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Abstract. Although hydrodynamic bearings have minimum contact between
solid parts, under particular circumstances they might be susceptible to abrasion
and wear. In order to mitigate the problem, it is proposed to apply active control
methods to reduce the vibration level at critical situations: fluid induced insta-
bility and the first bending mode. However, damage in the bearing surface have
direct influence over the oil-film pressure and, consequently, in the bearings
equivalent coefficients. Although, initially, small variations may lead to minor
performance loss, when it becomes more significant close-loop stability may be
affected. Therefore, in this paper it is conducted a preliminary study on the effect
of journal bearing wear depth effects in active controlled rotors. A structured
uncertain model is proposed to include the possible fault coefficients in the
model allowing to perform robust stability analysis. Based on the uncertain
formulation a robust control solution is designed guaranteeing rotor stability for
a certain damage range.
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1 Introduction

During field operation every machine component is susceptible to wear, which, in the
beginning, causes small changes in the system behavior, but in the absence of main-
tenance, eventually, can lead to failure. It is not different for hydrodynamic journal
bearing. Although the oil film provides isolation between solid parts minimizing
friction during operation, when the shaft comes to a full stop there is direct contact with
the bearing. When starting-up there may occur abrasion of the bearing surface, gen-
erally made of materials softer than the shaft. Contact between solid parts is also
possible in cases of extreme vibration amplitudes, which may occur due to operation at
critical speed, or at fluid induced instability condition.

Detection, analysis and modeling the effects of journal bearing wear is a chal-
lenging task. Over the years, several researchers have studied the stability of a worn
bearing, as well as evaluated its performance under different circumstances [1–4].
Considerable research has also been carried out for the development of various tech-
niques for bearing fault detection and diagnosis. As described by Machado et al. [5],
these techniques can be mainly classified into two categories: time domain [6–8] and
frequency domain techniques [9, 10].
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Considering a rotor supported by hydrodynamic bearings susceptible to wear, the
goal of this paper is to analyze those effects in an active controlled rotor and design an
auxiliary robust active controller that allows to mitigate the possibilities for the damage
propagation by reducing the vibration at critical speed and stabilizing the system at
fluid induced instability. With active control, the rotor should be able to sustain safe
operation levels until further scheduled maintenance to repair the damaged component.

The control force is supposed to act in the system via a magnetic actuator with the
sole objective of controlling the vibration, all the rotor load should still be supported by
the journal bearings. Applying the magnetic actuator only as an auxiliary component
requires less powerful magnets which can significantly reduce the cost, size and energy
consumption of the system. Many studies regarding active rotor vibration control can
be found in literature, such as [11–17]. Studies focused on controlling fluid-induced
instability can be found in the works [18–20]. Other significant contributions can be
found in studies regarding levitating active magnetic bearings (AMB) [21–23]. How-
ever, most of the literature is concerned to the main source of parametrical variation,
the rotational speed, which has direct influence over gyroscopic effect and journal
bearing parameters. Few references concerning controlling damaged rotors can be
found, being mostly related to levitating AMB under critical failure such as sensor or
coils malfunctioning [24, 25].

Here it is proposed to design and compare, via numerical simulation, two different
active control methods to be applied in a rotor supported hydrodynamic bearing
evaluating the effect of abrasion damage on the close-loop performance. Both are static
gain-scheduled controllers obtained by solving the two-stage method proposed in [26],
but one considers uncertainties due to bearing wear in its project. The general guideline
of this paper starts with the presentation of the rotor and its modeling, followed by a
brief description of worn journal bearing coefficients modeling. Then, in Sect. 2, it is
presented the approximation used to create a model fitted for the LMI formulation. In
Sect. 3 is described the main formulation for the controllers and uncertainties. Finally,
in Sects. 4 and 5 are the main results, discussion and conclusions.

