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Abstract. Instability issues and excessive vibration amplitudes are
common problems encountered in large rotating machinery applications.
In order to predict problems and overcome them, reliable rotor models
are required. In the previous decades there has been a great improvement
on finite element modeling, which was extensively used in rotordynamics
problems. However, there is a great difficulty when bearings have to be
considered, and the unbalance present in the machine must be known for
good response prediction. This paper proposes a method of bearing and
unbalance parameter estimation from measured responses at the bear-
ings and considering a Finite Element model of the shaft. The proposed
algorithm utilizes the adaptive filtering technique known as the RLS filter
employing the QR decomposition. Simulations were conducted and good
results were achieved for both stationary and speed-dependent bearing
parameters.
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1 Introduction

In modern rotating machinery applications, such as turbines, pumps and com-
pressors, the delivery of large amounts of energy in small-sized equipment is
possible due to high rotating speeds. Serious problems come accompanied with
the high speeds, such as instability issues and excessive vibration due to mass
unbalance. In the previous decades, mathematical tools allied with increasing
computational power allowed the development of complex rotordynamics mod-
els, which have been used for problems prediction and solving. Although accurate
models for the shaft and disk dynamics were developed, good foundation and
bearing models are impractical, which is a problem as these components play
important roles in the overall system dynamic performance.

Many authors proposed methods for the experimental identification of bear-
ing and foundation parameters employing a model of the rotor and disks, known
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as model-based identification. The techniques can be categorized with respect to
the type of model employed (modal or physical), to the method of determining
operational forces and to the measuring system used [10]. The mathematical
foundations for modal analysis of asymmetric rotors, presenting time-varying
matrices, has been proposed [6], and also for the case when there are periodi-
cally varying parameters [14]. For the identification of physical parameters, there
are several methods employing known modal or physical parameters to estimate
physical properties of bearings, foundation and unbalance [9,13,15,16]. Although
the basis for the methods is the same, involving a model of the rotor and vibration
measurements at specific locations, different ways of tackling the mathematical
problem were presented, since it is of an ill-posed nature.

Adaptive filtering techniques may be employed as a mathematical tool for
solving the estimation problem. In rotating machinery applications the RLS filter
has been used for order tracking [1,17]. In the field of structure health monitoring
(SHM), the same filter was employed for damage identification of structures
[2]. As a parameter estimation tool for structural vibration, the RLS with QR
decomposition was employed for the identification of the modal parameters of a
structure when it was excited by an harmonic unwanted force [5], and also for
the identification of natural frequencies of rotors in run-up conditions [4]. The
Kalman filter has also been used for identification purposes in rotating machinery
applications [11].

In this paper a model-based identification method is presented and applied
to a rotor system modeled by the Finite Element Method. The goal is to extract
dynamic bearing parameters, stiffness and damping, by taking its dynamic stiff-
ness matrix as an unknown. Unbalance parameters, amplitude and phase angle,
are also identified in the process, while assuming the foundation is rigid. To do
so, an accurate model of the rotor is needed, as well as the unbalance response
functions at the bearings locations, obtainable in a real situation. In order to
estimate the parameters, adaptive filtering is employed. A RLS filter with QR
decomposition, which ensures good numerical properties, is presented and refor-
mulated based on the equations used in the identification process.

2 Adaptive Filtering Algorithm

In this section the RLS adaptive filtering algorithm is presented, which will be
applied to the identification of rotor bearing parameters in the following sections.
In order to present the concepts, a general FIR filter is employed as a basis filter,
which will have its coefficients varied following an adaptive algorithm [3].

The output y(n) of a FIR filter of length M at the discrete time n is related
to the input u(n) and its previous values through the filter coefficients wk, k =
1, 2, . . . ,M −1. Equation 1 shows the filter difference equation, where w∗

k denotes
the complex conjugate of wk, w is a vector containing each wk, wH denotes
the Hermitian (conjugate transpose of w) and u(n) is a vector containing the
previous values of the input.
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y(n) =
M−1∑

k=0

w∗
ku(n − k) = wHu(n) (1)

In the context of signal estimation, the filter coefficients should be tuned such
that the output follows a reference, or desired, signal d(n). An adaptive filter
can be used to adjust w in real-time according to an algorithm.

