out
three questionnaires in one day. The number of average entries per week is 4.9. The
maximum number of entries per week is 9. Individual questions were skipped rarely. In
particular, PDTD-Q3 (continue/terminate therapy) was answered in 207 out of 218
diary entries. We conclude, the PDTD is accepted and used regularly by patients.

4.4 RQ2: Truthfulness

Figure 2a–d shows the sequence of PDTD questionnaire values of four anonymized
example patients during therapy, in particular answers to PDTD-Q3 (red solid line) and
PDTD-Q4 (blue dashed line) as well as the total word count in PDTD-Q1, 2, and 5
(yellow dotted line). In terms of truthfulness, we observed that patients who completed
the therapy successfully indicated this particularly in PDTD-Q3 with high values,

Fig. 2. Examples for values of PDTD questionnaires during therapy.
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usually above 80% (see Fig. 2c). Patients who are more impulsive and change their
opinion about treatment in short time intervals, mostly still have values above 60%
with an occasional dip below (see Fig. 2a, b, d). During the whole therapy we rarely
observed dips that go below 30%, but if they do, normally below 10% (See Fig. 2a, d).
These are usually one-time events where the patients might have had a particularly
frustrating experience.

The current mood of the patient (PDTD-Q4) is mostly independent of the will-
ingness to continue the therapy (PDTD-Q3), see Fig. 2c. This is expected, as the
patient’s mood usually fluctuates, sometimes within a few hours.

A sentiment analysis of the free text questions did not indicate any relation to
PDTD-Q3 (continue/terminate). For example, one patient stated “demanding and
overcharging; no perspective for change” and “I’m not going to make it” but answered
continuously high values in PDTD-Q3 and eventually completed the therapy
successfully.

The average word count is 14.2 words per diary questionnaire. We noticed that
patients with a low value on PDTD-Q3 write no text or only short texts in PDTD-Q1, 2,
and 5. This can be expected since a patient with low motivation for continuing the
therapy will also have a low motivation in investing effort in diary writing.

From the data at hand we have the impression that patients answer the PDTD
truthfully, which is expected due to the private nature of PDTD.

4.5 RQ3: Prediction

Based on our observations and analyses described above, we propose a simple decision
tree classifier based on the PDTD data for predicting premature termination of therapy
(see Fig. 3).

The decision tree primarily takes PDTD-Q3 (continue/terminate) into account. If
the value is < 33% then a termination is predicted. If the value is � 50%, continuation
is predicted. If the value is in between, the value of PDTD-Q4 (Mood < 50%) and the
word count of PDTD-Q1, Q2 and Q5 (< 10) are additionally taken into account.

Fig. 3. Decision tree for predicting a possible premature termination.
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As the analysis has shown, sudden drops in values to PDTD-Q3 are common with a
quick recovery to a high value. For this reason, we propose a waiting period of, e.g.,
12 h. Whenever a patient enters a PDTD diary questionnaire which is classified “ter-
minate” by the decision tree logic, then the waiting period is started. If at the end of the
waiting period no additional diary questionnaire has been entered by this patient which
has been classified “continue”, then the therapist is alerted on the imminent termination
of this patient via an email message.

Applying the decision tree from Fig. 3 and a waiting period of 12 h to the 218
PDTD questionnaires collected to date, only one false alert would have been issued to
the therapist. This is the patient shown in Fig. 2b who showed a drop in PDTD-Q3
values below 30 for two PDTD questionnaires *25 h apart from each other.

While this is a promising result, far more patient data needs to be acquired in order
to fully answer RQ3 “Prediction”. This is subject to future work.

5 Conclusion and Future Work

We have analyzed a total of 1159 questionnaires of BSL-23 and 11 additional items on
problematic behavior (E11) from 137 patients for possible features to predict premature
termination of therapy. Using 15 state-of-the-art machine learning classifier approa-
ches, a maximum F-score of only 0.56 could be achieved. This is far from sufficient
and we conclude that premature treatment termination cannot be predicted from the
amount of questionnaire data at hand such as BSL-23 and E11.

Based on those results, we introduced the concept of a private digital patient diary
(PDTD), in which patients, among other questions, are explicitly asked about their
willingness to continue the therapy. A preliminary analysis of 218 diary questionnaires
from 14 patients indicate that patients accept the diary and fill it out truthfully. Based
on this analysis we proposed a decision tree classifier for predicting premature treat-
ment termination based on PDTD questionnaires. When combining the decision tree
classifier with a waiting period, one false alert out of 218 PDTD questionnaires would
have been issued to the therapist.

Since data from 14 patients is far too small to make sound statements of the
prediction accuracy of our approach, we plan to collect large amounts of PDTD
questionnaires in future research.
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Abstract. This paper introduces a new study of the Dice CAPTCHA
usability based on advanced statistical analysis. An experiment is per-
formed on a population of 197 Internet users, characterised by age and
Internet experiences, to which the solution to the Dice CAPTCHA is
required on a laptop or tablet computer. The response time, which is
the solution time to successfully solve the CAPTCHA, together with the
number of tries are registered for each user. Then, the collected data
are subjected to association rule mining for analysing the dependence of
the response time to solve the CAPTCHA in a given number of tries on
the co-occurrence of the user’s features. This analysis is very useful to
understand the co-occurrence of factors influencing the solution to the
CAPTCHA, and accordingly, to realise which CAPTCHA is closer to
the “ideal” CAPTCHA.

Keywords: Dice CAPTCHA · Usability · Association rules
Statistics analysis · FP-Growth

1 Introduction

Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA) is a program-based puzzle which is proposed to be a test that
should be accurately solved by Internet users (humans) and hardly solved by
computer programs. It is based on the “standard” Turing test, which inspects the
ability of a machine (computer) to simulate the human behaviour. In this test,
the questions are asked for the machine and human. The answers are evaluated
by the judge, which is a human. If a machine can answer the questions like
a human, it is said that it has an intelligence like a human, commonly called
Artificial Intelligence (AI). Unlike the Turing test, the judge that evaluates the
c© Springer Nature Switzerland AG 2018
G. Agre et al. (Eds.): AIMSA 2018, LNAI 11089, pp. 152–162, 2018.
https://doi.org/10.1007/978-3-319-99344-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99344-7_14&domain=pdf


Exploring the Usability of the Dice CAPTCHA 153

correctness of the answers is exchanged in the CAPTCHA from the human
to the machine (computer). Hence, CAPTCHA is commonly called “reverse”
Turing test.

Many different types of CAPTCHA have been developed. However, many
CAPTCHA types are lifted because of the low level of security in the practi-
cal work. The programs that simulate the human behaviour are called robot
programs or bots. They integrate and incorporate different algorithms which
can simulate the human behaviour during the CAPTCHA test. The successful
algorithms that are integrated into the bots are Optical Character Recogni-
tion (OCR) algorithms, speech processing algorithms, etc. Hence, a text-based
CAPTCHA and audio-based CAPTCHA proved to be unsecured.

Accordingly, the development of secured CAPTCHAs has moved into the
areas where the computer algorithms are less effective than the humans. These
areas are: (i) images, (ii) videos and (iii) puzzles. Among these areas, the most
promising is the puzzle area. In recent times, different puzzle CAPTCHAs have
been developed. Many of these puzzle CAPTCHAs integrate the image-based
CAPTCHA in a special manner like an image puzzle. However, the real puzzle
CAPTCHA does not integrate any image element. As every puzzle, the task to
solve this CAPTCHA is not easy for the users. Hence, it takes more time to be
solved. Still, it is an almost impossible task to be solved by the bots.

In this paper, we analyse one of the special puzzle-based CAPTCHAs called
Dice CAPTCHA. It consists of two different Dice CAPTCHAs, called Dice
CAPTCHA 1 and Dice CAPTCHA 2 [8]. Previous research proved good char-
acteristics of the Dice CAPTCHAs using statistical analysis [4]. In particular,
it explored the dependence of the Dice CAPTCHAs’ response time from sin-
gle demographic factors of the users. Still, many of their characteristics are
unexplored. To research these characteristics, we perform an experiment on 197
Internet users with different factors of age and Internet experience. Then, we
measure the response time to successfully solve the two Dice CAPTCHAs in
a given number of tries on laptop or tablet computer. This work extends the
previous research given in [4] by analysing the dependence of the response time
to correctly solve the Dice CAPTCHAs in a given number of tries on the co-
occurrence of different factors of the users by employing the association rules.
It is very useful to uncover the co-occurrence of factors influencing the solution
to the CAPTCHAs, and accordingly, to find the CAPTCHA which is closer to
the “ideal” CAPTCHA. The postulate of “ideal” CAPTCHA is to be solved in
reasonable time (less than 30 s), and the response time should not depend on
different personal factors [4].

The paper is organised as follows. Section 2 presents further previous works.
Section 3 describes the Dice CAPTCHA. Section 4 presents the experimental
part and association rule mining. Section 5 gives the results and discusses them.
At the end, Sect. 6 draws the conclusions and outlines future work directions.
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2 Related Work

In recent times, different works have been introduced in the literature for the
analysis of the CAPTCHA types.

Wilkins [14] investigated some of the most common weaknesses of differ-
ent CAPTCHAs, and proposed rotation and warping of individual characters,
a proper selection of a font when designing strong puzzles, as well as avoiding
using dictionary words, public puzzle sources and strong sources of random num-
bers. The study by Burzstein et al. [7] also proposed a set of design principles
against automated solutions which included randomisation of the length of the
CAPTCHA, character size, and waving of the CAPTCHA. The human accuracy
was reduced by using complex charsets without a significant security enhance-
ment, while in the case of breaking the CAPTCHA, it was advised to switch
to another CAPTCHA scheme. Singh and Pal [10] classified the CAPTCHA in
5 categories and examined some drawbacks about the ability of the users to
solve the CAPTCHA. Text-based CAPTCHAs are harder to be solved because
some of the characters or whole words may be unreadable, while with the image-
based CAPTCHAs, the blurring makes the images hard to identify. Audio-based
CAPTCHAs are limited to the English language and may induce errors caused
by similar sounding characters, while video CAPTCHAs take too much time to
be solved. Lastly, the puzzle-based CAPTCHAs are harder to be solved because
of the users’ personal skills. Stark et al. [11] used a deep Convolutional Neural
Network (CNN) and a custom generated database of test images from Cool PHP
CAPTCHA to test the security of the CAPTCHA. They achieved an accuracy
of 9.6% after an initial training with 10 000 images, and over 80% of accu-
racy after an additional training with 50 000 of correct and uncertain samples
for 106 iterations. This study suggests that using only text in these systems
may prove insufficient. Fidas et al. [9] investigated the necessity of user-friendly
CAPTCHAs, and concluded that the currently operated CAPTCHAs are diffi-
cult to be solved. They revealed that the security is the most important factor
for the respondents, while the character distortion is the main obstacle when
solving the CAPTCHA, followed by the background patterns. An evaluation of
different types of CAPTCHA from an aspect of effectiveness, applicability and
limitations was given in [1] by Abdalla et al. They applied and compared two
attack algorithms, probability pattern framework and divide and conquer the
CAPTCHA, on text-based systems, with the highest success rate of 48%. Also,
a previous study on the performance and accessibility of the CAPTCHA intro-
duced a new method for the automatic prediction of the response time to solve
the CAPTCHA, using a regression tree strategy [3]. In [5], image and text-based
systems were investigated and seven hypotheses were analysed for the evalua-
tion of the response time as a function of personal features. A similar analysis
was performed in [6] with a primary focus on using tablets and online business
systems, including e–banking.
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3 The Dice CAPTCHA

The Dice CAPTCHA belongs to the area of the puzzle-based CAPTCHA. It
requires a puzzle to be solved where the dice is visualised as the main element
of the scene [8]. Accordingly, a puzzle related to the dice is asked to be solved in
order to recognise if the user is a human or a bot. Only if the puzzle is correctly
solved, the user is considered as a human.

Two specific types of Dice CAPTCHA have been proposed for protecting the
websites from the bot’s attacks: (i) Homo-sapiens Dice CAPTCHA (Dice 1), and
(ii) All-the-rest Dice CAPTCHA (Dice 2) [8].

Dice 1 CAPTCHA requires to roll the dice and enter the sum of the digits
which are visualised on the faces of the dice. Figure 1(a) shows a sample of Dice
1 CAPTCHA.

Dice 2 CAPTCHA consists in rolling the dice and enter the digits which are
depicted on the faces of the dice as they are [8]. Figure 1(b) shows a sample of
Dice 2 CAPTCHA.

Fig. 1. A sample of (a) Dice 1 CAPTCHA, and (b) Dice 2 CAPTCHA

4 The Proposed Study

The proposed study analyses the usability of solving the Dice 1 and Dice 2
CAPTCHAs on laptop or tablet computer from a population of Internet users.
It is accomplished by investigating the dependence of the response time to suc-
cessfully solve both CAPTCHAs in a given number of tries on the co-occurrence
of some features of the users which solve the CAPTCHAs. This dependence is
modelled by the association rules.

4.1 Data Gathering

A population of 197 users is tested in real-life contexts, which require the solution
of Dice 1 and Dice 2 CAPTCHAs on a laptop or tablet computer. The response
time to correctly solve the CAPTCHAs (from the beginning until the end of the
task), together with the number of tries, are registered for each user. This time
is given in seconds.

Users take part voluntarily to this study. In particular, they have been
informed that their data would be used anonymously for study purposes of the
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research team. Accordingly, they have agreed to an online consent form before
starting the experiment. However, they did not know the aim of the study, nei-
ther the registered data, in order to avoid bias effects.

Users’ data are stored into a database of 197 instances (tested users), each
with the following 6 variables: (i) age, (ii) Internet experience per years of Inter-
net use, (iii) Internet experience per daily hours of Internet use, (iv) type of
device where the CAPTCHA is solved (tablet or laptop), (v) number of tries,
and (vi) response time. One database is available for each of the two Dice
CAPTCHAs. Data have been processed by a statistical tool which confirmed
their statistical significance.

4.2 Data Analysis

The users adopted different devices to solve Dice 1 CAPTCHA and Dice 2
CAPTCHA. Accordingly, 100 out of 197 users employed a tablet device to solve
the CAPTCHAs, while the rest of 97 users employed a laptop computer to solve
the CAPTCHAs. Also, the users needed to successfully solve Dice 1 CAPTCHA
and Dice 2 CAPTCHA. They had 3 tries to solve these CAPTCHAs. Dice 1
CAPTCHA is solved by 163 users in the first try, by 26 users in the second try,
and by 8 users in the third try. By contrast, Dice 2 CAPTCHA is solved by
182 users in the first try, by 10 users in the second try, and by 5 users in the
third try.

The total number of male users is 122 or 61.93%, while the rest of the 75
users are women or 38.07%. The age of the users is between 28 and 62 years.
Their Internet experience per years of Internet use is in the range from 1 to 19.
Their Internet experience per daily hours of Internet use is between 1 and 6.

20 30 40 50 60 70 80
0

10

20

30

40

Age

F
re

q
u

e
n

c
y

Mean = 4.35e+01
Std Dev. = 9.08e+00
N = 197

(a)

0 5 10 15 20
0

10

20

30

40

50

Internet experience in years

F
re

q
u

e
n

c
y

Mean = 9.91e+00
Std Dev. = 3.40e+00
N = 197

(b)

0 1 2 3 4 5 6 7 8
0

20

40

60

80

Internet daily experience in hours

F
re

q
u

e
n

c
y

Mean = 3.06e+00
Std Dev. = 1.38e+00
N = 197

(c)

Fig. 2. Frequency histogram (a) of the users’ age, (b) of the users and their Internet
experience per years, and (c) of the users and their daily Internet use

The frequency histogram of the users’ age is shown in Fig. 2(a). The fre-
quency histogram of the users and their Internet experience per years is given
in Fig. 2(b). It is worth noting that the distribution of the Internet experience
in years of Internet use has a Gaussian like shape. Figure 2(c) illustrates the
frequency histogram of the users and their daily hours of Internet use. It can be
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noticed that the histogram has a shape which is slightly deviant from the ideal
normal distribution.

The response time for Dice 1 CAPTCHA varies from 1.4 to 31 s. Hence, it
is within the range of 29.60 s. Its distribution is given in Fig. 3(a). The highest
number of users, i.e. 49 solve Dice 1 CAPTCHA in 8.00 s. Hence, the median is
equal to 8.00 s, while the mean value is 9.48 s. Furthermore, Dice 1 CAPTCHA
is typically solved by the users in 12.09 s on tablet, and in 6.78 s on laptop
computers.

The response time for Dice 2 CAPTCHA varies from 3 to 35 s. Hence, it
is within the range of 32 s. Its distribution is given in Fig. 3 (b). The highest
number of users, i.e. 80 solve Dice 2 CAPTCHA in 6.00 s. Hence, the median is
equal to 6.00 s, while the mean value is 7.34 s. Furthermore, Dice 2 CAPTCHA
is typically solved by the users in 8.59 s on tablet, and in 6.04 s on laptop
computers.
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Fig. 3. Frequency histogram of the response time distribution for: (a) Dice 1
CAPTCHA, and (b) Dice 2 CAPTCHA

According to the results from the distributions, Dice 2 CAPTCHA has a
lower response time than Dice 1 CAPTCHA, with most of the values <30 s.

4.3 Data Discretisation and Association Rules Extraction

In order to apply the association rule mining, the database variables have been
discretised in ranges. In particular, the age is divided into typical intervals below
35 and above 35 years. The Internet experience per years of Internet use is split
into four intervals: (i) (−∞, 5] (low experience), (ii) (5–10] (middle experience),
(iii) (10–15] (high experience), and (iv) (15, +∞) (very high experience). The
Internet experience per daily hours of Internet use is divided into three intervals:
(i) (−∞, 2] (low daily use), (ii) (2, 4] (middle daily use), and (iii) (4, +∞) (high
daily use). Finally, the response time of both Dice CAPTCHAs has the following
five intervals: (i) (−∞, 5.8] (very low), (ii) (5.8, 8.2] (low), (iii) (8.2, 13] (middle),
(iv) (13, 22] (high), and (v) (22, +∞) (very high).

The discretisation of the Internet experience is performed by the Equal-
Width binning method [12], which naturally splits the data into intervals of
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the same width. In order to discretise the response time, the K-Medians clus-
tering method is used [2], which proved the best performances according to the
extracted association rules. In terms of number of intervals, a test has been
conducted by varying this number multiple times for the Internet experience
and response time. At the end, the best number of intervals was selected which
received the highest variability of response time and tries in the association rules.

The discretised database is subjected to association rule mining for exploring
the dependence of the response time to correctly solve the Dice 1 and Dice 2
CAPTCHAs in a given number of tries on the co-occurrence of: (i) age, (ii) type
of device, (iii) Internet experience per years of Internet use, and (iv) Internet
experience per daily hours of Internet use. Each instance of the database is
a transaction characterised of 6 items. Each item corresponds to the value of
a distinct variable. From the transactions, the Association Rules (ARs) with
support and confidence higher than or equal to an established threshold are
extracted using the FP-Growth algorithm [13]. An AR is an implication W → Z,
representing the dependence of the consequent itemset (Z) from the antecedent
itemset (W ). The strength of the ARs is measured by: (i) support, (ii) confidence,
and (iii) lift. Support represents the statistical significance of an AR. It is the
ratio between the number of transactions including W ∪Z and the total number
of transactions. Confidence measures the conditional probability of W given Z.
It is the ratio between W ∪Z and the number of transactions only including W .
Lift quantifies the predictability of Z given W .

5 Results and Discussion

The experimentation has been performed in Matlab R2016b on a laptop com-
puter Quad-Core 2.2 GHz, with 16 GB RAM and UNIX operating system. A trial
and error procedure is conducted by extracting the ARs with different values of
support and confidence thresholds from 5% to 90%. The values of threshold are
selected according to: (i) number of extracted ARs, (ii) variability of the response
time and number of tries in the consequent of the ARs, and (iii) variability of
the other features in the antecedent of the ARs. Accordingly, a combination
of the parameters corresponding to a low number of ARs with high variability
in the antecedent and consequent of the ARs is preferred, in order to capture
the most meaningful patterns. In particular, the thresholds of minimum support
and confidence are respectively 5% and 40%. At the end, the ARs are filtered in
order to only keep those having in the consequent the response time and number
of tries.

Tables 1 and 2 show the extracted ARs for Dice 1 and Dice 2 CAPTCHA
in terms of antecedent and consequent. Also, the support, confidence and lift
values are reported for each AR.

We can observe that Dice 2 CAPTCHA is more easily solved than Dice 1
CAPTCHA. In fact, many ARs of Dice 2 CAPTCHA are characterised by a very
low response time in their consequent (see Table 2). On the contrary, most of
the ARs of Dice 1 CAPTCHA include a low response time in their consequent



Exploring the Usability of the Dice CAPTCHA 159

Table 1. Association rules for Dice 1 CAPTCHA

ID Antecedent Consequent Supp Conf Lift

1 Above 35, Tablet, High Int. experience 1 t, Middle 0.06 0.44 1.99

2 Middle Int. experience 1 t, Low 0.24 0.45 1.34

3 Middle Int. experience, Middle Int. daily use 1 t, Low 0.13 0.52 1.55

4 Below 35 1 t, Low 0.11 0.44 1.31

5 Middle Int. experience, below 35 1 t, Low 0.08 0.53 1.60

6 Tablet, below 35 1 t, Low 0.08 0.42 1.26

7 Above 35, Middle Int. experience 1 t, Low 0.17 0.42 1.25

8 Middle Int. experience, Low Int. daily use 1 t, Low 0.09 0.45 1.34

9 Above 35, Middle Int. experience, Low Int. daily use 1 t, Low 0.06 0.43 1.29

10 Above 35, Middle Int. experience, Middle Int. daily use 1 t, Low 0.10 0.49 1.45

11 Laptop 1 t, Low 0.20 0.40 1.20

12 Middle Int. experience, Laptop 1 t, Low 0.17 0.51 1.54

13 Above 35, Middle Int. experience, Laptop 1 t, Low 0.14 0.48 1.44

14 Middle Int. experience,Laptop, Low Int. daily use 1 t, Low 0.06 0.50 1.49

15 Above 35, Middle Int. experience, Laptop,Low Int. daily use 1 t, Low 0.05 0.46 1.37

16 Above 35, Laptop 1 t, Very low 0.18 0.42 1.94

17 Above 35, Laptop,Low Int. daily use 1 t, Very low 0.08 0.40 1.83

18 Above 35, Middle Int. experience,Laptop,Low Int. daily use 1 t, Very low 0.05 0.42 1.91

19 Laptop, Middle Int. daily use 1 t, Low 0.10 0.45 1.36

20 Middle Int. experience,Laptop, Middle Int. daily use 1 t, Low 0.10 0.58 1.72

21 Laptop, High Int. experience 1 t, Very low 0.08 0.64 2.93

22 Above 35, Laptop,High Int. experience 1 t, Very low 0.07 0.67 3.05

23 Above 35, Laptop,Middle Int. daily use 1 t, Low 0.09 0.47 1.41

24 Above 35, Middle Int. experience, Laptop, Middle Int. daily use 1 t, Low 0.09 0.57 1.69

(see Table 1). Accordingly, it is easier to enter the digits which are shown on the
faces of the dice instead of entering their sum.

It is worth noting that Dice 1 CAPTCHA can be more easily solved on the
laptop computer than on the tablet computer. In fact, although both cases can
be successfully solved in one try, they have a difference in the response time. In
the first case, the ARs including the laptop are characterised by a low or very
low response time.

In the second case, the ARs including the tablet have a middle-low response
time (see Table 1). A similar condition can be observed for Dice 2 CAPTCHA,
where users operating on the tablet take a low response time, while users working
on the laptop take a very low response time (see Table 2). It clearly proves the
difficulties of the users in solving the CAPTCHA on the tablet computer. An
explanation for the difference in response time between tablet and laptop use
can be found in the: (i) touchscreen, and (ii) smaller size of the screen in the
tablet. In fact, the use of the touchscreen in the tablet can make more difficult the
typing of the digits on the virtual keyboard for some categories of Internet users.
Also, a screen of smaller size in the tablet can reduce the ability to recognise the
numbers appearing on the dice.

We can notice that there is no clear statistically significant difference of the
age groups in the response time to Dice CAPTCHA in a given number of tries.
In fact, for Dice 1 CAPTCHA, there is one AR (rule 4) with age group below 35
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years, while there is no rule with an age above 35 years. Hence, nothing can be
deduced about the age difference. For Dice 2 CAPTCHA, the rules 4 and 7 show
a difference in terms of response time between users below and above 35 years.
However, their lift value is between 1.16 and 1.19. Hence, the predictability of
the response time from the age is not high.

On the contrary, a difference can be noticed when the age is combined with
other features, including the type of device and the Internet experience. In Dice
1 CAPTCHA, we can observe the rules 1 and 6, where the age difference on
the tablet computer determines a difference in response time (users above 35
years take a middle time in solving the CAPTCHA) with a lift value up to 2.

Table 2. Association rules for Dice 2 CAPTCHA

ID Antecedent Consequent Supp Conf Lift

1 Middle Int. experience 1 t, Low 0.22 0.41 1.11

2 Middle Int. experience,Tablet 1 t, Low 0.09 0.44 1.18

3 Tablet, Middle Int. daily use 1 t, Low 0.07 0.41 1.11

4 Below 35 1 t, Low 0.11 0.44 1.19

5 Middle Int. experience, below 35 1 t, Low 0.06 0.46 1.25

6 Tablet, below 35 1 t, Low 0.08 0.42 1.14

7 Above 35 1 t, Very low 0.32 0.43 1.16

8 Above 35, Low Int. daily use 1 t, Very low 0.15 0.45 1.21

9 Above 35, High Int. experience 1 t, Very low 0.10 0.42 1.11

10 Low Int. daily use,High Int. experience 1 t, Very low 0.05 0.40 1.06

11 Above 35, Middle Int. experience, Middle Int. daily use 1 t, Low 0.08 0.41 1.11

12 Above 35, Tablet, Middle Int. daily use 1 t, Low 0.05 0.42 1.12

13 Middle Int. experience 1 t, Very low 0.22 0.41 1.09

14 Middle Int. daily use 1 t, Very low 0.16 0.41 1.09

15 Middle Int. experience,Middle Int. daily use 1 t, Very low 0.11 0.44 1.16

16 Above 35, Middle Int. experience 1 t, Very low 0.20 0.51 1.35

17 Middle Int. experience,Low Int. daily use 1 t, Very low 0.10 0.47 1.26

18 Above 35, Middle Int. experience, Low Int. daily use 1 t, Very low 0.10 0.63 1.69

19 High Int. daily use 1 t, Low 0.08 0.42 1.14

20 Middle Int. experience,High Int. daily use 1 t, Low 0.05 0.58 1.56

21 Tablet, High Int. daily use 1 t, Low 0.06 0.43 1.16

22 Above 35, Middle Int. daily use 1 t, Very low 0.14 0.45 1.20

23 Above 35, Middle Int. experience, Middle Int. daily use 1 t, Very low 0.09 0.46 1.23

24 Laptop 1 t, Very low 0.27 0.55 1.45

25 Middle Int. experience,Laptop 1 t, Very low 0.18 0.54 1.45

26 Above 35, Laptop 1 t, Very low 0.26 0.60 1.60

27 Above 35, Middle Int. experience,Laptop 1 t, Very low 0.17 0.59 1.56

28 Laptop, Low Int. daily use 1 t, Very low 0.12 0.53 1.42

29 Above 35, Laptop,Low Int. daily use 1 t, Very low 0.12 0.57 1.53

30 Middle Int. experience,Laptop,Low Int. daily use 1 t, Very low 0.08 0.58 1.53

31 Above 35, Middle Int. experience,Laptop,Low Int. daily use 1 t, Very low 0.08 0.62 1.66

32 Laptop, Middle Int. daily use 1 t, Very low 0.13 0.57 1.51

33 Above 35, Laptop, Middle Int. daily use 1 t, Very low 0.12 0.63 1.68

34 Middle Int. experience, Laptop, Middle Int. daily use 1 t, Very low 0.09 0.54 1.45

35 Above 35, Middle Int. experience, Laptop, Middle Int. daily use 1 t, Very low 0.09 0.57 1.51

36 Laptop, High Int. experience 1 t, Very low 0.08 0.60 1.60

37 Above 35, Laptop, High Int. experience 1 t, Very low 0.08 0.71 1.90
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A difference can also be observed within the same age group above 35 years,
where a high number of years in Internet use determines a very low response
time, while a middle number of years determines a low response time in solving
the CAPTCHA on the laptop computer (see rules 13 and 22 with high lift value
up to 3 and confidence up to 0.67). It is worth noting that a long daily Internet
use does not support the users above 35 years in quickly solving the CAPTCHA
in one try on the laptop computer (see rules 18 and 24 where a low Internet
daily use determines a very low response time, while a middle Internet daily use
determines a low response time). In Dice 2 CAPTCHA, users above 35 years
operating on the laptop computer are not influenced by the Internet experience
in years or in daily hours. It can be observed from the rules 27, 29, 33, and
37 where the difference in Internet experience determines a very low response
time in all cases. Hence, in Dice 1 CAPTCHA, the long term Internet experience
(years of use) instead of the short term one (daily use) has an influence in quickly
solving the CAPTCHA. On the contrary, in Dice 2 CAPTCHA, both types of
experience have a low influence on the response time.

From the extracted ARs, we can summarise as follows: (1) Dice 2 CAPTCHA
is more easily solved than Dice 1 CAPTCHA, (2) both Dice 1 and 2 CAPTCHAs
are more easily solved on the laptop than on the tablet computer, (3) there is no
statistically significant difference of the age groups in the response time to Dice
CAPTCHA in a given number of tries, (4) age groups operating on the tablet
computer show a statistically significant difference in response time for Dice 1
CAPTCHA, (5) a long Internet experience in years of use reduces the response
time to solve the Dice 1 CAPTCHA on the laptop computer, while it has no
influence on the response time to solve the Dice 2 CAPTCHA for the age group
above 35 years, (6) a long daily Internet use does not support the users above 35
years in quickly solving the Dice 1 and 2 CAPTCHAs in one try on the laptop
computer.

6 Conclusions

According to this analysis, we can conclude that Dice 2 CAPTCHA is solved
in less time <30 s than Dice 1 CAPTCHA. Also, Dice 2 CAPTCHA is less
influenced by age and Internet experiences than Dice 1 CAPTCHA. Hence,
Dice 2 CAPTCHA is closer to the postulate of “ideal” CAPTCHA than Dice
1 CAPTCHA. Still, effort is needed for designing a Dice CAPTCHA which
could be more independent from the users’ abilities. This analysis proved that
Dice CAPTCHA is not still easily solved on the tablet computer. Also, this
study showed the main feature combinations which influence the response time
to successfully solve the Dice CAPTCHA in a given number of tries. It was
accomplished by the association rule mining, which exploited the dependence
of successfully solving the Dice 1 and 2 CAPTCHAs in a given number of tries
from the co-occurrence of age, type of device and Internet experiences.

