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6.1 Introduction

Approximate circuits are the basic building blocks of approximate computing
systems [28, 30, 31]. Approximate circuits realize a slightly different functionality
from the required function. They are oftentimes described in conjunction with a
quality metric that defines the degree to which the approximate circuit’s output can
differ from an accurate circuit implementation. Leveraging the relaxed notion of
correctness, approximate circuits achieve disproportionate reduction in hardware
complexity (e.g., switched capacitance, leakage, and critical path) compared to their
accurate counterparts.

The first wave of efforts in the area of approximate circuits focused on the design
of approximate versions of simple arithmetic units such as adders [5, 6, 12, 18,
20, 23, 24] and multipliers [7, 9, 11, 15, 21]. While these efforts demonstrated the
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Fig. 6.1 Automatic synthesis techniques for approximate circuits: Overview

potential benefits in using approximate circuits, their broader adoption requires
systematic methodologies that can create approximate implementations for any
arbitrary circuit. Ideally, the tools should:

• allow designers to directly specify the circuit and the quality constraint, alleviat-
ing them from the burden of how to perform approximations;

• generate “correct-by-construction” approximate circuits that are guaranteed to
conform to the imposed quality constraints;

• effectively translate the flexibility engendered by the quality constraints into
energy or performance benefits.

This chapter provides an overview of the key ideas behind systematic method-
ologies geared towards designing approximate circuits, as summarized in Fig. 6.1.
Such methodologies are applicable to any arbitrary combinational or sequential
circuit, containing a mix of datapath and control logic. We categorize them into
two classes:

1. Functional approximation techniques, which modify the logic function imple-
mented by the circuit to improve efficiency subject to quality constraints

2. Timing approximation techniques that redesign the circuit to minimize the
number of timing errors when its supply voltage is scaled.

An important extension of approximate circuits are quality configurable circuits,
or circuits with the ability to reconfigure their accuracy and efficiency at runtime.
They are key to approximate computing systems since in many applications, the
degree of resilience often varies depending on the application context or the dataset
being processed. In this chapter, we will also describe systematic methods to design
quality configurable circuits.
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6.2 Quality Metrics

Before describing the different approximate circuit design frameworks, we present
an overview of the quality metrics that are often utilized to ascertain the degree of
approximation. The quality metric bounds the type and amount of error that can
be introduced in the circuit during approximation. Typically, it is a function of the
original (Oorig) and the approximate (Oapprox) circuit outputs. Quality metrics can
be broadly classified in three categories: (i) metrics constraining error magnitude,
(ii) metrics bounding error frequency, and (iii) composite metrics constraining both
error magnitude and frequency. The following sections describe them in detail.

6.2.1 Metrics Constraining the Error Magnitude

The first class of metrics provide a bound on the error magnitude at the output of the
circuit. The error magnitude bound can be either absolute, i.e., true for every input to
the circuit or statistical over all possible circuit inputs. Some of the common quality
metrics belonging to both the categories, i.e., absolute or statistical, are described
below.

6.2.1.1 Maximum Error Magnitude

The maximum error magnitude (MaxErr), given in Eq. (6.1), constrains the abso-
lute difference in magnitude between the outputs of the original and approximate
circuits to be less than a specific threshold for each input.

MaxErr = MAX∀inputs |Oorig − Oapprox | (6.1)

6.2.1.2 Relative Error Magnitude

The relative error metric (RelErr), shown in Eq. (6.2), bounds the absolute value
of the difference between 1 and the ratio of the approximate output to the original
output by at most a certain margin for every input.

RelErr = MAX∀inputs
∣
∣
∣1 − Oapprox

Oorig

∣
∣
∣ (6.2)
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6.2.1.3 Average Error Magnitude

The average error metric (AveErr), given by Eq. (6.3), bounds the absolute
difference in magnitude between the approximate output and the original output,
averaged over all possible circuit inputs.

AveErr =
∑

∀inputs |Oorig − Oapprox |
T otal number of inputs

(6.3)

6.2.1.4 Mean Squared Error Magnitude

The mean squared error metric (MSErr), shown in Eq. (6.4), bounds the mean of
the squared difference between the original and the approximate output across all
possible inputs to be less than a given threshold.

MSErr =
∑

∀inputs (Oorig − Oapprox)
2

T otal number of inputs
(6.4)

6.2.1.5 Unidirectional Error Metrics

Besides constraining the absolute magnitude of error, unidirectional error metrics
also restrict the direction of errors, i.e., positive or negative direction. Note that
the unidirectional variants can be formulated for each of the error magnitude based
quality metrics described above.