2.1 RLS Algorithm

The RLS algorithm is derived by minimizing the squared error of the filter
estimation. Figure 1 shows a block diagram of the RLS filter acting in the context
of system identification. The desired signal d(n) is the output of a system to be
identified and the error e(n) is given by Eq. 2.

−+wH = w∗
0 w∗

1 . . . w∗
M−1

u(n) y(n)

d(n)

e(n)

RLS Algorithm

Fig. 1. RLS filter block diagram.

e(n) = d(n) − y(n) = d(n) − wHu(n) (2)

Considering that the signals were acquired from time M to N and by min-
imizing the squared error with respect to the filter coefficients, it is possible to
derive an expression for the set of wk coefficients that provides the best estimate
of d(n) from the input u(n). This is known as the Normal Equations, given by
Eq. 3, where Φ is the autocorrelation matrix of the input of dimension MxM ,
given by Eq. 4, and z is the cross-correlation vector of the input of dimension
Mx1 and the desired signal, given by Eq. 5.

z = Φw (3)

Φ =
N∑

n=M

u(n)uH(n) (4)

z =
N∑

n=M

u(n)d∗(n) (5)
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The previous equations provide the filter coefficients that best adjust the
input to the desired signal in a least squares sense. In order to implement it
in real-time, Eq. 3 must be solved for each time-step, and Eqs. 4 and 5 must
be modified. A forgetting factor λ is introduced, which lies in the interval 0 ≤
λ ≤ 1. It is responsible for forgetting past values when its value is lesser than
unity or considering all the acquired data when it is equal to the unit. The
second modification is the recursive calculation of Φ and z, which enables the
computation of its values based on their previous values and the new acquired
data. Equations 6 and 7 indicate the new set of expressions.

Φ(n) = λΦ(n − 1) + u(n)uH(n) (6)

z(n) = λz(n − 1) + u(n)d∗(n) (7)

From past values and new data at time n, it is possible to solve Eq. 3 for
w through matrix inversion. However, this would be impractical to solve in real
time, as the numerical cost would by too large. In order to solve this problem,
the matrix inversion lemma can be employed. For a non-singular matrix A that
can be written as a function of matrices B, C and D according to Eq. 8, its
inverse is given by Eq. 9.

A = B−1 + CD−1CH (8)

A−1 = B − BC(D + CHBC)−1CHB (9)

Defining P(n) = Φ−1(n) and A = Φ(n), B = λΦ(n−1), C = u(n), D = I,
the propagation equation for P(n) is given in Eq. 10, where k(n) is a gain vector,
given in Eq. 11.

P(n) = λ−1P(n − 1) − λ−1k(n)uH(n)P(n − 1) (10)

k(n) = P(n)u(n) =
λ−1P(n − 1)u(n)

1 + λ−1uHP(n − 1)u(n)
(11)

The filter coefficients at time n can be finally calculated through Eq. 13,
where ζ(n) is an a priori error, given by Eq. 12.

ζ(n) = d(n) − ŵH(n − 1)u(n) (12)

w(n) = w(n − 1) − k(n)ζ∗(n) (13)

Equations 10 to 13 define the RLS algorithm, which requires an initial con-
dition for P(0). In a practical scenario, numerical errors and noise may lead a
bad conditioning of matrix P, which makes the estimator unstable.

2.2 QRD/RLS Algorithm

The QRD/RLS algorithm can be used to avoid instabilities. This method uses the
QR decomposition to turn the normal equations into an upper triangular prob-
lem. Then, the filter coefficients can be determined through back-substitution.
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The QR decomposition of a matrix M returns two matrices: an unitary matrix
Q, such that QQH = I, and an upper triangular matrix R, as shown in Eq. 14.

QM =
[
R
0

]
(14)

A positive-definite matrix A can be written as the product of an upper trian-
gular matrix R and its Hermitian, which is known as the Cholesky decomposition
[12].The application of this technique to Φ(n) leads to Eq. 15 and the normal
equations can be written as Eq. 16.

