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Abstract. In this work, it was proposed to use Kriging surrogate models for
rotordynamics prediction in rotor-bearing systems. The motivation is to sig-
nificantly reduce computation effort when evaluating the design space. First,
fundamentals of rotordynamics are reviewed and the rotor-bearing system is
modeled using the Finite Element (FE) method. Modal analysis is used to
determine whirl frequencies and critical speeds while system dynamic behavior
is evaluated in terms of the unbalance response. Subsequently, approximations
of the input/output relationships created by the FE simulations are obtained by
applying the Kriging interpolating method. The derived models work as fast-
running surrogates for the full model. Comparison of the results from Kriging
surrogates obtained using different training samples shows that the proposed
methodology provides a computationally efficient and low-dimension mathe-
matical relationship that can accurately predict rotor-bearing system outputs
with considerably low training effort.
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1 Introduction

In engineering design, surrogate modeling techniques are of particular interest when
high-fidelity, thus computationally expensive analysis are required, such as rotordy-
namics analysis. The dynamic behavior of complex rotor systems is usually solved by
means of computational models such as the Finite Element (FE), where the complexity
of the model increases with the wealth of information it contains.

Also, computational cost increases when the values of system parameters are
indeterminate, i.e. they may vary within particular ranges, what is called uncertainty.

Although the recurrent call of the deterministic computational model for processing
uncertain quantities through Monte Carlo sampling is robust and independent of the
model dimension, it has remarkably slow convergence rate and requires large number
of time-consuming simulations to guarantee an accurate and efficient coverage of the
design space, which is sometimes impractical for rotordynamics analysis in most
rotating machinery design.
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In this context, the use of an adequate approximation of the system response
appears as an effective way to accomplish reasonable reduction of numerical effort.
Surrogate models, or metamodels, are analytic relationships that approximate the
multivariable input/output dynamic behavior of higher order models, based on a limited
set of computationally expensive simulations. A surrogate is built from sampled data
obtained by intelligently exploring the design space. It only requires tens to a few
hundreds of full computational model runs for the training. Once validated, the sur-
rogate model becomes a very effective low cost substitute of the original model for a
wide variety of purposes, such as robust optimization, design automation, parametric
studies and uncertainty analysis [1].

There are several surrogate models techniques available in the literature, such as
polynomial response surface models, radial basis functions, Kriging, support vector
regression and artificial neural networks [2].

Here, the method known as Kriging surrogate modeling is approached. Kriging is a
statistics-based interpolating technique capable of handling deterministic noise-free
data, which drew a lot of attention during the past decade.

It was first used in mining and geostatistical applications and has been increasingly
used, especially in structural and aerodynamic optimization. Kriging-based surrogate
provides an explicit function to represent the relationship between the inputs and
outputs with a small initial training sample set in linear or nonlinear system.

The purpose of this work is to evaluate the use Kriging-based surrogate modeling
for rotordynamics prediction (natural frequencies and unbalance response) of rotor-
bearing systems. Results of Kriging surrogates are compared for different training
samples and the efficiency of the Kriging model for rotordynamics prediction is further
analyzed.

Section 2 brings the fundamentals of rotor-bearing system modeling and an over-
view of the Kriging surrogate modeling. The application of Kriging interpolation to the
rotordynamics system is described in Sect. 3, followed by the assessment of the
accuracy of the Kriging surrogate. The main conclusions are finally presented in
Sect. 4.

2 Mathematical Modeling and Kriging Surrogates: A Brief
Description

2.1 Rotor-Bearing Model

The dynamic behavior of rotor-bearing systems depends considerably on the geometry
and properties of the rotor and bearing parameters, which in the sense of dynamics have
corresponding inertial, elastic, gyroscopic and damping forces [3].

A rotor-bearing system model is typically composed of three essential components:
the shaft, the disks and the bearings. In most cases, a common source of rotor excitation
resultant from a mass unbalance is also present on the rotor, which must also be
considered [4].

In current industry practice, each component of the rotating systems is discretized
using the Finite Element method in order to model and predict its dynamic behavior
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and bearing performance. A common approach for discretization is to use a shaft-line
model, in which the mesh is created by simply choosing nodes at key locations along
the shaft line [5].

The shaft with distributed mass and elasticity is represented as a set of two-node
circular cross-section Timoshenko beam elements, each with eight degrees of freedom,
and characterized by both strain and kinetic energies.

