
Analysis of Variable Mass Rotordynamic
Systems with Semi-analytic

Time-Integration

Helmut J. Holl(B)

Institute of Technical Mechanics, Johannes Kepler University of Linz,
Altenbergerstraße 69, 4040 Linz, Austria

helmut.holl@jku.at

https://www.jku.at/tmech/holl

Abstract. The analysed rotordynamic system is modeled as a non-
linear variable mass system and represents a part of a production line
where an axially moving material is coiled on a rotating drum. The suit-
able and accurate simulation of the vibrations in a coiling process is
important to predict the vibrations during standard operation and for
special non-steady operation conditions. Variable parameters are present
and bending vibrations of the rotor with the coiling drum and the
transversal oscillations of the elastic strip are coupled. The longitudinal
and transversal motion of the axially moving strip and the bending deflec-
tion of the coiling drum are considered by Rayleigh-Ritz approximations
which involve the application of the extended equation of Lagrange for
open systems. Simulations are performed for a non-linear rotordynamic
system for different operation conditions. The results computed with a
semi-analytic time-integrations algorithm are shown.
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1 Introduction

For the simulation of the vibrations in a coiling process a suitable mechanical
model is necessary. In the coiling process an axially moving strip moves con-
tinuously towards a rotating drum where it is coiled. For instance between two
successive coiling processes the strip passes through a Steckel mill where the
thickness is reduced. In this paper the mechanical model starts at the exit of
the Steckel mill and considers the axial motion of the strip with the transversal
oscillations. Then the strip is coiled and when the strip is attached to the drum it
contributes to the bending stiffness and increases the mass and the outer radius
of the drum. As the exact description of the coiling process is very complicated,
it is assumed that the coiled strip is fixed on the coiling drum when it touches
the drum so that the stiffness of the drum increases with the rotation angle.
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The accumulation of the mass on the coiling drum has a certain influence on the
vibrations of the total system during operation. The resulting mechanical model
is a non-linear dynamic model with varying mass and system parameters, which
are defined by the variable outer radius of the drum, the variable bending stiff-
ness and a variable eccentricity of the rotating drum. Due to the coiled material
the mass of the coiling drum increases or decreases continuously. For the outer
radius of the coiling drum an Archimedian Spiral is assumed, which gives a posi-
tion dependent outer radius and bending stiffness of the rotating shaft with the
drum. For the simulation of the coiling process with the long computation time
a semi-analytic time integration method was implemented.

For the derivation of the equations of motion Rayleigh-Ritz approximations
are used to get a minimal number of degrees of freedom in the mechanical model.
The application of the extended equations of Lagrange, see [1], is necessary as
the mass in the system is not constant, which is a restriction for the well-known
equations of Lagrange, see [2]. In the extended equations of Lagrange the control
volume concept with the surface integrals with partial derivatives as a kernel are
present. The control volume concept for the non-linear dynamic system takes
the flow of mass through the boundary into account. For the application of
this control volume concept it is important to distinguish between the material
control volume and the spatial control volume. If the relative speed between
the surface of the control volume and the transported material does not depend
on the applied degrees of freedom and their time derivatives, it can be seen
from the equations in [1] and also [3] that the surface integral terms vanish and
the classical form of the Lagrange equations results. In [4] additionally some
literature on dynamic systems with variable mass is cited and in [5–9] different
mechanical models with variable parameters have been analysed. In [10,11] an
alternative approach for the influence of the variable mass is considered using
reactive forces, where also some examples are discussed and the effect of the
reactive force is studied for the case of winding up a band. A model for an
industrial application with additional strip guiding rolls was analysed in [7,8],
where the strip tension force was computed for a given entrance speed of the
strip. In [12,13] the effect of the time variable eccentricity is considered where
the time derivatives of the eccentricity are involved and it is shown that very
small vibration amplitudes result.

