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Abstract. Monitoring the behavior of rotating blades is a critical pro-
cedure to ensure safety and proper performance of turbomachinery. For
a long time strain gages have been the only solution to measure blade
vibrations in a rotating scenario, but with the advances in software and
hardware over the last decades, the research on blade tip timing (BTT)
data analysis, a non-intrusive technique has gained momentum. A major
drawback comes with this approach: undersampling. Several methodolo-
gies can be found in the literature do deal with this undersampled signal
and this work presents a parametric study of the most recent type of
approach that has gained momentum in the BTT research: compressed
sensing (CS). The results show what are the best conditions to apply
CS on BTT data, in terms of probe placement, amount of sensors and
number of rotations.
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1 Introduction

Blades are a fundamental component in turbomachinery and they are often
subjected to induced vibrations. For a typical gas turbine, these vibrations are
originated through mainly four types of stresses [1], but the alternating stresses,
that are originated by forced response to excitations at multiples of the rotating
speed, are the most common cause of high cycle fatigue. These vibrations will
diminish the fatigue life and the performance of the blades, which can ultimately
lead to catastrophic results. Therefore, carrying on-line vibration monitoring is
an intrinsic duty when dealing with turbomachinery.

For a long time strain gages have been the only solution to measuring flexible
blade vibrations in rotating machinery. However, the installation of such sensors
consists in a very tedious, laborious, costly and time consuming task. This is
due specially to the number of blades per stage of the turbine and the require-
ment of having telemetry or slip rings to acquire the signals. On top of these
disadvantages, the sensors can alter the blade dynamics and, more importantly,
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this monitoring system tends to not be very durable due to the harsh working
conditions [2]. In light of these issues, the development of non-intrusive vibration
measuring system for rotating blades was boosted.

Describing it in a simple manner, the Blade Tip-Timing (BTT) methodology
consists in monitoring blade vibrations by measuring passing times of the blades’
tip with static sensors, usually optic, located at the turbine casing. Since the
blades are vibrating, the deformation induced will alter these passing times,
known as arrival times, when compared with the arrival times of the blades in
a non-vibrating referential. This referential can be obtained by placing a sensor
on the shaft to measure the actual rotating speed, and by knowing the angular
position of the blades, the non-vibrating signal can be generated. This sensor is
known as the Once Per Revolution (OPR) sensor.

Despite being a simplistic and straightforward methodology with several
advantages over the strain gage measuring procedure, the technique suffers from
bad sampling, since the sampling frequency is directly related to the rotating
speed and the number of sensors used. To ensure a sampling frequency that
attends to the Nyquist criterion, the quantity of sensors involved can be quite
substantial. As a result, a significant effort in the BTT scope was devoted to
the development and application of techniques capable of identifying vibration
properties from a under sampled signal.

Recently, Compressed Sensing (CS), a digital signal reconstruction technique,
has gained momentum in the field of BTT data analysis. The idea behind the
theory of Compressed Sensing consists in a search for the reconstruction of sparse
signals with a number of samples that is way lower than the number of sam-
ples required by the classic methodologies that need to attend to the Nyquist
criterion. This methodology is being explored for some time, especially in the
field of image compression, in which the image is recovered directly by a com-
pressed representation, instead of capturing the whole image to then compress
it and decompress it in a computer, eliminating an entire step and reducing the
amount of data that was needed to be stored. The pioneer work on this tech-
nique can be found in [3-5]. The motivation for utilizing this methodology on
the BTT scenario comes from the fact that if some criteria is met, that will be
shown in the next section, it is possible to perfectly reconstruct a signal with a
sampling frequency lower than the Nyquist rate.

The goal of this present work is to produce a parametric analysis of a CS
implementation on BTT data. To achieve this goal, the frequency spectrum of a
simulated vibration signal, obtained by BTT, is reconstructed in the frequency
domain by the CS methodology, and several parameters of the BTT system are
altered so that it is possible to identify its effects on the frequency spectrum
obtained.