2 Rotor Modeling

2.1 Rotor

For this study, the adopted rotor, Fig. 1, consists in a steel (SAE 1030) shaft of
583 mm length and 12 mm diameter bi-supported by hydrodynamic journal bearings,
with the wear effect acting over the bearing number 2. Nominally, both bearings have
18 mm length, 31 mm diameter and radial clearance of 90 µm, and are lubricated by
ISO VG 32 oil. The other main components are the disc with 47.5 mm length and
95 mm diameter, which adds load and it is the main source of unbalance to the system,
and the journal with 80 mm length and 40 mm diameter through which a magnetic
actuator applies the control force. For control feedback are considered the displace-
ments of the bearings nodes at Y and Z directions. This configuration presents its first
critical speed at about 46 Hz, and fluid induced instability near 79 Hz. To analyze the
most important operational conditions, it is considered the rotor operational speed
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range between 20 Hz and 100 Hz spanning the situations: before, at and after the
critical speed, and above the fluid-instability threshold.

The system is formulated following the finite element model (FEM) by Nelson
[27], which allows to represent the set composed by the shaft, disc and journal as the
classic second order equation of motion, Eq. (1), where Mfem, Dfem, Kfem and Gfem are
respectively the global mass, damping, stiffness and gyroscopic matrices, Ω is the
system rotational speed, and q and f are respectively the degrees of freedom (DOF) and
external excitation vectors.

Mfem€qþ Dfem þXGfemð Þ _qþKfemq ¼ fðtÞ ð1Þ

2.2 Bearing and Wear Models

For the cylindrical journal bearings, it is used the approach of equivalent linear coef-
ficients of stiffness and damping, which are inserted in the finite element model in
bearing position. The procedure for obtaining these coefficients is based on the solution
of Reynolds equation, the basis of hydrodynamic lubrication theory. The solution of
Reynolds equation gives the pressure field generated by the oil film, and the hydro-
dynamic forces supporting the rotor are obtained by integration of this pressure around
the shaft circumference. These general nonlinear hydrodynamic forces are then
expanded into a Taylor series and the resulting differential expressions are approxi-
mated by finite differences in order to calculate the bearing equivalent coefficients of
stiffness and damping, as shown in Eq. (2), as an example, for the cross coupled
stiffness coefficient (Kyz) and damping coefficient (Czy). Dz and Dẏ are, respectively,
small perturbations in the shaft equilibrium position for displacement and velocity.

Kyz ¼ @Fy

@z
¼ DFy

D�z
Czy ¼ @Fz

@ _y
¼ DFz

D _�y
ð2Þ

Fig. 1. Rotor FEM model, and main components and respective nodes.
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For the numerical procedure to solve Reynolds equation, in the case when the oil-
film thickness is discontinuous, it is used the approach presented by Machado and
Cavalca [28]. In this procedure, the fluid-film is discretized in a uniform mesh of finite
volumes, as shown in Fig. 2a. In the close vicinity of the discontinuous film thickness,
the pressure has an abrupt variation, and to compensate that, this pressure variation is
attributed to a fluid velocity variation by writing a generalized Bernoulli equation
immediately before and after the discontinuity (see [28] for more details).

Regarding the wear region, it is based on the geometry initial proposed by Dufrane
et al. [29] and adapted by Machado and Cavalca [28], assuming abrasive wear. This
model considers that the wear has a uniform thickness in axial direction; it can have a
variable depth and can be located in any region of the bearing circumference.

In the schematic draw of the worn bearing (Fig. 2b), it can be seen that the wear
pattern introduces an additional oil layer with depth dh(h) in the region delimited by the
angles hs and hf . Thus, the fluid-film thickness h(h) in the presence of wear is given by
Eq. (3), where h0(h) is the film thickness due to the shaft eccentricity.