6.2.2 Metrics Bounding the Error Frequency

The second class of quality metrics constrain the frequency of error, i.e., the number
of inputs for which the circuit can produce incorrect values. These metrics are
especially useful when the circuit outputs do not have a numerical value. Few
examples metrics are described below.

6.2.2.1 Error Probability

The error probability metric (ErrP rob), given in Eq. (6.5), is defined as the fraction
of input vectors for which the approximate circuit output differs from the original
circuit output.

ErrP rob = T otal number of Inputs with Oorig �= Oapprox

T otal number of Inputs
(6.5)
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6.2.2.2 Bit Error Probability

The bit error probability metric (BitErrP rob), shown in Eq. 6.6, is a slight variant
of the error probability metric. In this case, the error probabilities of individual
output bits are bounded separately.

BitErrP robi = T otal number of Inputs with Oi
orig �= Oi

approx

T otal number of Inputs
(6.6)

6.2.3 Composite Metrics

Composite quality metrics are a combination of both the quality metric categories
described above, wherein the error magnitude as well as the error frequency is
bounded.

These metrics are typically represented as an error probability distribution, an
example of which is shown in Fig. 6.2. In this example, the X-axis indicates the
error magnitude and the Y -axis provides the probability with which error of a given
magnitude can occur in the approximate version of circuit.

6.3 Approximate Circuits

The problem of approximate circuit synthesis, as illustrated in Fig. 6.3, can be stated
as follows. Given a golden specification of a circuit, and a quality constraint that
bounds the degree to which the circuit can be approximated, modify the functional-
ity realized by the circuit such that it leads to a more efficient implementation, while
meeting the specified quality constraints. Broadly, approximations in circuits are
introduced in two different forms: (i) Functional approximation, where the circuit

Fig. 6.2 Error probability
distribution
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realizes a slightly different logic function than specified, leading to a more efficient
hardware implementation [5, 6, 9, 12, 18, 23–26], and (ii) Timing approximation,
where the circuit is designed to operate under overscaled conditions (e.g., voltage or
timing), resulting in timing-induced errors [8, 14, 19]. In this section, we describe
systematic approaches that enable both forms of approximations, highlighting their
key principles, merits, and limitations.

6.3.1 Functional Approximation

Functional approximation involves making judicious changes to the logic imple-
mented by the circuit thereby reducing hardware complexity without violating the
quality constraints. Some of the approximations that have been explored at the
logic-level include removing gates by setting some internal wires to logic 1 or 0
and propagating the redundancies [25], removing paths based on lower activation
probability [16], reducing critical path length by eliminating connections between
circuit nodes [18, 24, 32], identifying nodes with similar functionality and using one
for the other [29], among others. However, the key challenge lies in developing a
systematic method to apply these approximations to any given circuit that achieves
the best improvement in performance/energy for a given quality requirement. This
requires characterizing how approximating each node of the circuit affects the
overall circuit’s quality, and understanding how approximations at different points
in the circuit interact with each other. This problem is even more challenging in
the context of sequential circuits, where errors accumulate over multiple cycles
of execution. We now describe two frameworks, SALSA [27] and ASLAN [22],
which systematically address the above challenges and enable automatic synthesis
of approximate combinational and sequential circuits, respectively.
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6.3.1.1 Approximate Combinational Circuits

First, in the context of combinational circuits, SALSA formulates the problem
of approximate synthesis into an equivalent traditional logic synthesis problem,
thereby utilizing the capabilities of existing boolean optimization techniques for
approximate logic synthesis. It identifies implicit don’t care conditions that arise
out of the relaxed quality specifications and uses them to simplify the circuit. We
now describe the methodology in more detail.

Quality Constraint Circuit SALSA enforces the quality constraints during syn-
thesis by constructing a virtual quality constraint circuit (QCC) shown in Fig. 6.4.
The QCC is composed of three major blocks viz. the original circuit, the approx-
imate circuit, and the quality function (Q-function). The inputs to the QCC are
the primary inputs of the circuit considered for approximation. The Q-function
is nothing but the quality constraints encoded as a Boolean function. It takes
outputs from both the original (Oorig) and approximate (Oapprox) circuits and
produces a single bit output Q that indicates if the desired quality is met. The
QCC evaluates to a tautology when the synthesized approximate circuit satisfies
the quality specifications.

Approximation Don’t Cares Given the QCC, SALSA utilizes the concept of
observability don’t cares (ODCs) to identify opportunities to approximate the
original circuit. In multi-level logic synthesis, the ODCs of a node in a logic circuit
are defined as the set of input values for which the primary outputs of the circuit
remain insensitive to the node’s output. These input combinations can then be used
to simplify the node because they do not affect the primary outputs of the circuit.