2 BTT Data

A BTT measuring system scheme is presented in Fig. 1 and to extract the infor-
mation of blade tip deflection, it is necessary to first generate a virtual signal,
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based on the OPR sensor, that corresponds to the expected passing times of the
blades in a non-vibrating referential. The non-vibrating time sequence, t(i,n, k),

can be described as
o; +2mn — 0y

1

5 (1)
where «; is the angular position of the ith probe, 8y is the initial angular position
of the kth blade, n is the rotation number and {2 is the constant rotating speed
of the assembly, in Hz.

t(i,n, k) =

/—Iﬁl - Probe
% P ‘:l\/u'mal Probe

Fig. 1. Representation of the BTT measuring system.

Due to the fact that the blades are vibrating, the real measured time sequence
will be distorted by the angular deflection of the blade’s tip, §(%, n, k), altering
the real timing sequence t(i,n, k) to

a; 4 2mn — 0 — 6(i,n, k)

t(i,n, k) = 570 . (2)

Subtracting Egs. (2) from (1) and knowing the distance between the rotating
center and the tip of the blade, R, the linear displacement can be obtained by

d(i,n, k) = 6(i,n, k)R = 2r2R[t(i,n, k) — (i,n, k)| = 2rQ2RAt.  (3)

With the obtained d signal, the vibration amplitude of each blade, measured
at each sensor, in each rotation is extracted, but the sampling rate of this signal
is directly related to the amount of probes used, and the rotating speed of the
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assembly. To exemplify the typical sampling obtained with a BTT system, Fig. 2
presents a 30 Hz vibration signal on a 10 Hz rotating speed assembly and it shows
the collection of samples obtained by four probes. This case shows an Engine
Order (EO) excitation, since the vibrating frequency is an integer multiple of
the rotating frequency. The bad sampling can clearly be seen due to the fact
that each probe needs to wait three entire periods (3 EO) of the vibrating signal
to collect new information, for each blade.
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Fig. 2. Example of a BTT signal sampled with 4 probes.

Several techniques are being utilized and explored in the context of BTT
undersampled data. A new approach that has gained track in recent years is the
Compressed Sensing methodology.

3 CS Theory

The CS methodology consists in recovering a signal, sparse in some domain, with
fewer samples than the classic methodologies that are based on the Shanon-
Nyquist criterion. The motivation for this approach is to recover the signal
directly from compressed samples (lower sampling rate) instead of firstly sam-
pling the signal at a high rate to then compress it, eliminating a stage of com-
pression and decompression [6]. This problem can be formulated in mathemati-
cal form through an optimization task, searching for the sparsest solution to the
problem:

m)in Ix|le, st. Ax=hb, (4)
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where x is the sparse signal with N samples, sampled above the Nyquist rate; £,
is the “0-norm”, a quasi-norm that represents the amount of non zero elements
in a vector, indicating the quantity k£ of sparse elements. The vector b is the M
observations vector, where M << N, while A is the MxN sensing matrix.

The sensing matrix A is usually formed by the multiplication of two matrices,
® and ¥~1. The matrix ® consists in the sensing part of the matrix, i.e., the
relationship between the selected samples and the reconstructed signal, while
W1 consists in the sparse basis of the signal. In most cases the signal in time
is not sparse, so the matrix ¥~ is usually the inverse Fourier basis, so that the
signal in time can be represented in the sparse frequency domain.

Despite being a straightforward and well defined approach, finding the spars-
est solution is a non trivial task, in fact it is known as a NP-hard problem, being
computationally unsolvable even for modest values of k, M and N. Fortunately,
[3] proposed a substitution of ¢y by the norm ¢;, defined as

N-1
Ixlli =Y lz(n)l, (5)
n=0

making the optimization problem convex and linear. Despite not being the same
exact solution to the £y problem, a graphic representation of different norms in
IR2 shows that the closest solution to the sparsest search, is the ¢; norm, as seen
in Fig. 3. The optimization task of Eq. (4) with the norm ¢; instead of £y is called
Basis Pursuit (BP).
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Fig. 3. Approximation of a point in IR? by a one-dimensional subspace for £, norms,
with p =1, 2, co and % Source:[6].

