
Chapter 7
Approximate Logic Synthesis Using
Boolean Matrix Factorization

Soheil Hashemi, Hokchhay Tann, and Sherief Reda

7.1 Introduction

Synthesizing an approximate circuit from an arbitrary circuit, presumably accurate,
is one of the key challenges in approximate computing. While recently many
methodologies have proposed targeting approximate arithmetic building blocks
(e.g., approximate adders, multipliers, and dividers) [2–5, 9], it is harder to generate
approximate circuits for arbitrary circuits. Synthesis techniques in the literature
operate either on gate-level [8, 11, 12, 16, 18, 19], RTL, and behavioral hardware
descriptions [15], or high-level software descriptions [7].

This chapter describes our method for approximate logic synthesis using Boolean
matrix factorization [17]. Non-negative matrix factorization (NNMF) factors an
input matrix into two smaller matrices, such that in all three matrices all elements
are non-negative [6]. The original input matrix is then approximated by matrix
multiplication of the two factorized matrices. Furthermore, the non-negativity is
an inherent constraint in many physical domains, such as data clustering and
computer vision [21]. Recently, with advances in the applied mathematics, NNMF
has been extended to Boolean matrices, where operations are performed using
Boolean mathematics (GF(2)), such that multiplications are performed using
logical AND, and additions are performed using logical OR (for Boolean semi-ring
implementations) and logical XOR (for Boolean field implementations) [13, 14]. In
our approach we first build the truth table of a given multi-input, multi-output logic
circuit and then approximate its truth table using BMF. The approximate truth table
is then synthesized into an approximate circuit.
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In order to scale our proposed BMF-based methodology to larger circuits, we
introduce a decomposition methodology, effectively breaking down a large circuit
to smaller subcircuits with reduced number of inputs and outputs. Furthermore, to
efficiently explore the design space, we propose an algorithm to identify an optimal
sequence of approximations for different subcircuits. In addition, to better account
for binary representations, rather than using the standard L2 norm, we introduce
modified quality-of-results (QoR) functions. Our proposed methodology offers a
wide range of smooth trade-offs between accuracy and design metrics. In order
to demonstrate the trade-offs offered by our approach, we implement and test our
methodology on a wide range of error tolerant applications. Our results highlight
the benefits achieved by our methodology while introducing insignificant errors in
the output.

The organization of this chapter is as follows. We discuss the details of our
proposed method in Sect. 7.2. In this section, we discuss our idea for using BMF
for approximate logic synthesis, as well as our methodology for approximating
larger circuits. We report the results of our method’s performance and the trade-
offs offered in Sect. 7.3. Finally, Sect. 7.4 summarizes our conclusions as well as
possible directions for future expansion.

7.2 BMF-Based Approximation for Arbitrary Circuits

BMF is a factorization technique where a k × m matrix M is factored into two
Boolean: a k × f matrix B and an f × m matrix C, such that M ≈ BC, where
matrix operations are carried in Galois field of two elements, GF(2). In such
domain, multiplications can be performed using logical AND, while additions are
performed using logical OR (for Boolean semi-ring implementations) and logical
XOR (for Boolean field implementations) [13, 14]. BMF algorithms, essentially,
compress the data representation in an approximate fashion and depending on
the degree of factorization [21]. In the mathematical statistical community, the
factorization degree, f , determines the number of “features” that are computed [13].
The factorization degree, f , represents a trade-off between quality of factorization
and storage amount.

