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Abstract. One of the most important malfunction that can cause severe
damage in rotating machines is the contact between fixed and rotating
parts. The most common sources for rubbing is mass unbalance and
instabilities due to fluid-rotor interaction. In this way, this paper presents
a continuous rotor model for rubbing applications considering transverse
shear, rotatory inertia, and gyroscopic moments. The contribution of
it is to present a model to be applied in cases where these effects are
not negligible. It is shown that for low slenderness ratio the model is
equivalent to the commonly used Euler-Bernoulli continuous model. The
normal and friction contact forces between the rotor and the stator are
modeled using the Hertz contact theory, which is a nonlinear contact
model, and the Coulomb friction model, respectively. In addition, the
response of the rotor under impact was studied in the frequency domain
using Wavelet Techniques for detection and characterization of rubbing
phenomenon.
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1 Introduction

The occurrence of the rubbing phenomenon in a rotating machine is a serious
problem that can lead to mechanical failures of the machine components. This
phenomenon is seen due to many reasons such as rotor vibrations due unbalance,
excessive displacements due to rotor misalignment, rotor permanent bow, or fluid
related constant radial forces [1]. In turbomachines, like aircraft engines, rubbing
may result from different thermal growth between the rotor and stator and from
a blade loss, which induce high displacement due to the huge unbalance created.
Investigations on the dynamics of rotating machinery have been made for more
than a hundred years. Some primitive models, such as the Jeffcott rotor, con-
sisting of massless shafts with rigid rotors have already been extensively studied
[2,3]. Although these primitive rotor models are not suitable for modeling real
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rotating machines, they provide an important insight into the physics of rotat-
ing systems. The models that are used to predict the properties of real rotating
systems consist in flexible or continuous rotor models. In [4], a complete review
on rotor models is provided. In order to overcome the difficulties in working with
the continuous models, some discretization methods were proposed like transfer
matrix method [5] and finite elements methods [6,7]. The early models were made
mainly to compute the natural frequencies of the rotating systems, and they were
mostly only valid in linear systems. As nonlinear effects have been seen in many
experimental procedures [8–10], the models needed to be improved to predict
such effects. Some numerical works also presented the occurrence of nonlinear
effects in rotating systems [11–18]. These effects were mainly due to oil bearing
non-linear characteristics or rubs and impacts in journal bearing systems [19].

An initial study on rubbing was performed by Szcygielski [20], which con-
sisted in a piecewise linear and globally nonlinear model and presented a good
qualitative agreement between experimental results. A complete review on rub-
bing phenomena was performed by Muszynska [21]. Most of the models proposed
to describe rotating systems with rub were very simplified lumped mass models,
because of the computational problems related to more complex ones due to non-
linear effects. Such models are inadequate because the nonlinear effects excite a
wide spectrum band and hence more detailed models need to be considered [19].
Some continuous rotor models are presented in [1,12,13,19,22]. The rubbing
forces have a non-smooth behavior in stiffness, which makes the systems exhibit
some complicated oscillations. Studies on the rubbing phenomenon showed that
the rotating system presented a rich class of nonlinear dynamics such as sub and
super-synchronous responses, quasi-periodic responses and chaotic motions [23].

A great number of the rotor models found in the literature are based on
the Euler-Bernoulli beam theory. This approach does not take into account the
effects of the rotatory inertia and shear deformation of the rotor, which are not
significant for slender rotors. However, for rotors with high slenderness ratio,
the error in the natural frequencies computed using the Euler-Bernoulli theory
are high. The effect of the rotary inertia and shear deformation reduces the
fundamental natural frequency by 0.3% in a uniform beam with a slenderness
ratio of 1:20, and the effect is bigger for higher modes [24]. Thus, in such cases,
the Timoshenko beam theory needs to be applied.

In this work, a continuous rotor model with rubbing is presented. The effects
of the rotatory inertia, shear deformation and gyroscopic moments are included
in the model. The contact forces are modeled using the Hertz contact theory
and the Coulomb friction model. In addition, Wavelet Techniques were applied
in the responses to characterize the rubbing in the frequency domain.