The temperature of the coiled strip is usually not constant over the long
process time, so that a thermal deflection of the shaft of the coiling drum can
occur due to a certain non-homogeneous temperature distribution. The thermal
deflection represents a kinematic parameter in the mechanical model and has
a high influence on the strip tension force. The strip tension force is a critical
process parameter which should be constant and at least should be positive.
The effect of the thermal deflection of the coiling drum results in high vibration
amplitudes which was analysed in [9] for the uncoupled system where computed
results are shown for the controlled system with thermal deflection. Predeforma-
tion or misalignment of the shaft can be caused by production tolerances, inho-
mogeneous temperature distribution or maintenance errors. In this paper the
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coupled vibrations are analysed and numerical studies are performed in order to
increase the knowledge about the complicated variable mass non-linear dynamic
system of the coiling drum and the axially moving strip. For the dynamic system
the initial and boundary conditions are defined and with the defined operation
conditions a developed semi-analytic time-integration algorithm computes the
solution. An algorithm was used which has been presented in [5,14] and has
been extended in [15] to substructure analysis.

2 Mechanical Modelling of the Coiling Process

The mechanical model of the coiling process includes the coiling drum on elastic
shaft in rigid bearings and the moving strip, see Fig. 1. Rayleigh-Ritz approxima-
tions and the extended equations of Lagrange have been used for the derivation
of the mechanical model. The resulting mechanical model has five degrees of
freedom, the horizontal and vertical deflection x, y, the rotation angle ϕ of the
coiling drum, the transversal deflection of the moving strip q and the entrance
speed of the strip ṡL. The strip tension force FB is given as a predefined value
at the entrance of the system. The torque at the coiling drum MT is controlled
to maintain a suitable process.

Fig. 1. Mechanical model of the rotating drum with the axially moving strip

For the derivation of the equations of motion it is important to distinguish
between the material control volume and the spatial control volume, see [1].
The spatial control volume is an arbitrary moving non-material volume with a
surface that has a speed w which is different from the velocity of the material at
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the surface v. The transport of kinetic energy and mass can be determined and
is related to the spatial derivative of the total kinetic energy at the boundary of
the control volume so that the extended equation of Lagrange, see [1], can be
written in the form

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

1
2

∮
∂Vi

∂v2

∂q̇i
ρ (v − w)ndS −

∮
∂Vi

ρ
v2

2
∂ (v − w)

∂q̇i
ndS = Qi, (1)

where n is the outward normal vector at the boundary of the control volume.
The control volume of the mechanical system can be seen in Fig. 2. The surface
integral terms vanish if the velocity at the boundary of the control volume are
prescribed and independent of the degrees of freedom qi of the system.

Fig. 2. Control Volume for the Mechanical model of the rotating drum with the axially
moving strip

2.1 Model of the Coiling Drum

The coiling drum is modeled as a beam with varying bending stiffness. In a first
step the outer radius of the drum increases in accordance to an Archimedian
spiral

r = r0 +
hϕ

2π
, (2)

where h is the thickness of the strip. For the actual bending stiffness of the
rotating shaft it is assumed that the coiled strip is attached to the drum and
contributes to the stiffness. The total mass of the coiling drum is mC = m0 +
ρAsR and its time derivative is ṁC = ρAṡR, where ρ is the density of the strip
material, A is the cross section of the strip, sR is the coiled length of the strip
and ṡR its time derivative.

The mechanical system of the coiling drum, which is considered in this paper,
is shown in Fig. 1. The equations of motion are written in the coordinates of the
center of the shaft. The exact position of the center of gravity of the coiling
drum including the strip changes during the coiling process and can be com-
puted according to the results shown in [12,13]. Because of the symmetry in the
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mechanical model we consider vibrations of the coiling drum in the x-y-plane
only. At the coiling drum the torsion moment MT is applied, b is the width
of the strip and h is the strip thickness. ṡL is the entrance speed of the strip
and ṡR is the absolute speed of the strip when attaching the coiling drum. The
coiling drum rests on rigid bearings, so that only the stiffness of the shaft is
taken into account. It is assumed that the thermal deflection is caused by a
non-homogeneous temperature distribution within the coiling drum and results
in a total deflection a which is measured in the mid-plane of the drum. The
actual coordinates of the center of gravity of the drum are denoted by xS and
yS , whereas for the center of the shaft the coordinates denoted by xW and yW

are used. Due to the thermal deflection the position of the center of the unde-
formed shaft was defined by xW0 and yW0. In the following computations the
strip tension force FB(t) is predefined and the resulting model has five degrees
of freedom xW , yW , ϕ, qi and sL. In the special case with a prescribed speed
ṡL at the left boundary, the mechanical model results in four degrees of freedom
which is not considered here.

