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Abstract. The seal force and oil-film force are two of the main factors which
would cause the instability of rotor system, so it is important to further study the
nonlinear dynamic characteristics of the multi-disk rotor-bearing-seal system. In
order to establish the multi-disk rotor-bearing-brush seal system model of a gas
turbine, the seal force model of brush seal and the nonlinear oil-film force model
based on short bearing theory were adopted considering the lateral deflection of
the disks. The equation of motion was solved by time simulation using the
fourth order Runge-Kutta method. The influences of key parameters including
rotor speed and eccentricity phase-difference on the vibration response and
dynamic behavior of multi-disk rotor-bearing-brush seal system were discussed.
The result showed that the system became more stable when the eccentricity
phase-difference decreased.
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1 Introduction

Brush seals have superior sealing performance, which could enhance the thrust force
and working efficiency of gas turbine [1, 2]. When the gas turbine is working under
high temperature, high pressure, and high velocity condition, there would be some
complex dynamic behavior fault arising, which could seriously affect the security and
reliability of the system [3–5].

Currently the dynamic behaviors of multi-disk rotor-brush seal system are mostly
studied by numerical simulation or test results for a specific structure. Chu and Lu [6]
proposed a dynamic stiffness-based method to detect the rubbing position effectively in a
multi-disk rotor system. The authors found that the dynamic stiffness at the position with
rotor-to-stator rub increased as the rubbing developed, but the variation of stiffness at
other positions was not obvious. Wan et al. [7] theoretically and experimentally studied
the dynamic response of an unbalanced multi-disk rotor system with flexible coupling
misalignment, and the governing equations of the system was deduced by the lumped
mass model considering the nonlinear oil film force. But these researches are still not
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perfect, so the effects of coupling of the contact of bristle pack and rotor surface, and the
fluid flow in the bristle pack to the dynamic behavior of the system need further study.

In this paper, the authors adopted the seal force model of brush seal and the
nonlinear oil-film force model based on short bearing theory considering the lateral
deflection of the disks, in order to build the nonlinear dynamic model of a multi-disk
rotor-bearing-brush seal system. The effects of the rotor speed and eccentricity phase
difference on the vibration response and dynamic behavior of a multi-disk rotor-
bearing-seal system were discussed under different operating conditions by axis orbit,
Poincaré map, and spectrum cascade.

2 Nonlinear Dynamic Model of a Multi-disk Rotor-Bearing-
Brush Seal System

2.1 Nonlinear Dynamic Model of the Multi-disk Rotor-Bearing-Seal
System

Figure 1 shows the rotor-bearing-seal system of a gas turbine. The finite element model is
obtained by discretization based on the structural features of the system, as shown in
Fig. 1a. In this paper, the compressor and turbine are simplified as disk m8 and disk m9,
which located at joint 8 and joint 9, respectively. Similarly, the supporting bearings are
simplified as disk m4 and disk m12, which located at joint 4 and joint 12, respectively.

(a) Finite element model of the system. 

(b) Simplified model of the system. 

Fig. 1. Rotor-bearing-seal system of a gas turbine.
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Considering the lateral deflection of the disks, the nonlinear dynamic equation of
the system can be obtained by the simplified model as below:

M€qþC _qþKq ¼ �Fg þFb þFs þFe ð1Þ

With

C ¼ Kq ¼

�6EI 1
l348

�2x8 þ 2x4 þ hy8l48 þ hy4l48
� �h i

�6EI 1
l348
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h i

6EI 1
l348
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where M is the mass matrix of the system, M ¼ Mx 0
0 My

� �
, Mx ¼ My ¼ diag

½m4;m8; Jd8;m9; Jd9;m12�, C is the damping matrix of the system, C ¼ Cx 0
0 Cy

� �
,

Cx ¼ Cy ¼ diag½c4; c8; ch8; c9; ch9; c12�, K is the stiffness matrix of the system, q is the
displacement of geometry center Oi in the X and Y direction, respectively,
q ¼ ½x4; y4; x8; y8; hx8; hy8; x9; y9; hx9; hy9; x12; y12�T , Fg is the gravity vector of the sys-
tem, Fg ¼ ½0;m4g; 0;m8g; 0; 0; 0;m9g; 0; 0; 0;m12g�T , Fb is the nonlinear oil-film force

vector [8, 9], Fb ¼ ½Fbx4;Fby4; 0; 0; 0; 0; 0; 0; 0; 0;Fbx12;Fby12�T ,
Fbxi

Fbyi

" #
¼ S0

fbxi
fbyi

" #
,

i ¼ 4; 12, Fs is the seal force vector [10], Fs ¼ ½0; 0;Fsx8;Fsy8; 0; 0;

Fsx9;Fsy9; 0; 0; 0; 0�T ,
Fsxi

Fsyi

" #
¼ Fbi cosðaþ h� l� /Þ

Fbi sinðaþ h� l� /Þ

" #
, i ¼ 8; 9, Fe is the unbal-

anced force vector,
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Fe ¼ ½0; 0;m8eu8x
2 cosðxtÞ;m8eu8x

