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Abstract. Flexible blades coupled to rotating systems are commonly used in
industrial machines, such as compressors, exhausters, and turbines. These
components are usually exposed to different operating conditions, including
high speed, large centrifugal forces, high temperatures, and pressure. Consid-
ering the inevitable manufacturing flaws, cracks can emerge and grow partic-
ularly in blades of these systems. Thus, investigations on the dynamic behavior
of cracked blades become mandatory to prevent failures. In this work, the
development, solution, and instability analysis of a system composed of four
flexible blades coupled to a flexible shaft are presented. The flexible blades are
modeled as Euler-Bernoulli beams with tip masses attached at their ends. Their
deformations are obtained by considering second order nonlinear terms to
ensure that the centrifugal stiffness is correctly represented, thus characterizing a
second order linearized model. The equations of motion are obtained by
applying the so-called Newton-Euler-Jourdain method. The crack presence
brings an additional flexibility to the blades, which is introduced in the model by
using a torsional spring. The resulting blade stiffness is obtained through the
beam elastic equation. The Newmark time integration method is associated with
the Newton-Raphson iteration procedure to integrate the equations of motion.
The system was evaluated for different situations, regarding the depth of the
crack in the blades, as well as the operating condition of the rotor-blade system.
Finally, the instability map and the vibration responses of the system is deter-
mined. The obtained results indicate the instability condition of the rotor-blade
system for a certain combination of rotating speed, angular position of the
blades, and crack depth.

Keywords: Rotor-blade system � Second order linearized model
Crack � Instability map

1 Introduction

Flexible blades coupled to rotating shafts are widely used in industrial machines, such
as compressors, exhausters, and turbines. These components are usually exposed to
different operating conditions, including high-speed situations, large centrifugal forces,
high temperatures, and high pressures [1]. Thus, associated with the inevitable
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manufacturing flaws and with the possible presence of a foreign object in the system,
damage in the system may occur. One of the most dangerous damages is the growth a
crack in the blades. This occurs mainly near the attachment between the rotor and the
blade. If the crack is not identified it can lead to failure, even to catastrophic conse-
quences. In these cases, the application of predictive maintenance is mandatory.

Nowadays, there are various methods used for crack detection, such as the ultra-
sonic, X-rays, and acoustic emission [2]. These methods have not proved to be efficient
in some situations due to the required detailed periodic inspection, which is very costly
[3]. Thus, this problem justified investigations on a class of crack detection methods
based on vibration analysis through either frequency or time domain responses.

There are contributions in literature devoted to the modeling of flexible blades.
Legrand [4] modeled the blades of a rotor-blade system by using the finite element
method, where each finite element was described as Euler-Bernoulli beam. Santos et al.
[5] and Saracho [6] used an alternative approach based on the Newton-Euler-Jourdain
method to obtain the equations of motion of a rotor-blade system. The authors pointed
out that the deformation of the blades cannot be neglected because the coupling
between their displacement and deformation causes an effect known as centrifugal
stiffening. This effect makes the natural frequencies of the beam increase according to
the rotating speed, which is the main characteristic observed in the dynamic behavior of
this kind of system.

The dynamic behavior of cantilever beams with transversal cracks was extensively
discussed in various papers. Wu and Huang [2] employed an energy approach followed
by the Extended Hamilton principle in conjunction with a weighted residual method to
obtain the equations of motion of a cracked beam. Dimarogonas [7] and Chondros [8]
explained that the crack generates a new local flexibility in the beam. The authors used
the linear fracture mechanics theory to represent the crack. Dimarogonas, Rizos, and
Aspragathos [9] also observed that the most important effect introduced by cracks on
beams is a new local flexibility that changes the dynamical behavior of the system. The
authors formulated a model composed of two beams connected by a torsional spring to
represent this effect, whose stiffness coefficient represents the crack. The crack strain
energy function was used to determine the additional local flexibility on the beam [10].
Mayes and Davies [11] proposed a finite element model to include the new local
flexibility in the shaft, in which the diameter of the shaft finite element was reduced at
the crack position according to the crack flexibility.