Disks represent the rotating components, either attached to the shaft or an integral
part of the shaft, with relatively short axial length and large diameter (e.g., compressor
impellers, turbine wheels and balancing rings). They are characterized by the kinetic
energy, and modeled as rigid elements when studying its effects on rotordynamics [6].
Usually present on disks, mass unbalance is also defined in terms of the kinetic energy.

The elements that support the shaft are the bearings, which may be classified into
rigid or elastic. In practice, a rigid bearing is equivalent to a high stiffness bearing
whereas an elastic bearing is characterized by finite stiffness properties and by viscous
damping properties [7]. In this work, we use hydrodynamic journal bearings as the
shaft elastic support elements. These fluid-film bearings have noticeable speed-
dependent properties, which has to be incorporated in the rotor-bearing model by
changing the linear stiffness and damping elementary matrices as the shaft speed varies
[5].

The speed-dependent linearized stiffness and damping coefficients for the journal
bearing can be calculated analytically as a function of the journal eccentricity and the
modified Sommerfeld number, assuming Ocvirk’s short-bearing approximation
[5, 8–10]. As expected, the stiffness matrix is not symmetric, introducing anisotropy
into the model.

Rotor-bearing system time-domain equations of motion, including the effects of
rotatory inertia, gyroscopic moments and damping, are obtained by assembling element
matrices derived from Lagrange’s equations and is written in matrix form as:

M€q tð ÞþC _q tð ÞþKq tð Þ ¼ F tð Þ ð1Þ

where q are the generalized coordinate displacement vector, M is the inertia matrix, C
contains the linearized bearing damping matrix and the gyroscopic matrix, K is the
stiffness matrix and F is the force vector.

This matrix equation represents a set of n second-order ordinary differential
equations. This system is solved for two different cases: first for eigenvalues and
eigenvectors (i.e., natural frequencies and mode shapes) using modal analysis and
lately for frequency response to harmonic excitation forces (i.e., unbalance forces) [11].

Regarding the modal analysis, due to the nonproportional damping the standard
eigenvalue problem cannot be used, since the normal modes do not decouple the
damping matrix [12]. The solution of the free vibration system leads to a quadratic
eigenvalue problem. To solve it, it is convenient to reformulate the second-order
equation of motion into a set of 2n first-order differential equations:

C M
M 0

� �
_q
€q

� �
þ K 0

0 �M

� �
q
_q

� �
¼ 0

0

� �
ð2Þ
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Thus, writing in the state space form, the equation of motion becomes:

Axþ _xx ¼ 0 ð3Þ

where the state vector with 2n elements is:

x ¼ q
_q

� �
ð4Þ

Solutions are sought of the form:

x tð Þ ¼ vest ð5Þ

Thus, the eigenvalue problem is defined as:

sAþB½ �m ¼ 0 or �A�1B� sI
� �

m ¼ 0 ð6Þ

where the dynamic matrix is �A�1B, m are the eigenvectors and the eigenvalues are:

si; snþ i ¼ xi �fi � j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2i

q	 

¼ �fixi � jxdi ð7Þ

The response of the system to a generic force varying harmonically in time such as
synchronous mass unbalance can be determined by assuming a harmonic solution for
the equation of motion and obtaining a solution in the frequency domain:

Y xð Þ ¼ �x2Mþ jxCþK
� ��1

F xð Þ ð8Þ

2.2 Overview of Kriging Method

The interpolation method known as Kriging is popular in approximating computation-
intensive generated data which are deterministic in nature [13]. It was conceived by the
mining engineer Krige [14] in geoestatistics and later developed by Matheron [15].
Kriging was definitely introduced into engineering design following the work of Sacks
et al. [16], who applied the method to construct an approximation model based on data
from computer experiments [17].

The Kriging approach treats the function of interest as a realization of a stochastic
process [18, 19]. It is a statistical-based approximation method for design and analysis
of computer experiments [20]. Prediction with a Kriging model requires the inversion
and multiplication of several matrices, thus the Kriging model does not exists as a
“closed-form” polynomial equation.

In order to train the Kriging model it is necessary to start with a set of sample data
and observed responses. After a first identification of k input variables that have a
significant impact on system output, the design variable vector x ¼ x1; x2; . . .; xkf gT is
determined as well as the ranges of each variable. The next step is the definition of n of
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these k-vectors, X ¼ x 1ð Þ; x 2ð Þ; . . .; x nð Þ� �T
, that will represent the design space. The

notion of design space covers the set of all possible experiments or simulations that
may interest the analyst. In this regard, the design of experiments is used to intelligently
determine a few points out of the full factorial set that provide sufficient information
about the full response space instead of covering the whole design space. The Latin
hypercube sampling (LHS) is a commonly used technique to select the values of input

variables [21]. The observed responses are stored in a vector y ¼ y 1ð Þ; y 2ð Þ; . . .; y nð Þ� �T
.