h hð Þ ¼ h0 hð Þþ dh hð Þ ð3Þ

Equation (3) can also be written in the local reference system, denoted by hm in
Fig. 2b:

h0 hð Þ ¼ Crþ e � cos hmð Þ
dh hð Þ ¼ d0 � Cr � 1þ cos hm þuð Þð Þ ð4Þ

Fig. 2. Schematic representation: (a) finite volume mesh; (b) worn bearing geometry. (Adapted
from Machado and Cavalca [28])
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Where Cr is the bearing radial clearance, e is the eccentricity of the shaft and d0 is
the maximum wear depth. Finally, the terms of Eq. (4) can be rewritten in the inertial
reference system (Y, Z) through the eccentricity components ey and ez, respectively in
the Y and Z coordinates:

h0 hð Þ ¼ Cr � ez � cos h� p=2ð Þþ ey � sin h� p=2ð Þ
dh hð Þ ¼ d0 � Cr � 1þ cos h� p=2ð Þð Þ ð5Þ

The depth dh hð Þ in the wear edges, h = hs and h = hf, is zero. Consequently, the
extreme points of wear are given by Eq. (6), where c is the angular displacement of the
center of wear, and the fluid-film thickness can be rewritten as Eq. (7).

hs ¼ p=2þ cos�1 d0=Cr � 1ð Þþ c

hf ¼ p=2� cos�1 d0=Cr � 1ð Þþ c
ð6Þ

h hð Þ ¼ h0; 0� h� hs; hf � h� 2p
h0 þ dh; hs\h\hf

�
ð7Þ

Equation (7) for the oil film thickness was then inserted into the Reynolds equation,
which is solved using the finite volume method (see [28] for more details).

2.3 Model Reduction and Polynomial Approximation

Although the bearings coefficients come from a linearization of the Reynolds equation
solution, they have a non-linear dependence on the rotational speed. Adding this
variation to the system means that for each speed the system may present different
linear (space-state) model. To control such system one possible strategy is to apply
adapting controllers, which can variate according to a monitored parameter, e.g. the
rotational speed. In this paper the adopted gain-scheduled control law requires
describing the system in polynomial form. For that matter it is applied a least square
second degree polynomial fit to approximate the dependence of each bearing coefficient
to the rotational speed. The resultant bearing coefficients matrices can be described by
Eq. (8). As a remark, most of the following polynomial formulation are depicted in
second-degree but any degree would be applicable.

Kbr Xð Þ ¼ Kbr0 þKbr1XþKbr2X
2

Dbr Xð Þ ¼ Dbr0 þDbr1XþDbr2X
2

�
ð8Þ

The system is originally divided into 19 nodes, as in Fig. 1, of 4 degrees of freedom
(DOF) each, totalizing 76 DOF. In space-state form the system has order 152, which is
considerably high for LMI problems; therefore, reduction is necessary. Many reduction
methods with different properties can be found in literature. Here is applied the Guyan
reduction method [30], allowing to preserve the physical DOF, which makes easier to
add the varying bearing coefficients based on the polynomial approximation and to
include uncertainties, described in Sect. 3.2.
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Firstly, the global matrices related to shaft, disc and journal are reduced using matrix
T of Eq. (9) [30] preserving only the key nodes for the problem (4, 8, 12 and 16), which
are the disc, journal and bearings. The resulting model has order 32, which is more
suitable for LMI formulation. Moreover, since the bearings nodes DOF are preserved,
the coefficients matrices from Eq. (8) can be directly added to the global reduced
matrices. Thus, the space-state can be written as the matrix polynomial from Eq. (10).
Note that the gyroscopic matrix can be inserted in the polynomial first degree term.

Mred¼ TTMfemT
Dred¼ TTDfemT

�
Kred¼ TTKfemT
Kred¼ TTKfemT

�
ð9Þ

_x ¼ AðXÞxþBf ð10Þ

Where,

A Xð Þ ¼ A0 þA1XþA2X
2 ¼ 0 I

�M�1
red Kred þKbr0ð Þ �M�1

red Dred þDbr0ð Þ
� �

þ

0 I

�M�1
redKbr1 �M�1

red Gred þDbr1ð Þ
� �

Xþ 0 I

�M�1
redKbr2 �M�1

redDbr2

� �
X2

To facilitate the formulation of the controller it is possible to normalize the varying
parameter as a unitary simplex K2, Eq. (11).