In this context, the present work aims to investigate the influence of cracks on the
dynamic behavior of a rotor-blade system based on its vibration responses. In this case,
the adopted model for the rotor-blade system is similar to the one described in Saracho
[6]. The model is composed of a mass-spring system that represents the rotor and four
rotating beams with tip masses attached to them. The blades are modeled as Euler-
Bernoulli beams [5] and their deformations were obtained by considering second order
non-linear terms to ensure that the centrifugal stiffness is correctly represented [12].
Then, a second order-linearized model was obtained. The Newton-Euler-Jourdain
method was applied to determine the equations of motion of the rotor-blade system.
The crack is represented by an additional local flexibility of the blade according to the
formulation presented in [9].
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The equations of motion were solved by using the Newmark time integration
method and Newton-Raphson iteration technique by considering different damage
scenarios. The first one evaluated the rotor-blade system without crack (pristine con-
dition) and the others considered a crack in one of the blades with different depths. The
obtained results indicated the instability condition of the rotor-blade system for a
certain combination of rotating speed and crack depth.

2 Mathematical Model

2.1 Rotor-Blade Model

The model used to represent the coupling between the rotor and the four flexible blades
is shown in Fig. 1. The system is composed of a rotor with mass m0 and radius r, which
is elastically supported by the stiffness k0, and four blades with lengths Li, thickness hi,
and stiffness ki (i = 1, 2, 3, and 4). Tip masses mpi are attached to the blades, presenting
length Lti and width bti. The distance between the extremity and the centroid of the tip
mass is given by rti. The system has five degrees of freedom z(t) = {z0(t) z1(t)
z2(t) z3(t) z4(t)}

T, where z0(t) represents the horizontal displacement of the rotor (point
C in Fig. 1) and zi(t) describes the displacements of the blades.

Three reference frames are used to obtain the equations of motion of the rotor-blade
system [6], as follows: the inertial frame BI (x, y, z), the rotating frame B1 (x1, y1, z1)
centered at point C (defining the angular position / through the y1 axis), and the frame
Bpi (xpi, ypi, zpi) fixed to each tip mass.

O3

O4

O1

O2

C

Fig. 1. Model illustrating the rotor-blade system. (Adapted from Santos el al. [5]).

180 B. R. F. Rende et al.



According to Santos et al. [5], the reference frame Bpi facilitates the description of
the beam deformation field. Therefore, this frame was employed to find the displace-
ments and the external forces of each blade pi. The displacements of the blades are
interpolated by using a cubic polynomial form to minimize the number of degrees of
freedom of the model and to approximate only the first bending mode of the blade [6].
The displacements are shown in Eq. (1).

Bpi
upi ¼

0
0

wiðniÞziðtÞ

0
@

1
A wiðniÞ ¼

3
2

ni
Li

� �2

� 1
2

ni
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Then, the absolute velocity and the acceleration of each blade are given by Eqs. (2)
and (3), respectively.

Bpivpi ¼ BpivOi þ
d
dt Bpiui
� �þ Bpix x ðBpiLi þ BpiuiÞ ð2Þ

Bpiapi ¼ BpiaOi þ
d2

dt2 Bpiui þ 2Bpix� Bpiui

þ Bpi x
: � BpiLi þ Bpiui

� �þ Bpix� Bpix � BpiLi þ Bpiui
� � ð3Þ

where Bpivpi and Bpiapi Bpix are the velocity and acceleration of the point where the
blade is fixed to the rotor (point Oi in Fig. 1), respectively, Bpix and Bpi x

:
represent the

angular speed and acceleration of the rotor, respectively. These vectors are shown in
Eq. (4). It is important to note that the only external force applied to the system is the
weight.
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In the rotor-blade model, the rotatory inertia was taken into account. Thus, an
equivalent mass is estimated as follows:

�mi ¼ miwðLiÞ2 þðIti þmirti Þw0ðLiÞ2 þ 2mi rtiwðLiÞw0ðLiÞ

Iti ¼ mi
L2ti þ h2ti

12

� � ð5Þ

where w(Li) is the cubical polynomial showed in Eq. (1) and hti is the height of the tip
mass, which will be considered the same height of the blade.