To ensure unique solution to the BP problem, the matrix A needs to respect
the Restricted Isometry Property (RIP) described in [7]. This property basically
requires that the columns of A to be quasi-orthonormal. Another way of ensuring
the unique solution is to have minimal coherence between the matrices ® and
P~ Since A = ®¥ ! the coherence is defined as

[(ai, ;)]
A)= max ——2—— 6
HA) = 28N Tailallosll ©

where a; ; are the column vectors of A.
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Usually random ® matrices with a fixed ¥~ basis attend to this property
with a high probability, and to exemplify the potential of this approach, a sig-
nal composed by three sinusoids of frequencies 50, 75 and 100 Hz, with unitary
amplitudes, is reconstructed with this technique. The original time signal to be
reconstructed, x(t), is 512 samples long with a sampling frequency higher than
the Nyquist rate, while the observed signal, y(t), is made of 128 random samples.
The results are shown in Fig.4 and it can be seen perfect reconstruction of the

signal.
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Fig. 4. Example of CS reconstruction with random sensing matrix.

4 Applying CS on BTT Data

As presented before, the CS consists in retrieving a sparse signal with N samples
trough an optimization task based only on M observations, usually M<<N. To
reproduce this conditions in the BTT context, the number N of samples of the
sparse vector, in this case the frequency spectrum sampled over the Nyquist
rate, is produced trough placing a number L of imaginary probes equispaced
around the casing and rotating the blade assembly for N, revolutions, resulting
in N = LN,.. The real measurements made are obtained trough the real probes,
positioned in any of the possible virtual positions L. This results in a real amount
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of data M = [N,., where [ is the number of real probes placed around the casing.
From this, observations it is easy to see that the ratio % is always defined by the
ratio of the number of real sensors in respect with the number of virtual sensors
(%) The idea behind this formulation is to retrieve a frequency spectrum of a
scenario of L probes, that attends to the Nyquist sampling rate, with only [ real
probes being utilized.

In this context, the matrix ¥~ will be the inverse Fourier basis NxN, since
the signal is not sparse in the time domain, but it is in the frequency domain.
With respect to the sensing matrix ®, it is constructed as

: (7)

that is determined by the sampling sequence of the probes throughout the N,
revolutions. Each row contains a unitary value on a single column j = % +nL,
where «; is the angular position of the ith probe and n is the current rotation
number.
With these matrices assembled, it is seen that the observations made by [
probes are:
y=®¥ X, (8)

where X is the FFT of length N of the signal sampled by the L imaginary probes,
which will be recovered through the BP algorithm.

As described in the last section, the matrix A = ®¥ 1 needs to comply with
the RIP condition, and, as noted before, it complies, with high probability, if the
matrix is random. From the direct formulation of the CS on BTT data, it is seen
that this matrix is not random, since the real probes are fixed throughout the
revolutions. To deal with this problem [8] proposes the realization of a orthog-
onalization preprocessing procedure, in which the matrix A is reformulated as
a orthogonal basis for the range of AT, as in Q = [orth(AT)]T. The procedure
results in

QA'y = QATAX, 9)

where T denotes the pseudoinverse. From [8] it is also described that QATA = Q
and renaming z = QA'y results in the formulated BP problem:

min [X[lr, st QX =z (10)

It is worth noticing that the optimization task can be quite demanding,
computationally, since the amount of variables N are directly related to the
amount of virtual probes L and the number of revolutions N,. In some cases it
can easily be in the range of 103-10* variables.
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5 Results

To make the analysis, two scenarios were created, with signals in the form of
Y a(i)sin(27 f (i) % + ¢(i)), whose parameters are described in the Table 1.
Scenario 1 consists of a signal with three close frequencies, all asynchronous
(not integer multiples of the rotating speed 2). The reconstruction of the signal
is made from cases of two to six probes. For scenario 2 a synchronous frequency
of 75 Hz replaces the 88 Hz frequency, so that it is possible to verify a hybrid
vibration case and in this situation only five and six probes were utilized, due

to the results seen in scenario 1.

