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Preface

Rotordynamics is an area of engineering which congregates a very well-defined
community between science and technology. Huge part of power generation uses
rotating machines, and engineering had an incredible development since the first
steam energy devices. The International Federation for the Promotion of
Mechanism and Machine Science (IFToMM) opened to this community the pos-
sibility to present the advances in this area in a quadrennial conference: This
resulted in 1982 in the first IFToMM International Conference on Rotordynamic
Problems in Power Plants. The importance of periodically exchanging new ideas
and comparing experimental test rigs and field measurements cannot be underes-
timated. The evolution that took place can easily be followed comparing the papers
published in the proceedings since that time. It was obvious to broaden the spec-
trum and the name became since 1986 IFToMM International Conference on
Rotordynamics. This conference turned out to be a reward for each of the countries
and their cities (Tokyo 1986, Lyon 1990, Chicago 1994, Darmstadt 1998, Sydney
2002, Vienna 2006, Seoul 2010, Milano, 2014) for the efforts developing their own
research groups on this subject.

Formal academic graduate programs started in Brazil in the late 60s. Only in the
70s, the binomial higher education and research, including hands-on activities in
laboratories, started to change the teaching in engineering. UNICAMP, a young
university at that time, was a pioneer in graduating engineers able to conceive,
design, and construct their ideas. The first crisis of oil prices led to the development
of a group handling rotating machines, building flywheels for energy storage,
investigating hybrid power systems, and looking for other alternative solutions. In
the beginning of the 80s, there was small group of people working in rotordy-
namics. And there were some recent huge power plants like Ilha Solteira, Jupiá,
Itaipú: They needed engineers which could explain the phenomena appearing in a
Francis and Kaplan turbines. UNICAMP was eager to put their graduate students to
work on open problems in this area. The year was 1982 and the first meeting in
Rome was also a good opportunity to start international academic cooperation with
several European countries and young researchers on this area as well as engineers
had their own cooperation with companies dealing with rotating machines. Several
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young scientists then went to Europe to complete their PhD. One highlight in the
2000’s was the Alfa II Project, leaded by Prof. Bachschmidt from Politecnico di
Milano on Vibration, Control and Diagnostics (VICONDIA) that put together the
Politecnico de Catalunia, DTU, PUC-Rio, UFRJ, University of Uberlândia, ISPJAE
from La Habana (Cuba) and University of Concepcion (Chile). But there were
several other cooperation programs between Brazilian research groups and, usually,
European institutions.

This resulted in a well-developed research area in Brazil. In 1986, the biennial
DINAME meeting was started, as a result of a cooperation with Germany, sup-
ported by the Alexander von Humboldt Foundation and Volkswagen Foundation
investigating the dynamics of a hydraulic Francis turbine. This meeting keeps its
tradition and is open to all dynamic problems in mechanical systems. The groups
working with rotating machines spread out through the country, and you will find
expertise in several applications like turbines, compressors, turbochargers, cen-
trifuges, helicopter blades, dental drills, oil drill strings.

The Brazilian Committee responsible for organizing the present IFToMM
Conference felt comfortable to propose Rio de Janeiro in 2018 as the next venue.
And this proposal was approved by the IFToMM Rotordynamic Committee at the
Milano Conference. The Brazilian Committee is honored to execute this mission.
The committee is composed by specialists from several universities throughout the
country that shared the burden to organize an important international event. The
interaction with industry is the scope of the industry technical committee. The result
of the initiative is the selection of 153 papers under 175 submissions, being
therefore the second largest IFToMM Rotordynamic conference besides being the
first one in Latin America.

The present four volumes printed by Springer Nature with approximately 153
papers reproduce the state of the art of the research throughout the world. These
papers were carefully reviewed by two independent reviewers, and its quality as a
publication was attested. Volume 1 will focus on bearings and seals, Volume 2 on
condition monitoring, fault diagnostics, prognostics as well as dynamic analysis and
stability, Volume 3 on active components and vibration control; blades, bladed
systems, and impellers; modal testing and identification; nonlinear phenomena in
rotordynamics; torsional vibration and geared system dynamics, and Volume 4 on
some innovative applications from aero-engines; automotive rotating systems;
balancing; electromechanical interactions in rotordynamics; fluid–structure inter-
actions; hydro power plant; parametric and self-excitation; rotordynamics of micro-,
nano- and cryogenic machines; turbochargers; uncertainties, reliability, and life
predictions of rotating machinery; wind turbines and generators.

As chairwoman and as chairman of the conference, we did not spare efforts in
trying to do the best for a successful conference. As we proposed to organize the
meeting in 2014, Rio de Janeiro was putting all the effort in the Olympic Games. It
was perfectly organized, and everybody was proud of it. It was a climax for the city.
In these last two years, there were radical changes some for good like the fight
against corruption, some for bad due to the failure in politics and losing control of
several important aspects in the everyday life. But Rio is the “marvelous city”
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where nature made its best to combine ocean and mountains, and we hope all of the
participants will have the opportunity to enjoy it.

Both chairs of the Conference express their gratitude to the TC of Rotordynamics
for the thrust and the opportunity given, to the efficient work of the reviewers, to all
authors and their students giving reason for the existence of the Conference, to the
unbearable support from our colleagues of the local committees. We also appraise
the support of the rector of UNICAMP, of its Faculty of Mechanical Engineering and
to FUNCAMP foundation for the unconditional support and help with the logistics.
We also express our satisfaction for the sponsoring of BorgWarner, MTS Brazil,
Siemens, and the funding agencies CNPq—National Council for Scientific and
Technological Development and CAPES—Brazilian Federal Agency for Support
and Evaluation of Graduate Education.

Katia Cavalca
Hans I. Weber
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Application of Genetic Algorithm for Synthesis
of H∞ Controllers for Active Magnetic Bearing

Systems

Alican Sahinkaya and Jerzy T. Sawicki(&)

Center for Rotating Machinery Dynamics and Control (RoMaDyC),
Washkewicz College of Engineering, Cleveland State University,

Cleveland, OH 44115, USA
{a.sahinkaya,j.sawicki}@csuohio.edu

Abstract. This paper discusses designing of weights for both mixed-sensitivity
and signal-based H∞ controller synthesis for active magnetic bearing
(AMB) systems using genetic algorithm (GA) optimization. In mixed-sensitivity
problem formulation, the weights represent desired upper bounds to closed loop
transfer functions and in signal-based problem formulation, the weights repre-
sent desired system response under sinusoidal exogenous inputs. In order to cast
weight design process as an optimization problem, appropriate cost functions are
chosen to guarantee that desired performance objectives are satisfied with a
stable controller. First, the validity of the method is demonstrated in simulation
by comparing performances achieved using weights designed through the
optimization to the weights selected as performance objectives. Then, the weight
design via GA for H∞ controller synthesis is tested experimentally on a small
AMB test rig in a disturbance rejection scheme. The designed H∞ controllers
are implemented on the AMB system and tested up to the maximum design
speed of 6000 rpm, where the rotor safely passed the first critical speed.
Achieved performances are compared to a benchmark PID controller. Results
demonstrate validity of using GA for weights design and show the superiority of
H∞ controllers over PID controller for disturbance rejection in AMB systems.

Keywords: Active magnetic bearing systems � Robust control
Genetic algorithm � H∞ control

1 Introduction

Active magnetic bearings (AMBs) are devices that provide contact-free support by
levitating the rotor inside an air gap using electromagnets with feedback controllers.
Adequate controllers are a must for reliable and safe operation of AMB systems.
However the design of such controllers is a difficult task due to inherent unstable nature
of AMBs, speed dependence of the rotor model, and non-collocated sensor-actuator
pairs. For these reasons, the research has focused on model-based robust control
techniques to address the challenges associated with AMB system control.

Robust control methods are quite often studied in literature related to AMB systems
due to their superior performance over traditional PID control. Sawicki et al. [1]
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experimentally demonstrates advantages of l-synthesis, which combines H∞ controller
synthesis and l-analysis, over traditional PID controller in the context of adjusting
machining spindle tool tip compliance. The H∞ control theory addresses the controller
design problem in its general configuration, where certain performance objectives need
to be satisfied in the presence of modeling uncertainties. That is why H∞ control results
in highly robust controllers and the theory is applicable to complex MIMO plants, such
as AMB systems. There are three main approaches to design H∞ controllers; open loop
shaping procedure introduced by Glover and McFarlane [2], closed loop shaping
procedure called mixed-sensitivity H∞ control [3], and signal-based H∞ control [4]. In
all three approaches, the control problem is expressed as a mathematical optimization
problem, where the uncertainties of the model and performance objectives are defined
using the so-called weighting filters, or simply weights.

There are many examples of successful implementation of H∞ controllers on AMB
systems in literature, designed using one of the three above-mentioned approaches.
Fujita et al. [5] was one of the first presented studies that successfully designed and
implemented open loop shaping and mixed-sensitivity H∞ controllers to an AMB
system where the dynamics due to gyroscopic effects was accounted for via uncer-
tainties. Sivrioglu and Nonami [6] considered gain-scheduled mixed-sensitivity H∞

controllers to cover the variations of plant dynamics due to gyroscopic effects. Noshadi
et al. [7] compared mixed-sensitivity H∞ control, H2 control, and lead-lag type control
by conducting experiments on an AMB test rig in a disturbance rejection control
scheme. The results show superior performance of the H∞ controller.

The challenge in H∞ controller design is selecting the weights to achieve desired
robustness and performance. In the H∞ control problem formulation, the weights are
first designed based on control objectives. Lundström et al. [8] gives insight on how to
choose the weights for different H∞ control problem formulations. However the
weights used in control problem formulation usually needs to be iteratively tuned until
satisfactory performance margins are obtained. In order to ease the process of H∞

controller design, Christiansson and Lennartson [9] proposed to cast the tuning of
weights as an optimization problem, where a mixed-sensitivity H∞ control problem for
a simple SISO plant and a more complicated MIMO plant are studied, and the validity
of the proposed weight tuning process, using genetic algorithm (GA), is shown.

Application of GA to tune weighting filters for H∞ control problem is reported to
AMB systems in literature. Jastrzebski et al. [10] successfully implements a gain-
scheduled signal-based H∞ controller to an AMB system where the weighting filters
are selected through GA and achieved performance is evaluated using experimentally
obtained sensitivity function and step responses of non-rotating system.

In this current work, weight design for H∞ control problem via GA optimization
for an AMB system that has its first critical speed within the operating range is
experimentally investigated. Model of the AMB system is derived in Sect. 2. Design of
a benchmark PID controller, mixed-sensitivity H∞ controller, and signal-based H∞

controller are explained in Sect. 3, along with the application of GA in the weight
design process. Section 4 presents the results of the experimental comparison between
the three controllers.

4 A. Sahinkaya and J. T. Sawicki



2 Experimental AMB System Model

The experimental setup for this study is a small AMB test rig manufactured by Revolve
Magnetic Bearings, subsidiary of SKF, pictured in Fig. 1. The test rig consists of two
identical radial AMBs, which are referred to as non-drive end (NDE) and drive end
(DE) bearing, to levitate the rotor, and one thrust AMB to control the axial position of
the rotor. The system, due to its horizontal configuration, does not exhibit significant
axial forces and the controller design focuses only on radial AMBs. Rotor radial and
axial motions are decoupled and the thrust AMB is controlled with a simple PID
controller. The radial magnetic forces are applied to the rotor in two perpendicular axes,
which have an angle of 45 degrees with vertical axis. To provide resting place for the
shaft and to prevent damage to AMBs in the event of a failure, radial AMBs are
equipped with rolling element touchdown bearings which have a clearance of around
190 µm with the shaft. A flexible coupling component is used to attach the rotor to a
brush type DC motor to drive the system.

The rotor configuration in this study consists of a solid shaft, two identical radial
AMB rotors, one thrust AMB rotor, one disk, and one coupling element. The solid
shaft has a diameter of 9.525 mm, a length of 457.2 mm, and is made of stainless steel.
The AMB rotors and disk are attached to the shaft via tapered sleeves. Inertial
parameters of the AMB rotors, balance disk, and coupling element are shown in
Table 1. The model of the rotor assembly is derived by discretizing the shaft into 37
elements and adding the disk, AMB rotors, and coupling element as lumped masses at
the nodes corresponding to their respective center of masses, as shown in Fig. 2, which
also shows the position of radial magnetic forces (at nodes 6 and 31), and radial
position of sensing (nodes 4 and 33).

Since modally reduced state-space representation of rotor models are more con-
venient for control-oriented applications, the undamped rotor model is first obtained
through finite element method (FEM) using Timoshenko beam theory in nodal domain.
Then, the resulting nodal model is transformed to modal domain, where modal trun-
cation is applied to retain the two rigid modes and the first four flexible modes (at
91 Hz, 250 Hz, 510 Hz, and 735 Hz). The reason for keeping the first four flexible
modes in the model is due to the fact that they are within the bandwidth of the
actuators. Free-free rotor model used further in the paper is kept undamped.

Fig. 1. Small AMB test rig photo
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The AMBs are electromagnetic actuators with built-in sensing capabilities. The
sensors used in the AMBs of the system have a bandwidth much higher than operating
frequency range; hence their dynamics are ignored in this study. The AMB model is
separated into two parts to capture its dynamics: AMB force model and AMB elec-
tronics model. AMB force model converts the applied current to coils and the position
of the rotor into applied force to the rotor and is determined via linearization of the
magnetic force equation at an operating point [11]. The operating point for this study is
defined as the center of the bearing with a bias current of 1 A. The resulting position
and current stiffness values for the AMB are 0.064 N/µm and 25.33 N/A respectively.
The AMB electronics model defines the dynamics AMB coils introduce due to their
inductive nature and loading to amplifiers. Instead of creating a separate model for the
AMB electronics, the model is embedded in to the amplifier model, which is experi-
mentally identified, to ease the modeling process.

The amplifiers used to supply current to the AMB coils are pulse-width modulation
(PWM) type and are identified experimentally. In the identification experiment, the
AMB coils were attached as load and digital hardware, namely AD/DA converters, is
used to obtain the data. That is why the identified amplifier model not only includes the
amplifier model, but also the AMB electronics model and time delays due to AD/DA
conversions. The identified bandwidth of the amplifiers is 2500 Hz with amplifier slew
rate around 900 Hz.

State-space representation of the open loop system is formed by utilizing the free-
free rotor model, AMB force model, and the amplifier model. Figure 3 shows the block
diagram of the AMB system with open loop model shown in solid lines. The resulting

Table 1. Inertial parameters of rotor components

Rotor components Mass [kg] Moments of inertias
Trans. [kg m2] Polar [kg m2]

Balance disk 0.6532 0.2341 ∙ 10−3 0.4302 ∙ 10−3

Thrust AMB 0.3402 0.0995 ∙ 10−3 0.0995 ∙ 10−3

Radial AMB 0.2585 0.0594 ∙ 10−3 0.0413 ∙ 10−3

Coupling 0.0200 0.2000 ∙ 10−5 0.0300 ∙ 10−5

139.7 mm
288.3 mm

391.16 mm
457.2 mm

50.8 mm

1 15 25 35

Fig. 2. FE model of the rotor assembly
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open loop system model is a 4 input 4 output model with 32 states, in which 24 states
corresponds to the free-free rotor model and 8 states corresponds to the amplifier
model.

Due to the inherent unstable nature of AMBs, direct open loop system identification
could not be performed to validate the accuracy of the obtained model. That is why
driving point measurements from closed loop system are taken at the 1st node, where a
PID controller was used to levitate the rotor, to identify closed loop frequency response
function (FRF). Figure 4 presents comparison of identified closed loop FRF and
simulated closed loop FRF, which demonstrates relatively good agreement.

3 Controller Design for AMB System

The control objective for the studied AMB system is chosen to keep the orbits within a
circle of radius 36 lm without saturating the AMB actuators up to maximum rotational
design speed of 6000 rpm in the presence of unbalance force. Moreover, vibration
amplitudes at the AMB sensor locations should be lower than 7 lm when the rotor is
not rotating. This is a standard objective for AMB systems and is often referred to as
disturbance rejection control problem.

In this section, first, benchmark PID controller design is explained, then H∞ control
problem formulation for mixed-sensitivity and signal-based approaches are discussed,
and lastly the selection of weights for the H∞ controller design using GA is explained.

Digital 
Controller

Power 
Amplifier

AMB Force 
Model Rotor Model

Displacement

ForceCurrent

DisplacementCurrent

Fig. 3. AMB system model where open loop system model is shown with solid lines

Fig. 4. Impact hammer test; experiment (blue) and model (black) (Color figure online)
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3.1 Decentralized PID Controller Design

Designing a decentralized PID controller for an AMB system is not a trivial task since
the dynamics of the system is dependent on the rotational speed of the rotor due to
gyroscopic effects. On top of that, a simple PID controller is usually not sufficient to
stabilize all the flexible modes of the rotor which are within the bandwidth of the
actuators, for this system the 3rd and 4th flexible modes.

For this reason, as a first step in the design process, PID gains are chosen to satisfy
the performance objectives within the operating region by calculating required PID
gains to achieve desired stiffness at the bearings. A low pass filter is cascaded with the
PID controller for noise attenuation as well as to decrease the gain of the controller at
high frequencies. For this purpose a low pass frequency of 1500 Hz is used.

With only PID gains, the 3rd and 4th flexible modes of the rotor are lightly damped,
which is not desired for stable operation. In order to stabilize the 3rd flexible mode, a
lead-lag filter is used, where a zero is placed lower than the 3rd flexible mode frequency
and a pole is placed at a higher frequency resulting in increased damping due to phase
lead. For the 4th flexible mode, a notch filter is placed below the resonant frequency and
similarly the resulting phase lead increases the damping and the gain is also attenuated.
The design of both the lead-lag filter and the notch filter take into account the rotational
speed dependency of the 3rd and 4th flexible mode frequencies, due to gyroscopic
effects. Figure 5 presents the frequency response of the designed PID controller with
the filters, which is implemented in all 4 radial axes.

3.2 H∞ Controller Design

Design of H∞ controllers involve the use of standard control configuration, which is
shown in Fig. 6, where P is the generalized plant and K is the controller to be designed.
The exogenous inputs are stacked in the vector w and the performance outputs are
stacked in the vector z, which are assumed to be normalized via weights, in other words
their 2-norm is unity. The generalized plant P includes the plant model and weights for
the exogenous inputs and performance outputs which defines the performance and
robustness objectives. The exogenous inputs and performance outputs can be chosen to

Fig. 5. PID controller for single axis
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shape closed loop transfer functions, in which case the method is called mixed-
sensitivity H∞ control, or they can represent magnitude and frequency content of
selected input and output signals of the system, in which case the method is called
signal-based H∞ control.

In both mixed-sensitivity and signal-based approaches, the controller K is designed
such that the closed loop system is internally stable and the maximum singular value of
the closed loop system, also referred to as H∞ norm, is minimized.

The closed loop transfer function from exogenous input w, to performance output z,
can be obtained from the mapping between inputs and outputs and the so called lower
Linear Fractional Transformation (LFT), or Fl (P, K). The relation between the regu-
lated performance output and the exogenous input can be written as

z ¼ FlðP;KÞw ð1Þ

where the lower LFT is defined as

FlðP;KÞ ¼ P11 þP12KðI� P22KÞ�1P21 ð2Þ

Then the H∞ control problem is formulated as

min
K

FlðP;KÞk k1 ð3Þ

Once the problem is formulated, it is solved using a method called c-iteration [4],
where c refers to the H∞ norm of the lower LFT. The synthesized controller has the
same number of states as the generalized plant P. Following subsections explain the
problem formulation for both mixed-sensitivity and signal-based H∞ control.

Mixed-Sensitivity H∞ Control Problem Formulation. In the mixed-sensitivity H∞

control, exogenous inputs and performance outputs are chosen such that the resulting
lower LFT represents closed loop transfer functions to be shaped, in this paper the
sensitivity S and control sensitivity KS functions. The weights used in this paper are
chosen to be diagonal weights due to their ease in interpretation and design compared
to non-diagonal weights. Figure 7 illustrates the block diagram of the problem for-
mulation with the resulting lower LFT, where G is the open loop system model andW1

and W2 are the weights.
The performance of the synthesized controller is measured by the H∞ norm of the

achieved closed loop transfer function. The smaller the norm is, the more performant

Fig. 6. Standard control configuration and mapping between inputs and outputs
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and more robust the controller is due to implications of lower maximum singular value
of S and KS transfer functions. That is why the aim in mixed-sensitivity H∞ control is
to achieve H∞ norm less than unity, which would mean the inverses of weights are
truly an upper bound to their respective closed loop transfer functions.

In the AMB system considered, the disturbance input that represents mainly the
unbalance force, is a relatively low frequency signal, therefor it can be rejected by
making the maximum singular value of the sensitivity function small over the low
frequency region. Also ISO standard for active magnetic bearing systems defines
acceptable peak sensitivities for safe and reliable operation, which is maximum of
9.5 dB for newly commissioned AMB systems [12]. These two objectives on S are
enforced by the weight W1. The second objective, which is limiting the control current
magnitude, is achieved by putting an upper bound on KS via weighting filter W2,
which is also used to present additive uncertainty for robustness.

Weight selection in mixed-sensitivity H∞ control is a two-step process; first,
structure of the weights are chosen and second, parameters of the weights are chosen,
with the constraint that the weights need to be proper and stable. Literature examines
the use of different structures for weights and it was shown in [9] that simple structures
give satisfactory results. For this reason, first order weights are used to describe the
performance objectives. Since the studied AMB system is relatively symmetric, same
weights are used for the diagonal elements of S and KS. Desired upper bounds on
S and KS for the control objective stated at the beginning of the section are shown in
Fig. 10. However due to controller synthesis procedure being an optimization, usually
the weights chosen as desired upper bounds need to be tuned to achieve desired results.
In this study GA is used for selecting weights.

Advantages of mixed-sensitivity H∞ control are rather intuitive in the sense that a
simple examination of the relation between inputs and outputs of the closed loop
system yields sufficient understanding why upper bounds are desired for certain closed
loop transfer functions. On the other hand, the disadvantage of the approach is that
defining performance and robustness in frequency domain is a challenging task.

Signal-Based H∞ Control Problem Formulation. The signal-based approach in H∞

control is suitable for control problems where multiple control objectives need to be
taken into account simultaneously. In this approach the exogenous inputs are chosen
such that they represent external signals affecting the system and performance outputs
are chosen to represent the output signals to be regulated under sinusoidal excitation
through the exogenous inputs. This formulation can be extended to include uncer-
tainties within the system model by simply adding additional input-output signals in a
manner representing the uncertainty type.

Fig. 7. Mixed-sensitivity H∞ control problem formulation
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For the AMB system studied, the exogenous inputs are chosen to be noises in the
sensor readings and disturbance forces at AMB actuator positions due to unbalance
force at disk location. Performance outputs are chosen to be vibration levels at AMB
sensor positions and control current magnitudes. Since it is not possible to construct an
exact linear model of an AMB system, as well as to include the change of dynamics of
the rotor due to gyroscopic effects, some uncertainties are defined as shown in Table 2.
Adding structured uncertainties makes the problem a robust performance problem,
where tools such as µ-synthesis can be applied. However in this paper, instead of using
µ-synthesis procedure, where the procedure does not guarantee convergence and might
result in higher order controllers, µ-analysis is employed in selecting the weights for
controller synthesis procedure using c-iteration. Block diagram of the problem for-
mulation with the uncertain open loop plant G is shown in Fig. 8.

The weights in Fig. 8, which are diagonal, describe the expected magnitudes and
frequency content of the signals. Table 3 presents the diagonal elements of the weights
corresponding to the performance objective stated in the beginning of this section.

In signal-based approach, if structured uncertainties are present in the system
model, closed loop performance is evaluated using structured singular value, µ [13]. To
perform µ-analysis for robust performance (RP), first the defined uncertain model is
separated into nominal model G and perturbation block D which represents the defined
structured uncertainties. After pulling out the uncertainties, a fictitious full complex Δp

matrix, where �r Dp
� �� 1; is added to the system to connect the performance output

vector z to exogenous input vector w, as shown in Fig. 9.

Table 2. Uncertainties in the open loop system model

Parameter Nominal value Uncertainty Type

1st flexible mode 91 Hz ±2% Complex
2nd flexible mode 250 Hz ±2% Complex
3rd flexible mode 514 Hz ±2% Complex
4th flexible mode 735 Hz ±2% Complex
Current stiffness 25.33 N/A ±10% Real
Position stiffness 0.064 N/lm ±30% Real
Rotational speed 3000 rpm ±100% Real

Fig. 8. Signal-based H∞ control problem formulation
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Finally the robust performance of the closed loop system is evaluated by calculating
the structured singular value of the transfer function M. Mathematically, structured
singular value is defined as

lðMÞ, 1
minfkmj detðI� kmMDÞ ¼ 0 for structuredD; �rðDÞ� 1g ð4Þ

A value of l greater than unity for a system means the system does not guarantee RP,
and the desired performances needs to be relaxed and defined uncertainties needs to be
reduced by a factor of 1/l to guarantee RP.

Method called DK-iteration, or l-synthesis, is commonly employed that adopts the
l-analysis with H∞ controller synthesis. However l-synthesis tends to result in high
order controllers, which can be computationally expensive to implement, in addition to
the fact that the DK-iteration does not guarantee convergence. More comprehensive
discussion on application of l-synthesis to AMB systems can be found in [1, 14].
Alternatively, the weights in the H∞ control problem formulation can be selected
differently to achieve desired µ-value using c-iteration. In this paper GA is used with
the l-value as part of the cost function to synthesize signal-based H∞ controller.

The advantage of signal-based H∞ control is several time domain objectives can be
taken into account simultaneously by simply adding additional input and output
channels to the system with corresponding weights. Assuming each weight is a
dynamic filter, number of states of the generalized plant increases with each additional
input and output, which increases the number of states of the controller. Due to
computational cost of implementing high order controllers, this is not desired.

Weight Selection via GA. In this paper, weight selection for H∞ controller synthesis
is cast as an optimization problem and solved using GA.

Table 3. Parameters describing the weights for signal-based H∞ control problem formulation

Weights Low frequency High frequency Cross over frequency Roll-off frequency

Wd 10 N 8 N 1 Hz 110 Hz
Wn 0.6 µm 0.6 µm - -

W�1
p 7 µm 36 µm 1 Hz 110 Hz

W�1
u 1 A 1 A - 720 Hz

Fig. 9. Robust performance analysis
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GA is a method for solving optimization problems using the idea behind genetic
evolution in real life, in the sense that it treats parameters of the optimization problem
as genes and only the fittest genes, measured using a metric, and their offspring are
transferred to the next generation [15]. The value of GA is its ability to search the
whole variable space, which is important to avoid local minima. The GA is applied to
both mixed-sensitivity and signal-based H∞ control problems.

In order to formulate the weight selection process to be solved by GA, a simple
procedure is followed, which can be summarized as;

• Parametrize weights while maintaining desired weight structure.
• Initialize n different sets of parameters that define n different H∞ control problems.
• Design H∞ controllers for each set using c-iteration.
• Evaluate performance of each controller using H∞ norm for mixed-sensitivity

approach or l-value for signal-based approach, where the weights used for per-
formance evaluation are fixed and defined by the objective.

• Penalize sets resulting in unstable controllers by adding a large enough constant to
their performance indicator.

• Sort the sets in terms of their achieved performance index. Carry the elite sets to the
next generation and generate new sets as a combination of the best ones from the
previous set to complete the number of sets in the new generation to n.

The procedure is iterated until desired performance index is reached. In this study,
n is chosen to be 10 to reduce computation time. Initial set of parameters is generated
by randomly selecting values from a real number set that has values from zero to twice
the corresponding parameter in the weights that describe the objective.

4 Results and Discussion

Comparison of the H∞ controller synthesis using the weights that define the objective
and weights selected through the GA optimization are first carried out in simulation.

For mixed-sensitivity H∞ controller, achieved closed loop transfer functions are
compared to the desired upper bounds, which is shown in Fig. 10. It can be seen that
the optimization was able to find weights that satisfies the requirements, which can also
be inferred from the achieved cost function value of 0.98. However if the weights
describing the objective is used in the controller synthesis, the resulting controller does
not keep the sensitivity function below the desired level in low frequency region.

For the signal-based H∞ controller, achieved µ-value at each frequency is com-
puted using a high density frequency grid, giving specific attention to frequency
regions where µ-value is close to unity, as shown in Fig. 11. Since maximum µ-value
is 0.99, the controller should be able to satisfy RP as long as the system is within the
defined set of uncertain plants and the exogenous input weights accurately represent
reality. Without the GA optimization for weight selection, achieved µ-value was 5.4.

Simulation results show the designed controllers achieve the control objective. In
order to experimentally confirm the results, the designed continuous time controllers
are discretized using zero-order hold on the inputs with a sampling frequency of
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20 kHz and implemented using dSpace hardware. After implementing the controllers, a
series of tests were performed to evaluate the achieved performances.

The first test is to observe the levitation performance of each controller. When the
system is not powered, the rotor rests on the touchdown bearings which have a radial
clearance of around 190 µm. At 1 s, the system is energized, which is analogous to
giving a step input, to move the rotor to the center of the bearing. Position of the rotor
at AMB sensor locations are collected, which has 45 degree angle w.r.t vertical Y axis.
The vertical position of the rotor is calculated by utilizing a rotation matrix and the
measurement data. Results of the test in vertical axis are shown in Fig. 12.

It is clear from Fig. 12 that H∞ controllers have a smaller rise time which can also
be interpreted as faster response to disturbances. However for signal-based approach,
this is achieved with an overshoot of around 16 percent. Initial levitation test shows the

Fig. 10. Comparison of achieved closed loop transfer functions using weights designed by GA
(blue) and weights selected as desired upper bounds (red), and desired upper bounds (black)
(Color figure online)

Fig. 11. Achieved µ-value plot of the closed loop system with signal-based H∞ controller

14 A. Sahinkaya and J. T. Sawicki



stability of the system when the rotor is not rotating. Since dynamics of the rotor
changes with the speed due to gyroscopic effects, a run-up test was performed to check
the stability of the system in the design speed range. The system is run from 0 rpm to
maximum design speed of 6000 rpm in 60 s with constant acceleration. Peak-to-peak
(p-p) displacement of rotor geometric center during the test is shown in Fig. 13. Speed
controller for the motor gave poor performance until 1000 rpm, which is one of the
reasons behind the erratic behavior seen at the start of the run-up tests.

It can be seen from Fig. 13 that all three controllers were stable in the operating
range. However the first critical speed of the system changes depending on which
controller is implemented. This is due to PID and H∞ controllers resulting in different
effective stiffness. For an AMB system, effective stiffness provided by a controller is
calculated using the frequency response of the controller and AMB force model con-
stants, which is found to be around 1� 105 N/m for the PID controller and around
2� 105 N/m for the H∞ controllers.

Fig. 12. Initial levitation of the rotor: PID controller (green), mixed-sensitivity H∞ controller
(red), and signal-based H∞ controller (blue) (Color figure online)

Fig. 13. Run-up test results in vertical (red) and horizontal (blue) directions (Color figure
online)
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Since the stability objective is met with all three controllers, the next step in
performance evaluation process is to see if the objective is met. For this purpose, the
rotor is run at 3000 rpm, 4000 rpm, 5000 rpm, and 6000 rpm and the orbits at AMB
sensor locations are examined at steady state. Figure 14 shows the achieved orbits with
each controller.

It can be seen from the orbit plots that both mixed-sensitivity H∞ controller and
PID controller satisfy the performance objectives, where the former shows superior
performance. On the other hand, signal-based H∞ controller performs better than PID
controller up to 5000 rpm, at which point performance of signal-based H∞ controller
degrades compared to others and it does not satisfy the performance objectives at
6000 rpm. Possible reasons for this behavior is underestimating the parametric
uncertainties and/or underestimating disturbance force magnitudes at higher speeds in
signal-based H∞ control problem formulation. The µ-value achieved for the signal
based controller, after the optimization process for weight selection, was 0.99. This
means that if any of the specifications, either the uncertainty amounts or performance
criteria, were to be increased by a factor of 1/0.99, which corresponds to around 1%
increase in any of the defined robustness or performance specifications, the system
would not guarantee to satisfy performance objectives.

Fig. 14. Orbit plots at different speeds with PID controller (green), signal-based H∞ controller
(blue), mixed-sensitivity H∞ controller (black), and design requirement (red) (Color figure
online)
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5 Conclusions

This paper investigated the application of genetic algorithm to weighting filter design in
H∞ control problem formulation for an AMB system with the first critical speed within
the operating range. First, an analytical model of the system is constructed using
classical techniques. Next, a benchmark PID controller is manually tuned and H∞

controllers were synthesized using mixed-sensitivity and signal-based problem for-
mulations where weighting filters are designed using GA to achieve desired perfor-
mance. Validity of GA optimization is shown via the simulation results by comparing
the achieved performances using traditional technique to GA for weighting filter
design. The performances of manually tuned PID controller and H∞ controllers
designed using GA optimization are experimentally examined while the rotor was
stationary as well as for running rotor at various speeds. Experimental results also
confirm the validity of application of GA for synthesis of H∞ controllers for AMB
systems. Results also show relatively circular orbits with all controllers, which indicate
all controllers result in isotropic bearing, which is expected considering same weights
are used for each AMB axes. Out of the three controllers, mixed-sensitivity H∞ con-
troller outperformed the other two by resulting in smaller orbits in operating range.
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Abstract. This article introduces a new type of active damper—elastic
support/dry friction damper (ESDFD) for vibration control of rotor systems and
its performances. The basic operation principle of ESDFD in rotor system was
introduced. In particular, a two-dimensional friction model-ball/plate model was
proposed, by which a dynamic model of rotor systems with ESDFD was
established and verified. The damping performance of the ESDFD has been
studied numerically. The simulation results show that the damping performance
of ESDFD is closely related to the characteristics of the rotor’s mode. For
obtaining the damper’s best performance, the damper should be located at the
elastic support in which the vibration energy is concentrated. And the damper
not only provides external damping to the rotor system, but also increases extra
stiffness into the rotor system. The stiffness of the stationary disk and the tan-
gential contact stiffness of the contact interface are connected in series between
the moving disk and the mounting base of the stationary disk. The larger of this
combined stiffness, the better of the damper’s damping performance. The
application of ESDFD to the vibration suppression of a rotor system is inves-
tigated experimentally. A switch control scheme for the damper is introduced;
the effectiveness and control characteristics with control scheme for attenuating
the vibration of rotor systems are experimentally investigated.

Keywords: Active elastic support/dry friction damper
Ball/plate model of friction � P control � Rotor systems

1 Introduction

Traditional damper of rotor systems in aero engines, such as squeeze film dampers, is
passive device because it cannot adjust its damping ratio in response to changes of
unbalance response in the rotor system operating conditions. To overcome this defi-
ciency, active dampers have been suggested as a means of control unbalance response
of the rotating machine. The ESDFD is a new type of damper for active vibration
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control of rotor systems in aero engines [1]. It can active control unbalance response of
the rotor system through active damping and stiffness. A magnetic bearing is one of
promising type of active bearings and has been the subject of extensive research. It is
well suited for high-speed rotating machine because of its non-contact nature and its
unique ability to suspend loads with no friction. However, because of its low load-
carrying capacity and heavy weight, relative to a mechanical bearing, a magnetic
bearing is not suitable for vibration control in aero engines.

The ESDFD is one promising damper candidate for active vibration control in aero
engines. It has been proven theoretically and experimentally that the damper can sig-
nificantly attenuate the unbalance response of a rotor system. There are several older
applications of such systems, Fan et al. [2] proposed that friction damping could be
applied in rotor system. Wang et al. [3–5], designed an active elastic support/dry
friction damper using an electromagnetic actuator or piezoelectric ceramic actuator,
which can conveniently be actively controlled by adjusting the control voltage of the
electromagnet or piezoelectric ceramic actuator. Usually, dry friction is disadvanta-
geous in mechanical systems, such as in rubbing faults of rotor systems [6–8]. How-
ever, as external damping, dry friction has been widely used to increase the stability of
mechanical systems, such as the dry friction damping blade of aero engines and tur-
bines [9–15]. Figure 1 shows the operation principles of a rotor with ESDFDs. The
rotor is supported by two elastic supports, and at the end cross section of each one, the
dry friction damper is affixed. Each damper consists of three key components: the
elastic support, the friction pairs (stationary disk and moving disk) and the actuator.
The elastic supports redistribute the strain energy of the whole rotor-support system
and concentrate the vibration, which is then dissipated by the dry friction between the
friction pairs. The moving disk, which is fixed to the end cross section of the elastic
support, is connected to the bearing outer ring and vibrates with the elastic support but
does not rotate with the rotor. The stationary disk is fixed to the casing and can be
moved in the axial direction by the actuator. The frictional force between the two disks
can be changed by adjusting the pressure force from the actuator.

A A

A A

1-elastic support 2-moving disk 3-stationary disk 4-rotor 5-rolling bearing

actuator

Fig. 1. The operation principles of the ESDFD
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The work to propose the mechanism model of the ESDFD was Fan et al. [1, 2], in
which the rotor was simplified to a single degree of freedom system, and dry friction
model was the classic one-dimensional hysteretic. The classic one-dimensional hys-
teretic dry friction model was just for illustrating the friction damping mechanism of
the dry friction damper, and was insufficient for the damper designing of rotor systems.
There are two reasons. The first one is the axial location of the damper influences the
damping performance of the elastic support/dry friction damper, which cannot be
considered in the previous work; the second one is the relative motion between the
friction pair is a two-dimensional motion, which is considered as one-dimensionally in
the previous work.

This work departs from the existing hysteretic dry friction model, a two-
dimensional friction model-ball/plate model is proposed by which dynamic model of a
rotor system with ESDFDs was established and verified. According to the character-
istics of the ESDFD, A control scheme was introduced; the effectiveness and control
characteristics for the vibration control of the rotor system were experimentally
investigated.

2 Damper and Rotor System Model

2.1 Two-Dimensional Friction and Ball/Plate Model

A two-dimensional friction model-ball/plate model (shown in Fig. 2) is proposed. The
model was developed from the hysteretic dry friction model. As shown in Fig. 2, the
stationary disk is represented by a rectangle and remains at rest. The moving disk
consists of a ball and a plate. The plate (without considering its mass) represents the
contact interface between the moving disk and the stationary disk, and the ball rep-
resents the moving disk. The ball and the plate are connected with ideal springs and
linear damping in two directions. The ideal springs represent the tangential contact
stiffness of the contact interface. The displacement between the ball and the plate
represents the microscopic sliding in the state of stick. So if the applied force on the
ball is greater than maximum stick, the ball will touch the edge of the plate, and the
plate will begin to move.

stationary  disk

plate of moving disk ball of moving disk
bm

bdbs

jm

jk jd

N
s

Fig. 2. Two-dimensional friction and ball/plate model
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The ball/plate dry friction model is actually a type of two-dimensional hysteretic
dry friction model. The frictional force between the stationary disk and the plate is
Coulomb’s friction force. The frictional force at any time depends on the motion state
of the plate and the applied force with which the ball acts on the plate.

Without considering the mass of the plate, the resultant force acting on the plate
will be 0 at any time. When the plate is stationary relative to the stationary disk, namely
the friction pair is in the state of stick, the frictional force acting on the plate is

Ff ¼ � kðr1 � r2Þþ dð_r1 � 0Þ½ �\lN ð1Þ

If kðr1 � r2Þþ dð_r1 � 0Þj j � lN, the plate will not remain stationary relative to the
stationary disk, namely the friction pairs is in the state of kinetic friction, and the
frictional force acting on the plate is

Ff ¼ � _r2 � _rj
_r2 � _rj
�� �� lN ð2Þ

where r1 ¼ x1 þ iy1 is the displacement of the ball; r2 ¼ x2 þ iy2 is the displacement of
the plate; rj ¼ xj þ iyj is the displacement of the stationary disk, its value is 0 when the
stationary disk remains at rest; k is the stiffness coefficient between the ball and the
plate; d is the damping coefficient between the ball and the plate; l is the friction
coefficient; and N is the pressure force.

2.2 Dynamics Model with the Rotor Systems

As shown in Fig. 3 is s single-disk flexible rotor with ESDFDs. The system consists of
two parts: a rotor and two ESDFDs (in the dashed boxes). The rotor is a single offset
disk with a flexible shaft that is supported by two elastic supports at both ends. The two
ESDFDs can be set up at each elastic support, shown in the dashed boxes of Fig. 3.

Eccentric diskElastic support
Moving disk
Stationary disk

Shaft

L
a b

m
r

t

h

ε

Fig. 3. A single-disk flexible rotor with ESDFDs
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For the rotor disk, four coordinates are required to describe its motion. Two of them
(x, y) describe its two-dimensional translation; the other two (ux, uy) describe its two-
dimensional swing. For the left friction pair, six coordinates are required to describe the
two-dimensional motion of the moving disk (the ball and the plate) and the stationary
disk: xb1 and yb1 describe the motion of the ball; xd1 and yd1 describe the motion of the
plate; and xj1 and yj1 describe the motion of the stationary disk. In the same way,
another 6 coordinates describe the motion of the right friction pair. They are xb2, yb2,
xd2, yd2, xj2, yj2. So in total, the whole rotor system is a system with 16 degrees of
freedom (16-DOF system).