The energy stored in the system was separated in two terms, p0 that represents the
energy of the elastic support and ppi, which is the potential energy of the blades. In this
case, ppi = pli + pgi, where pli is associated with the blades deformation and pgi is the

Stability Analysis of a Cracked Blade Coupled with a Rigid Rotor 181



energy related to the blade geometrical stiffness. The energy pgi ensures that the second
order non-linear terms of the deformation vector are not neglected (see Eqs. (6) to (9)).

p0 ¼ 1
2
k0 z20 ð6Þ
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2

Z Li
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ppi ¼ pli þ pgi ð9Þ

where Npi is the normal force acting on each blade. The expression of the normal force
can be approximated by using Eq. (10) [13].

NpiðniÞ ¼ mpi
_/2 ðLi þ rÞ ð10Þ

The Newton-Euler-Jourdain method is applied to obtain the system equations of
motion, as given by Eq. (11). In this case, an eccentricity e in a given angular position
U is considered in the model.

M €qþ C1 þCp
� �

_qþ KþKX þKa þKg
� �

q ¼ fX þ fa þ fp ð11Þ

in which M is the mass matrix, C1 is the Coriolis matrix, K represents the structural
stiffness matrix, KX is the stiffness matrix due to the angular speed, Ka is the stiffness
matrix due to the angular acceleration, Kg is the geometric stiffness, fX is the force
vector associated with angular speed, fa is the force vector due to angular acceleration,
and fp is the weight force vector. A proportional damping matrix Cp was added to the
system, as shows Eq. (12).

Cp ¼ aMþ bK a ¼ 5 b ¼ 1� 10�5 ð12Þ

2.2 Crack Model

The structural stiffness K presented in Eq. (11) should be modified due to the local
flexibility introduced by the crack. Following Dimarogonas, Rizos, and Aspragathos
[9], the blade was separated into two beams (see Fig. 2b) with lengths LB1 = L1 and
LB2 = L – LB1. These new beams are also modeled as Euler-Bernoulli beams, linked by
a torsional spring with stiffness coefficient kT.

Equations (13) and (14) present the stiffness coefficient kT determined according to
the crack depth a and position LB1 along the blade. In this case, it was considered that
the beams had only bending movement.
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where c is the compliance, h is the beam height, E and I are, respectively, the Young’s
modulus of the material and the moment of inertia of the blade cross section. I(a/h) is
the dimensionless local compliance.

As can be seen in Fig. 2, the blade was divided into two beams with lengths LB1
and LB2, connected by the angular stiffness kT to represent the cracked blade. Thus, an
equivalent stiffness coefficient was determined by considering the scheme presented in
Fig. 2b, as shows Eq. (15).

keq ¼ 1
1
kB1

þ 1
kB2

þ 1
kT

ð15Þ

where kB1 is the stiffness of the beam with length LB1 (beam #1) and kB2 is the stiffness
of the beam with length LB2 (beam #2). It is worth mentioning that the coefficients kB1
and kB2 were obtained by using the Euler-Bernoulli theory through the elastic line
equation, as given by:

d2y1
dx21

¼ M
EI

M ¼ Px1 þPLB2 ð16Þ

where y is the deflection of the beam, M is the bending moment applied to the beam,
and P is a force applied in the end of the beam (see Fig. 2).

Integrating Eq. (16) twice with respect to x1 (0 � x1 � L1), the vertical dis-
placement y1 and the deflection a1 of the beam #1 are obtained as follows:

y1 ¼ Px31
6EI

þ PLB2 x21
2EI

þC1 x1 þC2
dy1
dx1

¼ a1 ¼ Px21
2EI

þ PLB2 x1
EI

þC1 ð17Þ

a) Crack depth and beam height. b) Model used to determine the stiffness. 