Future work will create an artificial neural network model for predicting
the response time to successfully solve the Dice CAPTCHA from input factors
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of the users. Since the Dice 2 CAPTCHA is less influenced by personal and
demographic factors of the users, we expect to obtain a lower predictability of
its response time than the Dice 1 CAPTCHA.
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3. Brodić, D., Amelio, A., Ahmad, N., Shahzad, S.K.: Usability analysis of the
image and interactive CAPTCHA via prediction of the response time. In: Phon-
Amnuaisuk, S., Ang, S.-P., Lee, S.-Y. (eds.) MIWAI 2017. LNCS (LNAI), vol.
10607, pp. 252–265. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69456-6 21
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Abstract. In this paper, we present an approach to forecasting the number of
paintings that will be sold daily by Vivre Deco S.A. Vivre is an online retailer
for Home and Lifestyle in Central and Eastern Europe. One of its concerns is
related to the stocks that it needs to make at its own warehouse (considering its
limited available space) to ensure a good product flow that would maximize both
the company profit and the users’ satisfaction. Since stocks are directly con-
nected to sales, the purpose is to predict the amount of sales from each category
of products, given the selling history of these products. Thus, we have chosen a
category of products (paintings) and used ARIMA for obtaining the predictions.
We present different considerations regarding how we chose the model, along
with the solver and the optimization method for fitting ARIMA. We also discuss
the influence of the differencing on the obtained results, along with information
about the runtime of different models.

Keywords: Time series analysis � Sales prediction � Auto-regression
Moving-average � Differencing � Lags � ARIMA � FBProphet

1 Problem Description

Vivre is a leading online retailer for Home and Lifestyle in Central and Eastern Europe,
currently activating in 8 countries from this area. They are offering their customers both
limited-time discounts (“flash sales”) called “campaigns” in which are grouped prod-
ucts from similar fields (such as “entrance and bath mats”, “sun glasses” or “LEGO
accessories”) and long-term available products, which are grouped in the “product
catalog”.

Since 2012, when it was launched, Vivre accumulated an important quantity of
historical data regarding sales, providers and customers, information that could be used
to improve the company’s activity.

The problem described in this paper derived as an attempt to forecast the daily
quantity from each product to be sold by Vivre. These numbers could be very valuable
for the company, as they would help maintain in the warehouse only the right stock
from each product, under the constraints imposed by the restricted storage area.
Another benefit would be that of allowing faster products delivery towards clients, (as
the products are readily available in the warehouse and thus one does not have to also
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wait for their arrival from the providers,) which can be translated in increasing the
customer satisfaction and a better positioning of the brand on the market. Finally, good
estimation of the daily sold quantities of each product could help improve the flow of
the incoming and outcoming deliveries for the products, thus optimizing the usage of
the warehouse and eliminating the time lost when trailers are available but there is no
storage in the warehouse or there are not enough products to be shipped. This may
finally translate in larger profit for the company.

However, even though these numbers are extremely important, it is not trivial to
derive them even when enough historical data is available, due to several factors. First,
there are over 1 million different product ids in the database, making the task of
predicting the daily sales for all of them time and resource consuming, especially
considering this a recurrent (daily) task. Secondly, at any moment there are not more
than about 50–60.000 products available on the website and thus, predicting the sale of
any of the other products would be meaningless, as they cannot be seen by the user
(and therefore cannot be bought by them). Thirdly, among all the products, there are
numerous that are/were available on the website only for a very limited amount of time
(during a campaign, for less than 30 days for a history spreading for more than 6 years),
thus not having enough information for predicting their sales. Fourthly, there are
products that may be replaced one for the other (e.g. products having different colors or
sizes, but serving to the same purpose) and thus their sales are tightly connected.
Finally, the sale of a product is highly influenced by the seasonality, marketing budget,
existing campaigns on the website, providers of the goods that are available for buying
and many other factors, some of them being logged in the system, while for others not
having any information at all.

Considering all the above problems, a design decision has been made with the
purpose to alleviate some of the issues: instead of trying to forecast the daily quantity to
be sold for each product from the database, first a grouping over the similar products
was made and then the forecast of the daily quantity to be sold was generated for each
such group (called “generic name”). This decision was intended to solve the first four
issues, as it seriously reduced the number of (group of) products for which predictions
should be provided (from over a million to around 27,000). Moreover, it solved the
problem of products not being available on the website, since all the obtained groups
had at least one representative on the site. Finally, since similar products were grouped
in the same generic name, the problem with rarely available products and with the
replaceable products was also solved as they were simply part of the same larger
distribution. Another effect of this decision was to diminish the scarcity and variability
in the data, which might lead in the end to better predictions. On the other hand, there
was also a drawback since, by joining the information related to multiple products in
the same generic name, after prediction, the obtained data should be disentangled to
obtain the quantities for the initial products.

Thus, the task described in this paper is to forecast the daily quantity to be sold for
each generic name that was identified starting from the product ids from the database.
Considering the historical data that was aggregated for each such generic name, we
used time series analysis (that is described in the next section) for obtaining the
predictions. Section 3 presents a use case scenario for one of the generic names that
was used, along with the problems and decisions that were made. The obtained results
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are presented in Sect. 4, while the paper concludes with our observation regarding the
used methodology and with some proposed directions for extending this research.

2 Time Series Analysis and Some of Its Applications

A time series is “a set of well-defined data items collected at successive points at
uniform time intervals” [1]. Time series analysis represents a class of methods for
processing these items to determine the main patterns of the dataset, which then may
help predicting future values based on the identified patterns. One of the simplest
method from this class is called autoregressive (AR) model and “specifies that the
output variable depends linearly on its own previous values” [2]. The notation AR(p) –
autoregressive model of order p – means that the current value depends on the previous
p values of the time series. The expression of AR(p) is given by (1), where c1, c2…, cp
are the parameters of the model, c is a constant, and e1, e2, …, et are white noise error
terms.

Xt ¼ cþ
Xp

i¼1

ciXt�i þ et ð1Þ

In 1951, the AR model was extended by Whitle [3] into the autoregressive-moving-
average (ARMA) model, which had two parts: an autoregressive (AR) part, consisting
on the regression of the variable on its own past values, and a moving average
(MA) part, modelling the error term as a linear combination of the current error term,
along with some of the previous ones. The new model, depicted as ARMA(p, q)
represents a model with p autoregressive terms and q moving-average terms, given by
(2), where c1, c2, …, cp are the AR model parameters, h1, h2, …, hq are the MA
model parameters, c is a constant, and e1, e2, …, et are white noise error terms:

Xt ¼ cþ et þ
Xp

i¼1

ciXt�i þ
Xq

i¼1

hiet�i ð2Þ

This new model was further improved by Box and Jenkins [4] to obtain the
Autoregressive Integrated Moving Average (ARIMA) model. The difference between
ARMA and ARIMA is that the latter’s first step is to convert a non-stationary data to a
stationary one by replacing the actual data values with the difference between these
values and previous ones (process called “differencing”, that may be performed mul-
tiple times). The ARIMA model has three parameters ARIMA(p, d, q), where p is the
autoregressive order, d is the degree of differencing (the number of times the data have
had past values subtracted) and q is the order of the moving-average model. Its formula
is the same as in (2), with the only difference that instead of having the actual values Xi,
we work with the difference between Xi and past values. One observation that should
be made is that ARIMA(p, 0, q) represents in fact the ARMA(p, q) model, while
ARIMA(p, 0, 0) represents the AR(p) model.
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Being given the 3 parameters (p, d, q) and the actual data X, the ARIMA model
uses the Box-Jenkins method [4] to find the best fit of a time-series model to past values
of a time series. Later on, the parameters identified during fitting may be used to
generate predictions on the future behavior of the time series. However, choosing the
best values of p and q is not easy. Several options were proposed by the researchers.
One option was proposed by Brockwell and Davis [5] who state that “our prime
criterion for model selection will be the AICc”, which stands for the Akaike infor-
mation criterion with correction [6]. Another option was given by Hyndman &
Athanasopoulos [7] who suggest how to automatically determine both the values of p
and q using ACF (autocorrelations function) and PACF (partial autocorrelations
function) plots.

Since their inception, the ARIMA models were used to make predictions in various
fields: from estimating the monthly catches of pilchard from Greek waters [8], to
forecasting the Irish inflation [9], to predicting next-day electricity prices in Spain and
Californian markets [10], to estimating the incidence of hemorrhagic fever with renal
Syndrome (HFRS) in China during 1986–2009 [11], to foretelling the sugarcane
production in India [12], and finally to prognosticate the energy consumption and
greenhouse emission of a pig iron manufacturing organization [13]. However, many of
the ARIMA uses were in the field of stock forecasting [14, 15], where they were trying
to find the best parameters for estimating the stock prices of a particular stock.

In the following section, we will present a case study of applying different ARIMA
models for predicting not the stock prices, but the quantities to be sold from different
groups of products by Vivre. We could have tried to estimate the amount of sales, but
since the product prices vary a lot in time, we decided to have a more stable estimation
and opted out for the product quantities.

3 Case Study and Obtained Results

In this section, we will present the experiments that we undertook using the above-
mentioned models with the purpose to predict the daily quantity to be sold for one of
the generic names that were identified starting from the product ids from the database.
Thus, we have chosen the “painting” generic name, having the distribution of daily
quantities sold presented in Fig. 1. We chose this generic name because of two reasons:
there was enough data available to enable predictions (only few days had zero-counts)
and the distribution has some seasonality, but in the same time features some spikes
that could be interpreted as outliers. Given this distribution, our task was to use the
historical data from January 1st, 2014 to December 31st, 2017 (1461 training samples)
for training the model, and the rest of the data (from January 1st to May 7th, 2018 – 127
samples) for testing the quality of the forecasting. The quality of the trained models
was tested using 3 different values: RMS (root mean square error) for both the training
and testing sets and MAPE (mean absolute percentage error).

Therefore, we started building several ARIMA models, with different parameters,
and tested the forecasting accuracy on each of them. To start with, we used AR with
different orders (p) to generate some initial predictions. The values of p that were used
in these tests were influenced by some basic assumptions regarding the data: we
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assumed that the current data might be influenced by the value from the previous day
(AR(1)), by the ones from the previous week (AR(7)), month (AR(31)), or year (AR
(365)). The next step was to use various differencing to see if the data seasonality
improves the results or not. However, since the results of AR(365) were very poor, we
stopped using it for tests. Thus, we tested monthly (differencing of 31), weekly (dif-
ferencing of 7) and daily seasonality (differencing of 1) combined with the remaining
AR orders. We should mention that in all our experiments, by differencing of d, we
understand single differencing (not stacked differencing), with lags = d (instead of
Xi − Xi−1, we used Xi − Xi−d). The obtained results are reported in Table 1.

Afterwards, we moved on to ARMA and tested models with different p (2–7) and q
(1, 2, 3). To estimate the best values of p and q, we used the Hyndman & Athana-
sopoulos [7] methodology based on ACF and PACF (see Table 2). Since ARMA could
use during training multiple solvers (lbfgs – limited memory Broyden-Fletcher-
Goldfarb-Shanno; newton – Newton-Raphson; nn – Nelder-Mead; cg – conjugate
gradient; ncg – non-conjugate gradient; and powell) along with 3 different methods

Fig. 1. The distribution of the daily quantity sold for the generic name “painting” by Vivre
Deco. The values from Jan 2014 to Jan 2018 were used for training, while the ones from Jan
2018 to May 2018 were used for testing.

Table 1. Results obtained using the AR model. The first value represents the order of the AR
model, while the second represents the differencing that was used (e.g. 31, 7 means AR(31),
applied not on the real values, but on the difference Xi − Xi−7). A value of 0 means that no
differencing was used (the real values were used to train the AR model).

Error 365, 0 31, 0 7, 0 1, 0 31, 31 31, 7 31, 1 7, 7 7, 1 1, 1

RMS 68.3 38.77 40.82 43.33 58.3 57.74 83.24 39.56 54.37 37.13
MAPE 109.7 42.06 40.89 45.26 79.3 72.04 169.2 56.44 88.73 41.55
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(css – maximize the conditional sum of squares likelihood; mle – maximize the exact
likelihood via the Kalman Filter; and css-mle – maximize the conditional sum of
squares likelihood and then these values are used as starting values for the computation
of the exact likelihood via the Kalman filter) for determining the model parameters, we
used a grid search to find the best combination of the solver and the method for fitting
the most promising ARMA model (ARMA(7, 0, 2)). The results are reported in
Table 3.

Finally, we used the Augmented Dickey–Fuller test to verify if our time series was
stationary, to find out if differencing could improve the results. Even though the test
showed that the series was stationary, meaning that integration will not help, we still
verified a couple of integrated models (with d = 1) to see the seasonality influence on
the reference values that were used. The results are presented in Table 4. In most of
these tests the differencing was made explicitly before running ARIMA, and thus the
value of d = 0. However, we also made a test on a random combination of p and q (5, 1)
to see if the implicit integration of ARIMA(5, 1, 1) would yield different results. These
are reported in Table 2.

For each of the above models, we used the ARIMA method from the statsmodels.
tsa.arima_model.ARIMA package from python. This package offered two types of
predictions, and we used both in our experiments: forecast, that could predict the values
for each day from the testing set in a single run based on the parameters that were
obtained after training; and predict, that was predicting only the next value in the time
series and was run iteratively for each day from the testing set, interleaved with

Table 2. Results obtained using the ARMA model. Except for the last column, the results were
obtained using an ARIMA(p, 0, q) model, where p = the first value (AR order), q = the second
value (MA order). The last represents the differencing that was used. (e.g. (3, 2), 365 means
ARIMA(3, 0, 2), applied not on the real values, but on the difference Xi − Xi−365). A value of 0
means that no differencing was used (the real values were used to train the AR model). The last
column corresponds to the results obtained using ARIMA(5, 1, 1).

Error (7, 2),
0

(6, 2),
0

(5, 2),
0

(4, 2),
0

(3, 2),
0

(7, 1),
0

(5, 1),
0

(3, 2),
365

(4, 3),
7

(5, 1, 1)

RMS Train 33.53 33.68 33.66 33.97 33.98 33.57 33.83 46.49 48.1 65.3
RMS 1 step 38.52 38.48 36.1 38.46 38.47 38.57 35.96 57.76 51.77 34.17
MAPE 1
step

38.73 38.69 31.5 38.76 38.79 38.75 39.21 73.55 59.48 43.87

RMS iter 31.94 32.32 26.7 32.65 32.66 32.02 31.58 74.02 77.27 31.58
MAPE iter 32.86 33.41 24.22 33.8 34.77 33.23 39.82 97.22 144.66 39.82
Converged yes yes no yes yes yes yes yes yes yes
Converged
iter

yes no no no yes no no no no no

ACF 5 5 5 5 5 5 5 3 4 5
PACF 2 2 2 2 2 2 2 2 3 2
lags 31 31 31 31 31 31 31 365 7 31
Predictions
#

127 127 27 127 127 127 127 114 127 127
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re-fitting the model using the true value that was observed for the previous day. The
iterative method always yielded better results than the 1-step forecasting, as it used
more information. The results of the best model (ARIMA(7, 0, 2)) using powell solver
and css-mle optimizing method are presented in Fig. 2.

Since some of the trained models did not converge (such as ARIMA(5, 0, 2)), we
also report this fact, along with the phase when they failed to converge (during training
or iterative testing). If the model did not converge during the iterative testing, it was

Table 3. Solver and method influence on the results obtained using the ARIMA(7, 0, 2) model.

Solver Method Time RMS MAPE Converged Converged iter Predictions

lbfgs css-mle 377.23 31.94 32.86 yes yes 127
mle 365.52 31.94 32.86 yes yes 127
css 45.5 31.91 32.88 yes yes 127

newton css-mle 633.2 31.94 32.86 yes yes 127
mle 961.88 31.94 32.86 yes yes 127
css 78.65 31.91 32.88 yes yes 127

nm css-mle 200.06 31.95 32.81 no no 127
mle 131.72 31.97 32.94 no no 127
css 30.83 31.91 32.93 no no 127

cg css-mle 1197.41 31.94 32.88 no no 127
mle 923.67 31.94 32.87 no mostly 127
css 96.39 31.92 32.85 no no 127

ncg css-mle 1099.61 31.94 32.86 yes yes 127
mle 1168.33 31.94 32.86 yes yes 127
css 171.38 31.91 32.88 yes yes 127

powell css-mle 208.18 31.93 32.83 yes yes 127
mle 139.3 31.97 32.96 yes yes 127
css 31.61 31.94 33.01 yes yes 127

Table 4. Lag influence the results obtained using the ARIMA(7, 0, 2) model.

Lags 0 365 31 7 1

RMS Train 33.57 45.74 48.77 39.54 33.36
RMS 1 step 38.57 57.78 52.56 71.66 68.87/72.88
MAPE 1 step 38.75 73.62 61.64 106.4 100
RMS iter 32.02 54.62 64.74 45.65 62.15
MAPE iter 33.23 68.98 107.91 80.63 99.2
Converged yes yes yes yes yes
Converged iter no yes yes yes no
ACF 5 3 4 4 1
PACF 2 2 2 3 1
lags 31 365 31 7 1
Predictions # 127 127 127 127 38
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unable to generate the predictions for all the 127 samples from the testing set and thus
we also report the number of generated predictions.

Finally, as the computation that is done for this generic name (“painting”) should be
done for all the generic names, it means that the whole process should be repeated a
couple thousand times. Thus, another important element is the time needed to obtain
the predictions and therefore, for the most promising runs, this information is also
presented.

Besides the ARIMA models, we also tested the FBProphet [16], which is a tool “for
producing high quality forecasts for time series data that has multiple seasonality with
linear or non-linear growth”. Prophet may be run with or without daily seasonality.
Both methods generated very similar predictions (RMS 1 step 33.18/33.21; MAPE 1
step 37.85/37.77; RMS iterative 32.26/32.25; MAPE iterative 41.29/41.35; runtime
1668 s/1380 s), which were poorer than the ones obtained using ARIMA(7, 0, 2). We
also tried to model the time series spikes using a different distribution with the help of
the holiday option from FBProphet, but the results didn’t improve much (RMS 1 step
33.04; MAPE 1 step 37.43), remaining worse than the ones of ARIMA.

4 Discussion and Conclusion

The AR results showed that the best model was the one involving the previous 7 days.
They also revealed that, except for AR(1) with daily seasonality, including differencing
according to different seasonality worsen the results.

The table presenting the ARMA scores shows that the methodology based on ACF
and PACF does not work in our case, the model with p and q generated by the ACF and
PACF being the only one that did not converge during training (ARIMA(5, 0, 2)).
Moreover, all the models with p and q chosen this way did not converge during testing.

Fig. 2. The best results obtained by ARIMA(7, 0, 2). The triangles represent the original values,
the circles depict the 1-step forecasting and the ‘x’-s show the iterative predictions.
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Although ARIMA(5, 0, 2) seems to have the best results (MAPE 24.22), it should be
noticed that the model managed to provide only 27 predictions out of 127 required. The
best model was ARIMA(7, 0, 2) which converged during both training and testing.

The investigation of different solvers and optimization methods showed that they
have a very small influence on the obtained results. However, since some of the
methods did not converge, for further experiments was chosen the combination leading
to the second-best result (powell solver, css-mle method). This combination also had a
reduced running time, which counts when the process has to be repeated 27,000 times.

Finally, choosing different lags only worsen the results, showing that the best
solution is to work directly with the data, without differencing.

Even though the obtained results are promising, some of them being even better
than FBProphet’s ones, we believe that there are still ways to improve them. They were
obtained using only historical information about the daily sold quantities of a single
generic names. Still, similar information is available for the other generic names, and
could be used to improve the predictions, as the sale of some products also influence
the sale of others. However, to use this additional information, the ARIMA model must
be changed for one that allows multi-variate dependencies. If such a change happens,
other additional information may also be used: marketing budget, sales events, number
and type of products on sale in each sale event, number of page views, products
availability, etc. In the future, we intend to advance the work presented here by
inspecting several such models (logistic regression, random forest, neural nets and deep
learning) and including some of the supplementary information. Another possibility to
improve the results is by creating an ensemble from different models, built using the
above-mentioned techniques, and thus to benefit from the fact that they generate the
predictions in different ways, which might help eliminating some of the prediction
errors.
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Abstract. Genomics studies have increasingly had to deal with datasets con-
taining high variation between the sequenced nucleotide chains. This is most
common in metagenomics studies and polyploid studies, where the biological
nature of studied samples requires analysis of multiple variants of nearly
identical sequences. The high variation makes it more difficult to determine the
correct nucleotide sequences, as well as to distinguish signal from noise, pro-
ducing digital results with higher error rates than the ones that can be achieved
in samples with low variation. This paper presents an original pure machine
learning-based approach for detecting and potentially correcting those errors. It
uses a generic machine learning-based model that can be applied to different
types of sequencing data with minor modifications. As presented in a separate
part of this work, these models can be combined with data-specific error can-
didate selection to apply the models on, for a refined error discovery, but as
shown here, can also be used independently.

Keywords: Machine learning � Neural network � NGS errors � Metagenomics
Polyploid genomes

1 Introduction

There are two types of sequencing datasets that deal with high variation in the data
among the individual genetic sequences. One of them is metagenomics, which studies
entire communities of micro-organisms, such as the studies of the human microbiome
[19], viral evolution [12], or the microbiome of urban environments [12]; the other is the
study of polyploid genomes, such as the wheat genome [3], which contain multiple sets
of similar but different chromosomes inherited from multiple ancestor organisms [17].

From a scientific perspective, metagenomics studies may be essential for medicine
[1], nutrition studies [8], human space flight [22], agriculture [15], and understanding
disease outbreaks [6]. At the same time, wheat is a staple food more widely grown than
any other crop in the world [24], with the importance of the study of its genome
proportional to its importance as food.
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From a computational perspective, however, both metagenomics and polyploid
studies are severely impeded by the presence of variation, and the resulting errors that
are unaccounted for. These input errors inevitably lead to inaccurate final results [13,
25], and are often resolved by discarding reads suspected to contain any errors [5].

The lack of good computational tools to filter these errors out makes the use of
artificial intelligence and, in particular, machine learning (ML) a suitable tool to attack
this problem. ML-based models, like artificial neural networks (ANN) [21] and random
forests [2], can be trained to classify examples based on numerical and other features,
even when the relationship between the input and the result is unknown, or is not well
studied. Random forests, in particular, are growing in popularity for approaching
various Bioinformatics problems [20], where there is a rapidly increasing amount of
raw data that is poorly studied.

2 Input Data and Problem Statement

After being digitalised using the process of genome sequencing (and especially the so-
called next generation sequencing, NGS), the data in a metagenomics or polyploid
sample is comprised of a set of sequences, or character strings, of a four-letter alphabet
(A, C, G and T), representing the four nucleotide bases in the physical DNA or RNA
chains. In raw datasets those sequences may be arbitrary fragments from the different
loci in nucleotide chains, but after the use of specialised sequencing procedures and
after data preprocessing, the working datasets will be comprised of aligned DNA or
RNA sequences projected to be part of specific genes or regions.

For our metagenomics datasets, the preprocessing involved rough data clustering
using the CD-HIT [16] software package and multiple sequence alignment using the
MAFFT [7] software package. The resulting aligned clusters contain strings repre-
senting the genetic sequences from the same region of the genome of various micro-
organisms, with the meaningful parts of the sequences aligned into the same string
positions (columns) by the use of gap characters (‘-’). The data was sequenced using
454. The resulting raw data is comprised of 30000 to 50000 character sequences with
lengths of 300 to 500 characters, and the working test clusters are comprised of
between 1000 to 6000 such sequences; all sequences starting from the same position in
the micro-organism’s genome.

For our hexaploid wheat NGS datasets, the preprocessing involved preliminary
genome assembly [18], which attempts to cluster the genetic fragments into genes,
providing a potential alignment to a representative sequence of that gene. The data was
sequenced using Illumina, and thus the sequence lengths are shorter, up to 100
nucleotide bases or characters, start at various positions in the gene with varying
overlaps. Up to 30–40 sequences cover the same region of the gene, and may belong to
up to three distinct subgenomes that have similar but different genetic code.

In both instances, the character sequences contain sequencing errors. The errors
may be substitutions, insertions or deletions – the strings may contain letters that differ
from the real nucleotide base in the given position, or may have extra or missing letters.
The main goal of this paper is to offer a way to detect these errors by distinguishing
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them from the real biological variation, caused by the presence of multiple biological
species or subgenomes.

This is approached as a classification problem, which separates the signal – vari-
ation present in the real genetic chains, from the noise – variation introduced in error by
the sequencing equipment. Nucleotide bases, treated as regular characters, are classified
individually, and erroneous insertions and deletions are dealt with by treating the gap
characters (‘-’) as a fifth letter in the allowed alphabet, which is evaluated like the
remaining four.

3 Using a Machine Learning Model

The presence of complex unknown structure inside the genetic chains of the studied
species suggested the use of machine learning-based models. Since ML models like
artificial neural networks are a very powerful tool to detect unknown and unstudied
relations between the input variables, they make a perfect candidate to attempt clas-
sification of the data, especially after the analytical ways to approach the problem
didn’t seem to yield sufficiently good results [10], as noted later in Sect. 4.5.

To select the most appropriate ML-based model, during the study the same input
was provided to different models – an artificial neural network, a random forest [2]
model, as well as various other decision tree and classification models.

3.1 Machine Learning Input

The learning input was composed based on two presumptions:

1. The frequency of a base in a given column is the most significant factor in whether
it might be erroneous, as errors would be among the rarest bases in their
position/column.

2. The frequency of the base among locally similar sequences is more important than
the frequency among locally dissimilar sequences, making the factor of similarity a
good criterion to split the sequences into multiple bins to produce the input values.

For each nucleotide base in each sequence, represented by a single character in the
sequence’s string, a learning input example will be constructed. For each such base, the
nucleotide sequences from the dataset will be placed in multiple bins depending on
how similar they are to the evaluated sequence. A triplet of such bins will be created for
a pair of equidistant bases neighbouring the evaluated one. These auxiliary pairs of
bases will serve as the criteria of local similarity between the sequence with the
evaluated base, and the remaining sequences. For each such pair, the set of sequences
can be split in three groups – the sequences that concur with both bases in both
positions, the sequences that differ from the bases in both positions, and the sequences
that concur with only one of them.

Around each evaluated character ri in position i, a window of radius w will be
constructed inside the evaluated sequence r, containing the neighbouring characters
of ri. Then, for each offset inside the window, j = 1, 2, …, w, the pair of characters ri ± j

will be selected, and three bins will be constructed – the subset of character sequences
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p for which ri ± j = pi ± j, the subset of character sequences for ri ± j 6¼ pi ±j, and all the
remaining sequences, which would differ in either position i + j or i − j, but not both.

The frequency of base ri at position i will be recorded for each of these three
subsets. This frequency is the count of characters pi for which pi = ri, among the reads
p, where p is not r. The computed three frequencies will be added to the input for the
ML-based models, which will be comprised of a series of such triplets, creating an
input vector of length 3 − w.

Figure 1 shows an example of a learning input to evaluate the middle base T, using
a window w of three bases. For the closest pair of neighbouring bases T and G, the
entire dataset has been split into three. Among the sequences that contain T and G in
both of those positions, 95% confirm the middle base T; among the sequences that
contain only one of them in their position, 63% confirm the middle base T; and among
the sequences that contain neither, only 25% confirm it. These three values are used as
the first three values inside the input vector that will be classified by the ML-based
models. This is repeated for the next pair of characters A and T, and then for the most
distant one – C and A.

Let’s assume that there are n sequences of average length m, and we need to
compute the input vectors for all approximately m characters inside all n sequences.
Without complex, potentially inexact, optimisations this will have a time complexity of
O(mnw) and space complexity of O(mw). The time complexity is reasonable, since O
(mnw) would be the time to loop over the learning inputs once.

Because speed wasn’t the main aim of this paper, during the experiments a slower
algorithm with time complexity of O(mn2w) and space complexity of O(w) was used,
as it was more straightforward to verify that it constructs the examples exactly as
defined here.

3.2 Training with Virtual Errors

The genomic data from metagenomics and wheat presents two challenges that prevent
using real errors to construct training examples – on one hand, the errors that are to be
evaluated are unknown, and on the other hand, the error rate is low enough that the real
errors will not provide enough positive training examples [4] for errors. For that reason,
instead of training on examples of real errors, the models were trained to recognise an
artificially introduced error at each position.

Fig. 1. Example learning input.
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In other words, the dataset was unchanged and no errors were simulated at large.
Instead, only the individual base used to construct the error example was substituted
with an erroneous one, and then reverted back for the construction of the remaining
examples. This was referred to as a ‘virtual’ error by the research team, as no per-
manent errors were added to the dataset for the training.

This technique is easier to implement than simulation of errors, allows for the
construction of a very high number of error examples, ensures that the trained models
are not overfitted to the patterns of simulated errors, although they may be overfitted to
other features of the dataset.

4 Results

To empirically test the chosen way to construct the input, as well as the way to
construct training examples, models constructed using them were tested on metage-
nomics data, and then in a later experiment, on wheat data.

4.1 Artificial Neural Networks on Metagenomics Data

Two neural networks were trained using two sets of metagenomics input data using the
proposed ‘virtual’ errors. The only preprocessing applied on the input data was clus-
tering and multiple sequence alignment. To measure the performance of the neural
network, three different approaches were taken – splitting of the training set into
training and testing set with 2:1 ratio; constructing a testing set from a subset of the
same sequences used to build the training set, but corrected using a rudimentary
analytical error detection [11]; and constructing two testing sets on a completely dif-
ferent dataset of genomic sequences – one on uncorrected, and one on sequences
corrected by the aforementioned rudimentary approach. The results of these experi-
ments are shown in Table 1.

Table 1. Experiments using artificial neural networks.

Training
set

Testing set Noise
Errors

Detected Missed
Identified as

Sensitivity Signal
Correct

Detected Missed
Identified as

Specificity

‘correct’ ‘error’‘error’ ‘correct’

C1 C1 2:1 split 19215 19154 61 99.682% 23063 22980 83 99.640%
C1 C1 corrected 56458 55729 729 98.708% 68296 67962 334 99.510%

C1 C3 original 50698 50323 375 99.260% 58688 58516 172 99.706%
C1 C3 corrected 51131 50853 278 99.456% 59373 59145 228 99.615%
C3 C3 2:1 split 17191 17162 29 99.831% 20000 19952 48 99.760%

C3 C3 corrected 51131 50857 274 99.464% 59373 59186 187 99.685%
C3 C1 original 56321 55940 381 99.323% 68025 67583 442 99.350%

C3 C1 corrected 56458 56036 422 99.252% 68296 67879 417 99.389%

Machine Learning-Driven Noise Separation 177



It is evident that the ANN models trained in this manner have a satisfactory sen-
sitivity, as it correctly classifies the examples corresponding to the artificial errors with
a very high accuracy. This is even true when the testing set was constructed using a
completely different set of biological data (referred to as C1 and C3 in the table).
Unfortunately, the specificity – while still high – is not satisfactory. Even with high
error rates, the errors are still found in disproportionately fewer numbers than the
correct nucleotide bases, starting with an already high signal-to-noise ratio.

For the ANN model to be usable for correction purposes, the specificity needs to be
at least higher than the frequency of correct bases. This prompted earlier work focused
on pre-filtering the classification examples using analytical approaches [10], but also
leaves the ANN model applicable for data digitalised using sequencing technologies
that have much lower signal-to-noise ratio, such as Oxford Nanopores [14]. In addition,
when the same models were trained on wheat datasets, a much higher specificity was
observed, justifying the direct use of this model, as is shown in Sect. 4.4.