By means of Euler’s laws of motion, the motion equations of the rotor disk, moving
disk and stationary disk can be obtained as follows.

The rotor disk:

m€rþ s11r� is12u� ðL� a
L

s11 þ 1
L
s12Þrb1 � ða

L
s11 � 1

L
s12Þrb2 ¼ meX2eiXt ð3Þ

Jd €u� iJpX _uþ is21rþ s22u� iðL� a
L

s21 þ 1
L
s22Þrb1 � iða

L
s21 � 1

L
s22Þrb2 ¼ 0 ð4Þ

The moving disk (the ball in the ball/plate model):

mb1€rb1 þðdb1 þ dÞ _rb1 þA1rþA2uþA3rb1 þA4rb2 ¼ krd1 þ d _rd1 ð5Þ

where

A1 ¼ �ðL�a
L s11 þ 1

L s21Þ
A2 ¼ iðL�a

L s12 þ 1
L s22Þ

A3 ¼ ðL�a
L Þ2s11 þ L�a

L2 s21 þ L�a
L2 s12 þ 1

L2 s22 þðsb1 þ kÞ
A4 ¼ ðL�aÞa

L2 s11 þ a
L2 s21 � L�a

L2 s12 � 1
L2 s22

8>>><
>>>:

mb2€rb2 þðdb2 þ dÞ _rb2 þB1rþB2uþB3rb1 þB4rb2 ¼ krd2 þ d _rd2 ð6Þ

where

B1 ¼ �ðaL s11 � 1
L s21Þ

B2 ¼ iðaL s12 � 1
L s22Þ

B3 ¼ ðL�aÞa
L2 s11 � L�a

L2 s21 þ a
L2 s12 � 1

L2 s22
B4 ¼ ðaLÞ2s11 � a

L2 s21 � a
L2 s12 þ 1

L2 s22 þðsb2 þ kÞ

8>>><
>>>:

The stationary disk:

mj1€rj1 þ dj1 _rj1 � d _rb1 � krb1 þ sj1rj1 ¼ �krd1 � d _rd1 ð7Þ

mj2€rj2 þ dj2 _rj2 � d _rb2 � krb2 þ sj2rj2 ¼ �krd2 � d _rd2 ð8Þ
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The plate of the moving disk (the plate in the ball/plate model):

_rd1 ¼
_rj1; kðrb1 � rd1Þþ dð _rb1 � _rj1Þ

�� ��\lN1

_rb1 � lN1
d

kðrb1�rd1Þþ dð _rb1�_rj1Þ
kðrb1�rd1Þþ dð _rb1�_rj1Þj j �

k
d ðrb1 � rd1Þ

� �
; kðrb1 � rd1Þþ dð _rb1 � _rj1Þ

�� ��� lN1

8<
:

ð9Þ

_rd2 ¼
_rj2; kðrb2 � rd2Þþ dð _rb2 � _rj2Þ

�� ��\lN2

_rb2 � lN2
d

kðrb2�rd2Þþ dð _rb2�_rj2Þ
kðrb2�rd2Þþ dð _rb2�_rj2Þj j �

k
d ðrb2 � rd2Þ

� �
; kðrb2 � rd2Þþ dð _rb2 � _rj2Þ

�� ��� lN2

8<
:

ð10Þ

Where r = x + iy is the displacement of the rotor disk; u ¼ ux þ iuy is the swing angle
of the rotor disk; rb1 = xb1 + iyb1 is the displacement of the left moving disk; rb2 =
xb2 + iyb2 is the displacement of the right moving disk; rd1 = xd1 + iyd1 is the dis-
placement of the left plate of the moving disk; rd2 = xd2 + iyd2 is the displacement of
the right plate of the moving disk; rj1 = xj1 + iyj1 is the displacement of the left
stationary disk; rj2 = xj2 + iyj2 is the displacement of the right stationary disk; m, mb1,
mb2, mj1, and mj2 respectively represent the masses of the rotor disk, the moving disks
and the stationary disks; s11, s12, s21 and s22 represent the stiffness coefficients of the
shaft at the rotor disk, where s11 is the displacement stiffness, s22 is the angle stiffness,
s12 and s21 are cross stiffness; sb1, sb2, sj1, and sj2 respectively represent the stiffness
coefficients of the elastic support and the stationary disk; db1, db2, dj1, and dj2
respectively represent the damping coefficients of the elastic support and the stationary
disk; Jp and Jd respectively represent the polar moment of inertia and the moment of
inertia about a diameter of the rotor disk; N1 and N2 respectively represent the pressing
force between the moving disk and stationary disk of the two dampers; k and d are the
tangential contact stiffness coefficient and damping coefficient of the contact interface
introduced by the ball/plate model; L is the length between the two supports; a is the
length between the left support and the rotor disk; e is the eccentricity of the rotor disk;
and X is the rotational speed of the rotor.

To solve the equations by numerical methods, the following variables are
introduced:

u1 ¼ r;u; rb1; rb2; rj1; rj2
� �T

u2 ¼ _u1
u3 ¼ rd1; rd2f gT

8<
: ð11Þ

Equations (3)–(10) can be written in the following form:

E O O
O M O
O O E

2
4

3
5 _u1

_u2
_u3

8<
:

9=
;þ

O �E O
S D O
O O O

2
4

3
5 u1

u2
u3

8<
:

9=
; ¼

O
f
fd

8<
:

9=
; ð12Þ
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where

M½ � ¼

m

Jd
mb1

mb2

mj1

mj2

2
666666664

3
777777775
;

S½ � ¼

s11 �is12 �ðL�a
L s11 þ 1

L s12Þ �ðaL s11 � 1
L s12Þ 0 0

is21 s22 �iðL�a
L s21 þ 1

L s22Þ �iðaL s21 � 1
L s22Þ 0 0

A1 A2 A3 A4 0 0

B1 B2 B3 B4 0 0

0 0 �k 0 sj1 0

0 0 0 �k 0 sj2

2
666666664

3
777777775
;

D½ � ¼

0

�iJpX

db1 þ d

db2 þ d

�d dj1
�d dj2

2
666666664

3
777777775
;

ff g ¼

meX2eiXt

0

krd1 þ d _rd1
krd2 þ d _rd2

�ðkrd1 þ d _rd1Þ
�ðkrd2 þ d _rd2Þ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;

fdf g ¼

_rj1; kðrb1 � rd1Þþ dð _rb1 � _rj1Þ
�� ��\lN1

_rb1 � lN1
d

kðrb1�rd1Þþ dð _rb1� _rj1Þ
kðrb1�rd1Þþ dð _rb1� _rj1Þj j �

k
d ðrb1 � rd1Þ

� �
; kðrb1 � rd1Þþ dð _rb1 � _rj1Þ

�� ��� lN1

8><
>:

_rj2; kðrb2 � rd2Þþ dð _rb2 � _rj2Þ
�� ��\lN2

_rb2 � lN2
d

kðrb2�rd2Þþ dð _rb2� _rj2Þ
kðrb2�rd2Þþ dð _rb2� _rj2Þj j �

k
d ðrb2 � rd2Þ

� �
; kðrb2 � rd2Þþ dð _rb2 � _rj2Þ

�� ��� lN2

8><
>:

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

E is the unit matrix, and O is the zero matrix.

Let
E O O
O M O
O O E

2
4

3
5¼ A,

O �E O
S D O
O O O

2
4

3
5¼ B,

O
f
fd

8<
:

9=
;¼ pf g,

u1
u2
u3

8<
:

9=
; ¼ uf g, then

Eq. (12) can be transformed into

_uf g ¼ �A�1 � B � uf gþA�1 � pf g ð13Þ

Equation (13) can be solved by numerical method for ordinary differential equations.
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3 Characteristics of a Rotor with ESDFDs

3.1 Rotor Systems with the ESDFDs

Figure 4 shows a rotor system with two ESDFDs. The rotor experimental apparatus
consists of a bias disk rotor, two dampers, two self-aligning bearings, a flexible cou-
pling, a motor and two amplifiers for driving the damper.

The amplitude-frequency characteristics of a rotor with ESDFDs under variable
pressing force were tested. Two friction pairs were used in the experiments. One was
brass/steel, and the other was steel/steel. The test results are shown in Figs. 5a and 6a.

Numerical simulations were carried out using the parameters of the rotor test rig
shown in Fig. 4 and the model shown in Fig. 3. The geometrical dimensions of the
rotor system are as follows:

L = 700 mm, a = 250 mm, b = 450 mm, t = 28 mm, r = 120 mm, h = 40 mm,
and material parameters are q = 7.8 � 103 kg/m3, E = 2.1 � 1011 N/m2.

Based on the geometrical dimensions and material parameters above, the mass,
stiffness, moment of inertia, etc., of the rotor can be obtained. In addition, in order to
investigate the effect of mode shape on damping effect, mb2 is valued much larger than
mb1 to make the vibration amplitude at the right elastic support higher than left on the
second mod. The results are shown in Figs. 5b and 6b.

All of the basic Parameters are listed in Table 1.
Figure 5 shows the amplitude-frequency characteristics when the friction pair is

brass/steel, and Fig. 6 shows the amplitude-frequency characteristics when the friction
pair is steel/steel. Comparing figure a with figure b in both figures, the calculation
results show good agreement with the test results, not only regarding the trend but also
the specific values with the damper. Figure 5 shows a significant mismatch for zero N
pressure force is that nonlinearity response of rotor systems with a large unbalance.

Fig. 4. The rotor system with the ESDFDs
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Fig. 5. Amplitude-frequency characteristics of the rotor, brass/steel
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Fig. 6. Amplitude-frequency characteristics of the rotor, steel/steel

Table 1. Parameters of the rotor for numerical analysis

Parameters Values Parameters Values

m 15.7 kg e 3 � 10−5 m
Jp 0.113 kg m2 Jd 0.0586 kg m2

a 250 mm L 700 mm
s11 1.4251 � 106 N/m s12 2.1026 � 105 N/m
s21 2.1026 � 105 N/m s22 1.1827 � 105 N/m
sb1 7.38 � 105 N/m sb2 7.73 � 105 N/m
db1 250 Ns/m db2 250 Ns/m
mb1 1.6 kg mb2 12 kg
k 3 � 105 N/m d 10 Ns/m
mj1 2 kg mj2 2 kg
sj1 1 � 107 N/m sj2 1 � 107 N/m
dj1 134 Ns/m dj2 134 Ns/m
l (brass/steel) 0.19 l (steel/steel) 0.1
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3.2 Characteristics of Damping Performance

Stiffness of the Elastic Support
The critical speed and mode shape can be affected by the elastic support. The per-
formances of the ESDFD with respect to the stiffness of the elastic support are shown in
Figs. 7 and 8. The friction force is applied simultaneously on the left and right elastic
supports, N1 = N2 = 20 N.

Figure 7 is the mode shape of the rotor with the different stiffness of elastic sup-
ports, it is shown that the deflection of the disk increases in comparison to the
deflection of the bearings with increase of stiffness. Its means that the smaller the
stiffness coefficient of the elastic supports, the more vibration energy is concentrated in
the elastic support.

Figure 8 shows the simulation results of the unbalance response of the rotor with
the different stiffness of elastic supports. It is shown that the damping performance of
the ESDFD is closely related to the operating speed of the rotor and the characteristics
of the rotor’s mode. Even the same dampers fixed on different rotors or different
support locations can perform differently.
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Fig. 7. Mode shape of the rotor
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Pressure Force and the Friction Coefficient
The damping provided by an ESDFD to a rotor is derived from the sliding friction force
between the stationary and moving disks. So, as the product of the pressure forces N1

and N2 and the friction coefficient l, the sliding friction forces lN1 and lN2 directly
determine the damping performance of the damper.

Figure 9 is the simulation results of the unbalance response of the rotor with the
different sliding friction forces.

It is shown in Fig. 9 that as the sliding friction forces lN1 and lN2 increase, the
critical speed of the rotor system moves upward, and the peak amplitude of the rotor at
the critical speed decreases and then increases. When the sliding friction forces are
large enough, the peak amplitude of the rotor even exceeds the peak amplitude without
friction. There must be an optimal sliding friction force under which the unbalance
response of the rotor system will be smallest for all rotational speeds, and the rotor can
pass through the critical speed smoothly. In this model, the optimal sliding friction
force is between 24 N and 37.5 N.

Stiffness of the Stationary Disk and Tangential Contact Stiffness of the Contact
Interface
Between the moving disk and the mounting base of the stationary disk, there is a
combined stiffness that consists of the stiffness of the stationary disk and the tangential
contact stiffness of the contact interface.

The Stiffness of the Stationary Disk
Figure 10 is the simulation results of the unbalance response of the rotor with the
stiffness the stationary disk. The stiffness the stationary disks sj1 = sj2, and the pressure
forces of the two dampers, applied simultaneously N1 = N2 = 150 N. It is shown that
as the stiffness coefficient of the stationary disk increases, the peak amplitude of the
rotor decreases, while the damping performance of the elastic support/dry friction
damper improves. When the stiffness coefficients sj1 and sj2 increase to some extent, the
unbalance response curve is nearly constant and the damping performance of the
damper no longer changes.
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Figure 11 is the simulation results of time domain waveform of the left support
at 1800 rpm. As shown in Fig. 11a, when the stiffness coefficient is small, sj1 = sj2 =
0.05 � 107 N/m, themotion of the stationary disk under the traction of themoving disk is
obvious, which makes the relative motion between the moving and stationary disks
smaller, which is unfavourable for the damping performance of the elastic support/dry
friction damper. In Fig. 11b, when the stiffness coefficient is large, sj1 = sj2 = 1 � 107

N/m, the stationary disk barely moves, which is very favorable for the damper.

The Tangential Contact Stiffness of the Contact Interface
Figure 12 is the simulation results of unbalance response of the rotor with the tan-
gential contact stiffness k and the pressure forces of the two dampers, applied simul-
taneously N1 = N2 = 150 N. It is shown that as the stiffness coefficient k increases, the
peak amplitude of the rotor decreases and the damping performance of the elastic
support/dry friction damper improves.
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In the ball/plate model, the plate moves under the traction of the ball. The damping
comes from the relative motion between the plate and the stationary disk. When the
tangential contact stiffness k is small, the relative motion between the plate and the
stationary disk is small, so the damping will be small.

The stiffness of the stationary disk sj and the tangential contact stiffness of the
contact interface k are connected in series between the moving disk and the mounting
base of the stationary disk. The larger this combined stiffness is, the better the damper’s
damping performance.

The Dampers are Applied Different Control Schemes
Due to the additional stiffness of the damper, the critical speed of the rotor system
increases as the pressing force increases. This is not allowed for the rotor system. It is
necessary to design a control scheme based on the characteristics of the damper, with
which that rotor vibration control can be achieved without changing the critical speed
of the rotor system. The switch control is one of the most basic control schemes. If the
rotational speeds of rotor are within the critical speed regions, the damper is switched
on, or the damper switched off. The optimal pressure force N are represented by the
control voltage depending simulation results of the damper, or applied proportional
(P) control based on the vibration amplitude feedback. The P controller is defined as

U ¼ U0 þ kp PPD � PPD0ð Þ

Where U is the control voltage, U0 is the initial voltage, kp is the proportional gain,
PPD and PPD0 are the amplitude of P-P and reference amplitude of P-P, respectively.

The experiments are conducted to investigate the vibration characteristics of the
rotor system in switch control scheme. The control voltages are depending on the
simulation results and P controller.

Figure 13 is the amplitude-frequency characteristics of the rotor system at the disk
while using switch control and without control in the vertical direction. According to the
simulation results, the control voltage is 8.2 V. Comparing to without control, the
vibration amplitude of disk is clearly decreased within the critical speed regions, and not
changed out of the control regions. At the same time, there is also no change of the critical

Fig. 13. Diagrams of bode while using switch control at 0 V and 8.2 V
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speed of the rotor system. The reason is that the additional stiffness of the damper to rotor
systems is removed when applied the switch control scheme out of critical regions.

Figure 14 is the amplitude-frequency characteristics of the rotor system at the disk
while using switch control and without control in the vertical direction. The control
voltages are depending on the P controller. Where U0 is 3 V, kp is 0.013, PPD0 is
200 lm. Comparing to the control voltage depended on the simulation results, There is
the same effect of vibration reduction.

It is shown that switch control scheme is very suitable for the ESDFD to control the
vibration of rotor systems actively. It is also possible to optimize vibration control of
rotor systems with the ESDFD.

4 Conclusions

Conclusions can be drawn from the theoretical and experimental analysis of the rotor
system with the ESDFD:

(1) The ESDFD can effectively control unbalance response of rotor systems around
the critical speed by adding the damping and stiffness to rotor systems.

(2) The switch control scheme can effectively controls the ESDFD without changing
the critical speed of rotor systems, and the control voltages can be obtained by
simulation results or by P controller.

(3) The two-dimensional friction and ball/plate model are very effective in analyzing
the steady responses of unbalance. Theoretical results agree with the experimental
results to a great extent.
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Abstract. In smart rotor technology the active magnetic bearing plays a vital
role in controlling vibration for safe and efficient running of high speed
machineries, and for its condition monitoring or system identification.
Researchers mostly investigated the dynamics of cracked rotors independent of
the internal damping. Nevertheless, the internal damping is also influenced by
the presence of crack in a rotating system because of rubbing of crack fronts
during its opening and closing throughout the shaft whirling. The present work
deals with the identification of rotor dynamic parameters in the cracked Jeffcott
rotor considering both external and internal damping through a model based
technique. The active control of vibration that is caused due to the transverse
crack, unbalance and internal damping can be done by using the magnetic
bearing. Numerical rotor responses and AMB currents are investigated using the
full spectrum tool, which can reveal directional nature of the vibration signature
in frequency domain. The response and current harmonics due to the excitation
force of crack function, which is found from full spectrum analysis, are input to
the proposed identification algorithm. It estimates the additive crack stiffness,
unbalance in rotor, external damping, internal damping and AMB parameters
such as the force-displacement and force-current coefficients. For different noise
levels in responses and currents the proposed identification algorithm is tested
for validating its robustness against measurement noise.

Keywords: Estimation of internal damping � Active magnetic bearing (AMB)
Unbalance � Switching crack � Full spectrum

1 Introduction

In modern machinery control, the automated health monitoring of machines is
becoming common, increasingly. Active magnetic bearing which is a mechatronic
product has been more profound in using as a bearing or as a controller in high-speed
rotating machineries for its safe operation and integrity. Towards the continuation and
advancement of higher and higher speeds in rotating machineries, witnesses many
mechanical side effects, which induces vibrations into it. The continuous monitoring of

© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 62, pp. 34–48, 2019.
https://doi.org/10.1007/978-3-319-99270-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_3&amp;domain=pdf


performances of rotating machinery are done through vibration monitoring systems,
and the information collected are used for more efficient scheduling of routine inter-
ruption [1]. The condition monitoring is a predictive maintenance measure of the health
of a machine. The best way to prevent failure and measure reliability of a machine is to
identify and eliminate the faults in early stage of its design [1].

Practical rotors experience mainly two common faults, among others, which
influence vibrations in machines are basically unbalances and cracks. The breathing
behavior of crack depends on the vibration due to out of balance force, while it is much
smaller than the static deflection of the rotor due to gravity. Opening and closing of
crack faces occur due to the rotation of the shaft and thus, based on this phenomenon
various crack models have been developed [2, 3]. A paper on different types of cracks
including crack initiation and its propagation as well as various diagnostics methods are
reviewed by Sabnavis and Kirk [4]. The dynamics of the rotor system can be analyzed
by identification of system parameters by the model based approach [5]. Bachschmid
et al. [6] discussed an identification approach through modeling, based on least square
fit to identify the multiple faults, simultaneously, in frequency domain. The experi-
mental validation of the algorithm as well as effectiveness of the developed model in
identifying faults’ position, phase, have been elaborated.

Full spectrum is a handy tool as it provides the directional nature of signals by
retaining all the phase information, which helps in identifying faults, correctly. Patel
and Darpe [7] illustrated the effect of vibration response in the presence of rotor-stator
rub, simultaneously, by introducing full spectrum approach. Shravankumar and Tiwari
[8] illustrated a model-based identification approach of the switching crack, where the
crack was identified by the reduction in flexibility of the system. Full spectrum analysis
was used to obtain the multi harmonics from the response to use in the developed
identification algorithm.

In high speed rotating machineries the internal damping induces instability and
results in excessive vibration, which actually affects the life of a system. In literature,
the internal damping influences instability in supercritical speed ranges, while at
subcritical speed it reduces amplitude of vibration [9]. The internal viscous damping
introduces circulatory effect which causes destabilizing effects [9]. Many literatures on
stability analysis of rotors due to internal damping have been discussed. Nelson and
Zorzi [10], and Melanson and Zu [11] developed finite element formulations consid-
ering rotary inertia, both internal and external damping, and gyroscopic effect for the
rotor bearing system.

Active magnetic bearing in modern days are in great use as active devices for fault
detection and diagnosis. In modern rotating machineries, the major area of interest is its
vibration-based condition monitoring through active devices. Quinn and Mani [12]
illustrated an identification technique to detect crack using active magnetic bearings as
an actuator. The rotating system is excited at a combination resonance, which describes
the presence of breathing crack.

Lees et al. [13] overviewed the quantification of faults in rotating machinery
through model based identification approach, which is less time consuming. Various
fault parameter estimations, like of the bow, misalignment and crack, using mathe-
matical models are discussed, which are for practical rotors have been a real challenge.
Singh and Tiwari [14] worked on the identification of additive stiffness of crack and
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AMB parameters using model based approach. Identification algorithm was developed,
where the full spectrum based amplitudes and phases have been taken into consider-
ation to estimate the parameters.

As internal damping force is rotating in nature, it causes severe problems by inducing
instability in supercritical speed range of rotors. The internal damping effect is enhanced
to a great extent due to the presence of crack in a rotor system. Thus, there is a need for
accurate identification of these fault parameters so as to monitor the operational condition
of rotating machinery. Thereby, warranting the longevity of the plant and safety of the
personnel using the equipment. The active control of vibration is a promising solution to
mitigate the failure of a system. This can be achieved with the usage of AMB as a
controller. However, it can be seen from the literature survey that researchers have hardly
touched upon the simultaneous consideration of rotor crack, internal damping and usage
of AMB as controller. Therefore, the novelty of this research lies in,

(1) simultaneous consideration of rotor crack, internal damping and AMB for
vibration control and identification of fault parameters (like internal damping,
additive stiffness) and AMB parameters, and

(2) usage of full spectrum analysis to understand the directional nature, i.e. the for-
ward as well as backward whirling directions of the rotor system of the generated
response.

The work starts with developing equation of motion (EOM) of the Jeffcott rotor
considering unbalance, crack, external damping, internal damping, and magnetic
bearing force. The frequency response of the system is derived based on the developed
EOM. This is further used for development of identification algorithm (regression
based least-square fitting technique) to estimate the aforementioned parameters from
the obtained harmonics.

2 Description of Cracked Jeffcott Rotor System

The Jeffcott rotor comprises of a rigid disc at mid-span of a cracked flexible shaft, and it
is supported on two rigid bearings and an AMB is integrated with it as shown in Fig. 1.
Vibrations emanating by the system and due to the presence of faults can be controlled
by the AMB existing into the system itself. Weight dominance effect where the disc
mass considered is heavy. According to the weight dominance effect, the vibration
response due to static deflection of the system due to gravity is much higher than that of
the dynamic response.

Motions in two orthogonal directions have been considered for the rotor-AMB
model. Internal (rotating) damping effects, which often bring the rotor to dynamic
unstable condition, are also considered in the mathematical modeling.

Fig. 1. Schematic of cracked Jeffcott rotor with disc at mid-span and integrated with an AMB
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The crack present in the rotor system provides an additional flexibility into the
shaft, which varies with time and thus alters the natural frequency of the system. In the
proposed model, switching crack is used, where shifting from open to closed of the
crack faces, and vice-a-versa is sudden. The switching crack model is based on the
hinge model [15]. The non-rotating (external) viscous damping and rotating (internal)
viscous damping, both are considered in the rotor system model.

In the rotor model, the inertial frame of reference is considered; where x and y are
axes in the vertical and horizontal directions, respectively, and its origin O as shown in
Fig. 2, is at the mid-span on the bearing center line. Displacements in rotating coor-
dinate system (n-η) are represented by n and η. The spin speed of the shaft is defined by
x and t is the time. The product of spin speed and time is considered here as x t ¼ h.
The distance between the center of gravity (G) and center of mass (C), is denoted by
eccentricity (e), m is the disc mass and k is the undamaged shaft stiffness.

2.1 Equations of Motion Considering Both External and Internal
Damping

The equation of motion of the Jeffcott rotor considering both external and internal
damping, however, without other excitation forces can be represented in rotating frame
of reference in complex form by f ¼ nþ jg, as, in [16]

m €fþ 2jx _f� x2f
� �

þ cV _fþ jxf
� �

þ cH _fþ kf ¼ 0 ð1Þ

The equations of motion in complex form with z ¼ ðux þ ux0Þþ juy in stationary
co-ordinate system as,

•

•

Fig. 2. Disc rotation of a Jeffcott rotor in rotating frame with reference to stationary coordinate
system with the crack, unbalance and internal damping
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m€zþ cV þ cHð Þ_zþ k � jxcHð Þz ¼ 0 ð2Þ

The transformation between the stationary and rotating coordinates are given as
f ¼ ze�jxt. Equation (2) can be split into two translation directions, as

m€ux þ cV þ cHð Þ _ux þ k ux þ ux0ð ÞþxcHuy ¼ 0 ð3Þ

m€uy þ cV þ cHð Þuy � xcH ux þ ux0ð Þþ kuy ¼ 0 ð4Þ

2.1.1 Modelling of Crack Force
The model of the crack force considered in the present case is the switching crack. The
breathing behavior of the crack face depends on the speed and the orientation of the crack
during shaft rotation. The switching crack excitation function based on the hinge model
as illustrated by Gasch [15], has square periodic wave that comprises of multi-harmonics.
The additive stiffness which comes into existence due to the presence of crack, is rotating
in nature contributes reduction in stiffness. The stiffness matrix of the cracked shaftKðtÞ
arises due to breathing crack which is time varying in nature is given as

KðtÞ ¼ K0 þDK u(t),hðt)ð Þ ð5Þ

where K0 represents the diagonal stiffness matrix of an intact shaft assumed to be
isotropic and DK represents the additive stiffness matrix that describes the decrease in
stiffness of shaft due to the presence of crack. The crack force in the rotating co-
ordinate system is represented as,

fn
fg

� �
rot
¼ k0 0

0 k0

� �
� sðtÞ Dkn 0

0 0

� �� 	
n
g

� �
rot

ð6Þ

where, s(t) is the crack excitation function for switching model of crack represented in
[15] as,

s tð Þ ¼ 1
2
þ 2

p
cos hð Þ � 2

3p
cos 3hð Þþ 2

5p
cos 5hð Þ � 2

7p
cos 7hð Þþ � � � ð7Þ

The stiffness matrix term in inertial frame of reference can be represented by trans-
forming it from rotating co-ordinate system as,

K0 þDK tð Þ ¼ T�1 tð Þ K0;rot þDKrot tð Þ

 �

T tð Þ ð8Þ

where, the transformation matrix T is defined as,

T tð Þ ¼ cos h sinh
�sinh cos h

� �
ð9Þ
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The whole stiffness matrix after transformation with additive stiffness parameter, Dkn is
given as,

K0 þDK tð Þ ¼ k0 0
0 k0

� �
� 1
2
s tð ÞDkn 1þ cos 2hð Þ sin 2h

sin 2h 1� cos 2hð Þ
� �

ð10Þ

2.1.2 Modelling of Unbalance Force
The unbalance excitation force acts in the rotor system is represented by

funb ¼ mex2 cosðhþ bÞ
sinðhþ bÞ

� �
ð11Þ

2.1.3 Modelling of Magnetic Force
The magnetic bearing force can be expressed in the linear form near the operating point
in terms of the force-displacement factor ks and the force-current factor ki as,

fAMB ¼ �ksux þ kiicx
�ksuy þ kiicy

� �
ð12Þ

Proportional-integral-derivative (PID) controller is practiced for stable operation of the
system. The expression of the control current icx and icy of PID controller is expressed
as,

icðtÞ ¼ KPzðtÞþKI

Z
zðtÞdtþKD

dzðtÞ
dt

ð13Þ

2.2 Overall Motion Equation of the Cracked Jeffcott Rotor Bearing
System

All the excitation forces such as unbalance force, crack force and magnetic force after
incorporation into Eq. (4), we get

m 0

0 m

� �
€ux
€uy

� �
þ cV þ cH 0

0 cV þ cH

� �
_ux
_uy

� �
þ k0 xcH

�xcH k0

� �
ux
uy

� �
¼ mex2 cos hþ bð Þ

sin hþ bð Þ

� �

þ 1
2
s tð ÞDkn

1þ cos 2hð Þ sin 2h

sin 2h 1� cos 2hð Þ

� �
ux0
0

� �
� xcH

ux0
0

� �
� �ksux þ kiicx

�ksuy þ kiicy

� �

ð14Þ

From equilibrium position in complex form introducing z = ux+ juy and ic= icx+ jicy for
both displacement and current, respectively, into Eq. (14), as
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m€zþðcV þ cHÞ_zþðk0 � ks � jxcHÞz ¼ 1
2
sðtÞDknux0 1þ ej2h


 �þ jxcHux0

þmex2ejðhþ bÞ � ki KPzðtÞþKI

Z
zðtÞdtþKD

dzðtÞ
dt

� � ð15Þ

The development of identification algorithm and numerical simulation has been done
on the basis of the overall system’s EOM.

3 Response Analysis in Both Time and Frequency Domain

The vibration response based on EOM (15) can be generated into both time and
frequency domain. Equation (10) can be represented in summation form consisting of
participation factor as pi and i represent the harmonics number, as

fcr ¼ Dknux0
X1
i¼�1

pie
jih ð16Þ

where, switching crack multi harmonics crack excitation function can be implemented
in the crack force, as

ux0Dkn
� � � þ 0:009e�j5h � 0:021e�j3h þ 0:106e�jh þ 0:25þ 0:319ejh þ 0:25ej2h

þ 0:106ej3h � 0:021ej5h þ 0:009ej7h þ � � �

 !

¼ ux0Dkn
Xn
i¼�n

pie
jih ð17Þ

Equation as a combination of all current harmonics can be represented by,

fAMB ¼ ki
X1
i¼�1

Iie
jih ð18Þ

The assumed solution Z(t) for a particular harmonic of crack force excitation is ZðxÞejih
and for control current I(t) as IðxÞejih. The proposed system is assumed to be linear for
which the principle of superposition can be used. The assumed solutions for each
harmonic of the spectrum have been added up using superposition principle, as

zðtÞ ¼ Z�ne
�njh þ � � � þ Z�5e

�5jh þ Z�3e
�3jh þ Z�1e

�1jh þ Z0e
0jh þ Z1e

jh þ Z2e
2jh

þ Z3e
3jh þ Z5e

5jh þ Z7e
7h þ � � � þ Zne

njh ð19Þ

Similarly, for the current, as

icðtÞ ¼ I�ne
�njh þ � � � þ I�5e

�5jh þ I�3e
�3jh þ I�1e

�1jh þ I0e
0jh þ I1e

jh þ I2e
2jh

þ I3e3jh þ I5e5jh þ I7e7jh þ � � � þ Inenjh
ð20Þ
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The EOM (15) in frequency domain for multi-harmonics, as
For i = 0;

Z0 ð�x2ÞmþðjxÞðcV þ cHÞþ ðk0 � ks � jxcHÞ
�  ¼ Dknux0p0 � kiI0 þ jxcHux0

ð21Þ

For i = 1;

Z1 ð�x2ÞmþðjxÞðcV þ cHÞþ ðk0 � ks � jxcHÞ
�  ¼ Dknux0p1 þmex2ejxt � kiI1

ð22Þ

Similarly, for i 6¼ 1;

Zi ð�i2x2ÞmþðjixÞðcV þ cHÞþ ðk0 � ks � jxcHÞ
�  ¼ Dknux0pi � kiIi þ jxcHux0

ð23Þ

The frequency domain Eqs. (21), (22) and (23) will be used in the identification
algorithm formulation.

4 Identification Algorithm for Parameter Estimation

Multi harmonics of frequency domain equations have been used for the development of
identification algorithm in estimation of the external and internal damping, additive
stiffness and AMB parameters. For identification of unknown system parameters, a
linear regression method has been practiced, as

Ax ¼ b ð24Þ

where ½A� is the the regressor or the regression matrix,fbg is the vector consisting of
known quantities and fxg is the vector containing the unknowns to be determined in
estimation. The regression matrix for displacement and current respectively are as
follows,

½A�n�ifxZgi�1 ¼ fbZgn�1

½A�n�ifxIgi�1 ¼ fbIgn�1

)
ð25Þ

The regression based harmonics for the displacement and the current in both forward
and backward directions are represented, as

fxZgn�1 ¼ Z0ðxÞ Z1ðxÞ Z2ðxÞ Z3ðxÞ Z5ðxÞ � � � Z�1ðxÞ Z�3ðxÞ � � �f gT
fxIgn�1 ¼ I0ðxÞ I1ðxÞ I2ðxÞ I3ðxÞ I5ðxÞ � � � I�1ðxÞ I�3ðxÞ � � �f gT

)

ð26Þ
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The regressor is defined in matrix form, as

A ¼
1 ejh1 ej2h1 ej3h1 ej5h1 � � � e�jh1 e�j3h1 e�j5h1 e�j7h1 � � �
1 ejh2 ej2h2 ej3h2 ej5h2 � � � e�jh2 e�j3h2 e�j5h2 e�j7h2 � � �
..
. ..

. ..
. ..

. ..
. � � � ..

. ..
. ..

. ..
. � � �

1 ejhn ej2hn ej3hn ej5hn � � � e�jhn e�j3xtn e�j5hn e�j7hn � � �

2
664

3
775 ð27Þ

The known matrix is defined, as

fbzgn�1 ¼ zðt1Þ zðt2Þ zðt3Þ zðt4Þ . . . zðtn�1Þ zðtnÞf gT
fbicgn�1 ¼ icðt1Þ icðt2Þ icðt3Þ icðt4Þ . . . icðtn�1Þ icðtnÞf gT

)
ð28Þ

Separating the real and imaginary quantities the developed algorithm in the regression
form is represented as,

�xZ1;Im 0 �ux0p1 �mx2 0 �Z1;Re I1;Re
0 xZ0;Im �ux0p0 0 0 �Z0;Re I0;Re

�2xZ2;Im �xZ2;Im �ux0dwp2 0 0 �Z2;Re I2;Re
�3xZ3;Im �2xZ3;Im �ux0p3 0 0 �Z3;Re I3;Re

..

. ..
. ..

. ..
. ..

. ..
. ..

.

xZ�1;Im 2xZ�1;Im �ux0p�1 0 0 �Z�1;Re I�1;Re

3xZ�3;Im 4xZ�3;Im �ux0p�3 0 0 �Z�3;Re I�3;Re

..

. ..
. ..

. ..
. ..

. ..
. ..

.

xZ1;Re 0 0 0 �mx2 �Z1;Im I1;Im
0 xðZ0;Re þ ux0Þ 0 0 0 �Z0;Im I0;Im

2xZ2;Re xZ2;Re 0 0 0 �Z2;Im I2;Im
3xZ3;Re 2xZ3;Re 0 0 0 �Z3;Im I3;Im

..

. ..
. ..

. ..
. ..

. ..
. ..

.

�xZ�1;Re �2xZ�1;Re 0 0 0 �Z�1;Im I�1;Im

�3xZ�3;Re �4xZ�3;Re 0 0 0 �Z�3;Im I�3;Im

..

. ..
. ..

. ..
. ..

. ..
. ..

.

2
66666666666666666666666666666664

3
77777777777777777777777777777775

cV
cH
Dkn
eRe
eIm
ks
ki

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

ðx2m� k0ÞZ1;Re
�k0Z0;Re

ð4x2m� k0ÞZ2;Re
ð9x2m� k0ÞZ3;Re

..

.

ðx2m� k0ÞZ�1;Re

ð9x2m� k0ÞZ�3;Re

..

.

ðx2m� k0ÞZ1;Im
�k0Z0;Im

ð4x2m� k0ÞZ2;Im
ð9x2m� k0ÞZ3;Im

..

.

ðx2m� k0ÞR�1;Im

ð9x2m� k0ÞZ�3;Im

..

.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð29Þ

Equation (29) can be expressed in a typical matrix form and estimated the identifiable
parameters using least-squares regression as,

x ¼ ATA

 ��1

ATb ð30Þ

The identification with combined speed matrix as,

Aðx1Þ
Aðx2Þ

..

.

AðxnÞ

8>>><
>>>:

9>>>=
>>>;
x ¼

bðx1Þ
bðx2Þ

..

.

bðxnÞ

8>>><
>>>:

9>>>=
>>>;

ð31Þ

The system parameters can be estimated by simulating Eq. (31) for combined spin
speeds. The effect of multiple speed conditions for the identifiable has been illustrated.
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5 Numerical Simulation

The numerical simulation of the regression Eq. (31) in Matlab SIMULINK™ envi-
ronment done has been illustrated in this section. The numerical model of the system is
best described by SIMULINK™ environment as shown in Fig. 3, which provides the
rotor displacement and AMB current at two orthogonal directions. The numerical
simulation is done using the system’s parameters from Table 1.

5.1 Nyquist Stability Plot of the System

Nyquist plot stability criterion assessed the stability of a system with feedback through
frequency response plot. As the proposed rotor system with AMB possess feedback
control (closed) loop, system’s closed-loop transfer function can be represented as in
Ref. [16].

Rotor system parameters used for the numerical simulation is based on the existing
laboratory rotor kit [17] and the internal damping values is chosen based on stability
boundary graph [18]. The PID controller gains of the AMB are chosen based on the
Routh-Hurwitz criterion and as illustrated by Parth [19].

G ¼ GCMA

1þGCMAGsn
ð32Þ

where, assuming GCMA be the transfer function of the system containing controller,
sensor and magnetic bearing in series and Gsn is the overall correction sensor gain.

G ¼ s2 KP þ KI
s þKDs


 �
kiks

ms3 þðcV þ cH þKDkiksksnÞs2 þðk � jxcH þ kx þKPkiksksnÞsf gð ÞþKIkiksksn
ð33Þ

ω

Input crf crf

unbf unbf
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Workspace
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Clock
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Input
Spin speed

Fig. 3. SIMULINK™ Block of the Rotor system
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The condition of Nyquist stability criterion as in Ref. [20]

N ¼ Z � P ð34Þ

where the number of zeros of the characteristic equation, i.e. closed-loop transfer
function is represented as Z. The number of poles in the open-loop characteristic
equation is defined as P, and N is the number of encirclements of the (−1 + j 0) point.
The Nyquist plot of the rotor system is depicted Fig. 4.

It has been observed that the number of encirclement of (−1, j 0) by the contour is
zero. Since, here, P is zero (for the open loop stable system) and there are no closed-
loop poles present in the right half of complex plane. Hence, according to the Nyquist
stability criterion, the system is stable which best describes the chosen PID controller
parameters, such as KP, KI and KD values ability to stabilize the proposed rotor system.

5.2 Time Domain and Full Spectrum Responses

The numerical simulation has been performed for 5 s and data have been chosen for
response generation for last 1 s to avoid numerical transients. The response generated
at a rotational speed of 157.07 rad/s of two lateral displacements (x and y directions)
and control current (icx and icy) and orbit plots are shown in Fig. 5.

Table 1. Parameters assumed for the proposed system

Parameters Assumed values Parameters Assumed values

Rotor
Disc mass, m 1.185 kg Intact shaft stiffness, k0 3.84 � 105 N m−1

External damping, cV 76 Ns m−1 Additive stiffness, Dkn −1.158 � 105 Ns m−1

Internal damping, cH 25 Ns m−1 Disc eccentricity, e 3 µm
PID controller gains Actuator factors
Proportional, KP 8 � 103 A/m Force-displacement

coefficient, ks
1.052 � 105 N/m

Integral, KI 1.34 � 105 A/m-s Force-current coefficient,
ki

42.1 N/A

Derivative, KD 1 A-s/m
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Fig. 4. Nyquist Plot for a speed of 157.07 rad/s of the cracked rotor system
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Similarly, the full spectrum amplitude and phase for the same spin speed as in time
domain has been generated for both displacement and current as shown in Fig. 6.

The harmonics found from the full spectrum of displacement and current have been
used in the developed algorithm to estimate system parameters.
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6 Parameters Estimation

For the identification of parameters, the full spectrum amplitudes and the corrected
phases of both forward and backward harmonics have been introduced in the developed
algorithm. The amplitudes found from the regression matrix in frequency domain are
similar with the amplitudes of FFT based full spectrum.

In the present identification process the basis of choosing multiple speeds is the
critical speed of the system, which is 569.25 rad/s. The multiple speeds considered here
are from 157.08 rad/s to 314.16 rad/s which comprises of 25 spin speeds. The spin
speeds have been chosen in between the 2X harmonic and 5X harmonic of spin speed
contributing spectrum.