2 Background

2.1 Continuous Rotor Model

The model that was studied in this work consists in a continuous rotor model of
a thick shaft simply supported at both ends, as depicted in Fig. 1. It is important
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Fig. 1. Schematic representation of the rotor.

to point out that the bearing behavior was not considered in the model, as the
boundaries were considered simply supported ends. Although this approach is
unrealistic, it was followed to simplify the analysis of the rubbing effect in the
vibration model. The equations of motion of the movement of the rotor in the
vertical (v) and horizontal (w) directions are written as, respectively [25],
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where x is the axial axis, t is time, E is the Young’s modulus, I is the area
moment of inertia, ρ is the density, κ is the form factor and has the value 10/9
for circular cross-sections, G is the shear modulus, A the cross-section area, r0 is
the radius of gyration, Ω is the rotating speed, δd is the Dirac delta function and
a is the point of application of the forces, which in the model is considered in
the middle of the shaft. The forces acting on the rotor are due to unbalance Fu,
considered here a point force, and the forces due to the contact Fc. Equations (1)
and (2) can be written in a more convenient form by introducing the following
dimensionless variables,
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where L is the length of the shaft and ν is the Poisson’s ratio. Applying the
relations of Eq. (3) in Eqs. (1) and (2) and rearranging, one may have,
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The variable c denotes the dimensionless rotational speed, r is the slenderness
ratio, and δ denotes the shear influence. The terms in the left side of Eqs. (4)
and (5) represent, respectively, the flexural stiffness effect, the transverse shear
and rotatory inertia effect, the gyroscopic effect of distributed mass, the lateral
inertia effect, the interaction between the transverse shear and gyroscopic effects,
and the interaction between the transverse shear and the rotatory inertia effects.
The solution of the homogeneous part of Eqs. (4) and (5) are given as follows,
respectively,
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where ai = ωi/Ω, being ωi the natural frequency of the i-th mode of vibration
of the system, and αi can be found solving the characteristic equation. The
values of αi, Ai and Bi that satisfy the characteristic equation correspond to a
unique value of c. Moreover, the boundary conditions should be used to obtain
the system natural frequencies, which will be the values of c that make the
determinant of the coefficient matrix of the algebraic system of equations zero
and satisfy the characteristic equation [25]. In addition, the natural frequencies
of a thick rotor are obtained in [4,26].

2.2 Rotor-Stator Rub Model

In order to model the contact of the rotor with the stator, the Hertz contact
theory was used, which states that the relation between the contact force and
the indentation are not linear, i.e.,[27]

F = khεn (8)

where F is the contact force, kh is the Hertz stiffness, ε is the indentation, and
n = 3/2. Despite the good representation of the impact phenomenon given by
the relation of Eq. (8), it suffers the limitation of not representing the energy
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Fig. 2. Contact forces.

dissipated during the impact. To overcome this problem another model was
introduced by [28], which has the following form,

F = khεn + bhεpε̇q (9)

where bh is the Hertz damping coefficient and the dot represent a time differen-
tiation. It is generally considered that p = n and q = 1 [29], thus one can write
Eq. (9) as,

F = khε3/2(1 + bhε̇). (10)

Figure 2 shows the forces acting on the rotor when impacting the stator.
The indentation of the rotor-stator contact will be ε = d − g, being d =√

v(x, t)2 + w(x, t)2 the position of the center of the rotor and g is the gap
size. Thus, the magnitude of the normal force for the rotor will be,

Fn = kh(d − g)3/2

[
1 +

bh

d
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∂t
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)]
. (11)

It is worth noting that Eq. (11) is always positive, thus it becomes zero when d <
g, which means that there is no contact. The horizontal and vertical components
of the contact force can be obtained by, respectively,

Fn,y = −Fn cos θ = −Fn
y

d
(12)

Fn,z = −Fn sin θ = −Fn
z

d
(13)

being θ the angle between the rotor’s position with relation to the horizontal
axis, as shown in Fig. 2. For the tangential force, the Coulomb friction model
was used, thus giving,