The result also shows a significant drop in the specificity once the model is applied
to a biological data set different from the one it was trained on. Given the proposed
method of training, it should be possible to re-train the model for each dataset and
overlook that difference. The virtual errors introduced in the dataset are random and
statistically independent from the actual errors. The models are trained to recognise
those virtual amidst a small sample of the bases in the dataset, making such dataset-
targeted training a potentially valid approach, allowing us to take advantage of a
specificity that’s almost twice as good.

It should be also noted that neither the training, nor the testing data was perfect, as
it already contained errors before the virtual errors had been introduced. This would
lead to some minimal bias during training, but it would also lead to underestimation of
the specificity of the models – since there are already errors in the data, and since the
models would detect those errors, we would incorrectly count them as falsely identi-
fied. This would be most significant for the random forest results in Sect. 4.3, and the
wheat results in Sect. 4.4.

4.2 Varying the ANN Model Parameters

The results in Table 1 were achieved after an initial selection of the ANN model
parameters – 30 input neurons (corresponding to 10 pairs of nucleotide bases neigh-
bouring the evaluated one) and 16 hidden neurons. This seems to be a reasonable
choice – a radius of 10 bases gives enough information about the local variation to the
ANN model, which will allow the neural network to determine which part of the
datasets that corroborates the evaluated nucleotide is made of relevant sequences.
A number of hidden neurons that’s approximately half the number of input neurons is a
common initial choice as well. However, ANN models are first and foremost a heuristic
and empirical tool, where the results are dependent on experiments, not on some hard
set rules, so some experiments supporting the choice of parameters or exploring other
potential values have to be conducted.

First, we varied the radius of the window around the evaluated base to determine if
10 pairs of nucleotide bases give enough local context to the ANN model, thus varying
the number of input neurons away from the initial of 30. Table 2 shows the results
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when radii of 1 to 6 (3 to 18 input neurons) were used. In addition, tests were made
with only the outer 2, 4 and 6 pairs of bases inside a 10-base window to test if the
closest bases provide the most relevant context.

It is evident that increasing the number of input neurons improves the detection
accuracy, particularly the sensitivity. The specificity is also affected. With a radius of 1
base, or only three input neurons corresponding to the two adjacent bases, the accuracy
is substantially weakened; the sensitivity doesn’t become reasonable until at least 2
base radius, where 6 input neurons summarise information about the 4 neighbouring
nucleotide bases. Beyond 6 bases, there is saturation of accuracy as adding more bases
doesn’t lead to a dramatic improvement, demonstrating that input 18 neurons are
enough.

This is only valid when the dataset-targeted training would be used, as the results
on a different biological dataset are highly inconsistent. One can presume the possi-
bility of overfitting the model towards the biological features in the training set – a
problem that seems less pronounced when a dataset-targeted training is to be used.

Table 2. Input neuron variation.

Radius Test on split dataset Test on different bio. data

Errors Correct Errors Correct

Missed Sensitivity Missed Specificity Missed Sensitivity Missed Specificity

10 (chosen) 84 99.56% 68 99.70% 456 99.10% 190 99.67%
6 64 99.67% 77 99.67% 390 99.23% 237 99.59%
5 74 99.61% 91 99.61% 403 99.20% 233 99.60%
4 75 99.61% 85 99.63% 408 99.19% 141 99.76%
3 76 99.60% 93 99.60% 239 99.53% 246 99.58%
2 99 99.48% 78 99.66% 341 99.32% 219 99.62%
1 186 99.03% 99 99.57% 480 99.05% 214 99.63%
Outer 6 111 99.42% 153 99.34% 599 98.81% 381 99.35%
Outer 4 166 99.14% 139 99.40% 790 98.43% 457 99.22%
Outer 2 285 98.52% 151 99.34% 911 98.19% 348 99.40%
Split: 19201 errors, 23049 correct bases
Diff. data: 50396 errors, 58372 correct bases

Table 3. Varying the number of hidden neurons.

Hidden neurons Errors Identified Missed Sensitivity Correct Identified Missed Specificity

Test on split dataset
16 (chosen) 19201 19117 84 99.56% 23049 22981 68 99.70%
17 19201 19116 85 99.56% 23049 22974 75 99.67%
15 19201 19124 77 99.60% 23049 22975 74 99.68%
Test on different bio. data
16 (chosen) 50396 49940 456 99.10% 58372 58182 190 99.67%
17 50396 49938 458 99.09% 58372 58172 200 99.66%
15 50396 49946 450 99.11% 58372 58160 212 99.64%
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It should also be noted that using the data for only distant bases leads to a sig-
nificant and consistent decrease in the accuracy, both on a split of the training set and
on a different biological dataset. This confirms the expectations that the nearby bases
are the most important, and also suggests that the nearest 4 bases may be enough, but
are also necessary to make an accurate determination using this ANN model.

Table 3 shows the effect of varying the number of neurons on the hidden layer. For
this experiment, the input neurons were fixed to 30, and the hidden neurons were
increased and decreased from 16 to see if that would affect the result positively or
negatively.

It was observed that 16 is close to an optimum number of hidden neurons, as
varying it up and down leads to less accuracy, and in 7 out of 8 cases 16 hidden
neurons are better than 15 or 17 hidden neurons. This is not a definite guarantee that 16
is the best choice, but it supported the use of 16 hidden neurons enough to postpone
modifications of the hidden layer as means to improve the results.

4.3 Application of Other ML-Based Models

During the development of a threshold-based analytical approach that was presented in
[11], it was noted that thresholds may be a good way to separate the signal (correct
bases) from the noise (errors). Since decision trees models over numerical data rely on
the use of empirically-determined thresholds, this inspired us to test a decision tree
algorithm, and then subsequently test 20 different ML-based models, focusing on the
algorithms that use trees.

Table 4. Experiments with different ML-based models.

Model Test on split data Test on different bio. data

Errors Correct Errors Correct

Missed Sensitivity Missed Specificity Missed Sensitivity Missed Specificity

Alternating
Decision Tree

110 99.43% 82 99.64% 140 99.72% 609 98.96%

Decision Stump 180 99.06% 107 99.54% 344 99.32% 334 99.43%

Logistic Model
Tree

52 99.73% 48 99.79% 522 98.96% 329 99.44%

Naïve Bayes Tree 190 99.01% 69 99.70% 407 99.19% 325 99.44%
Ripple-Down Rule 74 99.62% 44 99.81% 351 99.30% 313 99.46%

LogitBoost Alt.
Dec. Tree

72 99.63% 63 99.73% 238 99.53% 260 99.56%

Decision Tree +
Naïve Bayes

99 99.48% 55 99.76% 351 99.30% 244 99.58%

Reduced-Error
Pruning Tree

62 99.68% 55 99.76% 333 99.34% 242 99.59%

Support Vector
Machine

78 99.59% 117 99.49% 245 99.51% 239 99.59%

Random Tree 60 99.69% 55 99.76% 555 98.90% 226 99.61%

(continued)
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Table 4 shows the results with all the tree-based models that were selected in the
Weka software [26], as well as other classification models like RIPPER. The table is
sorted by specificity on a different biological dataset, in an effort to select the model that
best suited to be used directly to detect the errors, without the need to preselect error
candidates, by finding the highest possible specificity.

The observed results confirm the expectations that decision trees are also a good
tool to approach this problem. Half of the decision tree algorithms produced specificity
higher than the ANN when used on a different set of biological data.

The random forest model achieved the highest accuracy overall, with a specificity
of over 99.9%. This means less than one falsely selected error for every 1000 bases.
This suggests random forests are the best model to be used directly to detect errors in
the biological data, without use of further tools to improve the accuracy. On the
contrary, in a separate study, we discovered that the random forest model becomes an
ill-suited choice when it is combined with error candidate pre-selection [10].

4.4 Application of the ML-Based Models on Wheat

The wheat genome, consisting of three close but different subgenomes, also poses a
challenge similar to that of metagenomics, but because the subgenomes are only three,
the problem is less pronounced as the number of variants is much more limited. Given
that the specificity of the proposed model seemed to come short on metagenomics data,
except for when random forests were used, we decided to attempt to apply the same
model on wheat to test if the limited number of variants leads to substantially better
results.

Table 4. (continued)

Model Test on split data Test on different bio. data

Errors Correct Errors Correct

Missed Sensitivity Missed Specificity Missed Sensitivity Missed Specificity

Neural network 84 99.56% 68 99.71% 456 99.10% 190 99.68%
Best-First Tree 56 99.71% 52 99.77% 358 99.29% 150 99.74%
Functional Tree 66 99.66% 59 99.74% 455 99.10% 142 99.76%

Partial C4.5 54 99.72% 53 99.77% 477 99.05% 130 99.78%
Decision Table 111 99.42% 33 99.86% 732 98.55% 124 99.79%

Simple Cart 56 99.71% 51 99.78% 476 99.06% 105 99.82%
C4.5 62 99.68% 42 99.82% 499 99.01% 103 99.82%
Grafting C4.5 57 99.70% 44 99.81% 374 99.26% 89 99.85%

RIPPER Rule
Learner

55 99.71% 58 99.75% 344 99.32% 74 99.87%

Random forest
(10 trees)

51 99.73% 23 99.90% 452 99.10% 34 99.94%

Random forest
(60 trees)

46 99.76% 18 99.92% 393 99.22% 29 99.95%

Split: 19201 errors, 23049 correct bases

Diff. biodata: 50396 errors, 58372 correct bases
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It should be noted that while the training and testing scheme are identical, the
experiment ended up being conducted with a different set of ML-based models. The
experiment was repeated with artificial neural networks, random forests and naive
Bayes, but three SVM models were added.

Table 5 shows the performance of the selected models on wheat. The models were
trained using 5 pairs of neighbouring bases, or 15 input values for the models. The
testing was performed using cross-validation within the same gene. A more detailed
description of both the study and the results was published in [9].

In all of the cases, all models except for the naïve Bayes classifier achieved sen-
sitivity close to 100%, and error specificity over 99.5%. The neural network and the
random forests were the only two models that got specificity close to 99.9%, with the
random forest model still outperforming the neural network model.

One thing that was noted during this experiment is the near-100% sensitivity of
several of the models. This suggested that the decreased number of variants has pos-
itively impacted the general accuracy of the models. Since in this particular experiment,
the number of actual errors was unknown, it more strongly suggested the possibility
that a high number of the misclassified non-errors are actually accounted for by
unknown errors in the data, as hypothesized in Sect. 4.1. It is already known that in all
of these tests, the specificity is underestimated, but with the near-100% sensitivity and
the increased specificity of the neural network, the underestimate may be significant.
Should this reduction be measured to be high enough, the direct application of this
model on wheat datasets without any additional filtering would be justified.

4.5 Viability of Other Approaches

Earlier attempts to solve the problem of error detection inside a high-variation dataset
using analytical tools proved unfruitful. We attempted to isolate the gene variants by
modelling the local similarity in the same window w as in the ML-based model pre-
sented here, and find the rarest nucleotide bases after that isolation. That lead to 18%
less error predictions compared to using an approach intended for dataset with no
variants. However, when the ANN model was applied on those predictions, it discarded

Table 5. Experiments with different ML-based models.

Model Accuracy Misclassified
Non-errors Errors

Artificial neural network 99.89% 91 0
Random forests of 60 trees 99.91% 70 1
Random forests of 100 trees 99.91% 70 1
SVM with Gaussian kernel 99.57% 325 0
SVM with sigmoid kernel 99.58% 341 0
SVM with linear kernel 99.74% 214 0
Naive Bayes classifier 99.37% 125 389
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51.5% of them as non-errors, on average; it wasn’t discarding almost any simulated1

errors [10]. This means that more than half of the analytically predicted errors were
actually correct bases.

The same analytical similarity-based isolation was compared to SHREC [23],
which was the only viable error detection tool that seemed to account for potential
variation at the time of the testing. SHREC seemed to make between 6.5% more
incorrect error predictions, without detecting more errors. Once the analytical isolation
was improved, SHREC’s incorrect predictions became 13.7% more on average, and the
addition of a ML-based model increased the difference to 27.1%, with the ML-based
model detecting 12.7% more of the simulated errors2.

5 Conclusions

This paper presents a ML-based model for detection of noise inside genomic datasets
with high variation. The model was tested on both metagenomics datasets with a high
number of variants and wheat datasets with limited number of variants, where its
performance was measured. Artificial neural networks and random forests were tested,
along with a variety of other models.

The error detection specificity of all the models was very high, suggesting that they
detect almost all of the errors present in the data. The specificity, although numerically
high, was close to the ratio of correct bases to all bases, thereby risking more error false
positives than errors. While in different portion of the study [10] that problem was
remedied with use of additional candidate filtering, here we observe that the random
forest models on metagenomics, and both random forests and neural networks on wheat
might have a high-enough specificity to be used without such filtering.

The observed high accuracy of the ML models proved them to be better a tool to
detect the errors than any of the other approaches attempted or tried by the authors,
including the author’s own analytical approach and third party software tools. How-
ever, even the ML models were impeded by the high disparity between correct bases
and incorrect bases.
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Abstract. The use of machine learning in disease prediction and prognosis is
part of a growing trend of personalized and predictive medicine. Cancer studies
are domain of active machine learning implementation in particular in sense of
accuracy of cancer prognosis and prediction. The accuracy of survival time
prediction in breast cancer is the main object of the study. Two major features for
survival time prediction, based on clinical data are used: the created in the study
tumor integrated clinical feature and Nottingham prognostic index. The applied
machine learning methods aside with data normalisation and classification pro-
vide promising results for accuracy of survival time prediction. Results showed
prepotency of the support vector regression modles - linear and decision tree
regression models, for more accurate prediction of the survival time in breast
cancer. Cross-validation, based on four parameters for error evaluation, confirms
the results of the model performance concerning the accuracy of survival time
prediction in breast cancer.

Keywords: Bioinformatics � Machine learning � Classification analysis
Breast cancer � Survival time prediction

1 Introduction

Breast cancer is a cancer manifesting in women mostly (more than 99%) and concerns
approximately one in eight women over their lifetime, according to American Cancer
Network [1]. The same source reported that the average 10-year survival rate is 83%. If
the cancer is located only in the breast, the 5-year relative survival rate of people with
breast cancer is 99%. Sixty-two percent (62%) of cases are diagnosed at this stage.

In direct medical sense - breast cancer can be diagnosed by classifying tumors.
Usually there are two classes of tumors: malignant and benign tumors. Medical doctors
and oncologists in particular need a reliable diagnosis procedure to distinguish between
these two classes of tumors. Data and new modeling approaches in cancer studies grows
in recent years because of the massive use of laboratory high-throughput technologies -
generating big amount of data [2, 3]. In fact, it is still very difficult to distinguish tumors
even by the experts. The obvious rapid development of new knowledge-driven diag-
nostics for tumor detection is based on bioinformatics, statistics and computer science.
Aside with that many of these methods are difficult to be integrated and combined in a
meaningful workflow. With the advent of a larger application of machine learning

© Springer Nature Switzerland AG 2018
G. Agre et al. (Eds.): AIMSA 2018, LNAI 11089, pp. 186–194, 2018.
https://doi.org/10.1007/978-3-319-99344-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99344-7_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99344-7_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99344-7_17&amp;domain=pdf


(ML) methods, cancer studies became more divergent, with improved accuracy and
validation and based on discovery of new enriched knowledge about the origin, clas-
sification, prognosis and therapy. There are many algorithms for classification and
prediction of breast cancer outcomes Our work comprises machine learning method-
ologies for survival prediction rate in breast cancer. We apply and compare the per-
formance of four ML methods for prediction of survival time and several methods for
cross-validation of the applied machine learning models.

The objective of this study is to assess the efficiency and accuracy of the used
machine learning models for survival time prediction in breast cancer.

2 Problem Description

A more accurate prediction of survival rate in patients with breast cancer remains a real
challenge due to the increasing complexity of cancer, treatment protocols and various
patient population samples. Reliable and well validated predictions could assist in a
better way personalised care and treatment, and improve the control over the cancer
development. Usually in good clinical practices, clinicians use data collected from
different sources as medical records, clinical laboratory tests and studies aiming at a
more precise diagnostic, therapy and disease development prognosis.

There is a definite increase in the use of classification based approaches in con-
temporary medical diagnostics [3, 4]. Cancer studies are the major target in using
contemporary bioinformatics, statistics and machine learning techniques for the pur-
poses of more accurate and rapid diagnostics. In the scope of constantly growing
significance of predictive and personalized medicine there is a rapidly growing demand
to apply machine learning-driven models to make predictions and prognosis in cancer
studies [5, 6].

At first sight all these classification approaches based on various and heterogeneous
medical data can inflate the quality of diagnostics. On the contrary numerous recent
developments in computer science, data science and machine learning driven approa-
ches definitely assist in decrease of errors in overall diagnostics. The use of artificial
intelligence techniques for classification in cancer studies provide the more informative
and knowledge based background for prediction and prognosis of cancer to be tested
more meticulously and in shorter time (rapidly) [5].

Prediction and prognosis of cancer development are focused in three major
domains: risk assessment or prediction of cancer susceptibility, prediction of cancer
relapse, and prediction of cancer survival rate. The first domain comprises prediction of
the probability of developing certain cancer disease prior to the patient diagnostics. The
second issue is related to prediction of cancer recurrence in terms of diagnostics and
treatment and the third case is aiming in prediction of several possible parameters
characterizing cancer development and treatment after the diagnosis of the disease:
survival time, life expectancy, progression, drug sensitivity, etc. The survivability rate
and the cancer relapse are dependent very much on the medical treatment and the
quality of the diagnosis [6].

A major line of machine learning studies on breast cancer development is focused on
predicting patient survivability. There is a variety of machine learning based approaches
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used on different datasets. The obvious trend is that all the major studies with clinical
data use mostly models related to artificial neural networks (ANN), support vector
machines (SVM) and using statistical methods for validation [3, 7]. In this way some
problems with classification and validation have been overcome. Although there is an
obvious demand in improving the machine learning impact in survival time prediction
studies in breast cancer in the scope of generality, better accuracy and validation. These
challenges are also in the scope of our work.

3 Related Work

Artificial intelligence and in particular machine learning models have a visible history
in cancer research and practical implementation [4]. Artificial neural networks (ANNs)
[11] and decision trees (DTs) [9] have been used in cancer detection and diagnosis for
nearly 30 years. Different models based on Support Vector Machine (SVM) [10]
applied to cancer prognosis issues are used from about couple of decades. Other models
for prediction of cancer development also have been used in a number of studies [4].
Today the role of machine learning grows in applied data science and bioinformatics
methodologies, used from diagnostics to prediction and prognosis in cancer [3, 13]. All
these research studies are concerned with using machine learning methods to identify,
classify, detect, or distinguish tumors and other malignancies as well as to predict
cancer development.

The breast cancer survival time prediction studies based on machine learning
models occupied a significant part of the contemporary research in this area [2, 3].
There is a number of studies consider the effect of ensemble of machine learning
techniques to predict the survival time in breast cancer. These techniques show
improved accuracy to a certain extent comparing to previous results [3, 8]. A number of
papers concerns different problems in applying machine learning algorithms for breast
cancer prediction. Authors experimented on breast cancer data using C5 algorithm with
bagging [9] to predict breast cancer survivability. Another authors gain 93% accuracy
of survivability in breast cancer prediction [10]. Some of the studies was focused on a
comparative analysis of the performance of the applied supervised learning classifiers
such as Naïve Bayes, SVM-RBF kernel, RBF neural networks, Decision trees (J48)
and simple CART; to find the best classifier in breast cancer datasets [11].

Many problems with the use of machine learning in breast cancer predictions
studies are related to the lack of optimal and precise validation. We could admit that the
use of ML models can improve the accuracy of survival prediction - but the choice of
proper validation approach is of a great value in particular for studying the breast
cancer time of survivability. Among the most common methods for evaluation the
performance of the applied model is the cross-validation method. Cross validation is
very suitable for machine learning based modeling and is used for training and for
testing [12].

An obvious trend in the proposed works includes also integration of mixed data of
clinical and lab origin. This makes possible to use also data science technologies and
models for data integration and subsequent normalisation and classification for the
purposes of a predictive study [13]. A reasonable semantic data integration can provide
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better quality of the input data sets for using the machine learning for prediction of
survival time of breast cancer.

4 Data Description

Data used in the study is based on clinical records, including patient age, stage of tumor
development, tumor size and its living status. There is also data concerning different
types of therapies and surgery intervention. There are many parameters related to
disease development - tumor size, age at diagnosis, tumor stage, information about
applied surgeries and applied treatments like chemotherapy, hormone therapy, etc. The
data is heterogeneous and many records are not complete. Only for patients with breast
cancer after surgery is available Nottingham prognostic index (NPI) – a feature, used to
determine prognosis following surgery for breast cancer. Its value is calculated using
three pathological criteria: the size of the lesion; the number of involved lymph nodes;
and the grade of the tumor. In a particularly related study [14] the NPI can be used to
predict survival of 80%, 42% and 13% in three groups of patients according to the NPI
score. The same study reported also that NPI has been refined and patients were
segregated into four groups, and afterwards was used to predict five-year survival rate
(in accordance with the more commonly used time scales for survival of other types of
cancers). The recorded parameters used in our study is shown on Table 1. All these
parameters are integrated in a schema-less NoSQL database for easy access and
management.

Table 1. Studied set of features from breast cancer patients’ clinical data records (total number
of patients is 2301).

Name Value Description

HER2_STATUS (1220
patients)

-/empty/”” HER2 proteins are receptors on breast
cells. Normally, HER2 receptors help
control how a healthy breast cell grows,
divides, and repairs itself.

HER2_SNP6 (1224
patients)

String HER2 with SNP (Single nucleotide
polymorphism)

AGE_AT_DIAGNOSIS
(1223 patients)

Float Age at diagnosis

NPI (595 patients) Integer Nottingham prognostic index
CELLULARITY (1224
patients)

String
high/low/empty/-

The number and type of cells in a given
tissue with issues

HORMONE_THERAPY
(1224 patients)

Yes/No

(continued)
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5 Suggested Methodology

We develop a machine learning-driven approach for survival time prediction in breast
cancer based on three parameters: tumor size, tumor stage, and age at diagnosis. We
combine these three features in a novel one. This new feature is built by a numerical
concatenation of the tumor stage, tumor size and age at diagnosis. The order of con-
catenation in this tumor integrated clinical feature (TICF) is important because of
ranking clinical information for tumor development and it relevance to the patient
survival rate. For example, a studied patient has tumor in stage 1 with size 10 mm and
the patient is 45 years old; the new concatenated value of this TICF record is 11045.
We provide in this manner a bigger distance between the patients with different tumor
stages, tumor sizes and age at diagnosis. Such a distance is important for the subse-
quent machine learning approaches applied for survival time prediction. The studied
data contain also the Nottingham Prognostic Index (NPI). We normalize both data sets
based on two features (TICF and NPI) by removing the mean and scaling them to unit
variance. Mean and standard deviation are stored and used in subsequent data analysis
using the transform method. Standardization of a dataset is a common requirement for
many machine learning classifiers: they might behave badly if the individual feature
does not more or less look like standard normally distributed data (with 0 mean and
unit variance).

Next stage in our methodology is to apply machine learning models to predict the
survival time and to validate them. The used machine learning models are Support
Vector Machine - Regression (SVR) with different kernels: radial basis function (RBF),
Linear and Poly as well as a Stochastic Gradient Descent model (SGD). We choose
these models because they have shown good results for survival time prediction [13].
We validate the results by using randomly smaller subsets of both raw and integrated
data.

Table 1. (continued)

Name Value Description

TUMOR_SIZE (1220
patients)

Float

SAMPLE_TYPE (1220
patients)

Float

OS_MONTHS (1178
patients)

Float Months after diagnosis

OS_STATUS (1224
patients)

String life status

BREAST_SURGERY
(1224 patients)

String Type of SURGERY

CHEMOTHERAPY
(1224 patients)

Yes/No

GRADE (1220 patients) Integer Cancer specific grade
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We used a cross-validation approach for to evaluate the performance of the applied
machine learning models. This is a k-fold cross-validation, where the original sample is
randomly partitioned into k equal sized subsamples. Of the k subsamples, a single
subsample is retained as the validation data set for testing the model, and the remaining
k − 1 subsamples are used as training data sets. The cross-validation process is then
repeated k times (the folds), with each of the k subsamples used exactly once as the
validation data. The k results from the folds can then be averaged to produce a single
estimation. The advantage of this method over repeated random sub-sampling is that all
observations are used for both training and validation, and each observation is used for
validation exactly once. 10-fold cross-validation is commonly used, but in general k
remains an unfixed parameter. This validation model can be used to estimate any
quantitative measure of fit that is appropriate for certain data and model.

We compare the results provided by the cross validation of two approaches with
different features to find the optimal model for survival time prediction.

All scripts are developed by us in Python with sklearn library.

Fig. 1. Survival time prediction success rate by NPI and TICF feature within different ML
models
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6 Results and Discussion

The suggested methodology for survival time prediction in breast cancer uses two
features (NPI and TICF) for classification of the data based on k-neighbours. The NPI
and TICF groups are unbalanced and they contain k-neighbours subgroups with small
number of patient records which is an obvious obstacle to predict accurately the sur-
vival time rate. In this line the test data is clustered in 5 subgroups by the use of k-fold
algorithm.

After the dataset is normalised and classified we applied several machine learning
models for survival time prediction. Among the applied ML models shown on Fig. 1,
all the SVR based models (RBF, Linear and Poly) as well as the SGD model have
superior success rate (percentage of survival time accuracy). The potential of these
models is in improving the accuracy of prediction by better training of the dataset,
which undoubtedly depends on the data by itself.

On Fig. 1 is shown the performance in terms of accuracy of the four used machine
learning methods. For all applied ML models, results based on our newly introduced

Fig. 2. Accuracy of used machine learning models for average patients’ survival time prediction
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TICF feature are superior to the results based on the NPI feature in accuracy for
prediction of survival time in breast cancer.

Among the models for survival time prediction of breast cancer in our study the
SVR linear model has best performance in accuracy. After that is DTR model and the
SVR-RBF and SVR-Poly have inferior performance. The SVR-Poly model is excluded
from the analysis because of bad performance as compared to the other used models.

For validation of the models or which one of them has less noise level the SVR-
RBF and the DTR modules are most accurate (Fig. 2). For this result we applied cross-
validation approach based on four parameters for error evaluation: trained R2 (coeffi-
cient of determination), negative mean square log error, explained variance, negative
mean absolute error.

The R2 and the explained variance are related to the accuracy of the used model,
while the two others are related to the noise (error) level. The results for accuracy
shown on Fig. 2 again underline that the TICF feature have better performance in
accuracy. As an outcome of the study we can claim that the SVR-linear and DTR
models are more suitable for accurate survival prediction in breast cancer for the
studied case.

7 Conclusions

We develop a machine learning based approach for survival time prediction in breast
cancer. We create a new TICF feature for classification and analysis, which showed
best results compared to the existing NPI feature. We proved that by using four
machine learning models based on two studied features and compared them. The cross-
validation for accuracy of the used models showed better performance for SVR-Linear
and decision regression tree with TICF feature.
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Abstract. In this paper, we aim at proposing a new approach for defin-
ing tractable classes for Exactly-One-SAT problem (in short EO-SAT).
EO-SAT is the problem of deciding whether a given CNF formula has a
model so that each clause has exactly one true literal. Our first tractable
class is defined by using a simple property that has to be satisfied by
every three clauses sharing at least one literal. In a similar way, our sec-
ond tractable class is obtained from a property that has to be satisfied
by particular sequences of clauses. The proposed tractable classes can,
in a sense, be seen as natural counterparts of tractable classes of the
maximum independent set problem.

Keywords: The EO-SAT problem · Graph theory · Tractable classes

1 Introduction

Developing efficient algorithms for solving the satisfiability problem (in short
SAT) is an important challenge in computer science in general, and artificial
intelligence in particular. In both practical and theoretical points of view, SAT
is widely used in different domains like planning and formal verification (see
e.g. [14,20]). SAT consists in checking whether a propositional formula in the
conjunctive normal form (in short CNF) admits a satisfying assignment. It was
identified as the first NP-complete problem [5], however, it has several tractable
classes such as Horn [8], Renamable Horn [16], Q-Horn [1], Krom [15].

Defining tractable classes for NP-complete problems through cross-
fertilization between different problems is a central research topic. Indeed, poly-
time reducibility is one of the most fundamental tools in complexity theory.
Using this tool, new tractable classes can be defined by finding in the source
language counterparts of tractable classes in the target language. For instance,
in [19], the authors have shown that using the order encoding some tractable
CSP instances result in tractable SAT instances. Furthermore, in graph the-
ory, many problems are tractable for graphs belonging to special classes, such
as claw-free graphs [9,17], convex and chordal graphs [7], AT-free graphs [21]
and perfect graphs [11] (see [3] for a survey). Tractable classes in graph theory
have been used for characterizing tractable classes in CSP [6], however, We can
also mention the tractable classes highlighted by different authors in constraint
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satisfaction problems (CSP) [6], few works investigated the existence of their
counterparts in SAT [2] and its related problems.

In this article, we aim at defining tractable classes for the Exactly-One-SAT
problem (in short EO-SAT). This problem consists in deciding whether a given
CNF formula has a model so that each clause has exactly one true literal. It is
worth mentioning that defining tractable classes of EO-SAT have not received
much attention in the literature. Moreover, as shown in this article, even the
restriction of EO-SAT to monotone formulæ remains NP-complete, which means
that the restriction of EO-SAT to Horn formulæ is also NP-complete. In a sense,
this shows the difficulty and the interest of defining tractable classes for EO-SAT
compared to SAT. It shows also the need of new approaches in characterizing
tractable classes.

In order to define our tractable classes, we establish a simple relation-
ship between the NP-hard problem of maximum independent set and EO-SAT.
Indeed, we show that an instance of EO-SAT has a solution if and only if the
size of the largest independent set of a particular associated graph is equal to the
number of clauses. Thus, thanks to tractability results obtained for the maximum
independent set problem (see e.g. [17,18]), we define two tractable classes for EO-
SAT that can be seen as natural counterparts of tractable classes for the maxi-
mum independent set problem. In this work, our approach presents tractability
results, but most importantly proposes a new way to deal with tractability in
EO-SAT.

2 Preliminaries

2.1 Propositional Satisfiability and EO-SAT Problem

Let us first define the syntax and the semantics of propositional logic. We use
the letters p, q, r, . . . to range over an infinite set of propositional variables,
we use V to denote that set. Also, we use the Greek letters φ, ψ to represent
formulæ, the set of propositional formulæ is defined inductively started from V,
the constant ⊥ denoting false, the constant � denoting true and using the logical
connectives ¬, ∧, ∨, →. Formally, the language of propositional logic is defined
by the following: φ:: = p | ⊥ | � | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ.

Given a formula φ, we use V(φ) to denote the set of propositional variables
appearing in φ. A Boolean interpretation I of a formula φ is defined as a function
from V(φ) to {0, 1} (0 corresponds to false and 1 to true). It is inductively
extended to propositional formulæ as usual: I(⊥) = 0, I(�) = 1, I(φ ∧ ψ) =
min(I(φ), I(ψ)), I(¬φ) = 1 − I(φ), I(φ ∨ ψ) = max(I(φ), I(ψ)), I(φ → ψ) =
max(1 − I(φ), I(ψ)).