As stated before, the observed responses are considered as if they were from the

realization of a random process. The vector Y ¼ Y x 1ð Þ �
; Y x 2ð Þ �

; . . .; Y x nð Þ �� �T

denotes the random field and the random variables are correlated using the Kriging
basis function with Gaussian form:

cor Y x ið Þ
� �

; Y x lð Þ
� �h i

¼ exp �
Xk

j¼1
hj x

ið Þ
j � x lð Þ

j

��� ���pj� �
ð9Þ

This correlation function shows that if x ið Þ
j ¼ x lð Þ

j the correlation is one. Likewise, if
the distance between the two points grows, the correlation tends to zero. The parameter
hj allows the width of the basis function to change from variable to variable. By
looking at the elements of the vector h, the most important variables can be determined.
The smoothness parameter pj is typically fixed at two (Gaussian basis exponent) for
smooth correlations. From this expression, we obtain the correlation matrix:

W ¼
cor Y x 1ð Þ �

; Y x1ð Þ� � � � � cor Y x 1ð Þ �
; Y x nð Þ �� �

..

. . .
. ..

.

cor Y x nð Þ �
; Y x 1ð Þ �� � � � � cor Y x nð Þ �

; Y x nð Þ �� �
2
64

3
75 ð10Þ

One advantage of using a basis function with Gaussian form is that it always lead to
a symmetric positive definite correlation matrix, thereby guaranteeing the computation
of its inverse via Cholesky factorization [17].

Once we have a set of correlated random variables Y , where the correlations depend
on the absolute distance between the sample data and the parameters h and p, the next
step is to tune the Kriging model by choosing h and p to maximize the likelihood of the
observed data y. For this, we use a metaheuristic global search method such as a genetic
algorithm or simulated annealing, which has proved to produce the best results.

After the search, we can finally use the maximum likelihood estimation
(MLE) values for the model parameters h and p to calculate the correlation matrix and
make predictions of the response at new points using the Kriging model.

According to Jones [22], the standard formula for the Kriging prediction at a new
point x�, can be written as:

by x�ð Þ ¼ blþwTW�1 y� 1blð Þ ð11Þ
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where bl is the MLE for the mean l:

bl ¼ ð1TW�1yÞ= 1TW�11
 � ð12Þ

and w is the vector of correlations between the observed data and our new prediction:

w ¼
cor Y x 1ð Þ �

; Y x�ð Þ� �
..
.

cor Y x nð Þ �
; Y x�ð Þ� �

8><
>:

9>=
>; ¼

w 1ð Þ

..

.

w nð Þ

8><
>:

9>=
>; ð13Þ

3 Numerical Results and Discussion

In order to demonstrate the applicability and accuracy of the Kriging-based surrogate in
rotordynamics prediction, a numerical study of a rotor-bearing system was carried out
using the MATLAB® software package. Figure 1 illustrates the FE model to be
evaluated [5].

The rotor-bearing system is composed of a steel shaft (E = 211 GPa, m = 0.3 and
q = 7,810 kg/m3) with 6 beam elements, two rigid steel disk elements, and it is sup-
ported by oil-film journal bearings located in both ends. The nominal bore diameter of
the journal bearing is the same as the shaft.

A synchronous excitation is also added by an unbalance moment of 5 � 10−4 kg-m
positioned at the right disk element. Details of the rotor-bearing baseline parameters are
presented in Table 1.

The rotor-bearing system dynamic behavior was assessed with the shaft spinning at
4,000 rev/min. The modal analysis for this condition indicates a first undamped natural
frequency of 17.08 Hz and the first six modes shapes are illustrated in Fig. 2. Observe

Fig. 1. Rotor-bearing FE model.

Table 1. Rotor-bearing model baseline

Shaft length, m 1.500
Shaft diameter, m 0.050
Left disk diameter, m 0.280
Right disk diameter, m 0.350
Disk thickness, m 0.070
Bearing diameter, m 0.050
Bearing length, m 0.030
Bearing radial clearance, lm 100
Bearing oil film viscosity, Pa-s 0.1
Bearing static load, N 525
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that when the displacement at the bearings location is small, fluid-film damping is
expected to be less effective for the rotor-bearing system damping as a whole.