A Xð Þ ¼ A að Þ ¼ Ap0 þAp1a1 þAp2a
2
1 ¼

A0 þA1aþA2a
2� �þ A1 b� að ÞþA22a b� að Þ½ �a1 þ A2 b� að Þ2

h i
a21

ð11Þ

Where,

a ¼ K2 ,
P2
n¼1

an; an � 0 and a1 ¼ X�a
b�a

a, b: minimum and maximum parameter variation, in this case, minimum and maxi-
mum rotational speed, respectively.

An important step to make the control design less conservative is to homogenize
the polynomial, that is, making every term dependent on the same degree to the varying
parameter. That can be done by using the unitary simplex property as in Eq. (12).

A að Þ ¼ Ap0 a1 þ a2ð Þ2 þAp1a1 a1 þ a2ð ÞþAp2a
2
1 ¼

Ap20a
2
1 þAp11a1a2 þAp02a

2
2 ¼

Ap0 þAp1 þAp2½ �a21 þ 2Ap0 þAp1½ �a1a2 þAp0a
2
2

ð12Þ
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3 Control Formulation

3.1 Two-Stage Static Gain-Scheduled H∞ Controller

Designing regulator H∞ controllers generally follows a well-known framework [21,
31]. Firstly, an augmented plant, Eq. (13), based on state-space formulation, Eq. (10),
is created separating the inputs in exogenous disturbances w and control signal u; and
the outputs in performance signal z, usually composed by the actual objective (in this
case disc displacement) and the control effort u, and the feedback signal y, which in
most cases are the sensors readings.

_x ¼ AxþB1wþB2u

z ¼ C1 þD11wþD12u

y ¼ C2 þD21wþD22u

8><
>: :

u ¼ Ly

ð13Þ

There are many structures and methods for solving the H∞ control problem.
However, the majority relies on linear time invariant systems, which may not be
applicable for rotating machinery since their dynamics are strongly dependent on the
rotational speed. Since considering the whole possible variations as uncertainties might
be excessively conservative, a very usual solution has been applying gain-scheduled
techniques. This way, the control law L(a) also variates according to the current
operation condition. In this paper, to obtain L(a) dependent on Ω, the two-stage
technique proposed by Agulhari [26] is applied. The method is based on Lyapunov
quadratic stability and consists on solving two consecutive linear matrix inequalities
(LMI) as described by Theorems 1 and 2, respectively. The resulting control has
guaranteed Lyapunov stability for the considered conditions and presents no dynamic
part, being an attractive option for real-time applications.

Theorem 1. There is a state-feedback gain K(a) = Z(a)X−1that stabilizes the system
from Eq. (14), with x ∊ ℝn and B2 ∊ ℝ

n,ic, if there are P(a) = PT(a) > 0 ∊ ℝn,n, X ∊ ℝn,n,
Z ∊ ℝic,n for a given n > 0 ∊ ℝ which fulfill the LMI from Eq. (15).

_x ¼ A að ÞþB2KðaÞð ÞxþB1w ð14Þ

A að ÞXþX�A að Þ� þB2Z að ÞþZ að Þ�B�
2 P að Þ � X� þ nA að ÞXþ nB2Z að Þ

� �nX� nX�

� �
\0

ð15Þ

*: Conjugate transpose.
The proof for the Theorem 1 can be found in [32].

Theorem 2. There exists an output-feedback control gain L(a) = H−1J(a) that stabi-
lizes the system from Eq. (16) and minimizes it’s H∞ norm, with x ∊ ℝn, w ∊ ℝi, B2 ∊
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ℝic, C2 ∊ ℝoc,n, if there are P(a) = PT(a) > 0 ∊ ℝn,n, K(a) ∊ ℝic,n, F(a) ∊ ℝn,n, G(a) ∊
ℝn,n, H ∊ ℝic,ic, J(a) ∊ ℝic,oc and l > c2 > 0 ∊ ℝ that fulfill the conditions in Eq. (17).