A model of a formula φ is a boolean interpretation I that satisfies φ, i.e.
I(φ) = 1. It is worth noticing that we can restrict the language to the connectives
¬ and ∧, since we have the following equivalences: p ∨ q ≡ ¬(¬p ∧ ¬q) and
p → q ≡ ¬p ∨ q.
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Let us now define the conjunctive normal form (CNF) representation of the
propositional formulæ. A propositional formula in conjunctive normal form is
a conjunction (∧) of clauses, where a clause is a disjunction (∨) of literals. A
literal is a propositional variable (p), called positive literal, or a negated proposi-
tional variable (¬p), called negative literal, we use L to denote the set of literals
appearing in a CNF formula. A CNF formula can also be seen as a set of clauses,
and a clause as a set of literals. Every propositional formula can be translated
to CNF using Tseitin’s linear encoding [22].

Let us mention some types of clauses. A clause is called unit if it contains
exactly one literal whereas binary ones contain two literals. A clause is called
positive (resp. negative) if it contains only positive (resp. negative) literals.

The unit propagation method (in short UP). UP is a linear procedure that
recursively simplifies a CNF formula by propagating the literal in the unit
clauses. Given a unit clause, let l be its literal, the UP procedure consists in
removing every clause containing the literal l and deleting ¬l from the remain-
ing clauses in the formula. The application of UP method leads to a new set
of clauses that is equivalent to the original one. Obviously, a CNF formula is
satisfiable if and only if the CNF formula obtained from it by applying the UP
mechanism is satisfiable. From now on, we only consider formulæ with no unit
clauses.

The SAT problem consists in checking whether a given CNF formula has
a model, in other words, checking if there exists a boolean interpretation that
satisfies all the clauses in the CNF formula or not.

SAT is an NP-complete problem [5], however, some fragments exhibit a
polynomial-time algorithms for SAT. Among them, let us mention the Horn
fragment, which is made of Horn clauses only. A Horn [8] (resp. reverse Horn)
clause contains at most one positive (resp. negative) literal. Renamable Horn
clauses also form polynomial fragments [16]: renamable Horn clauses are clauses
that can be transformed into Horn ones by systematically replacing some nega-
tive literals by new boolean variables, Krom: restriction to binary clauses [15].

We consider in this work the problem of Exactly-One-SAT (in short EO-SAT)
which is a generalization of 1-in-3 SAT. It consists in deciding whether a given
CNF formula has a model such that each clause has exactly one true literal. In
the same way as SAT, EO-SAT is NP-Complete.

2.2 Maximum Independent Set Problem

Given an undirected graph G = (V,E), an independent set of G is a subset of
vertices S ⊆ V such that no two vertices in S are adjacent, i.e., for all v, v′ ∈ S
with v 
= v′, {v, v′} /∈ E. An independent set is called maximal if it is not a subset
of any larger independent set. A maximum independent set is an independent
set of largest size. We here use α(G) to denote the value of the maximum size
of the independent sets.
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v1

v2 v3

v4

v5v6

Fig. 1. An undirected graph

Example 1. Let us consider the undirected graph given in Fig. 1:

The set of vertices S = {v1, v3, v5} is a maximum independent set for the
undirected graph since the three vertices are not adjacent and we also have
α(G) = 3.

The problem of finding a maximum independent set for a graph is an NP-
Hard problem. However, there are several classes of graphs for which the problem
can be solved in polynomial-time, such as claw-free graphs [17]. Let us recall
that a graph is claw-free if no vertex has three pairwise nonadjacent neigh-
bors, i.e., for all v ∈ V , if there exist three distinct vertices v1, v2, v3 ∈ V s.t.
{{v, v1}, {v, v2}, {v, v3}} ⊆ E, then at least one of the edges {v1, v2}, {v2, v3}
and {v1, v3} is in E.

The maximum independent set is also tractable for other classes, such as
Perfect graphs [12], in particular, chordal graphs [4]. A chordal graph is a graph
in which every cycle of four or more vertices has an edge connecting two vertices
of the cycle but that is not part of the cycle, this edge is called a chord.

3 Motivations

A monotone formula is a CNF formula such that all its literals are either positive
or negative. Finding a model of a monotone formula is clearly a linear-time task.
Indeed, it suffices to set all the literals to either true or false to obtain a model.
However, EO-SAT restricted to monotone formulæ is not tractable. In a sense,
this show the difficulty and the interest of defining tractable classes for EO-SAT
compared to SAT. It shows also the need of new approaches in characterizing
tractable classes.

Theorem 1. The restriction of EO-SAT to the monotone formulæ is NP-
complete.

Proof. Clearly EO-SAT is in NP, since one can check whether a Boolean inter-
pretation is a solution or not in linear time.

To show NP-hardness, we provide a reduction of the three-coloring problem.
Given an undirected graph G = (V,E), a 3-coloring of G corresponds to a
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partition of V into 3 sets P = {Vc1 , Vc2 , Vc3} so that no two vertices in a same
subset are adjacent, and Vc1 , Vc2 and Vc3 refer to three different colors c1, c2 and
c3 respectively.

In order to encode the 3-coloring problem into EO-SAT restricted to mono-
tone formulæ, we associate to each vertex v ∈ V and each color ci a distinct
propositional variable denoted pci

v (the variable pci
v is set to true iff v is col-

ored with ci). Further, we associate to each edge e ∈ E, three distinct variables
denoted qe

1, q
e
2, q

e
3. Then, the encoding is defined as follows:

∧

v∈V

pc1
v ∨ pc2

v ∨ pc3
v (1)

i=1..3∧

e={v,v′}∈E

(pci
v ∨ qe

1 ∨ qe
2) ∧ (qe

2 ∨ qe
3) ∧ (pci

v′ ∨ qe
3) (2)

It is easy to see that the formula (1) represents the fact that each vertex is
colored with exactly one color. The formula (2) represents the fact that each
adjacent vertices cannot be colored with the same color. Indeed, assume that
there exists a solution s.t. there exists e = {v, v′} ∈ E and i ∈ 1..3 s.t. pci

v

and pci
v′ are assigned to true. Thus, qe

1 and qe
2 are both assigned to false and,

as a consequence, qe
3 is assigned to true. The latter property means that pci

v′ is
assigned to false and we get a contradiction. Furthermore, one can easily build
a solution of the encoding from any 3-coloring. �

Knowing that the class of monotone negative formulæ is a sub-class of that
of Horn formulæ, we obtain from Theorem 1 the following corollary.

Corollary 1. The restriction of EO-SAT to the Horn formulæ is NP-complete.

It is worth noticing that the class of binary CNF formulæ remains tractable
in EO-SAT. Indeed, given a binary CNF formula φ ≡ (l1 ∨ l′1) ∧ · · · ∧ (ln ∨ l′n),
φ has a solution in EO-SAT if and only if the binary formula (l1 ∨ l′1) ∧ · · · ∧
(ln ∨ l′n) ∧ (l1 ∨ l′1) ∧ · · · ∧ (ln ∨ l′n) is satisfiable, and the latter can be decided in
polynomial time.

4 EO-SAT and the Maximum Independent Set Problem

We provide here an approach for solving EO-SAT by using the maximum inde-
pendent set problem. It consists simply in associating to every EO-SAT instance
an undirected graph so that the considered EO-SAT instance has a solution if
and only if the size of the largest independent set is equal to the number of
clauses.

Given a CNF formula φ and a literal l occurring in φ, we associate to l a
set of n distinct elements Sl = {v1

l , . . . , vn
l } where n is the number of clauses

containing l. Further, we use Gφ = (V,E) to denote its corresponding undirected
graph where V =

⋃
l∈L(φ) Sl, and for all vi

l , v
j
l′ ∈ V , {vi

l , v
j
l′} ∈ E if and only if

there is a clause in φ containing both l and l′.
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Example 2. The graph described in Fig. 2 corresponds to the following EO-SAT
instance φ ≡ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬s) ∧ (¬s ∨ t). Assigning the variables p and t
to true allows us to get a solution of φ.

vt v2¬s

v3¬s

v1p

v2p

vq

v¬r

Fig. 2. The graph associated to the formula in Example 2

Proposition 1. Let φ be an EO-SAT instance and M a maximum independent
set of the graph Gφ = (V,E). Then, Sl ∩ M 
= ∅ iff Sl ⊆ M for every l ∈ L(φ).

Proof. This property is a direct consequence of the fact that the vertices in Sl

have all the same adjacent vertices. �
The following theorem allows us to establish a direct relationship between

EO-SAT and the maximum independent set problem.

Theorem 2. Let φ be an EO-SAT instance. Then, φ has a solution iff α(Gφ) =
n where n is the number of clauses occurring in φ.

Proof. Regarding the if part, the base idea consists in assigning to true only the
literals that are associated with the vertices occurring in a maximum independent
set. More precisely, given a maximum independent set M of Gφ, we define the
Boolean interpretation IM using M as follows: IM (p) = 1 iff Sp ⊆ M . Clearly, for
every two distinct literals l and l′ occurring in the same clause, we get Sl 
⊆ M or
Sl′ 
⊆ M . As a consequence, the size of M corresponds to the number of satisfied
clauses by IM in φ. Thus, IM is a solution of φ since α(Gφ) = n.

To prove the only if part, we only need to build a maximum independent
set from every solution of φ. Indeed, given a solution I of φ, the set MI =⋃

l∈L(φ),I(l)=1 Sl is a maximum independent set of φ. Moreover, the size of MI
is clearly equal to the number of satisfied clauses n. Knowing that the size of
the independent sets is bounded by n, α(Gφ) = n holds. �

5 Tractable Classes

In this section, we introduce new tractable classes for EO-SAT. The base idea
consists in using the relationship described in Theorem 2 between EO-SAT and
the maximum independent set problem. Indeed, our tractable classes for EO-
SAT can be seen as natural counterparts of tractable classes for the maximum
independent set problem.
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5.1 Class of CF-formulæ

We here describe a tractable class that we obtain from the class of claw-free
graphs for the maximum independent set problem.

Definition 1 (CF-formula). A CF-formula φ is a CNF formula where for
every three distinct clauses c1, c2 and c3 sharing at least one literal l (l ∈
c1 ∩ c2 ∩ c3), there are three distinct integers i, j, k ∈ 1..3 s.t. ci ⊆ cj ∪ ck.

v1p v2p v3p

v¬r v2q v¬t v3q

Fig. 3. The graph Gφ associated to φ

Consider for instance the CNF formula φ ≡ (p ∨ ¬r) ∧ (p ∨ q) ∧ (p ∨ q ∨ ¬t).
It is a CF-formula since the literals in the clause (p ∨ q) belong the set of the
literals occurring in the clauses (p ∨ ¬r) and (p ∨ q ∨ ¬t).

Theorem 3. The restriction of EO-SAT to the CF-formulæ is tractable.

Proof. Theorem 2 shows how we can solve EO-SAT by finding a maximum inde-
pendent set in a particular graph. Further, we know that the maximum inde-
pendent set problem is tractable in the class of claw-free graphs.

Claim: For all CF-formula φ, Gφ is a claw-free graph.

Let φ be a CF-formula. Assume that the graph associated to φ contains a claw
as an induced subgraph. Then, there are three clauses of the form c1 = l∨ l1∨c′

1,
c2 = l∨ l2∨c′

2 and c3 = l∨ l3∨c′
3 s.t. there is a clause in φ containing at least two

literals in {l1, l2, l3}. The vertices involving in the considered claw are associated
to the literals l, l1, l2 and l3. Using the definition of CF-formula, we consider
w.l.o.g. c1 ⊆ c2 ∪ c3. Thus, there exists a clause c ∈ {c2, c3} s.t. at least two
literals in {l1, l2, l3} occur in c and, as a consequence, we get a contradiction. �

Let us consider again the formula φ in the previous example. Its associated
graph Gφ is described in Fig. 3. One can easily see that this graph is claw-free.
Further, the set of vertices M = {v1

p, v2
p, v3

p} is a maximum independent set for
Gφ. Using Theorem 2, we know that φ is satisfiable since it contains three clauses
and α(Gφ) = 3. Hence, the solution of φ built from the maximum independent
set M is {p}.
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It is worth mentioning that the problem of checking whether an EO-SAT
instance is a CF-formula or not is tractable. Indeed, given an EO-SAT instance
with n clauses, it suffices to check the condition in Definition 1 for every distinct
three clauses (O(n3) times).

5.2 Class of LC-formula

We here describe our second tractable class of EO-SAT. In the same way as
the class of CF-formulæ, this class can be seen as a counterpart of the class of
chordal graphs, which is tractable for the maximum independent set problem.

Definition 2 (k-Literal-Cycle). Let φ be a CNF formula. A k-literal-cycle of
φ is a sequence of k pairs of literals C = s1 = {l1, l2}, s2 = {l2, l3}, . . . , sk−1 =
{lk−1, lk}, sk = {lk, l1} such that, for all i ∈ 1..k, there exists a clause c ∈ φ s.t.
si ⊆ c.

For instance, consider the CNF formula φ ≡ (l1 ∨ l2)∧ (l2 ∨ l3 ∨ l4 ∨ l5)∧ (l5 ∨
l1) ∧ (l1 ∨ l4). The three first clauses form a clausal-cycle, and this allows us to
get the 3-literal-cycle C1 = {l1, l2}, {l2, l5}, {l5, l1}. The other literal-cycles of φ
modulo permutations are:

– C2 = {l1, l2}, {l2, l3}, {l3, l4}, {l4, l5}, {l5, l1};
– C3 = {l1, l2}, {l2, l3}, {l3, l4}, {l4, l1};
– C4 = {l1, l2}, {l2, l4}, {l4, l1}.

It is worth mentioning that the clause (l2 ∨ l3 ∨ l4 ∨ l5) is involved three times
in the literal-cycle C2.

Definition 3 (LC-formula). An LC-formula φ is a CNF formula where for
every k-literal-cycle C = s1, s2, . . . , sk with k > 3, there exists a clause c ∈ φ s.t.
{l, l′} ⊆ c, and ∃s, s′ ∈ C s.t. l ∈ s and l′ ∈ s′, and ∀s ∈ C, {l, l′} 
= s.

Consider again the CNF formula φ described in the previous example. There
are two k-literal-cycles modulo permutations such that k > 3: C2 and C3. The
fact that there is a clause in φ containing the literals l2 and l4 allows us to deduce
that φ is an LC-formula.

Theorem 4. The restriction of EO-SAT to the LC-formulæ is tractable.

Proof. Using Theorem 2 and knowing that the maximum independent set prob-
lem is tractable in the case of a chordal graphs, we only need to show that Gφ

is a chordal graph for every LC-formula φ. Assume that there exists a k-cycle C
in Gφ where k > 3. Then, there exists a k-literal-cycle C′ = s1, s2, . . . , sk in φ.
Using Definition 3, we know that there exists a clause c ∈ φ s.t. {l, l′} ⊆ c, and
∃s, s′ ∈ C′ s.t. l ∈ s and l′ ∈ s′, and ∀s ∈ C′, {l, l′} 
= s. As a consequence, the
k-cycle C admits a chord. �

Regarding the recognition problem of LC-formulæ, it suffices to check
whether the graph associated to a CNF formula is chordal or not, which is a
tractable task [4].
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6 Related Works

Several results are obtained thanks to polynomial reductions between differ-
ent NP-Complete or NP-Hard problems (e.g. [13]). Let us mention the work of
Fischer et al. [10], where they studied algorithms for #SAT and its generalized
version #GENSAT (the problem of computing the number of satisfying assign-
ments of a set of (generalized) propositional clauses). It is well known, that, given
a graph of tree-width k, a k-tree decomposition can be found in polynomial time.
The authors considered the clauses given by their incidence graph, signed bipar-
tite graph and derived graphs, they presented an algorithm for #GENSAT for
formulæ of bounded tree-width k. Their results are essentially for #SAT, and
hence also for SAT.

In [2], the authors proposed new tractable classes for SAT by considering
propositional formulæ in conjunctive normal form (CNF) made of a set of Pos-
itive clauses and a set of Binary Negative clauses (PBN). The PBN form is
suitable for establishing connections between SAT and problems in graph the-
ory and also constraint satisfaction problem (CSP). In the same way as in this
article, tractable classes of formulæ in PBN form are defined using tractable
classes of the maximum independent set problem.

7 Conclusion and Perspectives

In this paper, we mainly proposed an approach for characterizing tractable
classes in EO-SAT. We first showed that the restriction of EO-SAT to monotone
formulæ remain NP-complete. Then, we provided a reduction of EO-SAT in the
maximum independent set problem. Then, we proposed two tractable classes
of EO-SAT that can be seen as natural counterparts of tractable classes of the
maximum independent set problem.

As a future work, we intend to define other tractable classes for EO-SAT
using tractability results in graph theory.
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Abstract. Online searching is one of the most frequently performed actions and
search engines need to provide relevant results, while maintaining scalability. In
this paper we introduce a novel approach grounded in Cohesion Network
Analysis in the form of a semantic search engine incorporated in our Hub-Tech
platform. Our aim is to help researchers and people unfamiliar with a domain
find meaningful articles online, relevant for their project scope. In addition, we
integrate state-of-the-art technologies to ensure scalability and low response
time, namely SOLR – for data storage and full-text search functionalities – and
Akka – for parallel and distributed processing. Preliminary validations denote
promising search results, the software being capable to suggest articles in
approximately the same way as humans consider them most appropriate – 75%
are close results and top 20% are identical to user recommendations. Moreover,
Hub-Tech recommended more suitable articles than Google Scholar for our
specific task of searching for articles related to a detailed description given as
input query (50 + words).

Keywords: Meta-search engine � Semantic search � Parallel processing
Akka � SOLR

1 Introduction

Relevant online information is becoming more and more difficult to retrieve as the
amount of data stored online and the number of available articles is growing at an
exponential rate. Many companies have thrived because they managed to create plat-
forms that enable indexing and searching through unstructured information found
online (e.g., Google, Microsoft – Bing, Yahoo – Yahoo Search), and most of the largest
software companies have built their own search engines.

Researchers and people unfamiliar with a domain are investing precious time in
searching for relevant scientific papers in a specific field of study. More and more
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papers are published on diverse topics and can be consulted for gathering information.
However, with the high diversity of available information, finding relevant papers on a
given subject has become a cumbersome task. Traditional keyword-based approaches
for finding papers are not very efficient since people usually search for specific
information that cannot be discovered only by providing a limited list of concepts.
Moreover, the probability of finding relevant papers given a list of keywords decreases
when additional words are given. Surely, information can be found by performing
subsequent searches with different combinations of keywords that the user considers
suitable; results are filtered, and a set of relevant articles is eventually determined.
Nevertheless, semantic searches are more accurate when more words are given,
increasing the overall semantic context, and eventually determining more relevant
results.

Our current work relies on open-source Web 3.0 technologies and is aimed at
suggesting relevant scientific papers starting from detailed user queries (e.g., summary
of project objectives) written as unstructured natural language texts. The user queries
are modeled using the Cohesion Network Analysis [1] and represented into various
semantic models which enable in-depth comparisons to other semantic resources.

This article describes our software platform Hub-Tech employed for searching
scientific papers, which leverages semantic search instead of keywords matching. The
second section presents key points for developing search and meta-search engines.
Afterwards, the third section introduces the processing architecture that ensures our
semantic search goals. Preliminary validation experiments with corresponding statistics
about the relevance of the semantic search findings are presented in the fourth section,
while section five concludes the paper.

2 State of the Art

Information Retrieval (IR) focuses on finding relevant information from various data
sources, generally unstructured, starting from a given query [2]. When focusing on the
IR sub-domain of searching for online documents or articles, the processing pipeline
usually considers the following stages: data is crawled (and web crawling is most
frequently used), indexed for rapid access, followed by query tokenization and search
in the indexed resources. Another approach is employed by meta-search engines which
do not index themselves online data, but rely on a combination of search results from
other engines. The main difference between the two types of search engines is that the
general-purpose search engines are mostly looking for syntactic similarities, while
meta-search engines are more focused on finding similarities at the semantic level.

Several meta-search engines were proposed in time. For example, Helios [3] is one
of the first engines that relied on the data gathered from other 18 search engines, among
which the most important ones were Google News, Google Scholar, Yahoo! and AOL
Search. In their research, the authors found that search engines provided different results
for the same query, claiming that Google and Yahoo, two of the most used search
engines at that time, shared only a small portion of their results. Thus, aggregating
results from multiple search engines represented a suitable approach. Helios provided a
web interface in which the user inserts a query that is subsequently processed by a Local
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Query Parser, and an Emitter is responsible for converting it into a format that was
understood by other search engines. After the search engines were queried, their results
were combined and returned to the user. Helios ensured high-performance by using
asynchronous I/O and parallel TCP connections, as well as high extensibility because
the integration of new remote engines was quite straightforward. Nowadays, things
drastically changed as Google does not allow meta-search on top of their engine.
A comparison between modern search and meta-search engines has been made by
Mohammadesmeil and Naraghian [4] who performed a side-by-side evaluation of the
relevance corresponding to the retrieved documents. The queries included keywords
from the dentistry domain and the results showed that, although the meta-search engines
are newer, they can be used by both amateurs and experts with satisfactory results for
both user categories.

In addition to the previous categories of search engines, semantic search engines
that consider the words’ semantics were developed for various fields. Mangold [5]
performed a first thorough analysis of 22 different semantic search models while
considering architecture, coupling, transparency, user context, query modifications,
ontology structure, and technology. The results of his findings are still relevant as his
analysis was meant to discover which semantic approaches deserve further attention, as
well as to create a list of important topics to be covered in the future development of
semantic search. In our opinion, some of the most important findings from his study are
presented below:

• meta-semantic search: little attention has been directed towards building a semantic
search approach based on other semantic search engines, although many semantic
search engines emerged.

• user acceptance: the number of relevant results increases with the rate of interaction
with the user, but a tradeoff should be made since the user most likely does not want
to spend too much time interacting with the search engine.

• ranking: although ranking is one of the most important tasks in a search engine,
little attention has been directed into ranking the documents from specific ontolo-
gies when assessing the relevance of a result.

• integration with Data/Content Management Systems: from his survey, neither of the
approaches makes use of the benefits of integrating with a data or a content man-
agement system, the author stating that the information stored by these systems
could provide important data for follow-up semantic analyses.

• performance: the usage of semantic analysis requires much more processing time
and resources, thus resulting a time penalty for the user.

As an example, Cohen, Mamou, Kanza and Sagiv [6] introduced XSEarch, a
semantic search engine capable of returning fragments from related documents using a
simple query language. First, the authors emphasize two drawbacks of traditional
search engines, namely their impossibility to take advantage of the meta-tags and the
fact that results are links and not actual documents, meaning that users cannot search
inside the document for required information. Afterwards, the authors propose a query
syntax to easily highlight if certain keywords need to exist within the results. A query
example would be “+title: Odyssey, +Tyson” in which the form “+label: word” sug-
gests that relevant documents must have in their title the word Odyssey and other fields
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must also contain the word Tyson. The syntax of the query is highly extensible since
labels are optional and additional ones can be defined. XESearch [6] ranks results by
assigning weights to every word using a modified tf-idf (term frequency, inverse
document frequency). Another metric taken into account when ranking answers is the
weight associated to every label (if the labels are present in the query). Since a query
retrieves multiple results, the XESearch engine reorders the results by leveraging the
documents’ structures and their content.

Another example is SICH (Semantic Illegal Content Hunter) [7], which can be used
to detect illegal content on the Internet. Besides the proposed architecture for building a
generic semantic search engine, several search methods are also considered, such as:
linguistic search, spatial search (using geolocation), events-based search and searches
based on a corpora selection.

A combination of a semantic search engine and a meta-search engine was proposed
by Mukhopadhyay, Sharma, Joshi, Pagare and Palwe [8]. Their search engine
(SemanTelli) relies on three other engines: DuckDuckGo, Hakia and SenseBot. Each
search engine has an initial weight which is taken into account when aggregating the
results. The user inserts a composed query, which is split into combinations of
meaningful keywords and sent to the aforementioned search engines. This split is
performed after removing stopwords (e.g., “the”, “or”, “and”) and applying suffix
stripping (ex. “usage” will be stripped and will result “use”). Afterwards, the ranking
algorithm counts how many of the keywords are present in each result in order to assess
importance. The sequence of keywords is taken into account if the keywords’ count is
equal for two or more resources.

Our Hub-Tech platform [9] integrates the functionalities provided by the Read-
erBench framework [10, 11] in term of text analysis. ReaderBench makes use of
Cohesion Network Analysis (CNA) [1] which provides an in-depth discourse structure
centered on the cohesive links between text segments and spanning across the text.
ReaderBench integrates several advanced Natural Language Processing (NLP) tech-
niques and is used for extracting keywords and for computing the semantic relatedness
between two documents. In terms of semantic models, ReaderBench incorporates
Latent Semantic Analysis [12], Latent Dirichlet Allocation [13], word2vec [14],
alongside semantic distances between words within lexicalized ontologies such as
WordNet [15].

3 The Hub-Tech Semantic Processing Architecture

Our semantic meta-search functionality is integrated within the Hub-Tech platform [9]
and it enables users to enter a project description and receive recommendations
regarding current state-of-the-art approaches. The recommendations represent articles
retrieved from various online databases (namely Mendeley – http://dev.mendeley.com/
methods – and Core Engine – https://core.ac.us/docs/ – in this release) that are
semantically related to the user’s input. Figure 1 presents the application’s workflow.
Users submit an online form in which they input the description corresponding to a new
idea or research project. The first step consists of extracting the most relevant keywords
(only content words) from the user’s text using the ReaderBench framework; the result
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is a word list trimmed to a preset number between 5 and 10. This range of keywords
turned out to be most relevant for the text, it does not request extensive computational
power for follow-up processes, and we observed that no more than 10 keywords are
required to describe the overview of a paper or of an abstract. The following step
represents the semantic meta-search on Mendeley [16] and Core Engine [17] using the
previous keywords and Akka actors (https://doc.akka.io/docs/akka/2.5/actors.html), as
well as saving the articles with their corresponding metadata in the SOLR database
(http://lucene.apache.org/solr/). Afterwards, articles are processed in a concurrent
manner using Akka actors for generating ReaderBench documents that have undergone
the NLP analyses. Then, documents are ranked in descending order of semantic
relatedness between the input query and the converted documents. As this is a time-
consuming process, Akka actors were employed for the third time to parallelize the

Fig. 1. Hub-Tech processing pipeline.
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evaluation. In the end, the most relevant documents are returned to the user, alongside
their semantic distances, and are used to create rich user interfaces to visualize the
results corresponding to the 2-mode CNA graph that depicts the interactions between
the most relevant authors and their corresponding articles [18].

Both Mendeley and Core Engine provide REST APIs for retrieving articles. To
ensure that these services are not cluttered with requests, a small timeout (200 ms) was
added between REST calls. Mendeley handles the management of scientific articles and
its service requires OAuth2 [19] authentication with the following request parameters:
keyword(s), number of pages to be retrieved, and number of documents per page. The
last two parameters are useful because they enable results pagination. The results
returned by Mendeley contain the following information: title, authors, abstract, pub-
lication date, publisher, keywords, reader count, publisher and others which are not
used in our platform. Similar to Mendeley, the Core Engine web service gathers
multiple scientific articles from different sources and makes them freely available. The
Core Engine service is accessible by making HTTP POST requests, using a list of
keywords and pagination as parameters. The returned information contains the title,
authors, content, keywords, abstract or description, and full content (an advantage over
the Core Engine service).

Searching for articles is a time-consuming task; thus, we opted to create a parallel
and distributed processing method using the Akka framework (http://doc.akka.io/docs/
2.5/java/guide) that relies on the Actor Model [20]. In Akka, an actor is similar to a
processing thread that runs in a thread-pool. The Akka framework has several benefits,
among which the most important are: thread management and locking mechanisms,
asynchronous processing of messages, immutability and modular architecture. Parallel
computing was implemented via the master-slave paradigm bundled with the Akka
actor framework as presented in Fig. 2. For implementing this paradigm, two types of
actors were created: a master and slaves (gathering actor) responsible for gathering the
articles from the external services. The master actor has only one instance, whereas the
slave actor has 2 instances, one for Mendeley and one for Core Engine service, which

Fig. 2. Architecture for searching online articles.
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can be scaled depending on the architecture. When making a search request, a message
is sent to the master actor which extracts the keywords and sends 2 simultaneous
messages to the gathering actors to extract articles from the external services; after-
wards, the retrieved documents are indexed in the SOLR database.

4 Experiments and Results

Our first preliminary validation experiment was conducted on a dataset containing
1,044 documents extracted using the semantic search algorithm, having as main focus
different sub-domains of artificial intelligence: neural networks, classification and
regression algorithms, robotics, and others. The aim of this experiment is to provide an
in-depth analysis with regards to the relevance of the retrieved documents, while
assessing article rankings. The input used for testing was an abstract from a paper by
Leung and Joseph [21] that aimed to predict sport results using a data mining approach.
The text was given as an input to the Hub-Tech processing pipeline, and our model
generated 10 texts/articles with the highest semantic relevance. Subsequently, ten users
aged from 21 to 30, both experts and unfamiliar with the domain, were asked to rank
the selected articles from their perspective with unique numbers from 1 to 10, where 10
is the most relevant article that can help them fulfill their goals, and 1 the least relevant
article.

The results are shown in Table 1 in which similar scores for both automated and
human evaluations are marked as pairs of ranks (e.g., “5–6” and “7–8”). Rows in green
denote similar rankings and an important observation is that the first and the second
most relevant and highly ranked articles fall in this category. Rows in yellow suggest a
close match in ratings (i.e., a maximum difference of two points in rankings). The red
color represents rows with a high disagreement between automated and human rank-
ings. Overall, we can observe that only two articles were highly rated (average scores

Table 1. Comparison between automated and human rankings.

Automated
ranking

Human 
ranking

Human Average 
score

Standard deviation 
of human scores

Article 1 9 6 4.91 2.57
Article 2 8 3 6.16 2.51
Article 3 10 10 2.08 1.24
Article 4 5-6 4 5.58 2.10
Article 5 7 9 2.91 1.44
Article 6 1 1 8.83 1.64
Article 7 2 2 7.58 2.10
Article 8 3-4 8 4.16 2.58
Article 9 3-4 5 5.41 2.46
Article 10 5-6 7 4.58 2.27
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above 7.5), two articles were lowly ranked (average scores below 3), while the
remaining ones are rather close to each other in terms of relevance. Moreover, the
articles that had the highest differences between the automated and manual rankings
also exhibited a higher standard deviation, thus denoting that even the human evalu-
ators were far from reaching a consensus.

Our second preliminary validation experiment is centered on evaluating the accu-
racy of our results by performing a side-by-side comparison between our Hub-Tech
search engine and Google Scholar (https://scholar.google.com). The used metrics to are
specific to the informational retrieval domain, namely: precision (i.e., ratio between the
number of relevant articles and the number of the retrieved documents) and precision at
K (similar to precision, but the domain of articles in cut or expanded to a cardinal of K).
In order to emphasize the benefits of performing semantic searches, we opted to
consider only long queries (50 + words) simulating, for example a problem definition,
a project synopsis or the description of new idea. The input consisted of abstracts from
eight Artificial Intelligence articles that were fed to both platforms; top 10 retrieved
articles from each engine were saved for follow-up analyses. Five participants per-
formed a binary assessment of the relevance of each of the 132 documents extracted
from both platforms. A document was considered relevant based on majority voting
from the raters.