Applying this concept to QCC, finding the ODCs at an output of the approximate
circuit (which is an internal signal in the QCC) provides the set of primary input
values for which Q remains insensitive and hence do not violate the quality
constraints. These inputs are referred to as approximation don’t cares (ADCs), an
entirely new class of don’t care conditions. The ADCs thus obtained are used to
simplify the circuit by specifying them as external don’t cares (EXDCs) to the
corresponding output. We know that EXDCs of an output in a circuit are the set
of primary input combinations for which that primary output is a don’t care. In
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this case, if the approximate circuit block is considered in isolation, the ADCs
for a given bit of Oapprox can be interpreted as the external don’t cares for that
output. Therefore, by setting these input combinations (ADCs) as EXDCs of an
output in the approximate circuit, the framework can legally simplify or (in this
context) approximate the cone of logic generating that output by using standard
don’t care based synthesis techniques. This process is iterated for all output bits of
the circuit and after each iteration, the QCC is updated with the latest available
approximate circuit. Doing so ensures that the approximations performed never
violate the specified constraints. Moreover, the intermediate circuit produced after
each iteration is legal and synthesis can be terminated at any point to yield a valid
approximate circuit.

6.3.1.2 Approximate Sequential Circuits

We now describe ASLAN, a systematic framework which extends approximate
logic synthesis into the realm of sequential circuits. The need for approximating
sequential circuits arises from the fact that, in general, most designers are not
directly concerned with quality at the output of a combinational circuit block at
the end of every cycle; rather, output quality is naturally specified at a coarser
granularity, i.e., after several cycles of a sequential computation. Thus approximate
sequential synthesis frameworks relieve designers from the burden of apportioning
the error resilience to each individual combinational block in the design. Approx-
imating sequential circuits is even more challenging as it requires modeling of
how “errors” due to approximations are generated and propagated in each cycle
of computation. Due to the cyclic nature of sequential circuits, errors may get re-
circulated through the approximate circuit before the outputs are generated. From a
different perspective, considering the sequential nature of circuits leads to better
opportunities for approximation since different cycles or circuit blocks may not
have the same significance towards the output. This spatio-temporal disparity can
be exploited to approximate the circuit more aggressively in less significant blocks
or cycles of operation.

Sequential Quality Constraint Circuit Inspired from SALSA, ASLAN formu-
lates the problem of sequential logic approximation by constructing a sequential
quality constraint circuit (SQCC), as shown in Fig. 6.5, that characterizes the impact
of approximations on the primary outputs of the sequential circuit (generated after
several cycles). SQCC is a virtual circuit composed of: (i) the original sequential
circuit, (ii) the approximate sequential circuit, and (iii) the quality evaluation
circuit (QEC). The inputs to the SQCC are the primary inputs of the circuit to
be approximated. The primary outputs and state registers of both the circuits are
provided as inputs to the QEC, which evaluates the quality constraints and generates
two bits viz. quality (Q) and quality valid (V ). QEC monitors the state registers
of the approximate and original circuits, and sets the valid output V when the
approximate circuit output is ready for quality evaluation. QEC then compares the
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outputs of the approximate and the original circuit, and sets the quality output Q
if the quality constraint is satisfied. The QEC is similar to a test bench used to
verify the functionality of a sequential circuit with respect to golden results; in this
case, the golden results are provided by the original circuit, and exact equivalence
is relaxed with the quality constraint.

Formal Verification of Quality ASLAN ensures the quality constraints on the
approximate circuit by formulating it as a sequential model checking problem on
the SQCC. The following safety and liveness properties [4, 17] have to be satisfied
for a valid approximate circuit:

1. �(V → Q), i.e., in all possible states of the SQCC, if V is true, then Q should be
true. This ensures that the approximate circuit satisfies the quality bound when
both the original and approximate circuits produce their outputs.

2. ♦(V ), i.e., V eventually becomes true along all possible paths through the state
space of the SQCC. This property states that the original and approximate circuits
should eventually produce their respective outputs.

ASLAN employs bounded model checking techniques to guarantee that the
safety and liveness properties described above are preserved during synthesis.

Quality Constrained Approximation The SQCC provides ASLAN a formal
method to check if the approximations introduced meet the desired quality. Given
the SQCC, ASLAN adopts an iterative approach to approximate the circuit. First, it
identifies combinational blocks such as arithmetic components (adders, multipliers,
etc.) within the sequential circuit that are amenable to approximation. Having iden-
tified such candidates for approximation, ASLAN utilizes existing combinational
approximate design techniques to generate local quality v.s. energy (Q−E) graphs
for each candidate. The candidates are then approximated based on a gradient
descent approach over the local Q−E graphs and the SQCC formulation is utilized
to verify that the global quality constraint is satisfied. The process is repeated until
the circuit cannot be approximated any further without violating quality.
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Thus functional approximation methodologies enable automatic design of
approximate combinational and sequential circuits.