L

Fig. 2. Schematic model used to represent the crack.
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where C1 and C2 are constants that can be evaluated by considering a1 = 0 and y1 = 0
at x1 = LB1. Thus,

C1 ¼ � P
EI

L2B1
2

þ LB1LB2

� �
C2 ¼ P

EI
LB2L2B1

2
þ L3B1

3

� �
ð18Þ

At x1 = 0, kB1 = P/y1. Consequently,

kB1 ¼ EI
LB2 L2B1

2 þ L3B1
3

� 	 ð19Þ

The stiffness kB2 of the beam #2 can be found by using a similar procedure through
Eq. (16). Then, for the beam #2 (Fig. 2b), with 0 � x2 � L2:

d2y2
dx22

¼ M
EI

M ¼ Px2 ð20Þ

Integrating Eq. (20) twice with respect to x2, the displacement y2 and deflection a2
can be obtained as follows:

y2 ¼ Px2
2EI

þC3x2 þC4

dy2
dx2

¼ a2 ¼ Px2
2EI

þC3

ð21Þ

The constants C3 and C4 in Eq. (22) are determined by using the boundary con-
ditions associated with the beam #2. At x2 = LB2, y2(LB2) = y1(0) and the resulting
deflection at the same point is given by:

a2ðLB2Þ ¼ a1ð0Þþ/ / ¼ PLB2
kT

ð22Þ

where / is the deflection due to the torsional spring. Thus,

C3 ¼ PLB2
kT

� P
EI

L2B2
2

þ L2B1
2

þ LB1LB2

� �

C4 ¼ P
EI

L2B1LB2 þ
L3B1
3

þ L3B2
3

þ LB1L
2
B2

� �
� PL2B2

kT

ð23Þ

At x2 = 0, kB2 = P/y2. Consequently,

kB2 ¼ 1
1
EI L2B1LB2 þ L3B1

3 þ L3B2
3 þ LB1L2B2

� 	
� LB2

kT

ð24Þ
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Substituting Eqs. (24), (20), and (13) into Eq. (15), the equivalent stiffness of the
blade with crack is obtained.

3 Numerical Application

The goal of this work was to analyze the influence of a crack on the dynamic behavior
of a rotor-blade system. Equation (11) was solved by considering two structural con-
ditions, namely healthy blades (pristine condition) and a crack placed in the blade #1
distant LB1 = 0.05 L1 from its root (i.e., the point where the blade is attached to the
rotor). Table 1 presents the parameters of the considered rotor-blade system.

Figure 3 shows the vibration modes and corresponding natural frequencies of the
healthy rotor-blade system. Note that the fourth and fifth modes are associated with the
coupling between the rotor and the blades. The remaining vibration modes are asso-
ciated with the blades motion.

Table 2 presents the parameters of the crack included in blade #1. This configu-
ration was chosen aiming at emphasizing the effect of the crack brings on the dynamic
behavior of the system. Figure 4 presents waterfall diagrams for which frequency
responses functions were obtained in blade #1 according to the rotation speed of the
rotor-blade system. Curves A and C represent the natural frequencies for the blade #1
with 25% and 50% crack depths, respectively. Curves B and D correspond to the same
natural frequencies associated with the healthy system. As expected, the crack presence
results in smaller natural frequencies as compared with the pristine condition. Addi-
tionally, the difference between the curves increases according to the crack depth. It is
worth mentioning that the crack presence leads to a classic case of mistuning since the
natural frequencies of the healthy and damaged blades become different [14]. Thus,
unstable behavior may happen.

Table 1. Parameters of the rotor-blade system.

Rotor Blades (i = 1, 2, 3, 4)

mr 1.907 kg hi (i − 1)p/2 rad
ky 2.16 � 104 N/m mpi 0.1* kg
r 0.04 m ki 1012 N/m
E 2 � 1011 N/m2 Li 0.2 m
e 1 � 10−5 m bti 0.006 m
U 0 rad h 0.003 m

Lti 0.03 m
rti 0.015 m
Iti 7.575 � 10−6 kg m2

E 2x1011 N/m2

Ii 1.35 � 10−11 m4

*Tip mass attached to the blade.
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In this context, it is interesting to perform an instability analysis to evaluate the
influence of the crack presence. The real parts of the system eigenvalues were analyzed
[15], in which positive values indicate unstable condition. This study was performed by
varying the rotation speed from 0 to 2500 RPM (in steps of 10 RPM) and the crack
depth from 0 to 50% (in steps of 5%) of the blade height. In the present work, two
different cases were analyzed. The first one is associated with the open crack (always-
open crack during the simulation process - constant stiffness reduction of the blade #1).
In the second case, the crack was able to open and close abruptly (breathing crack),
according to the displacement of the blade #1 tip (see z1(t) in Fig. 1).

a) First mode – ωn = 7.42 Hz. b) Second mode – ωn = 7.42 Hz.

c) Third mode – ωn = 7.55 Hz. d) Fourth mode – ωn = 16.14 Hz.

e) Fifth mode – ωn = 16.14 Hz.