Φ(n) = R(n)RH(n) (15)

R(n)RH(n)w(n) = z(n) (16)

The propagation equations of the QRD/RLS algorithm can be written as the
QR decomposition given by Eq. 17, where ζ(n) is the a posteriori error, γ(n) is
a conversion factor, u(n) is the input data vector and p(n) = RH(n)w(n) [3].

Q
[
λ1/2RH(n − 1) λ1/2p(n − 1) 0

uH(n) d∗(n) 1

]
=

[
RH(n) p(n) R−1(n)u(n)

0T ζ∗(n)γ∗1/2(n) γ∗1/2(n)

]

(17)
In the present work, the QR decomposition of the first matrix in Eq. 17 is

accomplished through MATLAB’s command qr. Matrix R is initialized accord-
ing to Eq. 18, where δ is a regulating parameter.

R(0) = δ1/2I (18)

2.3 Vector QRD/RLS Algorithm

The previous algorithm can be extended to the MIMO case, where there are N
input and N outputs. The input is now a data matrix U(n), of dimension NxM
and the desired response is a vector d(n), of dimension Nx1, which are related
with the filter coefficients according to Eq. 19.

d(n) = U(n)w(n) (19)

The propagation equations are now given by Eq. 20, where ε is a normalized
vector of dimension Nx1, Λ is a conversion factor vector of dimension Nx1 and
Δ is a vector of dimension Nx1 given by Eq. 21.

Q
[
λ1/2RH(n − 1) λ1/2p(n − 1) 0

U(n) d(n) Δ

]
=

[
RH(n) p(n) R−1(n)U(n)

0T ε(n) Γ1/2(n)

]
(20)

Δ =
[
0 . . . 0 1

]T (21)
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3 Rotor Modeling and Identification Procedure

In the previous section the QRD/RLS adaptive filter algorithm was presented,
which will be used to identify the unbalance present in rotating machinery and
the stiffness and damping coefficients of the bearings. In this section, a rotor
model will be presented using the Finite Element Method (FEM), which will be
used for simulating different machines. The unbalance response will be discussed,
then the identification procedure will be presented.

3.1 Rotor Model

The rotating structure is modeled by dividing the system into four sub-systems:
shaft, disks, bearings and foundation. In this work a rigid foundation was consid-
ered, hence the fourth sub-system is not taken into account. The shaft is modeled
employing unidimensional beam elements, each one having two nodes. Each node
contains two translation degrees of freedom (DOF), y and z, and two rotation
DOFs, φy and φz. The equations of motion of the i-th shaft element are given by
Eq. 22, where MS

(i) is the shaft mass matrix, KS
(i) the shaft stiffness matrix,

GS
(i) the shaft gyroscopic matrix, CS

(i) the shaft internal damping matrix and
Ω is the rotating speed. Vector fS(i) contains the shaft internal forces connecting
the elements and vector qS

(i) contains the 8 DOFs of the i-th element, given in
Eq. 23 [8].

MS
(i)q̈S

(i) +
(
CS

(i) + ΩGS
(i)

)
q̇S

(i) +
(
KS

(i) + ΩCS
(i)

)
qS

(i) = fS(i) (22)

qS
(i) =

{
y(i) z(i) φ

(i)
y φ

(i)
z y(i+1) z(i+1) φ

(i+1)
y φ

(i+1)
z

}T

(23)

The disks are modeled as rigid bodies and, for the k-th element, the equations
of motion are given in Eq. 24, where MD

(k) is the disk mass matrix, GD
(k)

the disk gyroscopic matrix, fD(k) the internal forces connecting the disk to the
shaft and the external unbalance forces. qD

(k) contains the 4 DOFS of the k-th
element. given in Eq. 25.

MD
(k)q̈D

(k) + ΩGD
(k) ˙qD

(k) = fD(k) (24)

qD
(k) =

{
y(k) z(k) φ

(k)
y φ

(k)
z

}T

(25)

The bearings Finite Element model utilizes a stiffness matrix KB and a
damping matrix CB that, for the m-th bearing element, are given by Eqs. 26
and 27, respectively. Terms with subscripts yy and zz represent direct stiffness
and damping coefficients, while subscripts yz and zy represent cross stiffness
and damping coefficients. These terms are the unknowns of the identification
procedure. Equation 28 represents the equations of motion for the m-th bearing
element, where qB

(k) contains the 2 DOFS of the m-th element, given in Eq. 29.