Ft = μFn. (14)
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where μ is the friction coefficient. Similarly to the normal force, the horizontal
and vertical components are obtained by, respectively,

Ft,y = −Ft sin θ = −Ft
z

d
, (15)

Ft,z = Ft cos θ = Ft
y

d
. (16)

2.3 Wavelet Transform

The wavelet techniques have been used to describe the pattern of motion to
verified the chaotic systems. The scale parameter is analogous to the concept
of scales used in maps, so in small scales we have more compressed Wavelets
with rapidly variable details. On large scales, however, there are more enlarged
Wavelets, more visible features and slowly changing. In other words, small scales
provide good resolution in the time domain, i.e., the temporal information is
preserved. While large scales provide good resolution of the frequency domain.

It is possible to find de Continuous Wavelet Transform (CWT) of signal f at
time u and scale s. Suppose that f ∈ L2(R), then the CWT is defined as,

Wf(u, s) := 〈f, ψ∗
u,s〉

∫ +∞
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u,sdt (17)

where
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1
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ψ

(
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s

)
, u ∈ R, s > 0 (18)

The frequency component of the signal f , as regard to the wavelet ψu,s at
time u and scale s, is given by Wf(u, s) [30]. The scalogram of f , denoted by ℘,
is defined as [30,31]:

℘ :=‖ Wf(u, s) ‖=
(∫ +∞

−∞
| Wf(u, s) |2 du)

)1/2

(19)

Knowing this relationship, it is possible to interpret ℘(s) as the energy of the
CWT of f at scale s. The scalogram can be used to detect which is the most rep-
resentative scales (or frequencies) of the signal f [30]. The term innerscalogram
of f at scale s was defined in [30], and is given as:

℘inner(s) :=‖ Wf(u, s) ‖J(s)=

(∫ d(s)

c(s)

| Wf(u, s) |2 du

)1/2

(20)

A great number of applications of the wavelet transform in rotating machines
analysis can be found in [31–33].
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3 Results and Discussion

In order to solve the differential equations, the Adams-Bashforth-Moulton inte-
gration scheme was used. The most commonly used method, the Runge-kutta
scheme, was not applicable, since the rotor model takes into account the rotatory
inertia, which turns the problem stiff. One of the most important and challenging
tasks in simulating continuous systems is the selection of the time step (Δt) and
the number of modes (n). The best alternative in selecting Δt is to assuming it
as one-tenth of the inverse of the bandwidth of the response [19]. The method-
ology followed is fixing a time step Δt and obtaining the responses. Then the
time-step is then sub-divided as Δt/2, Δt/4, Δt/8, Δt/16 and the simulations
are performed for each time-step. If the responses obtained do not vary much,
the time-step is fixed. A similar procedure is performed for the selection of the
number of modes, where the number is varied and the responses compared.
The time-step and the number of modes selected were Δt = 0.001 and n = 3,
respectively.

The parameters necessary for the simulations are listed in Table 1. The geo-
metric parameters of the rotor were chosen so that the effects of a non-slender
shaft could be significant. To first study the effect of the impact parameters in
the response of the model, the values of the stiffness (kh), damping (bh), and
the gap distance (g) were varied, obtaining three different cases. The rotating
speed was maintained in 1.5 times the first critical speed of the rotor, giving
a value of 2.6 kHz. Figure 3 shows the responses of the rotor for the first case,
with the parameters as kh = 103 N/m3/2, bh = 102 s/m and g = 3 × 10−3 mm.
The black lines in Fig. 3a and 4c correspond to the gap distance. These param-
eters of stiffness and damping correspond to a soft impact as one can note by
the high indentation in the responses. In the second case, the gap distance was
increased to g = 3.5−3 mm and the other parameters maintained. It is seen that
the responses now present a periodic characteristic, as shown in Fig. 4. This char-
acteristic is reached in the permanent regime where the system presents periodic
impacts throughout its vibrational motion, as shown in Fig. 4e. By comparing
Figs. 3 and 4, one can note as well that, although the frequency of excitation
in both cases were the same, the first case presented a higher frequency of

Table 1. Parameters used in the simulations.