The kinetic energy of the coiling drum is computed by

TC = mC
ẋ2

S + ẏ2
S

2
+ JC

ϕ̇2

2
(3)

with the momentum of inertia defined by

JC =
mC

2
(
r2 + r̄20

)
(4)

where r̄0 is the inner radius of the coiling drum and r is the outer radius given
in Eq. (2). The potential energy is

VC =
cC

2

[
(xW − xW0)

2 + (yW − yW0)
2
]

− mCgyS , (5)

where cC is the actual computed bending stiffness of the coiling drum. The
controlled torque applied at the coiling drum is given by

MT = M0 + αC (ṡL,D − ṡL) + βC (sL,D − sL) + χC (ẋWD − ẋW ) + δC (xWD − xW ) ,
(6)

where sL,D, ṡL,D, xWD and ẋWD are the target values and αC , βC , χC and δC

are defined parameters of the controller.

2.2 Model of the Moving Strip

With the axial speed of the strip on the left entry position ṡL the longitudinal
motion of the strip is defined by

u∗(ξ, t) = sL + (sR − sL)
ξ

l0
, u̇∗(ξ, t) = ṡL + (ṡR − ṡL)

ξ

l0
, (7)

where l0 is the free length of the strip between the entry position and the drum,
see Fig. 1, and ξ is the longitudinal coordinate. sR and ṡR are the kinematic
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variables for the coiled strip length and speed at the point on the coiling drum.
For the transversal direction a Rayleigh-Ritz approximation

w∗
B(ξ, t) = ψ(ξ)q(t) (8)

is used where the shape function

ψ(ξ) = sin2

(
πξ

l0

)
(9)

is considered. The strip moves into the control volume at a fixed vertical position
on the left boundary and the position where it attaches the drum is defined by the
actual radius r and the vertical deflection yW of the drum. The total transversal
deflection is assumed by

w∗(ξ, t) = w∗
B(ξ, t) + (yW − r)

ξ

l0
, (10)

where w∗
B(ξ, t) is the bending deflection of the strip. The total velocity of the

moving strip is

ẇ∗(ξ, t) = ẇ∗
B(ξ, t) +

dw∗
B(ξ, t)
dξ

u̇∗(ξ, t) + (ẏW − ṙ)
ξ

l0
. (11)

The kinetic energy of the moving strip is computed by

TS =
1
2

l0∫
0

ρAu̇∗(ξ, t)2dξ +
1
2

l0∫
0

ρAẇ∗(ξ, t)2dξ (12)

resulting in

TS =
mS

6

[
ṡ2R + ṡL (ṡL+ṡR)+2 (ẏW − ṙ)2

]
+

mSq

2l0

[
3
8
q̇ (ṡL − ṡR)−ṡR (ẏW −ṙ)

]

+
mS q̇

4

(
3
4
q̇ + ẏW − ṙ

)
+

π2mSq2

12l20

[(
ṡ2L + ṡLṡR+̇s2R

)] − mSq2

32l20
(ṡL − sR)2 .

(13)

With the strain in the strip εS = εxx − zw′′ + 1
2w′2 the potential energy is

given by

VS =
1
2

l0∫
0

[
EA

(
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∂ξ

)2

+ EJS

(
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]

dξ (14)

+
1
2
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(
∂w∗

B(ξ, t)
∂ξ

)2

dξ
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with the Youngs modulus E and the bending stiffness of the strip JS = bh3

12 .
Inserting the Rayleigh-Ritz approximations from Eqs. (8) and (9) we get

VS =
cC

2
(sR − sL)2 +

π4EJS

l30
q2 +

π2FB

4l0
q2 (15)

The horizontal motion of the strip in longitudinal direction at the right position
where it touches the coiling drum is defined by

sR =

t∫
0

rϕ̇dt + xW − π2

l0

q2

4
+ a sin (ϕ + δ) (16)

ṡR = rϕ̇ + ẋW − π2

2l0
qq̇ + aϕ̇ cos (ϕ + δ) (17)

for the Rayleigh-Ritz approximations and homogeneous initial conditions for sR.
ϕ is the rotation angle, a is the thermal deflection in the middle of the coiling
drum and xW is the horizontal deflection of the center of the rotating drum. For
the Archimedian spiral of Eq. (2) the coiled length can be integrated to get

sR = r0ϕ +
hϕ2

4π
+ xW − π2q2

4l0
+ a sin (ϕ + δ) . (18)