Random noises have been added to the time domain signal with different level of
percentage to correlate the algorithm with the real time simulation problem. From
Table 2, it has been observed that the AMB force displacement parameter (ks) is the
most exposed to 5% noise effect with error percentage as 4.67. Whereas, the additive
crack stiffness (Dkn) is the least affected parameter with error of −0.83% with the
assumed parameter. Using these random noises to the uncontaminated signal the
robustness of the identification algorithm has been checked.

From Table 2, it has been observed that the AMB force displacement parameter (ks)
is the most exposed to 5% noise effect with error percentage as 4.67.

Whereas, the additive crack stiffness (Dkn) is the least affected parameter with error
of −0.834% with the assumed parameter. Using these random noises to the uncon-
taminated signal the robustness of the identification algorithm has been checked.

Table 2. Identifiable parameters with and without noise for multiple spin speeds

Assumed values Estimated parameters with various percentage of noise
0% 1% 3% 5%

cV Ns m−1 76 76.012 75.744 75.207 74.672
% error 0.02 −0.34 −1.04 −1.75

cH Ns m−1 25 24.927 24.889 24.811 24.732
% error 0.02 −0.45 −0.76 −1.07

Dkn N m−1 −1.152 � 105 −1.152 � 105 −1.150 � 105 −1.146 � 105 −1.142 � 105

% error −0.03 −0.19 −0.51 −0.83
e µm 3 2.998 � 10−6 3.006 � 10−6 3.021 � 10−6 3.035 � 10−6

% error −0.07 0.19 0.68 1.15
b deg. 30 30.01 29.88 29.64 29.40

% error 0.04 −0.39 −1.22 −2.01
ks N m−1 105210 1.0518 � 105 1.0618 � 105 1.0816 � 105 1.1013 � 105

% error −0.03 0.92 2.81 4.67
ki NA

−1 42.1 42.084 42.039 41.949 41.858
% error −0.04 −0.14 −0.36 −0.58
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In real systems due to manufacturing as well as operational ambiguity and in the
measurement of rotor properties like mass and moment of inertia of disc and the
undamaged shaft stiffness may contain errors and due to assumptions taken for mod-
eling simplified mathematical model influence in the parameter estimation. Thus, some
modelling or bias errors also have been introduced into the model parameters such as
the disc mass and the undamaged shaft stiffness. The generated response found from
the new model parameters has been incorporated into the identification algorithm to
estimate the parameters. The effects of modelling or bias errors in the estimated
parameters have been shown in Table 3.

From the estimation it has been noticed that the modelling errors laid very less
effect on the parameters. Likewise, the least affected parameter with 5% bias error is the
AMB force current factor with deviation of −0.1% and highest affected on is the
external damping parameter, with −0.3% deviation from the assumed one.

7 Conclusions

The present work introduces the mathematical model of cracked Jeffcott rotor with both
external and internal damping incorporating AMB force. The identification algorithm
has been developed based on frequency domain equations to estimate the system
parameters, viz. the unbalance, additive crack stiffness, external and internal damping,
force displacement and force current of AMB. To check the sensitivity of the algo-
rithm, noise has been added to the response at different level of percentages for esti-
mation. Lastly, modelling errors have been further added to show its effect in estimated
system parameters. Implementation of the present methodology in a real rotor system

Table 3. Identifiable parameters with and without modelling or bias error for multiple spin
speeds

Parameters Assumed values Estimated parameters with various percentage of modelling error

0% 1% 3% 5%

cV Ns m−1 76 75.7130 75.7089 75.7182 75.7385
% error −0.378 −0.383 −0.371 −0.344

cH Ns m−1 25 24.9673 24.9668 24.9678 24.9683
% error −0.131 −0.133 −0.129 −0.126

Dkn N m−1 −1.1518 � 105 −1.1506 � 105 −1.1456 � 105 −1.1574 � 105 −1.1728 � 105

% error −0.101 −0.169 0.087 −0.459
e µm 3 2.9927 � 10−6 2.9926 � 10−6 2.9928 � 10−6 2.9931 � 10−6

%error −0.244 −0.247 −0.240 −0.232
b deg. 30 30.0919 30.0935 30.0902 30.0851

% error 0.307 0.312 0.301 0.321
ks N m−1 105210 1.0536 � 105 1.0536 � 105 1.0536 � 105 1.0536 � 105

% error 0.147 0.147 0.148 0.148
ki NA

−1 42.1 42.0562 42.0557 42.0568 42.0587
% error −0.104 −0.105 −0.107 −0.108
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through experimentation would have been a challenging future work. In the experi-
mentation the generated data can be used in developed aforesaid identification algo-
rithm for demonstrating different crack models and their parameter estimation.
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Abstract. Although hydrodynamic bearings have minimum contact between
solid parts, under particular circumstances they might be susceptible to abrasion
and wear. In order to mitigate the problem, it is proposed to apply active control
methods to reduce the vibration level at critical situations: fluid induced insta-
bility and the first bending mode. However, damage in the bearing surface have
direct influence over the oil-film pressure and, consequently, in the bearings
equivalent coefficients. Although, initially, small variations may lead to minor
performance loss, when it becomes more significant close-loop stability may be
affected. Therefore, in this paper it is conducted a preliminary study on the effect
of journal bearing wear depth effects in active controlled rotors. A structured
uncertain model is proposed to include the possible fault coefficients in the
model allowing to perform robust stability analysis. Based on the uncertain
formulation a robust control solution is designed guaranteeing rotor stability for
a certain damage range.

Keywords: Robust control � Hydrodynamic journal bearing
Bearing wear damage

1 Introduction

During field operation every machine component is susceptible to wear, which, in the
beginning, causes small changes in the system behavior, but in the absence of main-
tenance, eventually, can lead to failure. It is not different for hydrodynamic journal
bearing. Although the oil film provides isolation between solid parts minimizing
friction during operation, when the shaft comes to a full stop there is direct contact with
the bearing. When starting-up there may occur abrasion of the bearing surface, gen-
erally made of materials softer than the shaft. Contact between solid parts is also
possible in cases of extreme vibration amplitudes, which may occur due to operation at
critical speed, or at fluid induced instability condition.

Detection, analysis and modeling the effects of journal bearing wear is a chal-
lenging task. Over the years, several researchers have studied the stability of a worn
bearing, as well as evaluated its performance under different circumstances [1–4].
Considerable research has also been carried out for the development of various tech-
niques for bearing fault detection and diagnosis. As described by Machado et al. [5],
these techniques can be mainly classified into two categories: time domain [6–8] and
frequency domain techniques [9, 10].
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Considering a rotor supported by hydrodynamic bearings susceptible to wear, the
goal of this paper is to analyze those effects in an active controlled rotor and design an
auxiliary robust active controller that allows to mitigate the possibilities for the damage
propagation by reducing the vibration at critical speed and stabilizing the system at
fluid induced instability. With active control, the rotor should be able to sustain safe
operation levels until further scheduled maintenance to repair the damaged component.

The control force is supposed to act in the system via a magnetic actuator with the
sole objective of controlling the vibration, all the rotor load should still be supported by
the journal bearings. Applying the magnetic actuator only as an auxiliary component
requires less powerful magnets which can significantly reduce the cost, size and energy
consumption of the system. Many studies regarding active rotor vibration control can
be found in literature, such as [11–17]. Studies focused on controlling fluid-induced
instability can be found in the works [18–20]. Other significant contributions can be
found in studies regarding levitating active magnetic bearings (AMB) [21–23]. How-
ever, most of the literature is concerned to the main source of parametrical variation,
the rotational speed, which has direct influence over gyroscopic effect and journal
bearing parameters. Few references concerning controlling damaged rotors can be
found, being mostly related to levitating AMB under critical failure such as sensor or
coils malfunctioning [24, 25].

Here it is proposed to design and compare, via numerical simulation, two different
active control methods to be applied in a rotor supported hydrodynamic bearing
evaluating the effect of abrasion damage on the close-loop performance. Both are static
gain-scheduled controllers obtained by solving the two-stage method proposed in [26],
but one considers uncertainties due to bearing wear in its project. The general guideline
of this paper starts with the presentation of the rotor and its modeling, followed by a
brief description of worn journal bearing coefficients modeling. Then, in Sect. 2, it is
presented the approximation used to create a model fitted for the LMI formulation. In
Sect. 3 is described the main formulation for the controllers and uncertainties. Finally,
in Sects. 4 and 5 are the main results, discussion and conclusions.

2 Rotor Modeling

2.1 Rotor

For this study, the adopted rotor, Fig. 1, consists in a steel (SAE 1030) shaft of
583 mm length and 12 mm diameter bi-supported by hydrodynamic journal bearings,
with the wear effect acting over the bearing number 2. Nominally, both bearings have
18 mm length, 31 mm diameter and radial clearance of 90 µm, and are lubricated by
ISO VG 32 oil. The other main components are the disc with 47.5 mm length and
95 mm diameter, which adds load and it is the main source of unbalance to the system,
and the journal with 80 mm length and 40 mm diameter through which a magnetic
actuator applies the control force. For control feedback are considered the displace-
ments of the bearings nodes at Y and Z directions. This configuration presents its first
critical speed at about 46 Hz, and fluid induced instability near 79 Hz. To analyze the
most important operational conditions, it is considered the rotor operational speed

50 M. F. Wu et al.



range between 20 Hz and 100 Hz spanning the situations: before, at and after the
critical speed, and above the fluid-instability threshold.

The system is formulated following the finite element model (FEM) by Nelson
[27], which allows to represent the set composed by the shaft, disc and journal as the
classic second order equation of motion, Eq. (1), where Mfem, Dfem, Kfem and Gfem are
respectively the global mass, damping, stiffness and gyroscopic matrices, Ω is the
system rotational speed, and q and f are respectively the degrees of freedom (DOF) and
external excitation vectors.

Mfem€qþ Dfem þXGfemð Þ _qþKfemq ¼ fðtÞ ð1Þ

2.2 Bearing and Wear Models

For the cylindrical journal bearings, it is used the approach of equivalent linear coef-
ficients of stiffness and damping, which are inserted in the finite element model in
bearing position. The procedure for obtaining these coefficients is based on the solution
of Reynolds equation, the basis of hydrodynamic lubrication theory. The solution of
Reynolds equation gives the pressure field generated by the oil film, and the hydro-
dynamic forces supporting the rotor are obtained by integration of this pressure around
the shaft circumference. These general nonlinear hydrodynamic forces are then
expanded into a Taylor series and the resulting differential expressions are approxi-
mated by finite differences in order to calculate the bearing equivalent coefficients of
stiffness and damping, as shown in Eq. (2), as an example, for the cross coupled
stiffness coefficient (Kyz) and damping coefficient (Czy). Dz and Dẏ are, respectively,
small perturbations in the shaft equilibrium position for displacement and velocity.

Kyz ¼ @Fy

@z
¼ DFy

D�z
Czy ¼ @Fz

@ _y
¼ DFz

D _�y
ð2Þ

Fig. 1. Rotor FEM model, and main components and respective nodes.
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For the numerical procedure to solve Reynolds equation, in the case when the oil-
film thickness is discontinuous, it is used the approach presented by Machado and
Cavalca [28]. In this procedure, the fluid-film is discretized in a uniform mesh of finite
volumes, as shown in Fig. 2a. In the close vicinity of the discontinuous film thickness,
the pressure has an abrupt variation, and to compensate that, this pressure variation is
attributed to a fluid velocity variation by writing a generalized Bernoulli equation
immediately before and after the discontinuity (see [28] for more details).

Regarding the wear region, it is based on the geometry initial proposed by Dufrane
et al. [29] and adapted by Machado and Cavalca [28], assuming abrasive wear. This
model considers that the wear has a uniform thickness in axial direction; it can have a
variable depth and can be located in any region of the bearing circumference.

In the schematic draw of the worn bearing (Fig. 2b), it can be seen that the wear
pattern introduces an additional oil layer with depth dh(h) in the region delimited by the
angles hs and hf . Thus, the fluid-film thickness h(h) in the presence of wear is given by
Eq. (3), where h0(h) is the film thickness due to the shaft eccentricity.

h hð Þ ¼ h0 hð Þþ dh hð Þ ð3Þ

Equation (3) can also be written in the local reference system, denoted by hm in
Fig. 2b:

h0 hð Þ ¼ Crþ e � cos hmð Þ
dh hð Þ ¼ d0 � Cr � 1þ cos hm þuð Þð Þ ð4Þ

Fig. 2. Schematic representation: (a) finite volume mesh; (b) worn bearing geometry. (Adapted
from Machado and Cavalca [28])
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Where Cr is the bearing radial clearance, e is the eccentricity of the shaft and d0 is
the maximum wear depth. Finally, the terms of Eq. (4) can be rewritten in the inertial
reference system (Y, Z) through the eccentricity components ey and ez, respectively in
the Y and Z coordinates:

h0 hð Þ ¼ Cr � ez � cos h� p=2ð Þþ ey � sin h� p=2ð Þ
dh hð Þ ¼ d0 � Cr � 1þ cos h� p=2ð Þð Þ ð5Þ

The depth dh hð Þ in the wear edges, h = hs and h = hf, is zero. Consequently, the
extreme points of wear are given by Eq. (6), where c is the angular displacement of the
center of wear, and the fluid-film thickness can be rewritten as Eq. (7).

hs ¼ p=2þ cos�1 d0=Cr � 1ð Þþ c

hf ¼ p=2� cos�1 d0=Cr � 1ð Þþ c
ð6Þ

h hð Þ ¼ h0; 0� h� hs; hf � h� 2p
h0 þ dh; hs\h\hf

�
ð7Þ

Equation (7) for the oil film thickness was then inserted into the Reynolds equation,
which is solved using the finite volume method (see [28] for more details).

2.3 Model Reduction and Polynomial Approximation

Although the bearings coefficients come from a linearization of the Reynolds equation
solution, they have a non-linear dependence on the rotational speed. Adding this
variation to the system means that for each speed the system may present different
linear (space-state) model. To control such system one possible strategy is to apply
adapting controllers, which can variate according to a monitored parameter, e.g. the
rotational speed. In this paper the adopted gain-scheduled control law requires
describing the system in polynomial form. For that matter it is applied a least square
second degree polynomial fit to approximate the dependence of each bearing coefficient
to the rotational speed. The resultant bearing coefficients matrices can be described by
Eq. (8). As a remark, most of the following polynomial formulation are depicted in
second-degree but any degree would be applicable.

Kbr Xð Þ ¼ Kbr0 þKbr1XþKbr2X
2

Dbr Xð Þ ¼ Dbr0 þDbr1XþDbr2X
2

�
ð8Þ

The system is originally divided into 19 nodes, as in Fig. 1, of 4 degrees of freedom
(DOF) each, totalizing 76 DOF. In space-state form the system has order 152, which is
considerably high for LMI problems; therefore, reduction is necessary. Many reduction
methods with different properties can be found in literature. Here is applied the Guyan
reduction method [30], allowing to preserve the physical DOF, which makes easier to
add the varying bearing coefficients based on the polynomial approximation and to
include uncertainties, described in Sect. 3.2.

Active Control of Rotor Supported by Faulting Journal Bearing 53



Firstly, the global matrices related to shaft, disc and journal are reduced using matrix
T of Eq. (9) [30] preserving only the key nodes for the problem (4, 8, 12 and 16), which
are the disc, journal and bearings. The resulting model has order 32, which is more
suitable for LMI formulation. Moreover, since the bearings nodes DOF are preserved,
the coefficients matrices from Eq. (8) can be directly added to the global reduced
matrices. Thus, the space-state can be written as the matrix polynomial from Eq. (10).
Note that the gyroscopic matrix can be inserted in the polynomial first degree term.

Mred¼ TTMfemT
Dred¼ TTDfemT

�
Kred¼ TTKfemT
Kred¼ TTKfemT

�
ð9Þ

_x ¼ AðXÞxþBf ð10Þ

Where,

A Xð Þ ¼ A0 þA1XþA2X
2 ¼ 0 I

�M�1
red Kred þKbr0ð Þ �M�1

red Dred þDbr0ð Þ
� �

þ

0 I

�M�1
redKbr1 �M�1

red Gred þDbr1ð Þ
� �

Xþ 0 I

�M�1
redKbr2 �M�1

redDbr2

� �
X2

To facilitate the formulation of the controller it is possible to normalize the varying
parameter as a unitary simplex K2, Eq. (11).

A Xð Þ ¼ A að Þ ¼ Ap0 þAp1a1 þAp2a
2
1 ¼

A0 þA1aþA2a
2� �þ A1 b� að ÞþA22a b� að Þ½ �a1 þ A2 b� að Þ2

h i
a21

ð11Þ

Where,

a ¼ K2 ,
P2
n¼1

an; an � 0 and a1 ¼ X�a
b�a

a, b: minimum and maximum parameter variation, in this case, minimum and maxi-
mum rotational speed, respectively.

An important step to make the control design less conservative is to homogenize
the polynomial, that is, making every term dependent on the same degree to the varying
parameter. That can be done by using the unitary simplex property as in Eq. (12).

A að Þ ¼ Ap0 a1 þ a2ð Þ2 þAp1a1 a1 þ a2ð ÞþAp2a
2
1 ¼

Ap20a
2
1 þAp11a1a2 þAp02a

2
2 ¼

Ap0 þAp1 þAp2½ �a21 þ 2Ap0 þAp1½ �a1a2 þAp0a
2
2

ð12Þ
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3 Control Formulation

3.1 Two-Stage Static Gain-Scheduled H∞ Controller

Designing regulator H∞ controllers generally follows a well-known framework [21,
31]. Firstly, an augmented plant, Eq. (13), based on state-space formulation, Eq. (10),
is created separating the inputs in exogenous disturbances w and control signal u; and
the outputs in performance signal z, usually composed by the actual objective (in this
case disc displacement) and the control effort u, and the feedback signal y, which in
most cases are the sensors readings.

_x ¼ AxþB1wþB2u

z ¼ C1 þD11wþD12u

y ¼ C2 þD21wþD22u

8><
>: :

u ¼ Ly

ð13Þ

There are many structures and methods for solving the H∞ control problem.
However, the majority relies on linear time invariant systems, which may not be
applicable for rotating machinery since their dynamics are strongly dependent on the
rotational speed. Since considering the whole possible variations as uncertainties might
be excessively conservative, a very usual solution has been applying gain-scheduled
techniques. This way, the control law L(a) also variates according to the current
operation condition. In this paper, to obtain L(a) dependent on Ω, the two-stage
technique proposed by Agulhari [26] is applied. The method is based on Lyapunov
quadratic stability and consists on solving two consecutive linear matrix inequalities
(LMI) as described by Theorems 1 and 2, respectively. The resulting control has
guaranteed Lyapunov stability for the considered conditions and presents no dynamic
part, being an attractive option for real-time applications.

Theorem 1. There is a state-feedback gain K(a) = Z(a)X−1that stabilizes the system
from Eq. (14), with x ∊ ℝn and B2 ∊ ℝ

n,ic, if there are P(a) = PT(a) > 0 ∊ ℝn,n, X ∊ ℝn,n,
Z ∊ ℝic,n for a given n > 0 ∊ ℝ which fulfill the LMI from Eq. (15).

_x ¼ A að ÞþB2KðaÞð ÞxþB1w ð14Þ

A að ÞXþX�A að Þ� þB2Z að ÞþZ að Þ�B�
2 P að Þ � X� þ nA að ÞXþ nB2Z að Þ

� �nX� nX�

� �
\0

ð15Þ

*: Conjugate transpose.
The proof for the Theorem 1 can be found in [32].

Theorem 2. There exists an output-feedback control gain L(a) = H−1J(a) that stabi-
lizes the system from Eq. (16) and minimizes it’s H∞ norm, with x ∊ ℝn, w ∊ ℝi, B2 ∊
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ℝic, C2 ∊ ℝoc,n, if there are P(a) = PT(a) > 0 ∊ ℝn,n, K(a) ∊ ℝic,n, F(a) ∊ ℝn,n, G(a) ∊
ℝn,n, H ∊ ℝic,ic, J(a) ∊ ℝic,oc and l > c2 > 0 ∊ ℝ that fulfill the conditions in Eq. (17).

_x ¼ A að ÞþB2LðaÞC2ð ÞxþB1w
z ¼ C1 þD12LðaÞC2ð Þx

�
¼ _x ¼ ACLðaÞxþBCLw

z ¼ CCLðaÞx
�

ð16Þ

inf l :

W11 W12 W13 W14 W15

�G að Þ �G að Þ0 G að ÞB1 0 G að ÞB2

�I 0 0
�lI 0

� �H�H0

2
66664

3
77775\0

0
BBBB@

1
CCCCA ð17Þ

Where,

W11 ¼ AT að ÞFT að ÞþF að ÞA að ÞþKT að ÞBT
2 F

T að ÞþF að ÞB2K að Þ

W12 ¼ P að Þ � F að ÞþAT að ÞGT að ÞþKT að ÞBT
2G

T að Þ W13 ¼ F að ÞBT
1

W14 ¼ CT
1 þK að ÞTDT

12 W15 ¼ F að ÞB2 þCT
2 J að ÞT�KT að ÞHT

The proof for the Theorem 2 can be found in [26].
The conditions for the second stage, Eq. (17), are not linear since there are terms

with two variable product (K(a) and F(a)). In the proof of Theorem 2, one arrives at a
condition where K(a) is a stabilizing state-feedback gain. Thus, it is possible to utilize
the first stage to generate generic gains K(a) and apply it as a constant in the second-
stage. Due to this linearization the method presents only a sufficient condition, that is, if
no solution can be found doesn’t mean it does not exist. Moreover, since it is also
difficult to find a correlation between the first stage and the final performance, Agulhari
et al. [32] propose testing different solutions for K(a) (through the variation of n) to
increase the chance of finding better results. Therefore, any other LMI condition that
generates stabilizing gain would be fitting as a first stage.

3.2 Uncertainties

The problem of deviation from a linear time invariant model due to rotational speed
variation is addressed by the gain-scheduled method. However, the problem of bearing
wear presents a challenging approach, since it may be difficult to parametrize it during
the machine operation. Although abrasive wear usually occurs gradually and is not as
evident as variations due to rotational speed, it can reach levels in which the system
dynamic is too distant from the nominal condition and, if not taken into account, may
result in serious performance loss or even instability in close-loop. To address the effect
of bearing wear, here it is proposed to include the possible variations, limited to a
certain range, as structured uncertainties.
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Supposing the uncertain bearings parameters Dp follows the model from Eq. (18),
where the effect of the abrasion depth is expressed by the linear approximation dd and
the rotational speed influence is expressed by the polynomial in Ω, as in Sect. 2.3. The
state-space matrix A becomes the uncertain matrix Aunc, Eq. (19), where DK and DC
are the uncertain bearing coefficients matrices composed by the terms from Eq. (18).

Dpjk ¼ pjk þ dd pjk2X
2 þ pjk1Xþ pjk0

� � ð18Þ

Where,

p ¼ ðk; dÞ; j and j and k ¼ ðy; zÞ:

Aunc að Þ¼ A að Þþ 0 I
�M�1

r DK X; ddð Þ �M�1
r DDðX; ddÞ

� �
ð19Þ

It is possible to extract the uncertainties from Aunc obtaining the augmented system
from Eq. (20) with the auxiliary input (h), output (g) and structured uncertain matrix D.
Note that since the uncertainties are dependent on the rotational speed, Bu is dependent
on Ω and can also be easily written in terms of a and homogenized. This augmented
plant can be used as base for synthetizing robust controllers or analyzing robust sta-
bility. For example, if the H∞ norm from h to g is smaller than one, the system is
guaranteed to be stable for any possible considered uncertainty by the small gain
theorem [31]. Even though the applied control in this paper focus on reducing the H∞

norm, utilizing this metric for robust analysis may offer very conservative analysis.
Therefore, it is proposed to apply µ-analysis [13, 23, 33] to evaluate the systems
robustness.

_x ¼ A að ÞxþBu Xð ÞhþB1wþB2u

g ¼ Cux

z ¼ C1xþD12u

y ¼ C2x

8>>><
>>>:
u ¼ L að Þy
h ¼ Dg

ð20Þ

3.3 Controllers and Weighting Filters

In this paper two controllers are compared: L and Lu are respectively static H∞ gain-
scheduled controller without and with uncertainties. That is, both are obtaining solving
the two-stage LMIs from Sect. 3.1, however, Lu also includes h in the inputs and g in
the outputs. For Lu the matrix B1 will be concatenated with Bu and written as a
polynomial in a. The resultant B1(a) can be applied to the two-stage method without
any loss of generality.
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The final performance and feasibility of MIMO H∞ are strongly related to
weighting filters. They are functions that adjust the scale and priority between the
outputs and inputs. Here are applied the filters according to Fig. 3 and Eq. (21).

We sð Þ ¼
sffiffiffiffiffi
Me

kp þx

sþ ffiffiffiffi
eek

p
x

 !k

Wu sð Þ ¼ gu
sþ xffiffiffiffiffi

Mu
kpffiffiffiffi

euk
p

sþx

 !k

Wh ¼ Wg¼gh ð21Þ

4 Results

The controllers’ synthesis and simulations for the rotor described in Sect. 2 are done
considering the frequency range from 20 to 100 Hz, an abrasive wear depth varying
from 0 to 40 µm at 20° at the second bearing, and an unbalance momentum of
1 � 10−4 kg.m. The bearings coefficients are calculated as described in Sect. 2.2 and
then approximated by a second order polynomial fit. For the Lu gain and µ-analysis,
the bearing 2 coefficient is considered to be the mean value between the parameters
without damage and 40 µm wear depth. And the polynomial regarding the uncertain is
fitted to represent the difference between the mean and the nominal value, allowing the
uncertain d ∊ [−1,1] to cover most of the possible variations. The control gains are
obtained in Matlab® using the ROLMIP package [34] to formulate and automatic
homogenize the problem and the solver SDPT-3 [35].

The dynamic related to the magnetic actuator is neglected since it is usually much
faster than the mechanical response, also no unity conversions are considered, therefore
the control gains represent a direct relation between the bearings displacement readings
(in meters) and control force (in Newtons).

This result section is organized starting by the polynomial approximation, followed
by the utilized control parameters and final structures, then the system robustness is
analyzed by means of µ norm, and finally, the achieved performance for each controller
is compared.

Fig. 3. Weighting filters
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4.1 Bearing Coefficients Approximation

The influence of different abrasive wear depth on the bearings parameters is shown in
Fig. 4a. It is possible to notice that they have a non-linear behavior, therefore the
adopted linear approximation for the depth uncertain may lack precision. One could try
to express each parameter as an independent uncertainty. However, it would generate
an excessively conservative result, since it would comprehend combinations between
parameters related to different wear degrees for the same bearing.

The first step to design the controllers is finding the polynomial fit for the bearings
coefficients which will be used to design the gain-scheduled controllers. Figure 4b
shows the second order approximation for the first bearing stiffness utilized for both
L and Lu. For the damping and the second bearing coefficients similar results are
obtained. However, for Lu and µ-analysis the polynomial approximations for the
second bearing are regarding the mean parametrical variation value, as explained
before. Figure 4a shows the considered mean, and polynomial approximation for the
second bearing stiffness uncertainty.

4.2 Control Parameters

As stated before, the weighting functions have strong relation to the final control
performance. This section brings the utilized weighting parameters, Table 1. The
weighting functions for L was adjusted aiming the maximum vibration attenuation at
nominal condition. For Lu the adjustment also considered maintaining the resultant µ
norm bellow one. It is important to remark that these configurations are suboptimum,
since, as explained in Sect. 3.2, loss of necessity occurs. The final control function Lu
is given by Eq. (22), and L follows the same structure. Note that the final L and Lu

Fig. 4. (a) Bearing number 2 stiffness coefficient for different abrasive wear depths, utilized
mean and second order polynomial error bounds. (b) Bearing number 1 stiffness coefficients and
second degree polynomial approximation.
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control expressions consist in gains obtained by a weighted sum between matrices,
which can be done without problems in real time.

Lu að Þ ¼ 106
�0:1909 2:3607 �0:0822 0:0258

�2:3272 0:1948 �0:0359 �0:0777

� �
a1

þ 106
0:1246 1:8734 �0:0279 0:0076

�2:0348 0:7281 �0:0280 �0:0117

� �
1� a1ð Þ ð22Þ

4.3 Robustness Analysis

To evaluate the robustness level of the systems the peak µ value for a set of speeds
between 20 and 100 Hz is calculated and displayed in Fig. 5. Where OL is the open-
loop system, and CL and CLu are the closed loops with L and Lu, respectively.

Analyzing Fig. 5 it is possible to observe that the open-loop system does not
crosses one, therefore the bearing wear, in the considered range, is not expected to
affect the system stability. However, it is expected instability near 80 Hz (line inter-
ruption when reaching eigenvalue positive real part), due to fluid-induced instability.
For the Lu closed-loop the bearing wear is also expected to not destabilize the system,
moreover, the fluid-induced instability is suppressed for the whole considered rota-
tional speed range (continuous line). As for L, although in the diagram the line is

Table 1. Control parameters

x (Hz) k Mu Me eu ee gu gh
L 220 4 1 100 0.1 1 2�10−6 –

Lu 220 4 1 100 0.1 1 5�10−5 4�10−3

Fig. 5. µ-peak diagram.

60 M. F. Wu et al.



interrupted near 84 Hz suggesting that the controller cannot stabilize fluid-induced
instability, it is important to remind that this diagram is based on the mean value for
bearing number two (Fig. 4a), i.e. the system is not the nominal one. Therefore, it is
expected some level of discrepancy. However, the analysis for the µ-value still holds,
and since the line crosses 1, that indicates that L does not guarantee stability when
dealing with wear conditions.

4.4 Unbalance Response

To perform the unbalance response analysis a set of systems at different rotational
speed for the nominal condition and 40 µm at 20° wear were generated. Their
eigenvalue and frequency response at each respective speed were analyzed to define if
the system is stable and what is the maximum amplitude of the orbit. The results for the
responses at the bearing number 2 node are shown in Fig. 6 and Table 2. It is possible
to notice the nominal OL system presents its peak response near 45.9 Hz (critical
speed), and instability at 79.2 Hz. It is interesting to observe that, as predicted in µ-
analysis, the considered bearing wear does not cause the system instability to be
anticipated but rather delayed to 81.6 Hz. However, it did cause a fairly amplification
on the vibration level. As for the Lu controller, it manages to considerably attenuate the
vibration level and, as expected by the µ-analysis, also guarantee stability for the whole
frequency range even with damaged bearing. Regarding the L controller, it does sta-
bilize the system and reduces the vibration peak for the nominal condition, but under
wear effects, it may lead the system to instability even before the nominal fluid-induced
threshold (60.7 Hz).

Fig. 6. Unbalance response at bearing number 2 for 0 and 40 µm depth.
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5 Conclusion

In this preliminary study about the wear effects of bearing wear on active controlled
systems it was possible to observe that in open-loop condition, although the wear, for
the considered range, does not destabilize the system, it does amplify the vibration
levels in the bearing, which could lead to damage propagation. When in closed-loop,
the vibration amplitude can be significantly attenuated, but stability can be critically
compromised if the coefficients variation is not accounted for. To perform the
robustness analysis and to synthetize a robust controller an uncertain model was pro-
posed considering a linear approximation for the depth influence. Although the results
were promising, accurately accusing instability risks due to bearing damage for CL
while predicting stability for OL and CLu, further analysis is to be conducted to verify
this approximation precision. If necessary, other degrees or other parameters may be
included in the uncertain model providing a more accurate model in exchange for more
computational requirements.
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Abstract. Typical rotor/active magnetic bearing (AMB) system lay-
outs involving large, external stator AMBs may be difficult or inconve-
nient to apply to some rotor systems. Where space in the machine work-
ing envelope is at a premium, the space required by traditional AMBs
may preclude them from inclusion in the design.

To open up the possibility of using AMBs in next generation compact,
high speed machines, a system topology whereby the magnetic bearing
stators are positioned inside of hollow-shaft rotors is suggested. This
leaves the entire rotor surface available for other machine elements. In
such designs, it is probably that both the rotor and the secondary shaft
may exhibit flexible behaviour, which adds complexities to the design
of the AMB controller compared to the requirements in typical AMB
systems. Satisfactory performance can only be achieved if the dynamic
characteristics of both rotor and AMB support structure are consid-
ered. This paper investigates solutions to this control issue, particularly
through the use of model based techniques.

A unique experimental facility based on this system topology is pre-
sented. The rotor is sufficiently unbalanced so as to be unable to pass its
first critical speed without experiencing excessive vibration. It is demon-
strated how an appropriately designed AMB controller can reduce the
vibration to a level which allows the rotor to reach up to three times its
first critical speed. This also includes the rotor speed (i.e. excitation fre-
quency) exceeding the natural frequency of the AMB support structure.

Keywords: Active magnetic bearings · Vibration reduction
H∞ control · Homopolar

1 Introduction

When considering the use of mechatronic techniques to enhance the perfor-
mance of rotating systems, active magnetic bearings (AMBs) are established
as an important and versatile tool [1]. Published standards [2–5] exist offering
guidelines to help ensure uniformity in describing, quantifying and implementing
rotating systems which incorporate AMBs.
c© Springer Nature Switzerland AG 2019
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AMBs may be used either as the primary bearings of a system, in which case
they are used to levitate a rotor in a contact free manner, or else they may be
employed as secondary bearings in a system which is already supported by other
(commonly passive) types of bearing. In the second case, the main function of
the bearings is to improve the machine performance, for example by reducing
rotor vibration levels.

Fundamental theoretical and practical work aimed at optimising the perfor-
mance enhancing capacity which might be provided by an actuator such as an
AMB was presented by Burrows et al. [6,7]. Further practical examples of AMBs
being used as secondary, performance enhancement bearings are presented by
Gondhalekar and Holmes [8], Kasarda et al. [9] and Nonami et al. [10]. An anal-
ysis of using AMBs as a supplementary device to control instabilities arising
in journal bearings is given by El-Shafei and Dimitri [11]. Mahfoud and Der
Hagopian [12] investigate the open-loop use of an electromagnetic actuator to
shift rotor critical speeds, and thus avoid resonant vibration peaks during rotor
run-up or run-down.

Performance enhancement techniques can also be applied to systems where
the rotor is fully levitated on the magnetic bearings. Cole et al. [13] con-
sider controlling rotor vibration in the case when such a system is exposed
to base-excitation, while Lauridsen and Santos [14] publish work on control-
ling a levitated rotor which is subject to varying and uncertain seal forces by a
process fluid.

A commonality through all the published work relates to the basic layout
of the rotor/AMB system. It is almost universal for the stator of the AMB to
sit outside the rotor, with the poles facing inwards. This stator is then rigidly
mounted to the machine base, such that it may be considered grounded for anal-
ysis purposes. However, there may be cases where it is not possible to locate the
AMB stator on the outside of a rotor, for instance where the space is required
by other machine components. Thus the authors have proposed [15,16] a lay-
out whereby an AMB stator is located inside of a hollow-shaft rotor, with the
magnetic poles facing outwards.

A particular challenge associated with such a layout is that whatever struc-
ture is used to support the AMBs will very likely be flexible. Thus one is required
to control the flexible behaviour of the rotor with a flexibly mounted actuator.

This paper presents an experimental facility specifically constructed to
explore this concept, comments on relevant controller design considerations, and
a set of experimental results demonstrating the capacity of the system to permit
an imperfectly balanced rotor to safely pass its first critical speed.

2 Description of Experimental Facility

A rotor has been designed to explore the concept of flexibly-mounted internal-
stator AMBs. In order to ensure a rotor which exhibits flexible behaviour at
relatively low speeds suitable for use in a compact laboratory environment, a
multi-section rotor design is used. The rotor is fabricated from steel, with large



Control of Flexible Rotor Vibration 67

diameter, open-ended hollow sections at each end, connected in the centre by a
small diameter solid length. The hollow end sections allow accommodation of the
internal-stator AMBs, while the slim central section introduces low-speed flexible
behaviour. The rotor is supported by a pair of rolling element bearings, located
one at each end. The rotor forms a stand-alone unit, with pairs of orthogonally
mounted eddy current displacement sensors monitoring its external surface at
two mid-span locations.

Steel rotor with 
hollow ends

Impulse-style 
drive turbine

Rolling element 
bearing

Steel secondary 
shaft

Magnetic bearing
External rotor 
displacement sensors

Internal rotor 
displacement sensors

Rotor encoder

Fig. 1. Photograph of experimental facility with magnetic bearings shown before inser-
tion into rotor

It is then required to locate the magnetic bearings inside the hollow rotor
sections. Thus the AMBs are mounted at the ends of cantilevered steel beams,
termed secondary shafts. There are two (nominally identical) secondary shaft
subassemblies, one for each end of the rotor, and these are independently fixed
to the machine base plate.

These various components are shown in Fig. 1. Note that, for illustration
purposes, the photograph is taken before the final assembly, at which point the
magnetic bearings, on their secondary shafts, are inserted into the rotor. A drive
turbine can also be seen mounted at the shaft midspan in the figure - this is
driven from a compressed air supply.

Figure 2 provides a close-up look at one of the AMB units. The AMB stator
itself is of a four pole-pair homopolar design. The nature of the homopolar
layout permits the bearing to act directly upon the inner surface of the rotor
without the need for a laminated collar, due to the low levels of rotor eddy
currents induced by this design. The geometry was also influenced by the need
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to achieve as compact a form as possible, while still allowing sufficient space
for coil winding. Ultimately this resulted in a design which is essentially four
back-to-back E-shaped electromagnets.

Magnetic bearing stator
(Soft Magnetic Composite)

Eddy current 
displacement sensors

Touchdown surface 
(brass)

Flexible secondary 
shaft (steel)

Friction locking collar

Fig. 2. Detail photograph of flexibly mounted, internal stator magnetic bearing unit

A further consideration, once this design had been established, was how it
could be fabricated. It was observed that it would be extremely difficult to
fabricate this design from laminated steel sheets (as is commonly done with
AMBs). To do so would compromise either the compactness of the device or
the pole/winding area (and thus the force capacity) available. This problem is
generally easily solved with external-stator devices, as there is little in the way
of upper limit on the space envelope available, and thus the stator can simply be
made larger to allow for fabrication and assembly considerations. In this instance
however, the solution was to use a Soft Magnetic Composite material, which is
an iron powder based composite which exhibits excellent magnetic properties,
while offering an omnidirectional electrical lamination effect. This allowed the
AMB stator to be machined from a single piece of material, thus maintaining
both its compact size, and its designed force capacity.

Adjacent to the bearing stator is a brass touchdown disk to protect the
bearing in the event of contact with the rotor, and also a pair of orthogonally
mounted eddy current displacement sensors. These sensors are used to provide
the feedback signal to the controller which governs the AMB coil currents. Note
that the displacement sensors previously shown which observe the external sur-
face of the rotor are not used for feedback, and are present purely for monitoring
purposes.

An unusual challenge is presented by the system topology under considera-
tion, namely that the structures supporting the AMB stators and the feedback
displacement sensors (i.e. the cantilever beams) are flexible. The vast majority of
AMB system designs mount the AMB stators and the displacement sensors on
a rigid structure. The goal in this work is to address the challenges presented by
the flexible mounting structure in order to open the path to new, highly compact
machine designs.
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3 Controller Design

The focus of this paper is on demonstrating the capacity of the proposed system
to control the rotor vibration as it passes its first critical speed, working within
the limits set by using compact, flexibly-mounted internal stator AMBs. To this
end, two separate controllers were developed and tested.

The first controller was a classical proportional/derivative (PD) controller.
Note that integral action is not required in this case, due to the fact that no
steady-state element is expected to contribute to the error signal. This is in
contrast to AMBs which are used for levitation, where integral action is com-
monly used to offset the static weight of the rotor. The PD controller was tuned
through iterative experimentation to achieve the best results possible without
experiencing stability problems (encountered due to imperfectly concentric align-
ment between the rotor and the AMB). The chosen controller outputs a control
current (Ic) as indicated in Eq. (1), where KP is 10 N/mm, KD is 0.012 Ns/mm
and τ is 6×10−4 s. This is combined with a 2 A bias current (Ib) in an opposing
pole pair in the usual way (2).

Ic =
(

KP +
KDs

1 + τs

)
× displacement error (1)

Itot = Ib ± Ic (2)

The second controller was designed based on H∞ techniques. As a model
based technique, generation of a successful H∞ controller is dependent on having
an accurate model to begin with. A finite element model of the experimental
system was generated based on the standard techniques set out by Nelson and
McVaugh [17,18]. The construction of such a model generally initially requires
estimates of certain parameters to be made; such parameters might include the
stiffness provided by rolling element bearings and any damping present in the
system. In order to refine this initial model to match its behaviour to that of the
experimental apparatus, a parameter identification procedure was undertaken
similar to that presented by Lauridsen et al. [19]. This resulted in a highly
accurate model suitable for generating an H∞ controller.

The controller generation used the Matlab hinfsyn to output a state space
controller based on the identified plant model and a set of weighting functions.

In the present system, a key advantage of employing a model based technique
is the facility to impose performance goals on degrees of freedom which are not
directly measured. In particular, this allows objective to be set both for the
absolute vibration of the rotor relative to the ground, as well as for the relative
motion between the rotor and the (flexibly supported) magnetic bearing.