The frequency response to the mass unbalance in Fig. 3 indicates that the system
passes through a first critical speed near 1,000 rev/min, which corresponds exactly to
the first mode excitation. In the proximities of 4,000 rev/min, a second critical speed is
experienced, however with a higher damping. There is at least an order of magnitude
between the amplitudes at the right disk element (node 5) and the amplitudes at the
bearings location (nodes 1 and 7).

Since the system dynamic behavior is extremely dependent on bearing stiffness and
damping, an evaluation of bearing parameters influence is desirable to rotordynamics
predictions.

Here, both hydrodynamic journal bearings’ length, radial clearance and oil film
viscosity were chosen as the critical design variables, which are allowed to vary at
specific ranges. Table 2 indicates the baseline, minimum, and maximum values for
these parameters.

Fig. 2. Rotor-bearing mode shapes at 4,000 rev/min.

Fig. 3. Rotor-bearing unbalance response magnitude at different locations.
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Kriging methodology was then applied to construct a surrogate for the FE model
based on initial samples of design points. The objective is to assess Kriging-based
surrogate accuracy and efficiency in predicting system dynamic behavior.

The proposed application of Kriging interpolation to the rotor-bearing system for
rotordynamics predictions is illustrated in Fig. 4 flowchart.

The LHS technique was used to generate the values of input variables, which are
evaluated by the FE model. To investigate the effect of sampling size, different training

Table 2. Critical design variables baseline parameters.

Parameter Baseline Minimum Maximum

Left bearing length, m 0.030 0.020 0.038
Left bearing radial clearance, lm 100 50 125
Left bearing oil film viscosity, Pa-s 0.100 0.010 0.200
Right bearing length, m 0.030 0.020 0.038
Right bearing radial clearance, lm 100 50 125
Right bearing oil film viscosity, Pa-s 0.100 0.010 0.200

Fig. 4. Kriging method flowchart.
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samples, containing 40, 70,100 or 200 design points, were used to construct the sur-
rogates, as suggested by Han et al. [23] in his work with bearing parameter
identification.

The 1st mode undamped natural frequency and the unbalance response amplitude at
the right disk element, both calculated with the rotor spinning at 4,000 rev/min, were
used as the observed outputs for the sample data.

3.1 Kriging-Based Surrogate for Eigenfrequency Prediction

Figure 5 shows the tile plot obtained from the Kriging-based surrogate prediction for
the system 1st mode undamped natural frequency. Each tile presents a filled contour of
the eigenfrequency, in hertz, versus two of the six design variables, keeping the
remaining variables at the baseline value. This plot is very useful to understanding how
the variables involved impact the evaluated function, in this case the natural frequency.

Clearly, the fluid-film viscosity plays a very important role in changing system
natural frequency. In general, high lengths, high viscosities and low radial clearances
reduce journal-bearing eccentricity, leading to higher bearing stiffness and damping.
The consequence to the rotor-bearing system is increased natural frequencies.

Figures 6 and 7 show the good agreement between Kriging-based surrogate pre-
diction and the result from the FE model. The normalized root mean square errors

Fig. 5. 1st mode undamped natural frequency landscape, in Hz.

314 M. P. F. Barbosa and W. M. Alves



(NRMSE) are 1.76% and 2.39%, respectively. To give an idea of the goodness of fit, a
coefficient of determination R2 = 0.8 roughly corresponds to a NRMSE of 10% [17].
Notice the fine resolution of the vertical axis, also indicated in the color bar. The
surrogate was trained using 200 design points, which are also displayed.

Fig. 6. Left bearing viscosity vs. clearance influence on 1st mode undamped natural frequency.
NRMSE = 1.76%.

Fig. 7. Right bearing length vs. left bearing viscosity influence on 1st mode undamped natural
frequency. NRMSE = 2.39%.
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3.2 Kriging-Based Surrogate for Unbalance Response Prediction

The Kriging-based surrogate prediction for the system unbalance response amplitude at
the right disk element is shown in Fig. 8 tile plot. Clearance appears to have great
influence in the frequency response.

Figures 9 and 10 show that low radial clearances and high oil-film viscosities
increase system response to unbalance, especially due to the stiffening effect observed
at the bearings. Although journal-bearing damping is also higher in these conditions, its
effectiveness in reducing system unbalance response might be low if the displacement
at the bearings location is small. As observed, Kriging model predictions present good
correlation with the FE results. The normalized root mean square errors (NRMSE) are
2.36% and 5.81%, respectively. Again, a fine resolution was used to enhance the
visualization of the predicted surfaces.

