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Abstract. The installation of micro hydroelectric power plants has recently been
growing in Brazil, where small hydraulic generators are combined with hydraulic
turbines. Some technical solutions require different runaway factors, from 1.2 up
to 3.0 times the synchronous speed of the generator, so that the mechanical
design of them must be reinforced or changed to support this critical dynamic
condition, affecting costs and reducing competitiveness. An effective technique
to control vibration is the use of simple devices called ‘dynamic vibration neu-
tralizers’. These devices can contain viscoelastic material to introduce high
mechanical impedance onto the system to reduce its vibration levels. There is a
special kind of neutralizer, called ‘angular viscoelastic dynamic neutralizer’
(angular VDN), which acts indirectly in slope degree of freedom controlling
flexural vibration. They have the predicted ability to control more than one single
mode once the device is assembled where the maximum slope happens. The aim
of the current work is to present a methodology to design angular VDNs and
validate it by using a simplified experimental rotor exploring two different
geometries. The results show that, if well-tuned, this kind of control is effective
not only for the frequency band of interest, but also over higher modes.

Keywords: Angular viscoelastic dynamic neutralizer
Flexural vibration control � Rotordynamics

1 Introduction

In order to make the most of the Brazilian hydraulic power capacity, the installation of
micro hydroelectric power plants (MHPs) has been growing year after year. In Brazil,
the plants with power capacity up to 5 MW are considered MHPs, using small
hydraulic generators combined with hydraulic turbines to generate this amount of
energy, where the turbine set depends on the fall height.
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The design of the hydraulic generator is intimately related to the type of turbine,
since it influences the generator runaway factor. Therefore, in applications concerning
Pelton and Francis turbines, it is a common practice to use a runaway factor up to 2.0
times the nominal speed of the generator. However, for Kaplan turbines, this runaway
factor usually grows from 2.3 up to 3.0, so that the mechanical design of the generator
must be reinforced to support this critical dynamic condition.

These generators should be small and low-priced, so their construction employs
roller bearings to support the rotor and turbine loads. So, if a generator is mechanically
designed to operate at a runaway factor 2.0, and then one wishes to use it in an appli-
cation with a higher runaway factor, it is necessary to modify the mechanical project by
increasing the diameters of the shaft, the bearings, or even changing the roller bearings
to hydrodynamic bearings, in order to comply with the API 541 vibration requirements.
All these modifications impact the generator costs, reducing competitiveness.

When it comes to flexural vibration control, there are some techniques consolidated
by the literature [1–7], most of them based on the addition of damping to the vibration
control system. Another effective technique consists of using simple and relatively low-
cost devices called ‘dynamic vibration neutralizers’ [8–13]. These devices can contain
viscoelastic material - instead of spring and dashpot - introducing high mechanical
impedance into the primary system (dynamic structures to be controlled), to reduce
vibration levels in a frequency band of interest. That is, the neutralizers add not only
damping, but they also introduce reaction forces into the primary system.

There is a special kind of neutralizer, called ‘angular viscoelastic dynamic neu-
tralizer’ (angular VDN), which acts indirectly on slope degree-of-freedom (DOF) - as
shown in Fig. 1 - controlling flexural vibration. It is attached near the bearings, where
one finds the maximum angular displacement for the shaft regarding its neutral axis.
Furthermore, the angular VDN has the predicted ability to control more than one single
mode, since, for a simply supported beam, regardless of the mode shape, the DOF slope
is never null close to the supports.

The aim of current study is to present a methodology to design angular VDNs – and
validate it using a simplified experimental rotor – by exploring two different geometries.
The studies and the results show that the auxiliary support has to be carefully designed in

Fig. 1. Slope degree-of-freedom in rotating systems.
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order to ensure the angular degree of freedom control, since the neutralizer motion could
be exposed, through this support, to the displacement and angular motion in all direc-
tions due to shaft whirling. The results show that, if well-tuned, this kind of control is
effective not only for the frequency band of interest, but also over higher modes.

2 Viscoelastic Material Model

Viscoelastic materials are widely used in vibration and noise control applications due to
their relative low cost and attractive physical properties: the dynamic behavior depends
on their complex elasticity moduli, which are frequency and temperature dependent.
The properties of a typical and thermorheologically simple viscoelastic material are
detailed in [14, 15].