Figure 7.1 provides an example of a 3-input, 4-output arbitrary logic circuit. First,
we construct the truth table of the original circuit. We also synthesize the circuit.
Here we use 65 nm libraries and Synopsys DC as the logic synthesis tool, which
gives an original circuit area of 22.3µm2. The truth table is provided as input to
the BMF factorization algorithm, along with the desired factorization degree. Here
we choose a factorization degree f = 2. We then factor the matrix using ASSO the
BMF algorithm [13, 14] into two matrices 16 × 2 and 2 × 4. Thus, the approximate
truth table has a Hamming distance of 6 from the original truth table, i.e., QoR
changes only by 9.3%. The next step is to synthesize the two truth tables. The 16×2
truth table of the compressor circuit is used to create a 16×2 sum-of-product circuit
with 4 inputs and 2 outputs using the established logic synthesis techniques [20].
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Fig. 7.1 An example of BMF-based approximations
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Fig. 7.2 The OR-based decompressor circuit for the example of Fig. 7.1

The 2 × 4 table for the decompressor is then used to synthesize a second circuit
that ORes the outputs of the SOP circuit to produce the four outputs as illustrated
in Fig. 7.2. The two circuits are then given to the logic synthesis tool to produce
one final circuit from both of them. In this particular example, the synthesis tool
generates an approximate circuit with area of 16.2µm2. That is, we can reduce the
area by 27.3%, while compromising the QoR by only 9.3%.

As demonstrated in the figure, our methodology provides a synthesis method that
enables controlled trade-offs between accuracy and design costs based on the degree
of approximation. Figure 7.3 illustrates our example with different factorization
degrees, therefore resulting in different trade-offs. In this example and for f = 3,
f = 2, and f = 1, our methodology results in approximate circuits with Hamming
distance of 3, 6, and 13, respectively, and circuit areas of 19.1, 16.2, and 9.4µm2,
respectively. Figure 7.3 illustrates our example with factorization degrees f = 3,
f = 2, and f = 1, which lead to approximate circuits of Hamming distance of 3,
6, and 13 respectively, with circuit areas of 19.1, 16.2, and 9.4µm2.

There are two main challenges:

1. In typical NNMF application the index or location of the error does not bear
any significance since NNMF algorithms utilize the L2 norm as a metric
for the quality of factorization. In the case of Boolean matrices, L2 norm
translates to Hamming distance. Since the binary outputs of many circuits have
corresponding numerical association (e.g., 8-bit number), we need a metric for
QoR with knowledge of output representation. Such QoR metrics are crucial in
approximate hardware design.

2. As our technique introduces approximations by operating on circuit truth table,
the scalability can be limited as the size of the truth table increases exponentially
as a function of the number of inputs. Therefore, we need methodologies to
enable the scaling of our method to larger circuits.
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Fig. 7.3 Impact of factorization on accuracy and area

7.2.1 Circuit Factorization for Arbitrary QoR Metrics

In BMF algorithms, the objective is to minimize ||M − BC||2, which translates
to Hamming distance in Boolean systems. In approximate circuit design, however,
such metric does not provide a good representation of QoR in many cases. As
an example, if the columns of an m-column matrix represent an m bit signal,
minimizing the Hamming distance as the cost function can lead to significant errors
in numerical value. For instance, a bit flip in the least significant bit will lead to a
numerical error of 1, whereas a bit flip in the nth bit leads to an error of 2n−1.

To account for the bit significance, we augment existing BMF algorithms with
custom QoRs enabling weighted cost functions. Specifically, we propose to define
the cost function as ||(M − BC)w||2, where w is a constant weight vector, instead
of ||M − BC||2 as the standard Hamming distance cost function. Here, if the
numerical difference is the objective QoR, then w will be defined to introduce bit
significances based on powers-of-two (e.g., 8, 4, 2, 1), therefore, giving different
numerical weights for different bit positions. In our experiments, we modify the
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ASSO [14] algorithm as to penalize mismatches on higher bit indices more than
lower significant bits. We will provide experimental results showcasing the benefits
of such weighting schemes in contrast to uniform weights (Hamming distance) in
Chap. 7.3.1.