Parameter Variable Value

Length of the rotor L 0.4 m

Diameter of the rotor d 100 mm

Slenderness ratio r 0.0625

Young’s modulus E 71 GPa

Shear modulus G 26.2 GPa

Poisson’s ratio ν 0.334

Density ρ 26.6 N/m3

Friction coefficient μ 0.02
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Fig. 3. Case 1, responses of the model with kh = 103 N/m3/2, bh = 102 s/m and
g = 3 × 10−3 mm: (a) horizontal displacement, (b) horizontal state-space portrait, (c)
vertical displacement, (d) vertical state-pace portrait, (e) normal contact force and (f)
rotor planar trajectory

oscillation. Figure 5 shows the responses obtained for the third and last case,
maintaining the other parameters and altering just the Hertz damping coeffi-
cient to bh = 103. The major difference noted in the responses is the reduction
of the contact force, as seen in Fig. 5e. This reduction happens because the coef-
ficient bh depends inversely on the coefficient of restitution (COR), which is a
parameter that represents the energy loss in the impact. Thus as bh is increased,
the impacts tend to be more elastic. Moreover, Fig. 6 presents a comparison
between the vertical displacement of the model presented here with no rubbing
and a classic Euler-Bernoulli model. As the Euler-Bernoulli model is a model for
slender shafts, the slenderness ratio of the model presented here is reduced for a
proper comparison. It is seen that the model for the thick shaft represents well
a slender one, as one can note by Fig. 6.

Figure 7 presents the application of the Continuous Wavelet Transform
(CWT) in the acceleration responses of the model. The CWT was also applied
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Fig. 4. Case 2, responses of the model with kh = 103 N/m3/2, bh = 102 s/m and
g = 3.5 × 10−3 mm: (a) horizontal displacement, (b) horizontal state-space portrait,
(c) vertical displacement, (d) vertical state-pace portrait, (e) normal contact force and
(f) rotor planar trajectory

in the case with no impact to characterize the rubbing in the responses. The
figures show the three natural frequencies of the three modes considered and the
frequency of excitation. By comparing the cases with impacts (Figs. 7a, b and
c) with the case with no impact (Fig. 7d), it is noted that the rubbing excite a
frequency of the rotor at approximately 20 kHz. The most remarkable example
of this is presented in Fig. 7a, where no other frequency rather than the 20 kHz
appears due to its high energy. This happens because in the Case 1 the rub-
bing was stronger. A same characteristic is seen in Case 2 (Fig. 7d), where the
other frequencies can be seen but a high energy is concentrated in the 20 kHz
frequency. In addition, despite the value of the impact force in Case 3 being
smaller that the force in Case 2, as discussed before, the spectral energy due
to rubbing is higher in Case 3 than in Case 2, the latter which presented little
difference comparing with the case with no impact.



396 M. Varanis et al.

Fig. 5. Case 3, responses of the model with kh = 103 N/m3/2, bh = 103 s/m and
g = 3.5 × 10−3 mm: (a) horizontal displacement, (b) horizontal state-space portrait,
(c) vertical displacement, (d) vertical state-pace portrait, (e) normal contact force and
(f) rotor planar trajectory

Fig. 6. Comparison between the vertical displacement given by the Timoshenko model
proposed and the classic Euler-Bernoulli model for r = 0.0013.
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Fig. 7. Application of the CWT in the responses: (a) Case 1, (b) Case 2, (c) Case 3
and (d) Case with no impact.

4 Conclusions

This paper presented a rotor model with rubbing for a shaft with high slender-
ness ratio. The model considered the effects of the transverse shear, rotatory
inertia and the gyroscopic moments. In order to study the rubbing, the impact
parameters were studied by varying its values and analyzing the responses given
by the system, which presented different characteristics. Also, to validate the
model proposed, its responses with no rubbing were compared to the classical
Euler-Bernoulli model. In addition, the Wavelet Transform was used to charac-
terize the rubbing in the frequency domain, which is noted by the excitation of
a certain rotor frequency.
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