_x ¼ A að ÞþB2LðaÞC2ð ÞxþB1w
z ¼ C1 þD12LðaÞC2ð Þx

�
¼ _x ¼ ACLðaÞxþBCLw

z ¼ CCLðaÞx
�

ð16Þ

inf l :

W11 W12 W13 W14 W15

�G að Þ �G að Þ0 G að ÞB1 0 G að ÞB2

�I 0 0
�lI 0

� �H�H0

2
66664

3
77775\0

0
BBBB@

1
CCCCA ð17Þ

Where,

W11 ¼ AT að ÞFT að ÞþF að ÞA að ÞþKT að ÞBT
2 F

T að ÞþF að ÞB2K að Þ

W12 ¼ P að Þ � F að ÞþAT að ÞGT að ÞþKT að ÞBT
2G

T að Þ W13 ¼ F að ÞBT
1

W14 ¼ CT
1 þK að ÞTDT

12 W15 ¼ F að ÞB2 þCT
2 J að ÞT�KT að ÞHT

The proof for the Theorem 2 can be found in [26].
The conditions for the second stage, Eq. (17), are not linear since there are terms

with two variable product (K(a) and F(a)). In the proof of Theorem 2, one arrives at a
condition where K(a) is a stabilizing state-feedback gain. Thus, it is possible to utilize
the first stage to generate generic gains K(a) and apply it as a constant in the second-
stage. Due to this linearization the method presents only a sufficient condition, that is, if
no solution can be found doesn’t mean it does not exist. Moreover, since it is also
difficult to find a correlation between the first stage and the final performance, Agulhari
et al. [32] propose testing different solutions for K(a) (through the variation of n) to
increase the chance of finding better results. Therefore, any other LMI condition that
generates stabilizing gain would be fitting as a first stage.

3.2 Uncertainties

The problem of deviation from a linear time invariant model due to rotational speed
variation is addressed by the gain-scheduled method. However, the problem of bearing
wear presents a challenging approach, since it may be difficult to parametrize it during
the machine operation. Although abrasive wear usually occurs gradually and is not as
evident as variations due to rotational speed, it can reach levels in which the system
dynamic is too distant from the nominal condition and, if not taken into account, may
result in serious performance loss or even instability in close-loop. To address the effect
of bearing wear, here it is proposed to include the possible variations, limited to a
certain range, as structured uncertainties.
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Supposing the uncertain bearings parameters Dp follows the model from Eq. (18),
where the effect of the abrasion depth is expressed by the linear approximation dd and
the rotational speed influence is expressed by the polynomial in Ω, as in Sect. 2.3. The
state-space matrix A becomes the uncertain matrix Aunc, Eq. (19), where DK and DC
are the uncertain bearing coefficients matrices composed by the terms from Eq. (18).

Dpjk ¼ pjk þ dd pjk2X
2 þ pjk1Xþ pjk0

� � ð18Þ

Where,

p ¼ ðk; dÞ; j and j and k ¼ ðy; zÞ:

Aunc að Þ¼ A að Þþ 0 I
�M�1

r DK X; ddð Þ �M�1
r DDðX; ddÞ

� �
ð19Þ

It is possible to extract the uncertainties from Aunc obtaining the augmented system
from Eq. (20) with the auxiliary input (h), output (g) and structured uncertain matrix D.
Note that since the uncertainties are dependent on the rotational speed, Bu is dependent
on Ω and can also be easily written in terms of a and homogenized. This augmented
plant can be used as base for synthetizing robust controllers or analyzing robust sta-
bility. For example, if the H∞ norm from h to g is smaller than one, the system is
guaranteed to be stable for any possible considered uncertainty by the small gain
theorem [31]. Even though the applied control in this paper focus on reducing the H∞

norm, utilizing this metric for robust analysis may offer very conservative analysis.
Therefore, it is proposed to apply µ-analysis [13, 23, 33] to evaluate the systems
robustness.