7.2.2 Scaling Up for Large Circuits

As our methodology operates on the truth table of the input circuit, the size of
the input matrix, i.e., the number of rows, grows exponentially as the number of
primary inputs increases. Furthermore, BMF is a NP-hard problem, and the existing
methodologies are based on heuristics [6, 13, 14]. Therefore, the applicability of
our method can be limited as the complexity of the circuit increases. Therefore, we
propose a circuit decomposition technique to scale the BMF algorithm for larger
circuits. The overall idea of our method is to first decompose a large circuit into a
number of subcircuits, such that each subcircuit has a maximum of k inputs and m

outputs as illustrated in Fig. 7.4a and then each of the subcircuits is approximated
as shown in Fig. 7.4b. The values for k and m are determined based on the afforded
runtime of the factorization algorithm. While this approach closely resembles FPGA
mapping algorithms, it is different from such algorithms as (1) such breakdowns

Fig. 7.4 Illustrated
methodology for
decomposing circuits
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are performed purely to reduce the computational complexity, (2) the resulting
approximate circuit can be synthesized using any target FPGA or ASIC technology,
and (3) in contrast to FPGA mapping, the number of outputs can be larger than one.
Therefore, instead of using classical k-cut algorithms, e.g., [1], we propose to use
k × m-cut algorithms (e.g., KL algorithm [10]) to break down a large circuit into
subcircuits with a maximum of k inputs and maximum of m outputs.

Dividing a large circuit into smaller subcircuits of size k × m requires a change
to the way we compute the QoR. More specifically, we can no longer evaluate the
accuracy of a subcircuit in isolation, as errors in one component can propagate
through the circuit leading to larger errors in the final outputs. Therefore, in our
work instead of evaluating the QoR of a subcircuit individually, we evaluate the QoR
of the entire approximate circuit, denoted by Cir(si → Tsi ,fi

), where an accurate
subcircuit, si , is substituted by its approximate version, Tsi ,fi

, with a factorization
degree of fi .

Since a large input circuit will have multiple subcircuits, the order and the
degree to which the approximations are introduced to the circuit has to be carefully
analyzed. We devise Algorithm 1 to gradually approximate the circuit. In our
algorithm, first, the circuit is broken down into smaller subcircuits (Line 1). In
the next stage (lines 3–9) and for each subcircuit, the set of potential approximate
versions under various approximation degrees are profiled. Next, and starting from
the accurate design, approximations are gradually added to the input design by
exploring the neighbors of the current design (lines 14–22). Here, neighbors of a
given subcircuit are defined as subcircuits for which the degrees of approximation
only differ in one subcircuit. Here in lines 15–18, for each neighbor, first the
degradations in overall QoR metrics are assessed. The subcircuit with the least
degradation in QoR is then chosen to replace the current circuit for next iteration
in lines 19–21. The process is repeated iteratively until the QoR gets lower than a
predefined threshold.

7.3 Experimental Results

In this section we demonstrate, experimentally, the benefits achievable from using
our BMF-based logic approximation (BLASYS) methodology. For our experiments
we explore a broad range of applications ranging from arithmetic circuits (adder
and multiplier) to more complicated datapaths. We report our results for circuits
amenable for approximations, including a multiply-accumulate circuit (MAC), a
butterfly network (BUT), a sum of absolute differences (SAD) circuit, and finite
impulse response (FIR) circuit [16, 18]. In Table 7.1, we summarize the hardware
characteristics of the evaluated accurate circuits, including the number of inputs
and outputs, design area, power consumption, and critical path delay. To evaluate
the design metrics, we used Synopsys design compiler with an industrial 65 nm
technology library in typical processing corner.
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Algorithm 1: BLASYS: Boolean level approximate circuit synthesis
Input : Accurate Circuit ACir , Error Threshold
Output: Approximate Circuit Cir

1 subcircuits=Decompose input circuit using k × m decomposition
2 // Factorization profiling Phase
3 for each subcircuit si with mi ≤ m outputs do
4 M=Construct truth table of si
5 // profile for every possible factorization degree
6 for f =1 to mi -1 do
7 [B, C] = BMF(M, f )
8 Tsi ,f =Construct truth table of BC
9 end