6.3.2 Timing Approximation

In timing approximation, the circuit is operated at an overscaled operating condition.
For example, consider voltage overscaling [8], where the operating voltage is
lowered without correspondingly decreasing the clock frequency. The lower voltage
results in reduced energy consumption. However, the critical paths may exceed the
clock period, resulting in timing errors at the circuit outputs. There are two key
challenges that need to be addressed in overscaling based approximation. First,
in most circuits, the longest paths naturally tend to lead to the most-significant
bits of the output. Therefore, the errors that result from overscaling are of very
large magnitude, resulting in an unfavorable quality-efficiency trade-off. Second, in
timing-optimized circuits, the path-delay distribution is such that a large fraction of
paths in the circuit are near-critical. This phenomenon, commonly referred as the
path wall, results in a large number of timing errors even when the circuit is slightly
overscaled. Therefore, the key challenge to timing approximation is to shape the
path-delay distribution of circuits such that it ensures a more graceful degradation
in quality under overscaled operation.

To this end, we present a synthesis methodology, Relax-and-Retime, which
utilizes retiming to reshape the path-delay distribution of the circuit, achieving a
more favorable energy vs. accuracy trade-off. Figure 6.6 illustrates this concept
with an example circuit optimized for performance with a clock period of 4d. The
circuit has 3 logic cones X, Y , Z, containing paths Px , Py , and Pz (Px � Py ,
Pz) with delays of 4d, 2d, and 4d, respectively. As shown in Fig. 6.6, it contains
a significant number of paths that are critical (Px + Pz) and hence even marginal
voltage overscaling leads to excessive errors. After retiming (e.g., moving FF2
forward by a delay d), the relaxed circuit possibly incurs timing errors at overscaled
voltages when operated at 4d. However, since the logic cone X has relatively fewer
paths, the path wall is shifted to a lower delay (3d due to logic cones Y and Z)
compared to the original circuit, thereby allowing additional voltage overscaling.

Akin to functional approximation methods, Relax-and-Retime constructs a
favorable path-delay distribution through retiming by mapping it to a classical
minimum period retiming problem, allowing the reuse of existing synthesis tools
for this purpose. The minimum period retiming algorithm is constrained by the
longest path(s) in the circuit and hence does not directly target the paths with delay
less than the critical delay. Relax-and-Retime relaxes this timing constraint in the
circuit by eliminating selected paths that are bottlenecks to retiming. This presents
the retiming tool with a relaxed version of the original problem, often providing new
opportunities for retiming.

The key challenge lies in determining which paths to relax. Enumerating all
bottleneck paths and setting them as false is infeasible in large designs. Relax-
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Fig. 6.6 Relax-and-Retime: approach

and-Retime addresses this issue by considering gates instead of paths. It identifies
specific gates in the circuit that are bottlenecks to retiming and ignores all paths
through them to relax the retiming problem. Although, this leads to a coarser
selection of paths, Relax-and-Retime empirically demonstrates that relaxing at the
granularity of gates is sufficient to yield significant energy benefits. To select which
gates to relax in the circuit, various heuristics such as its switching activity and the
slack it generates when relaxed, are utilized.

In summary, by mapping the problem of approximate circuit synthesis into
a traditional logic synthesis problem and using formal methods to characterize
the impact of approximations on the circuit’s output quality, approximate cir-
cuit synthesis methodologies enable automatic design of “correct-by-construction”
approximate versions of any given circuit for any desired quality constraint.

6.4 Quality Configurable Circuits

One of the key limitations of approximate circuits is that the degree of approxima-
tion is hardwired into the circuit implementation. However, in many applications,
the degree of resilience often varies across computations depending on the applica-
tion context or the dataset being processed [1–3]. For instance, consider the JPEG
image compression application, shown in Fig. 6.7. In this example, each 8 × 8
block of image pixels is transformed to its frequency domain representation using
two-dimensional discrete cosine transform (DCT). It is well known that the JPEG
application output is most sensitive to the DC component at the top-left corner of the
image compared to the other high frequency components. Now, if the computations
associated with each component are mapped to the same underlying hardware,
then it is essential to operate the hardware with different accuracies based on the
significance of each component towards the eventual application output. In such
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Fig. 6.7 Example JPEG
compression application for
quality configurable circuits

scenarios, it is desirable to design a variant of approximate circuits, referred to as
quality configurable circuits, wherein the circuits have the ability to reconfigure
their accuracy at runtime. Quality configurable circuits typically contain additional
inputs that capture the current quality requirement and the circuits are equipped
with the ability to dynamically modulate their accuracy and energy consumption
accordingly. The quality constraint for these circuits consists of a series of quality
levels that are desired during operation.