_x ¼ A að ÞxþBu Xð ÞhþB1wþB2u

g ¼ Cux

z ¼ C1xþD12u

y ¼ C2x

8>>><
>>>:
u ¼ L að Þy
h ¼ Dg

ð20Þ

3.3 Controllers and Weighting Filters

In this paper two controllers are compared: L and Lu are respectively static H∞ gain-
scheduled controller without and with uncertainties. That is, both are obtaining solving
the two-stage LMIs from Sect. 3.1, however, Lu also includes h in the inputs and g in
the outputs. For Lu the matrix B1 will be concatenated with Bu and written as a
polynomial in a. The resultant B1(a) can be applied to the two-stage method without
any loss of generality.
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The final performance and feasibility of MIMO H∞ are strongly related to
weighting filters. They are functions that adjust the scale and priority between the
outputs and inputs. Here are applied the filters according to Fig. 3 and Eq. (21).

We sð Þ ¼
sffiffiffiffiffi
Me

kp þx

sþ ffiffiffiffi
eek

p
x

 !k

Wu sð Þ ¼ gu
sþ xffiffiffiffiffi

Mu
kpffiffiffiffi

euk
p

sþx

 !k

Wh ¼ Wg¼gh ð21Þ

4 Results

The controllers’ synthesis and simulations for the rotor described in Sect. 2 are done
considering the frequency range from 20 to 100 Hz, an abrasive wear depth varying
from 0 to 40 µm at 20° at the second bearing, and an unbalance momentum of
1 � 10−4 kg.m. The bearings coefficients are calculated as described in Sect. 2.2 and
then approximated by a second order polynomial fit. For the Lu gain and µ-analysis,
the bearing 2 coefficient is considered to be the mean value between the parameters
without damage and 40 µm wear depth. And the polynomial regarding the uncertain is
fitted to represent the difference between the mean and the nominal value, allowing the
uncertain d ∊ [−1,1] to cover most of the possible variations. The control gains are
obtained in Matlab® using the ROLMIP package [34] to formulate and automatic
homogenize the problem and the solver SDPT-3 [35].

The dynamic related to the magnetic actuator is neglected since it is usually much
faster than the mechanical response, also no unity conversions are considered, therefore
the control gains represent a direct relation between the bearings displacement readings
(in meters) and control force (in Newtons).

This result section is organized starting by the polynomial approximation, followed
by the utilized control parameters and final structures, then the system robustness is
analyzed by means of µ norm, and finally, the achieved performance for each controller
is compared.

Fig. 3. Weighting filters
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4.1 Bearing Coefficients Approximation

The influence of different abrasive wear depth on the bearings parameters is shown in
Fig. 4a. It is possible to notice that they have a non-linear behavior, therefore the
adopted linear approximation for the depth uncertain may lack precision. One could try
to express each parameter as an independent uncertainty. However, it would generate
an excessively conservative result, since it would comprehend combinations between
parameters related to different wear degrees for the same bearing.

The first step to design the controllers is finding the polynomial fit for the bearings
coefficients which will be used to design the gain-scheduled controllers. Figure 4b
shows the second order approximation for the first bearing stiffness utilized for both
L and Lu. For the damping and the second bearing coefficients similar results are
obtained. However, for Lu and µ-analysis the polynomial approximations for the
second bearing are regarding the mean parametrical variation value, as explained
before. Figure 4a shows the considered mean, and polynomial approximation for the
second bearing stiffness uncertainty.

4.2 Control Parameters

As stated before, the weighting functions have strong relation to the final control
performance. This section brings the utilized weighting parameters, Table 1. The
weighting functions for L was adjusted aiming the maximum vibration attenuation at
nominal condition. For Lu the adjustment also considered maintaining the resultant µ
norm bellow one. It is important to remark that these configurations are suboptimum,
since, as explained in Sect. 3.2, loss of necessity occurs. The final control function Lu
is given by Eq. (22), and L follows the same structure. Note that the final L and Lu

Fig. 4. (a) Bearing number 2 stiffness coefficient for different abrasive wear depths, utilized
mean and second order polynomial error bounds. (b) Bearing number 1 stiffness coefficients and
second degree polynomial approximation.
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control expressions consist in gains obtained by a weighted sum between matrices,
which can be done without problems in real time.

