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Abstract. An analytical method is presented to investigate nonlinear transverse
and in-plane vibrations of a thin rotating disk by using a theory of geometrically
nonlinear thin plate. The nonlinear wave solutions of the rotating disk are
obtained by Galerkin analysis. The disk is assumed to be isotropic and rotating
at the constant speed. The influence of amplitude ratios and rotating speed on
natural frequency is studied. Natural frequency and static waves for different
nodal-diameter numbers are also calculated. This analytical method not only
takes into account the vibration perpendicular to the middle surface of the disk
but also the vibration in the middle surface of the disk. In addition, this ana-
lytical method provides a more accurate way to solve the severe vibration
problems in rotating disks of turbine engine rotors.
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1 Introduction

Thin rotating disks are frequently applied in engineering, from gas turbine rotors to
computer memory disks. Since the turbine disks are important components of gas turbine
rotors, the vibrations of turbine disks have an important effect on the behavior of the
entire rotors. This kind of periodic motion of rotating disks has been investigated widely.

von Karman [1] first established a nonlinear plate theory when the nonlinear stretch
effects in the transverse, equilibrium balance were considered. The first nonlinear
analysis of transverse vibration in a spinning disk is due to Nowinski [2], he analyzed
the large amplitude vibrations of a spinning disk by using the von Karman field
equations. But he only analyzed the transverse vibration of the rotating disk without
analyzing the in-plane vibration of the disk. Later Nowinski [3] analyzed the thermal
stability of the rotating membrane disk. Maher and Adams [4] investigated the influ-
ence of coupling between in-plane displacements and transverse deflections consid-
ering the effects of bending stiffness and of the air flow between the disk. The von
Karman equations have also been used to investigate the nonlinear vibration of a
spinning disk by Renshaw and Mote [5], Hamidzadeh [6, 7] and Luo [8]. It should be
noted that professor Hamidzadeh’s work was based on the research of Nowinski, he
expanded Nowinski’s research and got some meaningful results. Luo [9, 10] developed
a more accurate theory of thin plates. In his theory, the exact geometry of the deformed
middle surface is used to derive the physical strains of plates and equilibrium equations
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in the plate was established based on the exact geometry of the deformed middle
surfaces. By using his own theory, he analyzed the response and natural frequencies for
the nonlinear vibrations of a rotating thin disk. Koo and Lesieutre [11] analyzed the
transverse vibration of a composite-ring disk for data storage, they calculated its natural
frequencies and critical speeds. Maretic, Glavardanov, Milosevic-Mitic [12] studied the
frequencies of transverse vibrations of a disk assembled from two rings of two different
materials, they analyzed the influence of angular velocity, moduli of elasticity, the
volume densities of the materials and the radius of the connection on the vibration
frequencies of the rotating disk. Pei, Wang and Yang [13] analyzed the natural fre-
quency, dynamic stability, critical speeds and steady state response amplitude of a
rotating disk under several boundary conditions.

This research work is based on the work of Nowinski and Hamidzadeh, the pre-
sented work get the solutions of the nonlinear transverse and in-plane vibrations of a
thin rotating disk and the static waves for different nodal-diameter numbers are pre-
sented, also, the variations of dimensionless natural frequency versus dimensionless
speed and amplitude ratio are analyzed.

2 Equations of Motions

The vibration of a thin elastic rotating disk of radius a and thickness h is considered.
The disk rotates about its central axis at a constant angular velocity X. The thin rotating
disk is shown in the following Fig. 1.

The transverse deflection of the rotating disk is large compared with its thickness h.
According to the nonlinear plate theory, the strain-displacement relationship in polar
coordinate system is as follows:
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Fig. 1. A thin rotating disk
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Where err , ehh and erh are radial, hoop, and shear strains. u, v and w are the dis-
placements in cylindrical coordinates. The stress-strain relation is expressed as follows:

rrr ¼ E
1� l2

err þ lehhð Þ ð2aÞ
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ehh þ lerrð Þ ð2bÞ
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Where rrr, rhh and rrh are radial, hoop, and shear stress. Also E and l are Young’s
modulus and Poisson ratio. The unit thickness membrane forces of the disk can be
calculated by using the following equations:
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By substituting Eqs. (1a), (1b), (1c) and (2a), (2b), (2c) in (3), one can get mem-
brane forces which are presented by displacements:
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Where D is the stiffness for the disk, D ¼ E=12 1� l2ð Þ.
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Because the in-plane vibration displacement amplitudes are much smaller than that
of transverse vibration, so the inertia terms in equations of in-plane motions are
ignored. The equilibrium equations of motions in terms of membrane forces for the
disk can be written as:
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The in-plane stress function / is introduced in order to satisfy Eqs. (5a) and (5b) by
introducing the following expressions [12]:
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The von Karman equation of the rotating disk is obtained by inserting Eqs. (4a), (4b),
(4c), (4d), (4e), (4f) and (5d–5e) into Eq. (5c), Under the hypothesis of free vibration, the
governing equation of the rotating disk in the polar coordinate system becomes:

D
h
r4wþ q

@2w
@t2

¼ @2w
@r2

1
r
@/
@r

þ 1
r2
@2/

@h2

� �
þ 1

r
@w
@r

þ 1
r2
@2w

@h2

� �
@2/
@r2

� 2
@

@r
1
r
@w
@h

� �
@

@r
1
r
@/
@h

� �
� 1
2
qX2r2r2w� qX2r

@w
@r

ð7Þ

The compatibility equation is also obtained:
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3 Approximate Solution

An approximate solution was proposed by Nowinski [2], Hamidzadeh [7] analyzed the
case of no nodal circles but any number of nodal diameters, but they only analyzed the
transverse vibration of the disk and ignored the in-plane vibration of the disk, this
research work expands their work to analyze the transverse and in-plane coupling
vibrations of the disk. According to the work of Hamidzadeh [7], the displacement of
transverse direction is:

w r; h; tð Þ ¼ W0T tð Þrn cos nhþuð Þ ð9Þ

Where w r; h; tð Þ is the transverse deflection of the disk in polar coordinates, ‘W0’ is
a constant, ‘u’ is the phase constant, ‘T tð Þ’ is a time function respecting that ‘w’ varies
with time, and ‘n’ is the number of nodal diameters.

The stress function ‘/’ is obtained by substituting Eq. (9) into (8) according to
Nowinski [2]. The stress function is as follows:
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Where A, C, and D are constants and
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Substitute (10) into (6a), (6b), (6c), one can get the following equations:
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Constants A, C, and D can be determined by satisfying the stress boundary con-
ditions at r ¼ a, which will be presented in the later analysis. According to Nowinski
[2], apply the procedure of Galerkin to the Eq. (7), then substitute Eqs. (9) and (10)
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into (7) and integrate the result over the domain of the disk result in the following
second-order non-linear time equation:

d2T
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The solution to Eq. (13) is a Jacobian elliptical function:
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Obviously, cn qt; kð Þ is a periodic function with the period T0 ¼ 4K=q, and K is the
first kind of complete elliptic integral [16].

4 Free Nonlinear Vibration

In order to identity unknown constants A, C, and D, two stress boundary conditions
need to be satisfied. The two boundary conditions are that the radial and tangential
stresses on the outer radius of the disk are zero:
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By satisfying the stress boundary conditions, ones yield:
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In order to calculate in-plane vibration displacements u and v, the relationship
between u, v and Nr, Nh are obtained, subtracting Eq. (4b) multiplied by l from
Eq. (4a) yields:

Nonlinear Transverse and In-Plane Vibrations of a Thin Rotating Disk 141



@u
@r

¼ Nr � lNh

E
� 1
2

@w
@r

� �2

ð29aÞ

Similarly, subtracting Eq. (4a) multiplied by l from Eq. (4b) yields:
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Substitute (27), (28) to (29a), (29b), ones obtain:
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Integrate (30) and (31), ones obtain:
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To calculate unknown functions f h; tð Þ and R r; tð Þ, the displacement boundary
conditions need to be satisfied. the displacement boundary conditions are:

u r ¼ 0; hð Þ ¼ 0 ð34aÞ

v r ¼ 0; hð Þ ¼ 0 ð34bÞ

@u
@h

����
r¼0

¼ 0;
@v
@r

����
r¼0

¼ 0 ð34cÞ

By imposing the above conditions on Eqs. (32) and (33), and with Eq. (9), the
transverse deflection and in-plane displacements of the non-linear vibration rotating
disk are finally obtained:
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5 Results and Discussion