In this section, we describe the various design methodologies for automatic
synthesis of quality configurable circuits. These methodologies focus on scaling
the energy consumed by the circuit when the quality requirements are modulated at
runtime.

6.4.1 Quality Configurability Through Variable Latency

The first methodology, Substitute-and-Simplify (SASIMI) [29], achieves quality
configurable execution through variable latency operation. We illustrate the design
of quality configurable circuits using Fig. 6.8, where the circuit operates in two
quality modes—the accurate mode and the approximate mode. First, SASIMI
introduces approximations in the circuit by taking advantage of the correlation
(or similarity) that exist between nodes in any circuit. The idea is to identify
near-identical signal pairs, or signal pairs that assume the same value with high
probability, and substitute one for the other. For example, in Fig. 6.8, the target
signal (T S) is replaced with the substitute signal (SS). These substitutions, if
performed judiciously, improve power consumption, as the logic in the transitive
fan-in and fan-out of T S can be downsized owing to the timing slack introduced.
We note that, if the circuit were to operate only in the approximate mode, then the
logic generating T S can be eliminated, saving even more power.

To enable accurate mode of operation, SASIMI operates the circuit with variable
latency and recovers from errors due to approximations. To this end, SASIMI
introduces logic to monitor the difference between T S and SS. In the accurate
mode, the circuit operates in a single cycle if both T S and SS take the same
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Fig. 6.8 Quality configurable circuit design using SASIMI

value. Otherwise, an additional clock cycle is utilized to re-compute the logic in
the transitive fan-out of SS, thereby correcting the error. In the approximate mode,
since the error caused by the substitution is tolerable, the difference between T S

and SS is ignored and the circuit always operates in a single cycle.
In a more general scenario, where more than two quality levels are desired,

the circuit recovers from a subset of substitutions that are intolerable for the
desired quality level. To this end, SASIMI introduces a quality selection logic that
utilizes the difference from all substitutions along with the input quality (Q) bits to
determine the need for an additional clock cycle. Hence, starting with single cycle
operation, which results in the lowest energy and quality, the quality configurable
circuit progressively recovers from more and more errors (due to substitutions) as
the quality constraints are tightened. Thus quality configurable execution is achieved
using SASIMI.

6.4.2 Quality Configurability through Logic Isolation

A key limitation of achieving quality configurability through variable latency
operation is that it impacts the interface timing behavior of the circuit, i.e., the
resultant quality configurable circuit takes a variable number of execution cycles
across inputs, even for a single quality level. Therefore, it is challenging to integrate
this circuit as part of a larger system. Quality configurability through logic isolation
addresses this limitation by spatially deactivating portions of logic from the circuit
based on the desired quality level [10]. Figure 6.9 illustrates this concept in detail.
The shaded logic portions in the circuit are identified as candidates for isolation,
and the circuit is augmented with logic that suppresses them from being evaluated
while forcing their outputs to predefined values. During circuit operation, the quality
control unit interprets the target quality specifications, and activates a subset of
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these logic islands, while isolating the remaining islands. Note that when the
circuit operates in accurate mode, all the logic islands are activated. As the quality
constraints are progressively relaxed, increasing number of islands are isolated from
the circuit. Thus, quality configurable operation is achieved at runtime.

Logic islands can be isolated in several ways. The simplest approach, operand
isolation, uses latches or AND/OR gates at the inputs of the island to prevent
switching activity within it. Similarly, muxes are inserted at the island outputs
to force them to fixed logic values. An alternative approach is to power-gate the
island by inserting isolation cells at the island outputs, and employing power gating
transistors to cut off both dynamic power and leakage.

The challenge then boils down to identifying the right portions of logic to isolate
for a given quality level. Clearly, considering all possible subsets of gates for
isolation is not scalable. Therefore, this search space is explored in a structured
manner by dividing the circuit into fan-out free cones, and using heuristics to
pick the best candidate for isolation. An interesting phenomenon inherent to logic
isolation based approximation is that two or more logic islands may mutually
compensate their errors when isolated simultaneously, i.e., the total error at the
circuit output decreases as a result of isolating both logic portions compared to
isolating any one of them. This provides further room to approximate the circuit,
leading to superior energy benefits for a given quality.