KB
(m) =

[
k
(m)
yy k

(m)
yz

k
(m)
zy k

(m)
zz

]
(26)
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CB
(m) =

[
c
(m)
yy c

(m)
yz

c
(m)
zy c

(m)
zz

]
(27)

CB
(m)q̇B

(m) + KB
(m)qB

(m) = fB(m) (28)

qB
(m) =

{
y(m) z(m)

}T
(29)

In order to assemble the equations of motion before, a global displacement
vector q is defined, which contains the displacement, y and z, and rotations, φy

and φz, of all nodes. The global mass M, damping C, gyroscopic G and stiffness
K matrices can then be assembled. Equation 30 indicates the global equation of
motion of the Finite Element model, where f(t) is the external force vector. Note
that the shaft internal damping is not considered, hence matrix C contains only
bearing parameters.

Mq̈ + (C + ΩG) q̇ + Kq = f(t) (30)

3.2 Unbalance Response

In the presence of unbalance, which may occur in the disks and also in the shaft,
the rotor will vibrate. For the k-th node, the unbalance force is given by Eq. 32,
where vector g is given in Eq. 31 and has zero values in the nodes where there
is no unbalance. Product mkek is the unbalance amplitude of the k-th node [7].

g =
{{

. . . mkekejαk . . .
} {

. . . −jmkekejαk . . .
}

0T 0T
}T (31)

fu(t) = Ω2gejΩt (32)

When f(t) = fu(t), Eq. 30 can be solved by assuming that the response can
be written as q = quejΩt, where qu is the unbalance amplitude response vector.
By substituting this expression into Eq. 32, it is possible to demonstrate that
the response due to unbalance can be determined by solving Eq. 33, where Z is
the dynamic stiffness matrix, given in Eq. 34.

Zqu = g (33)

Z = −Ω2M + jΩ (C + ΩG) + K (34)

3.3 Identification Procedure

In order to identify the bearing parameters and the unbalance amplitude in a
running machine, it is assumed that the vibration is measured in the y and z
directions in the bearing nodes. The proposed procedure also assumes that a
Finite Element model of the remaining of the rotor is available.

Vector qu from Eq. 33 can be separated in four groups, containing the shaft
inner DOFs (qR,i), connection DOFs between shaft and bearings (qR,B), con-
nection DOFs between bearings and foundation (qF,B) and the inner DOFs of
the foundation (qF,i) [13]. Since the foundation is assumed rigid, vectors qF,B
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and qF,i are null. Matrix Z can be divided following the same approach, which
leads to Eq. 35.

[
ZR,ii ZR,iB

ZR,Bi ZR,BB + ZB

] {
qR,i

qR,B

}
=

{
fR,i

0

}
(35)

Matrices ZR,ii, ZR,iB, ZR,Bi and ZR,BB are known, because they only con-
tain information about the shaft, which is known if the FEM matrices are known.
Matrix ZB is unknown as it contains information about the bearings. Vector fR,i

contains the unbalance amplitude driving the system, which is also unknown.
Equations 36 and 37 can be written from Eq. 35.

ZR,iiqR,i + ZR,iBqR,B = fR,i (36)

ZR,BiqR,i + (ZR,BB + ZB)qR,B = 0 (37)

Isolating qR,i from Eq. 36 and substituting in 37, Eq. 38 can be written, where
matrix Y is given by Eq. 39.