Table 2 introduces the comparative results for our specific queries that contain
detailed descriptions. Hub-Tech platform recommended relevant articles with a preci-
sion of 33%, while Google Scholar only achieved 26%. The main problem that we
noticed about Google Scholar in this experiment is that the search engine does not
return enough articles if the query is not clear enough or too long (e.g., Article 4 has no
results, Article 3 has only 2 results, Article 6 has 3).

Table 2. Side-by-side comparison between Hub-Tech platform and Google Scholar

Hub-Tech precision Hub-Tech
precision at 10

Google scholar
precision

Google scholar
precision at 10

Article 1 6/9 6/10 2/10 2/10
Article 2 5/10 5/10 7/8 7/10
Article 3 3/10 3/10 1/2 1/10
Article 4 4/10 4/10 0 0
Article 5 2/10 2/10 9/10 9/10
Article 6 3/10 3/10 2/3 2/10
Article 7 5/10 5/10 1/10 1/10
Article 8 4/10 4/10 4/10 4/10
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Moreover, we observed additional features and limitations for both engines:

• The Hub-Tech database contains only 1044 documents related to the artificial
intelligence field, while Google Scholar has access to at least 100 million articles
with no particular restriction regarding the domain of focus [22].

• Specific abstracts having keywords from one domain, rather than complex multi-
disciplinary descriptions, are performing better on Google Scholar because it is
easier for the search engine to retrieve documents based on keywords.

• The underlying semantic models from Hub-Tech may affect the overall results if the
training set does not contain the keywords of a text.

• The average execution time for the Hub-Tech platform is 9 min, while Google
Scholar search engine provides responses in 0.5 s for complex queries as the ones
given as input in our experiments.

• Google Scholar allows only inputs with a maximum of 256 characters. If the search
input is longer, it gets trimmed to 256 characters.

Overall, Hub-Tech is performing better than Google Scholar for long, specific
queries and is exhibiting consistency reflected in the number of retrieved results. When
complex, cross or multi-domain, texts are given as input, Hub-Tech is performing
better; however, when specific texts are provided, Google Scholar presents more rel-
evant results while relying on the keywords extracted from the query.

5 Conclusions

This paper introduced a novel semantic meta-search engine built on top of Cohesion
Network Analysis that makes use of the Akka Actor system and SOLR to increase its
performance and to ensure scalability. The initial results are encouraging, the system
being capable to recommend relevant articles based on a provided user description. The
generated recommendations were confirmed by humans with a high precision, but more
in-depth validations need to be performed as subsequent analyses. A comparison with
Google Scholar was performed to evaluate the system’s performance in recommending
relevant articles, given a description of a project or a paper abstract. Both platforms
have their limitations, but Hub-Tech is performing overall better at this task due to the
semantic contextualization. Moreover, we believe that accuracy can improve by adding
more articles to our semantic database, as well as by training specific semantic models
for certain sub-domain.

Based on the existing solutions, meta-search and semantic search engines provide
valuable methods and results when retrieving relevant resources. The Hub-Tech plat-
form tackles this requirement and tries to help users to jumpstart their project with less
time invested in searching online for connected articles, and with a more relevant
collection of reference documents as a starting point.
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Abstract. A Cognitive map is a graphical semantic model that repre-
sents influences between concepts. A cognitive map is easy to design and
use, but the only query a user can make on it is to infer the propagated
influence from a concept to another. This paper (This work is made
in the context of “Analyse Cognitive de Savoirs”, a computer science
project, granted by French region Pays de la Loire.) proposes CMQL,
a general query language for cognitive maps. This language provides a
way to query the different items of the model and not only the propa-
gated influence. The language is declarative and is inspired of the domain
relational calculus.

Keywords: Cognitive map · Visual knowledge representation
Query language · Analysis · Influence · Graphical semantic model

1 Introduction

A Cognitive map [2] is a semantic model originally coming from cognitive psy-
chology. A cognitive map is an efficient tool to model strategies, more generally
influence systems. Cognitive maps are used in domains like social sciences [2],
biology [14] or geography [3]. A cognitive map is a graph whose nodes are con-
cepts and edges are influences. The influences are labelled with an influence
value that belongs to a predefined value set that quantifies it. This set can con-
tain symbolic values such as {−,+} [14] or {none, some, much, a lot} used in
fuzzy cognitive maps [7], or numerical values such as [−1; 1] [7]. A sequence of
influences from a concept to another constitutes an influence path. Using those
paths, this model provides a way to infer the global influence value that any
concept can have on any other one, such an inference is called the propagated
influence value.

Cognitive maps are used in two ways. On the one hand, they are used as
a knowledge representation model for influence systems. This makes them a
convenient visual support for brainstorming [10] or discussions [5]. On the other
hand, they are used not only for knowledge representation but also for analytical
inference [6] and different analysis of the cognitive map to make a decision.

This paper addresses difficulties of this second way. The only mean a user
has to make an analysis of the map is to query the propagated influence value
from a concept on another. This is not enough, users should be able to make
c© Springer Nature Switzerland AG 2018
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many more interesting queries such as getting all paths between two concepts,
getting all concepts that influence positively another specific concept etc. This
lack of solutions has been felt in applied research projects [12]. Indeed, in the
context of the KIFANLO1 project, geographers for whom a cognitive map tool
[1,9] has been developed, asked us to think about other solutions to query the
cognitive maps model.

The contribution of this article is to propose a general language called CMQL,
to query cognitive maps. CMQL is based on two original ideas: the language is
declarative and its basis is a set of primitives that gives an access to path and val-
ues. First, this language is declarative so that it is easy to formulate the desired
query. The syntax of CMQL, uses the well-known form of SQL [4] (SELECT
variables/FROM map/WHERE condition), which makes it intuitive. Its seman-
tics is close to domain relational calculus [8] which combines formulae with first
order logic operators and whose variables denotes items of the model. Second,
primitive formulae are used as predicates that provide meaning to variables in
the condition clause of queries. They allow a direct access to the different items of
the cognitive map model and are used syntactically as an equivalent of relations
in query languages for the relational data model.

This article is composed of three parts. First, the cognitive map model is
recalled in a formal way. Second, the primitives are presented. Third, CMQL is
presented.

2 The Cognitive Map Model

A cognitive map is a graph defined on a concept set and a value set. The nodes
of the graph are the concepts and the directed edges are the influences. An
influence of a concept on an other one is labelled with an influence value. The
value set can vary as it depends on the semantics of the cognitive map.

Definition 1 (Cognitive map). Let C be a concept set. Let I be a value set.
A cognitive map defined on I is an oriented labelled graph CM = (C,A, label):

– The concepts of C are the nodes of the graph
– A ⊆ C × C are the edges of the graph called influences
– label : A → I is a label function that associates to each influence an influence

value.

Example 1. CM1 is the cognitive map of Fig. 1. This map is used for all exam-
ples in the paper. It is defined on the value set I = [−1; 1] (where 1 is a great
influence and 0.2 a low influence). CM1 represents the fishing strategy of a fish-
erman of the french Altantic coast. We notice that the fisherman’s goal is the
concept of Rentability and other concepts influence it. For instance the concept
BadWeather influences NoFishing and this influence is labelled 0.5. NoFishing
influences Rentability and this influence is labelled negatively −1.
1 KIFANLO is a 2013–2017 project financed by the Fondation de France to help

geographers analyse fishing strategies of fishermen in the French Atlantic coast. In
this project, fishing strategies were modelled using cognitive maps.
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Fig. 1. CM1

A path is a sequence of influence which represents a direct or indirect way
a concept influences another. A path is said minimal if it does not contain any
cycle. Notice that between two paths, there can be many minimal paths.

Definition 2 (Path). Let CM = (C,A, label) be a cognitive map. Let c1, c2 ∈
C be two concepts of CM .

– A path P from c1 to c2 is a sequence of length lengthP ≥ 1 of influences
(ui, ui+1) ∈ A (with i ∈ [0; lengthP − 1]) such that u0 = c1 is the source of
P noted sourceP and ulengthP

= c2 is the destination of P noted destP . This
path is denoted by c1 → u1 → · · · → c2.

– P is said minimal if ∀i, j ∈ [0; lengthP ], i �= j ⇒ ui �= uj.
– The set of all minimal paths on CM is denoted by PathsCM

Example 2. ShortFishingSets → ProductionQuality → Rentability is a
minimal path of length = 2, from the source concept ShortFishingSets to
the destination concept Rentability. This path is a sequence of 2 influences.

One of the main features of cognitive maps is its ability to infer the propa-
gated influence from any concept to any other one. To do that, every way one
concept influences another has to be considered, in other words every path from
one concept to the other is involved.

The propagated influence from a concept to another can be calculated dif-
ferently depending on the map’s semantics and on the value set on which it is
defined. In all cases, the computation of the propagated influence first assigns
a propagated influence for each path with an operator before aggregating those
values with a second operator.

Definition 3 (Propagated Influence). Let CM be a cognitive map defined
on I.

– The path value is a function PVpath : PathsCM → I which infers the propa-
gated influence of a path.
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– The propagated influence value is a function PV : C × C → I which infers
the propagated influence from a concept to another one.

In this paper, to illustrate with a specific example, we will use the value set
I = [−1; 1] and define functions for the propagated influence according to this
set [7].

Definition 4 (Propagated Influence for I = [−1; 1]). Let CM be a cogni-
tive map defined on I = [−1; 1]. Let p1 be a path. Let c1, c2 ∈ C be two concepts
of C. Let Pathsc1,c2 be the set of all minimal paths between c1 and c2.

– PVpath(p1) =
lengthp1−1∏

i=0

label((ui, ui+1)).

– PV (c1, c2) =

∑

p∈Pathc1,c2

PVpath(p)

|Pathsc1,c2 | .

Example 3. Lets infer the propagated influence value between
ShortFishingSets and Rentability. The set of all minimal paths between those
two concepts is PathsShortF ishingSets,Rentability, it contains two paths;

– p1 = ShortFishingSets → ProductionQuality → Rentability.
– p2 = ShortFishingSets → FishingSetsAugmentation →
ImportantValueProduction → Rentability.

To infer the propagated influence value between ShortFishingSets and
Rentability we need PVPath(p1) and PVPath(p2). From the definition above,
we have PVPath(p1) = 0.75 × 0.5 = 0.37 and PVPath(p2) = 0.5 × 0.5 × 1 = 0.25.
Then, aggregating the path values, PV (ShortFishingSets, Rentability) =
(0.37+0.25)

2 = 0.31. So the propagated influence value from ShortFishingSets
to Rentability is 0.31.

3 The Primitives

Primitives are predicates that will be used in the condition part of a query. They
are useful to describe and obtain characteristics on paths and values.

In order to introduce the primitives, the definition of a relation has to be
recalled, it comes from the domain relational calculus [11]. The structure of
a relation R is a mapping R(A1 : D1, ..., An : Dn) from the attributes A =
A1, ..., An of the relation to their domain D = D1, ...,Dn. Its value is a subset of
the indexed cartesian product2 of the attribute/domain pairs. Primitive formulae
are syntactic components that access primitives, they have arguments that can
be either constants or variables. Variables are written like in SPARQL [13] with
a question mark as prefix. The meaning of such a formula is a relation whose
attributes are the variables of the formula.

2 ∏
(A : D) = {t is a total function : A → D1 ∪ ... ∪ Dn/ ∀i ∈ [1, n], t(Ai) ∈ Di}.
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3.1 Primitives of Paths

The Path primitive links a path with its source concept and destination concept,
it provides an access to paths and concepts.

Definition 5 (Path). Let CM = (C,A, label) be a cognitive map.
Path(s:C,d:C,p:PathsCM ) is a relation whose value is {(s, d, p)/ p ∈

PathsCM ∧ sourcep = s ∧ destp = d}.
Example 4. Applied to CM1 - Fig. 1.

– Path(RiskyArea,Rentability,?p) is a primitive formula. Its meaning is a
unary relation whose value is the set of tuples (?p):

?p
RiskyArea → ImportantV olumeProduction → Rentability

RiskyArea → TechnicalIssues → Rentability
RiskyArea → TechnicalIssues → ManufactureGears → Rentability

RiskyArea → TechnicalIssues → ManufactureGears →
GoodGears → Rentability

– Path(BadWeather,?c2,?p) is primitive formula. Its meaning is a relation
whose value is the set of tuples (?c2,?p):

?c2 ?p
NoFishing BadWeather → NoFishing
Rentability BadWeather → NoFishing → Rentability

The primitive Length is a relation between a path and its length.

Definition 6 (Length). Let CM = (C,A, label) be a cognitive map.
Length(p:PathsCM , l:N∗) is a relation whose value is {(p, l)/ p ∈ PathsCM ∧

l = lengthp}.
Example 5. Applied to CM1 - Fig. 1.

Length(?p,4) is a primitive formula. Its meaning is a unary relation whose
value is the set of tuples (?p):

?p
RiskyArea → TechnicalIssues → ManufactureGears →

GoodGears → Rentability.

The primitives Contains and ContainsPath provide an access to the content
of paths. Contains is a relation between a path and a concept contained by
this path while ContainsPath is a relation between two paths where the first
contains the second. Primitives Contains and ContainsPath(not defined here)
have a ‘complement’ primitive respectively NotContains and NotContainsPath
with the same respective arguments.

Definition 7 (Contains). Let CM = (C,A, label) be a cognitive map.
Contains(p:PathsCM , c:C) is a relation whose value is {(p, c)/ p ∈

PathsCM ∧ ∃(un, un+1) ∈ p, c = un ∨ c = un+1}.
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Example 6. Applied to CM1 - Fig. 1.
Contains(?p,ProductionQuality) is a primitive formula. Its meaning is a

unary relation whose value is the set of tuples (?p):
?p

ShortF ishingSets → ProductionQuality
ProductionQuality → Rentability

ShortF ishingSets → ProductionQuality → Rentability

Definition 8 (ContainsPath). Let CM = (C,A, label) be a cognitive map.
ContainsPath(p1:PathsCM , p2:PathsCM ) is a relation whose value is

{(p1, p2)/ p1, p2 ∈ PathsCM ∧ p2 is a subsequence of p1}.
Example 7. Applied to CM1 - Fig. 1.

ContainsPath(?p,ProductionQuality->Rentability) is a primitive for-
mula. Its meaning is a unary relation whose value is the set of tuples (?p):

?p
ProductionQuality → Rentability

ShortF ishingSets → ProductionQuality → Rentability

3.2 Primitives of Values

The primitive PathValue links a path with its value.

Definition 9 (PathValue). Let CM = (C,A, label) be a cognitive map defined
on the value set I. PathValue(p:PathsCM , i:I) is a relation whose value is
{(p, i)/ p ∈ PathsCM ∧ i = PVPath(p)}.
Example 8. Applied to CM1 - Fig. 1.

PathValue(RiskyArea->TechnicalIssues->Rentability,?i) is a primi-
tive formula. Its meaning is a unary relation whose value is the set of tuples
(?i):

?i
−0.38

The primitive Value links two concepts with the propagated influence value
from the first to the second.

Definition 10 (Value). Let CM = (C,A, label) be a cognitive map defined
on the value set I. Value(c1:C,c2:C,i:I) is a relation whose value is
{(c1, c2, i)/ c1, c2 ∈ C ∧ i = PV (c1, c2)}.
Example 9. Applied to CM1 - Fig. 1.

Value(?c,ImportantVolumeProduction,?i) is a primitive formula. Its
meaning is a relation whose value is the set of tuples (?c,?i):

?c ?i
F ishingSetsAugmentation 0.5

ShortF ishingSets 0.25
RiskyArea 0.5
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4 The Query Language CMQL

Primitive formulae can be combined with first order logic operators to build
more complex queries.

This section gives an intuitive overview of its capabilities and its design
through a first detailed example of query. Other examples will just be introduced
to give a broader idea of the language. Due to lack of space in the paper, CMQL
syntax and semantics are succinctly introduced afterwards.

4.1 Detailed Example

This example describes a query and its results. The goal of the query is to find
the concepts that are influenced at the same time by shortFishingSets and
RiskyArea, the following query can be made:

SELECT ?c1 FROM CM1 WHERE{
Path(shortFishingSets,?c1,?p1)
AND Path(RiskyArea,?c1,?p2)}
This query selects from CM1, the concept ?c1 where there exist a path from

shortFishingSets to ?c1 and another path from RiskyArea to ?c1.
The formula is composed of two conditions combined with a conjunction.

The first one describes ?c1 as the destination of a path ?p1 whose source is the
concept shortFishingSets. The second one describes ?c1 as the destination of
a path ?p2 whose source is RiskyArea. The meanings of those two conditions
are unary relations whose values are the following sets of tuples:

?c1
ProductionQuality

Rentability
F ishingSetsAugmentation

ImportantV olumeProduction

?c1
TechnicalIssues

TravelT imeDiminution
ManufactureGears

GoodGears
ImportantV olumeProduction

Rentability
The meaning of the conjunction of those two condition is a relation whose

value is the intersection of the two previous sets of tuples. It is also the result of
the query:

?c1
Rentability

ImportantV olumeProduction

4.2 Other Examples

The following examples are given to illustrate CMQL.

– All concepts of the map with their propagated influence on Rentability
sorted:
SELECT ?c,?i FROM CM1 WHERE{ Value(?c,Rentability,?i)}
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ORDER BY ?i
?c ?i

ImportantV olumeProduction 1
ElectronicInvestments 0.75

... ...
– The concepts that do not influence any other concepts:
SELECT ?c1 FROM CM1 WHERE{ NOT Path(?c1,?c2,?p)}

?c1
TravelT imeDiminution

Rentability
– The paths from RiskyArea to Rentability that do not contain

TechnicalIssues:
SELECT ?p FROM CM1 WHERE{ Path(RiskyArea,Rentability,?p)
AND NotContainsPath(?p,TechnicalIssues)}

?p
RiskyArea → ImportantV olumeProduction → Rentability

– The concepts that influence Rentability positively and negatively at the
same time:
SELECT ?c FROM CM1 WHERE{
Path(?c,Rentability,?p1) AND PathValue(?p1,?i1) AND ?i1<0
AND
Path(?c,Rentability,?p2) AND PathValue(?p2,?i2) AND ?i2>0}

?c
RiskyArea

TechnicalIssues

4.3 Syntax and Semantics

The syntax presented below is abstract, and aims only to introduce the general
syntactic structure and components for the definition of the semantics.

The syntactic components are: Q (Query), V (Variable), M (Cognitive Map
name), F (Formula), P(Primitive), E (Expression like x < 3, y = z etc.), C
(Constant) and OP (OPerators like =, >,<...).

〈Q〉 ::= ‘SELECT’ 〈V 〉+ ‘FROM’ 〈M 〉 ‘WHERE’ 〈F 〉
〈F 〉 ::= ‘NOT’〈F 〉 | ‘(’〈F 〉‘)’ | ‘ALL’ 〈V 〉+ ‘(’〈F 〉‘)’

| 〈F 〉 ‘AND’ 〈F 〉 | 〈F 〉 ‘OR’ 〈F 〉 | 〈P〉 | 〈E 〉
〈E 〉 ::= 〈V 〉 〈OP〉 〈V 〉 | 〈V 〉 〈OP〉 〈C 〉

This syntax being abstract, a well formed query needs to respect the four
following syntactic rules. First, in the first syntactic rule, variables V are the
free variables of the query, free variables must all be present in the formula and
distinct. At least one variable must appear. Free variables cannot be quantified.
Second, in the formula rule ‘ALL’, variables V cannot appear outside of the
formula. Third, for the E (expression) rule, variables V and constants C must
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be in the same domain, the operator must be defined for the domains of V and
C. Fourth, at least one primitive formula must appear in the query formula.
Variables in E (expressions) must also appear in a primitive formula.

The principal design of this semantics definition is that each formula denotes
a relation whose attributes are the free variables of the formula. The most general
meaning of a query is as follows:

Let SCM be the set of possible cognitive map instances. The meaning of a
query Q is a function from a cognitive map instance to a relation whose attributes
are the free variables of the query: mngQ : SCM → 2

∏
(V :D) where V is the set

of free variables with D the set of their corresponding domain, and 2
∏

(V :D) the
power set of

∏
(V : D) which is the set of all the subsets of

∏
(V : D).

In a general way, the meaning of a formula is a relation whose attributes are
the free variables of the formula: mngF : F → ∏

(V : D). The different formula
rules of the abstract syntax are listed below with their meaning. Let fr(F ) be
the set of variables occurring free in the formula F.

– mngF (NOTF1) =
∏

(fr(F1) : D) − mngF (F1).
– mngF (F1ANDF2) =
mngF (F1) × ∏

(fr(F ) − fr(F1) : D) ∩ mngF (F2) × ∏
(fr(F ) − fr(F2) : D)

– mngF (F1ORF2) =
mngF (F1) × ∏

(fr(F ) − fr(F1) : D) ∪ mngF (F2) × ∏
(fr(F ) − fr(F2) : D)

– mngF (AllV1..VnF1) =
{t ∈ ∏

(fr(V ) − {V1, ..., Vn} : D)/ {t} × ∏
({V1, ..., Vn} : D) ⊆ mngF (F1)}

– mng(P (A1 : T1, ..., An : Tn)) = {t ∈ ∏
(V : D)/ ∃t1 ∈ P,∀i ∈ [1, n],

t1(Ai) = Ti if Ti is a constant, t1(Ai) = t(Ti) if Ti is a varibale }
– mngF (V1 OP C) = {t ∈ ∏

(V : D)/ t(V ) OP C}
mngF (V1 OP V2) = {t ∈ ∏

({V1, V2} : D)/ t(V1) OP t(V2)}
CMQL also provides a set of post-query processing that allow the result set of
tuples to be rearranged and modified. Those functions are similar to the ones
of SQL and SPARQL. They can apply to some attributes like COUNT, AVG, ABS,
SUM, or they can apply to the whole tuples with functions like ORDERBY, GROUPBY,
LIMIT and OFFSET. Their semantic is not described as they are considered trivial.

5 Conclusion

The query language for cognitive maps CMQL has been introduced. It turned out
that query languages for similar models are not appropriate for cognitive maps,
as the models’ semantics are still very distant. For instance RDF’s SPARQL [13]
and Neo4j’s Cypher [15] are mainly oriented towards scheme graph projection.
Their exploitation of nodes and edges properties do not provide a way to take
into account this idea of paths as proposed in CMQL. Some of those languages
like SPARQL provide regular path expressions, but CMQL’s primitives are more
adequate to query cognitive maps as they can manipulate paths and their length
as variable.
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Indeed, what is needed is a way to access nodes that are influenced or not,
get all paths between two concepts and get the inferred propagated influence.
To do so, CMQL provides a way to query paths with their properties in an
original way, using primitives. Other features like the propagated influence also
are queried using primitives which provide coherence for the language. To our
knowledge no other work proposes a query language for Cognitive maps.

CMQL has been implemented and integrated into the software VSPCC [1],
which has been developed in our lab and provides tools to use cognitive maps.
Researchers in geography began to use it and this software is useful. The features
of CMQL also let us think that it could be interesting to use it in a broader
context and not limit its expressiveness to cognitive maps. Indeed, CMQL could
be fit to query other graph based models that require to work with paths.
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Abstract. The aim of this paper is to study the problem of enumerating
all the essential prime implicants (EPIes) of a CNF formula. We first
provide some interesting computational complexity results. We show in
particular that the problem of checking whether a prime implicant of
a CNF formula is essential is NP-complete. Then, we propose a simple
characterization of the e-models of a CNF formula. An e-model is a
model covered by a unique prime implicant, which is necessarily essential.
Our characterization is then used to define a linear-time algorithm for
checking whether a model of CNF formula is an e-model or not. Finally,
using our characterization of the e-models, we propose two approaches
for enumerating all the EPIes of a CNF formula.

Keywords: Essential prime implicant · Propositional logic
Solution enumeration

1 Introduction

The problem generating all the prime implicants (PIes) is a central task in dif-
ferent areas in computer science. One of its important applications is in the
problem of Boolean function minimization, which consists in reducing a Boolean
function to a smaller and equivalent function [12,14,15]. Boolean function mini-
mization problem has several applications in computer science, such as reducing
digital circuit size which is a way for enhancing computation speed [21]. The
problem of enumerating all the PIes finds other applications in other areas in
computer science in general, and artificial intelligence in particular, including
databases [8], model based diagnosis [6], knowledge compilation [5] and multi-
agent systems [19].

A prime implicant is essential if it covers at least one model which is not
covered by any other prime implicant. In the same way as the number of prime
implicants, the number of essential prime implicants is possibly exponential [5].
The problem of generating the EPIes is crucial for the problem of Boolean func-
tion minimization (see e.g. the minimum cover problem [17]). Indeed, from the
previous definition of the EPIes, one can see that every subset of prime impli-
cants of a Boolean function that cover all its models contains all the EPIes of this
function [12,14], which shows in particular the interest of EPIes in converting
c© Springer Nature Switzerland AG 2018
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propositional formulas to Disjunctive Normal Form (DNF). In other words, the
EPIes of a formula are included in any set of its prime implicants covering it.
Our aim in this work is to study the problem of enumerating all the EPIes of a
propositional formula in Conjunctive Normal Form (CNF).

There are many approaches in the literature for enumerating all or a part of the
PIes of a CNF formula. One can particularly cite DPLL-like procedures [2,16,18],
integer linear programming based encodings [11,13] and SAT-based encoding [10]
(SAT stands for satisfiability checking problem in propositional logic). However,
there are few works in the literature considering the problem of enumerating all
the EPIes. The authors of [3,4] have proposed a method to compute implicitly the
set of EPIes based on the use of Binary Decision Diagrams (BDDs). Similarly to
several methods in the literature, the authors of [9] have provided a method for
computing the EPIes from the set of all the PIes. Other methods are based on con-
structing (possibly) exponential size structures (see e.g. [1]) or using formula rep-
resentations different from CNF (see e.g. [20]). To the best of our knowledge, there
is no work on generating explicitly all the EPIes dedicated to the CNF formulas
and benefiting from their structure without generating all its prime implicants.

The aim of this work is to propose methods for enumerating explicitly all the
EPIes in the case of CNF formulas. We first provide some interesting computa-
tional complexity results. We show in particular that the problem of checking
whether a prime implicant is essential is NP-complete. Then, we provide a sim-
ple characterization of the e-models in the case of CNF formulas. An e-model of
a formula is a model covered by a unique prime implicant, which is necessarily
essential. This characterization is used in particular for defining an algorithm
for checking in linear time whether a model of a CNF formula is an e-model or
not. Our characterization of the e-models is also used for defining two methods
for enumerating all the EPIes. The first method is based on using a decision
procedure (an oracle) for checking whether a model is an e-model or not and
generating the EPIes from the found e-models. The second method corresponds
to a SAT-based encoding. The base idea of this encoding consists in using addi-
tional propositional variables for representing the elements of every EPI and
representing our characterization of the e-models by a propositional formula.

2 Background

We are here interested in the conjunctive normal form (CNF) representation
for propositional formulas. A CNF formula is a conjunction of clauses where a
clause is a disjunction of literals. A literal is a positive or negated propositional
variable. It is well-known that every propositional formula can be translated
to CNF w.r.t. the satisfiability problem (equisatisfiability) using Tseitin’s linear
encoding. Propositional variables are denoted by the lowercase letters p, q, r, and
propositional formulas by the Greek letters φ, ψ, χ. Given a propositional formula
φ, we use V ar(φ) (resp. Lit(φ)) to denote the set of propositional variables
(resp. literals) occurring in φ. Further, given a literal l, we use l to denote its
complementary literal. Moreover, given a set of literals L, we use L to denote
the clause

∨
l∈L l.
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A CNF formula can also be seen as a set of clauses and a clause as a set of
literals. Thus, a CNF formula of the form (l11 ∨· · · ∨ l1k1

)∧· · · ∧(ln1 ∨· · · ∨ lnkn
) can

be also represented in this work by the set of clauses {(l11 ∨ · · · ∨ l1k1
), . . . , (ln1 ∨

· · · ∨ lnkn
)} and the set of sets of literals {{l11, . . . , l1k1

}, . . . , {ln1 , . . . , lnkn
}}.

A tautological clause is a clause containing two complementary literals (e.g.
p ∨ ¬p ∨ q ∨ r). One can easily see that the tautological clauses can be removed
from a CNF formula without changing its truth value. From now on, we only
consider the CNF formulas that does not contain any tautological clause.

A Boolean interpretation of a propositional formula φ is an assignment that
associates truth values in {0, 1} to propositional variables in V ar(φ), where 0
stands for false and 1 stands for true. It is extended to propositional formulas as
usual. A Boolean interpretation of φ is complete if it gives a truth value to each
variable in V ar(φ), otherwise it is said to be partial. A model of a propositional
formula is a complete Boolean interpretation satisfying this formula. The prob-
lem of determining if there exists a model that satisfies a given propositional
formula, abbreviated as SAT, is one of the most studied NP-complete problems.

For convenience purposes, we represent from now on the Boolean
interpretations as sets of literals. More precisely, the set of literals
{p1, . . . , pm,¬q1, . . . ,¬qn} represents the Boolean interpretation that associates
1 to the variables p1, . . . , pm and 0 to q1, . . . , qn. Note that to be a Boolean
interpretation a set of literals does not have to contain a literal and its negation.

3 Essential Prime Implicants

In this section, we first describe the notions of prime implicant, essential prime
implicant and e-model. We also provide some important computational complex-
ity results. Further, we propose an algorithm for solving the problem of checking
whether a model of a CNF formula is one of its e-models.

A partial Boolean interpretation that satisfies a propositional formula is
called an implicant of this formula. Moreover, an interpretation I of a formula
φ is called a prime implicant (in short PI) of this formula if for all literal l ∈ I,
the Boolean interpretation I \ {l} does not satisfy φ. In other words, a prime
implicant is an implicant which is not covered by a more general implicant.

In Algorithm 1, we describe a simple method for computing a prime implicant
from a model. In the for-loop, a literal is removed every time it is not necessary to
get satisfiability. Algorithm 1 and other more efficient algorithms for computing
a prime implicant from a model are proposed in [2,7].

Definition 1 (Essential Prime Implicant (EPI)). Given a propositional
formula φ, a prime implicant I of φ is essential if there exists a complete model
M of φ such that I ⊆ M (we say I covers M) and I ′ �⊆ M for every prime
implicant I ′ of φ different from I.

In other words, an essential prime implicant is a prime implicant that covers
a complete model that no other implicant is able to cover. From this definition,
one can see that the essential prime implicants of a formula are included in
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Algorithm 1. The algorithm Prime(φ,M) for computing a prime impli-
cant from a given model
Data: A CNF formula φ and a complete model M of φ.
Result: A prime implicant of φ.

1 I ← M;
2 for l ∈ M do
3 if I \ {l} satisfies φ then I ← I \ {l} ;
4 end
5 return I;

every set of its prime implicants that covers all its models. This shows why
the problem of generating the EPIes is important for the problem of Boolean
function minimization [17].