Fig. 3. Vibration modes and corresponding natural frequencies of the healthy sytem.
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a) 25% crack depth.

b) 50% crack depth.

Fig. 4. Waterfall diagrams for the blade #1 by considering two crack depths.

Table 2. Parameters of the crack model.

Pristine
condition

25% crack
depth

50% crack
depth

keq 1012 N/m keq 650 N/m keq 261 N/m
a/h 0 a/h 0.25 a/h 0.5
LB1 0.2 m LB1 0.01 m LB1 0.01 m
LB2 0 m LB2 0.19 m LB2 0.19 m
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To introduce the breathing in the model was considered in Eq. (11), Positive dis-
placements indicate a full closed crack (pristine condition) and negative values leads to
a full open crack (stiffness reduction). Regarding the results for the instability regimes,
for both cases (open crack and breathing crack) a new eigenvalue problem was solved
for each time-step. Then, the real part of the eigenvalues where checked as a criterion
for stability. For the breathing crack condition, the crack changes from closed (healthy
blade) to open along the simulation. The unstable condition was observed only when
the breathing crack is open. Thus, regarding the stability of the system, it is expected
that the same result be obtained for both crack conditions, as can be seen in Fig. 5.

It is important to highlight that the unstable condition was associated only to the
fourth and fifth vibration modes (see Fig. 3; positive real part obtained only in the
eigenvalues of the fourth and fifth modes), and these conditions were obtained for crack
depths above 20%.

Figures 6, 7 and 8 show the displacement of the blade #1 tip (see z1(t) in Fig. 1)
with the system operating at 250 RPM, 970 RPM, and 2000 RPM, respectively, where
25% and 50% crack depths in blade #1 are considered, as well as its pristine condition.
Stable and unstable conditions were achieved for these cases, as presented by Table 3
(see Fig. 5). The rotor-blade system was simulated for 20 s. Note that the vibration
responses obtained by considering the full open and breathing cracks are different for
250 RPM and 970 RPM, mainly for the lower speeds for which a 50% breathing crack
introduce a new peak in the response. However, similar results were obtained with the
rotor-blade system operating at 2000 RPM, which agrees with the waterfall diagram,

Fig. 5. Stability map of the rotor-blade system by considering the full open (•) and the breathing
crack (o).
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a) full open crack. 

b) breathing crack. 

Fig. 6. Vibration responses obtained with the system operating at 250 RPM.

Table 3. Stable and unstable conditions according to the rotation speed.

Crack depth 25% 50%

250 RPM Stable Stable
970 RPM Unstable Unstable
2000 RPM Stable Unstable
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since the two curves shown in Fig. 4 get closer due to the rotation increase. Addi-
tionally, it can be observed that the vibration amplitude does not increase necessarily
with the crack depth (see Figs. 7a and 8a, b).

a) full open crack. 

b) breathing crack. 

Fig. 7. Vibration responses obtained with the system operating at 970 RPM.
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4 Conclusions

It is well known that rotating machines coupled with blades may operate under certain
conditions that can lead to the growth of cracks. The presence of cracks is undesirable
since it may lead to the failure of the system.

Thus, it is necessary to apply predictive maintenance techniques as based on
vibration responses to ensure safety operating conditions of these machines. In this
context, this contribution demonstrated the effects that a crack introduced in a blade
presents on the dynamic behavior of a rotor-blade system. From the results, it was

a) full open crack. 

b) breathing crack. 

Fig. 8. Vibration responses obtained with the system operating at 2000 RPM.
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observed that the crack introduced local flexibility in the blade, which makes the
system unstable. Full open and breathing crack behaviors were analyzed. It was
demonstrated that the resulting stability map is the same for both crack conditions. The
time vibration responses of the system were also evaluated, revealing that the full open
and breathing crack induce different dynamic behaviors on the system. Further research
effort will be dedicated to the experimental verification of the presented results.
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