Table 1. Simulated signals.

Scenario | a(i) f(i) [Hz] | (i) rad| € [Hz] | # Probes
1 321||(888990| |[0— 2n] 25 2-6
2 321| [758990 [0—27] |25 5-6

For both cases evaluated, the number of virtual probes was fixed in L =10.
The rotating speed was also fixed at 25 Hz. This conditions implicate that the
signal to be reconstructed had a Fs = L{2 = 250 Hz sampling frequency, being
over the Nyquist rate for both scenarios. The parametric analysis is based on
the amount of sensors and the amount of revolutions utilized in the analysis.

Firstly, as pointed in Eq.(6), the coherence of Q should be closer to 0 to
ensure the RIP condition. With that in mind, the minimal coherence for all the
combinations of probes, from two probes up to six are calculated and shown in
Table 2, for L = 10 to 25 imaginary probes. It can be seen that increasing the
number of real probes elevates the incoherence in the matrix Q, but increasing
the amount of virtual probes and maintaining the number of real ones results in
lower incoherence. The amount of possible probe arrangements also increase with
a higher number of virtual probes as it is given by the total (f ) combinations of
probe placement.

Table 2. Minimal p(Q) for different amount of real and virtual probes.

Probes w(Q)
L=10/L=15|L=20 L=25
0.95 0.98 0.99 0.99
0.72 0.76 0.83 0.86
0.54 0.50 0.56 0.69
0.43 0.48 0.53 0.50
0.36 0.40 0.44 0.47

| O x| W N
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5.1 Scenario 1

Even though the phase of the signals is generated randomly, between 0 and 27
radians, the expected results throughout the course of 50 reconstructions with
the BP algorithm are expected to be the same. If they are different it means that
the proposed sensing matrix does not attend the RIP condition, resulting in a
poor recovery. Using two sensors resulted in extremely poor results, same as the
case of three probes, presented in the Fig.5, that was obtained with N, = 300
revolutions, resulting in 900 observations to reconstruct a 3000 samples long
signal. The probe positioning was p = [1 2 4], one of the optimal arrangements
that give minimal p(Q).

In the Fig.5 and for the others to follow, the criteria utilized to analyze
the results were the energy of the signal. Er stands for the total energy of the
signal, /¢ is the energy of the correct frequency components and Eg is the
real energy of the correctly sampled signal. The wanted results are those in

which the ratio g—; is 100%, meaning that all the energy of the reconstructed

signal is located only on the correct frequencies. The ratio % is also wanted
to be 100% meaning that the amount of energy in the reconstructed signal is
equal to the desired correctly sampled signal. It is obvious from Fig. 5 that three
probes are not enough to assure proper reconstruction, there are even cases that
the energy of the correct frequency components surpass the total energy. This
occurs due to the fact that the E; calculation is made as twice the energy of the
positive frequencies, which means that the situations that Ef > Er are those
that the reconstructed signal is complex, not having the symmetry property of
the frequency spectrum.
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Fig. 5. Ratio of signal energy for the reconstructed signal of scenario 1 using 3 probes
and 50 revolutions through 50 simulations.
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Seeing that three probes were insufficient for perfect reconstruction, the
amount of sensors was increased to four, in the locations p = [1 3 4 9] with
a N, = 50 revolutions. It can be seen from Fig.6 that the results are much
improved, but there are still cases of poor reconstruction. In an attempt to
improve this results the amount of revolutions was increased to NV,, = 300 result-
ing in 1200 observations to reconstruct a 3000 samples long signal. From Fig. 7
it is clear that augmenting the amount of data did not improve the results.
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Fig. 6. Ratio of signal energy for the reconstructed signal of scenario 1 using 4 probes
and 50 revolutions through 50 simulations.