Let us for instance consider the CNF formula φ = (p ∨ q) ∧ (p ∨ r). This for-
mula admits two prime implicants, namely {p} and {q, r}. The complete model
{p, q, r} is covered by the two prime implicants of φ. However, every other com-
plete model is covered by only a unique prime implicant of φ. For instance,
{p,¬q,¬r} is only covered by {p} and {¬p, q, r} is only covered by {q, r}. As a
consequence, {p} and {q, r} are both EPIes. In this context, we call the particular
complete models {p,¬q,¬r} and {¬p, q, r} e-models.

Definition 2 (E-Model). Given a propositional formula φ, a complete model
M of φ is an e-model if there exists one and only one prime implicant I of φ
such that I ⊆ M. The prime implicant I is necessarily essential.

In Algorithm 2, we propose a simple method for checking whether a model is
an e-model or not. Indeed, IsEModel(φ,M) uses first Prime(φ,M) to compute
an arbitrary prime implicant I of φ that covers M (see Line 1). In the while-
loop, our algorithm checks whether there is no prime implicant other than the
computed one covering the model M. More precisely, IsEModel(φ,M) checks
whether there exists a literal in I such that M \ {l} satisfies φ. If such a literal
exists, then IsEModel(φ,M) returns false (Line 4), otherwise it returns true
(Line 7). The soundness of this algorithm comes from the fact that if there
exists a literal l in I such that M \ {l} satisfies φ, then there exists a prime
implicant that covers M and different from I, which means that M is not an
e-model since it is covered by at least two prime implicants.

Theorem 1. The problem of checking whether a model of a CNF formula is an
e-model is in P.

The previous theorem is clearly a direct consequence of Algorithm 2.

Theorem 2. The problem of checking whether a prime implicant of a CNF
formula is essential is NP-complete.

Proof. One can easily see that this problem is in NP. Indeed, a prime implicant
I of a formula φ is an EPI if there exists an e-model M s.t. I ⊆ M, and using
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Algorithm 2. The algorithm IsEModel(φ,M) for checking whether a
model is an e-model or not
Data: A CNF formula φ, a complete model M of φ.
Result: true or false according to whether or not M is an e-model.

1 I ← Prime(φ, M);
2 for l ∈ I do
3 if M \ {l} satisfies φ then
4 return false ;
5 end

6 end
7 return true ;

Theorem 1, we know that the problem of checking whether a model of a given
formula is an e-model is in P. Let us now show that this problem is NP-hard.
To this end, we use the NP-complete problem SAT. Let φ be a CNF formula.
We associate to each clause c ≡ l1 ∨ · · · ∨ lk in φ a fresh propositional variable
pc and the set of binary clauses Ec = {pc ∨ l1, . . . , pc ∨ lk}. In this context, it is
easy to show that Iφ = {pc | c ∈ φ} is an EPI of ψ ≡ ⋃

c∈φ Ec if and only if the
formula φ is satisfiable. We first show that Iφ is a prime implicant of ψ. Assume
that there exits a clause c ≡ l1 ∨ · · · ∨ lk s.t. Iφ \ {pc} satisfies ψ. However,
Iφ \ {pc} ∪ {¬pc, l1, . . . , lk} is a countermodel of ψ and we get a contradiction.
As a consequence, Iφ is a prime implicant of ψ.

Assume that φ is satisfiable and M is a complete model of φ. Clearly, Iφ ∪M
is a model of ψ. Moreover, for all clause c in φ, there exists l ∈ c such that pc ∨¬l
in ψ and l ∈ M. Thus, for all c ∈ φ, (Iφ\{pc})∪M does not satisfy ψ. Therefore,
Iφ ∪ M is an e-model of ψ and Iφ is an essential prime implicant.

Assume now that Iφ is an essential prime implicant of ψ. Then, there exists
a complete Boolean interpretation M of φ such that Iφ ∪M is an e-model of ψ.
Assume that M is a countermodel of φ. Then, there exists a clause c ∈ φ such
that for all l ∈ c we have ¬l ∈ M. Thus, (Iφ \ {pc}) ∪ M satisfies ψ and we
get a contradiction since Iφ ∪ M is an e-model of ψ and I an essential prime
implicant of ψ.

4 A Characterization of E-Models

In this section, we provide a simple characterization of the e-models of a CNF
formula. This characterization is used in particular for defining an algorithm for
checking in linear time whether a model of a CNF formula is an e-model.

Given a CNF formula φ and a complete model M of φ, we use U(φ,M) to
denote the subset of literals {l ∈ M | ∃c ∈ φ, c ∩ M = {l}}. In other words,
a literal belongs to U(φ,M) if and only if there exists a clause in φ which is
satisfied by only this literal using M. From the definition of U(φ,M), we clearly
get the following property.
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Proposition 1. Let φ be a CNF formula and M a complete model of φ. Then,
for all l ∈ U(φ,M), M \ {l} does not satisfy φ.

In the following theorem, we use U(φ,M) to provide a characterization of
the e-models in the case of CNF formulas.

Theorem 3. Let φ be a CNF formula and M a complete model of φ. Then, M
is an e-model of φ iff for all l ∈ M and for all clause c ∈ φ with l ∈ c, there
exists a literal l′ ∈ c, possibly l, s.t. l′ ∈ U(φ,M).

Proof. Part ⇒. We first assume that M is an e-model of φ. Then, M is covered
by a unique prime implicant I of φ. One can easily see that for all l ∈ I we get
l ∈ U(φ,M) since I is the unique prime implicant covering M. Indeed, if there
exists l ∈ I s.t. l /∈ U(φ,M), then M \ {l} satisfies φ. Using the fact that there
exists a prime implicant of φ covering M\{l} (a prime implicant that covers M
and different from I), we get a contradiction with the fact that M is an e-model.
Moreover, using the fact that I satisfies φ, we get c ∩ I �= ∅ for all clause c in
φ. Thus, for all l ∈ M and for all clause c ∈ φ with l ∈ c, there exists a literal
l′ ∈ c s.t. l′ ∈ U(φ,M) (l′ ∈ I).

Part ⇐. Assume now that for all l ∈ M and for all clause c ∈ φ with l ∈ c,
there exists a literal l′ ∈ c s.t. l′ ∈ U(φ,M). Then, we have U(φ,M) satisfies
φ. Moreover, using the definition of U(φ,M), U(φ,M) is an EPI of φ. Indeed,
this comes from the fact that for all l ∈ U(φ,M), there exists a clause c in φ s.t.
c ∩ M = {l}, i.e., for all l ∈ U(φ,M), M \ {l} does not satisfy φ. Knowing that
U(φ,M) is an EPI of φ, M is an e-model of φ.

Given a CNF formula φ and a model M of φ, the fact that for all l ∈ M
and for all clause c ∈ φ with l ∈ c, there exists a literal l′ ∈ c such that
l′ ∈ U(φ,M), means that U(φ,M) satisfies φ. Moreover, using the definition of
U(φ,M), we obtain that U(φ,M) is a prime implicant of φ. Thus, we get the
following corollary as a direct consequence of Theorem 3.

Corollary 1. Given a CNF formula φ and a complete model M of φ, M is an
e-model of φ iff U(φ,M) is a prime implicant (an EPI a fortiori) of φ.

Let us consider again the formula φ = (p ∨ q) ∧ (p ∨ r) and its models
M1 = {¬p, q, r} and M2 = {p,¬q,¬r}. Then, we have U(φ,M1) = {q, r} and
U(φ,M2) = {p}. Using the fact that {q, r} and {p} are prime implicants of φ,
we obtain that M1 and M2 are e-models of φ.

Using Corollary 1, to check whether or not a given complete model M of a
given formula φ is an e-model of the latter, we only need to check that U(φ,M)
satisfies φ. Indeed, using the definition of U(φ,M), we obtain U(φ,M) is a prime
implicant of φ iff U(φ,M) satisfies φ. Moreover, we know that if M is an e-model
of φ, then its associated EPI is U(φ,M).

In Algorithm 3, we propose another algorithm for solving in linear time the
problem of checking whether a model is an e-model or not using the previous
approach. In the first for-loop, IsEModel2(φ,M) computes in linear time the
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Algorithm 3. The algorithm IsEModel2(φ,M) for checking if a model is
an e-model
Data: A CNF formula φ, a complete model M of φ.
Result: true or false according to whether or not M is an e-model of φ.

1 U ← ∅;
2 ψ ← ∅;
3 for c ∈ φ do
4 if |c ∩ M| = 1 then
5 U ← U ∪ (c ∩ M);
6 else
7 if c ∩ U = ∅ then ψ ← ψ ∪ {c};
8 end

9 end
10 for c ∈ ψ do
11 if c ∩ U = ∅ then return false;
12 end
13 return true;

value of U(φ,M) which is saved in the variable U . In the second for-loop, our
algorithm checks in linear time if U(φ,M) satisfies φ. The soundness of Algo-
rithm 3 is a direct consequence of Corollary 1.

5 SAT-based Methods for Generating EPIes

In this section, we propose two methods for generating all the EPIes of a CNF
formula by using our characterization of the e-models. The first method is based
on using a decision procedure (an oracle) for checking whether a model is an
e-model or not, while the second method uses a SAT encoding for enumerating
the essential prime implicants.

5.1 A Method Based on an E-Model Checking Procedure

In Algorithm 4, we describe our first method for generating all the EPIes of a
CNF formula. In the following, we describe the instructions of this algorithm.
In Line 3, SAT (·) is a decision procedure for checking the satisfiability of a
CNF formula (A SAT oracle). In Line 4, IsEModel − Oracle(·, ·) is an e-model
checking procedure. For instance, one can use the algorithm IsEModel2(·, ·) as
an e-model checking procedure.

In the while loop, if the found model M is an e-model, U(φ,M) is added
to the set of EPIes and the clause U(φ,M) is added to ψ to avoid finding any
other e-model which is covered by U(φ,M) (see Lines 4–6). Otherwise, M is
not an e-model and the clause M is added to ψ to find different models in the
next iterations (see Line 8).

Theorem 4. Algorithm 4 is sound, i.e., it terminates and enumerates all the
EPIes of the input CNF formula.
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Algorithm 4. The algorithm ModEnum4EPIes for generating the EPIes
of a CNF formula
Data: A CNF formula φ.
Result: The EPIes of φ.

1 L ← ∅;
2 ψ ← φ;
3 while SAT (ψ) do

/* M is a model of ψ */

4 if IsEModel − Oracle(φ, M) then
5 L ← L ∪ {U(φ, M)};
6 ψ ← ψ ∧ U(φ, M);

7 else

8 ψ ← ψ ∧ M;
9 end

10 end
11 return L;

Proof. Using the instructions at Line 6 and Line 8, ModEnum4EPIes termi-
nates since the number of models is finite. Using Corollary 1, we get that the set
returned by ModEnum4EPIes contains only EPIes. Indeed, for all e-model M
of φ, the set of literals U(φ,M) is an EPI of φ.

Assume now that there exists an EPI I of φ that does not belong to the
set returned by ModEnum4EPIes. Then, there exists a Boolean interpretation
M such that I ⊆ M and M is an e-model of φ and, using again Corollary 1,
I = U(φ,M) holds. Knowing that every e-model is covered by a unique EPI, we
get a contradiction since the clauses added to φ during the computation allows
only to avoid the found EPIes and the models that are not e-models.

5.2 A SAT-Based Encoding

We here provide our SAT-based encoding for enumerating all the EPIes. The
base idea consists in using additional propositional variables for representing
the elements of U(φ,M) described previously and used to characterize the e-
models.

Given a CNF formula φ, we use Enc(φ) to denote the following formula:

φ ∧ (
∧

l∈Lit(φ)

rl ↔ (l ∧
∨

c∈φ,l∈c

∧

l′∈c\{l}
l′)) ∧ (

∧

c∈φ

∨

l∈c

rl)

where the propositional variables of the form rl are fresh propositional variables,
i.e., for every literal l ∈ Lit(φ), a new propositional variable rl is associated to l.

The two following propositions shows the soundness of our encoding in the
sense that it allows to enumerate all the EPIes in the case of CNF formulas.

Proposition 2. Given a CNF formula φ, if M is a model of Enc(φ) then I =
{l ∈ Lit(φ) | rl ∈ M} is an EPI of φ.
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Algorithm 5. A SAT-based Approach for Enumerating the EPIes of a
CNF formula
Data: A CNF formula φ.
Result: The EPIes of φ.

1 L ← ∅;
2 ψ ← Enc(φ);
3 while SAT (ψ) do

/* M is a model of ψ */

4 U ← {l ∈ Lit(φ) | rl ∈ M)};
5 L ← L ∪ {U};
6 ψ ← ψ ∧ ∨

l∈U l

7 end
8 return L;

Proof. Knowing that M is a model of Enc(φ), the Boolean interpretation
M ∩ Lit(φ) is a model of φ since φ is a subformula of Enc(φ). Using the
fact that rl → l is a logical consequence of Enc(φ) for every l ∈ Lit(φ),
M ∩ {rl, rl} ≤ 1 holds for very l ∈ Lit(φ). As a consequence, I does not con-
tain any complementary literals. Using the subformula

∧
c∈φ

∨
l∈c rl, we obtain

that I is an implicant of φ, i.e., it satisfies φ. Furthermore, using the subfor-
mulas of the form

∨
c∈φ,l∈c

∧
l′∈c\{l} l′ , we know that, for all l ∈ M ∩ Lit(φ),

l ∈ I iff there exists a clause c ∈ φ such that c ∩ I = {l}. Thus, we get
I = {l ∈ M ∩ Lit(φ) | ∃c ∈ φ, c ∩ M = {l}} = U(φ,M ∩ Lit(φ)). Therefore,
using Corollary 1, M ∩ Lit(φ) is an e-model of φ that is covered by the EPI I.

Proposition 3. Given a CNF formula φ, if I is an EPI of φ, then there exists
a model M of Enc(φ) s.t. I = {l ∈ Lit(φ) | rl ∈ M}.
Proof. Using the fact that I is an EPI of φ, there exists an e-model M′ of φ
such that I ⊆ M′. Then, using Corollary 1, I = U(φ,M′) holds. We know that
R = {rl | l ∈ I}∪{rl | l ∈ Lit(φ) \I} satisfies the subformula

∧
c∈φ

∨
l∈c rl since

I satisfies φ. We also know that R ∪ M′ satisfies the subformula
∧

l∈Lit(φ) rl ↔
(l∧∨

c∈φ,l∈c

∧
l′∈c\{l} l′) since I = U(φ,M′). Therefore, M = R∪M′ is a model

of Enc(φ) where I = {l ∈ Lit(φ) | rl ∈ M}.

Algorithm 5 describes how to use our SAT-based encoding for enumerating
all the EPIes of a CNF formula. The soundness of this algorithm is a direct
consequence of the soundness of our encoding. Note that every time a solution
M is found, we add the clause

∨
l∈U l instead of the clause

∨
l∈M l to avoid to

found the same EPIes in the next iterations.
The interest of our encoding is not only for generating all the EPIes, it allows

also to focus on EPIes having particular properties that can be expressed within
SAT. For instance, if we want to enumerate all the EPIes that contain at least
one of the literals l1, . . . , ln, we just need to add to our encoding the clause
l1 ∨ · · · ∨ ln. Moreover, the encoding Enc(φ) can be used for solving problems
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related to the notion of EPI. For example, it can be used for solving the problem
of checking whether or not a CNF formula has at least one EPI. Indeed, Enc(φ)
is satisfiable if and only if φ has an EPI. Our encoding can also used for solving
the problem mentioned in Sect. 3 that consists in checking whether or not a
prime implicant is essential. For this purpose, we only have to check whether
a formula obtained from our encoding is satisfiable or not. More precisely, the
prime implicant I of φ is essential if and only if the formula obtained from
Enc(φ) by assigning the truth values in I ∪ {rl, rl | l ∈ I} is satisfiable.

Furthermore, our encoding can be used for reasoning about the size of EPIes,
by way of illustration, for computing a minimum size essential prime implicant.
As a side note, the problem of computing a minimum size prime implicant has
been studied in [11] and solved through an Integer Linear Programming (ILP)
model. A solution of the problem of computing a minimum size essential prime
implicant can be obtained by using our encoding in a Partial Max-SAT (P-Max-
SAT) model. Let us recall that P-Max-SAT consists in solving instances of the
form (φH , φS) where φH , called hard part, and φS , called soft part, are sets of
clauses. A solution of a P-Max-SAT instance (φH , φS) is a Boolean interpretation
that satisfies φH and a maximum number of clauses in φS . Given a CNF formula
φ, we use MinSize(φ) to denote the following P-Max-SAT model:
Hard Part: Enc(φ)
Soft Part: ¬rl for l ∈ Lit(φ)
Clearly, every solution of MinSize(φ) allows us to get a minimum size essential
prime implicant of φ. Indeed, given a solution M of MinSize(φ), {l ∈ Lit(φ) |
rl ∈ M} is an essential prime implicant of φ since M satisfies Enc(φ). Knowing
that M satisfies a maximum number of clauses in the soft part, we obtain that
{l ∈ Lit(φ) | rl ∈ M} is a minimum size essential prime implicant.

It is worth mentioning that a SAT-based encoding for enumerating all the
prime implicants of a CNF formula has been proposed in [10]. It consists in
encoding the input CNF formula as a new one, so that the models of the encoding
represent all the prime implicants of the original formula. In the same way as
our encoding, Jabbour et al’s encoding uses additional propositional variables
to represent the literals belonging to the prime implicants.

6 Conclusion and Perspectives

In this paper, we proposed methods for enumerating explicitly all the essential
prime implicants in the case of CNF formulas without generating other prime
implicants. These methods are based on a simple characterization of the e-models
of a CNF formula. An e-model is a model covered by a unique prime implicant,
which is necessarily essential. Our characterization was used for proposing a lin-
ear time algorithm for solving the problem of checking whether or not a model
of a CNF formula is an e-model. Then, our first method for enumerating all
the essential prime implicants was defined by generating the essential prime
implicants from the e-models through the use of an oracle that solves the latter
problem. Our second method corresponds to a SAT-based encoding where the
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base idea consists in using additional propositional variables for getting the ele-
ments of every essential prime implicant and representing our characterization
of the e-models by a propositional formula.

A future work, we intend to implement and evaluate the proposed methods
for generating the essential prime implicants. We also plan to study tractable
classes in the case of the problem of checking whether a prime implicant is
essential.
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7. Déharbe, D., Fontaine, P., Le Berre, D., Mazure, B.: Computing prime implicants.
In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR,
USA, pp. 46–52 (2013)

8. del Val, A.: Tractable databases: how to make propositional unit resolution com-
plete through compilation. In Proceedings of the 4th International Conference on
Principles of Knowledge Representation and Reasoning (KR 1994), pp. 551–561
(1994)

9. Ignatiev, A., Previti, A., Marques-Silva, J.: SAT-based formula simplification. In:
Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 287–298. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 21

10. Jabbour, S., Marques-Silva, J., Sais, L., Salhi, Y.: Enumerating prime implicants
of propositional formulae in conjunctive normal form. In: Fermé, E., Leite, J.
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Abstract. We herein revisit the predator-prey pursuit problem – using very
simple predator agents. The latter – intended to model the emerging micro- and
nano-robots – are morphologically simple. They feature a single line-of-sight
sensor and a simple control of their two thrusters. The agents are behaviorally
simple as well – their decision-making involves no computing, but rather – a
direct mapping of the few perceived environmental states into the corresponding
pairs of thrust values. We apply genetic algorithms to evolve such a mapping that
results in the successful behavior of the team of these predator agents. To
enhance the generality of the evolved behavior, we propose an asymmetric
morphology of the agents – an angular offset of their sensor. Our experimental
results verify that the offset of both 20° and 30° yields efficient and consistent
evolution of successful behaviors of the agents in all tested initial situations.

Keywords: Simple agents � Micro-robots � Asymmetric morphology
Predator-prey problem � Genetic algorithms

1 Introduction

Multi-agent systems (MAS) are widely applied for problem solving, software engi-
neering, and the simulation of (human, robotic, etc.) societies. Owing to their complex,
non-linear nature, MAS can often solve problems that a single agent cannot tackle. In
our work, we consider MAS as a model of a society of mobile robots. We are especially
interested in the emerging small-scale robots – micro- and nano-robots – that are
promising candidates in future manufacturing and biomedicine [1]. However, several
challenges are currently hindering the progress of the real-world applicability of these
robots. Because of the physical constrains due to their small size, these robots could not
be morphologically advanced – both the sensors and the actuators would have to be
rather simple. Further, their behavior would be simple as well. It would not involve any
computing; instead, it would feature a direct mapping of the (few) perceived envi-
ronmental states into actuators commands. Additionally, such robots would most likely
be unable to communicate with each other. As an example of such robots, we consider
robots equipped with a single line-of-sight sensor providing only two bits of
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information, and two thrusters (wheels, in two dimensions, or propellers, in three-
dimensional environments) in a differential drive configuration, controlled by two
motors. Specifically, we focus on the two-dimensional (2D) implementation of such
robots, first modeled as agents by Gauci et al. [2]. The agents could self-organize to
solve the simple robot aggregation problem. A similar framework also successfully
solved the more complex object-clustering problem, in which the agents need to
interact with an introduced static object [3]. The ability of such agents to conduct a
social (surrounding) behavior in an environment featuring dynamic objects was
demonstrated in solving the shepherding problem, where a team of simple agents
guided multiple dynamic agents toward a defined goal [4].

In our current research, we considered the emergence of complex social behaviors
of a team of similar and very simple agents in a different task – the well-studied, yet
difficult to solve predator-prey pursuit problem (PPPP) [5–8]: eight identical, simple
agents (predators) are used to capture a single dynamic agent (prey). Our objective is to
investigate whether the PPPP is solvable by the team of such simple predator agents.
Further, we investigated the feasibility of applying genetic algorithms (GA) to evolve
direct mapping of the four perceived environmental states into the respective velocities
of the wheels of the predators that yield the social behavior of the predators, resulting in
the successful capturing of the prey.

The primary motivation of our work is the recognition that several real-world
scenarios – such as pinpoint drug delivery, surrounding and destroying (cancer) cells or
bacteria, and gathering around cells to facilitate their repair or imaging [1] – could be
modeled by the our new instance of the PPPP.

The remainder of this article is organized as follows. Section 2 describes the
entities in the PPPP. In Sect. 3, we elaborate the GA, adopted for the evolution of
predator behaviors. In Sect. 4, we present the experimental results and introduce the
proposed asymmetric morphology of predators. In the same section, we elaborate on
the robustness of the evolved behavior. In Sect. 5 we discuss the effect of varying the
degree of the asymmetry of the morphology on the behavior of the predators. We draw
a conclusion in Sect. 6.

2 The Entities

Each of the eight identical predators models a simple cylindrical robot with a sensor
featuring a limited range, and two wheels, controlled by two motors in a differential
drive configuration. The features of the predators are shown in Table 1.

The sensor provides two bits of information: each bit encodes if an entity (predator
or prey) – is detected in the line of sight. The sensor, aligned with the longitudinal axis
of the agent, could comprise two photodetectors, sensitive to non-overlapping wave-
lengths of (ultraviolet, visible, or infrared) light emitted by the predators and prey,
respectively. Such sensors allow the predators to perceive only four discrete environ-
mental states, as shown in Fig. 1. The state <11> is the most challenging one, and it
could be sensed under the following two assumptions: the prey is taller than the
predators, and do not obscure the shorter predators, the cross-section of the prey is
either narrower than that of the predators, or (at least partially) transparent for the light
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perceived by the predators. The perceived environmental states do not provide the
predators with any insight about the distance to the perceived entities, nor their total
number.

The reactive behavior of the predator agents could be described as a direct mapping
of each of the four perceived environmental states into a corresponding rotational speed
of the wheel motors. For simplicity, hereafter, we will assume a mapping into the linear
velocities of the wheels, expressed as a percentage – within the range [−100% …
+100%] – of their respective maximum linear velocities. The decision-making of the
predator agents could be formally expressed by the following octet D:

D ¼ V00L;V00R;V01L;V01R;V10L;V10R;V11L;V11Rf g ð1Þ

where V00L, V00R, V01L, V01R, V10L, V10R, V11L, and V11R are the linear velocities (as a
percentage of the maximum linear velocity) of the left and right wheels of the predators
for the perceived environmental states <00>, <01>, <10>, and <11>, respectively.

Our objective of evolving (via GA) the optimal direct mapping of the four per-
ceived environmental states into their respective velocities of wheels could be
rephrased as evolving such values of the velocities, shown in the octet in Eq. (1),
resulting in an efficient capturing behavior of the team of predator agents.

The prey features an omnidirectional sensor with limited visibility range. The vis-
ibility range is shorter – 50 units (e.g., nm, lm, mm, etc.) compared to the 200 units of
predators (Table 1). The maximum speed of the prey, however, is identical to that of the
predators. Such sensory- and moving abilities of the entities result in an inherently
cooperative environment for the predators: it would be impossible for them to capture
the prey alone, without cooperating with each other. In contrast to the predator

Table 1. Features of the predator- and prey agents

Feature Value of the feature
Predators Prey

Number of agents 8 1
Diameter (and wheel axle track), units 16 16
Max linear velocity of wheels, units/s 10 10
Max speed of agents, units/s 10 10
Type of sensor Single line-of-sight Omni-directional
Range of visibility of the sensor, units 200 50
Orientation of sensor Parallel to longitudinal axis NA

State <00> 

Ai

Prey

State <01>

Ai
Prey

State <11>

Ai
Prey

State <10> 

Ai
Prey

Fig. 1. The four possible environmental states perceived by (any) predator agent Ai.
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behaviors, the prey behavior is handcrafted. It attempts to escape from the closest
predator (if any) by running at its maximum speed in the direction that is opposite to the
direction of the predator, if the latter is detected [8]; otherwise, it remains still.

The world is simulated as an unbounded 2D area. The perceptions, decision
making, and the resulting new state (e.g., location, orientation, and speed) of the agents
are updated with sampling interval of 100 ms. The duration of trials is 120 s, modeled
in 1200 time steps. We approximated the new state of predators in the following two
stages. First, we calculated the new orientation from the current orientation, yaw rate
(obtained from the difference between the linear velocities of the wheels, and the length
of the axis between wheels), and sampling interval duration. Subsequently, we cal-
culated the new position (as 2D Cartesian coordinates) as a projection (in time, equal to
the sampling interval duration) of the vector of the predator’s linear velocity. The
vector is aligned with the newly calculated orientation, and its magnitude is equal to the
average of the velocities of the wheels.

3 Evolving the Behavior of Predator Agents

MAS, as complex systems, feature a significant semantic gap between the hierarchi-
cally lower-level properties of the agents, and the (emergent) higher-level properties of
the system as a whole. Thus, we could not analytically infer the optimal velocity values
of the wheels of the agents from the desired behavior of the team of predator agents.
Therefore, we applied the GA – a nature-inspired heuristic approach to gradually
evolve good values of the parameters, similar to the evolution of species in nature. GA
have proven to be efficient in finding the optimal solution(s) to combinatorial opti-
mization problems featuring large search spaces [9, 10]. Thus, consonant with the
concept of evolutionary robotics [11], we adopted the GA [12] to evolve good values of
the eight velocities of the wheels of the predators that resulted in an efficient behavior –
presumably involving exploring the environment, surrounding-, and capturing the prey
– of the team of predators. The algorithmic steps of the GA are shown in Fig. 2, and its
main attributes are elaborated below. The main parameters of the GA are summarized
in Table 2.

Step 1: Creating the initial population of random chromosomes; 
Step 2: Evaluating the population;
Step 3: WHILE not (Termination Criteria) DO Steps 4~7:
Step 4: Selecting the mating pool of the next generation;
Step 5: Crossing over random pairs of chromosomes of the mating pool;
Step 6: Mutating the newly created offspring; 
Step 7: Evaluating the population; 

Fig. 2. Main steps of GA

Evolving a Team of Asymmetric Predator Agents 243



3.1 Genetic Representation

The decision-making of the predator agents is encoded genetically as a “chromosome”.
The latter consist of an array of eight integer values (“alleles”) of the evolved wheel
velocities of the agents, as shown in Eq. (1). These values are within the range [−100%
… +100%], and are discretized into 40 values, with an equal interval of 5% between
them. This number of discrete values provides an acceptable trade-off between the
resolution of the evolved velocities and the size of the search space (408) of the GA.
The size of the population is 400 and the breeding strategy is homogeneous – each
chromosome is evaluated after being cloned to all eight predator agents.

3.2 Genetic Operations

We employed a binary tournament selection. It is computationally efficient, and has
been proven to provide a good trade-off between diversity of the population and the
fitness convergence rate [10]. Further, we implemented – with equal probability – both
one- and two-point crossovers. The two-point crossover results in an exchange of the
values of both velocities (of the left- and right wheels, respectively) associated with a
given environmental state (e.g., both V01L and V01R). This reflects our assumption that
the velocities of both wheels determine the moving behavior of the agents (for a given
environmental state); therefore, they should be treated as a whole – as an evolutionary
building block. The one-point crossover is applied to develop such building blocks
(exploration of the search space), while the two-point crossover is intended to preserve
them (exploitation).

3.3 Fitness Evaluation

To evolve predator behaviors that are general to several initial situations, we evaluated
the objective (fitness) function (OF) of each of the evolved chromosomes on 10 dif-
ferent initial situations. In each of these situations, the prey is located in the center of

Table 2. Parameters of GA

Parameter Value

Population size 400 chromosomes
Selection Binary tournament, ratio: 10%, and elitism, ratio: 1%
Crossover Both single- and two-point
Mutation Random single-point (with even distribution), ratio: 5%
Fitness cases 10 initial situations
Duration of the trial 120 s per situation
Value of OF Sum of OF values of each situation:

Successful situation: time needed to capture the prey
Unsuccessful situation: 10,000 + shortest distance
between the prey and any predator

Termination criteria (OF < 600) or (#Generations > 200) or (OF stagnation for
32 generations)
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the world. The predators are scattered in a small cloud situated south of the prey
(Fig. 3). The OF is the sum of the values, scored in each of the 10 initial situations. For
a successful situation, the OF is the time needed to capture the prey (selection favoring
the lowest values). For an unsuccessful situation, the OF is calculated as the sum of
(i) the closest distance, registered during the trial, between the prey and any predator,
and (ii) a penalty of 10,000. The former component provides evolution with a cue
about the comparative quality of the different unsuccessful behaviors. We verified
empirically that this heuristic quantifies the “near-misses” well, and correlates with the
chances of the predators – pending small evolutionary tweaks to their genome – to
successfully capture the prey in the future. The second component penalizes heavily the
lack of success of the predators in any given initial situation.

Our PPPP is an instance of a minimization problem, as a lower OF value corre-
sponds to a better performing team of predator agents. The evolution terminates on OF
values lower than 600, which implies a successful capture of the prey in all 10 initial
situations in an average time shorter than 60 s (i.e., half of the trial duration).