10 end
11 // Circuit Space Exploration Phase
12 Cir=ACir;
13 Let fi = mi for all subcircuits si
14 while QoR(Cir) < threshold do
15 for each subcircuit si with fi > 1 do
16 Cir ′=Cir(si → Tsi ,fi−1)

17 Δerri = QoR(Cir ′) − QoR(Cir)

18 end
19 b = arg mini (Δerri )
20 Cir = Cir(sb → Tsb,fb−1)

21 fb = fb − 1
22 end
23 Cir=Synthesize Best new Design
24 return Cir

Table 7.1 The list of benchmarks evaluated using the proposed NNMF methodology

Accurate design metrics

Area Power Delay
Name Function I/O (um2) (uW) (ns)

Adder32 32-bit adder 64/33 320.8 81.1 3.23

Mult8 8-bit multiplier 16/16 1731.6 263.5 2.03

BUT Butterfly structure 16/18 297.4 80.6 1.79

MAC Multiply and accumulate

with 32-bit accumulator 48/33 6013.1 470.5 2.36

SAD Sum of absolute

difference 48/33 1446.5 195.1 2.43

FIR 4-Tap FIR filter 64/16 8568.0 466.3 1.56

For all our experiments, we first decompose each circuit to a maximum of 10×10
(i.e., k = 10 and m = 10) subcircuits and then perform factorization. We use
the ASSO algorithm for BMF [13, 14]. In addition, to evaluate the accuracy of
the approximate applications, we utilize Monte Carlo simulations with one million
randomly generated input test cases. In our results, the average relative error is
defined as
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Average Relative Error = 1

N

N∑

i=1

|Ri − R′
i |

Ri

, (7.1)

and average absolute error as

Average Absolute Error = 1

N

N∑

i=1

|Ri − R′
i |, (7.2)

where N denotes the size of the test case, and R and R′ denote accurate and
approximate results, respectively.

In the next subsection we report our results highlighting the impact of arbitrary
QoR functions in contrast to standard, uniformly weighted L2 metric used in
Boolean matrix factorization. Then, and in the second subsection, we summarize
the benefits achieved when BLASYS utilized within our applications. Here, we also
compare our work against state of the art.

7.3.1 Impact of QoR Metric

As previously described, we utilize a BMF algorithm, ASSO in this work, with
a custom weighted cost function. Specifically, as the matrix columns represent the
outputs of the circuit, in many cases a bit disparity on higher significance bits should
generate higher penalties compared to errors on lower indices.

Figure 7.5 shows the accuracy versus design complexity trade-offs offered for
the approximate Mult8 design when comparing an off-the-shelf factorization
algorithm using standard L2 QoR with uniform bit weighting against the proposed
weighted QoR. The trends in average relative error, normalized average absolute
error, and the normalized Hamming distance are provided. In this plot, the solid lines
denote the weighted QoR (WQoR) results, and the results for the original uniform
QoR (UQoR) are shown with dashed lines.

As shown in the figure, for same circuit complexity, the proposed weighted QoR
offers consistent improvements in all three accuracy metrics when compared against
the uniform QoR. Therefore, for binary representations, significant benefits can be
achieved by modifying the BMF algorithm to utilize a weighted QoR. In the next
subsection, trade-offs offered by BLASYS are evaluated for all of our application
circuits and using our heuristic design space exploration. We report the benefits in
design area, power consumption, and critical path delay offered by our methodology.
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Fig. 7.5 Comparison of the trade-offs offered using the proposed weighted QoR vs. the original
factorization algorithm

7.3.2 Circuit Results

As described in Sect. 7.2, in order to tackle larger circuits, our technique first
decomposes a circuit into smaller subcircuits with lower number of input and output
ports. For all subcircuits, the possible approximate subcircuits, using different
factorization degrees, are then profiled. Next, the heuristic proposed in Algorithm 1
iteratively approximates the subcircuits while assessing the impact on the QoR of
the whole circuit through simulation. For design area and power, these metrics
for the whole circuit are defined as the sum of design metrics of the k × m-cut
subcircuits. In our experiments we chose design area as our design metric, as the
summation of the subcircuits design area values better represents the total area,
while the power consumption shows more variations. In addition, note that for our
design space exploration, our design area model only represents the portion of the
subcircuits blocks being approximated, while register files and controls paths act as
an area bias and they do not affect the relative gradients.