4 Experimental Results

Rotating rundown test were performed with the rotor under three conditions:

1. Magnetic bearings inactive
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2. Magnetic bearings operating under PD control
3. Magnetic bearings operating under H∞ control

In each case, the rotor was spun up via the drive turbine to the maximum
speed achievable. In the case of the uncontrolled and the PD controlled rotor,
the maximum speed was determined by the speed at which excessive vibration
caused contact to occur between the rotor and the AMB touchdown surfaces.
In both cases, the magnitude of vibration prohibited the rotor from passing it’s
first critical speed at approximately 3000 rpm (50 Hz).

In the case when the H∞ controller was used, the system successfully reduced
the vibration amplitudes such that the rotor was able to pass its first critical
speed without touchdown occurring. In this case, the maximum achievable speed
was dictated by the rated speed of the rolling element bearings at 10,000 rpm
(165 Hz).

Figure 3 is a 3D orbit plot of the rundown behaviour of the rotor without
any action from the magnetic bearings. It is clearly seen that at a rotational
speed just over 50 Hz, the rotor exhibits resonant vibration. The magnitude of
this vibration caused it to contact the touchdown disks protecting the magnetic
bearing (radial clearance 0.25 mm), leading to a chaotic bouncing behaviour.
The residual unbalance of the rotor was estimated at 50 g. cm.

The behaviour also displays two notable local vibration maxima at sub-
critical rotation speeds, occurring at approximately 26 Hz and 18 Hz. These fre-
quencies are approximately half and one third of the critical speed respectively.
Fractional-frequency vibration peaks are a know phenomenon in rotor systems,
and are attributed to nonlinear parameters in various elements of the system,
such a bolted joints and imperfections in mechanical bearings and their housings.

The rundown test was repeated with the magnetic bearings operating under
the PD control scheme presented above. The 3D rotor orbit plot under these con-
ditions is presented in Fig. 4. It is seen that some limited performance improve-
ment was possible with the PD control, including suppression of the sub-critical
vibration peaks. It is also evident that the magnetic bearings have contributed
an increased stiffness to the rotor, such that resonant frequency is increased by
approximately 10 Hz. However, it was not found to be possible to control the
vibration such as to avoid contact occurring with the AMB touchdown disk, and
thus it was not possible to pass the critical speed.

As indicated above, the controller faces the challenge of attempting to min-
imise the absolute vibration of the rotor, while only being provided with a reading
of the relative motion between the rotor and the secondary shafts, and applying
control forces through a flexibly mounted actuator.

This challenge, and the limited capacity of the PD controller to provide
satisfactory performance under these conditions, provided the motivation to seek
a more advanced controller. As a model-based controller, the H∞ controller
embeds a model of the plant in its structure, thus allowing the controller to
estimate how the entire system is behaving, even if provided with only limited
measurement data. Furthermore, one is able to specify performance goals on any
characteristic of the plant, whether or not it is directly measured.



Control of Flexible Rotor Vibration 71

Fig. 3. Rotor orbits during unbalanced rotor run-down with no control active. The
colours are for visual enhancement. (Color figure online)

Fig. 4. Rotor orbits during unbalanced rotor run-down with PD control active. The
colours are for visual enhancement. (Color figure online)

The rotor orbits from the third rundown test, with the magnetic bearings
operating under H∞ control, are presented in Fig. 5. It can clearly be seen that
very significant performance gains are achieved with this controller. The vibra-
tion peak at the critical speed of around 50 Hz has a greatly reduced magnitude
compared to the previous results, and contact between the rotor and AMB touch-
down surfaces is prevented. Thus the rotor is able to reach supercritical speeds,
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and in this case the test was stopped as the speed approached 10,000 rpm, which
is the maximum specified speed of the rolling element bearings.

Fig. 5. Rotor orbits during unbalanced rotor run-down with H∞ control active. The
colors are for visual enhancement. (Color figure online)

5 Conclusions

This paper presents a potential pathway to enable novel machine designs which
incorporate AMBs in compact, high speed systems. The concept of mounting
AMBs inside of hollow shaft rotors is discussed, with consideration given to the
unique challenges attendant to such a system compared to traditional AMB sys-
tem designs. This includes the design and material choices for a compact bearing
stator, and the implications of flexibility in the bearing support structure.

The requirements for successfully using such a system layout in terms of
the AMB controller capabilities are examined, and H∞ techniques are identified
as offering inherent advantages in this situation compared to classical control
techniques. Through a series of experimental rotor rundown tests, it is demon-
strated that an unbalanced rotor can be augmented with flexibly mounted, inter-
nal stator AMBs under H∞ control to allow the critical speed to be passed and
supercritical rotation safely achieved.
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Abstract. Rotating machines present some common inherent operational
problems, such as the critical amplitude of motion that the machine may
experience when passing through one or more of its natural frequencies. High
vibration levels can be harmful to the machine and its attenuation is important to
maintain the system working healthily. In this context, the paper proposes a
proportional-integral-derivative (PID) controller acting with two pairs of elec-
tromagnetic actuators to reduce the vibration amplitude of a flexible rotor,
supported by hydrodynamic journal bearings, crossing its first resonance. The
oil film behavior of the hydrodynamic bearings is modeled both through linear
equivalent stiffness and damping coefficients and by the complete solution of the
Reynolds equation applied to short bearings. Next, the relay feedback test (a
frequency response method) is applied to estimate the ultimate gain and ultimate
period of the respective PID controllers. Finally, five different tuning methods
are proposed to adjust the PID: the Ziegler-Nichols traditional method, three
Ziegler-Nichols modifications to obtain less aggressive controllers, and a fifth
method, the Tyreus-Luyben method, whose objective is to improve the
robustness of the controller.

Keywords: Rotating machine � Electromagnetic actuators � PID controller
Relay feedback test � Oil film forces � Identification

1 Introduction

Rotating elements are commonly found in several important industrial applications,
being central components in a wide range of machines. From small pumps and com-
pressors to complex power plant turbines and aircraft engines, they play a relevant
economic role and it is a major concern that these machines work properly.

A proper operation of a rotating machine, however, demands some attention not
just to the rotor itself, but also to other attached components (e.g. lumped masses and/or
journals) and to connections of the rotor to some static supporting structure. From this
point of view, a safe, stable and predictable dynamic behavior of the machine is aimed.
Especially due to characteristics of modern design (such as lightweight and rotation at
increased speeds), some resonances might occur within the machine operational range,
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with inherent residual unbalances imposing high levels of vibration (bending modes)
and compromising the machine aimed safety, stability and predictability.

A simple way to overcome excessive vibration issue is to increase the rotating
machine damping, for example, by using hydrodynamic journal bearings to connect the
rotor to the static support structure. Hydrodynamic journal bearings not only provide
advantages of increased damping, but also allows the machine to operate at higher
rotational speeds and higher loads when compared to ball bearings. However, since the
hydrodynamic oil film behavior is dependent of the rotational speed [1], it is time
varying and may be strongly nonlinear. The oil film may still lead the rotor to a fluid-
induced instability condition, in which a self-excited sub-synchronous vibration may
impose harmful high amplitudes of motion to the rotor [2–4].

In this context, aiming to take advantage of the hydrodynamic journal bearing
benefits without compromising the machine safety and stability, active vibration con-
trol mechanisms and techniques have been studied [5–10]. In such techniques, one or
more electromagnetic actuators were used to apply known and adjustable control forces
to the rotor aiming: (1) to center the rotor around some reference position; (2) to
stabilize the rotor (increasing the robustness against disturbances and assuring the
machine healthy operation); and (3) to attenuate the rotor vibration amplitude (espe-
cially when crossing resonances or at fluid induced instabilities) [9, 10].

To accomplish the desired active control effectiveness, a controller is necessary to
quantify the electromagnetic force applied by the actuators to the rotor [11]. There are
several techniques that can be used to obtain a satisfactory controller, such as the µ-
synthesis method [10], the H∞ method [9] or the PID method [11–15]. In this work, the
PID method was adopted due to its easy to tune and to implement characteristics;
besides, PID controllers are widely used in industrial applications.

Therefore, this work focus on the applicability and efficiency of different PID
controller tuning methods in reducing the unbalance vibration amplitude of a flexible
rotor supported by hydrodynamic journal bearings when crossing its first resonance.
The influence of the mathematical model used to represent the oil film dynamics (linear
coefficients or the complete solution of the Reynolds equation for short bearings) in the
PID tuning is also evaluated. Finally, the obtained PID controllers have their perfor-
mances compared when subjected to an external disturbance.

2 Methodology

In this section, the entire system model is described in details. First, the finite element
model (fem) of the rotor is described, and the system equation of motion containing the
journal bearings and the control forces is presented. Next, two possible ways to rep-
resent the oil film forces within the hydrodynamic journal bearings are presented:
(1) equivalent linear stiffness and damping coefficients; (2) solution of the Reynolds
equation for short bearings. Finally, the relay feedback test is described and five PID
tuning methods are presented.
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2.1 Rotor Model

For the analyses, the flexible rotor of Fig. 1 is modeled using the finite element method.
In the equation of motion (Eq. 1), Mfem is the mass matrix, Cfem ¼ bKfem is the
proportional damping matrix, Kfem is the stiffness matrix, and Gfem is the gyroscopic
matrix, according to [16, 17]. The proportionality coefficient b relates the stiffness and
damping matrices, Ω is the rotation speed and q(t) is the generalized coordinate vector.
The rotor is subjected to an unbalance exciting force FE, the bearing forces FB, and its
own weight Wfem.

Mfem€q tð Þþ Cfem þXGfemð Þ _q tð ÞþKfemq tð Þ ¼ FE tð ÞþFB tð Þ �Wfem ð1Þ

The rotor is divided into 19 nodes and the shaft elements are modeled using the
Timoshenko beam theory [18]. Each beam element contains eight degrees of freedom:
four translational and four rotational. The disc elements are considered rigid and their
effects are applied in a single node (the lumped mass, the bearing journals and the
actuator journal are modeled as discs). No foundation or supporting structure influence
on the rotor dynamics is considered.

2.2 Hydrodynamic Bearings

Hydrodynamic bearings, which allow relative movement between static and rotating
parts, have their behavior described by Reynolds isoviscous equation, Eq. 2. The
solution of this equation leads to the pressure field in the lubricant film of the bearings
[19, 20].
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In Eq. 2, p is the oil pressure; h is the circumferential coordinate; x is the axial
coordinate; µ is the lubricant viscosity; R is the bearing radius; and t is the time. The oil
film thickness, h, is both function of the geometry of the bearing (the bearing radial
clearance, CR) and of the circumferential position of the rotor inside the bearing (the

Fig. 1. Rotor finite element model. B1 and B2 are the first and
second bearings. D is the lumped mass and J is the actuator journal.

Fig. 2. Hydrodynamic
bearing geometry.
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horizontal and vertical coordinates, y and z, respectively, and the circumferential
coordinate h) as shown in Fig. 2 and Eq. 3.

h ¼ CR þ y sin h� z cos h ð3Þ

Since the Reynolds equation is a second order differential equation, a numerical
method must be applied to obtain the pressure field solution. In the present paper, a
finite volume method is used to evaluate oil film forces by integration of the pressure
distribution within the bearing area that effectively sustains the rotor [20, 21], as shown
in Eqs. 4a and 4b.

FBy ¼ R
Z L

2

�L
2

Z h2

h1

p sin h dh dx ð4aÞ

FBz ¼ �R
Z L

2

�L
2

Z h2

h1

p cos h dh dx ð4bÞ

For adequate simulation of rotor dynamics, the oil film forces must be calculated
for each time step. Consequently, the direct application of the Reynolds equation to this
solution implies a very expensive computational time. Therefore, a first-order Taylor
expansion is proposed to direct evaluation of bearing forces.

Linear Expansion. Linear bearing analysis can be done via expansion of bearing
forces into a first-order Taylor series, as presented in Eqs. 5a and 5b [22]. This process
leads to a total of eight direct and cross-coupled stiffness and damping coefficients
(respectively, Klm and Clm).

FBy ¼ Fy0 þKyyDyþKyzDzþCyyD _yþCyzD _z ð5aÞ

FBz ¼ Fz0 þKzyDyþKzzDzþCzyD _yþCzzD _z ð5bÞ

In Eqs. 5a and 5b, Fy0 and Fz0 are bearing forces at the equilibrium position, while
Dy;Dz;D _y and D _z are, respectively, relative displacements and velocities in both Y and
Z axes around the equilibrium position. Consequently, the linear coefficients Klm and
Clm in Eqs. 5a and 5b can be obtained from partial derivatives of bearing forces in both
directions at the equilibrium position:

Klm ¼ @Fm
@l

� �
0

Clm ¼ @Fm
@_l

� �
0

ð6Þ

A Newmark integrator was applied to solve the system of equations [23, 24].

2.3 PID Controller and Tuning Methods

The controller considered in this work is a PID (parallel form) controller with a
derivative filter, ND, whose transfer function is given by Eq. 7 [11].
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VC sð Þ
X sð Þ ¼ KP þ KI

s
þND

KDs
ND þ s

ð7Þ

In Eq. 7, KP, KI and KD are, respectively, the proportional, integral and derivative
gains of the PID controller. X(s), the input of the controller, is the negative of the
displacement signal taken in the corresponding degrees of freedom of the electro-
magnetic journal where control force is applied (collocated control). VC(s) is the output
voltage of the controller (in terms of electromagnetic force).

An efficient PID controller relies on the proper choice of its parameters in Eq. 7.
This adequate choice can be done by performing some tests to better determine the
system over which the controller will act. A frequency response method called relay
feedback test [11, 13–15] is applied to estimate the ultimate gain, Ku, and ultimate
period, Tu, of the closed-loop system.

The relay feedback test consists in replacing the PID controller by a relay in the
closed control loop. The gain of the relay should be adjusted to make the system
respond with a sustained oscillation. The ultimate gain is obtained from this adjustment
(Eq. 8) [15], and the ultimate period is the period from the oscillatory system response.

Ku ¼
4 r � DB

2

� �
pg

ð8Þ

In Eq. 8, r and g are, respectively, the relay and the plant output amplitudes. DB is
the width of the relay dead band. From these ultimate gain and period, the PID controller
can be tuned. In this work, five tuning methods are used for the PID [11, 14, 15]:

Ziegler-Nichols (ZN) method. A classic PID tuning method, characterized, in
general, by aggressive controllers, with fast response and high overshoots [12];
Ziegler-Nichols modified method to allow Some-Overshoot (SO-OV). Modifi-
cation of the ZN method to reduce the overshoot (by reducing the proportional gain
of the ZN tune from 0.60Ku to 0.33Ku and increasing KD) [25];
Ziegler-Nichols modified method for No-Overshoot (NO-OV). Another modifi-
cation of the ZN classical method to completely attenuate the overshoot (via another
KP reduction, from 0.33Ku for the SO-OV to 0.20Ku in the NO-OV) [25];
Tyreus-Luyben (TL) method. An interesting method whose objective is to
improve the robustness of the controller (being remarkable for its high TI value,
which implies the smallest KI among all tunes considered) [26];
Shinskey (SH) method. Another modification of the ZN method, whose objective
is also to be less aggressive by reducing the value of the proportional gain to 0.25Ku

(which results in the smallest KD value among all tunes considered) [27].

Table 1 gives relations to predict PID parameters according to Eq. 9.

KI ¼ KP

TI
KD ¼ KPTD ð9Þ
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The PID controller equation (Eq. 7) can be re-written in a state-space formulation
as presented in Eq. 10a and 10b.

_qC tð Þ ¼ ACqC tð ÞþBC �q tð Þþ uref½ � ð10aÞ

FC tð Þ ¼ CCqC tð ÞþDC �q tð Þþ uref½ � ð10bÞ

In Eqs. 10a–10b, qC(t) is the vector of control states, while _qC tð Þ is the first time
derivative of qC(t) and uref is the reference signal for the controller. q(t) is the dis-
placement vector of all rotor degrees of freedom and FC(t) is the vector of control
forces. AC, BC, CC and DC are the respective controller state-space matrices, obtained
as stated in Eqs. 11a–11b from the controller gains and the derivative filter.

AC ¼ 0 1
0 �ND

� �
and BC ¼ 0

1

� �
ð11aÞ

CC ¼ KIND KI � KDN2
D

� 	
and DC ¼ KP þKDND½ � ð11bÞ

When the control system is active, the rotor described initially by Eq. 1 is also
subjected to the control force, FC(t), as shows Eq. 12.

Mfem€q tð ÞþCfem _q tð ÞþKfemq tð Þ ¼ FE tð ÞþFB tð Þ �Wfem þFC tð Þ ð12Þ

The system composed by Eqs. 10a, 10b and 12 can be rewritten in a single matrix
equation:

Mfem 0

0 0

" #
€q tð Þ
€qC tð Þ

( )
þ Cfem 0

0 I

" #
_q tð Þ
_qC tð Þ

( )
þ Kfem þDC �CC

BC �AC

" #
q tð Þ
qC tð Þ

( )
¼

¼ FE tð ÞþFB tð Þ �Wfem þDCuref
BCuref

( )
:

ð13Þ

3 Simulation Results

Once the complete systemmodel was established, a series of simulations was performed.
First, a comparison between themodels adopted to calculate the oilfilm forceswas carried
out considering both controlled and uncontrolled conditions, at three different rotation

Table 1. PID controller parameters for different tuning methods [11, 12, 14, 15, 24–26].

Tuning method KP TI TD KI KD

ZN 0.60 Ku 0.50 Tu 0.125 Tu 1.20 Ku/Tu 0.075 KuTu

SO-OV 0.33 Ku 0.50 Tu 0.330 Tu 0.66 Ku/Tu 0.109 KuTu

NO-OV 0.20 Ku 0.50 Tu 0.330 Tu 0.40 Ku/Tu 0.066 KuTu

TL 0.46 Ku 2.20 Tu 0.159 Tu 0.21 Ku/Tu 0.073 KuTu

SH 0.25 Ku 0.50 Tu 0.120 Tu 0.50 Ku/Tu 0.030 KuTu
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speeds, within the first bearing. Next, the performances in the steady-state response of the
tuned controllers were evaluated. Finally, a step signal was applied in the control-loop
input in order to evaluate the controller performance in the transient response.

3.1 Linear Versus Reynolds Oil Film Modeling

In the first set of simulations, a comparison between the models adopted to describe the
oil film behavior (i.e. oil film forces) was carried out. Since both bearings presented
similar results, the orbits for the second bearing were omitted. For this comparison,
both controlled and uncontrolled cases are shown (Figs. 3, 4 and 5) for three different
rotation speeds: 25 Hz, 44 Hz and 52 Hz. The controller’s ultimate gain and ultimate
period were, respectively, 8.1774.105 and 0.0208 for y direction and 6.3518.105 and
0.0208 for z direction.

From Figs. 3, 4 and 5 one may notice that the uncontrolled orbits (in black) present
only subtle differences for the linear model and the complete nonlinear Reynolds
solution. Therefore, all PID controllers (Figs. 3, 4 and 5) were calculated for the linear
model of the oil film forces at a rotation speed of 25 Hz.

Tuning the PID controllers in a low rotational speed (25 Hz) simulates the real case
where the uncontrolled rotor is not able to approximate the critical speed due to the
high vibration level. The orbits of the controlled rotor are also compared for the
rotational speed of 44 Hz, which is near the first critical speed at 46.6 Hz, and for
52 Hz, which represents a rotational speed above the critical speed.

After the application of the developed controllers (Figs. 3, 4 and 5), the rotor orbits
also presented only subtle differences for the linear model and the complete nonlinear
Reynolds solution. Therefore, it was concluded that nonlinear effects are small within
forces and velocities considered (even close to the first critical speed).

Despite these subtle differences, all PID tunes have performed effectively, mainly for
25 Hz and 44 Hz rotation speeds, independent of the model for the oil film. For these two
speeds, all PID tunes have almost the same efficiency. For 52 Hz, however, more dif-
ferences emerge: while ZN, SO-OV and TL tunes remained effective, closely followed
by the NO-OV, the SH tune almost lost its entire effectiveness. This result was somehow

(a) Linear (b) Reynolds

Fig. 3. First bearing orbits, with and without controller, for a rotation speed of 25 Hz.
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expected since the NO-OV and SH tunes have the smallest KP values, and therefore less
contribute to the closed-loop system stiffness when compared to other tunes [11].

Once the analyzed operation conditions do not impose strong nonlinearities in the
oil film behavior, the results of the following subsections were obtained using the
equivalent linear damping and stiffness coefficients for the bearings.

(a) Linear (b) Reynolds

(c) Linear – Close view (d) Reynolds – Close view

Fig. 4. First bearing orbits for a rotation speed of 44 Hz: (a)–(b) orbits with and without
controller; (c)–(d) detail of the orbits with controller.

(a) Linear (b) Reynolds

Fig. 5. First bearing orbits, with and without controller, for a rotation speed of 52 Hz.
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3.2 Comparative PID Efficiency at Different Rotation Speeds

In the present subsection, the controller obtained for a rotation speed of 25 Hz is
applied to other rotation speeds, namely: 44 Hz, 52 Hz and 75 Hz. Figure 6 presents a
comparison of efficiency of the different tunes for different speeds in three positions
along the rotor (at the first and second bearings and at the lumped mass).

(a) Bearing 1

(b) Mass

(c) Bearing 2

Fig. 6. Controlled and uncontrolled maximum displacement amplitude in y direction at different
rotation speeds: (a) first bearing; (b) lumped mass; (c) second bearing.
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The results obtained at the z direction were omitted due to the similarity to the
results at the y direction in Fig. 6. Also, from Fig. 6, one may notice that at the disc
position no tune could attenuate the motion of the rotor at 75 Hz. This fact will be
addressed later, at Subsect. 3.4.

3.3 Transient Regime Analysis

In the present subsection a step signal of amplitude 3 mm is applied to the reference of
the control-loop at t = 3 s. After that, the system is simulated until a new permanent
regime is achieved. The simulations were carried out for a rotation speed of 52 Hz
(Fig. 7). Only the results obtained for the y direction are presented due to the similarity
with the results for the z direction.

The first harmonic (rotational frequency component) masks the transient analysis of
the closed-loop system as it can be noted in Fig. 7. Therefore, the first harmonic was
filtered from the system response using the DFT. The filtered results are presented in
Fig. 8.

Initially, it must be remarked that despite efficiency differences among PID tunes,
all of them could answer effectively to a new reference value. The small discrepancy of
permanent regime position in all graphs of Fig. 8 to the new reference value (3 mm)
may be attributed to the fact that the controller was not acting directly on the disc. It
was acting on the journal (Fig. 1), where the new permanent regime position of all
cases was at 3 mm.

In order to compare the transient response performance of each controller, the
percentage of overshoot and the settling time were measured for each case and sum-
marized in Table 2.

As expected [11], the parameters extracted from the disc response to a variation in
the reference signal of the controller agreed to the individual characteristics (values of
proportional, integral and derivative gains) of each PID tune considered.

The biggest overshoot happened for the ZN tune, which has the biggest KP and KI

values, followed almost in a linear relation by the TL and SO-OV tunes, in this order.
The SH and NO-OV tunes, with the smallest values of KP, did not produce any positive
overshoot, as expected from the descriptions of the methods.

Table 2. Performance parameters of the tuned controllers.

Tuning method Overshoot (%) Settling time 5% (s)

ZN 24.9 0.057
SO-OV 4.6 0.065
NO-OV - 0.094
TL 5.9 0.220
SH - 0.102
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The smallest settling time also occurred for the ZN tune, the one with the highest KI

parameter, followed by the SO-OV, NO-OV, SH and TL tunes in this order. The poor
performance of the TL tune when considering the settling time is due to its high value
of TI = 2.20 Tu (Table 1), set intentionally to lead to a more robust controller.

(a) ZN (b) SO-OV

(c) NO-OV (d) TL

(e) SH

Fig. 7. Transient response of the closed-loop system at the mass position due to the application
of a step signal.
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3.4 Frequency Response Analysis

To obtain a better comprehension of the system behavior in the presence of the con-
troller, the unbalance response of the system was calculated. Figure 9 presents the
lumped mass response considering a harmonic excitation (due to unbalance) at the

(a) ZN (b) SO-OV

(c) NO-OV (d) TL

(e) SH

Fig. 8. Filtered transient response of the closed-loop system at the mass position due to the
application of a step signal.
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lumped mass (which is where the unbalance was applied in the previous simulations).
The results of Fig. 9 are summarized in Table 3.

As expected, the critical speed of the system increased (Table 3) since the actuator
behaves as another bearing adding stiffness to the system, which explains why the
amplitudes of the controlled systems decrease in the rotational speed of 44 Hz but
increase in the rotational speed of 75 Hz, as presented in the results of Fig. 6 (Sub-
sect. 3.2). Nevertheless, comparing the vibration amplitudes at the critical speeds
(peaks in Fig. 9 and Table 3), it can be seen that every tuning method is able to reduce
the system orbit during the critical speed crossing. The resultant damping of the system
is also increased for every controller as presented in Table 3.

4 Conclusions

In this work, two methods for modeling the hydrodynamic bearings were compared.
Although a high unbalance was considered in the lumped mass attached to the rotor, no
significant nonlinear effects arose when comparing the linear model (equivalent linear
coefficients) to the nonlinear model (complete solution of the Reynolds equation).
Therefore, the test used for tuning the PID controllers and the following performance

Fig. 9. Unbalance response of the complete system.

Table 3. Performance parameters of the system unbalance response.

Case Critical speed (Hz) Peak amp. (dB) Modal damping

Uncontrolled 46 −80.26 0.013
ZN 72 −101.3 0.104
SO-OV 72 −106.2 0.222
NO-OV 63 −103.5 0.198
TL 70 −103.7 0.150
SH 59 −95.36 0.076
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tests were conducted using the linear bearing model, due to its computational effi-
ciency. The similarity of the rotor orbits, regarding the linear and non-linear bearing
models, was observed even in the presence of the PID controllers.

The steady-state analysis of the PID controllers showed that the five tunings were
capable of reducing the vibration amplitude of the rotor for three operating conditions:
below the critical speed (25 Hz - condition in which the controllers were tuned), close
to the critical speed (44 Hz), and above the critical speed (52 Hz). When the rotor was
set to a rotational speed much higher than the critical speed (75 Hz), all controllers
failed in reducing the vibration amplitude of the rotor.

The steady-state analysis of the PID controllers (unbalance response) has shown
that the critical speed of the system increased (since the system stiffness is increased by
the actuator). Nevertheless, the vibration amplitude of the critical speed is reduced and
the system damping is increased for every tuning method.

Finally, a transient analysis was performed by injecting a step signal into the
reference input of the closed-loop. All controllers could satisfactorily control attenuate
the system response and the controllers performance were compared in terms of
overshoot and settling time. The obtained performances were in agreement with the
expected behavior of each tuning method.

Acknowledgements. The authors would like to thank CNPq and grant #2015/20363-6 from the
São Paulo Research Foundation (FAPESP) for the financial support to this research.

References

1. Dubois, G.B., Ocvirk, F.W.: Analytical derivation and experimental evaluation of short
bearing approximation for full journal bearings. NACA 1157, 1199–1230 (1953)

2. Muszynska, A.: Whirl and whip – rotor bearing stability problems. J. Sound Vib. 110, 443–
462 (1986)

3. Muszynska, A.: Stability of whirl and whip in rotor bearing system. J. Sound Vib. 127, 49–
64 (1988)

4. Crandall, S.: From whirl to whip in rotordynamics. In: Proceedings of the Third IFToMM
International Conference on Rotordynamics, Lyon, Franc, pp. 19–26 (1990)

5. Burrows, C., Sahinkaya, M., Clements, S.: Active vibration control of flexible rotors: an
experimental and theoretical study. In: Proceedings of the Royal Society of London A, vol.
422, pp. 123–146 (1989)

6. Burrows, C., Sahinkaya, M., Clements, S.: Electromagnetic control of oil-film supported
rotors using sparse measurements. J. Vib. Acoust. Stress Reliab. Des. 110, 295–299 (1988)

7. Fürst, S., Ulbrich, H.: An active support system for rotors with oil-film bearings. In:
Proceedings of the IMechE International Conference, Edinburgh, United Kingdom, pp. 61–
68 (1988)

8. Dimitri, A., El-Shafei, A.: Instability control and unbalance compensation of flexible rotors
supported on journal bearings using magnetic bearings. In: Proceedings of the Eighth
IFToMM International Conference on Rotor Dynamics, Korea, pp. 657–664 (2010)

9. Siqueira, A.A.G., Nicoletti, R., Norrick, N., Cavalca, K.L., Castro, H.F., Bauer, J., Dohnal,
F.: Linear parameter varying control design for rotating systems supported by journal
bearings. J. Sound Vib. 331, 2220–2232 (2012)

Reduction of Rotor Vibration Amplitude Using PID Tuning Methods 87



10. Rieman, B., Perini, E.A., Cavalca, K.L., Castro, H.F., Rinderknecht, S.: Oil whip instability
using µ-synthesis technique on a magnetic actuator. J. Sound Vib. 332, 654–673 (2013)

11. Saint Martin, L.B., Mendes, R.U., Cavalca, K.L.: Electromagnetic actuators for controlling
flexible cantilever beams. Struct. Control Health Monit. 25, 1–19 (2018). https://doi.org/10.
1002/stc.2043

12. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 65,
433–444 (1943)

13. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning (1994)
14. Anantachaisilp, P., Lin, Z., Allaire, P.: PID tuning methods for active magnetic bearing

systems. In: Proceedings of the 13th International Symposium on Magnetic Bearings,
Arlington, USA (2012)

15. Anantachaisilp, P., Lin, Z.: An experimental study on PID tuning methods for active
magnetic bearing systems. Int. J. Adv. Mechatron. Syst. 5(2), 146–154 (2013)

16. Nelson, H.D., McVaugh, J.M.: The dynamics of rotor-bearing systems using finite elements.
J. Eng. Ind. 98, 593–600 (1976). https://doi.org/10.1115/1.3438942

17. Childs, D.: Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. Wiley-
Intersciences, New York (1993). Article title. Journal 2(5), 99–110 (2016)

18. Nelson, H.D.: A finite rotating shaft element using timoshenko beam theory. J. Mech. Des.
102, 793–803 (1980). https://doi.org/10.1115/1.3254824

19. Pinkus, O., Sternlicht, B.: Theory of Hydrodynamic Lubrication. McGraw-Hill Book
Company, New York (1961)

20. Machado, T.H., Cavalca, K.L.: Dynamic analysis of cylindrical hydrodynamic bearings with
geometric discontinuities. In: Proceedings of International Conference on Vibration
Problems, ICoVP 2011, Prague, Czech Republic, vol. 1, pp. 1–6 (2011)

21. Patankar, S., Pengairan, J., Van Rijn, L.C.: Numerical Heat Transfer and Fluid Flow, 1st
edn. Hemisphere Publishing Corporation, New Jersey (1980)

22. Lund, J.W.: Review of the concept of dynamic coefficients for fluid film journal bearings.
J. Tribol. 109, 37–41 (1987). https://doi.org/10.1115/1.3261324

23. Bathe, K.J., Saunders, H.: Finite Element Procedures in Engineering Analysis. Prentice-Hall,
New Jersey (1984). https://doi.org/10.1115/1.3264375

24. Dakel, M., Baguet, S., Dufour, R.: Nonlinear dynamics of a support-excited flexible rotor
with hydrodynamic journal bearings. J. Sound Vib. 333, 2774–2799 (2014)

25. Perry, R.H., Chilton, C.H.: Chemical Engineers’ Handbook, 5th edn. McGraw-Hill, New
York (1973)

26. Luyben, W.L.: Tuning proportional-integral-derivative controllers for integrator/deadtime
process. Ind. Eng. Chem. Res. 35(10), 3480–3483 (1996)

27. Shinskey, F.G.: Process Control Systems: Application, Design and Tuning. McGraw-Hill,
New York (1996)

88 L. B. Saint Martin et al.

http://dx.doi.org/10.1002/stc.2043
http://dx.doi.org/10.1002/stc.2043
http://dx.doi.org/10.1115/1.3438942
http://dx.doi.org/10.1115/1.3254824
http://dx.doi.org/10.1115/1.3261324
http://dx.doi.org/10.1115/1.3264375


Experimental Validation of Angular
Viscoelastic Dynamic Neutralizers

Designed for Flexural Vibration Control
in Rotating Machines

Danielle Raphaela Voltolini1(&) , Samuel Kluthcovsky2 ,
Eduardo Márcio de Oliveira Lopes2 ,

and Carlos Alberto Bavastri2

1 WEG Group – Energy Division, Jaraguá do sul,
Santa Catarina 89256-900, Brazil

danieller@weg.net
2 Mechanical Engineering Department, Federal University of Paraná,

Curitiba 81531-980, Brazil

Abstract. The installation of micro hydroelectric power plants has recently been
growing in Brazil, where small hydraulic generators are combined with hydraulic
turbines. Some technical solutions require different runaway factors, from 1.2 up
to 3.0 times the synchronous speed of the generator, so that the mechanical
design of them must be reinforced or changed to support this critical dynamic
condition, affecting costs and reducing competitiveness. An effective technique
to control vibration is the use of simple devices called ‘dynamic vibration neu-
tralizers’. These devices can contain viscoelastic material to introduce high
mechanical impedance onto the system to reduce its vibration levels. There is a
special kind of neutralizer, called ‘angular viscoelastic dynamic neutralizer’
(angular VDN), which acts indirectly in slope degree of freedom controlling
flexural vibration. They have the predicted ability to control more than one single
mode once the device is assembled where the maximum slope happens. The aim
of the current work is to present a methodology to design angular VDNs and
validate it by using a simplified experimental rotor exploring two different
geometries. The results show that, if well-tuned, this kind of control is effective
not only for the frequency band of interest, but also over higher modes.

Keywords: Angular viscoelastic dynamic neutralizer
Flexural vibration control � Rotordynamics

1 Introduction

In order to make the most of the Brazilian hydraulic power capacity, the installation of
micro hydroelectric power plants (MHPs) has been growing year after year. In Brazil,
the plants with power capacity up to 5 MW are considered MHPs, using small
hydraulic generators combined with hydraulic turbines to generate this amount of
energy, where the turbine set depends on the fall height.
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The design of the hydraulic generator is intimately related to the type of turbine,
since it influences the generator runaway factor. Therefore, in applications concerning
Pelton and Francis turbines, it is a common practice to use a runaway factor up to 2.0
times the nominal speed of the generator. However, for Kaplan turbines, this runaway
factor usually grows from 2.3 up to 3.0, so that the mechanical design of the generator
must be reinforced to support this critical dynamic condition.

These generators should be small and low-priced, so their construction employs
roller bearings to support the rotor and turbine loads. So, if a generator is mechanically
designed to operate at a runaway factor 2.0, and then one wishes to use it in an appli-
cation with a higher runaway factor, it is necessary to modify the mechanical project by
increasing the diameters of the shaft, the bearings, or even changing the roller bearings
to hydrodynamic bearings, in order to comply with the API 541 vibration requirements.
All these modifications impact the generator costs, reducing competitiveness.

When it comes to flexural vibration control, there are some techniques consolidated
by the literature [1–7], most of them based on the addition of damping to the vibration
control system. Another effective technique consists of using simple and relatively low-
cost devices called ‘dynamic vibration neutralizers’ [8–13]. These devices can contain
viscoelastic material - instead of spring and dashpot - introducing high mechanical
impedance into the primary system (dynamic structures to be controlled), to reduce
vibration levels in a frequency band of interest. That is, the neutralizers add not only
damping, but they also introduce reaction forces into the primary system.

There is a special kind of neutralizer, called ‘angular viscoelastic dynamic neu-
tralizer’ (angular VDN), which acts indirectly on slope degree-of-freedom (DOF) - as
shown in Fig. 1 - controlling flexural vibration. It is attached near the bearings, where
one finds the maximum angular displacement for the shaft regarding its neutral axis.
Furthermore, the angular VDN has the predicted ability to control more than one single
mode, since, for a simply supported beam, regardless of the mode shape, the DOF slope
is never null close to the supports.

The aim of current study is to present a methodology to design angular VDNs – and
validate it using a simplified experimental rotor – by exploring two different geometries.
The studies and the results show that the auxiliary support has to be carefully designed in

Fig. 1. Slope degree-of-freedom in rotating systems.
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order to ensure the angular degree of freedom control, since the neutralizer motion could
be exposed, through this support, to the displacement and angular motion in all direc-
tions due to shaft whirling. The results show that, if well-tuned, this kind of control is
effective not only for the frequency band of interest, but also over higher modes.

2 Viscoelastic Material Model

Viscoelastic materials are widely used in vibration and noise control applications due to
their relative low cost and attractive physical properties: the dynamic behavior depends
on their complex elasticity moduli, which are frequency and temperature dependent.
The properties of a typical and thermorheologically simple viscoelastic material are
detailed in [14, 15].

The four-parameter fractional derivative model for viscoelastic solid materials was
introduced by [10, 15]. This simple model may numerically characterize a wide range
of viscoelastic materials in engineering. So, in the frequency domain, the complex
shear modulus ð�GðX; TÞÞ is represented by:

�G X; Tð Þ ¼ G0þG1b1 iXa Tð Þð Þb
1þ b1 iXa Tð Þð Þb

¼ Gr X; Tð Þ 1þ ig X; Tð Þð Þ ð1Þ

where GrðX; TÞ ¼ Reð�GðX; TÞÞ is the dynamic shear modulus or storage modulus and
gðX; TÞ ¼ Imð�GðX; TÞÞ=Reð�GðX; TÞÞ is the loss factor; parameters G0 and G1 rep-
resent the asymptotic values of the dynamic shear modulus at low and high frequencies,
respectively; b1 ¼ bb is an experimental constant, where b is the relaxation time [10]
and b is the fractional derivative power; X is the excitation frequency and i is the
imaginary unit ði ¼ ffiffiffiffiffiffiffi�1p Þ. Parameter a(T) is actually a function called ‘shift factor’
and represents the temperature influence in the dynamic behavior of viscoelastic
materials. This factor was experimentally proposed by Willian–Landel–Ferry
(WLF) and empirically equated by [16]:

loga Tð Þ ¼ �h1 T � T0
h2þ T � T0

ð2Þ

where constants h1 and h2 may be experimentally determined, parameter T0 is an
arbitrary reference temperature, and T is the working temperature, both in Kelvin. For
the sake of simplicity, parameter T will be suppressed from now on, since the present
paper will fix a constant temperature for the system modelling.

3 Viscoelastic Dynamic Neutralizer Applied to Slope Degree
of Freedom

The approach of the present paper is related to the angular VDN, i.e., the neutralizer
works in slope DOF instead of the transversal displacement. Based on the methodology
showed on [11], the generalized equivalent parameters model for slope degree-of-
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freedom of a simple neutralizer is propose in order to replace the classical one, as shown
in Fig. 2. Then, the simple neutralizer attached on the primary system can be represented
by an equivalent model compound just by an equivalent mass, mes Xð Þ, and an equiv-
alent damping, ces Xð Þ. These equivalent dynamic parameters are found equating the
dynamic stiffness on the base of the neutralizer of the both models presented in Fig. 2.

The dynamic stiffness at the base of angular VDN ð�KbsðXÞÞ is calculated through
the relation between the external moment applied to the base ðMbðXÞÞ and the slope
displacement at base ðhbðXÞÞ, as shown in Fig. 3. This figure shows a lateral view of a
simplified model for the VDN, where is represented the shaft, as indicated, the arm of
the neutralizer, with an inertia Ib, the viscoelastic blanket in blue, and the mass of
neutralizer above the viscoelastic.

�Kbs Xð Þ ¼ MextðXÞ
hbðXÞ ð3Þ

Fig. 2. Generalized equivalent model for a system with VDN – slope DOF.

Fig. 3. Simplified physical model for angular VDN.
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The lateral action force FR Xð Þð Þ of the viscoelastic element is obtained in the
frequency domain, as shown by [13], as a relation between the dynamic stiffness and
the displacements at base Xb Xð Þ and at mass X(X). The free body diagram and
Newton’s second law are also applied to the bodies, and, by handling these equations, it
is possible to obtain the dynamic stiffness for the angular VDN, as shown below. The
relations are obtained as follows:

�Kbs Xð Þ ¼ MextðXÞ
hbðXÞ ¼

�K Xð ÞR2ð�X2IÞ
�X2Iþ �K Xð ÞR2

� X2Ib ð4Þ

where variables I and Ib are the mass inertias of the neutralizer mass and its base,
respectively.