The four-parameter fractional derivative model for viscoelastic solid materials was
introduced by [10, 15]. This simple model may numerically characterize a wide range
of viscoelastic materials in engineering. So, in the frequency domain, the complex
shear modulus ð�GðX; TÞÞ is represented by:

�G X; Tð Þ ¼ G0þG1b1 iXa Tð Þð Þb
1þ b1 iXa Tð Þð Þb

¼ Gr X; Tð Þ 1þ ig X; Tð Þð Þ ð1Þ

where GrðX; TÞ ¼ Reð�GðX; TÞÞ is the dynamic shear modulus or storage modulus and
gðX; TÞ ¼ Imð�GðX; TÞÞ=Reð�GðX; TÞÞ is the loss factor; parameters G0 and G1 rep-
resent the asymptotic values of the dynamic shear modulus at low and high frequencies,
respectively; b1 ¼ bb is an experimental constant, where b is the relaxation time [10]
and b is the fractional derivative power; X is the excitation frequency and i is the
imaginary unit ði ¼ ffiffiffiffiffiffiffi�1p Þ. Parameter a(T) is actually a function called ‘shift factor’
and represents the temperature influence in the dynamic behavior of viscoelastic
materials. This factor was experimentally proposed by Willian–Landel–Ferry
(WLF) and empirically equated by [16]:

loga Tð Þ ¼ �h1 T � T0
h2þ T � T0

ð2Þ

where constants h1 and h2 may be experimentally determined, parameter T0 is an
arbitrary reference temperature, and T is the working temperature, both in Kelvin. For
the sake of simplicity, parameter T will be suppressed from now on, since the present
paper will fix a constant temperature for the system modelling.

3 Viscoelastic Dynamic Neutralizer Applied to Slope Degree
of Freedom

The approach of the present paper is related to the angular VDN, i.e., the neutralizer
works in slope DOF instead of the transversal displacement. Based on the methodology
showed on [11], the generalized equivalent parameters model for slope degree-of-
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freedom of a simple neutralizer is propose in order to replace the classical one, as shown
in Fig. 2. Then, the simple neutralizer attached on the primary system can be represented
by an equivalent model compound just by an equivalent mass, mes Xð Þ, and an equiv-
alent damping, ces Xð Þ. These equivalent dynamic parameters are found equating the
dynamic stiffness on the base of the neutralizer of the both models presented in Fig. 2.

The dynamic stiffness at the base of angular VDN ð�KbsðXÞÞ is calculated through
the relation between the external moment applied to the base ðMbðXÞÞ and the slope
displacement at base ðhbðXÞÞ, as shown in Fig. 3. This figure shows a lateral view of a
simplified model for the VDN, where is represented the shaft, as indicated, the arm of
the neutralizer, with an inertia Ib, the viscoelastic blanket in blue, and the mass of
neutralizer above the viscoelastic.

�Kbs Xð Þ ¼ MextðXÞ
hbðXÞ ð3Þ

Fig. 2. Generalized equivalent model for a system with VDN – slope DOF.

Fig. 3. Simplified physical model for angular VDN.
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The lateral action force FR Xð Þð Þ of the viscoelastic element is obtained in the
frequency domain, as shown by [13], as a relation between the dynamic stiffness and
the displacements at base Xb Xð Þ and at mass X(X). The free body diagram and
Newton’s second law are also applied to the bodies, and, by handling these equations, it
is possible to obtain the dynamic stiffness for the angular VDN, as shown below. The
relations are obtained as follows:

�Kbs Xð Þ ¼ MextðXÞ
hbðXÞ ¼

�K Xð ÞR2ð�X2IÞ
�X2Iþ �K Xð ÞR2

� X2Ib ð4Þ

where variables I and Ib are the mass inertias of the neutralizer mass and its base,
respectively.

As shown in [17], handling Eq. (4) and comparing with the stiffness on the base of
the simple neutralizer shown in Fig. 2b given by �Kbs Xð Þ ¼ �X2mes Xð Þþ iXces Xð Þ, the
generalized equivalent mass and damping can be obtained taking the real and imagi-
nary part of the Eq. (4) and dividing by �X2 and X, respectively. Then, these gen-
eralized equivalent parameters are defined as:

mes Xð Þ ¼
r Xð ÞR2 Iþ Ibð Þ �e Xð Þ2þ r Xð ÞR2 1þ g Xð Þ2

� �h i
� e Xð Þ2Ib �e Xð Þ2þ r Xð ÞR2

h i
�e Xð Þ2þ r Xð ÞR2
h i2

þ r Xð Þ2g Xð Þ2R4
ð5Þ

ces Xð Þ ¼ Xr Xð ÞR2g Xð Þe Xð Þ2I
�e Xð Þ2þ r Xð ÞR2
h i2

þ r Xð Þ2g Xð Þ2R4
ð6Þ

where r Xð Þ ¼ LGrðXÞ=LGrðXnÞ, Xn is the natural frequency of the system given by
X2

n ¼ LGrðXnÞ=m and e Xð Þ ¼ X=Xn.
To find the control frequency Xh, it is necessary to equal the denominator of Eq. (4)

to zero, as follows:

Xh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LGr Xnð ÞR2

mq2

s
ð7Þ

The mass inertia of the neutralizer mass is defined by I ¼ mq2, where q is the
distance between the center of the neutralizer mass and the centerline of the shaft
(Fig. 3). So, the relation between the natural frequency of the system and the control
frequency is given by:

Xh ¼ Xn
R
q

ð8Þ

Based on Eq. (8) and Fig. 3, given that R < q, the relation between the frequencies
will be Xh\Xn. So, it is possible to obtain a control frequency as low as necessary.
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4 The Rotating System: Primary and Compound Systems

The rotating primary system may be discretized through the finite element method by
using the beam finite element with three nodes and four degrees of freedom each, as
shown in Fig. 4.

The equation of motion [18, 19] for a simple rotating system with multiple DOF, in
the frequency domain, is expressed by:

�X2 M½ � þ iX C½ � þ G Xrð Þ½ �ð Þ þ K½ �� �
Q Xð Þf g ¼ F Xð Þf g ð9Þ

where [M] is the global mass matrix defined by the kinetic energy of the system; [C] is
the global damping matrix; [G(Xr)] is the global gyroscopic effect matrix obtained by
the kinetic energy as well; [K] is the global stiffness matrix defined by the potential
deformation; {Q(X)} is the generalized coordinate vector and {F(X)} is the generalized
excitation vector. For the sake of simplification, the effects of rotating damping and
stiffness were disregarded in Eq. (9).

The motion equation, in the state space, can be rewritten as follows:

iX
C½ � þ G Xrð Þ½ �ð Þ M½ �

M½ � 0

� �
þ K½ � 0

0 �M½ �
� �	 


Y Xð Þf g ¼ F Xð Þ
0

� �
¼ N Xð Þf g

ð10Þ

For the compound system (primary system plus angular VDV), the generalized
equivalent parameters must be added to the primary system. These parameters are
expressed in matrix terms by:

Ce Xð Þ½ � ¼

0 0 � � � 0 0
0 ces1 Xð Þ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � cesp Xð Þ 0
0 0 � � � 0 0

2
666664

3
777775

..

.

 hj1
..
.

 hjp
..
.

ð11Þ

Fig. 4. Finite element method: discretization of a beam element.
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Me Xð Þ½ � ¼

0 0 � � � 0 0
0 mes1 Xð Þ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � mesp Xð Þ 0
0 0 � � � 0 0

2
666664

3
777775

..

.

 hj1
..
.

 hjp
..
.

ð12Þ

where parameters cesj and mesj are the j
th term, with j = 1 to p with p being the number

of angular VDNs used.
Then, the motion equation for the compound system is given by:

�X2 M½ � þ Me Xð Þ½ �ð Þ þ iX C½ � þ Ce Xð Þ½ � þ G Xrð Þ½ �ð Þþ K½ �� �
Q Xð Þf g ¼ F Xð Þf g ð13Þ

In the state space, Eq. (13) can be rewritten as

iX ~A X;Xrð Þ� �
Y Xð Þf gþ ~B Xð Þ� �

YðXÞf g ¼
F Xð Þ
� � �
0

8<
:

9=
; ¼ N Xð Þf g ð14Þ

where:

~A X;Xrð Þ� � ¼ A Xrð Þ½ � þ Ae Xð Þ½ � ð15Þ

~B Xð Þ� � ¼ B½ � þ Be Xð Þ½ � ð16Þ

the matrices A Xrð Þ½ � and B½ � represent the primary system behavior and Ae Xð Þ½ � and
Be Xð Þ½ � represent the influence of the dynamic neutralizers attached to the primary
system. These matrices are given by:

A Xrð Þ½ � ¼ C½ � þ G Xrð Þ½ �ð Þ M½ �
M½ � 0

� �
ð17Þ

Ae Xð Þ½ � ¼ Ce Xð Þ½ � Me Xð Þ½ �
Me Xð Þ½ � 0½ �

� �
ð18Þ

and

B½ � ¼ K½ � 0
0 �M½ �

� �
ð19Þ

Be Xð Þ½ � ¼ 0½ � 0½ �
0½ � �Me Xð Þ½ �

� �
ð20Þ
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To solve the motion equation, it is necessary to transform Eq. (14), in the con-
figuration system, into the modal or sub-modal space of the state space by using the
right eigenvector matrix of the primary system [H](k[A(Xr)][H]) = [B][H].