Now, the number of probes was raised to five and the results from Fig.8,
with only N, = 50 revolutions and with the probes at p = [1 2 6 9 10], were
extremely satisfactory, showing that perfect reconstruction was achieved, since
through the 50 simulations the ratio was around 100%. The same can be said
by the results with six probes on Fig.9 with probes at p = [1 2 3 4 6 8], for
the same number of revolutions.

5.2 Scenario 2

Scenario 2 is expected to be more complicated, because of the presence of a
synchronous vibration in the signal. From the results of Scenario 1, utilizing less
then five probes is not recommended, since the perfect reconstruction was not
ensured.

From Fig. 10 it becomes clear that the introduction of the synchronous fre-
quency has a negative impact on the reconstruction of the frequency spectrum.
To elucidate an example of what is happening, Fig. 11 presents the reconstructed



BTT Data Analysis with CS 131

140 : : :
L
120 Er |-
] ER
100 TW‘V—-\Nm’\“
> .
2 g0t P
L
R
60 .
40 ]
20 : : :
0 10 20 30 40 50

Simulation Number

Fig. 7. Ratio of signal energy for the reconstructed signal of scenario 1 using 4 probes
and 300 revolutions through 50 simulations.
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Fig. 8. Ratio of signal energy for the reconstructed signal of scenario 1 using 5 probes
and 50 revolutions through 50 simulations.

frequency spectrum of the simulation 25 from Fig. 10. It can be seen that the syn-
chronous frequency started to replicate around multiples of the rotating speed, at
25 and 50 Hz, while the asynchronous frequencies of 89 and 90 Hz were perfectly

reconstructed.
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Fig. 9. Ratio of signal energy for the reconstructed signal of scenario 1 using 6 probes

and 50 revolutions through 50 simulations.
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Fig. 10. Ratio of signal energy for the reconstructed signal of scenario 2 using 5 probes

and 50 revolutions through 50 simulations.

Meanwhile, the same results were not observed on the six probes case of
Fig. 12, that was capable of performing in the same manner as in the asyn-
chronous case, whit perfect reconstruction throughout the test.
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Fig.11. Reconstructed frequency spectrum for simulation 25 of scenario 2 using 5

probes and 50 revolutions.
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Fig. 12. Ratio of signal energy for the reconstructed signal of scenario 2 using 6 probes
and 50 revolutions through 50 simulations.
6 Conclusions

This work proposed the evaluation of several conditions for the application of
Compressed Sensing (CS) on Blade Tip Timing (BTT) data. It was described
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both methodologies and how to produce the reconstruction of signals through
undersampled and non uniform data.

From the results of the present research, it was possible to conclude that the
CS has potential of performing well on BTT data. It was shown that some special
probe positioning impact in the results of the analysis and those are the ones that
indicate minimal coherence of the sensing matrix. Furthermore, it was shown
that for asynchronous vibrations, five probes are sufficient to ensure perfect
reconstruction of the signal generated by BTT sampling. For cases that include
synchronous vibrations, six probes were determined as a reliable proposition for
perfect recovery.

It is worth noticing that the high number of probes required to retrieve a
frequency spectrum of an asynchronous vibration signal is possibly related to
the amount of frequencies presented in the simulated signal and due to the fact
that increasing the amount of observations did not result in improvements on
the reconstruction, surprisingly.

Even though the predominant amplitude of vibration, in real cases, are iden-
tified as the result of EO excitations, it is still valid to pursue reconstruction of
multi frequency signals, because instabilities, that originates asynchronous exci-
tation, can still occur even when the dominant frequency of vibration has an EO
nature.

For future works it is interesting to investigate the ratio of real to virtual
probes%, for increased values L. It was shown that less incoherence comes with
higher L which will affect negatively on the reconstruction, but perhaps an opti-
mal ratio can be found while varying L.
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