2.3 Extended Equations of Lagrange

The extended Equation of Lagrange for a non-material reference volume, which
is given in Eq. (1) has to be used. In order to evaluate the surface integral
terms corresponding to Fig. 2 the related velocities have to be defined. As some
mass is transported into the mechanical system under consideration, we have to
distinguish a material-fixed control volume (in this case a control surface) with
the velocity vector

w (t) =

⎡
⎣ 0

ẏW − ṙ
0

⎤
⎦ (19)

and some material flowing through the boundary with the actual velocity vector
of the mass

v (t) =

⎡
⎣ ṡL

ẏW − ṙ
0

⎤
⎦ . (20)

The surface integral terms for these areas can be computed, where material
flows through the surface with a constant speed within the surface. With these
kinematic assumptions the integral terms can be evaluated which result from the
extended Lagrange Equation (Eq. (1)) for each degree of freedom and result to

Px = 0 (21)
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Py = − (ẏW − ṙ) ρṡLA (22)

Pϕ = − (ẏW − ṙ) h
2π ρṡLA (23)

PsL
= (ẏW −ṙ)2−ṡ2

L

2 ρA (24)

Pq = 0 (25)

Finally the generalized forces which will be needed also in the extended Lagrange
Equation (Eq. (1)) are given by

Qx =
∂V

∂xW
− dxẋW (26)

Qy =
∂V

∂yW
− dy ẏW (27)

Qϕ =
∂V

∂ϕ
+ MD (28)

QsL
=

∂V

∂sL
− FB (29)

Qq =
∂V

∂q
− dq q̇ (30)

It can be seen in the equations for the generalized forces, that some damping
factors have been introduced with respect to the transversal motion of the coiling
drum and the strip.

2.4 Equations of Motion for the Total Model

The derivation of the equations of motion based on the above equations for the
kinetic and potential energy as well as the additional equations considering the
flow through the boundary of the control volume the equations for the degrees
of freedom of motion result. As they are lengthly equations they are not given
here explicitly.

2.5 Semi-analytic Time-Integration Algorithm

The developed semi-analytic time-integration algorithm is based on the modal
analysis of a modified dynamic system. For the resulting modally decoupled
equations for the i-th degree of freedom

q̈i + 2ζiωiq̇i + ω2
i qi = fi(t) −

N∑
j=0,i �=j

(αjqj − δj q̇j − κj q̈j) (31)

the solution is computed using the Duhamel-convolution integral with defined
approximations of the evolution of the solution within a time-step. The resulting
algorithm was analysed with respect to the numerical behaviour and it was found
that it is superiour to the conventional known time-integration methods, see
[5,14,15]. This semi-analytic algorithm was used for the time integration and
with a suitable time step converged solutions are guaranteed.
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3 Computed Results

For the derived mechanical model the solution was computed for different oper-
ation conditions and parametric studies have been performed. For the com-
putation results presented in this contribution the parameters of the coiling
drum are l0 = 5 m, r̄0 = 0.45 m, h = 10 mm, b = 0.5 m, E = 105 kN/mm2,
cC = 107 kN/m, ρ = 7800 kg/m3, m0 = 1200 kg. The controller parameters are
given by αC = 15 kNs, βC = 10 kN, χC = 10 MNs and δC = 10 kN. The target
parameters are sL,D = ṡL,Dt, ṡL,D = 5, 25 m/s, xWD = 0 m and ẋWD = 0 m/s.
In all computed examples it is guaranteed that there is a converged solution
based on a suitable time step.

Fig. 3. First example: Strip tension
force

Fig. 4. First example: Computed
torque at the coiling drum

For a first example a constant strip tension force of FB = 100kN is applied as
shown in Fig. 3. The load is increased within 1 s and is kept constant afterwards.
With the given control parameters a steady operation is performed, resulting
in a torque at the drum shown in Fig. 4. The torque increases proportional
with the increasing outer radius of the coiling drum. The coiled strip length
and the strip speed are given in Fig. 5. The corresponding outer radius of the
coiling drum is shown in Fig. 6. The results for the horizontal position of the
center of the coiling drum show small vibrations, see Fig. 7 and the mean value
of the deflection results from the constant strip tension force. For the vertical
position small vibrations are present as the drum is rotating and the gravity of
the increasing mass results in an increasing weight of the drum which causes
an increasing vertical delection yW in Fig. 8. The small vibration amplitudes
correspond to the non-homogeneous initial conditions and to the linear increase
of the outer radius. It is mentioned that for the assumption of a step function
of the outer radius according to r = r0 + h� ϕ