In order to do the analysis and show the results, the following dimensionless param-
eters are introduced

Amplitude ratio: W ¼ W0an

h
ð38Þ

Dimensionless rotating speed: X1 ¼ Xaffiffiffiffiffiffiffiffiffi
E=q
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Dimensionless period: T� ¼ 4K
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ffiffiffiffi
E
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s
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Dimensionless frequency: X2 ¼ 2p
T� ð41Þ

The presented results in this research work are for the disk with the following
parameters: Young’s modulus E ¼ 2:1 � 1011 Pa, Poisson ratio l ¼ 0:33, density
q ¼ 7:85 � 103 kg/m3, outer radius a ¼ 0:5 m, thickness h ¼ 0:02 m, rotating speed
X ¼ 100p rad/s.

Let time-relative terms vanish, for W ¼ 0:2, n ¼ 3, the displacements of static
waves in the three-directions from Eqs. (35), (36) and (37) are plotted in Fig. 2(a)–(c).

Figure 2 shows that the in-plane displacements are much smaller than the deflection
in the transverse direction. The results also show that the nodal diameters number of
circumferential mode is always twice that of the transverse vibration. The frequency
associate to this mode is 1438:3 rad/s.

From Eqs. (35), (36) and (37), we can see that the in-plane vibrations of the rotating
disk are affected by rotating speed and nodal diameters number. So the variation of
radial displacement amplitude u on the outer radius versus rotating speed for different
numbers of nodal diameters is presented in Fig. 3 for a dimensionless amplitude ratio
of W ¼ 0:2.
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The results indicate that the value of the radial displacement amplitude on the outer
radius is negative when the rotating speed is zero and increases with rotating speed for
different numbers of nodal diameters. The radial vibration disappears at a certain
rotating speed. The radial displacement amplitude on the outer radius is also increases
with the number of nodal diameters.

(a)

(b)

(c)

Fig. 2. Static waves in rotating disk: (a) radial displacement u, (b) circumferential displacement
v, (c) transverse deflection w
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The nonlinear and linear dimensionless natural frequencies of the rotating disks
versus a wide range of rotating speeds are calculated. For a dimensionless amplitude
ratio of W ¼ 2, the variations of dimensionless natural frequencies for different
numbers of nodal diameters is presented in Fig. 4. Presented results show that the
natural frequencies in both the nonlinear analysis and linear analysis depend on nodal
diameter, and have no difference when n ¼ 1. Nonlinear natural frequencies and linear
natural frequencies are mainly distinguished at lower speed, at higher speed, the
nonlinear dimensionless frequencies of different nodal diameters numbers approach the
corresponding linear dimensionless frequencies.
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The nonlinear and linear dimensionless natural frequencies of the rotating disks
versus amplitude ratios at different dimensionless speeds for n ¼ 6 are also calculated
and presented in Fig. 5. The results show that the natural frequencies in the nonlinear
analysis are dependent of amplitudes, and the effect of speeds on natural frequency at
small amplitudes is higher than that at large amplitudes, and the relationship between
natural frequencies and amplitudes gradually become linear at large amplitudes. But the
dimensionless natural frequencies in the linear analysis are independent of amplitudes
for all speeds.

6 Conclusion

An analytical method is presented to investigate nonlinear transverse and in-plane
vibrations of a thin rotating disk, the solutions of the nonlinear transverse and in-plane
vibrations of the thin rotating disk are finally obtained, the static waves, natural fre-
quency for nonlinear transverse vibrations of the rotating disk are also determined. The
provided modal analysis is valid for thin rotating disks with any number of nodal
diameters without nodal circles. The results show that the in-plane displacements of the
vibration are much smaller than the deflection in the transverse direction. Analysis
indicates that the natural frequencies provided by nonlinear analysis are different from
that of linear analysis. The nonlinear natural frequencies are highly dependent on
amplitude of vibration and nodal diameters. The presented results provide the designer
an analytical method for analyzing vibrations in three directions of a thin rotating disk.
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