4 Experimental Results

4.1 Evolving the Team of Straightforward Predator Agents

The experimental results of 32 independent runs of the GA evolving the predator
behaviors are illustrated in Fig. 3. As Fig. 3 (top left) illustrates, the mean value of the
OF slowly converges to approximately 60,000, indicating that, on average, only 4 (of
10) initial situations could be successfully resolved (Fig. 3, bottom left). The best
result, achieved by the team of predators, is only 6 successful situations. These results
suggest that the PPPP is, in general, intractable.
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Fig. 3. Convergence of the values of best objective function (top left) and the number of
successful situations (bottom left) of 32 independent runs of GA. The bold curves correspond to
the mean, while the envelope shows the minimum and maximum values in each generation.
A snapshot of a sample initial situation is shown on the right.
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4.2 Enhancing the Morphology of Predators

To improve the generality of the evolved predator behaviors, we focus on modifying
their morphological features. The last of the features listed in Table 1 – the orientation
of the sensors – implies a straightforward implementation of the agents. This, indeed, is
the common configuration of predators (e.g., [4]). We are interested in whether an a
priori fixed asymmetry – an angular offset – would facilitate the evolution of more
general behaviors of the team of predators. We speculate that a sensory offset would
allow the predators to realize an equiangular (proportional) pursuit of the prey, aiming
at the anticipated point of contact with the moving prey, rather than the currently
perceived position of the prey.

In our experimental setup, we fixed the offset of all predators to 10°, 20°, 30°, and
40° counterclockwise and conducted 32 evolutionary runs of the GA for each of these 4
configurations. The results are shown in Figs. 4a, b, c, and d, respectively, and sum-
marized in Table 3. As Fig. 4a and Table 3 illustrate, offsetting the sensors by only 10°
significantly improves the generality of the evolved predator behaviors. They can
resolve all 10 situations in 30 (93.75%) of the 32 evolutionary runs. The probability of
success – the statistical estimation of the efficiency of evolution, defined for the PPPP
as the probability to resolve all 10 initial situations, reaches 90% by generation #60
(Table 3). The terminal value of the OF in the worst evolutionary run is 10,987,
corresponding to only one unresolved initial situation.
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More efficient evolution and more general behaviors were obtained for the sensory
offsets of 20° and 30°. As Fig. 4b and Table 3 depict for 20°, the predators successfully
resolved all 10 initial situations in all 32 evolutionary runs. The probability of success
reaches 90% relatively quickly – by generation #9 (Table 3). Both the efficiency of
evolution and the generality of the predator behaviors are similar for agents with a
sensory offset of 30°, while these two characteristics deteriorate with the further
increase of the offset to 40° (Figs. 4c, d, and Table 3).

4.3 Robustness of the Evolved Behavior to Noise

We examined the effect of a random perceptual noise on all evolved behaviors of the
most general predators – those with sensory offsets of 20° and 30°. We introduced two
types of noise – a false positive (FP) and false negative (FN), respectively. The FP
results in either of the two bits of perception information to be occasionally (with a given
probability) read as “1” regardless of whether an entity is detected by the predators.
The FN results in readings of “0” even if an entity is the line of sign. The best results
with the increase in the amount of noise from 0 to 16% (Fig. 5a and b) were achieved by
a predator with a sensor offset of 20°, as shown in Table 4. The OF value of such
predators in a noiseless environment is 552 – close to the average (588) and far from the
best evolved (468). Interestingly, the same behavior, being evolved for the sensor offset
of 20°, exhibits an impressive robustness to errors in the angular positioning of the
sensor, as well. As shown in Fig. 5c, the predators can resolve 9 (of 10) initial situations
when the sensor offset of all the agents is set to any value between 10° and 40°.

Table 3. Efficiency of evolution of the team of predator agents

Offset Terminal value of objective function Successful runs # Generations needed to
reach probability of
success 90%

Best Worst Mean Standard
deviation

Number In % of
32 runs

No
offset

40,928 70,729 61,064 8,516 0 0 NA

10° 504 10,987 1,310 2,531 30 93.75 60
20° 468 818 588 57.2 32 100 9
30° 495 713 574 38.5 32 100 12
40° 475 40,903 1,840 7,128 31 96.875 15
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Fig. 5. Robustness of a sample best evolved behavior of predators with sensor offset of 20° to
random false positive (FP) noise (a), false negative (FN) noise (b), and to error in angular
positioning of the sensor (c).
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The team of predators exhibits three emergent behaviors, as illustrated in Fig. 6
(a movie is available at http://isd-si.doshisha.ac.jp/itanev/SA/): (i) exploring the environ-
ment by dispersing themselves into a wide area in the world (t = 0 and t = 20 s),
(ii) shepherding (t = 30 s and t = 40 s), and (iii) capturing the prey (t = 50 s and t = 55 s),
respectively. The agents commence the trial (t = 0) with no entity in sight. Controlled by
<V00L = 25%, V00R = 100%> (Table 4) they turn to the left until either a predator (most
likely) or a prey is detected. Detecting a predator activates the setup of the wheels <V10L =
−25%, V10R = −20%>, resulting in both turning slowly and moving (dispersing) away
from the perceived predator. Such a dispersion widens the area of the cloud of predators and
enhances their ability to explore the environment and to detect the prey (t = 0 s and t =
20 s). When the predators detect the prey, they activate the setup <V01L = 100%, V01R =
100%>, resulting in a chase of the prey in the forward direction with maximum speed
(Fig. 6, t = 20 s and t = 30 s). As a result of the optical parallax, during the chase, the prey
might become temporarily invisible, as shown in Fig. 7 (left) and Fig. 7 (middle). When
this occurs, the predator activates the setup <V00L = 25%, V00R = 100%>, which yields a
counterclockwise rotation towards the invisible prey. The predator exhibits an embodied
cognition that the parallax is a result, in part, of its own forward motion; therefore, the new
location of the prey is – due to the counterclockwise offset of the sensor, –most likely on the
left of its own orientation. Therefore, the virtue of the sensor offset is in the more deter-
ministic direction of the prey disappearance, which facilitates a faster rediscovery of the
latter by the predator (Fig. 7 (middle) and Fig. 7 (right)). The predator could quickly
rediscover the prey by turning slightly (and quickly) by only a few degrees to the left (a).
Conversely, in an eventual straightforward implementation of the sensor, the predator
would need to turn a degrees if the direction of turning by chance coincides with the new
location of the disappeared prey, or (360-a) degrees otherwise. Because, from the predator
viewpoint, the moving of the disappearing prey is non-deterministic, on average, the
predator would have to turn 180° – i.e., much wider (and slower) than turning only a few
degrees (a), as with an offset sensor. Moreover, such a chase, due to the sensor offset, yields
a counterclockwise, circular trajectory of both the chasing predator(s) and the prey (Fig. 7
(right)), thereby resulting in shepherding (driving) the prey back into the (already widely
dispersed) other predators. Surrounded from all sides of the world by both current and
newly encountered chasing predators, the prey is finally being captured (Fig. 6, t = 40 s,
t = 50 s and t = 55 s).

In hindsight, we could also argue that the initial dispersion illustrates the emergent
strategy of the predators, i.e., for a capture, only three of them (the “critical mass”)
would be sufficient. By moving away from each other, most of the predators move
further away from the prey as well (Fig. 6, t = 0 and t = 20 s), thereby compromising
their chances to capture the prey. However, such an altruistic behavior results in a faster

Table 4. Evolved velocities of wheels of predators that result in a behavior that is most robust to
noise. The sensor offset is 20°.

V00L V00R V01L V01R V10L V10R V11L V11R

25% 100% 100% 100% −25% −20% 100% 100%
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discovery – and a faster capture of the prey by some (e.g., just three) predators,
presumably, for the benefit of the whole team.

5 Discussion

As the experimental results indicate, the proposed asymmetric morphology imple-
mented as an angular offset of the sensors of the predators facilitates both (i) a more
effective behavior of predators, and (ii) more efficient evolution of such behavior. The
offset contributes to a counterclockwise, circular trajectory of shepherding (driving) the
prey back into the pack of the predators. The offset results in more deterministic, and
therefore – faster redetection and chase of the prey during shepherding. The offset of
20° and 30° provides an optimal speed of such a chase. Lower values of the offset
imply that the last detected position of the disappeared prey would be closer to the
longitudinal axis of the predator, and therefore, a less deterministic – either to the left or
to the right of the longitudinal axis – actual location of the prey. It is therefore less
certain if the prey disappeared to the left or to the right of the longitudinal axis. This, in
turn, would result in a slower rediscovery of the prey. Alternatively, higher values of
the offset would imply a higher value of the tangential- and lower value of the radial
(i.e., towards the prey) component of the vector of the speed of chasing predator that
the chasing predator is moving tangential to the prey rather than toward the prey., and
consequently, This will result in a slower overall chasing speed of the latter. In
addition, this would result in a too a circular trajectory of the chased prey. It would be
less likely for such a trajectory to head towards the pack of the other (dispersed)
predators.

Despite the simplicity of the predator agents, the emergent shepherding behavior of
the evolved team of these agents is very similar to the cooperative hunting strategy of the

t=0 s t=20 s t=30 s t=40 s t=50 s t=55 s

Prey

Fig. 6. Phases of a sample best evolved behavior of the predators with sensor offset of 20°.

Time step t,
Environmental state: <01>

Speed of wheels:<100%,100%>
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Time step t+1,
Environmental state: <00>
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Time step t+2,
Environmental state: <01>

Speed of wheels: <100%,100%>
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Fig. 7. Reliable tracking of the prey by chasing predator Ai.
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bottlenose dolphins (Tursiops truncatus) in nature: one individual assumes the role of a
‘driver’, herding the fish in a circle towards the remaining ‘barrier’ of dolphins [13].

6 Conclusion

We examined a PPPP featuring very simple, non-computing predator agents, equipped
with a single line-of-sight sensor and a simple control of velocities of their two wheels.
We applied a GA to evolve the successful behavior of the team of predator agents. To
enhance the generality of the evolved behavior, we proposed an asymmetric mor-
phology of the predators. Offsetting their sensors angularly to 20° and 30° yielded the
most efficient and consistent evolution of successful behaviors of agents.

In our future work we are planning to evolve the optimal value of the offset as an
algebraic function of the most relevant parameters (e.g., speed, range of sensors,
diameter, etc.) of both predator- and prey agents. Also, we will consider a more
sophisticated behavior of the prey.
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Abstract. The summarization of scientific articles and particularly their related
work sections would support the researchers in their investigation by allowing
them to summarize a large number of articles. Scientific articles differ from
generic text due to their specific structure and inclusion of citation sentences.
Related work sections of scientific articles generally describe the most important
facts of prior related work. Automatically summarizing these sections would
support research development by speeding up the research process and conse-
quently enhancing research quality. However, these sections may overlap syn-
tactically and semantically. This research proposes to explore the automatic
summarization of multiple related work sections. More specifically, the research
goals of this work are to reduce the redundancy of citation sentences and
enhance the readability of the generated summary by investigating a semantic
graph-based approach and cross-document structure theory. These approaches
have proven successful in the field of abstractive document summarization.

Keywords: Automatic text summarization � Scientific article � Related work
Multi-document � Semantic graph � Cross-document structure theory

1 Introduction

Automatic summarization of scientific articles would be useful for researchers to
quickly study and evaluate the sate-of-the-art. However, the most recent articles refer to
the same related work and hence a large number of articles is cited in every related
work section. Automatically summarizing multiple related work sections would be
useful and helpful by reducing the time needed to review a large number of related
work sections.

Related work sections have specific characteristics that make them unique. First,
they include citation sentences. Second, these sections are short in length, which makes
the problem more challenging. Hence, extractive techniques would generate a summary
suffering from a lack of readability and coherence. Finally, the overlap between mul-
tiple related work sections is an important issue.

Limited research studies addressed related work summarization. Most of these
studies have generated a related work section for a target paper by summarizing a set of
articles [1–3]. Only one study has tackled the problem of summarization of the related
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G. Agre et al. (Eds.): AIMSA 2018, LNAI 11089, pp. 255–259, 2018.
https://doi.org/10.1007/978-3-319-99344-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99344-7_23&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99344-7_23&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99344-7_23&amp;domain=pdf


work section of a single article [4]. Automatically summarizing multiple related work
sections of a set of articles on a particular topic would aid the generation of a more
comprehensive summary. To the best of our knowledge, no previous research has tackled
this particular problem. This research work proposes to address this problem by inves-
tigating a semantic graph-based approach and cross-document structure theory (CST).

The remaining of this paper is as follows. Section 2 examines various prior studies
in the field of scientific article summarization. The proposed approach is presented in
Sect. 3. Finally, Sect. 4 concluded this paper.

2 Related Work

Among the interesting concerns of scientific articles summarization is the generation of
research article abstract. Lloret et al. [5] suggested two approaches for this task. The
first one is an extractive summarization approach. The second one is based on both
extractive and abstractive techniques. Saggion and Lapalme [6] proposed an approach
for generating an indicative and informative abstract called Selective Analysis. This
type of summarization is not an accurate scientific summary since it stated the con-
tributions in a less focused fashion and general form.

The above-mentioned problems motivated the generation of citation based sum-
maries. Abu-Jbara and Radev [7] tackled some issues related to the readability and
coherency of this type of summaries. C-LexRank, a graph based summarizer, is also
proposed by Qazvinian and Radev [8] to summarize single scientific article. Chen and
Zhuge [9] made additional progress by exploiting a set of terms that co-occur in a set of
citations according to the common fact phenomenon.

Related work summarization is a specific instance of scientific article summariza-
tion. Hoang and Kan [1] proposed a heuristic system called ReWoS for the automatic
generation of a related work section based on a topic hierarchy tree. Chen and Zhuge
[2] used citation sentences and performed a comparison of the content of the target
article and the content of the citation sentences while Hu and Wan [3] considered this
problem as an optimization problem. Widyantoro and Amin [4] proposed a different
approach for summarizing a related work section in scientific articles. Their proposed
approach consists of two main stages. First, they extracted citation sentences. Then,
they categorized these citation sentences into three different classes (i.e., problem,
method and conclusion).

3 The Proposed Approach

Our goal is to automatically summarize multiple related work sections while maxi-
mizing the readability of the generated summary and minimizing the redundancy of
citation sentences. We propose to investigate a hybrid method based on both a semantic
graph-based approach and CST. Moreover, different abstractive techniques will be
investigated to improve the readability, including multi-sentence compression [10] and
language generation [11].
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Positive feedback has been obtained when using graph-based approaches in the
field of (MDS) [11–13]. However, it suffers from some essential limitations. First, it
depends on similarity measures without taking into consideration the semantic rela-
tionships among sentences. A second limitation is the lack of diversity of the generated
summary due to the ranking algorithms. Thus, we plan to investigate the use of a
semantic graph-based approach to cope with the redundancy of citation sentences.
Moreover, we will investigate ranking algorithms to take into consideration the
semantic similarity. In the other hand, CST has been used to analyze multi-documents
to discover semantic relations among their content [14–16]. Based on the particular
content of the related work section, CST could help to further reduce redundancy
between citation sentences. Different content selection methods will be investigated,
including a redundancy operator, general operator [17] and the method proposed by
Otterbacher et al. [18]. Following is a small instance of the problem to illustrate the
proposed approach.

Reference Qazvinian and Radev (2008) in paper [1] is cited as [5] in paper [2] and
the two text spans have the same information content. Thus, the result of the proposed
approach should be similar to:

Mei and Zhai [1] utilized citation information in creating summaries for a single
scientific article in computational linguistics domain. Qazvinian and Radev [4, 6]
employed the citations to create the summary for the scientific paper.

The main steps of the proposed approach are:

– A preprocessing step to identify the same reference in each related work section and
to reduce them to one format for example IEEE format.

– A Graph: to represent the relations between the references and their citation
sentences.

– CST to analyze the different citation sentences of the same reference in order to
discover semantic relations among their content.

– Content selection: the final step is summary extraction by transforming the graph
into smaller one while preserving its properties.

The main objectives of this research are summarized in the following points:

– Summarizing multiple related work sections of scientific articles while enhancing
the readability of the generated summary and minimizing the redundancy of citation
sentences.

– Proposing a hybrid method based on both semantic graph based approach and CST.

A part of the related work section of
paper [1]:

A part of the related work section of
paper [2]:

“Further, Mei and Zhai (2008) and
Qazvinian and Radev (2008) utilized
citation information in creating
summaries for a single scientific article in
computational linguistics domain.”

“Based on the finding, Qazvinian and
Radev employ the citations to create the
summary for the scientific paper [3, 5].”
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– Finding the semantic relationships between different contents in order to not
influence the discourse meaning.

– Examining different abstractive techniques to hopefully improve the readability.
– Building our own dataset for the summarization of related work sections. According

to our first investigation, we have not found a benchmark dataset available online
for the summarization of related work sections. However, we have been able to
obtain the data set used in [4] to evaluate summaries of related work sections. This
dataset is composed of a collection of 20 article sets, and each set contains different
reference articles that need to be summarized to generate a related work section.

4 Conclusion

In this paper, we took the first step towards summarizing multiple related work sections
of scientific articles. We outlined a hybrid approach which consists of combining
semantic graphs and CST. It aims at minimizing the redundancy of citation sentences
and improving the readability of the generated summary by investigating different
abstractive and content selection techniques.
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Abstract. One of the key tasks of autonomous mobile robots is to
explore the unknown environment under limited energy and deadline
conditions. In this paper, we focus on one of the most efficient random
walks found in the natural and biological system, i.e., Lévy walk. We
show how Lévy properties disappear in larger robot swarm sizes because
of spatial interferences and propose a novel behavioral algorithm to pre-
serve Lévy properties at the collective level. Our initial findings hold
potential to accelerate target search processes in large unknown environ-
ments by parallelizing Lévy exploration using a group of robots.

Keywords: Multi-robot systems · Swarm robotics · Random walks
Lévy walk

1 Introduction

Exploring unknown environments to spot targets is one of the most fundamental
problems in the context of mobile robots used for search and rescue, environment
mapping or agricultural applications [3]. An efficient exploring strategy that
provides a maximized area coverage in a minimized time interval is the main
design goal. Since there are no clues for the robot on where to explore, it must
execute a random walk. Amongst the random walks that were revealed in natural
collective systems, the Lévy walk (LW) is one of the most efficient patterns [4].
For sparse targets, the LW maximizes the search efficiency, i.e. the number of
targets found in a specific time interval. With a LW, the step orientation is
sampled from a uniform distribution, while the step lengths are sampled from a
heavy-tailed (power-law) distribution:

p(l) ∼ l−(α+1) (1)

where l is the step length and the distribution exponent 0 < α < 2.
LWs allow the agent to execute several short steps before executing a long

one. In case of sparse targets, the LW provides an optimal search behavior
because the long steps sampled from the power-law distribution maximize the
number of visited sites. Taking only short steps, the robot will frequently pass
c© Springer Nature Switzerland AG 2018
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sites that it has already visited [6]. In the absence of any knowledge about the
target distribution, the optimal value of the exponent is given by α = 1 [5].

In existing works on efficient exploration by robot swarms, the trajectory
followed by each robot is sampled from a Lévy distribution [1]. Despite the
promising results in terms of exploration and area coverage [2], the main draw-
back is that the Lévy distribution and its properties are lost when the swarm
size increases. As the swarm size increase, the probability that independently
generated Lévy walks is intersecting also increases and already with moderate
swarm sizes the collective trajectory no longer follows a Lévy distribution. Con-
sequently, the current strategies to implement Lévy walks in robot swarms are
not scalable. To the best of our knowledge, no previous works addressed the ques-
tion of how to generate a collective Lévy walk that emerges from the different
robots’ trajectories and which preserves Lévy properties.

In this paper, we address this key challenge in an unbounded space by intro-
ducing an efficient algorithm which controls robot swarms to generate a Collec-
tive Lévy Walk (CLW) for large swarm sizes. We introduce our CLW algorithm
in Sect. 2 and compare its performance for different swarm sizes with the baseline
of independently generated Lévy walks.

2 Collective Lévy Walk (CLW) Algorithm

As a first step, we have launched a set of exploration experiments using swarms
of different sizes to investigate the presence of Lévi properties in the trajectory
obtained by summing up the individual LWs generated by the robots indepen-
dently. Our results (see Sect. 3) reveal that the obtained trajectory follows a Lévy
distribution for small swarm sizes only. The main reason is that long steps are
interrupted (aborted) by intersecting robots. Intuitively, increasing the number
of robots in the swarm leads to more spatial interferences and consequently to a
decrease in the probability of obtaining the heavy tail (Eq. 1) for the step length
in the combined trajectory.

Our CLW algorithm prioritizes longer steps in robot trajectories by exploit-
ing information exchanged between robots. The CLW algorithm is described by
the deterministic finite automaton that is shown in Fig. 1. Each robot starts in
the “Walk state” to explore the unknown environment. Robots move with a fixed
linear speed and sample the duration of their next step TL from a Lévy distri-
bution. When the interval TL is over, the robot switches to the “Rotate state”
and rotates at a constant angular velocity during TU , with TU sampled from a
uniform distribution. Whenever the walking robot detects an obstacle using its
proximity sensors, it leaves the “Walk state” immediately and starts executing a
collision avoidance behavior. In this state, the robot rotates with an angle that
is determined based on the distance of the obstacle. When all obstacles have
been avoided, the robot transitions to the “Walk state” again, and samples a
new time interval TL to proceed its next step in the Lévy walk.

The key part of the CLW algorithm resides in exploiting the communication
between the walking robots to generate a collective Lévy walk. Robot i broad-
casts its sampled time interval TL(c) to its local neighbors—i.e., these are the
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robots within its communication range and within line-of-sight. The step is cat-
egorized as “short” or “long” based on a predefined threshold TThreshold. In case
of a short step of robot i and a long step of its neighbor j, robot i starts moving
away from robot j, using the principles of potential field [7]. The repulsive force
F (j) driving robot i away from neighbor j, which is executing a long step, is
computed from the position of robot j. This position is obtained using the range-
and-bearing sensors. Finally, the force F is computed for all neighbors of robot
i, which are executing long steps, and these forces are averaged to generate the
final repulsive force applied to robot i. In cases where all neighbors are executing
short steps, robot resume their walking behavior as planned.

Fig. 1. Finite state diagram of the CLW algorithm.

3 Results and Conclusion

We have performed a set of physics-based simulations using the ARGoS simula-
tor1. An arena of 20 × 20 m2 is implemented as an unbounded space: the robot
that reaches a side of the arena will re-enter from the opposite side without
interrupting its currently executed step. Simulation results are averaged over 30
runs, with each run lasting 5000 time steps. The exponent α is set to 1 (see
Eq.(1)), the communication range of the robot is set to 1.35 m and the linear
speed to 5 m/s. The step threshold is set to TThreshold = 9×0.17 = 1.53 m (0.17
the diameter of the simulated robot). We use the log-likelihood test to determine
the best fitting of the obtained distribution of the collective trajectory. We rely
on two outputs of the test to judge the fitting: the p-value of the test, and the
log-likelihood ratio. If the log-likelihood ratio is > 0, the best fitting is a heavy-
tailed Lévy distribution when the p-value is < 0.05; when the p-value is > 0.05
the best fitting is an exponential distribution. If the log-likelihood ratio < 0,
1 The ARGoS simulator allows to simulate large swarms of robots while taking the

desired level of physical details into consideration.
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neither the Lévy distribution nor the exponential distribution are best fittings
and a transition between the two distributions is observed. Figure 2 depicts the
results for both the combined trajectory of the independent implementation of
the robots’ Lévy walks and the trajectory generated when applying the CLW
algorithm. We can notice a clear phase transition from power-law distribution to
exponential distribution. Following the independent implementation, the swarm
up to 300 preserves a Lévy walk, and between 300 and 500, a transition from
Lévy distribution to the exponential distribution is observed. When applying
the CLW algorithm, the Lévy walk is preserved collectively up to 500 robot,
between 500 and 600 the transition from Lévy distribution to the exponential
distribution is observed.

In this paper, we have proposed an efficient algorithm for robot swarms that
exploited local communication among robots to generate collective Lévy walk.
Our results show the ability of the CLW to generate such a collective trajectory
also for larger swarm sizes.

Fig. 2. The log-likelihood ratio of the independent Lévy walk implementation and of
the CLW algorithm in (a) and (b), respectively. The p-value of the independent Lévy
walk implementation and of the CLW algorithm in (c) and (d), respectively.

References

1. Beal, J.: Superdiffusive dispersion and mixing of swarms. ACM Trans. Auton.
Adapt. Syst. 10(2), 10:1–10:24 (2015)

2. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an exper-
iment with kilobots. ANTS 2016. LNCS, vol. 9882, pp. 185–196. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44427-7 16

3. Khaluf, Y.: Edge detection in static and dynamic environments using robot swarms.
In: 2017 IEEE 11th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), pp. 81–90, September 2017

https://doi.org/10.1007/978-3-319-44427-7_16


264 Y. Khaluf et al.

4. Khaluf, Y., Ferrante, E., Simoens, P., Huepe, C.: Scale invariance in natural and
artificial collective systems : a review. J. R. Soc. Interface 14, 20 (2017)

5. Plank, M., James, A.: Optimal foraging: Lévy pattern or process? J. R. Soc. Interface
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Abstract. Genomics rearrangements detection involves processing of
large amounts of DNA data and therefore efficiency of the used algo-
rithms is crucial. We propose the algorithm based on evenly distributed
unique subsequences. In this paper BLAST-based pattern matching is
examined in terms of computation time and detection quality. The exper-
iments were carried out both on real sequence with artificially introduced
random rearrangements. The algorithm extension was implemented as
part of genomecmp web application which provides graphical user inter-
face for ease and convenience of use.
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1 Introduction

One of topics of interest in Bioinformatics is detection of changes in DNA
sequences caused by replication and repair processes. These changes are called
rearrangements and their most simple types are: deletion (when part of a
sequence is missing), inversion (when part of a sequence is in reverse order),
transposition (when part of a sequence is moved to other place) and duplication
(when part of a sequence is duplicated). The rearrangements are not so com-
mon as mutations, but could involve 10% of genome. In our previous works the
algorithm based on evenly distributed unique subsequences, called markers, was
proposed to enable fast rearrangement detection [4].

This algorithm, in comparison to other methods to detecting genomic struc-
tural variants [6] is very fast if the assembly of studied genomes is available.
Although the assembly step is time consuming, we target our algorithm to be
useful in situations when it is already done for other genome analyses and its
results may be reused also for rearrangement detection. Another limitation of
the algorithm we are aware of is the fact that it is not best suited for detection
of short rearrangement (approx. 50 bp), but rather for longer genome changes.
The shortest rearrangement length that can be detected is dependent on param-
eters determining number of markers to be used and the ratio of sequence length
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to the number. Our algorithms has linear time complexity in terms of number
of markers, what implies a trade off between time and shortest rearrangement
which detection is possible. For example, for sequence of length 1 Mbp and 10000
markers, shortest rearrangement to be accurately detected ought to be longer
than 100 bp, as it should consist of at least two markers. For longer sequence of
length 100 Mbp and same number of markers, the shortest ought to be longer
than 10 kbp.

The algorithm is depicted in Fig. 1. The algorithm consists of three phases:
defining the markers using base sequence, searching for markers in compared
sequence and then finding rearrangements based on markers’ positions. We
implemented the web application, called genomecmp, which is used for rear-
rangement searching.

Fig. 1. Rearrangement searching based on unique sequence positions implemented in
our ‘genomecmp’ application. First we define unique subsequences spread uniformly
called markers on base genome, then we search for such markers in compared sequence,
finally we find the rearrangement based on markers’ position using longest common sub-
sequence of markers returned by Myers’ algorithm [5]. The picture shows transposition
of region near markers 1,2 with region near markers 3,4.

In our solution, the first and second phase of algorithm, i.e. the markers
defining and markers searching are performed with help of pattern matching
algorithm, we use two pattern matching algorithms: Knuth-Morris-Pratt (KMP)
algorithm [2] and ChunkedXcorr [4]. KMP algorithm allowed fast rearrangement
detection, but because it is an exact pattern matching algorithm it was suscep-
tible to point mutations which may occur in a sequence. The ChunkedXcorr
algorithm proved to be more immune to this kind of noise in data, but its com-
putational complexity is too high to allow day-to-day comparisons of multiple
sequences, especially for plant genomes.

In this paper we study pattern matching algorithm based on BLAST heuris-
tics searching. Basic Local Alignment Tool (BLAST) [1] is an algorithm which
approximates alignments of genomics sequences. The usage of BLAST gives both:
efficiency and immunity to mutations noise. We also consider using BLAT [3],
but BLAST is simpler in terms of implementation and we expect similar results.

2 Experiments

Each experiment was run 10 times following the procedure: (1) loading base
sequence; (2) generating random rearrangements: 20 deletions, 20 insertions and
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20 transpositions; (3) creating compared sequence by introducing generated rear-
rangements to base sequence; (4) making given number of random point muta-
tions in compared sequence; (5) executing rearrangement detection; (6) evaluat-
ing results.

The base sequence was Thermus thermophilus genome from NCBI database,
(NCBI ID = AP008226.1), of length 1849742 bp (≈2 Mbp). We generate 24
rearrangement of length 40000 bp, with mutation ratio 0, 0.005, 0.01, 0.02, 0.05
respectively. We use 100 markers of minimum length 50 bp. The BLAST search-
ing were performed for threshold 1.0, 0.9, 0.8, 0.7, 0.6 respectively, where the
seed length is set to 8, score for match is 5, score for mismatch −4, maximum
score difference 40.

In the evaluation step we calculate confusion matrix as well as precision
(Positive Predictive Value, PPV), sensitivity (True Positive Rate, TPR) and F1
Score (F1score = 2 ∗ PPV ∗TPR

PPV+TPR ). The execution environment was the virtual
machine with 14 cores and 16 GB RAM, emulated by QEMU 2.1.2 on 64-bit
Debian GNU Linux 8.5.

3 Results

3.1 Detection Quality of BLAST-Based Solution

The experiments’ results concerning BLAST-based solution detection quality for
different levels of mutations and different thresholds are presented in the Fig. 2.

Fig. 2. BLAST-based algorithm TPR (on left) and PPV (on right) to ratio of muta-
tions.

As expected, greater mutations ratio degrades sensitivity - less markers are
correctly found in the rearranged and mutated sequence and more rearrange-
ments are undetected. This effect is especially noticeable for the threshold equal
1.0, when almost exact matches are required.
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For thresholds 0.8, 0.7 and 0.6 the algorithm copes well with increasing level
of mutations noise maintaining TPR above 0.8 for mutations ratio lower or
equal 0.05.

The precision falls more rapidly than sensitivity with the increase of muta-
tions ratio. The same as for the sensitivity degradation, the reason of the fall
is not finding all markers in the compared sequence because of mutations. Not
found markers are recognized as deletions, so more rearrangements are incor-
rectly detected.

For threshold equal 1.0 small growth of PPV for higher mutations ratio is
observable. It is caused by the fact that less rearrangements are detected both
correctly (smaller TPR) and incorrectly and the proportion slightly changes.
The algorithms maintains relatively high PPV for thresholds 0.7 and 0.8.

Using F1 score results it is possible to choose the best threshold for this
range of mutations ratio, rearrangements’ length and for the set of the algorithm
parameters. The threshold that preserved the best quality in this experiment is
equal 0.7.

3.2 Detection Quality Comparison

The results of detection quality comparison of BLAST-based solution and other
two studied previously (KMP, ChunkedXcorr) for different levels of introduced
mutations are presented in Fig. 3. The results shown for BLAST-based algo-
rithm are for threshold set to 0.7, as that setting provided the best detection
quality, shown in previous experiment. The ChunkedXcorr threshold parameter,
as mentioned before, was also set to 0.7.

Fig. 3. Algorithms’ TPR and PPV to ratio of mutations to sequence length

In terms of sensitivity, BLAST-based solution achieved similar results to the
one using ChunkedXcorr. It is evidently distinguishable that KMP algorithm
being an exact pattern matching is sensitive for any introduced noise.