(ZR,BB − YZR,iB)qR,B = −ZBqR,B − YfR,i (38)

Y = ZR,BiZR,ii
−1 (39)

The unbalance force k-th plane can be expressed through Eq. 40 by modifying
Eq. 32. Vector tk is a distribution vector, containing only 1 and −j for the planes
where unbalance is present and zeros otherwise. Term ak is given in Eq. 41 and
it contains the unbalance parameters for the k-th plane.

fuk = Ω2
{{

0 . . . 1 . . . 0
} {

0 . . . −j . . . 0
}

0T 0T
}T

ak = Ω2tkak (40)

ak = mkekejαk (41)

Considering Np unbalance planes, vectors fuk must be assembled. This can
be achieved by considering a matrix T, where each column is a bk vector, and a
vector a, where each entry is an ak element. Hence, the unbalance force can be
written according to Eq. 42.

fu = Ω2Ta (42)

For matrix ZB, it can be expanded according to Eq. 43 in terms of the bear-
ings stiffness and damping matrices, KB and CB respectively. In order to provide
better identification performance, this matrix is written in terms of matrices Z0

and Z1, as shown, which will be identified and, from them, it is possible to
reconstruct ZB.

ZB = KB + jΩCB = Z0 + ΩZ1 (43)

Substituting Eqs. 43 and 42 into 38, it is possible to write Eq. 44, which will
be directly used with the adaptive filter algorithm to predict the unbalance and
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bearing parameters. The vectors and matrices shown are expanded for the Nb

bearings and Np unbalance planes.

(ZR,BB − YZR,iB)qR,B

= −

⎧
⎪⎨

⎪⎩

Z0
(1)qB

(1)

...
Z0

(NB)qB
(NB)

⎫
⎪⎬

⎪⎭
−

⎧
⎪⎨

⎪⎩

Z1
(1)ΩqB

(1)

...
Z1

(NB)ΩqB
(NB)

⎫
⎪⎬

⎪⎭
− Ω2YT

⎧
⎪⎨

⎪⎩

a1

...
aNp

⎫
⎪⎬

⎪⎭
(44)

Matrices ZR,BB, ZR,iB and Y are known from the finite element model of
the shaft. Vector qb

(k) contains the unbalance response amplitude at the k-th
bearing of the rotor and it must be measured for each speed Ω. Finally, the user
must set the number of unbalance planes Np and their location, hence matrix T
is also known.

The vector QRD/RLS algorithm can be applied in order to solve Eq. 44 for
Z0, Z1 and a. The desired response vector d(n) is given by Eq. 45, which is equal
to the left side of Eq. 44. Here, instead of performing tasks for each time step n,
the algorithm is run for each speed Ω(n).

d(n) = [ZR,BB(Ω(n)) − Y(Ω(n))ZR,iB(Ω(n))]qR,B(Ω(n)) (45)

Data matrix U(n) is given by Eq. 46, and the filter coefficients are written
in terms of several vectors containing the entries of Z0, Z1 and a, as shown in
Eqs. 47 and 48. Note that matrices Z0 and Z1 are composed of Nb sub-matrices of
dimension 2 × 2 containing direct (yy and zz) and cross components (yz and zy).

U(n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

qB
(1) ΩqB

(1) 0 0 . . . 0 0 0 0

0 0 qB
(1) ΩqB

(1) . . . 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 . . . qB
(Nb) ΩqB

(Nb) 0 0

0 0 0 0 . . . 0 0 qB
(Nb) ΩqB

(Nb)

⎞
⎟⎟⎟⎟⎟⎟⎠

(−Ω2YT
)

⎤
⎥⎥⎥⎥⎥⎥⎦

(46)
w(n) =

(
v(1)T . . . v(Nb)T aT

)T
(47)

v(m) =
(
Z0

(m)
yy Z0

(m)
yz Z1

(m)
yy Z1

(m)
yz Z0

(m)
zy Z0

(m)
zz Z1

(m)
zy Z1

(m)
zz

)T
(48)

From the identified values it is possible to determine the physical parameters
through Eqs. 41 and 43.

4 Simulation Results and Discussion

In this section a rotor will be studied utilizing a Finite Element model. Two
cases will be analyzed: one with fixed bearing properties and one with speed-
dependent parameters. The shaft has an Young’s modulus E = 200 × 109 N

m ,
density ρ = 7800 kg

m3 , Poisson’s coefficient ν = 0.3, length L = 1.3 m, diameter
D = 0.1 m and presents no unbalance. The disks have an outer diameter of
Do = 0.12 m, thickness of t = 0.05 m, the same material as the shaft and its
inner diameter matches the shaft’s diameter.
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4.1 Fixed Bearing Properties

The model shown in Fig. 2(a) will be used. There is a total of 27 nodes and 31
elements. Bearings are located at nodes 1 (Bearing 1) and 27 (Bearing 2), and
three disks are located at nodes 5, 11 and 21. Bearing and unbalance properties
are given in Tables 1 and 2, respectively.