As shown in [17], handling Eq. (4) and comparing with the stiffness on the base of
the simple neutralizer shown in Fig. 2b given by �Kbs Xð Þ ¼ �X2mes Xð Þþ iXces Xð Þ, the
generalized equivalent mass and damping can be obtained taking the real and imagi-
nary part of the Eq. (4) and dividing by �X2 and X, respectively. Then, these gen-
eralized equivalent parameters are defined as:

mes Xð Þ ¼
r Xð ÞR2 Iþ Ibð Þ �e Xð Þ2þ r Xð ÞR2 1þ g Xð Þ2

� �h i
� e Xð Þ2Ib �e Xð Þ2þ r Xð ÞR2

h i
�e Xð Þ2þ r Xð ÞR2
h i2

þ r Xð Þ2g Xð Þ2R4
ð5Þ

ces Xð Þ ¼ Xr Xð ÞR2g Xð Þe Xð Þ2I
�e Xð Þ2þ r Xð ÞR2
h i2

þ r Xð Þ2g Xð Þ2R4
ð6Þ

where r Xð Þ ¼ LGrðXÞ=LGrðXnÞ, Xn is the natural frequency of the system given by
X2

n ¼ LGrðXnÞ=m and e Xð Þ ¼ X=Xn.
To find the control frequency Xh, it is necessary to equal the denominator of Eq. (4)

to zero, as follows:

Xh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LGr Xnð ÞR2

mq2

s
ð7Þ

The mass inertia of the neutralizer mass is defined by I ¼ mq2, where q is the
distance between the center of the neutralizer mass and the centerline of the shaft
(Fig. 3). So, the relation between the natural frequency of the system and the control
frequency is given by:

Xh ¼ Xn
R
q

ð8Þ

Based on Eq. (8) and Fig. 3, given that R < q, the relation between the frequencies
will be Xh\Xn. So, it is possible to obtain a control frequency as low as necessary.
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4 The Rotating System: Primary and Compound Systems

The rotating primary system may be discretized through the finite element method by
using the beam finite element with three nodes and four degrees of freedom each, as
shown in Fig. 4.

The equation of motion [18, 19] for a simple rotating system with multiple DOF, in
the frequency domain, is expressed by:

�X2 M½ � þ iX C½ � þ G Xrð Þ½ �ð Þ þ K½ �� �
Q Xð Þf g ¼ F Xð Þf g ð9Þ

where [M] is the global mass matrix defined by the kinetic energy of the system; [C] is
the global damping matrix; [G(Xr)] is the global gyroscopic effect matrix obtained by
the kinetic energy as well; [K] is the global stiffness matrix defined by the potential
deformation; {Q(X)} is the generalized coordinate vector and {F(X)} is the generalized
excitation vector. For the sake of simplification, the effects of rotating damping and
stiffness were disregarded in Eq. (9).

The motion equation, in the state space, can be rewritten as follows:

iX
C½ � þ G Xrð Þ½ �ð Þ M½ �

M½ � 0

� �
þ K½ � 0

0 �M½ �
� �	 


Y Xð Þf g ¼ F Xð Þ
0

� �
¼ N Xð Þf g

ð10Þ

For the compound system (primary system plus angular VDV), the generalized
equivalent parameters must be added to the primary system. These parameters are
expressed in matrix terms by:

Ce Xð Þ½ � ¼

0 0 � � � 0 0
0 ces1 Xð Þ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � cesp Xð Þ 0
0 0 � � � 0 0

2
666664

3
777775

..

.

 hj1
..
.

 hjp
..
.

ð11Þ

Fig. 4. Finite element method: discretization of a beam element.
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Me Xð Þ½ � ¼

0 0 � � � 0 0
0 mes1 Xð Þ � � � 0 0

..
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. ..

.

0 0 � � � mesp Xð Þ 0
0 0 � � � 0 0

2
666664

3
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..

.

 hj1
..
.

 hjp
..
.

ð12Þ

where parameters cesj and mesj are the j
th term, with j = 1 to p with p being the number

of angular VDNs used.
Then, the motion equation for the compound system is given by:

�X2 M½ � þ Me Xð Þ½ �ð Þ þ iX C½ � þ Ce Xð Þ½ � þ G Xrð Þ½ �ð Þþ K½ �� �
Q Xð Þf g ¼ F Xð Þf g ð13Þ

In the state space, Eq. (13) can be rewritten as

iX ~A X;Xrð Þ� �
Y Xð Þf gþ ~B Xð Þ� �

YðXÞf g ¼
F Xð Þ
� � �
0

8<
:

9=
; ¼ N Xð Þf g ð14Þ

where:

~A X;Xrð Þ� � ¼ A Xrð Þ½ � þ Ae Xð Þ½ � ð15Þ

~B Xð Þ� � ¼ B½ � þ Be Xð Þ½ � ð16Þ

the matrices A Xrð Þ½ � and B½ � represent the primary system behavior and Ae Xð Þ½ � and
Be Xð Þ½ � represent the influence of the dynamic neutralizers attached to the primary
system. These matrices are given by:

A Xrð Þ½ � ¼ C½ � þ G Xrð Þ½ �ð Þ M½ �
M½ � 0

� �
ð17Þ

Ae Xð Þ½ � ¼ Ce Xð Þ½ � Me Xð Þ½ �
Me Xð Þ½ � 0½ �

� �
ð18Þ

and

B½ � ¼ K½ � 0
0 �M½ �

� �
ð19Þ

Be Xð Þ½ � ¼ 0½ � 0½ �
0½ � �Me Xð Þ½ �

� �
ð20Þ
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To solve the motion equation, it is necessary to transform Eq. (14), in the con-
figuration system, into the modal or sub-modal space of the state space by using the
right eigenvector matrix of the primary system [H](k[A(Xr)][H]) = [B][H].

Y Xð Þf g ¼ H½ � P Xð Þf g ð21Þ

and, then, pre-multiplying Eq. (14) by the transpose left eigenvectors [W]T(k[A
(Xr)]

T[W]) = [B]T[W], its adjoint problem, the motion equation can be solved as:

iX W½ �T ~A X;Xrð Þ� �
H½ � þ W½ �T ~B Xð Þ� �

H½ �� �
P Xð Þf g ¼ W½ �T N Xð Þf g ð22Þ

or, simplified as:

�Y Xð Þf g ¼ H½ � D Xð Þ½ � W½ �T N Xð Þf g ð23Þ

with

D Xð Þ½ � ¼ iX I½ � þ W½ �T Ae Xð Þ½ � H½ � �þ K½ � þ W½ �T Be Xð Þ½ � H½ � �� ��1 ð24Þ

For the angular VDN design, the subspace can be obtained by limiting the size of
eigenvectors matrices [H] and [W] to the first 2n̂ modes, with n̂� n, since the con-
tribution of the higher order modes is insignificant and can be ignored. This signifi-
cantly reduces the computational time, which is proportional in n3.

5 Optimization Problem

In the present work, the optimization problem consists of reducing the flexural
vibration level for the primary system as much as possible. This control is made by the
indirect reduction of the slope degree of freedom of the primary system obtained by
using angular VDNs. For that, the angular VDN must be optimally designed, in other
words, its natural frequency must be determined in an optimization environment.

To this end, it is suggested a non-linear optimization method, and the objective
function fobj is defined by:

fobj xð Þ ¼ maxX1\X\X2 P X; xð Þj jk k ð25Þ

where x is the design vector containing the natural frequencies of the p neutralizers
xT ¼ Xa1; Xa2; . . .; Xap

� � �
; parameters X1 and X2 constitute the frequency band

control related to the operation of the machine and its flexural modes; “max” is the
maximum value for each component of vector P(X,x) and ║║indicates the use of the
Euclidian Norm.

When it comes to ensure the convergence of an optimization problem, it is
advisable to use barrier functions, which are inequality functions defined by
XL

ai\Xai\XU
ai with i = 1 to p, and L and U are the lower and upper constrains,

respectively.
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The aim of this optimization problem is to find a vector with the frequencies for the
angular VDNs that minimize function P(X, x).

The complete methodology used in the present paper is based on the following
instructions:

1. the generalized equivalent parameters for the slope DOF are calculated (Eqs. (5)
and (6)) based on the viscoelastic material selected and the rotor geometry studied;

2. matrix [D(X)] from Eq. (24) is assembled and equated;
3. the unbalance excitation and the matrix [D(X)] are solved to obtain vector {P(X,x)};
4. the absolute values of vector {P(X,x)} are evaluated for the optimization algorithm,

and its maximum values are chosen;
5. the objective function is solved, and a new project vector is assembled;
6. steps 1 to 5 are repeated until the minimal value for vector {P(X, x)} is found; then,

the optimal natural frequencies are finally obtained.

After having found the natural frequencies of the angular VDN, the other param-
eters can be found out to physically design the neutralizer. The mass inertia of the
neutralizer was defined by [13] for the mode-to-mode control and is adapted for this
application as follow:

lj ¼
Ia
Pp

s¼1 /ksj

�� ��2
Ij

ð26Þ

where /ksj are the ks,j elements of the right modal matrix on state space; Ia is the
neutralizer mass inertia considering it in modal space; p is the number of neutralizers;
ks is the position where the ith neutralizer is fixed on the primary system with s = 1 to j,
where j is the jth mode to be controlled. Finally, lj is the relation between the mass
moment of inertia of the neutralizer, considered in the modal space of the primary
system, and the modal mass moment of inertia of the primary system and can typically
go up 10% to 25%.

6 Numerical-Experimental Development and Results

The current work presents three different geometries performed to experimentally
validate the methodology presented above. They are the compact angular VDN using
E-A-R Isodamp C-1002 rubber (item 6.1), the same design by using butyl rubber (item
6.2), and the center of percussion of the angular VDN design (item 6.3).

The three types of angular VDN were designed for the same rotor geometry, as
detailed in Fig. 5, and the same unbalance mass was used: 0.0002 kg m applied to the
central disk, or 458 mm from the driven side of the shaft.

The neutralizers were assembled in the same position, as close as possible to the
rear bearing, 50 mm away from the bearing in the shaft end direction, as presented in
Figs. 7 and 14.
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6.1 Compact Angular VDN – C-1002

The first geometry proposed was designed by using the E-A-R Isodamp C-1002, and
the parameters of the four-parameter fractional derivative model are preset in Table 1.

The design starts by modelling the rotor, as shown previously, and applying it to
the optimization environment. So, for this case, the optimal natural frequency found
was 24.9 Hz, as presented in Fig. 6. For other neutralizer geometries, the same
unbalance frequency response shown in Fig. 6 is used, since the primary system is the
same.

Based on that geometry, the modal inertia is obtained and, considering a lj equal to
10%, the neutralizer inertia is Ia = 0.0077496 kg m2. This inertia was divided into four
identical devices, consisting of an aluminum base with three pieces of rubber glued to a
steel sleeve; fixed on it by threading bars are two steel cylinders serving as the mass of
the device, as presented on Fig. 7. The device is attached to a fake bearing by using a
threading bar. This bearing consists of an aluminum sleeve mounted above the rolling
bearing and anchored on the structure by steel wires.

Fig. 5. Rotor geometry used for all types of angular VDN tested.

Table 1. Rubber parameters.

E-A-R Isodamp
C-1002

Butyl rubber

T0 286.341 K T0 273 K
T 298 K T 293 K
h1 24.2078 h1 6.57
h2 249.808 h2 68.0
G0 6.56e5 Pa G0 3.57e6 Pa
G∞ 8.61e8 Pa G∞ 4.79e8 Pa
B 0.545 B 0.435
b1 6.46e−4 b1 2.46e−3
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The experimental validation of the VDN natural frequency is presented in Fig. 8
and shows the inertance curve measured. The curve was obtained by fixing the
accelerometer to the cylinder mass of the neutralizer (measuring point) and by applying
an impact force near this point (exciting point). This curve presents a damped behavior
due the physical properties of the material. The natural frequency presented was
approximately 25 Hz, as expected.

Two of the angular VDNs were positioned parallel to the faces of the disks, as
shown in Fig. 7. Due to the size of the mass, the other two devices were assembled
slightly misaligned in relation the other ones. From now on, this configuration will be
called ‘standard position’. The rundown test was conducted, and the unbalance fre-
quency response (UFR) for ‘X’ direction, according Fig. 4, is shown in Fig. 9.

Fig. 6. Unbalance frequency response with and without compact angular VDN C-1002.

Fig. 7. Rotor assembled with compact angular VDN compound with C-1002.
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Based on Fig. 9, it is possible to note that the angular VDNs do not insert the
necessary impedance to effectively control the vibration level of the primary system for
the first mode, and barely had any effect on the second one. This behavior was initially
associated to clearance in ball bearings. The hypothesis was rebutted after assembling a
new hub using roller bearings, without a significant change in the results. Other tests
were conducted by altering the angular position of neutralizers, as showed on Fig. 11,
resulting in distinct dynamic behaviors, increasing or reducing control capacity, as
presented in Fig. 10.

When comparing the curves in Figs. 9 and 11, there is a reduction in the amplitude
of vibration for both modes, which is stronger for the case with variation of the angular
positioning in relation to the standard position, showing the sensitivity of the device to

Fig. 8. Inertance to C-1002 VDN.

Fig. 9. UFR for standard position – angular VDN C-1002.

100 D. R. Voltolini et al.



this design variable. This behavior seems to be due to the combined displacement
presented in operation, that is, the rotor whirling combines translational (X and Z
directions) and slope (d and c) displacements.

6.2 Compact Angular VDN – Butyl Rubber

The second geometry of angular VDN proposes to change only the viscoelastic
material from C-1002 to a butyl rubber available in the laboratory where the tests were
conducted. The parameters of the four-parameter fractional derivative model for this
material are present in Table 1.

For the present case, the optimal natural frequency obtained was 28.8 Hz. The lj used
to calculate the neutralizer inertia was changed to 25%, resulting in Ia = 0.019374 kg m2.
The same geometry concept of the previous case was used, just changing the rubber
blanks. Just to clarify: the device on the top of the figure is the C-1002 neutralizer, and the
other four, at the bottom of the figure, are the butyl rubber ones. The device was posi-
tioned at the same point the C-1002 one was.

Fig. 10. UFR for variation of angular positioning – angular VDN C-1002.

Fig. 11. Variation of angular positioning – angular VDVN C-1002.
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The inertance of this angular VDN was measured, and the curve is shown in
Fig. 12. This curve can be compared the one shown in Fig. 8, presenting the difference
in the dynamic behavior of the butyl rubber and compared to E-A-R Isodamp C-1002.
The inspection of the inertance shows that the natural frequency of VDN with butyl
rubber was not in accordance with the design (25 Hz � 28.8 Hz). When this occurs,
the temperature used in the project must have been different from that experienced in
the laboratory during the tests. This shows the vulnerability of the project related to the
use of some kinds of viscoelastic material, which are more susceptible to the influence
of temperature in their dynamic behaviors.

Subsequently, the unbalance frequency response curves of the rotor, with and
without neutralizer, were obtained by the rundown test. In a more detailed analysis of
the rotor response curves, it was found that there was a region being controlled, below
the first critical rotation. The hypothesis associated to this behavior was that the rotor
was not exciting the design frequency of the neutralizer, in other words, the neutralizers
were vibrating in a different way from that expected. To test this hypothesis, the natural
frequency of the neutralizer was increased to coincide with the first critical rotation of
the primary system. For this, the masses were approximated in increments of 10 mm of
the neutralizer center until achieving a satisfactory control of the primary system.
Figure 13 shows the unbalance frequency response curves with and without neutral-
izer, in the X direction.

Although rotor vibration was significantly controlled for the first mode, great dif-
ficulty was encountered in predicting the behavior of the neutralizer, that is, how the
rotor will excite the neutralizer. This hinders the design and the correct tuning, the same
problem faced on the C-1002 device.

Fig. 12. Inertance curve to compact angular VDN butyl rubber.
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6.3 Center of Percussion Angular VDN

The third angular VDN design used a butyl rubber material, the parameters of which
are presented in Table 1. The primary system is the same as shown in Fig. 5.

In this case, the neutralizer was designed to control the second rotor vibration
mode, since the higher the frequency of the neutralizer, the easier its physical con-
struction due to the viscoelastic material form factor. Based on this, an optimum
frequency of 62.2 Hz and a mass inertia of Ia = 0.019374 kg m2 were obtained for a
lj = 25%.

This inertia was divided into four identical pieces with a different geometry, here
called ‘center of percussion’. This geometry has been arranged in order to operate in
shear as much as possible, and to obtain the minimal distance R possible and, then,
minimize the influence of the other neutralizer modes.

However, this geometry proved to be very fragile, due to its form of assembly, with
the viscoelastic material segments attached between the base of the mass and the hub of
the fake bearing. In an attempt to measure the unbalance frequency response to
runway/rundown, the viscoelastic segments came loose, making it impossible to
operate and take measurements. In addition, this geometry shown a tendency to move
in the direction of traction/compression of the material, further altering the frequency of
the device in operation. Figure 14 shows the neutralizer assembled on the rotor.

Since the natural frequency of the device was lower than the one designed, the
thickness of the viscoelastic material was reduced until the frequency coincided with
the calculated one. The inertance of the system without neutralizer - with a designed
neutralizer for the 1st mode and for the 2nd mode - was measured, as shown in Fig. 15.

Evaluating Fig. 15, one observes that there was an expressive control for the mode
corresponding to the designed mode of the VDN. This behavior presents potential
regarding the control of the primary system, once the previously listed problems are
eliminated.

Fig. 13. UFR for Angular VDN butyl rubber.
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7 Conclusions

The current paper presents a revision of the methodology on optimal design of angular
viscoelastic dynamic neutralizers, as well as the experimental application of three
different concepts in a controlled laboratory environment.

The results obtained were promising: the reduction of the response to the rotor
unbalance frequency response of the primary system - by using angular VDNs -
achieved 20 dB for the last geometry, for example.

Fig. 14. Center of percussion angular VDN – experimental set.

Fig. 15. Inertance for the center of percussion angular VDN.
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However, several questions concerning the analytical design of the devices were
identified in relation to the non-analytical prediction of the excitation behavior of the
neutralizer by the rotor. Due to the rotor whirling, the angular VDN vibrates in different
planes and not preferably in the one it was designed for, thus decreasing its effec-
tiveness. These questions are being reviewed, and other geometries are under study for
the neutralizer support.
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Abstract. A rotor spinning within an active magnetic bearing (AMB) system
will normally be levitated and hence operate without rotor-stator contact.
External disturbances and inherent unbalance may be compensated with
appropriate control to keep rotor deviations within the clearance gap. However,
AMBs have limited dynamic load capacity due to magnetic material field sat-
uration. Hence overload conditions may result in rotor-stator contact. A touch-
down bearing (TDB) and rotor landing sleeve are usually included to protect the
expensive rotor, magnetic bearing and sensor components from damage. Once
rotor-TDB contact has been made, rotor dynamic conditions may ensue resulting
in persistent rotor bouncing or rubbing limit cycle responses. Prolonged expo-
sure to these severe dynamics will cause TDB degradation and require regular
replacement. If possible, a clear aim should be to restore contact-free levitation
through available control capability in an efficient manner. This paper is used to
guide the control options that are available to restore contact-free levitation. The
use of AMB control is appropriate if the required control forces are within
saturation limits. It is also possible to actuate TDBs and destabilize persistent
rotor dynamic contact conditions. For example, piezo-based actuation offers
larger control forces than those from magnetic bearing systems. Hybrid control
action involving both types of actuation system has the greatest potential for
completely robust restoration of contact-free levitation.

Keywords: Magnetic bearings � Touchdown bearings � Contact-free levitation

1 Introduction

It is a current focus for the designers and manufacturers of active magnetic bearing
(AMB) systems to give significant attention to the associated touchdown bearing
(TDB) systems. The TDB is included to prevent damage to expensive rotor and stator
components and to ensure that run-downs are safe. The sacrificial components are the
replaceable TDB and rotor landing sleeve. During rotor-TDB contact, the TDB may be
stressed mechanically and thermally, reducing TDB residual life significantly. It is
therefore beneficial for the TDB to minimize contact periods to reduce losses of
machine output and downtime.

Loss of levitation that causes rotor drop is the most severe duty experienced by a
TDB [1, 2]. Larger scale drop tests are presented in [3–6]. Simulation of rotor drop
includes the nonlinear study of [7]. Research in this area has continued to bring out the
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finer details of the rotor dynamic and TDB responses [8–10]. Recently, significant
further activity has also followed [11–20].

If a rotor/AMB system is still able to operate normally under closed loop control,
the following scenarios may occur leading to rotor/TDB contact:

(a) Feedback signal disturbances may lead to significant momentary rotor excursions.
(b) Base accelerations or shock inputs may overload the AMBs, hence limiting rotor

dynamic control.
(c) Contact induced dynamics may become persistent or changed so much that the

AMB closed loop control is unstable.

One course of action is to apply additional AMB control action to restore contact-free
levitation [21, 22]. Alternatively, the TDB may be changed from being a passive
component to an active component. This was achieved in [23–26].

Given the previous studies, it is useful to have a greater understanding of rotor
contact dynamics. This would aid the design of control strategies that are able to restore
contact-free levitation from a persistent condition of rotor-TDB contact. A distinction is
made from standard controllers that are designed based on a contact-free rotor dynamic
plant model. The reason is that under persistent contact, the rotor dynamic plant
changes, hence the standard controllers may not respond appropriately or may induce
rotor dynamic instability unintentionally. In order to ascertain the principles required
for the restoration of contact-free levitation, the issues are assessed using an analytical
model of a simple rotor supported in an AMB/TDB system. Conditions to destabilize
persistent rub contact responses are derived. Simulations are then used to demonstrate
how feedforward control of AMBs and TDBs may be used effectively. Feedfor-
ward AMB action may be appropriate if dynamic load capacity is available. Otherwise,
feedforward TDB motions may be able to induce the rotor away from persistent
contact.

2 Modeling of Rotor/TDB Contact

Figure 1 shows a simplified schematic of a section of rotor within an active magnetic
bearing (AMB), which has made contact with a portion of a touchdown bearing (TDB).
The TDB may have some degree of radial stiffness and damping in its mounting
arrangement. Under standard proportional-integral-derivative (PID) control, the lin-
earized AMB radial characteristics are isotropic and may be represented by stiffness
and damping from the magnetic center. The purpose of the TDB is to prevent contact
between the rotor and AMB magnetic poles, hence the rotor-AMB radial gap is
designed to be less that the rotor-TDB radial gap. In practice, the AMB may have a
significant axial dimension and the TDB is located adjacent to the AMB. Hence the
TDB in Fig. 1 will be generally axially offset from the AMB. This non-collocation
should be taken into account in the system design so that rotor tilt through the AMB,
arising from conical and flexible rotor modes, does not allow rotor-AMB contact.

In the following section that considers an analytical approach to determine
rotor/TDB rub responses, the AMB and TDB are considered to be axially aligned and
the TDB rigidly mounted. This is an idealized representation. In Sect. 3.5, simulated
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results are presented under compliant TDB mounting and it will be demonstrated that
the analytical representations provide insight into the rotor rub response behavior.
Relevant system parameters are shown in Table 1.

AMB

TDB

Rotor

Fig. 1. Simulation of a rotor making contact with a touchdown bearing (TDB) within a
functional AMB.

E

TDB clearance circle
of radius

Fig. 2. Steady forward synchronous orbit representation of Eq. (4) viewed in a u; vð Þ rotating
frame. The length of the displacement to E is rE .
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2.1 Synchronous Rotor Response

In this case the rotor is considered to be a simple unbalanced mass, m, that can rotate
and translate in fixed axis x and y directions. In the following, E will denote the case of
rotor motion that excludes rotor-TDB contact, while C will denote rotor motion with
rotor-TDB contact. The orbit motions may be viewed in a fixed Cartesian x; yð Þ system
or a synchronously rotating u; vð Þ system. The relation between the systems is

z ¼ xþ iy; w ¼ uþ iv ¼ ze�iXt ð1Þ

where X is the rotational speed. The AMB radial stiffness and damping characteristics
may be specified through a natural frequency xn and damping ratio n so that

€zE;C þ 2nxn _zE;C þx2
nzE;C ¼ fu

m
eiXt � fc

m
1þ ilð Þ zC

cr
ð2Þ

or

€wE;C þ 2nxn þ 2iXÞ _wE;C þðx2
n � X2 þ 2inxnX

� �
wE;C ¼ fu

m
� fc
m

1þ ilð ÞwC

cr
ð3Þ

where the subscripts E and C correspond with the orbit motions E and C, respectively.
Also, cr is the rotor-TDB radial clearance, fu is the rotor unbalance amplitude, fc is the
normal contact force, and l is the coefficient of friction between the rotor and TDB,
Obviously, for orbit motions E, fc ¼ 0 always.

Under steady state forward synchronous motions, the non-contacting orbit corre-
sponds with

wE ¼ rEe
�i/ ¼ fu

mðx2
n � X2 þ 2inxnXÞ

ð4Þ

The force displacement relation of Eq. (4) may be represented in the u; vð Þ plane as
shown in Fig. 2.

In the case of a steady forward synchronous rub orbit, wC ¼ cre�iw where w is
some phase angle, it follows from Eq. (3) that

ðx2
n � X2 þ 2inxnXÞcre�iw ¼ fu

m
� fc
m

1þ ilð Þe�iw ð5Þ

With the inclusion of the contact components of force (normal and tangential friction),
a resultant synchronous force of amplitude fs must exist to drive the orbit at C in the
same way that fu drives the orbit at E (see Fig. 3). It follows from Eqs. (4) and (5) and
the force equilibrium shown in Fig. 3 that

fu
m
cr
rE

ei /�wð Þ ¼ fu
m
� fc
m

1þ ilð Þe�iw ¼ fs
m
ei /�wð Þ ð6Þ
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Hence,

fs ¼ fu
cr
rE

ð7Þ

and

fc ¼ fu
1þ ilð Þ eiw � cr

rE
ei/

� �
ð8Þ

Although the force expression in Eq. (8) is complex, if it is to be a genuine physical
force amplitude arising from contact, then

Imfc ¼ Im fu
1þ ilð Þ eiw � cr

rE
ei/

� �� �
¼ 0

Refc ¼ Re fu
1þ ilð Þ eiw � cr

rE
ei/

� �� �
[ 0

9=
; ð9Þ

In general, w should be varied until the conditions of Eq. (9) are satisfied to determine
the rub orbit. Ultimately, in contrast with Eq. (4), the rubbing contact satisfies

wC ¼ cre
�iw ¼ fsei /�wð Þ

mðx2
n � X2 þ 2inxnXÞ

ð10Þ

C

TDB clearance circle
of radius

Fig. 3. Steady forward synchronous rub orbit, C, viewed in a u; vð Þ rotating frame. In order to
drive the orbit to C, a synchronously rotating force of amplitude fs must exist with a phase lead of
/ on the vector to C.
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3 Control for Contact-Free Levitation

3.1 AMB Synchronous Forcing

If AMB functionality exists, an obvious procedure to restore contact-free levitation is to
apply AMB synchronous forcing at some phase angle a:

fAMB ¼ fAe
ia ð11Þ

For the simple rigid disk analysis considered in Sect. 2, this is simply superimposed
onto the synchronous unbalance force, fu.

3.2 Active TDB Synchronous Motion

Consider the TDB to be actuated under sufficiently strong control such that demand
motions may be imposed. Suppose then that forward synchronous whirl motion of the
TDB is enabled in the form

wB ¼ rBeib ð12Þ

where b is some phase angle. When viewed in the u; vð Þ plane, this corresponds to a
shift of the rotor-TDB clearance circle at an angle b relative to the unbalance vector. It
is therefore of interest to evaluate the relative rotor to TDB displacement

wCB ¼ wC � wB ð13Þ

Equation (3) should then be modified to

€wCB þ 2nxn þ 2iXÞ _wCB þðx2
n � X2 þ 2inxnX

� �
wCB

¼ fu
m
� fc
m

1þ ilð ÞwCB

cr
� ðx2

n � X2 þ 2inxnXÞwB

¼ fu
m

1� rB
rE

ei bþ/ð Þ
� �

� fc
m

1þ ilð ÞwCB

cr

ð14Þ

3.3 Criteria for Contact to Fail to Exist

Suppose that AMB synchronous forcing of Eq. (11) is applied simultaneously with the
TDB motion of Eq. (12). Following through the analysis of Sect. 2.1, steady syn-
chronous forward rubbing will exist if

Imfc ¼ Im 1
1þ ilð Þ fAeia þ fu 1� rB

rE
ei bþ/ð Þ

� �n o
eiw � cr

rE
ei/

� �� �
¼ 0

Refc ¼ Re 1
1þ ilð Þ fAeia þ fu 1� rB

rE
ei bþ/ð Þ

� �n o
eiw � cr

rE
ei/

� �� �
[ 0

9=
; ð15Þ

It follows that by violating these conditions for all cases of w, then no steady state rub
condition is possible.
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3.4 Practicalities for Contact Determination

If a control strategy to restore contact-free levitation is to be implemented, it would be
useful to identify the following data as occurring in Eq. (15):

(a) The unbalance amplitude, fA, and a zero phase reference for the unbalance vector.
(b) The contact-free orbit radius, rE, and its phase, /, relative to the unbalance vector.
(c) The coefficient of friction, l.

Note that the conditions of Eq. (15) have been derived assuming a zero phase reference
for the unbalance. The required data could be obtained through periodic monitoring and
updating using the AMB control system. If done, then this knowledge may be used to
select appropriate control for contact-free restoration either through the AMB alone, the
TDB alone or as a combination of both.

It would also be useful to have some trigger system to indicate when contact has
occurred. This could be achieved using stator-mounted accelerometers to detect
responses to contact force transmission. Displacement transducers that provide signals
for feedback control of AMBs may also be used, though care is required to decide
between a large non-contacting orbit and a real rub orbit, since there are significant
phase differences between the two cases. Transducer systems that respond directly to
contact forces may also have potential [27].

The results in the previous sections have been derived under steady state
assumptions. In reality, the motion from a contact-free orbit E to a contact orbit C will
involve some intervening transient motion involving possible bounce-like behavior. To
assess the effectiveness of the analytical derivations, a series of dynamic simulations
now follow.

3.5 Simulated Motions

Simulations were undertaken with a resiliently mounted TDB model (Fig. 1). Param-
eter values used are shown in Table 1.

Table 1. Parameters used for simulations.

Parameter Value

kB (TDB radial support stiffness) 6� 106 N/m
cB (TDB radial support damping) 2500 Ns/m
mB (TDB mass) 0.18 kg
m (rotor mass) 4.25 kg
l (coefficient of friction between rotor and TDB) 0.05
TDB inner radius 15 mm
TDB inner race material Steel
Rotor material Steel
AMB magnetic gap 0.8 mm
AMB under PD control rotor natural frequency 638 rad/s
AMB under PD control rotor damping ratio 0.086
X (rotor speed) 1000 rad/s
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A Hertzian model was used to represent the normal contact stresses between the
rotor and TDB. Starting from a rotor spinning precisely at the AMB magnetic center, a
step change of unbalance (425 N) was applied. The left plot of Fig. 4 shows the
transient response of the rotor, which does not involve any TDB contact, to the steady
orbit at E. A sudden velocity input of 0.3 m/s (horizontal) was then imposed while the
unbalance remained umchanged. The right plot of Fig. 4 shows that the rotor interacts
with the TDB, undergoing several bounces, before settling on the rub orbit C. The red
dashed clearance circles correspond with the centered TDB position (undeflected). The
appearance of the rub orbit C lying outside the clearance circle indicates that the TDB
has deflected on its resilient mount.

E E

C

Fig. 4. Synchronous u; vð Þ rotating frame views. The left figure shows the effect of a step
change of unbalance, which leads to the steady state position E after transient motion. The right
figure shows the effect of a subsequent velocity input to the rotor, leading to the steady state
contact response at C after transient motion that involves bouncing contact.

CC

Fig. 5. Synchronous u; vð Þ rotating frame views. The left figure shows the effect of applying a
ramped force at 180° phase to the unbalance, which leads to the restoration of contact-free
levitation after transient motion. The right figure shows the effect of a synchronous TDB motion
with −4.5° phase, which leads to the restoration of contact-free levitation after transient motion.
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It is interesting to note that the simulated results of Fig. 4 show similar orbit
positions for E and C from the analytical model results of Figs. 2 and 3. In the
simulated case of Fig. 4, orbit C lies outside the nominal clearance circle of the TDB, a
consequence of the fact that the compliantly mounted TDB experiences whirling with
the contacting rotor. In effect, the final steady rub orbit wound be similar to that of a
rigidly mounted TDB having an appropriately larger rotor to TDB radial clearance.

Feedforward control was then applied as guided by the conditions of Eq. (15). The
left plot of Fig. 5 shows how feedforward AMB control in the form of a ramped
synchronous force was able to destabilize the rotor rub orbit at C. The right plot of
Fig. 5 shows how a step change of synchronous TDB orbit motion was able to achieve
a similar result.

4 Conclusions

Analytical expressions have been used to show how synchronous forward rubbing may
coexist with a contact-free forward whirl under the same rotor dynamic unbalance.
These bi-stable responses are differentiated by the relative orbit sizes and significant
phase differences. The orbits were evaluated in a synchronously rotating reference
frame in which the usual circular whirl orbits are represented as stationary points.
A complex representation was used to evaluate contact forces and conditions were
established to define whether a rub orbit was able to exist. These conditions were
extended to include contributions from feedforward AMB synchronous forcing and
feedforward TDB synchronous orbits. This enabled deductions to be made on how
these feedforward motions could be used to destabilize a rotor-TDB contact orbit.

Simulations of rotor to TDB contact were also undertaken and these confirmed that
the analytical results guide understanding of the nonlinear dynamics and the final rub
orbit. The simulations were also extended to demonstrate how the feedforward control
was also effective with a resiliently mounted TDB and the presence of significant
transient motion in the transitions between steady state orbits.
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Abstract. Monitoring the behavior of rotating blades is a critical pro-
cedure to ensure safety and proper performance of turbomachinery. For
a long time strain gages have been the only solution to measure blade
vibrations in a rotating scenario, but with the advances in software and
hardware over the last decades, the research on blade tip timing (BTT)
data analysis, a non-intrusive technique has gained momentum. A major
drawback comes with this approach: undersampling. Several methodolo-
gies can be found in the literature do deal with this undersampled signal
and this work presents a parametric study of the most recent type of
approach that has gained momentum in the BTT research: compressed
sensing (CS). The results show what are the best conditions to apply
CS on BTT data, in terms of probe placement, amount of sensors and
number of rotations.

Keywords: Blade tip timing · Blade vibrations
Compressed sensing · Signal reconstruction · Spectral analysis

1 Introduction

Blades are a fundamental component in turbomachinery and they are often
subjected to induced vibrations. For a typical gas turbine, these vibrations are
originated through mainly four types of stresses [1], but the alternating stresses,
that are originated by forced response to excitations at multiples of the rotating
speed, are the most common cause of high cycle fatigue. These vibrations will
diminish the fatigue life and the performance of the blades, which can ultimately
lead to catastrophic results. Therefore, carrying on-line vibration monitoring is
an intrinsic duty when dealing with turbomachinery.

For a long time strain gages have been the only solution to measuring flexible
blade vibrations in rotating machinery. However, the installation of such sensors
consists in a very tedious, laborious, costly and time consuming task. This is
due specially to the number of blades per stage of the turbine and the require-
ment of having telemetry or slip rings to acquire the signals. On top of these
disadvantages, the sensors can alter the blade dynamics and, more importantly,
c© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 62, pp. 121–134, 2019.
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this monitoring system tends to not be very durable due to the harsh working
conditions [2]. In light of these issues, the development of non-intrusive vibration
measuring system for rotating blades was boosted.

Describing it in a simple manner, the Blade Tip-Timing (BTT) methodology
consists in monitoring blade vibrations by measuring passing times of the blades’
tip with static sensors, usually optic, located at the turbine casing. Since the
blades are vibrating, the deformation induced will alter these passing times,
known as arrival times, when compared with the arrival times of the blades in
a non-vibrating referential. This referential can be obtained by placing a sensor
on the shaft to measure the actual rotating speed, and by knowing the angular
position of the blades, the non-vibrating signal can be generated. This sensor is
known as the Once Per Revolution (OPR) sensor.

Despite being a simplistic and straightforward methodology with several
advantages over the strain gage measuring procedure, the technique suffers from
bad sampling, since the sampling frequency is directly related to the rotating
speed and the number of sensors used. To ensure a sampling frequency that
attends to the Nyquist criterion, the quantity of sensors involved can be quite
substantial. As a result, a significant effort in the BTT scope was devoted to
the development and application of techniques capable of identifying vibration
properties from a under sampled signal.

Recently, Compressed Sensing (CS), a digital signal reconstruction technique,
has gained momentum in the field of BTT data analysis. The idea behind the
theory of Compressed Sensing consists in a search for the reconstruction of sparse
signals with a number of samples that is way lower than the number of sam-
ples required by the classic methodologies that need to attend to the Nyquist
criterion. This methodology is being explored for some time, especially in the
field of image compression, in which the image is recovered directly by a com-
pressed representation, instead of capturing the whole image to then compress
it and decompress it in a computer, eliminating an entire step and reducing the
amount of data that was needed to be stored. The pioneer work on this tech-
nique can be found in [3–5]. The motivation for utilizing this methodology on
the BTT scenario comes from the fact that if some criteria is met, that will be
shown in the next section, it is possible to perfectly reconstruct a signal with a
sampling frequency lower than the Nyquist rate.

The goal of this present work is to produce a parametric analysis of a CS
implementation on BTT data. To achieve this goal, the frequency spectrum of a
simulated vibration signal, obtained by BTT, is reconstructed in the frequency
domain by the CS methodology, and several parameters of the BTT system are
altered so that it is possible to identify its effects on the frequency spectrum
obtained.

2 BTT Data

A BTT measuring system scheme is presented in Fig. 1 and to extract the infor-
mation of blade tip deflection, it is necessary to first generate a virtual signal,
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based on the OPR sensor, that corresponds to the expected passing times of the
blades in a non-vibrating referential. The non-vibrating time sequence, t̂(i, n, k),
can be described as

t̂(i, n, k) =
αi + 2πn − θk

2πΩ
, (1)

where αi is the angular position of the ith probe, θk is the initial angular position
of the kth blade, n is the rotation number and Ω is the constant rotating speed
of the assembly, in Hz.

Fig. 1. Representation of the BTT measuring system.

Due to the fact that the blades are vibrating, the real measured time sequence
will be distorted by the angular deflection of the blade’s tip, δ(i, n, k), altering
the real timing sequence t(i, n, k) to

t(i, n, k) =
αi + 2πn − θk − δ(i, n, k)

2πΩ
. (2)

Subtracting Eqs. (2) from (1) and knowing the distance between the rotating
center and the tip of the blade, R, the linear displacement can be obtained by

d(i, n, k) = δ(i, n, k)R = 2πΩR
[
t(i, n, k) − t̂(i, n, k)

]
= 2πΩRΔt. (3)

With the obtained d signal, the vibration amplitude of each blade, measured
at each sensor, in each rotation is extracted, but the sampling rate of this signal
is directly related to the amount of probes used, and the rotating speed of the
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assembly. To exemplify the typical sampling obtained with a BTT system, Fig. 2
presents a 30 Hz vibration signal on a 10 Hz rotating speed assembly and it shows
the collection of samples obtained by four probes. This case shows an Engine
Order (EO) excitation, since the vibrating frequency is an integer multiple of
the rotating frequency. The bad sampling can clearly be seen due to the fact
that each probe needs to wait three entire periods (3 EO) of the vibrating signal
to collect new information, for each blade.

Fig. 2. Example of a BTT signal sampled with 4 probes.

Several techniques are being utilized and explored in the context of BTT
undersampled data. A new approach that has gained track in recent years is the
Compressed Sensing methodology.

3 CS Theory

The CS methodology consists in recovering a signal, sparse in some domain, with
fewer samples than the classic methodologies that are based on the Shanon-
Nyquist criterion. The motivation for this approach is to recover the signal
directly from compressed samples (lower sampling rate) instead of firstly sam-
pling the signal at a high rate to then compress it, eliminating a stage of com-
pression and decompression [6]. This problem can be formulated in mathemati-
cal form through an optimization task, searching for the sparsest solution to the
problem:

min
x

‖x‖�0 s.t. Ax = b, (4)
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where x is the sparse signal with N samples, sampled above the Nyquist rate; �0
is the “0-norm”, a quasi-norm that represents the amount of non zero elements
in a vector, indicating the quantity k of sparse elements. The vector b is the M
observations vector, where M << N, while A is the MxN sensing matrix.

The sensing matrix A is usually formed by the multiplication of two matrices,
Φ and Ψ−1. The matrix Φ consists in the sensing part of the matrix, i.e., the
relationship between the selected samples and the reconstructed signal, while
Ψ−1 consists in the sparse basis of the signal. In most cases the signal in time
is not sparse, so the matrix Ψ−1 is usually the inverse Fourier basis, so that the
signal in time can be represented in the sparse frequency domain.

Despite being a straightforward and well defined approach, finding the spars-
est solution is a non trivial task, in fact it is known as a NP-hard problem, being
computationally unsolvable even for modest values of k, M and N. Fortunately,
[3] proposed a substitution of �0 by the norm �1, defined as

‖x‖1 =
N−1∑

n=0

|x(n)|, (5)

making the optimization problem convex and linear. Despite not being the same
exact solution to the �0 problem, a graphic representation of different norms in
IR2 shows that the closest solution to the sparsest search, is the �1 norm, as seen
in Fig. 3. The optimization task of Eq. (4) with the norm �1 instead of �0 is called
Basis Pursuit (BP).

Fig. 3. Approximation of a point in IR2 by a one-dimensional subspace for �p norms,
with p =1, 2, ∞ and 1

2
. Source:[6].