2 sinðxtÞ; 0; 0;m9eu9x
2 cosðxtþ rÞ;

m8eu8x
2 sinðxtþ rÞ; 0; 0; 0; 0�T :

For the facility of calculation, dimensionless transformations are introduced into the
Eq. (1):

xt ¼ s; Xi ¼ xi
d
; Yi ¼ yi

d
;
d
ds

¼ d
xdt

;
d2

d2s
¼ d2

x2dt2

where _Xi ¼ _xi
xd, _Yi ¼ _yi

xd, €Xi ¼ €xi
x2d, €Yi ¼ €yi

x2d,
_Hi ¼ _hi

x,
€Hi ¼ €hi

x2, Eui ¼ eui
d , G ¼ g

x2d,

Mi ¼ mixw
3

ll412
, ki ¼ 6EIi

l3i
, Ki ¼ ki � w3

xll412
, Ci ¼ ci � w3

xll412
, Chi ¼ chi � xw3

ll412c2
, Li ¼ li

l412
,

J�di ¼ Jdixw
3

ll412d
2, J�pi ¼

Jpixw
3

ll412d
2, fsi ¼ Fsiw

3

ll412xd
, fbi ¼ S0Fbiw

2

ll412xr
, S0 ¼ l0xrlðrdÞ2ð l

2rÞ2, l0 is the abso-

lute viscosity of lubricate, d is the clearance of radius, x is the rotor speed.
Then C can be rewritten as below:

C0 ¼

K48
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� �
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M9

�2Y12 þ 2Y9 þHx12L912 þHx9L912ð Þ
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� �

� K912
M12

�2X12 þ 2X9 þHy12L912 þHy9L912
� �

� K912
M12

�2Y12 þ 2Y9 þHx12L912 þHx9L912ð Þ

2
666666666666666666666666666664

3
777777777777777777777777777775

where mi and Mi are the mass of disk and dimensionless mass of disk, respectively, ki
and Ki are the stiffness of shaft and dimensionless stiffness of shaft, respectively, ci and
Ci are the damping of disk and dimensionless damping of disk, respectively, chi and Chi

are the deflection damping of disk and dimensionless deflection damping of disk,
respectively, Jdi and J�di are the moment of inertia of disc diameter and dimensionless
moment of inertia of disc diameter, respectively, Jpi and J�pi are polar moment of inertia
of disc and dimensionless polar moment of inertia of disc, respectively, eui and Eui are
the eccentricity of disk mass and dimensionless eccentricity of disk mass, respectively,
fsi and Fsi are the dimensionless seal force and seal force, respectively, fbi and Fbi are the
dimensionless oil-film force and oil-film force, respectively, r is the phase-difference of
disk 8 and disk 9, r is the radius of bearing, w is the clearance ratio, w ¼ c=r, li and Li are
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the span between disk and dimensionless span between disk, respectively, g and G are
the acceleration of gravity and dimensionless acceleration of gravity, respectively, E is
the elastic modulus, and Ii is the moment of inertia of cross-section of shaft.

As the moment of inertia of discs M4 and M12 can be negligible, the rotation angle
of disc 4 and disc 12 hx4; hy4; hx12; hy12 can be obtained through the bending moment
equation and shear equation in the bending deformation formula of the beam.
Assuming the left side and right side bending moment of disk 4 and disk 12 are equal,
that is MR

4 ¼ M48 0ð Þ and ML
12 ¼ M912 lð Þ, then the expression of the rotation angle can

be derived as follows:

hx4 ¼ ð3y8 � 3y4 � hx8l48Þ=ð2l48Þ
hy4 ¼ ð3x8 � 3x4 � hy8l48Þ=ð2l48Þ

�
ð2Þ

hx12 ¼ ð3y12 � 3y9 � 2hx9l912Þ=l912
hy12 ¼ ð3x12 � 3x9 � 2hy9l912Þ=l912

�
ð3Þ

Suppose

k ¼ k1; k2; . . .; ki; . . .; k24½ �T

¼ x4; _x4; y4; _y4; x8; _x8; y8; _y8; hx8; _hx8; hy8; _hy8; x9; _x9; y9; _y9; hx9; _hx9; hy9; _hy9; x12; _x12; y12; _y12
h iT

then

_k ¼ _k1 ; _k2; . . .; _ki; . . . ; _k24
h iT

¼ _x4;€x4; _y4;€y4; _x8;€x8; _y8;€y8; _hx8; €hx8; _hy8; €hy8; _x9;€x9; _y9;€y9; _hx9; €hx9; _hy9; €hy9; _x12;€x12; _y12;€y12
h iT

Thus, the Eq. (1) can be converted to a first-order equation.