A BLAST-Based Algorithm 269

BLAST-based solution has slightly better precision for lower mutations ratios
than the one using ChunkedXcorr. KMP algorithm vulnerability to mutations
is also noticeable in terms of precision.

The BLAST-based algorithm achieved similarly good F1 score results as the
one using ChunkedXcorr and better than solution using KMP.

The BLAST-based algorithm had the shortest mean computation time in
comparision ChunkedXcorr and KMP based algorithms.

4 Discussion and Conclusion

The rearrangement detection algorithm, based on unique subsequences, has been
extended. The time complexity was decreased and immunity to mutations noise
is achieved. The new module is a part of our web application, genomecmp, which
is freely available with MIT license at http://genomecmp.sourceforge.net.

The proposed version of the marker definition algorithm determines unique-
ness of given subsequence by searching it in the reference sequence and checking
if it occurs only once. It was intended to define such heuristic that it could deter-
mine subsequence uniqueness basing only on the subsequence and possibly on
some auxiliary data gathered once beforehand from the reference sequence. Both
the auxiliary data gathering and its accessing during marker definition should be
computationally inexpensive, so that the whole process would not require more
operations than searching the reference sequence.

Promising heuristics are functions basing on information about the distribu-
tion of short subsequences in the reference sequence. The work planned is usage
of function indicating that the processed subsequence is unique only when it
consist of at least one short subsequence which is unique.

It could reduce the computational time significantly, because the first step,
marker defining takes about 90% of time.
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1 Introduction

Often in computer technologies methods are used based on exact calculations. For
example, in searching algorithms the goal is to find exactly a given element in a given
set. Searching a record in a database is performed by looking for exact value in a given
field, for example the identifier of the record or the values in a group of fields.

The neural networks, in difference with the exact solutions, work with approxima-
tions [2]. This makes them convenient for solving of problems related to inexact or
partial data. There are some situations for which it is difficult to find a solution, except
the using of principles of the inexact solutions. Such situations often arise in tasks in
which a finding of solution, even not exact one, is more important than the absolute
accuracy. Inexact solutions are convenient in searching of the most similar, in some
sense, pre-processed or raw data. The neural networks can generalize, that is one of the
most important their characteristic [3]. They are inspired by the biological neural net-
works and as such they are a very simplified analogy of the natural neural networks [7].

The neural networks can be realized both hardware and software. The hardware
realization often works faster because of their design to solve specific problems.
However, the flexibility of the hardware realization is worse. Often the neural network
architecture parameters depend on the problem that have to be solved and the software
realization provides significant advantages. Despite that the software realization is
performed in a general purpose machine, normally it is cheaper and significantly easier
for changes, even if it is not as fast as the hardware realization. That is why here the
theoretical basis will be emphasized to the software realization on general purpose
Graphics Processing Unit (GPU).

2 GPU Versus CPU

The type of the neural network considered here is multilayer perceptron [4] that is one
of the most often used neural networks in practice. There are different types and
architectures of neural networks [5, 8] but most of them are well-known as models that
strongly incorporate fine-grained parallelism [10] which is appropriate for the GPU,
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which most often contains a huge number of simple Streaming Multiprocessors (SMs).
The realization presented here is based on Compute Unified Device Architecture
(CUDA) [1] which is an extension of the C language and allows GPU code to be
written in regular C. The written code can be executed in both host Central Processing
Unit (CPU) or at the device processor GPU.

The main problem of executing program code in GPU is that the algorithms must
be adapted to be with fine-grained parallelism. Here an approach is presented and used
for parallel execution in both forward and backward stages on the multilayer percep-
tron. The independent processing units in each layer work in parallel as in the forward
stage the parallel calculations are realized in the hidden and output layers and in the
backward stage in the hidden and input layer. The proposed approach is described for
neural networks with one hidden layer but it is applicable for arbitrary number of
hidden layers as well. The experimental data used for the training are financial data of
individuals where the goal is to determine their credit rating based on historical
examples. The performance of the realization is shown according to the time for
execution in the sequential and parallel implementations.

3 Specific Features of CUDA Programming

In CUDA programming, entry points are provided to the GPU by C functions called
kernels. Syntactically they are invoked as normal functions with two differences.

• Memory management between CPU and GPU. The memory regions available in
CPU must be copied in order to be used in GPU before invoking the kernels and
after that in opposite directions to obtain the results. Finally the allocated GPU
memory must be freed.

• By calling the kernel the number of grids, blocks and threads must be specified.
They are 3D dimensional arrays which are physically used for execution of kernel
functions. In kernel entry points grids, blocks and threads are specified that describe
the level of parallelism. The kernel function is executed once for every thread, so
specified number of threads determines the number of executions and in the kernel
function appropriate program constructs must be used to execute independent code
fragments in parallel. The indexes of blocks and threads are available by built-in
variables provided by CUDA. An example of calling a kernel function and the
kernel function prototype is shown below.

propagate<<<1, numHiddens>>>(…);
__global__ … propagate(…) {

int i = threadIdx.x;
…

}

Number of blocks Number of threads
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3.1 Training

In the training stage the data available is presented as pairs of input-output training
vectors z1 ! d1, z2 ! d2,… zp ! dp. Input vectors are denoted here as z and the
output as d. The number of the input neurons and output neurons are determined
according to the number of input and output values in provided training examples and
the number of the hidden neurons is determined by different approaches [9]. For
example cross-validation can be used comparing the output error and choosing the best
hidden neurons numbers.

Output values of the input elements are the same as their input values z1,z2,…zI, but
for the other layers an activation function is used of different types [9]. Thus, the data
should be transformed in its definition domain ranging from minimum to maximum
according to the activation function [4].

The activation function can vary in the neural network layers and processing
neurons but most often only one type is chosen in the training. The main principle for
choosing a function type is that is must be non-linear and its derivative must be easy to
be computed.

The neural network is trained until the criterion for end of training is satisfied,
which can be, for example, reaching the given number of epochs or minimal error for
all training patterns [6]. In every epoch all training patterns are presented to the neural
network in random or spatially ordered way and the weights of the connections
between neurons are modified, iteratively improving the generated outputs to be as
close as possible to the given outputs.

3.2 Parallel Algorithm

The parallel execution is performed in both forward and backward stages of the
backpropagation training algorithm. In the forward stage the independent calculations
are done for the neurons in the hidden layer and in the same way the calculations for the
output neurons are performed on separate SM – Fig. 1.
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Fig. 1. Independent neuron in the hidden layer for the forward stage
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In the backward stage calculations in the neurons of the hidden layers are inde-
pendent in and neurons in input layer are also performed in parallel – Fig. 2.

4 Results

The results shown here are obtained for 100 training examples and every training
example consists of 22 real values. The training is performed in 500 epochs and neural
network architecture with one hidden layer, 22 input neurons, 30 hidden neurons and
one output neuron. The experiments are performed 20 times and the average time for
the sequential realization in GPU is 25.89 s; the parallel GPU realization lasts 3.73 s. If
the parallel calculations are performed only in the forward stage, shown in Fig. 1, the
time for execution is 18.55 s.

5 Conclusions and Future Work

The parallel realization depends on the architecture and the algorithm of the neural
network. There are different other approaches that have also to be realized and tested,
as local approach, according to which the training patterns are separated in subgroups
and for every subgroup a separate neural network is trained, that could be done in
parallel. Also some hierarchical structures can be developed with independents sub-
structures. As the results show that the investigated approach is promising, especially if
the processing elements are as more as possible in the hidden and output layers, it is
applicable in practical software solutions.

…

Input 
neurons

Hidden 
neurons Output 

neurons

…

Input 
neurons

Hidden 
neurons Output 

neurons

Fig. 2. Independent neuron in the hidden layer for the backward stage
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Abstract. Functional protein annotation is a key phase in the analysis of de-
novo sequenced genomes. Often the automatic annotation tools are insensitive
to removing wrong annotations associated with contradictions and non-
compliance in biological terms. In this study, we introduce a semantic model
for representation of functional annotations based on a resource description
framework standard (RDF).
We have integrated several databases with information for protein sequences

and ontologies describing the functional relationships of the protein molecules.
By using Web Ontology Language (OWL) axioms, RDF storage engines are
able to take decisions which candidate annotations should be marked as bio-
logically unviable and do not withstand the reality checks associated with
coexistence, subcellular location and species affiliation [1]. This approach
reduces the number of false positives and time spent in machine annotation’s
curation process. The presented semantic data model is designed to combine the
semantic representation of annotations with examples designed for machine
learning.
Current work is part of a large scale project of functional annotation of plant

genomes.

Keywords: Functional annotation � Semantic web � Data model
Machine learning

1 Introduction

The genome annotation process is a limiting step in genome sequencing due to diffi-
culties in searching and interpreting the various candidate gene reference records
available in biological databases. Due to lack of standards for knowledge presentation
in sequencing, the main problems are related to the semantics of annotation descrip-
tions and quality checks. In addition, expert assessment of automatic annotations shows
that most annotation-related issues originate from inconsistencies due to failure of
major reality checks. Such inconsistencies increase false positives when assigning
functions to sequenced regions. The assignment of gene functions appears to be one of
the limitation steps for NGS data analyses, and depends on the slow process of manual
curation to obtain proper knowledge of the function of newly-sequenced regions [2].
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The aim of the current work is to design a semantic model for formal description of
some protein sequence databases and provide an integrated repository of machine
learning examples. We experiment with tracking inconsistencies between automatic
annotations using the capabilities of OWL Lite and some restrictions in the Gene
Ontology classes [3]. Reducing inconsistencies will reduce the effort and time spent in
quality assessment of annotations.

We use RDF standard to represent referenced database records and their relation-
ships with controlled vocabularies, families, patterns, motifs, and other objects used in
annotation. The formal description of these units and relationships provides opportu-
nities for extracting knowledge and presenting implicit machine conclusions, which can
be used to automate a large number of checks performed by curators [4]. We also use
web service API to easily navigate and request a semantic network based on the
SPARQL protocol. With SPARQL endpoints, researchers are able to link results from
different research groups together, thus improving the productivity and quality of the
process of sequencing multiple genomes.

2 Materials and Methods

There are many public databases that offer protein information [5] but for the purpose
of our study we rely on those listed below:

UniProt [6] is a major resource of protein sequence information that contains
protein sequences, features and a lot of manually annotated protein functions. For this
study we obtained manually annotated protein sequences from multiple species that are
also referenced to both the PROSITE database and the Gene Ontology Consortium.

PROSITE [7] is a database for protein domains, families and functional motifs.
PROSITE descriptions come from manually curated sources and are often included in
machine predicted annotations. Extracted information, used for the study, contains
patterns - regex-like representation of the rules which are applied to composing a
pattern that matches a set of proteins. Every pattern is linked to set of UniProt entries.

Gene Ontology (GO) [8] is a major resource for protein annotation which describes
proteins in terms of function, subcellular location and biological process. In the current
study only terms for “molecular function” are included. The disjoint restrictions of
Gene Ontology are used to define semantics of reality checks applied in a semantic
model.

InterPro [9] is an integrated resource used for protein classification. IT is used to
obtain and predict information about protein domains and motifs. It also contains
machine annotations linked to Gene Ontology terms that can be used as benchmark to
compare different machine learning annotation methods.

2.1 Data Preparation

The first task is to convert the PROSITE patterns to real regex patterns. Thus, they are
capable to be executed against linked corresponding sequences and to retrieve actual
matching amino acid fragments that characterize the link between the pattern and
protein sequence. These amino acid fragments later can be used to train machine
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learning algorithms such as Support Vector Machine [10] or J48 [11] to predict which
GO term describes molecular function of de-novo sequenced proteins. PROSITE
general entry information, amino acid fragments and UniProt identifiers are converted
to RDF format keeping all identifiers of the original data sources intact and resolvable.
Following basic schemata of OWL classes and properties, this transformation can be
described in N-Triples-like syntax (Fig. 1).

UniProt and Gene Ontology already have their own RDF distributions and can be
directly referenced with resolvable URIs. UniProt is huge information resource and that
is the reason to use only part of the database related to protein sequences and Gene
Ontology annotations. These data sets can be directly mapped to PROSITE RDF
serialization without any modifications. N-Triples-like syntax (Fig. 2):

InterPro hierarchy of protein families is converted to RDF format from its’ XML
distribution using rdfs:subClassOf property. UniProt identifiers that refer to protein
families are converted to be URIs with “http://purl.uniprot.org/uniprot/” prefix to fit
directly to the rest of the schema.

Fig. 1. Transformation syntax

Fig. 2. Serialization syntax
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2.2 Annotation Schema

Data sources mentioned in previous section are transformed to RDF format and linked
together with common persistent identifiers in the form of URIs. This part of the
semantic model is suitable to feed instances required to train machine learning model.
One more schemata is designed to describe and store predictions from machine
learning model in order to provide semantic functional annotations about new proteins
which are unseen by machine learning model. This schema contains amino acid
sequence which is analysed, predicted Gene Ontology terms linked as labels and some
metadata for details of the analysis - such as the algorithm used for classification, the
name of the problem transformation method used if the classification task is considered
to be multi-label task, date of the analysis and the name of the training dataset. To make
the link between annotation object and particular Gene Ontology class, the build-in
RDF property “rdf:type” is used.

2.3 Storage Engine and Inference Rules

After RDF transformations, data sets are loaded to RDF-triple storage engine
“GraphDB” provided by Ontotext AD (http://graphdb.ontotext.com). Inference is based
on one of the predefined GraphDB reasoners “OWL-Horst” and axioms defined in
Gene Ontology and InterPro class hierarchy. GraphDB supports custom inference rules
which generates custom extensions of the default reasoner. One custom rule is defined
to follow disjointness between GO classes in order to materialize inconsistencies
derived from machine annotations. The semantic model provides possibilities to
improve the machine learning model prior every iteration.

This rule states the following logic - if there are two classes “a” and “b” and they
are in disjoint, then for every annotation instance linked to both, an additional implicit
statement will be generated indicating inconsistent link between the annotation object
and one of the classes. This is a convenient way to analyse the number and the nature of
inconsistencies using SPARQL queries.

Unlike OWL DL, OWL Lite does not allow the use of owl:disjointWith [12].
Using OWL Lite reasoning the usage of owl:disjointWith can be interpreted as not
built-in property and consistency checks will never fail, but at the same time we can
easily trigger disjointness applying custom inference rule to generate implicit state-
ments to materialize inconsistencies as regular RDF statements.

3 Results and Discussion

PROSITE database is represented with 2511 unique patterns in release 2017_11.
A total number of 268 692 unique relationships can be loaded in a semantic repository
for two hours without inference. After this time, the inference overloads and triples the
loading time. It took 16 h to infer OWL Lite axioms over Gene Ontology classes on 8
CPU core machine with 32 GB of RAM. Overall number of statements after the
inference step is scaled to 2.5 million.
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To test the inference of the semantic model, one batch of 300 simulated instances of
machine annotations are loaded with total number of 32 inconsistencies found and
materialized as implicit RDF statements. Simulated annotations are generated with the
principle to add some GO terms which are in disjoint as classes for one annotation. For
example the terms GO:0003690 and GO:0003697 which are actually “double-stranded
DNA binding” and “single-stranded DNA binding” terms. They are in disjoint as GO
classes and didn’t pass the reality check because two terms are opposite [1]. The
predicate “abi-model:inconsistentWith” is generated between annotation node and the
second term linked to that node (in this case GO:0003697).

The question is which GO term do not pass the reality check. Actually both classes
have explicit disjointWith statements for each other and just the order of the appearance
is necessary but not sufficient criteria to choose one of them. One probable solution is
to keep the term with higher probability score generated by machine learning algorithm
at prediction time. This is possible if the classification task is defined as multi-label task
and probabilities distribution of labels is returned for every prediction. Descending
order of Gene Ontology terms thus will provide possibility first to add the term with
highest score into semantic repository, next is the second one etc. If some terms are in
disjoint with other terms from label collection which are already added to the reposi-
tory, they will be marked as inconsistent.

4 Conclusion

Despite the quality of the predictions made by machines, quality check by curators is a
mandatory task in tracking and discarding logical inconsistencies. Semantic networks
are capable to deal with human knowledge in machine understandable way providing
great possibilities for researchers to encode domain specific knowledge about prop-
erties of objects of interest like genes and proteins.

Using knowledge stored in ontologies, semantic networks can reduce probabilities
of false positive annotations due to inconsistencies between proposed concepts and
conclusions of learned models. This study provides not only an alternative to existing
methods for prediction annotations, but also a way to detect false or contradicting
automatic annotations. Our future work in the field is to apply these machine learning
annotations from use case scenario and evaluate them through manually annotated data.
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Abstract. Writing is a central skill needed for learning that is tightly linked to
text comprehension. Good writing skills are gained through practice and are
characterized by clear and organized language, accurate grammar usage, strong
text cohesion, and sophisticated wording. Providing constructive feedback can
help learners improve their writing; however, providing feedback is a time-
consuming process. The aim of this paper is to present an updated version of the
tool ReadME, which generates automated and personalized feedback designed
to help learners improve the quality of their writing. Sampling a corpus of over
15,000 essays, we used the ReaderBench framework to generate more than
1,200 textual complexity indices. These indices were then grouped into six
writing components using a Principal Component Analysis. Based on the
components generated by the PCA, as well as individual index values, we
created an extensible rule-based engine to provide personalized feedback at four
granularity levels: document, paragraph, sentence, and word levels. The
ReadME tool consists of a multi-layered, interactive visualization interface
capable of providing feedback to writers by highlighting sections of texts that
may benefit from revision.
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1 Introduction

Many students are interested in improving writing skills because writing quality is an
important aspect in defining intellectual capabilities at almost all academic levels.
Providing personalized feedback to students about their writing ability is a fundamental
component in the learning process. However, providing feedback is a time-consuming
and complex process, and many teachers do not have the time to provide feedback in an
iterative manner that best supports student learning. As a result, many computer-based
systems have been developed to support students in the writing process. These systems
are generally referred to automated writing evaluation systems (AWE).

The aim of this paper is to introduce a new version (1.1) of the ReadME AWE
system based on the ReaderBench framework [1]. ReaderBench is a multi-lingual
framework which integrates advanced Natural Language Processing techniques, and
multiple complexity indices: (a) surface level features including word count, sentence
count, sentence length, paragraph length, punctuation marks; (b) lexical indices related
to sophisticated vocabulary work; (c) syntactic indices related to word and sentence-
level analyses which include syntactic dependencies and part of speech tagging (POS);
(d) semantic features focusing on the text’s structure and centered on local and global
cohesion; and (e) discourse-centered elements related to dialogism and discourse
connectors.

This paper presents an extension of our previous analysis [2], with new improve-
ments, new features, and a new dataset. The new enhancements brought to our system
consist of the following features. First, the semantic models within the system were
trained on a far larger and better designed corpus (The Corpus of Contemporary
American English [COCA] – https://corpus.byu.edu/coca/) in order to better concep-
tualize the text. COCA is the largest available corpus of English and it contains over
560 million words from various categories, such as fiction, academic texts, newspaper,
and popular magazines. COCA provides a better conceptualization of words, it covers
broader categories and does not include repeated samples of texts which are common in
other corpora such as TASA. Second, we do not remove essays from this analysis that
contain only one paragraph. Third, we used a specific corpus of 15,496 essays for
creating a comprehensive writing sample. Fourth, we improved our processing per-
formance by optimizing the Natural Language Processing (NLP) pipeline from
ReaderBench which is invoked only once now at document level, and not for each level
individually. Fifth, we added a new granularity level for the provided feedback, namely
word-level. In contrast to other systems (e.g., T.E.R.A [3]), ReadMe provides per-
sonalized feedback at four granularity levels and is oriented towards supporting stu-
dents throughout the learning process.

2 Method

Selected Corpora. We derived our language features from a large corpus of inde-
pendent essays collected from several sources. In total 15,496 essays were collected
using a number of different prompts. Unlike other corpora commonly used in similar

282 M.-D. Sirbu et al.

https://corpus.byu.edu/coca/


analyses (i.e., TASA), the essays were all independent writing samples which means
the writers could rely on their own background knowledge to write about the given
prompt. Most of the essays came from the William and Flora Hewlett Foundation
Automated Student Assessment Prize competition hosted in 2012 (https://www.kaggle.
com/c/ASAP-AES); a smaller percentage of the essays were collected by the fourth
author or were collected through the Writing-Pal intelligent tutoring system [4].

Aggregating Complexity Indices into Principal Components. More than 1,200
complexity indices were computed using the ReaderBench framework. A Principle
Component Analysis (PCA) was applied to these indices in order to group the indices into
a small number of components. Due to the large number of indices, multiple steps of
index pruning were applied, as follows: checking for normality – indices with non-normal
statistical distributions were eliminated; elimination of localized indices – indices with
low linguistic coverage were removed; elimination of outlier essays – essays with at least
10% outliers indices were excluded (indices were considered outliers if their value
deviates more than 2 standard deviations from the mean value); elimination of strongly
correlated indices – indices that strongly correlate with others above and imposed
threshold are eliminated using Pearson correlations. After all these steps, 32 complexity
indices were introduced in the PCA. By grouping similar complexity indices into a
smaller set of components, the PCA generated 6 components which explain 57.5% of the
total variance including: word complexity (e.g., different age-of-acquisition lists, poly-
semy count), local cohesion (e.g., sentence - paragraph or sentence adjacency cohesion
score), global cohesion, and normalized word counts related to sentiment polarity (both
negative and positive).

Personalized Feedback Generation through an Extensible Rule-Based Engine We
developed an extensible rule-based engine to provide personalized feedback to users,
which supports two types of rules: rules based on the components generated by the
PCA, and rules based on the values of individual complexity indices. Each rule has a
maximum and minimum range set, and specific feedback messages if the document
exceeds these boundaries. The range values from the components were computed based
on the average plus/minus standard deviation values. The range values for the rules at
word level are computed using Kuperman’s age-of-acquisition word list [5]. All rules
and feedback messages were manually configured using a JSON file. Each granularity
level has its own defined rules and feedback messages and each rule has more inter-
changeable feedback messages in order to avoid monotony.

An Interactive Visualization Interface. Users can input an essay and receive per-
sonalized feedback at the four levels of granularity: document, paragraph, sentence and
word level. Two color gradients are used to indicate the severity of identified problems:
red – with darker shades meaning that the text fragment has more issues; blue – no rule
was triggered; darker shades of blue mean that the segment is similar to the average
values measured across the entire corpus, while lighter shades represent values closer to
the margins of the [minimum, maximum] acceptable interval. Figure 1 shows feedback
generated at word level at which each word is individually highlighted based on its
severity value computed using Kuperman’s age-of-acquisition.
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The words that are not highlighted are either stopwords (e.g., “the”, “for”, “in”) or
words which are not present in the word list (e.g., named entities like “France”,
“Spain”, or “William”). On mouseover, a feedback message for that corresponding
specific word is generated in the left side (see Fig. 1 in which the “belligerency” word
is underlined). Feedback given at the component level would include personalized
messages for each dimension (e.g., “Words in your text tend to be too complex.” or
“You should consider writing self-contained, cohesive paragraphs that do not contain
too many new ideas.”).

3 Conclusions

Automated textual complexity indices found in ReaderBench can provide significant
feedback to user’s in consideration of word complexity, syntax, local and global
cohesion. This paper is an extension of our previous study [2], with new features and
increased performance. Beyond the first release, the current version of the ReadME
system provides feedback at four granularity levels and includes word-level feedback.
In addition, the semantic models in this version were trained using the COCA corpus
and a more comprehensive baseline of essay writing was established using the com-
plexity indices applied to a larger and more specific corpus of essays.

For the time being, no experiments using the new version of ReadME have been
performed. Thus, a first follow-up action is to perform experiments with students of
various levels to examine the usability of the system and the effectiveness of the
feedback provided. In addition, the system will be further enhanced by using specific
training collections that reflect different student writing levels, introducing side-by-side
feedback for multiple documents in order to compare them, including grammatical and
mechanic errors in the rule-based engine, as well as support for multi-lingual analyses.

Fig. 1. ReadME – personalized feedback at word level. (Color figure online)
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Abstract. This paper describes a classification system which uses fea-
ture selection method based on logistic regression algorithm. As a feature
elimination criterion the variance inflation factor of the statistical logis-
tic regression model is used. The experimental results show that this
method can be successfully applied for feature selection in classification
problem of multidimensional microarray data.
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Cancer diagnosis · Gene expression signatures

1 Introduction

Using high-throughput molecular techniques, researchers can study the activity
of thousands of genes simultaneously. Using different molecular techniques we
can assess gene expression measured by DNA microarrays or RNA-Seq tech-
nique, DNA methylation levels measured by DNA methylation microarrays or
protein and phosphoprotein levels measured by reverse phase protein arrays.
Cancer classification based on high-throughput molecular techniques is one of
the most challenging problems in nowadays molecular data research. Over the
past decades, a wide range of classification algorithms has been proposed in
the literature to tackle various classification problems. Classification algorithms
can be divided into two categories: binary and multi-class classifiers. This work
is focused on binary problems, but the methodology can also be adjusted to
multi-class classification problems.

Here we propose a feature selection method based on logistic regression
method. Logistic regression is a popular classification method and has an explicit
statistical interpretation where probabilities of class membership, for example
different cancer phenotypes, can be assessed. However, in most gene expression
studies, the number of genes typically far exceeds the number of samples. This
situation is called high-dimensional and low sample size problem. In this case
c© Springer Nature Switzerland AG 2018
G. Agre et al. (Eds.): AIMSA 2018, LNAI 11089, pp. 286–290, 2018.
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the logistic regression method cannot be used to estimate the regression param-
eters directly. For that reason, we have used additional preselection step based
on standard feature selection methods.

2 Methodology

2.1 Feature Selection—RegVIF Method

The proposed method of feature selection is based on iterative variable elim-
ination from a logistic regression model. The procedure is as follows. p-value
for Wald z-score is calculated for each variable in the model. This score is com-
monly used for importance assessment of variables in given model, where the null
hypothesis is that a variable is not influencing the model. The lower p-value, the
more significantly a particular variable influences the model. As a next step,
the variance inflation factor (VIF) is calculated for each variable. VIF allows
assessing multicollinearity of variables. High values of VIF may indicate multi-
collinearity of these variables, but there is no clear way to choose a threshold
[6,8]. Both scores: VIF and Wald test p-value are multiplied and the feature with
the highest product is selected for elimination. Then the new logistic regression
model with new coefficients is re-calculated.

For the presented RegVIF algorithm a different stopping criterion might be
applied and we have checked a few of them. The first one is to stop procedure
when AIC (Akaike Information Criterion) is increasing, which indicates a loss
in the relative quality of the model for the given data. The second one is when
maximum VIF reaches a value below an arbitrary threshold. The last one is
when a desired number of variables is achieved. The last variant was used in
the present study for comparison of the method to other methods. The logistic
regression model is suitable for both variable types: categorical and numeric. In
the present study, the algorithm was applied on numerical values of normalized
gene expression dataset. The superabundance of features in logistic regression
model requires genes preselection for the saturated model. For that reason two
methods, T-test and fold change based feature selection method, were used.

2.2 Classifier Design

Design and used algorithms of the classification system for large-scale data
described in the previous section constitute challenging problems. We need to
choose the right classifier design, including data preprocessing, choice of a proper
classification and feature selection methods. In this paper, we develop a selection
method based on logistic regression and compare the results with the most used
methods and a different number of selected features. Our classifier is based on
the classification/validation scheme proposed in [1], implemented in [2] and is
presented in Fig. 1. The same scheme has been also used recently for compar-
ing different data fusion strategies [3]. Additionally, we used the following filter
methods for feature selection: the lowest p-values in Student’s t-test and the
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Fig. 1. Classification/validation scheme used for comparing different models.

highest values of logarithmic fold change (FC). The classifiers for each desired
number of features were validated using 500 iterations of bootstrap.

As a classification method we have used Support Vector Machines (SVM)
algorithm [4,5] with linear kernel. This method is reported as one of the best
classifier for multidimensional genomic data analyzed in this paper.

3 Data Set Description

In this article, we have used publicly available microarray gene expression dataset
of human glioma samples. The data set consists of 50 gliomas with 22 anaplas-
tic oligodendrogliomas and 28 glioblastomas. This dataset was normalized with
RMA algorithm and annotated with genecards derived annotations for custom
probeset definitions gahgu95av2 [10]. After normalization, the dataset contains
8359 gene probes. The dataset can be freely downloaded from NCBI Gene
Expression Omnibus GEO [9].

4 Results

RegVIF feature selection method have been compared to other methods by esti-
mation the accuracy of test sets obtained in 500 iterations of bootstrap tech-
nique. In the molecular data classification problem not only the accuracy rate
is important, but also how small is the number of selected genes. Hence, we
have calculated accuracy for different cardinality of selected feature (gene) set.
Based on this one can see how many genes is needed to obtain good prediction
accuracy.

For two types of malignant brain cancers, glioblastoma (WHO, grade IV)
and anaplastic oligodendroglioma (WHO, grade III), the calculated accuracy of
classification for a range of up to 20 features was between 0.695 and 0.74—see
Fig. 2. The best accuracy rate was obtained for our RegVIF feature selection
method and t-test preselection. In this case, the best result was observed for
20 selected features. The RegVIF selection also has a higher sensitivity and
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specificity rates in comparison to plain t-test selection. They are presented in
Table 1.

The presented study dataset shows the problem of binary classification for
two of gliomas which are challenging for histological classification [7]. In com-
parison to the previous work [11], where the accuracy for 20 features was 0.86,
our results have lover values. However, this is due to different methodology of
the overall classification system evaluation. We used the structure presented in
Fig. 1, which exclude the possibility of information leak and eliminate the opti-
mistic bias from the classification quality assessment.

Table 1. Best classification accuracy rate for all tested methods

Selection method Accuracy Sensitivity Specificity nFeatures

ttest 0.732 0.7764 0.6856 20

FC 0.729 0.7615 0.7054 19

ttest RegVIF 0.736 0.7771 0.6989 20

FC RegVIF 0.7196 0.7554 0.6904 20

Fig. 2. Bootstrap based classification accuracy by successive gene set reduction selected
for different feature selection methods of the SVM classier

5 Summary

In this paper, we have presented results of new RegVIF feature selection method
which used the logistic regression model with stopping criterion based on
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assumed number of selected features. The main advantage of this method is
that we can use it for numeric, categorical and dummy variables in contrast to
the most commonly used filter methods like t-test or fold change based feature
selection. On the other hand, the logistic regression based feature selection is
sensitive to the number of probes and the number of features ratio. In the case
of the small number of samples and large number of variables the Wald test
p-value increases to 1. In such situation The preselection of features is neces-
sary to use in the logistic regression model. The logistic regression based feature
selection can be adopted for multiclass problems using one versus one (ovo) or
one versus rest (ovr) approaches.

Acknowledgments. This research was supported by Polish National Centre for
Research and Development under grant No. NCBR Strategmed2/267398/4/
NCBR/2015.

References

1. Student, S., Fujarewicz, K.: Stable feature selection and classification algorithms
for multiclass microarray data. Biol. Direct 7(33), 1–20 (2012)

2. Fujarewicz, K., et al.: Large-scale data classification system based on Galaxy
Server and protected from information leak. In: Nguyen, N.T., Tojo, S., Nguyen,
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