To ensure unique solution to the BP problem, the matrix A needs to respect
the Restricted Isometry Property (RIP) described in [7]. This property basically
requires that the columns of A to be quasi-orthonormal. Another way of ensuring
the unique solution is to have minimal coherence between the matrices Φ and
Ψ−1. Since A = ΦΨ−1 the coherence is defined as

μ(A) = max
1≤i<j≤N

|〈ai, aj〉|
‖ai‖2‖aj‖2 , (6)

where ai,j are the column vectors of A.
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Usually random Φ matrices with a fixed Ψ−1 basis attend to this property
with a high probability, and to exemplify the potential of this approach, a sig-
nal composed by three sinusoids of frequencies 50, 75 and 100 Hz, with unitary
amplitudes, is reconstructed with this technique. The original time signal to be
reconstructed, x(t), is 512 samples long with a sampling frequency higher than
the Nyquist rate, while the observed signal, y(t), is made of 128 random samples.
The results are shown in Fig. 4 and it can be seen perfect reconstruction of the
signal.

Fig. 4. Example of CS reconstruction with random sensing matrix.

4 Applying CS on BTT Data

As presented before, the CS consists in retrieving a sparse signal with N samples
trough an optimization task based only on M observations, usually M<<N. To
reproduce this conditions in the BTT context, the number N of samples of the
sparse vector, in this case the frequency spectrum sampled over the Nyquist
rate, is produced trough placing a number L of imaginary probes equispaced
around the casing and rotating the blade assembly for Nr revolutions, resulting
in N = LNr. The real measurements made are obtained trough the real probes,
positioned in any of the possible virtual positions L. This results in a real amount
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of data M = lNr, where l is the number of real probes placed around the casing.
From this, observations it is easy to see that the ratio M

N is always defined by the
ratio of the number of real sensors in respect with the number of virtual sensors
( l

L ). The idea behind this formulation is to retrieve a frequency spectrum of a
scenario of L probes, that attends to the Nyquist sampling rate, with only l real
probes being utilized.

In this context, the matrix Ψ−1 will be the inverse Fourier basis NxN, since
the signal is not sparse in the time domain, but it is in the frequency domain.
With respect to the sensing matrix Φ, it is constructed as

Φ =

⎡

⎢
⎢
⎢
⎣

1 0 . . . . . . . . . 0
0 . . . 1 0 . . . 0
... . . . . . . . . . . . .

...
0 . . . . . . 1 . . . 0

⎤

⎥
⎥
⎥
⎦

M×N

, (7)

that is determined by the sampling sequence of the probes throughout the Nr

revolutions. Each row contains a unitary value on a single column j = αiL
2π +nL,

where αi is the angular position of the ith probe and n is the current rotation
number.

With these matrices assembled, it is seen that the observations made by l
probes are:

y = ΦΨ−1X, (8)

where X is the FFT of length N of the signal sampled by the L imaginary probes,
which will be recovered through the BP algorithm.

As described in the last section, the matrix A = ΦΨ−1 needs to comply with
the RIP condition, and, as noted before, it complies, with high probability, if the
matrix is random. From the direct formulation of the CS on BTT data, it is seen
that this matrix is not random, since the real probes are fixed throughout the
revolutions. To deal with this problem [8] proposes the realization of a orthog-
onalization preprocessing procedure, in which the matrix A is reformulated as
a orthogonal basis for the range of AT, as in Q =

[
orth(AT)

]
T. The procedure

results in
QA†y = QA†AX, (9)

where † denotes the pseudoinverse. From [8] it is also described that QA†A = Q
and renaming z = QA†y results in the formulated BP problem:

min
X

‖X‖�1 s.t. QX = z. (10)

It is worth noticing that the optimization task can be quite demanding,
computationally, since the amount of variables N are directly related to the
amount of virtual probes L and the number of revolutions Nr. In some cases it
can easily be in the range of 103–104 variables.
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5 Results

To make the analysis, two scenarios were created, with signals in the form of∑p
i=1 a(i) sin(2πf(i) n

N + φ(i)), whose parameters are described in the Table 1.
Scenario 1 consists of a signal with three close frequencies, all asynchronous

(not integer multiples of the rotating speed Ω). The reconstruction of the signal
is made from cases of two to six probes. For scenario 2 a synchronous frequency
of 75 Hz replaces the 88 Hz frequency, so that it is possible to verify a hybrid
vibration case and in this situation only five and six probes were utilized, due
to the results seen in scenario 1.

Table 1. Simulated signals.

Scenario a(i) f(i) [Hz] φ(i) rad Ω [Hz] # Probes

1
[
3 2 1

] [
88 89 90

]
[0 − 2π] 25 2-6

2
[
3 2 1

] [
75 89 90

]
[0 − 2π] 25 5-6

For both cases evaluated, the number of virtual probes was fixed in L = 10.
The rotating speed was also fixed at 25 Hz. This conditions implicate that the
signal to be reconstructed had a Fs = LΩ = 250 Hz sampling frequency, being
over the Nyquist rate for both scenarios. The parametric analysis is based on
the amount of sensors and the amount of revolutions utilized in the analysis.

Firstly, as pointed in Eq. (6), the coherence of Q should be closer to 0 to
ensure the RIP condition. With that in mind, the minimal coherence for all the
combinations of probes, from two probes up to six are calculated and shown in
Table 2, for L = 10 to 25 imaginary probes. It can be seen that increasing the
number of real probes elevates the incoherence in the matrix Q, but increasing
the amount of virtual probes and maintaining the number of real ones results in
lower incoherence. The amount of possible probe arrangements also increase with
a higher number of virtual probes as it is given by the total

(
L
l

)
combinations of

probe placement.

Table 2. Minimal μ(Q) for different amount of real and virtual probes.

Probes μ(Q)

L = 10 L = 15 L = 20 L = 25

2 0.95 0.98 0.99 0.99

3 0.72 0.76 0.83 0.86

4 0.54 0.50 0.56 0.69

5 0.43 0.48 0.53 0.50

6 0.36 0.40 0.44 0.47
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5.1 Scenario 1

Even though the phase of the signals is generated randomly, between 0 and 2π
radians, the expected results throughout the course of 50 reconstructions with
the BP algorithm are expected to be the same. If they are different it means that
the proposed sensing matrix does not attend the RIP condition, resulting in a
poor recovery. Using two sensors resulted in extremely poor results, same as the
case of three probes, presented in the Fig. 5, that was obtained with Nr = 300
revolutions, resulting in 900 observations to reconstruct a 3000 samples long
signal. The probe positioning was p = [1 2 4], one of the optimal arrangements
that give minimal μ(Q).

In the Fig. 5 and for the others to follow, the criteria utilized to analyze
the results were the energy of the signal. ET stands for the total energy of the
signal, Ef is the energy of the correct frequency components and ER is the
real energy of the correctly sampled signal. The wanted results are those in
which the ratio Ef

ET
is 100%, meaning that all the energy of the reconstructed

signal is located only on the correct frequencies. The ratio ET

ER
is also wanted

to be 100% meaning that the amount of energy in the reconstructed signal is
equal to the desired correctly sampled signal. It is obvious from Fig. 5 that three
probes are not enough to assure proper reconstruction, there are even cases that
the energy of the correct frequency components surpass the total energy. This
occurs due to the fact that the Ef calculation is made as twice the energy of the
positive frequencies, which means that the situations that Ef > ET are those
that the reconstructed signal is complex, not having the symmetry property of
the frequency spectrum.

Fig. 5. Ratio of signal energy for the reconstructed signal of scenario 1 using 3 probes
and 50 revolutions through 50 simulations.
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Seeing that three probes were insufficient for perfect reconstruction, the
amount of sensors was increased to four, in the locations p = [1 3 4 9] with
a Nr = 50 revolutions. It can be seen from Fig. 6 that the results are much
improved, but there are still cases of poor reconstruction. In an attempt to
improve this results the amount of revolutions was increased to Nr = 300 result-
ing in 1200 observations to reconstruct a 3000 samples long signal. From Fig. 7
it is clear that augmenting the amount of data did not improve the results.

Fig. 6. Ratio of signal energy for the reconstructed signal of scenario 1 using 4 probes
and 50 revolutions through 50 simulations.

Now, the number of probes was raised to five and the results from Fig. 8,
with only Nr = 50 revolutions and with the probes at p = [1 2 6 9 10], were
extremely satisfactory, showing that perfect reconstruction was achieved, since
through the 50 simulations the ratio was around 100%. The same can be said
by the results with six probes on Fig. 9 with probes at p = [1 2 3 4 6 8], for
the same number of revolutions.

5.2 Scenario 2

Scenario 2 is expected to be more complicated, because of the presence of a
synchronous vibration in the signal. From the results of Scenario 1, utilizing less
then five probes is not recommended, since the perfect reconstruction was not
ensured.

From Fig. 10 it becomes clear that the introduction of the synchronous fre-
quency has a negative impact on the reconstruction of the frequency spectrum.
To elucidate an example of what is happening, Fig. 11 presents the reconstructed
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Fig. 7. Ratio of signal energy for the reconstructed signal of scenario 1 using 4 probes
and 300 revolutions through 50 simulations.

Fig. 8. Ratio of signal energy for the reconstructed signal of scenario 1 using 5 probes
and 50 revolutions through 50 simulations.

frequency spectrum of the simulation 25 from Fig. 10. It can be seen that the syn-
chronous frequency started to replicate around multiples of the rotating speed, at
25 and 50 Hz, while the asynchronous frequencies of 89 and 90 Hz were perfectly
reconstructed.
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Fig. 9. Ratio of signal energy for the reconstructed signal of scenario 1 using 6 probes
and 50 revolutions through 50 simulations.

Fig. 10. Ratio of signal energy for the reconstructed signal of scenario 2 using 5 probes
and 50 revolutions through 50 simulations.

Meanwhile, the same results were not observed on the six probes case of
Fig. 12, that was capable of performing in the same manner as in the asyn-
chronous case, whit perfect reconstruction throughout the test.
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Fig. 11. Reconstructed frequency spectrum for simulation 25 of scenario 2 using 5
probes and 50 revolutions.

Fig. 12. Ratio of signal energy for the reconstructed signal of scenario 2 using 6 probes
and 50 revolutions through 50 simulations.

6 Conclusions

This work proposed the evaluation of several conditions for the application of
Compressed Sensing (CS) on Blade Tip Timing (BTT) data. It was described
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both methodologies and how to produce the reconstruction of signals through
undersampled and non uniform data.

From the results of the present research, it was possible to conclude that the
CS has potential of performing well on BTT data. It was shown that some special
probe positioning impact in the results of the analysis and those are the ones that
indicate minimal coherence of the sensing matrix. Furthermore, it was shown
that for asynchronous vibrations, five probes are sufficient to ensure perfect
reconstruction of the signal generated by BTT sampling. For cases that include
synchronous vibrations, six probes were determined as a reliable proposition for
perfect recovery.

It is worth noticing that the high number of probes required to retrieve a
frequency spectrum of an asynchronous vibration signal is possibly related to
the amount of frequencies presented in the simulated signal and due to the fact
that increasing the amount of observations did not result in improvements on
the reconstruction, surprisingly.

Even though the predominant amplitude of vibration, in real cases, are iden-
tified as the result of EO excitations, it is still valid to pursue reconstruction of
multi frequency signals, because instabilities, that originates asynchronous exci-
tation, can still occur even when the dominant frequency of vibration has an EO
nature.

For future works it is interesting to investigate the ratio of real to virtual
probes l

L , for increased values L. It was shown that less incoherence comes with
higher L which will affect negatively on the reconstruction, but perhaps an opti-
mal ratio can be found while varying L.
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Xiang-lin Wu, Ying-hou Jiao(&), Zhao-bo Chen, and Wen-sheng Ma

Harbin Institute of Technology, Harbin, China
jiaoyh@hit.edu.cn

Abstract. An analytical method is presented to investigate nonlinear transverse
and in-plane vibrations of a thin rotating disk by using a theory of geometrically
nonlinear thin plate. The nonlinear wave solutions of the rotating disk are
obtained by Galerkin analysis. The disk is assumed to be isotropic and rotating
at the constant speed. The influence of amplitude ratios and rotating speed on
natural frequency is studied. Natural frequency and static waves for different
nodal-diameter numbers are also calculated. This analytical method not only
takes into account the vibration perpendicular to the middle surface of the disk
but also the vibration in the middle surface of the disk. In addition, this ana-
lytical method provides a more accurate way to solve the severe vibration
problems in rotating disks of turbine engine rotors.

Keywords: Nonlinear vibration � Rotating disk � Dimensionless speed
Dimensionless natural frequency � Amplitude ratios � Nodal diameters

1 Introduction

Thin rotating disks are frequently applied in engineering, from gas turbine rotors to
computer memory disks. Since the turbine disks are important components of gas turbine
rotors, the vibrations of turbine disks have an important effect on the behavior of the
entire rotors. This kind of periodic motion of rotating disks has been investigated widely.

von Karman [1] first established a nonlinear plate theory when the nonlinear stretch
effects in the transverse, equilibrium balance were considered. The first nonlinear
analysis of transverse vibration in a spinning disk is due to Nowinski [2], he analyzed
the large amplitude vibrations of a spinning disk by using the von Karman field
equations. But he only analyzed the transverse vibration of the rotating disk without
analyzing the in-plane vibration of the disk. Later Nowinski [3] analyzed the thermal
stability of the rotating membrane disk. Maher and Adams [4] investigated the influ-
ence of coupling between in-plane displacements and transverse deflections consid-
ering the effects of bending stiffness and of the air flow between the disk. The von
Karman equations have also been used to investigate the nonlinear vibration of a
spinning disk by Renshaw and Mote [5], Hamidzadeh [6, 7] and Luo [8]. It should be
noted that professor Hamidzadeh’s work was based on the research of Nowinski, he
expanded Nowinski’s research and got some meaningful results. Luo [9, 10] developed
a more accurate theory of thin plates. In his theory, the exact geometry of the deformed
middle surface is used to derive the physical strains of plates and equilibrium equations
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in the plate was established based on the exact geometry of the deformed middle
surfaces. By using his own theory, he analyzed the response and natural frequencies for
the nonlinear vibrations of a rotating thin disk. Koo and Lesieutre [11] analyzed the
transverse vibration of a composite-ring disk for data storage, they calculated its natural
frequencies and critical speeds. Maretic, Glavardanov, Milosevic-Mitic [12] studied the
frequencies of transverse vibrations of a disk assembled from two rings of two different
materials, they analyzed the influence of angular velocity, moduli of elasticity, the
volume densities of the materials and the radius of the connection on the vibration
frequencies of the rotating disk. Pei, Wang and Yang [13] analyzed the natural fre-
quency, dynamic stability, critical speeds and steady state response amplitude of a
rotating disk under several boundary conditions.

This research work is based on the work of Nowinski and Hamidzadeh, the pre-
sented work get the solutions of the nonlinear transverse and in-plane vibrations of a
thin rotating disk and the static waves for different nodal-diameter numbers are pre-
sented, also, the variations of dimensionless natural frequency versus dimensionless
speed and amplitude ratio are analyzed.

2 Equations of Motions

The vibration of a thin elastic rotating disk of radius a and thickness h is considered.
The disk rotates about its central axis at a constant angular velocity X. The thin rotating
disk is shown in the following Fig. 1.

The transverse deflection of the rotating disk is large compared with its thickness h.
According to the nonlinear plate theory, the strain-displacement relationship in polar
coordinate system is as follows:
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Fig. 1. A thin rotating disk
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Where err , ehh and erh are radial, hoop, and shear strains. u, v and w are the dis-
placements in cylindrical coordinates. The stress-strain relation is expressed as follows:

rrr ¼ E
1� l2

err þ lehhð Þ ð2aÞ

rhh ¼ E
1� l2

ehh þ lerrð Þ ð2bÞ

rrh ¼ E
2 1þ lð Þ erh ð2cÞ

Where rrr, rhh and rrh are radial, hoop, and shear stress. Also E and l are Young’s
modulus and Poisson ratio. The unit thickness membrane forces of the disk can be
calculated by using the following equations:
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By substituting Eqs. (1a), (1b), (1c) and (2a), (2b), (2c) in (3), one can get mem-
brane forces which are presented by displacements:
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Where D is the stiffness for the disk, D ¼ E=12 1� l2ð Þ.
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Because the in-plane vibration displacement amplitudes are much smaller than that
of transverse vibration, so the inertia terms in equations of in-plane motions are
ignored. The equilibrium equations of motions in terms of membrane forces for the
disk can be written as:
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The in-plane stress function / is introduced in order to satisfy Eqs. (5a) and (5b) by
introducing the following expressions [12]:
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The von Karman equation of the rotating disk is obtained by inserting Eqs. (4a), (4b),
(4c), (4d), (4e), (4f) and (5d–5e) into Eq. (5c), Under the hypothesis of free vibration, the
governing equation of the rotating disk in the polar coordinate system becomes:
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The compatibility equation is also obtained:
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3 Approximate Solution

An approximate solution was proposed by Nowinski [2], Hamidzadeh [7] analyzed the
case of no nodal circles but any number of nodal diameters, but they only analyzed the
transverse vibration of the disk and ignored the in-plane vibration of the disk, this
research work expands their work to analyze the transverse and in-plane coupling
vibrations of the disk. According to the work of Hamidzadeh [7], the displacement of
transverse direction is:

w r; h; tð Þ ¼ W0T tð Þrn cos nhþuð Þ ð9Þ

Where w r; h; tð Þ is the transverse deflection of the disk in polar coordinates, ‘W0’ is
a constant, ‘u’ is the phase constant, ‘T tð Þ’ is a time function respecting that ‘w’ varies
with time, and ‘n’ is the number of nodal diameters.

The stress function ‘/’ is obtained by substituting Eq. (9) into (8) according to
Nowinski [2]. The stress function is as follows:

/ ¼ k
a1
c1

r2n þ 1� l
32

X2qr4 þAr2 þ Cr2n þDr2 nþ 1ð Þ
� 	
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Where A, C, and D are constants and
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2
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2 ð11Þ

a1 ¼ 2n2 n� 1ð Þ2 ð12aÞ

c1 ¼ 16n2 n� 1ð Þ2 ð12bÞ

Substitute (10) into (6a), (6b), (6c), one can get the following equations:
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Constants A, C, and D can be determined by satisfying the stress boundary con-
ditions at r ¼ a, which will be presented in the later analysis. According to Nowinski
[2], apply the procedure of Galerkin to the Eq. (7), then substitute Eqs. (9) and (10)
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into (7) and integrate the result over the domain of the disk result in the following
second-order non-linear time equation:

d2T
dt2

þ aT þ bT3 ¼ 0 ð16Þ

The a and b are given by
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The solution to Eq. (13) is a Jacobian elliptical function:

T tð Þ ¼ cn qt; kð Þ ð20Þ

Where
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k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 aþ bð Þ

s
ð21bÞ

Obviously, cn qt; kð Þ is a periodic function with the period T0 ¼ 4K=q, and K is the
first kind of complete elliptic integral [16].

4 Free Nonlinear Vibration

In order to identity unknown constants A, C, and D, two stress boundary conditions
need to be satisfied. The two boundary conditions are that the radial and tangential
stresses on the outer radius of the disk are zero:

Nr r ¼ a; hð Þ ¼ 0 ð22aÞ

Nrh r ¼ a; hð Þ ¼ 0 ð22bÞ

By satisfying the stress boundary conditions, ones yield:
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Solve Eqs. (23a), (23b), ones obtain:

C ¼ D ¼ 0 ð24Þ

Substitute (24) into (13), A becomes:
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Since C and D are zero, Eq. (15) yields Nrh ¼ 0.
Thus, with (11), ones obtain:
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In order to calculate in-plane vibration displacements u and v, the relationship
between u, v and Nr, Nh are obtained, subtracting Eq. (4b) multiplied by l from
Eq. (4a) yields:
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Similarly, subtracting Eq. (4a) multiplied by l from Eq. (4b) yields:
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Substitute (27), (28) to (29a), (29b), ones obtain:
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0T tð Þ2r2n�1 sin2 nhþuð Þ
ð31Þ

Integrate (30) and (31), ones obtain:

u ¼ nW2
0T tð Þ2
8

1� 2n� 1ð Þl
2n� 1

r2n�1 þ l� 1ð Þa2 n�1ð Þr
 �

þ l2 � 1ð Þ
8E

X2qr3

þ lþ 3ð Þ 1� lð Þ
8E

X2qa2r � n2

2 2n� 1ð ÞW
2
0T tð Þ2r2n�1 cos2 nhþuð Þþ f h; tð Þ

ð32Þ

v ¼ n2

4 2n� 1ð ÞW
2
0T tð Þ2r2n�1 sin 2 nhþuð Þ �

Z
f h; tð ÞdhþR r; tð Þ ð33Þ

To calculate unknown functions f h; tð Þ and R r; tð Þ, the displacement boundary
conditions need to be satisfied. the displacement boundary conditions are:

u r ¼ 0; hð Þ ¼ 0 ð34aÞ

v r ¼ 0; hð Þ ¼ 0 ð34bÞ

@u
@h

����
r¼0

¼ 0;
@v
@r

����
r¼0

¼ 0 ð34cÞ

By imposing the above conditions on Eqs. (32) and (33), and with Eq. (9), the
transverse deflection and in-plane displacements of the non-linear vibration rotating
disk are finally obtained:
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u ¼ nW2
0T tð Þ2
8

1� 2n� 1ð Þl
2n� 1

r2n�1 þ l� 1ð Þa2 n�1ð Þr
 �

þ l2 � 1ð Þ
8E

X2qr3

þ lþ 3ð Þ 1� lð Þ
8E

X2qa2r � n2

2 2n� 1ð ÞW
2
0T tð Þ2r2n�1 cos2 nhþuð Þ

ð35Þ

v ¼ n2

4 2n� 1ð ÞW
2
0T tð Þ2r2n�1 sin 2 nhþuð Þ ð36Þ

w ¼ W0T tð Þrn cos nhþuð Þ ð37Þ

5 Results and Discussion

In order to do the analysis and show the results, the following dimensionless param-
eters are introduced

Amplitude ratio: W ¼ W0an

h
ð38Þ

Dimensionless rotating speed: X1 ¼ Xaffiffiffiffiffiffiffiffiffi
E=q

p ð39Þ

Dimensionless period: T� ¼ 4K
qa

ffiffiffiffi
E
q

s
ð40Þ

Dimensionless frequency: X2 ¼ 2p
T� ð41Þ

The presented results in this research work are for the disk with the following
parameters: Young’s modulus E ¼ 2:1 � 1011 Pa, Poisson ratio l ¼ 0:33, density
q ¼ 7:85 � 103 kg/m3, outer radius a ¼ 0:5 m, thickness h ¼ 0:02 m, rotating speed
X ¼ 100p rad/s.

Let time-relative terms vanish, for W ¼ 0:2, n ¼ 3, the displacements of static
waves in the three-directions from Eqs. (35), (36) and (37) are plotted in Fig. 2(a)–(c).

Figure 2 shows that the in-plane displacements are much smaller than the deflection
in the transverse direction. The results also show that the nodal diameters number of
circumferential mode is always twice that of the transverse vibration. The frequency
associate to this mode is 1438:3 rad/s.

From Eqs. (35), (36) and (37), we can see that the in-plane vibrations of the rotating
disk are affected by rotating speed and nodal diameters number. So the variation of
radial displacement amplitude u on the outer radius versus rotating speed for different
numbers of nodal diameters is presented in Fig. 3 for a dimensionless amplitude ratio
of W ¼ 0:2.
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The results indicate that the value of the radial displacement amplitude on the outer
radius is negative when the rotating speed is zero and increases with rotating speed for
different numbers of nodal diameters. The radial vibration disappears at a certain
rotating speed. The radial displacement amplitude on the outer radius is also increases
with the number of nodal diameters.

(a)

(b)

(c)

Fig. 2. Static waves in rotating disk: (a) radial displacement u, (b) circumferential displacement
v, (c) transverse deflection w
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The nonlinear and linear dimensionless natural frequencies of the rotating disks
versus a wide range of rotating speeds are calculated. For a dimensionless amplitude
ratio of W ¼ 2, the variations of dimensionless natural frequencies for different
numbers of nodal diameters is presented in Fig. 4. Presented results show that the
natural frequencies in both the nonlinear analysis and linear analysis depend on nodal
diameter, and have no difference when n ¼ 1. Nonlinear natural frequencies and linear
natural frequencies are mainly distinguished at lower speed, at higher speed, the
nonlinear dimensionless frequencies of different nodal diameters numbers approach the
corresponding linear dimensionless frequencies.
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The nonlinear and linear dimensionless natural frequencies of the rotating disks
versus amplitude ratios at different dimensionless speeds for n ¼ 6 are also calculated
and presented in Fig. 5. The results show that the natural frequencies in the nonlinear
analysis are dependent of amplitudes, and the effect of speeds on natural frequency at
small amplitudes is higher than that at large amplitudes, and the relationship between
natural frequencies and amplitudes gradually become linear at large amplitudes. But the
dimensionless natural frequencies in the linear analysis are independent of amplitudes
for all speeds.

6 Conclusion

An analytical method is presented to investigate nonlinear transverse and in-plane
vibrations of a thin rotating disk, the solutions of the nonlinear transverse and in-plane
vibrations of the thin rotating disk are finally obtained, the static waves, natural fre-
quency for nonlinear transverse vibrations of the rotating disk are also determined. The
provided modal analysis is valid for thin rotating disks with any number of nodal
diameters without nodal circles. The results show that the in-plane displacements of the
vibration are much smaller than the deflection in the transverse direction. Analysis
indicates that the natural frequencies provided by nonlinear analysis are different from
that of linear analysis. The nonlinear natural frequencies are highly dependent on
amplitude of vibration and nodal diameters. The presented results provide the designer
an analytical method for analyzing vibrations in three directions of a thin rotating disk.
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Abstract. Bladed wheel model with tie-boss couplings for numerical and
experimental investigation of stiffening and friction damping between tie-bosses
is introduced. The modal behavior of FE numerical models of the wheel for two
contact limit states, i.e. open and bonded contacts, was ascertained. The
experimental modal analysis of the wheel both for open and pre-stressed con-
tacts were performed, too. For detail stiffening and damping effect investigation
the physical model of three-blade-bundle was elaborated. The experiments were
performed for different excitation forces, excitation frequencies and contact pre-
stresses. The dynamics of the bundle with respect to different contact states was
evaluated from vibration attenuation after short resonant excitation. It was
observed that if the macroslips arise in contacts that eigen-frequencies of the
bundle are very close to the eigen-frequencies of open contact model bundle and
high damping effect is achieved. If the microslips arise in contacts the eigen-
frequencies are close to eigen-frequencies of the bond contact model and low
damping is achieved. Hence the stiffening effect is high only in the case of
microslips. The slip transition is conditioned by the level of adhesion that must
be exceeded by excitation force. The FE model of the wheel and blade triple
model with dynamic frictional contacts in the tie-boss couplings were developed
and calculated results are compared with experiment.

Keywords: Bladed wheel � Dry-friction contacts � Damping
Tie-boss couplings

1 Introduction

Blades of bladed wheels coupled by a disk and inner couplings show much more
complicated dynamic behavior than single blades. Eigenmodes and eigen-frequencies
are influenced by vibration of neighboring blades, mass and stiffening of the coupling
elements. Therefore stiffening and dissipation of mechanical energy by means of slip
damping in platforms [1] or shrouds [2] or by tie wires [3] are still under investigation.
The damping effect of the friction damping and snubbing mechanism is studied for
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reduction of turbine blade vibration in [4–6]. Besides traditional approaches based on
the Hertzian theory and Coloumb’s law [7, 8] the new numerical approaches appear
based on the finite element technology. The non-holonomic couplings of contact forces
are computed by e.g. the Penalty or the Augmented Lagrangian method [9, 10].
However, due to possible space and time discretization inaccuracies and numerical
errors, an experimental validation is still needed.

The bladed wheel model with “tie-boss” couplings was designed and fabricated for
numerical and experimental investigation of the dry-friction damping and the stiffening
effect [11]. Modal analysis of the full bladed disk for two contact limit states, i.e.
(I) bonded contacts and (II) open contacts, shows large dynamic stiffening effect for
bonded contacts with respect to the open contact wheel case. Bonded contacts arise
when high pre-stress and adhesive forces in contacts prevent a complete sliding
(macroslips) because dynamic excitation is not sufficiently high. Then only a stick-slip
state (microslip) in contacts appears. To deal with these phenomena in more detail, we
fabricated also three-blade-bundle physical model and we use it for evaluation of
influence of excitation amplitude level and the pre-stress in contacts on its dynamics.
The numerical solution of this system based on 3D finite element model with
dynamical friction contacts together with results for selected excitation parameters and
contact pre-stresses are herein presented.

Description of the bladed wheel design with “tie-boss” couplings is in the first part
of the paper, then numerical and experimental modal analysis of full bladed disk with
limit contact states are presented. The stiffening and damping effects of the tie-bosses
are discussed on our experimental results of three-blade-bundle dynamical test. The
modelling of three-blade-bundle with dynamical friction contacts by finite element
(FE) method and the computed results of dynamical response of this system for one
typical excitation case and pre-stress conditions in contacts are shown, too. Besides the
steady state modal and transient tests, the rotary tests of the bladed wheel excited by
synchronized electromagnets are in progress. Therefore the last part of this paper is
dedicated to a description of the experimental set-up, electromagnetic excitation system
and dynamical behavior of the wheel with open contacts between tie-bosses.

2 Description of Bladed Wheel Model with “Tie-Boss”
Couplings

The model disk is equipped with thirty prismatic blades. Picture of a design of bladed
wheels with so-called “tie-boss” couplings and additional weights is shown in Fig. 1.
The tie-bosses are shoulders of blades whose ends are in a contact with shoulders of the
neighboring blades. The ends of the shoulders are cut so that its areas, i.e. contact areas,
are parallel to a direction of the flexural vibration of a single blade.

Because of setting up the pre-stress in the contacts between the tie-bosses of the
neighboring blades, the tie-bosses were consisted of extensible shoulders screwed with
left (right side) and right (left side shoulder) winding into the suspension bolt that was
fixed to the blade by two nuts. By screwing the bolt in the nuts the shoulders extend
simultaneously on both sides. The detail of the tie-boss structure is in Fig. 1, too. Each
blade is fixed to the disk by the system of two small finger consoles. Bottom console is
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bolted down to the disk and upper console is bolted to the blade. The consoles are
bolted together and their mutual position is set by angle 45° before their bolting
together. At the end of the blades an additional mass is bolted to lower its first flexural
eigen-frequency. Experimental set-up of rotary test rig of the designed bladed wheel
with denotation of the particular components is in the Fig. 2.

Tie-boss detail

Fig. 1. Bladed wheel model with inter-blade tie-boss couplings.

Tie-boss detail

Overhang bladed wheel

Housing of spindle shaft

EM7

Fig. 2. Experimental set-up of the bladed wheel and test rig.
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3 Numerical and Experimental Modal Analysis of Full
Bladed Disk

The three-dimensional FE model of the designed bladed disk was developed in the
program ANSYS 15.0. Modal analysis of the numerical bladed disk were computed for
two contact limit states, i.e. (I) bonded contacts (i.e. contact surfaces stuck together)
and (II) open contacts (i.e. no coupling between contact surfaces) between tie-bosses.
The dependences of the eigen-frequencies of flexural eigen-modes on number of nodal
diameters (ND) are depicted for both contact cases in Fig. 3 as so-called SAFE dia-
gram. The open contact model approximates the “eigen-frequency” of the wheel at
large relative displacements (macroslips) in contacts. The eigen-frequencies of the open
contact model monotonously increase with a number of ND and its value converges to
a limit 50.3 Hz that is defined by the first flexural mode of a clamped blade. The
highest possible number of ND for 30 blades is 15. At this case the inter-blade angle
reaches 180°. The model with bonded contacts served for mapping of modal behavior
of the wheel under high pre-stress in contacts and low amplitudes of excitation when
only a stick-slip state (microslip) in contacts appear. For this case it can be seen large
stiffening effect at modes with a higher number of ND.

To attune the numerical modal model of the bladed wheel to the experiment we
performed experimental modal analysis (Table 1) both for (A) open contacts and
(B) pre-stress contact states between tie-bosses. The pre-stresses in contacts between
the tie-bosses were set manually by extensions of length of their arms. The values of
the pre-stresses were evaluated indirectly after releasing the pre-stresses by the mag-
netic torque sensor Active-3 Lite that enabled to register the torque moment of each
blade. The normal forces in the contacts were estimated from a size of the torque
moment applied to the blade by contact pre-stresses. Normal forces were relatively
high, i.e. about 50 N with a slight variation along the circumference. Excitation of the
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Fig. 3. Eigen-frequencies versus number of nodal diameters for the wheel with (I) bonded and
(II) open contacts – FEM model tuned to the experiment.
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bladed wheel was electromagnetic. The electromagnet placed against the top of the
blade L1 (see Fig. 2) was excited by the high power pulse in case A and by harmonic
frequency sweep function in case B.

The wheel model with open contacts (A) was tuned to the experimental results of
modal analysis. The results of both numerical and experimental modal analysis are
depicted in the Fig. 3. It shows good agreement. Furthermore, the results of numerical
modal analysis with bonded couplings between tie-bosses are depicted in the Fig. 3,
too. And finally there are also results of experimental modal analysis of the wheel with
pre-stresses between tie-bosses (case B). The figure clearly shows that the eigen-
frequencies of the case (B) are found between the eigen-frequencies of two contact
limit states. The position of each eigen-frequency within the limit eigen-frequencies are
given by the level of pre-stress and level of excitation that define rate of microslips and
macroslips during the vibration. Since the open contact model approximates the blade
“eigen-frequency” at macroslips it means the closer is the pre-stressed state to the open
contact model eigen-frequency the higher relative displacements are excited. Since the
experimental eigen-frequencies are close to bonded contacts it shows that the pre-
stresses in contacts were relatively high with respect to a force excitation capacity and
microslips aroused only in contacts. The differences of 1ND mode measured eigen-
frequencies from the numerical counterparts are caused by differences in boundary
conditions (bearing of the wheel hub) of physical and numerical model. The influence
of the bearing diminishes for higher number of ND.

Table 1. Results of modal analysis of the bladed wheel for cases: (A) open contacts (FEM,
experiment) and (B) bonded contacts (FEM) and pre-stress states (experiment) between tie-
bosses.

ND Open contacts
FEM

Open contacts EXP Bonded contacts
FEM

Contact prestress
EXP

Freq.
(Hz)

Freq.
(Hz)

Damp. r.
(%)

Freq.
(Hz)

Freq.
(Hz)

Damp. r.
(%)

0 43.32 - - 57.17 - -
1 43.37 37.34 0.32 60.24 43.66 1.29
1 43.47 37.71 0.28 60.35 46.85 1.73
2 44.32 43.51 0.15 65.88 62.51 0.51
2 44.39 - - 65.99 66.92 0.85
3 46.14 45.43 0.18 79.36 78.58 1.04
3 46.20 45.65 0.12 79.44 80.63 0.24
4 47.37 46.59 0.08 94.48 94.98 1.57
4 47.42 - - 94.53 98.56 0.28
5 48.10 47.08 0.06 109.65 109.11 0.50
5 48.22 47.67 0.08 109.74 116.38 0.21
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4 Measurement of Dynamical Behaviour of Three-Blade-
Bundle

The experimental setup of the blade triple is shown in Fig. 4. This bundle is con-
structed to correspond to the section of the designed bladed disk. The measurement set-
up is shown in Fig. 5. Blades A, B and C are clamped by the fixing console into the
steel block by bolts. Because of the smooth friction, one tie-boss end is made of brass
and the second of steel in each contact pair. The contact surfaces were polished by
compound of the second degree. The normal contact forces were measured by the
direct level of strain-gauge signals. The excitation was performed by electromagnet
(EM) acting to the blade B.

For stiffening and friction coupling analysis a short block of harmonic excitation
with resonant flexural frequency either 47 Hz (high excitation force level) or 69 Hz
(low excitation force level) by electromagnet was performed. These excitation fre-
quencies were ascertained for different excitation levels experimentally by attuning the
resonant conditions. The time length of excitation was chosen to achieve a stationary
resonant vibration. Then the excitation was switched-off. The damping effect was
evaluated from vibration amplitude decay of blades after switching-off the excitation.
Damping ratios were identified from amplitude logarithmic decrement by Hilbert’s
transformation.

Blade A Blade B Blade C
EM

Fig. 4. Picture of experimental set-up of the three-blade-bundle.
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Each blade displacements uA, uB resp. uC were picked up by strain-gauges and at
the same time velocities vB of the tie-boss end of blade B and vC of tie-boss of blade C
by POLYTEC laser vibrometers. Electromagnet was supplied by LDS power amplifier
and controlled by signal of generator HP 33120A. Time characteristics of generator
signal, blades and two tie-boss heads responses were registered in Scope
Recorder YOKOGAWA DL750 for different force levels and three contact pre-stresses,
i.e. 3.25 N, 4.5 N and 9 N.

The value of damping ratios of the blade B vibration was designated for estimation
of the friction damping effect in the tie-bosses’ contacts. The graph (Fig. 6) shows the
dependence of identified damping ratios on amplitudes of forced responses of the blade
B for excitation frequency 47 Hz and macroslips in contacts. The typical results of the
blade B vibration are shown in the Figs. 7, 8, 9 and 10 for different excitation fre-
quencies 47 Hz (Figs. 7 and 8), 69 Hz (Figs. 9 and 10) and different level of forced
amplitudes of the blade B. The top graphs of these figures depict the displacement of
the blade B with evaluated damping ratios at the attenuation after switch off of the
electromagnet current supply. Bottom graphs show relative displacement of tie-boss
ends of the blade B and C (contact BC). The relative displacement was evaluated from
the difference of measured velocities vB and vC after their integrations. From practical
reasons, the linear amplitude decay that is typical for Coulomb’s friction law is
approximated here by the logarithmic decrement. As seen from the Fig. 7 the resulting
exponential function (green line) describes satisfyingly the amplitude decay in the
selected narrow time interval. The error of the evaluation of damping ratio is estimated
about 10%.

From the Figs. 6, 7, 8, 9 and 10 we can draw these observations:

(a) At higher excitation force of the blade B and higher response of the blade B and
excitation frequency 47 Hz, the adhesion forces in contacts are exceeded, the
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contacts gets into the macroslips and damping ratios is range 1.2–3% (Fig. 7), the
size of damping ratio drops with increase of forced amplitudes. The blades vibrate
on the same frequency as excitation frequency that corresponds to eigen-
frequency of the single contact-free blade. It means that there is no stiffening but
only damping effect of the contact with the rest of the bundle.

(b) At low excitation force of the blade B and excitation frequency 47 Hz, the
adhesion forces in contacts are not exceeded, the contacts are in the microslips
(relative motions �1e−3 mm, Fig. 8) and damping ratios are low around 0.14%.
Yet the excitation is 47 Hz, the vibration frequency 69 Hz prevails at the vibration
attenuation when amplitudes decay. This frequency approaches to the eigen-
frequency of the blade triple with bond contacts (76.4 Hz). It means that there is
stiffening but damping effect is low.
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Fig. 6. Macroslip damping ratios for different maximal amplitudes of forced response.

Fig. 7. Measured signals of blade B displacement (top) and relative displacement in contact BC
(bottom) during the harmonic excitation with frequency 47 Hz and maximal amplitude 0.6 mm -
contact pre-stress 3.25 N.
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Fig. 8. Measured signals of blade B displacement (top) and relative displacement in contact BC
(bottom) during the harmonic excitation with frequency 47 Hz and maximal amplitude 0.05 mm -
contact pre-stress 9 N.

Fig. 9. Measured signals of blade B displacement (top) and relative displacement in contact BC
(bottom) during the harmonic excitation with frequency 69 Hz and maximal amplitude 0.06 mm -
contact pre-stress 9 N.
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(c) At lower excitation force of the blade B and excitation frequency 69 Hz, the
adhesion forces in contacts are not exceeded, the contacts are in the microslips
(relative motion � 1e−3 mm) and damping is low (Fig. 9). By a certain increase
of the force the adhesion is exceeded abruptly and the vibration level is decreased
and though the excitation was 69 Hz, the vibration attenuation is modulated by
frequency 47 Hz (Fig. 10). It means that at the macroslips the decrease of
amplitudes is caused not only by damping but mainly by over tuning the system
that changes its eigen-frequency to 47 Hz due to macroslips.

It is general feature that the transition from microslips to macroslips and change of
dynamical behavior of the system comes very abruptly by achievement of the critical
excitation amplitudes.

5 Numerical Results of Three-Blade Finite Element Model

Because of long computational times of the full bladed wheel in case of the non-linear
solution due to the friction contacts, we decided to aim at the dynamics of bundle of
three blades [12]. Three-dimensional FE model of the bundle with surface-to-surface
dynamical friction contacts was developed in the program ANSYS 15.0. The Aug-
mented Lagrangian method was used to compute contact normal pressures and friction
stresses. The friction coupling was modeled by the Isotropic Coulomb’s law. For a
description of the friction coefficient, its dependence on relative velocity was

Fig. 10. Measured signals of blade B displacement (top) and relative displacement in contact
BC (bottom) during the harmonic excitation with frequency 69 Hz and maximal amplitude
0.05 mm - contact pre-stress 9 N.
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considered. The pre-stress in contacts was modeled by contact surface offset 2e−5 m.
The resulting normal force in contacts was 4.9 N.