Figure 7.6 shows the trade-offs offered by our method, BLASYS, for our six
benchmarks. In this figure we plot the normalized design metric as a function of
average relative error, shown in black and using the bottom x axis, and average
normalized absolute error, shown in red and using the top x axis. In the case of
average absolute error, as the range can differ significantly based on output bit-
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Fig. 7.6 The trade-offs offered for each application. (a) Adder32, (b) Mult8, (c) BUT, (d) MAC,
(e) SAD, and (f) FIR
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width, we normalize the values to the highest possible output to better illustrate its
significance. Note that the average absolute error is in log scale to better demonstrate
the trend.

As evident from the figure, using our methodology, in all applications a wide
range of fine-grains trade-offs are available. Intuitively, at each iteration, the
proposed design space exploration heuristic tries to find the optimum design point,
effectively the design with minimum design area, for a given degree of approxima-
tion. The degree of approximation is then incremented by one in each iteration. This
insight explains the smooth trade-offs for larger circuits, whereas the characteristics
of smaller circuits can change significantly in one iteration. Furthermore, in some
cases, we observed an increase in the area utilization as more approximations are
introduced. This phenomenon is explained by an overall increase in the total number
of literals in the intermediate signals. In other words, while BLASYS compresses
the outputs into f signals, these f signals can have higher complexity compared to
their accurate counterparts. Our design space exploration methodology, however,
can navigate through these temporary increases to find a minimal design point
offering significant savings in design metrics. Based on the circuit, benefits of
approximately 25–60% can be achieved for average relative errors of 20%.

Utilizing the design space exploration methodology, the results of our six evalu-
ated applications, and for two accuracy thresholds of 5% and 25% are summarized
in Table 7.2. For both error thresholds, our methodology delivers significant benefits
in all design metrics, as demonstrated in the table. In our experiments and for a tight
threshold of 5%, benefits of approximately 8–47% can be achieved in the case of
design area, while the same benefits for a threshold of 25% range from 26 to 65%.

Table 7.2 The hardware characteristics of the approximate test cases for two accuracy thresholds,
namely 5% and 25%

Accuracy Area Power Delay
Design threshold (%) savings (%) savings (%) reduction (%)

Adder32 5 44.78 63.79 12.07

25 48.15 69.35 17.03

Mult8 5 28.77 26.87 12.32

25 63.18 68.93 41.38

BUT 5 7.87 11.25 2.23

25 26.39 35.14 5.03

MAC 5 47.55 55.58 64.41

25 65.86 75.13 69.07

SAD 5 32.80 41.47 69.14

25 38.08 55.07 77.37

FIR 5 19.52 22.26 12.18

25 34.00 33.84 16.03
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7.4 Conclusion

In this chapter we described a new direction for approximate logic synthesis using
Boolean matrix factorization. Our proposed methodology leads to a systematic
approach to trade-off accuracy with circuit complexity. To scale our approach to
handle large circuits, we propose a circuit decomposition method that breaks down
a large circuit into smaller circuits that are amenable for BMF. Our algorithm leads
to a smooth trade-off between the complexity of entire large circuits with accuracy.
We also described how to incorporate different QoR metrics into the circuit
factorization. Our experimental results show robust trade-off between accuracy and
circuit area. Our technique is developed into BLASYS, which is a fork of the
popular logic synthesis tool YOSYS, and it is available to download at http://github.
com/scale-lab/BLASYS. Our approach opens many doors for investigation in logic
synthesis, including improved techniques for BMF and improved k × m circuit
decomposition.
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