2.2 Numerical Results and Discussion

The fourth order Runge-Kutta method is adopted to solve the dimensionless equation
of Eq. (1). And then the vibration response of the system under a certain parameter
condition can be obtained and the response results can be analyzed. In order to make
the selected parameters close to the actual structure of the gas turbine, the geometry
parameters of the rotor-bearing-brush seal system are given as follows: m8 ¼ 10000 kg,
m9 ¼ 3200 kg, m4 ¼ m12 ¼ 400 kg, k48 ¼ 3:19� 108 N/m, k89 ¼ 3:02� 108 N/m,
k912 ¼ 3:13� 108 N/m, l48 ¼ 1:5 m, l89 ¼ 2 m, l912 ¼ 1:5 m, l ¼ 0:02.

The influence of the rotor speed on the response of the rotor-bearing-brush seal
system usually is more obvious. Figures 2, 3, 4 and 5 show the axis orbit and Poincaré
map of joint 4, joint 8, joint 9, and joint 12 with different rotor rotational speed,
respectively. As observed in Figs. 2 and 5, the variation of amplitude versus rotor
speed at the position of bearing is not obvious, and all of the axis orbits are regular
ellipse. When the rotor speed is 960 rad/s, the Poincaré map of joint 4 and joint 12
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presents a closed circle, which shows the system are in quasi-periodic motion. But
when the rotor speed is 760 rad/s, the Poincaré map of joint 4 and joint 12 are discrete
scattered points, which shows the system are in chaos motion and the system is
unstable.

(a) Axis orbit. 

(b) Poincaré map. 
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Fig. 2. Axis orbit and Poincaré map of joint 4 with different rotor rotational speed.
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(a) Axis orbit. 

(b) Poincaré map. 
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Fig. 3. Axis orbit and Poincaré map of joint 8 with different rotor rotational speed.
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(a) Axis orbit. 

(b) Poincaré map. 
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Fig. 4. Axis orbit and Poincaré map of joint 9 with different rotor rotational speed.
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(a) Axis orbit. 

(b) Poincaré map. 
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Fig. 5. Axis orbit and Poincaré map of joint 12 with different rotor rotational speed.
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(a) Axis orbit. 

(b) Poincaré map. 
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(a) Rotational speed ω=30 rad/s. 

(b) Rotational speed ω=900 rad/s. 
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Fig. 7. Spectrum cascade with different eccentricity phase-difference.

360 Y. Wei et al.



As observed in Figs. 3 and 4, the amplitude at the position of disk increase with the
rotor speed at first, and then decrease with the increase of rotor speed. The axis orbit of
joint 8 and joint 9 is a circular ring, when the rotor speed is 360, 560, and 960 rad/s.
And the Poincaré map of joint 8 and joint 9 is a closed ring when the rotor speed is
960 rad/s, which indicates the system are in quasi-periodic motion. But when the rotor
speed is 760 rad/s, the axis orbit of joint 9 is irregular, which shows the system is in
chaos motion.

The eccentricity phase-difference between the discs of joint 8 and joint 9 would
affect the unbalanced force and the dynamic characteristics of the rotor system.
Figure 6 shows the axis orbit and Poincaré map with different eccentricity phase-
difference when rotor rotational speed is 900 rad/s. As observed in Fig. 6a, with dif-
ferent phase-difference, the axis orbits are circular ring, and the amplitude increases
with the increase of the phase difference. As observed in Fig. 6b, when the phase-
difference is p/6 and p/2, the Poincaré map is a closed ring, which indicates the system
is in quasi-periodic motion. But when the phase-difference is 5p/6, some scattered
points are appeared around the closed circle in the Poincaré map, and the axis orbit
tends to be unstable. Therefore, decrease the eccentricity phase-difference between two
disks during installation is beneficial to the stability of the system.

Figure 7 shows the spectrum cascade as a function of the eccentricity phase-
difference. As observed in Fig. 7a, when the rotor speed is 30 rad/s, the power spec-
trum at the position of fundamental frequency is much greater than other position. The
frequency division gradually decreases from the initial position to the 1 times funda-
mental frequency, and some small frequency division appear at the position of 2 times
and 3 times fundamental frequency. As observed in Fig. 7b, when the rotor speed is
900 rad/s, there is a larger frequency division at the position of 1/3 times fundamental
frequency, but power spectrum is very small at the position of 1 times fundamental
frequency.

3 Conclusions

In order to build the nonlinear dynamic model of a multi-disk rotor-bearing-brush seal
system, the seal force model of brush seal and the nonlinear oil-film force model based
on short bearing theory were adopted considering the lateral deflection of the disks. The
influences of the rotor speed and eccentricity phase-difference on the dynamic response
of a multi-disk rotor-bearing-brush seal system were discussed. The conclusions were
drawn below:

1. The variation of amplitude versus rotor speed at the position of bearing is not
obvious.

2. The amplitude at the position of disk increase with the rotor speed at first, and then
decrease with the increase of rotor speed.

3. Decrease the eccentricity phase-difference of the rotor system between two disks
during the installation is beneficial to the stability of the system.
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