Y Xð Þf g ¼ H½ � P Xð Þf g ð21Þ

and, then, pre-multiplying Eq. (14) by the transpose left eigenvectors [W]T(k[A
(Xr)]

T[W]) = [B]T[W], its adjoint problem, the motion equation can be solved as:

iX W½ �T ~A X;Xrð Þ� �
H½ � þ W½ �T ~B Xð Þ� �

H½ �� �
P Xð Þf g ¼ W½ �T N Xð Þf g ð22Þ

or, simplified as:

�Y Xð Þf g ¼ H½ � D Xð Þ½ � W½ �T N Xð Þf g ð23Þ

with

D Xð Þ½ � ¼ iX I½ � þ W½ �T Ae Xð Þ½ � H½ �
 �þ K½ � þ W½ �T Be Xð Þ½ � H½ �
 �� ��1 ð24Þ

For the angular VDN design, the subspace can be obtained by limiting the size of
eigenvectors matrices [H] and [W] to the first 2n̂ modes, with n̂� n, since the con-
tribution of the higher order modes is insignificant and can be ignored. This signifi-
cantly reduces the computational time, which is proportional in n3.

5 Optimization Problem

In the present work, the optimization problem consists of reducing the flexural
vibration level for the primary system as much as possible. This control is made by the
indirect reduction of the slope degree of freedom of the primary system obtained by
using angular VDNs. For that, the angular VDN must be optimally designed, in other
words, its natural frequency must be determined in an optimization environment.

To this end, it is suggested a non-linear optimization method, and the objective
function fobj is defined by:

fobj xð Þ ¼ maxX1\X\X2 P X; xð Þj jk k ð25Þ

where x is the design vector containing the natural frequencies of the p neutralizers
xT ¼ Xa1; Xa2; . . .; Xap

� �
 �
; parameters X1 and X2 constitute the frequency band

control related to the operation of the machine and its flexural modes; “max” is the
maximum value for each component of vector P(X,x) and ║║indicates the use of the
Euclidian Norm.

When it comes to ensure the convergence of an optimization problem, it is
advisable to use barrier functions, which are inequality functions defined by
XL

ai\Xai\XU
ai with i = 1 to p, and L and U are the lower and upper constrains,

respectively.
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The aim of this optimization problem is to find a vector with the frequencies for the
angular VDNs that minimize function P(X, x).

The complete methodology used in the present paper is based on the following
instructions:

1. the generalized equivalent parameters for the slope DOF are calculated (Eqs. (5)
and (6)) based on the viscoelastic material selected and the rotor geometry studied;

2. matrix [D(X)] from Eq. (24) is assembled and equated;
3. the unbalance excitation and the matrix [D(X)] are solved to obtain vector {P(X,x)};
4. the absolute values of vector {P(X,x)} are evaluated for the optimization algorithm,

and its maximum values are chosen;
5. the objective function is solved, and a new project vector is assembled;
6. steps 1 to 5 are repeated until the minimal value for vector {P(X, x)} is found; then,

the optimal natural frequencies are finally obtained.

After having found the natural frequencies of the angular VDN, the other param-
eters can be found out to physically design the neutralizer. The mass inertia of the
neutralizer was defined by [13] for the mode-to-mode control and is adapted for this
application as follow:

lj ¼
Ia
Pp

s¼1 /ksj

�� ��2
Ij

ð26Þ

where /ksj are the ks,j elements of the right modal matrix on state space; Ia is the
neutralizer mass inertia considering it in modal space; p is the number of neutralizers;
ks is the position where the ith neutralizer is fixed on the primary system with s = 1 to j,
where j is the jth mode to be controlled. Finally, lj is the relation between the mass
moment of inertia of the neutralizer, considered in the modal space of the primary
system, and the modal mass moment of inertia of the primary system and can typically
go up 10% to 25%.

6 Numerical-Experimental Development and Results

The current work presents three different geometries performed to experimentally
validate the methodology presented above. They are the compact angular VDN using
E-A-R Isodamp C-1002 rubber (item 6.1), the same design by using butyl rubber (item
6.2), and the center of percussion of the angular VDN design (item 6.3).