3.3 Effectiveness of Kriging-Based Surrogate for Rotordynamics

The efficiency and accuracy of Kriging-based surrogate models for rotordynamics were
assessed by quantifying the computational effort reduction and the normalized root
mean square error (NRMSE) for Kriging predictions when compared with the full FE
model predictions.

Fig. 8. Unbalance response amplitude at the right disk element landscape, in m.
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Figure 11 shows the increasing of time required in the overall training process with
the number of training points. It includes sampling, full model simulations and the
search for the parameters that maximize the likelihood of the observed data. We
observe that time spent on intelligent sampling such as LHS grows exponentially
whereas simulation time increases linearly. Thus, depending on the number of design
variables and sample size, training the Kriging surrogate model might become costly.

Meanwhile, the great advantage of using a Kriging-based surrogate shows up while
using the Kriging correlations to make predictions at new points. Figure 12 brings a

Fig. 9. Right vs. left bearing radial clearance influence on unbalance response amplitude at the
right disk element. NRMSE = 2.36%.

Fig. 10. Left bearing oil-film viscosity vs. left bearing radial clearance influence on unbalance
response amplitude at the right disk element. NRMSE = 5.81%.

Kriging-Based Surrogate Modeling for Rotordynamics Prediction 317



comparison of the time required by the Kriging model and the FE model to predict the
rotor-system response (i.e., eigenfrequency or unbalance response) at a single design
point. The result points out that Kriging prediction is three order of magnitude faster
than running the full model. Despite the reduction of this advantage with the increase of
the training data size (prediction goes through all the training points, i.e., it interpolates
the data), the computational effort can be reduced in more than 99% even with large
training samples.

Regarding the surrogate model accuracy in terms of NRMSE, it is desirable this
metric to be as small as possible. Figure 13 shows how Kriging predictions for the 1st
undamped natural frequency approximate the FE model results when increasing the
initial training data. The NRMSE for all three correlations reached values close to 2%
for the training samples with 200 points.
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Fig. 11. Time required in the Kriging-based surrogate training.

99.90%

99.92%

99.94%

99.96%

99.98%

100.00%

0.0001

0.001

0.01

0.1

1

10

0 40 80 120 160 200 240

T
im

e reduction

T
im

e 
re

qu
ir

ed
, s

Training points

Computational effort reduction
FEM prediction
Kriging prediction

Fig. 12. Comparison of the prediction time using Kriging-based surrogate and the full model.

318 M. P. F. Barbosa and W. M. Alves



The same is presented in Fig. 14 for the unbalance response at right disk element.
The NRMSE was higher but still converged for values below 8% in this case.

4 Conclusion

In this work, the applicability of Kriging-based surrogate modeling for rotordynamics
prediction in rotor-bearing systems was assessed. These surrogates are used as sub-
stitutes for the rotor-bearing Finite Element model and are capable of quickly pre-
dicting responses, thus facilitating the evaluation of different points into the design
space.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 40 80 120 160 200 240N
R

M
SE

, 1
st

 m
od

e 
na

tu
ra

l f
re

qu
en

cy

Training points

Radial Clearance (left) vs. Viscosity (left)
Radial Clearance (left) vs. Radial Clearance (right)
Viscosity (left) vs. Length (right)

Fig. 13. Normalized root mean square error of the Kriging-based surrogate prediction for the 1st

mode undamped natural frequency.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 40 80 120 160 200 240

N
R

M
SE

, u
nb

al
an

ce
 r

es
po

ns
e 

at
 th

e 
ri

gh
t d

is
k

Training points

Radial Clearance (left) vs. Viscosity (left)
Radial Clearance (left) vs. Radial Clearance (right)
Viscosity (left) vs. Length (right)

Fig. 14. Normalized root mean square error of the Kriging-based surrogate prediction for the
unbalance response amplitude at the right disk element.

Kriging-Based Surrogate Modeling for Rotordynamics Prediction 319



Kriging surrogate predictions for eigenfrequencies and unbalance response were
compared with the FE model using the root mean square error metric for different
training samples and the results indicate that the models can accurately predict rotor-
bearing system outputs with considerably low computational effort. Ultimately, given
Kriging model efficiency in rotordynamics prediction, the results demonstrate the
feasibility and effectiveness of the proposed application for purposes such as multi-
disciplinary design optimization and uncertainty propagation in rotor-bearing systems.
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