Table 1. Bearings properties

Bearing kyy

(
N
m

)
kyz

(
N
m

)
kzy

(
N
m

)
kzz

(
N
m

)
cyy

(
Ns
m

)
cyz

(
Ns
m

)
czy

(
Ns
m

)
czz

(
Ns
m

)

1 5× 107 0.5× 107 1× 107 7× 107 500 50 100 700

2 5× 107 1× 107 0.5× 107 7× 107 500 100 50 700

From the Finite Element model with the previously specified parameters, the
unbalance response of each bearing node was obtained. The speed range was set
from 0 rpm to 15000 rpm. The Campbell Diagram is shown in Fig. 2(b), where
fn are the natural frequencies of the rotor as a function of the speed Ω. The
dashed line indicates where the natural frequencies are equal to the shaft speed,
and the intersections of this line with the full one represent the critical speeds.
The measured unbalance responses at the bearings are indicated in Figs. 3(a)
and 3(b).

Nodes

Elements

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28 2930 31

(a) Finite Element model.

00 5000 10000 15000
Ω (rpm)

100

200

300

400

f n
(H

z)

(b) Campbell diagram.

Fig. 2. Finite Element model of the rotor under study and its respective Campbell
Diagram.

The unbalance responses at the bearing nodes are processed by the algorithm
described in the previous section. The chosen filter parameters were λ = 0.999
and δ =1 × 10−7, and the initial guess for the filter weights was set to zero. The
estimated stiffness kyy, kyz, kzy and kzz are shown in Fig. 4(a), and the estimated
damping coefficients cyy, cyz, czy and czz are shown in Fig. 4(b).

The estimated properties change as the speed of rotation changes, since the
filter coefficients is recursively updated for each speed sample. The parameters
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Table 2. Unbalance properties

Node me (kg.m) α (◦)

5 0.004 0

11 0.003 15

21 0.007 23
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(a) Bearing 1.
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(b) Bearing 2.

Fig. 3. Unbalance responses measured at the bearings.

converged to the correct values and, since the largest estimation error relative to
the true parameters was from the order of 0.0001%, their values are not shown
here. Although the converged properties are correct, filter convergence was very
slow, which happened because the method is sample-based. Thus, more samples
of unbalance response leads to a faster convergence. One possible method to
improve results would be to employ a constant rotation during a number os
samples before moving to the next speed. Unbalance parameters were perfectly
estimated and are not shown here.

4.2 Speed-Dependent Bearing Properties

Considering the same rotor, bearing properties are now given by Eq. 49, where
subscript (SD) indicates speed-dependent parameters and ij = yy, yz, zy, zz.
Damping and unbalance remained constant and are equal to the previous case.

k
(SD)
ij =

kij

2.25 × 108
Ω2 (49)

As there are speed-dependent parameters, forgetting factor was set to λ =
0.99. The identified stiffness are shown in Fig. 5(a), where the reference values
are given by the discrete points and the identified ones are given by the full
lines. The identified parameters followed the reference with minor discrepan-
cies. Figure 5(b) shows the identified damping parameters which clearly did not
converge to the expected values.
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Fig. 4. Bearings estimated properties.
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Fig. 5. Bearings estimated speed-dependent properties.
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Table 3. Estimated unbalance parameters at 15000 rpm

Node me (kg.m) α (◦)

5 0.0042 −0.309

11 0.0030 17.760

21 0.0073 23.250

Table 3 shows the estimated unbalance parameters at 15000 rpm and it can
be seen that they are very close to the reference values from Table 2. Figure 6(a)
presents a comparison between the Campbell Diagrams of the fixed and speed-
dependent situations, where it can be seen the stiffness influence at higher speeds.
From the estimated parameters it was possible to estimate natural frequencies,
indicated by the discrete points in Fig. 6(b), where the dashed line represents
the 1x speed component. The natural frequencies could be well estimated, even
the ones that were not excited by the rotor.
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Fig. 6. Campbell diagram and identified natural frequencies.