6.4.3 Quality Configurability through Clock Overgating

Both the variable latency and logic isolation methodologies focused on scaling the
energy consumed by the logic when the quality constraints are relaxed. Further
benefits can be achieved if the energy consumed in the clock network can also
be reduced under approximate operation. This is achieved through an approach
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called clock overgating [13], illustrated in Fig. 6.10, which extends the concept of
clock gating to quality configurable circuit designs. Clock gating is one of the most
widely adopted low-power techniques, in which clock signals to sequential elements
(flip-flops or latches) in the circuit are suppressed to reduce power, provided that
doing so preserves the exact functionality of the circuit. Clock overgating extends
this concept to gate the clock signal to selected sequential elements, even during
execution cycles when the circuit functionality is sensitive to their state. This lowers
the power consumed in the clock tree, the sequential elements, and their fan-out
logic cone, while introducing local errors in the circuit due to erroneous states of
the constituent sequential elements. These local errors may eventually propagate to
the circuit outputs, potentially degrading the output quality.

Clock overgating has the following desirable properties: (i) it is easily recon-
figurable, i.e., the overgating signal to each sequential element can be regulated
at runtime in a fine-grained manner to achieve different quality levels; (ii) it also
preserves the structure of the circuit and hence minimally intrusive; and (iii) it
exploits the existing support of clock gating in commercial off-the-shelf synthesis
tools.

Given a description of a circuit, an input test bench, and a target quality
constraint, a systematic methodology is utilized to identify where (in which FFs)
and when (during which cycles) to perform overgating such that the energy benefits
are maximized for a given quality level. The search space for overgating, defined
by all possible FFs and all possible execution cycles, is extremely large (e.g.,
2M.N possible configurations for a circuit with M FFs that operate for N cycles).
Naturally, a brute force search of all possible overgating configurations is infeasible
for practical designs.

To navigate this large search space efficiently, clock overgating introduces two
different heuristics that significantly reduce the possible overgating configurations.
The first strategy utilizes internal signals already present in the circuit, e.g.,
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outputs of FFs and their complements, to trigger clock overgating, thereby pruning
the search space while also minimizing the logic overheads for overgating. The
second heuristic groups FFs into clock overgating islands based on their functional
relationship and their impact on overall application output. FFs in each overgating
island are constrained to have the same overgating condition, greatly reducing
the search space without drastically affecting the energy savings from overgating.
Despite reducing the design space using these heuristics, exploring all possible
configurations becomes computationally expensive for larger circuits. Therefore,
clock overgating iteratively performs a gradient descent search to identify the set of
overgating island-trigger signal combinations that maximize the improvements in
energy for a target quality level.

6.5 Summary

Approximate circuits lie at the core of many approximate systems. Hence designing
efficient approximate circuits is key to fully leverage the benefits of approximate
computing. Approximate circuits realize a slightly different functionality from
the given specifications, but they do so with disproportionately reduced hardware
complexity. Approximate circuits are typically specified in conjunction with a
quality metric that constrains the degree of approximation that can be introduced
in the implementation. In this chapter, we outlined the key ideas behind systematic
frameworks that automatically synthesize approximate versions of any given circuit
and for any desired quality metric. We also described how those frameworks can
be leveraged in the context of quality configurable circuits, which are provisioned
to modulate their accuracy and energy at runtime. We believe approximate circuit
synthesis frameworks, such as those described in this chapter, are key to the
mainstream adoption of approximate computing.

References

1. Chippa V, Raghunathan A, Roy K, Chakradhar S (2011) Dynamic effort scaling: managing
the quality-efficiency tradeoff. In: 2011 48th ACM/EDAC/IEEE design automation conference
(DAC), pp 603–608

2. Chippa V, Chakradhar S, Roy K, Raghunathan A (2013) Analysis and characterization of
inherent application resilience for approximate computing. In: 2013 50th ACM/EDAC/IEEE
design automation conference (DAC), pp 1–9

3. Chippa V, Venkataramani S, Chakradhar S, Roy K, Raghunathan A (2013) Approximate
computing: an integrated hardware approach. In: 2013 Asilomar conference on signals, systems
and computers, pp 111–117. https://doi.org/10.1109/ACSSC.2013.6810241

4. Clarke E, Grumberg O, Peled D (1999) Model checking. MIT Press, Cambridge
5. Gupta V, Mohapatra D, Park SP, Raghunathan A, Roy K (2011) Impact: imprecise adders

for low-power approximate computing. In: 2011 international symposium on low power
electronics and design (ISLPED), pp 409–414. https://doi.org/10.1109/ISLPED.2011.5993675

https://doi.org/10.1109/ACSSC.2013.6810241
https://doi.org/10.1109/ISLPED.2011.5993675


6 Automatic Synthesis Techniques for Approximate Circuits 139

6. Hanif MA, Hafiz R, Hasan O, Shafique M (2017) Quad: design and analysis of quality-area
optimal low-latency approximate adders. In: 2017 54th ACM/EDAC/IEEE design automation
conference (DAC), pp 1–6. https://doi.org/10.1145/3061639.3062306