Lu að Þ ¼ 106
�0:1909 2:3607 �0:0822 0:0258

�2:3272 0:1948 �0:0359 �0:0777

� �
a1

þ 106
0:1246 1:8734 �0:0279 0:0076

�2:0348 0:7281 �0:0280 �0:0117

� �
1� a1ð Þ ð22Þ

4.3 Robustness Analysis

To evaluate the robustness level of the systems the peak µ value for a set of speeds
between 20 and 100 Hz is calculated and displayed in Fig. 5. Where OL is the open-
loop system, and CL and CLu are the closed loops with L and Lu, respectively.

Analyzing Fig. 5 it is possible to observe that the open-loop system does not
crosses one, therefore the bearing wear, in the considered range, is not expected to
affect the system stability. However, it is expected instability near 80 Hz (line inter-
ruption when reaching eigenvalue positive real part), due to fluid-induced instability.
For the Lu closed-loop the bearing wear is also expected to not destabilize the system,
moreover, the fluid-induced instability is suppressed for the whole considered rota-
tional speed range (continuous line). As for L, although in the diagram the line is

Table 1. Control parameters

x (Hz) k Mu Me eu ee gu gh
L 220 4 1 100 0.1 1 2�10−6 –

Lu 220 4 1 100 0.1 1 5�10−5 4�10−3

Fig. 5. µ-peak diagram.
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interrupted near 84 Hz suggesting that the controller cannot stabilize fluid-induced
instability, it is important to remind that this diagram is based on the mean value for
bearing number two (Fig. 4a), i.e. the system is not the nominal one. Therefore, it is
expected some level of discrepancy. However, the analysis for the µ-value still holds,
and since the line crosses 1, that indicates that L does not guarantee stability when
dealing with wear conditions.

4.4 Unbalance Response

To perform the unbalance response analysis a set of systems at different rotational
speed for the nominal condition and 40 µm at 20° wear were generated. Their
eigenvalue and frequency response at each respective speed were analyzed to define if
the system is stable and what is the maximum amplitude of the orbit. The results for the
responses at the bearing number 2 node are shown in Fig. 6 and Table 2. It is possible
to notice the nominal OL system presents its peak response near 45.9 Hz (critical
speed), and instability at 79.2 Hz. It is interesting to observe that, as predicted in µ-
analysis, the considered bearing wear does not cause the system instability to be
anticipated but rather delayed to 81.6 Hz. However, it did cause a fairly amplification
on the vibration level. As for the Lu controller, it manages to considerably attenuate the
vibration level and, as expected by the µ-analysis, also guarantee stability for the whole
frequency range even with damaged bearing. Regarding the L controller, it does sta-
bilize the system and reduces the vibration peak for the nominal condition, but under
wear effects, it may lead the system to instability even before the nominal fluid-induced
threshold (60.7 Hz).

Fig. 6. Unbalance response at bearing number 2 for 0 and 40 µm depth.
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5 Conclusion

In this preliminary study about the wear effects of bearing wear on active controlled
systems it was possible to observe that in open-loop condition, although the wear, for
the considered range, does not destabilize the system, it does amplify the vibration
levels in the bearing, which could lead to damage propagation. When in closed-loop,
the vibration amplitude can be significantly attenuated, but stability can be critically
compromised if the coefficients variation is not accounted for. To perform the
robustness analysis and to synthetize a robust controller an uncertain model was pro-
posed considering a linear approximation for the depth influence. Although the results
were promising, accurately accusing instability risks due to bearing damage for CL
while predicting stability for OL and CLu, further analysis is to be conducted to verify
this approximation precision. If necessary, other degrees or other parameters may be
included in the uncertain model providing a more accurate model in exchange for more
computational requirements.
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