The three types of angular VDN were designed for the same rotor geometry, as
detailed in Fig. 5, and the same unbalance mass was used: 0.0002 kg m applied to the
central disk, or 458 mm from the driven side of the shaft.

The neutralizers were assembled in the same position, as close as possible to the
rear bearing, 50 mm away from the bearing in the shaft end direction, as presented in
Figs. 7 and 14.
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6.1 Compact Angular VDN – C-1002

The first geometry proposed was designed by using the E-A-R Isodamp C-1002, and
the parameters of the four-parameter fractional derivative model are preset in Table 1.

The design starts by modelling the rotor, as shown previously, and applying it to
the optimization environment. So, for this case, the optimal natural frequency found
was 24.9 Hz, as presented in Fig. 6. For other neutralizer geometries, the same
unbalance frequency response shown in Fig. 6 is used, since the primary system is the
same.

Based on that geometry, the modal inertia is obtained and, considering a lj equal to
10%, the neutralizer inertia is Ia = 0.0077496 kg m2. This inertia was divided into four
identical devices, consisting of an aluminum base with three pieces of rubber glued to a
steel sleeve; fixed on it by threading bars are two steel cylinders serving as the mass of
the device, as presented on Fig. 7. The device is attached to a fake bearing by using a
threading bar. This bearing consists of an aluminum sleeve mounted above the rolling
bearing and anchored on the structure by steel wires.

Fig. 5. Rotor geometry used for all types of angular VDN tested.

Table 1. Rubber parameters.

E-A-R Isodamp
C-1002

Butyl rubber

T0 286.341 K T0 273 K
T 298 K T 293 K
h1 24.2078 h1 6.57
h2 249.808 h2 68.0
G0 6.56e5 Pa G0 3.57e6 Pa
G∞ 8.61e8 Pa G∞ 4.79e8 Pa
B 0.545 B 0.435
b1 6.46e−4 b1 2.46e−3

98 D. R. Voltolini et al.



The experimental validation of the VDN natural frequency is presented in Fig. 8
and shows the inertance curve measured. The curve was obtained by fixing the
accelerometer to the cylinder mass of the neutralizer (measuring point) and by applying
an impact force near this point (exciting point). This curve presents a damped behavior
due the physical properties of the material. The natural frequency presented was
approximately 25 Hz, as expected.

Two of the angular VDNs were positioned parallel to the faces of the disks, as
shown in Fig. 7. Due to the size of the mass, the other two devices were assembled
slightly misaligned in relation the other ones. From now on, this configuration will be
called ‘standard position’. The rundown test was conducted, and the unbalance fre-
quency response (UFR) for ‘X’ direction, according Fig. 4, is shown in Fig. 9.

Fig. 6. Unbalance frequency response with and without compact angular VDN C-1002.

Fig. 7. Rotor assembled with compact angular VDN compound with C-1002.
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Based on Fig. 9, it is possible to note that the angular VDNs do not insert the
necessary impedance to effectively control the vibration level of the primary system for
the first mode, and barely had any effect on the second one. This behavior was initially
associated to clearance in ball bearings. The hypothesis was rebutted after assembling a
new hub using roller bearings, without a significant change in the results. Other tests
were conducted by altering the angular position of neutralizers, as showed on Fig. 11,
resulting in distinct dynamic behaviors, increasing or reducing control capacity, as
presented in Fig. 10.

When comparing the curves in Figs. 9 and 11, there is a reduction in the amplitude
of vibration for both modes, which is stronger for the case with variation of the angular
positioning in relation to the standard position, showing the sensitivity of the device to

Fig. 8. Inertance to C-1002 VDN.

Fig. 9. UFR for standard position – angular VDN C-1002.
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this design variable. This behavior seems to be due to the combined displacement
presented in operation, that is, the rotor whirling combines translational (X and Z
directions) and slope (d and c) displacements.

6.2 Compact Angular VDN – Butyl Rubber

The second geometry of angular VDN proposes to change only the viscoelastic
material from C-1002 to a butyl rubber available in the laboratory where the tests were
conducted. The parameters of the four-parameter fractional derivative model for this
material are present in Table 1.

For the present case, the optimal natural frequency obtained was 28.8 Hz. The lj used
to calculate the neutralizer inertia was changed to 25%, resulting in Ia = 0.019374 kg m2.
The same geometry concept of the previous case was used, just changing the rubber
blanks. Just to clarify: the device on the top of the figure is the C-1002 neutralizer, and the
other four, at the bottom of the figure, are the butyl rubber ones. The device was posi-
tioned at the same point the C-1002 one was.