The blade bundle, the global reference system x, y, z and directions of displace-
ments ux, uy, uz are shown in Fig. 11. The detail of the mesh in the vicinity of the
contact surfaces is depicted in the Fig. 11. Resonance frequencies of the first flexural
eigen-mode of the blade triple for open and bonded contact cases resulted 47.9 Hz and
76.3 Hz, respectively. Then finally a transient non-linear analysis of blade triple with
friction contacts was performed for loading cases: force amplitude A = 28.2 N, exci-
tation frequency fE = 47.9 Hz corresponding to the eigen-frequency of the first flexural
mode of the open contact blade triple. Excitation force is applied at the head of the
middle blade in direction perpendicular to a plane of the blade.

The computed contour maps of the total displacements and a detail of the contact
states (sliding-sticking) are depicted in the Fig. 12a, b for a selected computational
time. The contact states are very time and space variable. In most times the contact is
concentrated in small areas of the contact surfaces and is in a sliding state due to higher
vibrational amplitudes.

The time characteristic of the vector sum both of displacement of the blade B at its end
(node N166200) and excitation force are shown in the Fig. 13. From the force course it
can be seen that after five periods the excitation is switched off. The damping ratio was
evaluated at this period from the amplitude attenuation by the envelope method (green
line, Fig. 13). Fast decrease of amplitudes with high damping ratio 1.98% is achieved.
Blade displacements ux is the same but opposite to uzwhatmeans that a plane of vibration

FE
Blade C Blade B Blade A

z, uz

y, uy

x, ux

Fig. 11. FE mesh of triple blade model with excitation force FE.
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of the blade B lies perpendicular to the plane of the blade. The displacements of blades A
and C are mutually very similar and phase-shifted to the displacements of the blade B. It
means that there is relative motion in the contacts between blade pair A, B and B, C and
the motion of blades A, C to the blade B is almost symmetric.

6 Dynamical Tests of Bladed Wheel Under Revolutions

Experimental tests under revolutions were performed on the rotary test stand of the
Institute [12]. The model wheel is driven by the three-phase synchronous engine ABB
(10 kW) supplied by a current from the frequency converter ACSM1. The bladed wheel
excited by eight exciting electromagnets EM1�EM8 distributed along the circumference
of the wheel. Strain gauges were glued on three blades for measurement of the blade
vibration. The absolute encoder ECN1313 was used for the angular speed detection.

Detail

a) b)

Fig. 12. Computed contour maps of (a) total displacement; (b) detail of contact status (sliding,
sticking) in a computational time 0.013495 s.

Fig. 13. Time characteristics of vector sum of (a) displacements (red line) of the blade B;
(b) excitation force (black line).
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To obtain maximal amplification of the bladed wheel vibration the control algo-
rithm of exciting electromagnets was developed [13]. The algorithm generates narrow
force pulses of magnetic field of electromagnets at the moment of blade passage around
the electromagnet. On the other hand a maximum amplification of the vibration arises
when the blade moves in the direction of the attractive pulse magnetic force. Since an
impulse excitation causes, in general, transient oscillations of many superposed eigen-
modes of the wheel we used herein a strategy of interconnections of electromagnets
into groups. For by more-magnetic pulse excitations with the same force orientation
and intensity a more uniform distribution of the excitations on the wheel is provided.
Electromagnets were grouped to pairs (EM1, EM5) and (EM3, EM7). The blades L1
(see Fig. 2) and L16 (diametrically opposed to L1) were simultaneously excited by the
pairs of synchronized electromagnets. Vibration modes with 2ND, 4ND vibration
modes were mainly ascertained practically in whole range of revolutions.

The result of the test under revolution of the open contact wheel model is shown in
the Campbell diagram (Fig. 14). This colored map spectrogram of amplitude-frequency
dependences on revolutions was evaluated in the automatized data acquisition system
PULSE, B&K at a slow run up (60 up to 450 rmp in 250 s) of the driving engine.

The Campbell diagram was evaluated from the strain-gauge signal of blade L1. The
sloping lines of the vibration with a revolution frequency and its multiples and vertical
branch of the flexural vibration (2ND, 4ND) are visible in the diagram. The engine
order lines were mainly generated by revolution dependent deflections of blades from
unbalances and gravitation forces.

The same electromagnetic excitation system will be used for study of stiffening and
damping effects of the wheel model with pre-stressed contacts. The same evaluation
method will be used as in the case of the blade triple. Electromagnet excitation will pull
the wheel into the resonance. Then the excitation will be switched off and the eigen-
frequencies and damping ratios will be evaluated from the free attenuation.
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Fig. 14. Campbell diagram of the blade wheel vibration - open contacts.
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7 Conclusion

Bladed wheel model with tie-boss couplings for numerical and experimental investi-
gation of stiffening and friction damping in tie-bosses was herein introduced. The
modal behavior of FE numerical model for two contact limit states was ascertained.
The experimental modal analysis of the wheel both for open contacts and for contacts
in pre-stress were performed, too.

For detail stiffening and damping effect investigation the physical model of blade
triple was elaborated. The experiments were performed for different excitation forces,
excitation frequencies and contact pre-stresses. The dynamics of the bundle with respect
to contact states was analyzed from vibration attenuation after short resonant excitation.

It was observed that if the macroslips arise in contacts that eigen-frequencies of the
blade bundle are very close to the eigen-frequencies of bundle with open contacts with
high damping effect (about 2–3%). If the microslips arise in contacts the eigen-
frequencies are close to eigen-frequencies of the bundle with the bond contacts with
low damping (about 0.2%). Hence the stiffening effect is high in the case of microslips
but the stiffening is eliminated after transition into the macroslips. The transition is
conditioned by level of adhesion forces that must be exceeded by excitation force. The
transition is very narrow and arises abruptly at small increase of the excitation force
level.

The FE model of the wheel and blade triple model with dynamic frictional contacts
in the tie-boss couplings were developed. Due to long computation time of non-linear
dynamical responses of the full bladed disk, first the triple model was dealt with. The
results of dynamical response of the triple for one typical excitation case and pre-stress
condition in contacts is shown and discussed. The evaluated stiffening and damping
results are in a good accordance with our experimental observations. The full bladed
wheel is going to be computed at the national super-computer center in Ostrava
(IT4Innovations) and the results will be included in the conference presentation.

Acknowledgements. This work was supported by the research project of the Czech Science
Foundation No. 16-04546S “Aero-elastic couplings and dynamic behaviour of rotational periodic
bodies”.
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Abstract. The flow through the rotor of a propeller is complex and cannot be
solved by pure analytical methods. Varieties of numerical methods were used to
handle this problem including the momentum theory, blade element theory,
lifting line theory, panel methods and CFD analysis. The objective of this study
is to look into the possible use of alternative airfoils (Joukowski and Göttingen)
for use in small propellers calculated by a simple validated home-built FOR-
TRAN code based on the momentum theory and blade element theory. This
code was then used to investigate the effects of the airfoil section, chord and
pitch angle distributions along the blade. The linear pitch distribution in blades
of propeller reduced the coefficients of thrust and power and indicated higher
blade loading at the intermediate region and lower loading at the tip region in
comparison with the Göttingen 796 propeller with the reference pitch distribu-
tion. With reference to the two investigated airfoils sections, Göttingen 796 and
generalized Joukowski, it was found that the thrust and the power coefficients
and the efficiency of the generalized Joukowski propeller are greater than the
respective coefficients of Göttingen 796 propeller for advanced ratio J = 0.85
and higher. The predicted results indicated that the use of the elliptical chord
distribution instead of tapered blade reduces the blade loading at the tip region
and increases it at the intermediate region of the blade, but also reduces the
coefficient of thrust, torque and power in comparison with the blade having the
reference chord distribution.

Keywords: Small propeller � Momentum theory � Blade element theory
Blade aerodynamics � Airfoil section

1 Introduction

Small and medium size rotors are used in many recent applications as in propulsion of
small airplanes, unmanned aerial vehicles (UAV), autonomous underwater vehicle
(AUV), and small wind turbines and ducted propellers. Understanding rotor action and
interaction with wake flow field are important aspects to better formulate and predict
the performance of propeller rotors and wind turbines. Momentum theory applied to
rotors and blade element theory were widely used for light loaded blades. Theodorsen
[1] developed the propeller theory with ideal load distribution from the dynamics of the

© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 62, pp. 163–177, 2019.
https://doi.org/10.1007/978-3-319-99270-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_12&amp;domain=pdf


wake vortex sheet. This condition of maximum propeller efficiency occurs when the
wake vortex sheets are helicoidal without any deformation.

The flow over the rotors is very complex due to the circular movement of the blades
and the strong interaction with the wake. For this reason, the precise calculation of the
aerodynamic behavior of the rotor depends on the correct modeling of the rotor wake,
whose complex structure limits pure analytical methods and hence the numerical
methods are inevitably necessary [2].

Dumitrescu and Cardos [2] used a lifting line method to replace the wind turbine
blades with the trailing vortices shed along the turbine blade. The model is nonlinear
and was solved iteratively. The performance parameters were calculated by the Biot–
Savart law and the Kutta–Joukowski theorem.

Palmiter and Katz [3] used a three-dimensional potential flow based panel code to
model the flow over rotating propeller blades. They modified an existing panel code
and studied the wind turbine and propeller flows and validated their predictions with
available results.

Bohorquez, Pines and Samuel [4] developed a low cost computational methodol-
ogy to design and optimize hovering rotors for small-scale vehicles using circular arc
airfoils. Detailed experimental investigation on rectangular and tapered blades gener-
ated the data necessary to identify performance trends and the effect of planform
modifications. A blade element momentum theory was implemented. Validation
showed that the model predictions improved with the empirical correlations and the
methodology used proved is adequate to optimize the blade geometry and operating
conditions following imposed constraints within a defined design space.

Khan and Nahon [5] presented a slipstream model which uses simple analytical and
semi-empirical equations. The numerical predictions were found to agree with exper-
imental data.

Morgado et al. [6] used the software JBLADE for the design and optimization of a
new propeller. The airfoil characteristics were obtained from coupling of a BEM
formulation module and XFOIL. The inverse design methodology, due to Adkins and
Liebeck method, was used to calculate the chord and twist angle of the blades. The
approach based on the concept of maximum L3=2=D generated bigger pressure dif-
ferences between upper and lower surfaces with less friction which mean more thrust
than the blade designed with the concept of maximum L/D.

The objective of this study is to investigate the possible use of alternative airfoils
(Joukowski and Göttingen) for the rotors of small propellers calculated by a simple a
home-built FORTRAN code based on the momentum theory and blade element theory
and validated against available experimental and numerical results. The numerical code
was then used to investigate the effects of the airfoil section, the distributions of chord
and pitch angle along the blade.

2 Formulation

The propeller develops an axial force called thrust T at an advance V for a rotational n
due to a torque Q. In this manner the propeller efficiency is the ratio of the useful power
to the power input P
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g ¼ TV= 2pnQð Þ ð1Þ

The aerodynamic characteristics are usually expressed by dimensionless forms
which depend on the Reynolds and Mach numbers based on the blade tip velocity and
the advance ratio J. The advance ratio is defined as

J ¼ V= nDð Þ ð2Þ

while the tip velocity is given by

Vtip ¼ pnD ð3Þ

The thrust kT , torque kQ and the power kP coefficients are defined as

kT ¼ T
�

qn2D4� � ð4Þ

kQ ¼ Q
�

qn2D5� � ð5Þ

kP ¼ P
�

qn3D5
� � ¼ 2pkQ ð6Þ

In terms of these coefficients the efficiency of the propeller can be alternatively
written as

g ¼ J kT=kP ð7Þ

As mentioned before, the calculation routine to predict the general performance of
the propeller associates the momentum theory due to Rankine and Froude [7] with
Glauert blade element theory [8]. The Froude momentum theory treats the propeller as
a disc with an axial velocity in relation to the disc given by the advance velocity V
corrected by the inflow factor a,

V0 ¼ V 1þ að Þ ð8Þ

From the linear momentum conservation and the pressure difference across the disc,
the velocity component well behind the disc VS is

VS ¼ V 1þ 2að Þ ð9Þ

Glauert’s blade element theory for propellers indicates that the velocity component
in the plane of rotation Vw can be calculated from

Vw ¼ 2pn 1� bð Þ r ð10Þ

where b is the swirl factor which accounts for the effects of the wake vortex system on
the flow angular velocity in the rotor plane.
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Applying the principle of conservation of linear momentum to the flow in an
infinitesimal radial ring one can determine the elementary thrust as

dT ¼ 4pq rV2a 1þ að Þdr ð11Þ

Similarly, the elementary torque is given by

dQ ¼ 4pq r3 V b 1þ að Þ 2p ndr ð12Þ

The elementary thrust and torque can be obtained alternatively from the lift and
drag acting on the blade element as below

dT ¼ B c
1
2
qV2

R C‘ cos/� Cd sin/ð Þdr ð13Þ

dQ ¼ B c r
1
2
qV2

R C‘ sin/þCd cos/ð Þdr ð14Þ

where B is the number of blades, VR is the resultant velocity with reference to the blade
and / is the angle of the vector VR with the plane of rotation of the propeller, Houghton
et al. [9].

The local resultant velocity VR is given by

VR ¼ V0=sin/ ¼ Vw=cos/ ð15Þ

while the angle / is calculated from

/ ¼ tan�1 V0

Vw

� �
¼ tan�1 J

2p r=Dð Þ
1þ a
1� b

� �� �
ð16Þ

The angle of attack ac is the angle between the resultant velocity VR and the chord,
calculated as the difference between the pitch angle (twist) of the blade section hc and
the angle / of the resultant velocity (Fig. 1). The pitch angle hc is defined as the angle

Fig. 1. Cross section of the rotor blade at radius r indicating the velocity components and the
acting forces.
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between the local chord and the plane of rotation of the propeller. The geometric pitch
p of the blade section is related to the pitch angle hc by the expression p ¼ 2p r tan hc.

The geometry of the blade is usually given by the distributions of chord, thickness
and the geometrical pitch as function of radius. The pitch angle of the blade is defined
as the pitch angle of the blade section localized at r ¼ 0:75R, where R is the radius of
the blade tip, R ¼ D=2.

Equating Eqs. (11) to (13) and Eqs. (12) to (14) one can obtain

a ¼ 1þ að Þ r

4 sin2 /
C‘ cos/� Cd sin/ð Þ ð17Þ

b ¼ 1þ að Þ r

4 sin2 /
C‘ sin/þCd cos/ð Þ J

2p r=Dð Þ ð18Þ

where r is the solidity defined as r ¼ B cð Þ= 2p rð Þ.
Equations (17) and (18) can be used to calculate the factors a and b iteratively.
The thrust loading coefficient dkT of the blade element dr at r is given by

dkT ¼
dT
dr

Bqn2D4 dr ¼ 1
2
c

J 1þ að Þ
D sin/

� � 2

C‘ cos/� Cd sin/ð Þ dr ð19Þ

While the torque loading coefficient of the blade dkQ is given by

dkQ ¼
dQ
dr

Bqn2D5 dr ¼ 1
2
c

J 1þ að Þ
D sin/

� � 2

C‘ sin/þCd cos/ð Þ r
D

dr ð20Þ

The coefficients of thrust kT and the torque kQ of the propeller can be obtained by
integrating Eqs. (19) and (20) from the root of the blade to the tip and then multiplying
the result by the number of blades B.

One can see that the radial loading coefficients of the blade dkT and dkQ depend on
the airfoil geometry, its aerodynamic characteristics and the advance ratio J. This also
applies to the coefficients of thrust kT , torque kQ and power kP of the propeller. The
specification of the value of the advance velocity V or the rotation n determines the
Reynolds number of the propeller Re75 and allows calculation the global values of
thrust T , torque Q and power P. The calculations can be repeated for new values of C‘

and Cd coefficients of the local blade chord of the airfoil section, according to the local
Reynolds number.

2.1 Validation

To establish the validity of this method and its viability in calculating the propeller
performance and/or its pre dimensioning, the numerical predictions from the present
method are compared with experimental results [10] and numerical predictions based
on panel method [3]. The available experimental results are for the propeller Clark Y
5868-9, with airfoil Clark Y, 3.048 m diameter, two blades and for two blade pitch
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angles of 25° and 35° [10]. Palmiter and Katz [3] realized recent numerical results for
the same propeller, they used three-dimensional panel method.

Figure 2 shows a comparison of coefficient of thrust kT predicted from the present
method compared with the experimental results and with the numerical predictions
calculated by the panel method. As can be seen the agreement is good for the case of
pitch angle of 25°. When the pitch angle is increased to 35°, there is noticeable
divergence between the present predictions and the experimental results for low
advance ratios due to possible flow separation [3], which is not accounted for in the
both numerical methods.

3 Results and Discussion

The reference propeller used here for comparison is the Clark-Y 5868-9 propeller for
which Hartman and Biermann [10] presented the geometry and the experimental
results. It has Clark-Y airfoil for the blades, two blades, 3.048 m diameter and pitch of
25°. The present code used the data available in Lyon et al. [11] for Reynolds number
of 3.0 � 105.

The validated code was used to calculate a propeller with a new airfoil Göttingen
796 similar to the original airfoil Clark-Y but has a higher value of the ratio Cl/Cd. The
characteristics of Göttingen 796 were determined from XFOIL [12] for Reynolds
numbers of 0.50 � 106, 0.75 � 106, 1.00 � 106, 1.25 � 106, 1.50 � 106, 1.75 � 106

and 2.00 � 106. The curves of the lift and drag coefficients were obtained in terms of
the angle of attack for increments of 0.25°, and incorporated in the numerical code.

Göttingen 1 propeller has exactly the same geometry and operational conditions as
the reference propeller except that the airfoil section is Göttingen 796.

Figure 3 shows a comparison of the predicted thrust and power coefficients and
efficiency of the Göttingen 1 and the reference propellers. As can be seen the
Göttingen 1 propeller shows higher values due to the differences in the aerodynamic
characteristics of the two airfoils.

Fig. 2. Variation of the thrust coefficient with the advance ratio for propeller Clark Y 5868-9.
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Figure 4 shows the spanwise distribution of blade loading for both propellers for
the advance ratio J = 1 corresponding to maximum efficiency. The root region is
defined between r/R = 20% and r/R = 40%, while the tip region is defined between
r/R = 80% and the blade tip. The respective local contributions of the three regions of
Göttingen 1 propeller to the total thrust are: −1.3% for root region, 48.3% for the
intermediate region and 52.9% for the tip region. In the case of the reference propeller
the contributions are: −1.6% for root region, 48.4% for the intermediate region and
53.2% for the tip region.

Similar results were obtained for the Joukowski airfoil and were omitted for the
sake of brevity.

Fig. 3. Comparison of aerodynamic coefficients of Göttingen 1 and reference propellers.

Fig. 4. Comparison of thrust loading distribution of Göttingen 1 and reference propellers.
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3.1 Distribution of Pitch Angle

The reference and the Göttingen 1 propellers have the same reference distribution of
pitch angle along the blade as presented in Hartman and Biermann [10] for the Clark-Y
5868-9 propeller, shown in Fig. 5(a).

To investigate the effect of the pitch distribution on the performance of the pro-
peller we introduce Göttingen 2 propeller which is exactly the same as the Göttingen 1
propeller except it has linear pitch angle distribution along the blade, as in Fig. 5(a).
The values of the angles of attack for each section of the blade calculated according to
Sect. 2 are shown in Fig. 5(b).

Figure 6 shows the predicted results of the thrust and power coefficients as well as
the efficiency for the Göttingen 1 propeller and the Göttingen 2 propeller. One can
observe that Göttingen 2 propeller shows lower coefficients of thrust and power with
nearly the same efficiency, than Göttingen 1 propeller.

Figure 7 shows that Göttingen 2 propeller (based on assuming linear distribution of
pitch angle) results in higher blade loading at the intermediate region and lower blade
loading at the tip region in comparison with Göttingen 1 propeller (based on the
reference distribution as shown in Fig. 5(a)). Also one can observe that the linear
distribution of pitch angle favors reduced loading at the tip region which helps reducing
mechanical loads at the root region. As can be seen from Fig. 5(b), the use of the linear
pitch angle distribution of the blade produces larger local angles of attack in the
intermediate blade region and smaller in the blade tip region than those produced by the
reference distribution of pitch angle.

The respective local contributions of the three regions of Göttingen 2 propeller to
the total thrust are: 0.8% for root region, 73.5% for the intermediate region and 25.7%
for the tip region. In the case of the Göttingen 1 propeller the contributions are: −1.3%
for root region, 48.3% for the intermediate region and 52.9% for the tip region.

Fig. 5. Comparison of proposed linear pitch angle distribution and reference pitch angle
distribution: (a) pitch angle distribution; (b) local angle of attack for advance ratio J = 1.0.
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3.2 Effect of Airfoil Section

To investigate the effect of airfoil section two families of airfoils were selected that is
Göttingen and Joukowsky. The traditional Joukowski airfoil has a thin trailing edge
which makes it unsuitable for the present application. Glauert [13] presented a method
to obtain generalized airfoils more suitable for practical use by using the conformal
transformation 1� ncð Þ= 1þ ncð Þ½ � ¼ z� cð Þ= zþ cð Þ½ �n. Details of this transformation
can be found in [13]. The generalized Joukowski generated for this study has general
characteristics similar to those of Göttingen 796 as can be seen in Table 1.

Joukowski 2 propeller has exactly the same geometry and operational conditions as
the Göttingen 2 propeller except that the airfoil section is a generalized Joukowki
airfoil.

Fig. 6. Comparison of aerodynamic coefficients of Göttingen 2 and Göttingen 1 propellers.

Fig. 7. Comparison of thrust loading distribution of Göttingen 2 and Göttingen 1 propellers for
advance ratio J = 1.0.
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Figure 8 indicates that the thrust and the power coefficients and the efficiency of the
Joukowski 2 propeller are greater than the respective coefficients of Göttingen 2 pro-
peller for advanced ratio J = 0.85 or higher.

Figure 9 indicates that the blade thrust loading of the Joukowski 2 propeller is
higher but follows the same trend as the loading of Göttingen 2 propeller. Both pro-
pellers have well-loaded intermediate region and less loaded blade-tip region due to the
linear pitch angle distribution.

The respective local contributions of the three regions of Joukowski 2 propeller to
the total thrust are: 2.1% for root region, 69.6% for the intermediate region and 28.3%
for the tip region. In the case of the Göttingen 2 propeller the contributions are: 0.8%
for root region, 73.5% for the intermediate region and 25.7% for the tip region.

Table 1. Characteristics of Göttingen and generalized Joukowski airfoils.

Airfoil Section Maximum
thickness/chord
(%)

Maximum
camber/chord
(%)

Trailing edge
angle (radians)

Göttingen 796 airfoil 12.0 at 30%
chord

3.6 at 40%
chord

–

Generalized Joukowski airfoil
(k = 1.060, b = 4.5°, n = 1.920)

12.3 at 36.8%
chord

3.8 at 51.8%
chord

0.2513

Fig. 8. Comparison of aerodynamic coefficients of Joukowski 2 propeller and Göttingen 2
propeller, both propellers with the same reference chord and linear pitch angle distributions.
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3.3 Effect of Chord Distribution

Further calculations were realized to investigate the effects of chord distribution on the
blade loading and on the performance characteristics of the propeller.

Propeller with Göttingen Airfoil. In this case the propellers have exactly the same
geometry, same operational conditions, and the same airfoil Göttingen 796 and have
linear pitch angle distribution along the blade, as the Göttingen 2 propeller, but the
chord distribution is modified according to the taper ratios k ¼ 1:0, k ¼ 0:75,
k ¼ 0:50, k ¼ 0:30 and for elliptical chord distribution along the blade. The blade
loading is calculated for the above taper ratios.

Figure 10 shows that tapered blade reduces the local loading at the tip region of the
blade in comparison with the reference chord distribution. This change become more
noticeable with the increase of the blade taper or decrease of k. However, the taper does
not increase the blade loading at intermediate region of the blade as much as the
reference chord distribution does.

One can also observe that the elliptical chord distribution resulted in severe loading
reduction in comparison with the reference chord distribution and the tapered blades.
The results for elliptical chord are close to those of the blade with taper ratio of 0.30.
Effects of varying the chord distribution for advance ratio J ¼ 1:0 are shown in Table 2
and Fig. 10.

The numerical predictions show that the reduction of the blade loading at the tip
region and its increase in the middle part of the blade can be obtained by adopting
linear distribution of the pitch angle or by using tapered blade. In the case of tapered
blades these effects are intensified by the increase of the blade taper ratio. It is also
possible to observe from the predicted results that the use of the elliptical chord
distribution instead of tapered blade accentuates these effects. However, the changes in
the geometry of the blade reduce the blade loading near the tip but also reduce the
coefficient of thrust, torque and power at nearly constant efficiency, in comparison with
the blade having the reference chord distribution.

Fig. 9. Comparison of thrust distribution of Joukowski 2 propeller and Göttingen 2 propeller for
advance ratio J = 1.0.
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Propeller with Generalized Joukowski Airfoil. A similar study is also made for the
propellers with generalized Joukowski airfoil section.

The propellers have exactly the same geometry and operational conditions as the
Joukowski 2 propeller, with generalized Joukowski airfoil and linear pitch angle dis-
tribution along the blade, except that the chord distribution is modified. The chord
length in the middle of the blade height is keeping equal to the value corresponding to
that of the reference propeller. The blade loading is calculated for taper ratio k ¼ 1:0,
k ¼ 0:75, k ¼ 0:50, k ¼ 0:30 and for elliptic blade.

The results shown in Table 3 indicate that blades with linear taper ratio of 0.3
reduce the tip loading, while keeping the intermediate region as loaded as that of the
elliptic blade and increase slightly the loading at the root region (Fig. 11). These
aspects can help to achieve possible improvements in blade design, performance and
weight reduction etc.

Table 2. Performance characteristics and blade loadings of the propellers with Göttingen 796
airfoil and different chord distributions on the blade for J = 1.0 (linear pitch angle distribution).

Chord g T Nð Þ Q Nmð Þ Thrust loading of the blade
(%)
Root Intermediate Tip

Reference 0.9182 1183 625 0.79 73.47 25.74
Straight k = 1.00 0.9154 1195 633 0.15 66.78 33.07
Tapered k = 0.75 0.9169 1151 609 0.07 68.61 31.32
Tapered k = 0.50 0.9182 1090 576 −0.02 71.31 28.71
Tapered k = 0.30 0.9194 1020 538 −0.12 74.72 25.40
Elliptical 0.9222 1008 530 0.13 75.84 24.03

Fig. 10. Comparison of thrust distribution of propellers using airfoil Göttingen 796 and different
chord distributions along the blade, for advance ratio J = 1.0 (all propellers have linear pitch
angle distribution).
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4 Conclusions

The home-built numerical code based on the momentum theory and blade element
theory calculates the performance parameters of the propeller including thrust loading,
blade thrust, torque and power coefficients, and efficiency of the propeller as functions
of the advance ratio. Predictions from the present method for the reference propeller
Clark Y 5868-9 are in agreement with both experimental results and numerical cal-
culations by the panel method.

The predicted thrust and power coefficients and efficiency of the Göttingen 1
propeller showed higher values in comparison with the reference propeller due to the
differences in the aerodynamic characteristics of the two airfoils.

Table 3. Performance characteristics and blade loadings of the propellers with generalized
Joukowski airfoil and different chord distributions on the blade for J = 1.0 (linear pitch angle
distribution).

Chord g T Nð Þ Q Nmð Þ Thrust loading of the
blade (%)
Root Intermediate Tip

Reference 0.9265 1409 738 2.09 69.64 28.28
Straight k = 1.00 0.9257 1456 763 1.65 61.88 36.47
Tapered k = 0.75 0.9272 1400 732 1.78 63.72 34.50
Tapered k = 0.50 0.9287 1320 689 1.99 66.41 31.60
Tapered k = 0.30 0.9298 1229 641 2.25 69.95 27.80
Elliptical 0.9311 1201 626 2.17 71.74 26.09

Fig. 11. Comparison of thrust distribution of propellers with generalized Joukowski airfoil for
different chord distributions along the blade, for advance ratio J = 1.0 (all propellers have linear
pitch angle distribution).
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The spanwise distribution of blade loading for Göttingen 1 propeller is higher in the
intermediate and tip regions in comparison with the reference propeller for the advance
ratio J = 1 corresponding to maximum efficiency.

Göttingen 2 propeller based on linear pitch angle distribution along the blade shows
lower coefficients of thrust and power with nearly the same efficiency, higher blade
loading at the intermediate region and lower blade loading at the tip region in com-
parison with Göttingen 1 propeller. This result indicates that the linear pitch distri-
bution is better than the reference distribution.

To investigate the effect of airfoil section two rotors were calculated based on the
airfoils Göttingen 796 and generalized Joukowski, respectively. It was found that the
thrust and the power coefficients and the efficiency of the generalized Joukowski
propeller are greater than the respective coefficients of Göttingen 796 propeller for
advanced ratio J = 0.85 and higher.

The numerical predictions showed that the reduction of the blade loading at the tip
region and its increase in the middle part of the blade can be obtained by adopting
linear distribution of the pitch angle or by using tapered blade. In the case of tapered
blades these effects are intensified by the increase of the blade taper ratio. It is also
possible to observe that the use of the elliptic chord distribution accentuates these
effects. However, the changes in the geometry of the blade reduce the blade loading
near the tip and also reduce the coefficient of thrust, torque and power at nearly
constant efficiency, in comparison with the blade having the reference chord
distribution.
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Abstract. Flexible blades coupled to rotating systems are commonly used in
industrial machines, such as compressors, exhausters, and turbines. These
components are usually exposed to different operating conditions, including
high speed, large centrifugal forces, high temperatures, and pressure. Consid-
ering the inevitable manufacturing flaws, cracks can emerge and grow partic-
ularly in blades of these systems. Thus, investigations on the dynamic behavior
of cracked blades become mandatory to prevent failures. In this work, the
development, solution, and instability analysis of a system composed of four
flexible blades coupled to a flexible shaft are presented. The flexible blades are
modeled as Euler-Bernoulli beams with tip masses attached at their ends. Their
deformations are obtained by considering second order nonlinear terms to
ensure that the centrifugal stiffness is correctly represented, thus characterizing a
second order linearized model. The equations of motion are obtained by
applying the so-called Newton-Euler-Jourdain method. The crack presence
brings an additional flexibility to the blades, which is introduced in the model by
using a torsional spring. The resulting blade stiffness is obtained through the
beam elastic equation. The Newmark time integration method is associated with
the Newton-Raphson iteration procedure to integrate the equations of motion.
The system was evaluated for different situations, regarding the depth of the
crack in the blades, as well as the operating condition of the rotor-blade system.
Finally, the instability map and the vibration responses of the system is deter-
mined. The obtained results indicate the instability condition of the rotor-blade
system for a certain combination of rotating speed, angular position of the
blades, and crack depth.

Keywords: Rotor-blade system � Second order linearized model
Crack � Instability map

1 Introduction

Flexible blades coupled to rotating shafts are widely used in industrial machines, such
as compressors, exhausters, and turbines. These components are usually exposed to
different operating conditions, including high-speed situations, large centrifugal forces,
high temperatures, and high pressures [1]. Thus, associated with the inevitable
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manufacturing flaws and with the possible presence of a foreign object in the system,
damage in the system may occur. One of the most dangerous damages is the growth a
crack in the blades. This occurs mainly near the attachment between the rotor and the
blade. If the crack is not identified it can lead to failure, even to catastrophic conse-
quences. In these cases, the application of predictive maintenance is mandatory.

Nowadays, there are various methods used for crack detection, such as the ultra-
sonic, X-rays, and acoustic emission [2]. These methods have not proved to be efficient
in some situations due to the required detailed periodic inspection, which is very costly
[3]. Thus, this problem justified investigations on a class of crack detection methods
based on vibration analysis through either frequency or time domain responses.

There are contributions in literature devoted to the modeling of flexible blades.
Legrand [4] modeled the blades of a rotor-blade system by using the finite element
method, where each finite element was described as Euler-Bernoulli beam. Santos et al.
[5] and Saracho [6] used an alternative approach based on the Newton-Euler-Jourdain
method to obtain the equations of motion of a rotor-blade system. The authors pointed
out that the deformation of the blades cannot be neglected because the coupling
between their displacement and deformation causes an effect known as centrifugal
stiffening. This effect makes the natural frequencies of the beam increase according to
the rotating speed, which is the main characteristic observed in the dynamic behavior of
this kind of system.

The dynamic behavior of cantilever beams with transversal cracks was extensively
discussed in various papers. Wu and Huang [2] employed an energy approach followed
by the Extended Hamilton principle in conjunction with a weighted residual method to
obtain the equations of motion of a cracked beam. Dimarogonas [7] and Chondros [8]
explained that the crack generates a new local flexibility in the beam. The authors used
the linear fracture mechanics theory to represent the crack. Dimarogonas, Rizos, and
Aspragathos [9] also observed that the most important effect introduced by cracks on
beams is a new local flexibility that changes the dynamical behavior of the system. The
authors formulated a model composed of two beams connected by a torsional spring to
represent this effect, whose stiffness coefficient represents the crack. The crack strain
energy function was used to determine the additional local flexibility on the beam [10].
Mayes and Davies [11] proposed a finite element model to include the new local
flexibility in the shaft, in which the diameter of the shaft finite element was reduced at
the crack position according to the crack flexibility.

In this context, the present work aims to investigate the influence of cracks on the
dynamic behavior of a rotor-blade system based on its vibration responses. In this case,
the adopted model for the rotor-blade system is similar to the one described in Saracho
[6]. The model is composed of a mass-spring system that represents the rotor and four
rotating beams with tip masses attached to them. The blades are modeled as Euler-
Bernoulli beams [5] and their deformations were obtained by considering second order
non-linear terms to ensure that the centrifugal stiffness is correctly represented [12].
Then, a second order-linearized model was obtained. The Newton-Euler-Jourdain
method was applied to determine the equations of motion of the rotor-blade system.
The crack is represented by an additional local flexibility of the blade according to the
formulation presented in [9].
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The equations of motion were solved by using the Newmark time integration
method and Newton-Raphson iteration technique by considering different damage
scenarios. The first one evaluated the rotor-blade system without crack (pristine con-
dition) and the others considered a crack in one of the blades with different depths. The
obtained results indicated the instability condition of the rotor-blade system for a
certain combination of rotating speed and crack depth.

2 Mathematical Model

2.1 Rotor-Blade Model

The model used to represent the coupling between the rotor and the four flexible blades
is shown in Fig. 1. The system is composed of a rotor with mass m0 and radius r, which
is elastically supported by the stiffness k0, and four blades with lengths Li, thickness hi,
and stiffness ki (i = 1, 2, 3, and 4). Tip masses mpi are attached to the blades, presenting
length Lti and width bti. The distance between the extremity and the centroid of the tip
mass is given by rti. The system has five degrees of freedom z(t) = {z0(t) z1(t)
z2(t) z3(t) z4(t)}

T, where z0(t) represents the horizontal displacement of the rotor (point
C in Fig. 1) and zi(t) describes the displacements of the blades.

Three reference frames are used to obtain the equations of motion of the rotor-blade
system [6], as follows: the inertial frame BI (x, y, z), the rotating frame B1 (x1, y1, z1)
centered at point C (defining the angular position / through the y1 axis), and the frame
Bpi (xpi, ypi, zpi) fixed to each tip mass.

O3

O4

O1

O2

C

Fig. 1. Model illustrating the rotor-blade system. (Adapted from Santos el al. [5]).
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According to Santos et al. [5], the reference frame Bpi facilitates the description of
the beam deformation field. Therefore, this frame was employed to find the displace-
ments and the external forces of each blade pi. The displacements of the blades are
interpolated by using a cubic polynomial form to minimize the number of degrees of
freedom of the model and to approximate only the first bending mode of the blade [6].
The displacements are shown in Eq. (1).

Bpi
upi ¼

0
0

wiðniÞziðtÞ

0
@

1
A wiðniÞ ¼

3
2

ni
Li

� �2

� 1
2

ni
Li

� �3

ð1Þ

Then, the absolute velocity and the acceleration of each blade are given by Eqs. (2)
and (3), respectively.

Bpivpi ¼ BpivOi þ
d
dt Bpiui
� �þ Bpix x ðBpiLi þ BpiuiÞ ð2Þ

Bpiapi ¼ BpiaOi þ
d2

dt2 Bpiui þ 2Bpix� Bpiui

þ Bpi x
: � BpiLi þ Bpiui

� �þ Bpix� Bpix � BpiLi þ Bpiui
� � ð3Þ

where Bpivpi and Bpiapi Bpix are the velocity and acceleration of the point where the
blade is fixed to the rotor (point Oi in Fig. 1), respectively, Bpix and Bpi x

:
represent the

angular speed and acceleration of the rotor, respectively. These vectors are shown in
Eq. (4). It is important to note that the only external force applied to the system is the
weight.

Bpix ¼
_u
0
0

8<
:

9=
; Bpi x

: ¼
€u
0
0

8<
:

9=
; BpiLi ¼

0
Li
0

8<
:

9=
; ð4Þ

In the rotor-blade model, the rotatory inertia was taken into account. Thus, an
equivalent mass is estimated as follows:

�mi ¼ miwðLiÞ2 þðIti þmirti Þw0ðLiÞ2 þ 2mi rtiwðLiÞw0ðLiÞ

Iti ¼ mi
L2ti þ h2ti

12

� � ð5Þ

where w(Li) is the cubical polynomial showed in Eq. (1) and hti is the height of the tip
mass, which will be considered the same height of the blade.

The energy stored in the system was separated in two terms, p0 that represents the
energy of the elastic support and ppi, which is the potential energy of the blades. In this
case, ppi = pli + pgi, where pli is associated with the blades deformation and pgi is the
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energy related to the blade geometrical stiffness. The energy pgi ensures that the second
order non-linear terms of the deformation vector are not neglected (see Eqs. (6) to (9)).

p0 ¼ 1
2
k0 z20 ð6Þ

pli ¼ 1
2

Z Li

0
EI

@2

@n2i
wiðniÞzi½ �

( )2

dni ¼
1
2
kiz

2
i ki ¼ 3EI

Li
ð7Þ

pgi ¼ 1
2

Z Li

0
NpiðniÞ

@2

@n2i
wiðniÞzi½ �

( )2

dni ¼
3
5Li

NpiðniÞ z2i ð8Þ

ppi ¼ pli þ pgi ð9Þ

where Npi is the normal force acting on each blade. The expression of the normal force
can be approximated by using Eq. (10) [13].

NpiðniÞ ¼ mpi
_/2 ðLi þ rÞ ð10Þ

The Newton-Euler-Jourdain method is applied to obtain the system equations of
motion, as given by Eq. (11). In this case, an eccentricity e in a given angular position
U is considered in the model.

M €qþ C1 þCp
� �

_qþ KþKX þKa þKg
� �

q ¼ fX þ fa þ fp ð11Þ

in which M is the mass matrix, C1 is the Coriolis matrix, K represents the structural
stiffness matrix, KX is the stiffness matrix due to the angular speed, Ka is the stiffness
matrix due to the angular acceleration, Kg is the geometric stiffness, fX is the force
vector associated with angular speed, fa is the force vector due to angular acceleration,
and fp is the weight force vector. A proportional damping matrix Cp was added to the
system, as shows Eq. (12).

Cp ¼ aMþ bK a ¼ 5 b ¼ 1� 10�5 ð12Þ

2.2 Crack Model

The structural stiffness K presented in Eq. (11) should be modified due to the local
flexibility introduced by the crack. Following Dimarogonas, Rizos, and Aspragathos
[9], the blade was separated into two beams (see Fig. 2b) with lengths LB1 = L1 and
LB2 = L – LB1. These new beams are also modeled as Euler-Bernoulli beams, linked by
a torsional spring with stiffness coefficient kT.

Equations (13) and (14) present the stiffness coefficient kT determined according to
the crack depth a and position LB1 along the blade. In this case, it was considered that
the beams had only bending movement.
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where c is the compliance, h is the beam height, E and I are, respectively, the Young’s
modulus of the material and the moment of inertia of the blade cross section. I(a/h) is
the dimensionless local compliance.

As can be seen in Fig. 2, the blade was divided into two beams with lengths LB1
and LB2, connected by the angular stiffness kT to represent the cracked blade. Thus, an
equivalent stiffness coefficient was determined by considering the scheme presented in
Fig. 2b, as shows Eq. (15).

keq ¼ 1
1
kB1

þ 1
kB2

þ 1
kT

ð15Þ

where kB1 is the stiffness of the beam with length LB1 (beam #1) and kB2 is the stiffness
of the beam with length LB2 (beam #2). It is worth mentioning that the coefficients kB1
and kB2 were obtained by using the Euler-Bernoulli theory through the elastic line
equation, as given by:

d2y1
dx21

¼ M
EI

M ¼ Px1 þPLB2 ð16Þ

where y is the deflection of the beam, M is the bending moment applied to the beam,
and P is a force applied in the end of the beam (see Fig. 2).

Integrating Eq. (16) twice with respect to x1 (0 � x1 � L1), the vertical dis-
placement y1 and the deflection a1 of the beam #1 are obtained as follows:

y1 ¼ Px31
6EI

þ PLB2 x21
2EI

þC1 x1 þC2
dy1
dx1

¼ a1 ¼ Px21
2EI

þ PLB2 x1
EI

þC1 ð17Þ

a) Crack depth and beam height. b) Model used to determine the stiffness. 