7. Hashemi S, Bahar RI, Reda S (2015) Drum: a dynamic range unbiased multiplier for
approximate applications. In: 2015 IEEE/ACM international conference on computer-aided
design (ICCAD), pp 418–425. https://doi.org/10.1109/ICCAD.2015.7372600

8. Hegde R, Shanbhag N (1999) Energy-efficient signal processing via algorithmic noise-
tolerance. In: 1999 international symposium on low power electronics and design, 1999.
Proceedings, pp 30–35

9. Imani M, Peroni D, Rosing T (2017) Cfpu: configurable floating point multiplier for energy-
efficient computing. In: 2017 54th ACM/EDAC/IEEE design automation conference (DAC),
pp 1–6. https://doi.org/10.1145/3061639.3062210

10. Jain S, Venkataramani S, Raghunathan A (2016) Approximation through logic isolation for the
design of quality configurable circuits. In: 2016 design, automation test in Europe conference
exhibition (DATE), pp 612–617

11. Jiang H, Han J, Qiao F, Lombardi F (2016) Approximate radix-8 booth multipliers for low-
power and high-performance operation. IEEE Trans Comput 65(8):2638–2644. https://doi.org/
10.1109/TC.2015.2493547

12. Kahng A, Kang S (2012) Accuracy-configurable adder for approximate arithmetic designs. In:
2012 49th ACM/EDAC/IEEE design automation conference (DAC), pp 820–825

13. Kim Y, Venkataramani S, Roy K, Raghunathan A (2016) Designing approximate circuits using
clock overgating. In: 2016 53nd ACM/EDAC/IEEE design automation conference (DAC), pp
1–6. https://doi.org/10.1145/2897937.2898005

14. Krause PK, Polian I (2011) Adaptive voltage over-scaling for resilient applications. In: Proc.
DATE, pp 1–6

15. Kulkarni P, Gupta P, Ercegovac M (2011) Trading accuracy for power with an underdesigned
multiplier architecture. In: 2011 24th international conference on VLSI design (VLSI design),
pp 346–351. https://doi.org/10.1109/VLSID.2011.51

16. Lingamneni A, Enz C, Palem K, Piguet C (2013) Synthesizing parsimonious inexact circuits
through probabilistic design techniques. ACM Trans Embed Comput Syst 12(2s):93:1–93:26.
https://doi.org/10.1145/2465787.2465795

17. Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems. Springer,
New York

18. Miao J, He K, Gerstlauer A, Orshansky M (2012) Modeling and synthesis of quality-energy
optimal approximate adders. In: 2012 IEEE/ACM international conference on computer-aided
design (ICCAD), pp 728–735

19. Mohapatra D, Chippa V, Raghunathan A, Roy K (2011) Design of voltage-scalable meta-
functions for approximate computing. In: Design, automation test in Europe conference
exhibition (DATE), 2011, pp 1–6. https://doi.org/10.1109/DATE.2011.5763154

20. Olivieri N, Pappalardo F, Smorfa S, Visalli G (2007) Analysis and implementation of a novel
leading zero anticipation algorithm for floating-point arithmetic units. IEEE Trans Circuits Syst
II: Express Briefs 54(8):685–689. https://doi.org/10.1109/TCSII.2007.896937

21. Qian L, Wang C, Liu W, Lombardi F, Han J (2016) Design and evaluation of an approximate
Wallace-Booth multiplier. In: 2016 IEEE international symposium on circuits and systems
(ISCAS), pp 1974–1977. https://doi.org/10.1109/ISCAS.2016.7538962

22. Ranjan A, Raha A, Venkataramani S, Roy K, Raghunathan A (2014) Aslan: synthesis
of approximate sequential circuits. In: 2014 design, automation test in Europe conference
exhibition (DATE), pp 1–6. https://doi.org/10.7873/DATE.2014.377

23. Shafique M, Ahmad W, Hafiz R, Henkel J (2015) A low latency generic accuracy configurable
adder. In: 2015 52nd ACM/EDAC/IEEE design automation conference (DAC), pp 1–6. https://
doi.org/10.1145/2744769.2744778