Fig. 10. UFR for variation of angular positioning – angular VDN C-1002.

Fig. 11. Variation of angular positioning – angular VDVN C-1002.
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The inertance of this angular VDN was measured, and the curve is shown in
Fig. 12. This curve can be compared the one shown in Fig. 8, presenting the difference
in the dynamic behavior of the butyl rubber and compared to E-A-R Isodamp C-1002.
The inspection of the inertance shows that the natural frequency of VDN with butyl
rubber was not in accordance with the design (25 Hz � 28.8 Hz). When this occurs,
the temperature used in the project must have been different from that experienced in
the laboratory during the tests. This shows the vulnerability of the project related to the
use of some kinds of viscoelastic material, which are more susceptible to the influence
of temperature in their dynamic behaviors.

Subsequently, the unbalance frequency response curves of the rotor, with and
without neutralizer, were obtained by the rundown test. In a more detailed analysis of
the rotor response curves, it was found that there was a region being controlled, below
the first critical rotation. The hypothesis associated to this behavior was that the rotor
was not exciting the design frequency of the neutralizer, in other words, the neutralizers
were vibrating in a different way from that expected. To test this hypothesis, the natural
frequency of the neutralizer was increased to coincide with the first critical rotation of
the primary system. For this, the masses were approximated in increments of 10 mm of
the neutralizer center until achieving a satisfactory control of the primary system.
Figure 13 shows the unbalance frequency response curves with and without neutral-
izer, in the X direction.

Although rotor vibration was significantly controlled for the first mode, great dif-
ficulty was encountered in predicting the behavior of the neutralizer, that is, how the
rotor will excite the neutralizer. This hinders the design and the correct tuning, the same
problem faced on the C-1002 device.

Fig. 12. Inertance curve to compact angular VDN butyl rubber.
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6.3 Center of Percussion Angular VDN

The third angular VDN design used a butyl rubber material, the parameters of which
are presented in Table 1. The primary system is the same as shown in Fig. 5.

In this case, the neutralizer was designed to control the second rotor vibration
mode, since the higher the frequency of the neutralizer, the easier its physical con-
struction due to the viscoelastic material form factor. Based on this, an optimum
frequency of 62.2 Hz and a mass inertia of Ia = 0.019374 kg m2 were obtained for a
lj = 25%.

This inertia was divided into four identical pieces with a different geometry, here
called ‘center of percussion’. This geometry has been arranged in order to operate in
shear as much as possible, and to obtain the minimal distance R possible and, then,
minimize the influence of the other neutralizer modes.

However, this geometry proved to be very fragile, due to its form of assembly, with
the viscoelastic material segments attached between the base of the mass and the hub of
the fake bearing. In an attempt to measure the unbalance frequency response to
runway/rundown, the viscoelastic segments came loose, making it impossible to
operate and take measurements. In addition, this geometry shown a tendency to move
in the direction of traction/compression of the material, further altering the frequency of
the device in operation. Figure 14 shows the neutralizer assembled on the rotor.

Since the natural frequency of the device was lower than the one designed, the
thickness of the viscoelastic material was reduced until the frequency coincided with
the calculated one. The inertance of the system without neutralizer - with a designed
neutralizer for the 1st mode and for the 2nd mode - was measured, as shown in Fig. 15.

Evaluating Fig. 15, one observes that there was an expressive control for the mode
corresponding to the designed mode of the VDN. This behavior presents potential
regarding the control of the primary system, once the previously listed problems are
eliminated.

Fig. 13. UFR for Angular VDN butyl rubber.
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7 Conclusions

The current paper presents a revision of the methodology on optimal design of angular
viscoelastic dynamic neutralizers, as well as the experimental application of three
different concepts in a controlled laboratory environment.

The results obtained were promising: the reduction of the response to the rotor
unbalance frequency response of the primary system - by using angular VDNs -
achieved 20 dB for the last geometry, for example.

Fig. 14. Center of percussion angular VDN – experimental set.

Fig. 15. Inertance for the center of percussion angular VDN.
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However, several questions concerning the analytical design of the devices were
identified in relation to the non-analytical prediction of the excitation behavior of the
neutralizer by the rotor. Due to the rotor whirling, the angular VDN vibrates in different
planes and not preferably in the one it was designed for, thus decreasing its effec-
tiveness. These questions are being reviewed, and other geometries are under study for
the neutralizer support.
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