2π � high vibration amplitudes occur
after every rotation. The corresponding computational results are shown in Fig. 9
for a sequence of Heaviside-functions, where the high fluctuations of the strip
tension force can be seen. Some additional effort is necessary for the computation
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of this case as negative strip tension forces are not permitted. Due to the coiling
process and the design of the coiling drum the outer radius shows some more
complicated shapes which have been analyzed.

Fig. 5. First example: Coiled strip
length and strip speed

Fig. 6. First example: Outer radius of
the coiling drum

Fig. 7. First example: Horizontal posi-
tion of the center of the coiling drum

Fig. 8. First example: Vertical position
of the center of the coiling drum

For a second example the strip tension force is FB = FB0

(
1 + sin(πt/2)

2

)
with

FB0 = 50kN and all the other parameters are kept unchanged. The computation
is carried out and the controlled torque at the drum is shown in Fig. 10. From the
results of the transversal strip vibrations in Fig. 11 the coupling effect with the
varying frequency and amplitude is shown. In Figs. 12 and 13 the results for the
motion of the center of gravity of the coiling drum are drawn for the horizontal
and vertical direction. The horizontal motion is caused by the varying strip
tension force and the vertical motion is induced by the variation of the strip



422 H. J. Holl

Fig. 9. First example: Normalized strip tension force for a radius function with a
sequence of Heaviside-functions

Fig. 10. Second example: Torque at
the coiling drum

Fig. 11. Second example: Amplitude
and velocity of transversal motion of
the strip

tension force. In the vertical position it can be seen that the influence on the
weight is not considered in this example.

For the third example the parameters for the mechanical model of Fig. 1
are the same, except for r̄0 = 0.4 m and FB = 50 kN, which are now kept
constant. The computed results are shown for two different thermal deflections of
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Fig. 12. Second example: Horizontal
position of the center of the coiling
drum

Fig. 13. Second example: Vertical
position of the center of the coiling
drum
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Fig. 14. Third example: Computed
torque at the coiling drum for a = 0.1
(blue) and 0.23 mm (red)
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Fig. 15. Third example: Computed
strip tension force for a = 0.1 (blue)
and 0.23 mm (red)
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Fig. 16. Third example: Moving strip
- Transversal oscillations for a = 0.1
(blue) and 0.23 mm (red)
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Fig. 17. Third example: Computed
axial strip speed for a = 0.1 (blue) and
0.23 mm (red)

a = 0.1 mm and a = 0.23 mm. Figure 14 shows the computed torque and in Fig. 15
the strip tension force is shown. If a = 0.23 mm the minimum strip tension force
is computed to be FB ≥ 0 N. The transversal deflection of the moving strip is
given in Fig. 16 which is a results of the strip tension force FB and the motion
of the coiling drum with the thermal deflection a. For the higher excitation
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amplitude of the thermal deflection the transversal oscillations of the strip are
higher. The excitation frequency and the frequency of transient vibration are
very different. In Fig. 17 the axial speed of the strip is shown as there is a
constant FB maintained at the left boundary. This result is similar to that for
the first example, see Fig. 5, but with a much smaller strip tension force and
a thermal deflection of the shaft of the coiling drum. Different fluctuations in
the axial strip speed can be seen which are caused by the two different thermal
deflection values.

4 Conclusion

A mechanical model with a variable mass and varying parameters of a coiling
process was derived. The simulation results for three different examples show
that for a steady state production process with a constant axial speed the vibra-
tion amplitudes are very small. For the non-linear dynamic system with variable
mass vibrations are computed for given forces at the left entrance boundary
and a controlled torque. For a defined variation of the strip tension force at the
entrance the vibration amplitudes are higher than for a constant strip tension
force. The frequency and amplitude for the transversal strip oscillation depend
on the strip tension force. The influence of the process parameters are studied to
reduce the vibrations and results are given for two different thermal deflection
values.
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