24. Shin D, Gupta SK (2008) A re-design technique for datapath modules in error tolerant
applications. In: 2008 17th Asian test symposium, pp 431–437. https://doi.org/10.1109/ATS.
2008.75

https://doi.org/10.1145/3061639.3062306
https://doi.org/10.1109/ICCAD.2015.7372600
https://doi.org/10.1145/3061639.3062210
https://doi.org/10.1109/TC.2015.2493547
https://doi.org/10.1109/TC.2015.2493547
https://doi.org/10.1145/2897937.2898005
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1145/2465787.2465795
https://doi.org/10.1109/DATE.2011.5763154
https://doi.org/10.1109/TCSII.2007.896937
https://doi.org/10.1109/ISCAS.2016.7538962
https://doi.org/10.7873/DATE.2014.377
https://doi.org/10.1145/2744769.2744778
https://doi.org/10.1145/2744769.2744778
https://doi.org/10.1109/ATS.2008.75
https://doi.org/10.1109/ATS.2008.75


140 A. Ranjan et al.

25. Shin D, Gupta S (2010) Approximate logic synthesis for error tolerant applications. In: Design,
automation test in Europe conference exhibition (DATE), 2010, pp 957–960. https://doi.org/10.
1109/DATE.2010.5456913

26. Shin D, Gupta SK (2011) A new circuit simplification method for error tolerant applications.
In: 2011 design, automation test in Europe, pp 1–6. https://doi.org/10.1109/DATE.2011.
5763248

27. Venkataramani S, Sabne A, Kozhikkottu V, Roy K, Raghunathan A (2012) Salsa: systematic
logic synthesis of approximate circuits. In: Proceedings of the 49th annual design automation
conference. ACM, New York, pp 796–801. https://doi.org/10.1145/2228360.2228504

28. Venkataramani S, Chippa V, Chakradhar S, Roy K, Raghunathan A (2013) Quality pro-
grammable vector processors for approximate computing. In: Proceedings of the 46th annual
IEEE/ACM international symposium on microarchitecture. ACM, New York, pp 1–12. https://
doi.org/10.1145/2540708.2540710

29. Venkataramani S, Roy K, Raghunathan A (2013) Substitute-and-simplify: a unified design
paradigm for approximate and quality configurable circuits. In: Design, automation test in
Europe conference exhibition (DATE), 2013, pp 1367–1372. https://doi.org/10.7873/DATE.
2013.280

30. Venkataramani S, Ranjan A, Roy K, Raghunathan A (2014) Axnn: energy-efficient neuromor-
phic systems using approximate computing. In: 2014 IEEE/ACM international symposium
on low power electronics and design (ISLPED), pp 27–32. https://doi.org/10.1145/2627369.
2627613

31. Venkataramani S, Chakradhar S, Roy K, Raghunathan A (2015) Approximate computing and
the quest for computing efficiency. In: Proceedings of the 52nd annual design automation
conference. ACM, New York, pp 120:1–120:6. https://doi.org/10.1145/2744769.2751163

32. Zhu N, Goh WL, Zhang W, Yeo KS, Kong ZH (2010) Design of low-power high-speed
truncation-error-tolerant adder and its application in digital signal processing. IEEE Trans Very
Large Scale Integr Syst 18(8):1225–1229. https://doi.org/10.1109/TVLSI.2009.2020591

https://doi.org/10.1109/DATE.2010.5456913
https://doi.org/10.1109/DATE.2010.5456913
https://doi.org/10.1109/DATE.2011.5763248
https://doi.org/10.1109/DATE.2011.5763248
https://doi.org/10.1145/2228360.2228504
https://doi.org/10.1145/2540708.2540710
https://doi.org/10.1145/2540708.2540710
https://doi.org/10.7873/DATE.2013.280
https://doi.org/10.7873/DATE.2013.280
https://doi.org/10.1145/2627369.2627613
https://doi.org/10.1145/2627369.2627613
https://doi.org/10.1145/2744769.2751163
https://doi.org/10.1109/TVLSI.2009.2020591

	6 Automatic Synthesis Techniques for Approximate Circuits
	6.1 Introduction
	6.2 Quality Metrics
	6.2.1 Metrics Constraining the Error Magnitude
	6.2.1.1 Maximum Error Magnitude
	6.2.1.2 Relative Error Magnitude
	6.2.1.3 Average Error Magnitude
	6.2.1.4 Mean Squared Error Magnitude
	6.2.1.5 Unidirectional Error Metrics

	6.2.2 Metrics Bounding the Error Frequency
	6.2.2.1 Error Probability
	6.2.2.2 Bit Error Probability

	6.2.3 Composite Metrics

	6.3 Approximate Circuits
	6.3.1 Functional Approximation
	6.3.1.1 Approximate Combinational Circuits
	6.3.1.2 Approximate Sequential Circuits

	6.3.2 Timing Approximation

	6.4 Quality Configurable Circuits
	6.4.1 Quality Configurability Through Variable Latency
	6.4.2 Quality Configurability through Logic Isolation
	6.4.3 Quality Configurability through Clock Overgating

	6.5 Summary
	References