By analyzing the presented results it can be seen that the proposed method
is very useful for the identification of rotating machinery bearing and unbalance
parameters. Although damping was not well estimated, the remaining param-
eters could be characterized, providing good natural frequencies estimates. It
is important to note that the method relies upon the format specified for the
dynamic stiffness of the bearings, given by Eq. 43. A linear model with respect
to Ω was used but different formats should be employed, as a higher order poly-
nomial, which could lead to better estimates.

5 Conclusions

In this paper an estimation algorithm was presented for the bearing and unbal-
ance parameters of rotor systems. The method, which relies on the use of an
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adaptive filter algorithm, was employed considering the use of a Finite Element
model of the rotor and unbalance response measurement at the bearings. Simu-
lations were conducted including both fixed and speed-dependent bearing prop-
erties. In the former case, the method provided good estimates, except for the
bearing damping, while for the latter the technique was able to perfectly iden-
tify all properties. As the studies conducted so far included simulations only, the
authors would like to emphasize the need of experimental testing in future stud-
ies. Also, the use of different equation format for the bearings dynamic stiffness
should be evaluated.
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tivas através da filtragem adaptativa (2007)
5. Idehara, S.J., Junior, M.D.: Modal analysis of structures under non-stationary

excitation. Eng. Struct. 99, 56–62 (2015)
6. Irretier, H.: Mathematical foundations of experimental modal analysis in rotor

dynamics. Mech. Syst. Sig. Process. 13(2), 183–191 (1999)
7. Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. Wiley, Hobo-

ken (1998)
8. Lee, C.W.: Vibration Analysis of Rotors, vo. 21. Springer Science & Business Media

(1993)
9. Lees, A., Friswell, M.: The evaluation of rotor imbalance in flexibly mounted

machines. J. Sound Vibr. 208(5), 671–683 (1997)
10. Lees, A., Sinha, J., Friswell, M.: Model-based identification of rotating machines.

Mech. Syst. Sig. Process. 23(6), 1884–1893 (2009)
11. Provasi, R., Zanetta, G.A., Vania, A.: The extended Kalman filter in the frequency

domain for the identification of mechanical structures excited by sinusoidal multiple
inputs. Mech. Syst. Sig. Process. 14(3), 327–341 (2000)

12. Sayed, A.H.: Adaptive Filters. Wiley, Hoboken (2011)
13. Smart, M., Friswell, M., Lees, A.: Estimating turbo generator foundation param-

eters: model selection and regularization. In: Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, vol. 456, pp. 1583–
1607. The Royal Society (2000)

14. Suh, J.-H., Hong, S.-W., Lee, C.-W.: Modal analysis of asymmetric rotor system
with isotropic stator using modulated coordinates. J. Sound Vibr. 284(3), 651–671
(2005)

15. Tiwari, R., Lees, A., Friswell, M.: Identification of speed-dependent bearing param-
eters. J. Sound Vibr. 254(5), 967–986 (2002)

16. Ubinha, J.A.: Estudo de metodo de identificação dos parametros de desbalancea-
mento e de fundação de maquinas rotativas (2005)

17. Wu, J.D., Bai, M.R., Su, F.C., Huang, C.W.: An expert system for the diagnosis of
faults in rotating machinery using adaptive order-tracking algorithm. Expert Syst.
Appl. 36(3), 5424–5431 (2009)


	Model-Based Identification of Rotor-Bearing System Parameters Employing Adaptive Filtering
	1 Introduction
	2 Adaptive Filtering Algorithm
	2.1 RLS Algorithm
	2.2 QRD/RLS Algorithm
	2.3 Vector QRD/RLS Algorithm

	3 Rotor Modeling and Identification Procedure
	3.1 Rotor Model
	3.2 Unbalance Response
	3.3 Identification Procedure

	4 Simulation Results and Discussion
	4.1 Fixed Bearing Properties
	4.2 Speed-Dependent Bearing Properties

	5 Conclusions
	References