L

Fig. 2. Schematic model used to represent the crack.
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where C1 and C2 are constants that can be evaluated by considering a1 = 0 and y1 = 0
at x1 = LB1. Thus,

C1 ¼ � P
EI

L2B1
2

þ LB1LB2

� �
C2 ¼ P

EI
LB2L2B1

2
þ L3B1

3

� �
ð18Þ

At x1 = 0, kB1 = P/y1. Consequently,

kB1 ¼ EI
LB2 L2B1

2 þ L3B1
3

� 	 ð19Þ

The stiffness kB2 of the beam #2 can be found by using a similar procedure through
Eq. (16). Then, for the beam #2 (Fig. 2b), with 0 � x2 � L2:

d2y2
dx22

¼ M
EI

M ¼ Px2 ð20Þ

Integrating Eq. (20) twice with respect to x2, the displacement y2 and deflection a2
can be obtained as follows:

y2 ¼ Px2
2EI

þC3x2 þC4

dy2
dx2

¼ a2 ¼ Px2
2EI

þC3

ð21Þ

The constants C3 and C4 in Eq. (22) are determined by using the boundary con-
ditions associated with the beam #2. At x2 = LB2, y2(LB2) = y1(0) and the resulting
deflection at the same point is given by:

a2ðLB2Þ ¼ a1ð0Þþ/ / ¼ PLB2
kT

ð22Þ

where / is the deflection due to the torsional spring. Thus,

C3 ¼ PLB2
kT

� P
EI

L2B2
2

þ L2B1
2

þ LB1LB2

� �

C4 ¼ P
EI

L2B1LB2 þ
L3B1
3

þ L3B2
3

þ LB1L
2
B2

� �
� PL2B2

kT

ð23Þ

At x2 = 0, kB2 = P/y2. Consequently,

kB2 ¼ 1
1
EI L2B1LB2 þ L3B1

3 þ L3B2
3 þ LB1L2B2

� 	
� LB2

kT

ð24Þ

184 B. R. F. Rende et al.



Substituting Eqs. (24), (20), and (13) into Eq. (15), the equivalent stiffness of the
blade with crack is obtained.

3 Numerical Application

The goal of this work was to analyze the influence of a crack on the dynamic behavior
of a rotor-blade system. Equation (11) was solved by considering two structural con-
ditions, namely healthy blades (pristine condition) and a crack placed in the blade #1
distant LB1 = 0.05 L1 from its root (i.e., the point where the blade is attached to the
rotor). Table 1 presents the parameters of the considered rotor-blade system.

Figure 3 shows the vibration modes and corresponding natural frequencies of the
healthy rotor-blade system. Note that the fourth and fifth modes are associated with the
coupling between the rotor and the blades. The remaining vibration modes are asso-
ciated with the blades motion.

Table 2 presents the parameters of the crack included in blade #1. This configu-
ration was chosen aiming at emphasizing the effect of the crack brings on the dynamic
behavior of the system. Figure 4 presents waterfall diagrams for which frequency
responses functions were obtained in blade #1 according to the rotation speed of the
rotor-blade system. Curves A and C represent the natural frequencies for the blade #1
with 25% and 50% crack depths, respectively. Curves B and D correspond to the same
natural frequencies associated with the healthy system. As expected, the crack presence
results in smaller natural frequencies as compared with the pristine condition. Addi-
tionally, the difference between the curves increases according to the crack depth. It is
worth mentioning that the crack presence leads to a classic case of mistuning since the
natural frequencies of the healthy and damaged blades become different [14]. Thus,
unstable behavior may happen.

Table 1. Parameters of the rotor-blade system.

Rotor Blades (i = 1, 2, 3, 4)

mr 1.907 kg hi (i − 1)p/2 rad
ky 2.16 � 104 N/m mpi 0.1* kg
r 0.04 m ki 1012 N/m
E 2 � 1011 N/m2 Li 0.2 m
e 1 � 10−5 m bti 0.006 m
U 0 rad h 0.003 m

Lti 0.03 m
rti 0.015 m
Iti 7.575 � 10−6 kg m2

E 2x1011 N/m2

Ii 1.35 � 10−11 m4

*Tip mass attached to the blade.
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In this context, it is interesting to perform an instability analysis to evaluate the
influence of the crack presence. The real parts of the system eigenvalues were analyzed
[15], in which positive values indicate unstable condition. This study was performed by
varying the rotation speed from 0 to 2500 RPM (in steps of 10 RPM) and the crack
depth from 0 to 50% (in steps of 5%) of the blade height. In the present work, two
different cases were analyzed. The first one is associated with the open crack (always-
open crack during the simulation process - constant stiffness reduction of the blade #1).
In the second case, the crack was able to open and close abruptly (breathing crack),
according to the displacement of the blade #1 tip (see z1(t) in Fig. 1).

a) First mode – ωn = 7.42 Hz. b) Second mode – ωn = 7.42 Hz.

c) Third mode – ωn = 7.55 Hz. d) Fourth mode – ωn = 16.14 Hz.

e) Fifth mode – ωn = 16.14 Hz.

Fig. 3. Vibration modes and corresponding natural frequencies of the healthy sytem.
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a) 25% crack depth.

b) 50% crack depth.

Fig. 4. Waterfall diagrams for the blade #1 by considering two crack depths.

Table 2. Parameters of the crack model.

Pristine
condition

25% crack
depth

50% crack
depth

keq 1012 N/m keq 650 N/m keq 261 N/m
a/h 0 a/h 0.25 a/h 0.5
LB1 0.2 m LB1 0.01 m LB1 0.01 m
LB2 0 m LB2 0.19 m LB2 0.19 m
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To introduce the breathing in the model was considered in Eq. (11), Positive dis-
placements indicate a full closed crack (pristine condition) and negative values leads to
a full open crack (stiffness reduction). Regarding the results for the instability regimes,
for both cases (open crack and breathing crack) a new eigenvalue problem was solved
for each time-step. Then, the real part of the eigenvalues where checked as a criterion
for stability. For the breathing crack condition, the crack changes from closed (healthy
blade) to open along the simulation. The unstable condition was observed only when
the breathing crack is open. Thus, regarding the stability of the system, it is expected
that the same result be obtained for both crack conditions, as can be seen in Fig. 5.

It is important to highlight that the unstable condition was associated only to the
fourth and fifth vibration modes (see Fig. 3; positive real part obtained only in the
eigenvalues of the fourth and fifth modes), and these conditions were obtained for crack
depths above 20%.

Figures 6, 7 and 8 show the displacement of the blade #1 tip (see z1(t) in Fig. 1)
with the system operating at 250 RPM, 970 RPM, and 2000 RPM, respectively, where
25% and 50% crack depths in blade #1 are considered, as well as its pristine condition.
Stable and unstable conditions were achieved for these cases, as presented by Table 3
(see Fig. 5). The rotor-blade system was simulated for 20 s. Note that the vibration
responses obtained by considering the full open and breathing cracks are different for
250 RPM and 970 RPM, mainly for the lower speeds for which a 50% breathing crack
introduce a new peak in the response. However, similar results were obtained with the
rotor-blade system operating at 2000 RPM, which agrees with the waterfall diagram,

Fig. 5. Stability map of the rotor-blade system by considering the full open (•) and the breathing
crack (o).
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a) full open crack. 

b) breathing crack. 

Fig. 6. Vibration responses obtained with the system operating at 250 RPM.

Table 3. Stable and unstable conditions according to the rotation speed.

Crack depth 25% 50%

250 RPM Stable Stable
970 RPM Unstable Unstable
2000 RPM Stable Unstable
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since the two curves shown in Fig. 4 get closer due to the rotation increase. Addi-
tionally, it can be observed that the vibration amplitude does not increase necessarily
with the crack depth (see Figs. 7a and 8a, b).

a) full open crack. 

b) breathing crack. 

Fig. 7. Vibration responses obtained with the system operating at 970 RPM.
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4 Conclusions

It is well known that rotating machines coupled with blades may operate under certain
conditions that can lead to the growth of cracks. The presence of cracks is undesirable
since it may lead to the failure of the system.

Thus, it is necessary to apply predictive maintenance techniques as based on
vibration responses to ensure safety operating conditions of these machines. In this
context, this contribution demonstrated the effects that a crack introduced in a blade
presents on the dynamic behavior of a rotor-blade system. From the results, it was

a) full open crack. 

b) breathing crack. 

Fig. 8. Vibration responses obtained with the system operating at 2000 RPM.
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observed that the crack introduced local flexibility in the blade, which makes the
system unstable. Full open and breathing crack behaviors were analyzed. It was
demonstrated that the resulting stability map is the same for both crack conditions. The
time vibration responses of the system were also evaluated, revealing that the full open
and breathing crack induce different dynamic behaviors on the system. Further research
effort will be dedicated to the experimental verification of the presented results.
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Abstract. In rotating machinery, such as axial-flow compressor, gas turbine
and aero-engine, the small clearance between the rotational blade and casing can
increase the system efficiency, but may also lead to the rubbing between the
blade and casing. The severe rubbing can bring about damages of the blade or
casing. In this paper, two mathematical models of blade: a uniform-thickness-
shell (UTS) model and a uniform-thickness-twisted-shell (UTTS) model, are
established to compare the effects of the blade twist angle on the rubbing-
induced vibration responses. The natural characteristics obtained from the two
models are compared. Dynamic behaviors obtained from two models consid-
ering the combined effects of centrifugal force and aerodynamic force are also
compared. Moreover, considering the effects of the misalignment angle and
radial misalignment, the transient responses caused by rubbing using the two
models are discussed. The results exhibit that the resonance in the radial
direction cannot be observed when the blade twist angle is ignored (using UTS
model). However, this resonance can be observed using the UTTS model, i.e.,
taking the influences of twist angle into account.

Keywords: Rotating blade � Blade-casing rubbing � Twist angle
Super-harmonic resonance

1 Introduction

In aero engine, the small rotor-stator clearance can improve the system efficiency, but can
also bring out the blade-casing rubbing. The rubbing may cause severe vibration of the
engine and can decrease the system capability. The rotor-stator rubbing has aroused wide
concern, and Jacquet-Richardet et al. [1] and Ma et al. [2] presented a detailed review
related to this topic. Generally, the rotor-stator contact (interaction) can be regarded as
rubbing in Refs. [3–5], modal interaction in Refs. [6–8] and whirl and whip in Ref. [9].
For the sake of obtaining a deep understanding of the dynamic characteristics during
rubbing, some theoretical and experimental researches [3, 4, 10–13] were presented, and
some numerical methods are proposed by Batailly et al. [14] and Parent et al. [15].

According to the different requirement of simulation modeling, the blade can be
regarded as beam, thin plate and three-dimensional solid model in many studies. The
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three-dimensional blade is simplified as a beam model [3, 4, 8]. It is clear that the beam
model cannot accurately analyze the vibration response in the chord wise direction. For
improving the precision of the beam model, the plate models are also widely adopted
[11]. Adopting the thin shell theory, Sun et al. [16] established a new dynamic model of
a rotational blade with stagger angles, and analyzed the dynamic characteristics of the
blade systems. Yoo et al. [17] proposed a new method to carry out the modal analysis
of a rotational cantilever plate, and discussed the modal behaviors of the plate under
different structural and load parameters, such as the aspect ratios and the angular
speeds. Sinha and Zylka [18] developed a dynamic model using thin shell theory to
analyze the transverse vibration of a rotational blade.

Many researchers adopted three dimensional finite element models due to their
accuracy, especially for complicated structures. A three-dimensional finite element
model for a partial blade-disk with dovetail is established, and the dynamic behaviors
of the blade and contact characteristics of dovetail are analyzed in Ref. [12]. It is
obvious that the numerical simulation is time-consuming adopting a three-dimensional
finite element model with large sizes.

From the above literatures, it can be observed that the dynamic characteristics of
blade considering the effects of twist angle were investigated, however, the influences
of blade twist angle on the responses caused by rubbing are not involved. In order to
make up for this deficiency, in this paper, two finite element models of blade, i.e.,
uniform-thickness shell (UTS), and uniform-thickness-twisted shell (UTTS) models,
are established to compare the influences of twist angles of blade on the system
vibration responses during rubbing.

2 Finite Element Models of Blade and Blade-Casing Rubbing
Model

2.1 Finite Element Model of Blade

For the UTS model, the simulation parameters are shown in Table 1. Compared with
the UTS model, the UTTS model considers the effects of twist angle of the blade cL
(see Fig. 1a, cL= 10° in this paper), and other parameters are all the same as those of
the UTS model. It should be noted that the geometry of the UTTS model is shaped by
extruding the rectangle along the Z axis with a constant rate c’ of the twist angle, such
that the twist angle along the Z axis can be expressed as cðZÞ ¼ c0 Z ¼ cL

L � Z.
The UTTS is built by 9 mid-curves related to the profiles, as shown in Fig. 1b, where
the thickness h is calculated by the blade surface data. The detailed modelling process
can be found in Ref. [19].

Table 1. Blade simulation parameters

Material parameters Values Parameters of disk and blade Values

Young’s modulus E (GPa) 125 Radius of the disk Rd (mm) 216.52
Density q (kg/m3) 4370 Blade length L (mm) 88.6
Poisson’s ratio t 0.3 Blade width b (mm) 56.7

Stagger angle b2(º) 35.32
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Based on ANSYS, two finite element models are established, where the UTS and
the UTTS FE models are established by Shell181 elements. For the UTS and the UTTS
models, 20 elements (21 nodes) are divided on the blade-tip. It is worth noting that in
the UTS and the UTTS model, the blade width (chord length) is set as the distance
between the leading edge and trailing edge (see Fig. 2).

The motion equations of the blade are

M€uþ DþGðXÞ½ � _uþ Ke þKcðXÞþKsðXÞþKaccð _XÞ
� �

u ¼ f ð1Þ

The detailed introduction about M, D, GðXÞ;Ke;KcðXÞ;KsðXÞ;Kaccð _XÞ, u and
f can be found in Ref. [19].

Fig. 1. Schematic diagram of the geometry: (a) schematic diagram of twist angle, (b) modeling
schematic diagram for UTTS

Fig. 2. Finite element models of blades: (a) UTS model, (b) UTTS model
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2.2 Blade-Casing Rubbing Model

Considering the effects of angle misalignment b1 and radial misalignment, blade-casing
rubbing model is established (see Fig. 3). The detailed introduction of the showed
parameters can be found in Ref. [19].

The clearance girub can be written as

girub ¼ gi � uiZb þ uiZc ð2Þ

where uZb
i and uZc

i are radial displacements of blade-tip node i and LMP i of the casing,
respectively. For the UTS and the UTTS models, i = 1, 2,…, 21. Here, it should be
noted that the influences of the bending vibration of the casing on girub are not con-
sidered. gi can be written as

gi ¼
Rc sinðp=2� hiðtÞÞ= sin hðtÞ � Rg hðtÞ 6¼ np
gimin hðtÞ ¼ 2np
2Rc � 2Rg � gimin hðtÞ ¼ ð2nþ 1Þp

8<
:

Fig. 3. (a) blade top view (b) blade-casing clearance (c) the clearance between blade-tip node
i and LMP i of casing.
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where n denotes positive integer; Rc ¼ lOcB; hiðtÞ ¼ p=2� hðtÞþ aiðtÞ (see Fig. 3c),
ui0 ¼ arctanðZi

0

�
Xi
0Þ; here, Z0i and X0

i denote the initial Z and X coordinates of the node
i on the blade-tip. ai(t) can be written as

aiðtÞ ¼ arcsinððRc � gimin � RgÞ sin hðtÞ=RcÞ ð4Þ

where gimin ¼ gmin1 þð21� iÞ � b� cos b2=20� sin b1. gmin1 is

gmin1¼gmin � ðRgcosb1 þ bcosb2 � sinb1 � RgÞ ð5Þ

The penetration depth di of the blade-tip node i is

di ¼ �girub girub\0
0 girub � 0

�
ð6Þ

The equivalent normal rubbing force Fi
Zb of blade-tip node i is

Fi
Zb ¼ fn

di
d

ð7Þ

where d denotes the penetration depth sum of each blade-tip node, and it can bewritten as:

d ¼
Xn
i¼1

di ð8Þ

Assuming that the casing stiffness is linear [19], the rubbing force is

felastic ¼ kriuc; ð9Þ

where kri and uc are the equivalent casing stiffness and the casing radial displacement.
The force balance relation is shown the following expression.

fn ¼ felastic; ð10Þ

The tangential rubbing force of blade-tip node i is

Fi
Xb ¼ lFi

Zb ð11Þ

where l is the coefficient of friction.

3 Dynamic Characteristics of Two Blade Models Without
Rubbing

The section will firstly analyze the natural characteristics of rotational blade adopting
two finite element models. Taking the effects of the stress stiffening, spin softening and
Coriolis force into account, the first two natural frequencies and their mode shapes are
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displayed in Figs. 4 and 5. In the figure, 10X represents the aerodynamic force fre-
quency. The intersections of 10X line and the first natural frequency are defined as
critical speeds, and they are 3999 RPM for UTS model and 3998 RPM for UTTS
model, respectively. The first two natural frequencies are also shown in Table 2, which
shows a light error (smaller than 0.4%) between natural frequencies obtained from two
models.

Comparison on the vibration responses of different blade-tip nodes are displayed in
Figs. 6 and 7. In these figures, the nodes 1, 11, and 21 are used to describe the vibration
of the leading edge, the blade-tip middle point and trailing edge.

Fig. 4. Natural frequencies of the blade

Fig. 5. Mode shapes obtained from two finite models at rest: (a) UTS model, (b) UTTS model
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The run-up response in the radial direction shows that for the UTS model, the radial
displacements include only a static component due to the centrifugal force (see radial
displacement in Fig. 6). For the UTTS models, the radial displacements include two
distinct components: static component related to the centrifugal force and a high fre-
quency component caused by aerodynamic force. Moreover, for the UTTS model, the
radial-direction resonance peaks (the first order resonance) can be observed because the
blade twist angles have an effect on the radial vibration (see Fig. 7).

Table 2. Natural frequencies obtained from two finite element models

Mode Models Rotational speeds (RPM)
0 2000 4000 6000 8000 10000

1F UTS (Hz) 652.875 656.292 666.436 682.997 705.508 733.402
UTTS (Hz) 652.197 655.871 666.411 683.741 707.269 736.384

1T UTS (Hz) 2188.227 2189.248 2192.311 2197.404 2204.514 2213.620
UTTS (Hz) 2232.554 2233.543 2236.509 2241.441 2248.328 2257.149

Fig. 6. Vibration responses of blade-tip nodes without rubbing (UTS model): (a) node 1,
(b) node 11, (c) node 21.
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The flexural displacement also includes the static component and the high fre-
quency component. The static components have different change trend for different
blade-tip positions (see Figs. 6 and 7).

4 Vibration Responses of Blade and Casing Under Rubbing

When the rotor speeds up from X0 to Xend, vibration responses of the blade-tip nodes
(node 21) and casing based on two finite element models, are displayed in Figs. 8 and 9.

Except for the aerodynamic loads induced primary resonances, many rubbing
induced super-harmonic resonances also appear when the multiple of the rotating speed
is close to the blade natural frequency. For example, the resonance peaks obtained from
the UTS model can be observed at 6994 RPM (see Fig. 8b) which are excited due to
six times of rotating frequencies 6X (6X = fn1 Hz, fn1 denotes the first natural fre-
quency of blade) and five times of rotating frequencies 5X (5X = fn1 Hz) approaching
fn1. More super-harmonic resonance peaks can be observed when using the UTTS

Fig. 7. Vibration responses of blade-tip nodes without rubbing (UTTS model): (a) node 1,
(b) node 11, (c) node 21.
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model than those of the UTS model, and the super-harmonic resonance phenomena
become even more abundant, compared with the UTTS model.

For the UTTS model, the first blade-tip rubbing occurs near 4037 RPM because the
radial-direction resonance peak of the blade appears at 4037 RPM under the action of
aerodynamic and centrifugal loads. With the increasing rotational speed, the radial
elongation of the blade-tip increases, the rubbing appears again (see Fig. 9d).

Fig. 8. Vibration responses of node 21 (UTS model): (a) radial displacement, (b) flexural
displacement, (c) spectrum cascade, (d) normal rubbing forces, (e) radial displacement of the
casing, (f) spectrum cascade of the casing

Fig. 9. Vibration responses on node 21 (UTTS model): (a) radial displacement, (b) flexural
displacement, (c) spectrum cascade, (d) normal rubbing forces, (e) radial displacement of the
casing, (f) spectrum cascade of the casing
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The time history, frequency spectra and displacement nephograms obtained from
the speed-up process (near 5X = fn1 Hz) are discussed (see Figs. 10, 11, 12 and 13). It
should be noted that in the time-domain waveforms (see Figs. 10a and 12a), the left-
hand vertical ordinate axis (blue line) shows the flexural displacement of the node 21,
and the right-hand vertical ordinate axis (green line) shows the normal rubbing force.
The time segments for frequency spectra are in the interval of [7.3215 s, 7.4685 s] for
the UTS and the UTTS models. The displacement nephograms of the blade at four
typical moments A, B, C and D (see Figs. 10a and 12a) are shown in Figs. 11 and 13.
Compared the vibration obtained from the UTS and the UTTS models, it is obvious
that the vibration increases sharply due to the effect of the twist-shape of the blade (see
Figs. 10 and 12). The results also show that the vibration response is predominant near
fn1 in comparison with that near fn2, as shown in Figs. 10b and 12b. It should be noted
that for the UTS and the UTTS models, 15X � fn2. In the displacement nephograms,
the bending-torsion coupled vibrations of blade can be observed under 5X � fn1 (see
Figs. 11a and 13a) because the twist angle leads to the stiffness coupling in radial and
flexural directions.

Fig. 10. Vibration responses of the node 21 near 8593 RPM (UTS model): (a) flexural
displacement waveform, (b) frequency spectrum

Fig. 11. Displacement nephograms near 8593 RPM (UTS model): (a) moment A, (b) moment
B, (c) moment C, (d) moment D
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5 Conclusions

In this paper, the influences of blade twist angle on the vibration responses caused by
rubbing are analyzed using two finite element models, i.e., the uniform-thickness shell
(UTS) and uniform-thickness-twisted shell (UTTS) models. The casing is simulated by
a lumped mass with spring and damping. By rubbing force to couple the blade can
casing models, the blade-casing rubbing phenomena are simulated. Mainly conclusions
are listed as follows:

The simulated results show that the twist angle can not affect the rubbing induced
super-harmonic resonance phenomena in flexural direction. The vibration response is
predominant near the first dynamic frequency compared with that near the second
dynamic frequency. The rubbing can excite the blade bending-torsional coupled
vibration.

The twist angle affects the resonance in the radial direction, and this resonance can
be observed for the blade with twist angle. In addition, the twist angle also affects the
active sets of rubbing nodes due to different blade-tip deformations.

Acknowledgment. This project is supported by the China Natural Science Funds (NSFC, Grant
no. 11772089) and the Fundamental Research Funds for the Central Universities (Grant nos.
N160313004 and N160312001).

Fig. 12. Vibration responses of the node 21 near 8542 RPM (UTTS model): (a) flexural
displacement waveform, (b) frequency spectrum

Fig. 13. Displacement nephograms near 8542 RPM (UTTS model): (a) moment A, (b) moment
B, (c) moment C, (d) moment D
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Abstract. A new method for blade modal analysis is introduced in this paper
by using continuous optical fiber sensors and optical backscatter reflectometer
technology. The main advantage is that the sensor is few invasive and does not
affect substantially system parameters. Moreover, the optical fiber sensor can be
embedded in composite blades, for instance directly woven in carbon fiber
fabric. This allows the sensor to be always installed and ready to use for con-
tinuous condition monitoring of the blade.
Differently from classical sensors, which can be placed independently from

the others, in this case, all the measurement points are placed on the same wire
(the fiber itself), characterized by a finite length. Furthermore, due to the
physical characteristics of the fiber, some constraints on how the fiber is placed,
such as maximum fiber curvature, must be considered. Moreover, strain mea-
surements are collected and precise positioning is required to reconstruct cor-
rectly the displacement modal shapes from the strains.
In the literature, many optimal placement methods for sensors are proposed,

but they are all referred to independent sensors. An optimal method for optical
sensor placing on the blade for modal analysis is first introduced in the paper.
Then, numerical and experimental tests performed on some blades are shown.

Keywords: Optical fiber � Blade mode shape reconstruction
Blade modal analysis � Optimal sensor arrangement � Rotordynamics

1 Introduction

Experimental modal analysis (EMA) is well-known and material tool for the identifi-
cation of the dynamic characteristics of a structure [1, 2], including also blades
employed in rotating machines [3]. In this case, the analysis is aimed at:

• predicting the locations of possible energy introduction. This permits the determi-
nation of fluid-structure interactions, which could be critical for the blade structure,
and the design of devices for vibration damping [4–7];

• identifying the presence of possible cracks form the mode shapes and, with a
suitable real-time system, controlling fatigue crack growth [8, 9];

• validating FE models, when complex geometries or inhomogeneous materials are
used.
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To completely decouple EMA from the use of numerical models, a high number of
sensors is required to properly fit the different mode shapes of the structure and to
distinguish between them, avoiding the so-called spillover effect [10].

One of the most promising solutions for this purpose is the use of optical fiber
sensors [11–13], like the well-known fiber Bragg grating (FBG) sensors. Recently,
other measurement techniques based on optical fiber sensors have been developed,
allowing a continuous strain measurement along the fiber. This is the case, for example,
of the optical backscatter reflectometer (OBR) technology, which is considered in this
paper.

Anyway, the great potential of this kind of sensors must be exploited by suitably
placing the sensor on the structure. Indeed, differently from classical sensors, which can
be placed independently from the others, in this case all the measurement points are
placed on the same wire (the fiber itself) and this wire is characterized by a finite length.
Moreover, due to the physical characteristics of the fiber, some constraints on how the
fiber is placed, such as the maximum allowed fiber curvature, must be considered,
especially for highly twisted blades. Moreover, blade strains are measured and a proper
position is required to be able to properly reconstruct the displacement modal shapes
from strain measurements.

Many optimal placement methods for sensors have been proposed in the literature
[14–18], but they are generally referred to independent sensors, like accelerometers,
strain gauges, etc., while no methods can be found for this kind of continuous sensors,
to the best knowledge of the authors. Aim of this paper is to propose an optimal method
for continuous optical sensor placing on the structure for modal analysis.

After a brief recall of the optical sensing technology considered here (Sect. 2), the
paper describes the optimal placement method, based on genetic algorithms (Sect. 3).
Finally, Sect. 4 shows some significant numerical and experimental tests, which prove
the good results obtained by using the proposed approach.

2 Optical Backscatter Reflectometry Sensors

Fiber optic sensors are an excellent solution for embedding in composite materials,
thanks to their reduced cross-section and the consequent negligible load effect on the
structure. Moreover, they can be embedded inside the structure during the manufac-
turing process, thus avoiding any surface alteration that may compromise the correct
working of the structure, for example when a specific surface shape is required for
fluid-structure interaction (e.g. turbine blades), or a free surface is necessary for the
interaction with other components (e.g. mechanisms or joints).

Many different sensing technologies based on optical fibers are available, each one
suitable for a range of applications depending on many parameters like the number of
sensors, the fiber length or the frequency range. Among them, one interesting solution
for vibration monitoring and modal analysis purposes is represented by OBR sensors
[19, 20].

OBR fiber optics relies on the optical backscatter reflectometry physical principle:
when an electromagnetic radiation, like a light beam or a laser, propagates in a med-
ium, it collides and interacts with the incident atoms causing secondary electromagnetic

206 P. Pennacchi et al.



waves, called “scattered”, which are coherent and interact in a constructive way
defining a weak, but detectable signal (see Fig. 1). If the medium is not homogeneous
in terms of density (thus, in terms of refraction index), as a real fiber, the propagating
wave gets scattered and then a back scattered wave is created. This phenomenon is
called spontaneous Rayleigh scattering.

By varying the frequency of the laser wave, a periodic signal is created at the light
sensor, whose frequency depends on the location of the respective fiber segment that
scatters the light back. The further the segment away from the light sensor, the greater
the frequency of the interference signal. As the light sensor receives the backscattered
signal from all the segments simultaneously, the total signal must be split into its
frequency components using a Fourier transform technique. The frequencies then
correspond to the signal location along the fiber. The amplitude of each frequency
component indicates the strength of the respective reflection.

The scanning of a commercial segment of optical fiber causes an oscillating
intensity pattern of the Rayleigh scattering, which can be detected by a suitable
detector. The measured pattern is stationary while repeating the measurements without
applying any load. This characteristic is the fingerprint of the given optical fiber seg-
ment. Indeed, Rayleigh scattering is characterized by this phenomenon, which is due to
both the elastic scattering and the variation of the index of refraction caused by local
imperfections. The fingerprint is deformed in the space when a mechanical load or a
temperature gradient is applied to the optical fiber segment. This is the fundamental
principle of working of the OBR technology: local strain or temperature can be
obtained from local pattern of Rayleigh scattering.

3 Optimal Sensor Placement Method

3.1 From Strain Measurements to Displacement Estimation

The procedure for optimal placement of continuous sensors should allow recon-
structing the displacement modal shape of the structure starting from the available
measurements.

Fig. 1. Spontaneous Rayleigh scattering.
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Being the measurement output a strain measure, a strain-to-displacement procedure
has to be implemented to obtain the structure displacements. In the literature, this is
typically obtained by using the so-called DST-matrix method [21], which is based on a
full a-priori knowledge of the modal shapes of the structure (displacement and strain
modal shapes are linked by the numerical model itself). Anyway, for the purpose of this
work, the modal shape estimation should rely on the model as less as possible. For this
reason, the reconstruction of the displacement field of the structure must be obtained
from the measurement of the strain in a number of points and in a given direction (i.e.
the fiber direction in that points).

Considering the strain theory for thin plates, the surface strain of the plate can be
expressed as

exx ¼ @u
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where x, y and z represent the reference system (see Fig. 2), u, v and w are the
displacements along x, y and z respectively, exx and eyy are the axial strain along x and y,
while cxy represents the planar shear strain at 45°. All the other strain terms generally
present in 3-D structures are equal to zero for thin plates.

Under a theoretical point of view, to obtain the displacement field (w), a few surface
strain measurements with any direction are sufficient, since the displacement field can
be obtained by double-integrating the strain field based on one of the two expressions
in Eq. (1). In practice, this leads to non-robust results, because “information” from one
direction only is employed, without considering what happens along the other ones.

For this reason, a different approach is adopted with the aim at considering strain
information coming from different directions. Starting from
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Fig. 2. Reference system for the thin plate under analysis.
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where ehi represents the axial strain along a general i-th direction in a certain structure
point, the shear strain cxy can be computed in the same structure point. Then, once the
shear strain is known, the displacement w is computed by integrating twice the

Fig. 3. Computation of the shear strain field from axial strain measurements.

Fig. 4. Computation of the displacement field from axial strain along x (center) and from shear
strain (right) compared with the correct displacement (left): lower order mode (on the top) and
higher order mode (on the bottom)
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expression in Eq. (1). To do that, the complete strain field along at least three directions
must be known. By placing the optical fiber sensors along three directions, it is possible
to interpolate them, obtaining the complete axial strain field along these directions and
then to calculate cxy by using Eq. (2). An example of this procedure is shown in Fig. 3,
while Fig. 4 shows an example comparing the displacement reconstruction obtained
with this approach and using the axial strain measurements along the x-axis only. Both
results are obtained considering 20 “virtual” sensors placed randomly on the structure.

3.2 Optimal Sensor Placing Algorithm

The optimal placing algorithm proposed in this paper is based on genetic algorithms
(GA) [22]. Unlike FBG optical sensors, for which some optimal sensor placement
methods can be found in the literature [14], OBR optical-fiber contains a huge number
of embedded gauges. GA has to place the fiber dealing with a physically constrained
continuous device. The continuity of the fiber-sensor is a tricky constraint to be dealt
with. No kind of suggestion has been found in the literature concerning how to manage
this specific aspect. Therefore, some new procedures have been implemented according
to this fact.

It is necessary to develop a fiber-placement algorithm that works in the GA
framework and tracks a potentially valid path for the fiber starting from a reduced
number of encoded design variables (DVs). This approach permits producing valid
sensor arrangements at each generation, depending on a fixed logic. As a matter of fact,
too many constraints exist to allow the survival of whichever valid configuration, after
a crossover if the whole fiber-path is encoded. For these reasons, the genetic coding and
crossover procedure will not involve the whole fiber arrangement, but just a set of
outstanding positions. These points, namely their position and orientation, represent the
genes of each individual and build the chromosome, as represented in Fig. 5. The
position is described by a number univocally representing a structure point, while
orientation is described by another number representing the possible orientations
allowed. In this example three possible orientations, identified by numbers 1, 2, and 3,
are considered.

Fig. 5. Structure of the individual chromosome.
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To obtain the full fiber path, these points will be connected in deterministic manner,
providing the complete configuration of the fiber. Then, the individual fitness is
computed accounting for the information available by the complete configuration. If the
configuration exceeds the maximum fiber length, it is excluded by setting the corre-
sponding fitness function to zero. Being the connection strategy deterministically
dependent on the relative position and orientation of the outstanding locations, the
genetic heritability of fiber arrangement is guaranteed among generations. Figure 6
resumes how the fitness function of the GA is calculated, as described above.

The fitness function, to be maximized by the GA, has been defined based on the
scope of the algorithm and on the physical constraints the OBR sensor is subject to:

Fitness ¼ MSEweighted 1þ 1� detFIMfiber

detFIMglobal

� �
þAutoMACþ 1� bendsmin

bendsfiber

� �� �� ��1

ð4Þ

The fitness function is composed by:

• a main contribution (MSEweighted), representing the mean square error between the
estimated and real modal shape for all the considered modes. The weight is an user-
defined coefficient that can be introduced to provide more importance to some
modes;

• a penalty function (detFIMfiber) able to drive the optimization procedure to those
points containing more significant strain information if compared to the global
strain information of the structure;

• a penalty function, based on AutoMAC, to avoid fiber configurations for which two
different modes cannot be distinguished one from the other;

• a penalty function (bendsfiber) to penalize configurations containing more fiber
curves along the path than the minimum required ones.

While the first three elements of the fitness function depend on the target of the
optimization procedure, the last one is strongly sensor-dependent and it is due to the
fact that OBR sensors are characterized by a strong reduction of the measurement
quality if the fiber is placed with many low-radius bends. The same optimization
method can be used for any other kind of continuous sensor without losing generality,
just removing this last penalty element.

Reordering of 
outstanding

locations

Connection of 
the 

outstanding 
locations

Simulation of 
the 

measurement 
process

Elaboration of 
strain data

Fitness 
calculation

Fig. 6. Procedure for the definition of the fitness function of the genetic algorithm.
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4 Experimental Tests

4.1 Test Rig Setup with a Simple Plate

The optimal placement method proposed in the previous section has been tested on a
PVC thin plate equipped with a LUNA OBR optical fiber. Figure 7 shows the gluing of
the optical fiber on the structure, while Fig. 8 shows the experimental setup, where the
plate has been mounted on a shaker to excite its modes. Two different mounting
conditions have been used to excite both torsional and bending modes with the same
unidirectional shaker.

Fig. 7. Application of the optical fiber on the structure following the path identified by the
optimal placing method.

Fig. 8. Plate mounting on the shaker to excite the torsional modes (on the left) and the bending
modes (on the right).
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4.2 Optimal Sensor Placement Results

The following parameters have been considered as input for the placing algorithm:

• optical fiber length equal to 1.5 m;
• targeted modes from the 2nd to the 9th except to the 8th: the algorithm will optimize

the fiber position to optimally identifying these modes;
• minimum fiber radius equal to 10 mm;
• three possible sensor directions (0°, 45° and 90° with respect to the x-axis).

Moreover, 100 individuals and mutation probability of 0.4 have been considered
for the genetic algorithm.

Figure 9 shows the result obtained for the algorithm in this case. The segments of
the fiber along the three allowed directions, representing the portions of the optical fiber
that is used for the mode estimation, are represented with dots having different colors,
namely blue for 0°, black for 45° and yellow for 90° with respect to the x-axis. The thin
red lines represent the parts of the fiber used to connect the active measuring portions.

4.3 Numerical and Experimental Mode Estimation Results

The optimal fiber configuration provided by the algorithm for the analyzed case study
has been tested by means of numerical and experimental tests. The experimental ones
have been done by forcing the structure on different resonances using the shaker and
acquiring the fiber signals, while the numerical ones are obtained by simulating the
fiber output on a FEM of the plate.

Due to the simplicity of the structure, the numerical and experimental results are
expected to be similar, due to the very small differences between model and real
structure. Anyway, a significant difference is related to the sensor measurement.
Indeed, while numerical tests are performed under the assumption of ideal sensors (no
noise, no measurement uncertainty, no signal quantization), the real output of OBR
sensors is characterized by a poor signal quality and, as a consequence, by a potential
loss of performance of the algorithm.

To reduce this effect on the final output of the modal analysis, an averaging among
multiple vibrations cycles becomes necessary. Thus, the modal analysis of the structure
cannot be performed punctually (i.e. a point-by-point estimation cannot be performed
unless a high estimation error is accepted), but it must be performed on an acquisition
window. Anyway, it must be underlined that the general validity of the proposed

Fig. 9. Fiber configuration provided by the optimization algorithm.
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procedure is not nullified by this issue, being it a characteristic of the particular fiber
type used in this test setup.

For the sake of brevity, in the following only the results obtained on some sig-
nificant modes are reported. For each represented mode, the ideal displacement modal
shape (left), that estimated numerically (center) and that estimated from the experi-
mental data (right) are reported.

In particular, Figs. 10 and 11 show the estimation result for 5th mode (second
torsional mode) and 6th mode (fourth bending mode). It can be observed that in both
cases the modal shape reconstruction provided by both numerical and experimental
data are able to reproduce the real characteristics of the mode.

w on mid plane – calculated 
from simulated strains

w on mid plane – calculated from 
measured strains

w on mid plane – 
FEM simulation

Fig. 10. Reconstruction of 5th mode: actual mode (left) and mode reconstructed by numerical
data (center) and experimental data (right).

w on mid plane – 
FEM simulation

w on mid plane – calculated 
from simulated strains

w on mid plane – calculated from 
measured strains

Fig. 11. Reconstruction of 6th mode: actual mode (left) and mode reconstructed by numerical
data (center) and experimental data (right).
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Different considerations can be drawn when analyzing the reconstruction of 8th

mode (see Fig. 12). It is evident that in this case the mode shape reconstruction is not
satisfactory, neither in the case it is computed from simulated strains, neither in the case
of experimental measurements. Anyway, for the algorithm validation, this is a very
good result, confirming the effectiveness of the fiber-placement. Indeed, 8th mode was
not included as target mode in the optimization process and, for this reason, the
capability of the sensor to properly identify this mode is poor.

4.4 Tests on a Composite Blade

Once the good results obtained by the placing algorithm and by the measurement
technique has been verified by means of the simple thin plate, a second test set-up,
more substantial from the point of view of the application on the turbine blades, has
been prepared.

For reasons related to simplicity of construction and mounting on the shaker, the
blade used for the tests was made of ABS by additive manufacturing. The blade
geometry was reproduced by means of the 3D reconstruction of a standard steam
turbine blade (see Fig. 13). Obviously, given the elastic modulus of ABS lower than
the steel one, the blade frequencies are scaled with respect to actual blade. For reasons
of confidentiality, the original frequencies cannot be communicated.

Moreover, in the case of the blade, the accentuated 3D geometry due to the twist,
involves two remarkable differences with respect to the thin plate case described in
Sect. 4.1. The first one is relative to the reconstruction of the modal displacements
starting from the 3D strain measurements: in this case, the strain theory for 3D solids
requires a radical, even if not conceptual, modification of the contents of Sect. 2. The
second is relative to the precise 3D reference for the positioning of the optical fiber on
the blade. This fact has required the development of a suitable blade mapping algo-
rithm. Also in this case, the optical fiber sensor has been glued to the blade surface,

w on mid plane – 
FEM simulation

w on mid plane – calculated 
from simulated strains

w on mid plane – calculated from 
measured strains

Fig. 12. Reconstruction of 8th mode: actual mode (left) and mode reconstructed by numerical
data (center) and experimental data (right).
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optimizing its arrangement according to the algorithm introduced in Sect. 3.2. For the
sake of brevity, it is not possible to illustrate all the theoretical details in this paper, but
both these problems have been solved to allow the experimental tests to be carried out.

In the case of the ABS blade, a single mounting was used on the shaker, since it
was not necessary a specific one for the excitation of bending or torsional modes. The
results are shown in Figs. 14 and 15 for the first two blade modes and for the

Fig. 13. Comparison among real blade and 3D ABS model.

u on surface – FEM simulation v on surface – FEM simulation w on surface – FEM simulation

v on surface – from measured strain w on surface – from measured strainu on surface – from measured strain

Fig. 14. 3D-blade experimental 1st mode-shape at 15 Hz.
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displacements along the three reference axes and are compared with those obtained
with the FEM model of the blade.

It is worth noting the good fitting between the FEM simulations of the modal
displacements and the measurements obtained by OBR. Further tests are underway, by
using a composite blade, in which the sensor is directly embedded in the structure.

5 Conclusions

This paper proposed a new method to optimally place a continuous sensor, like an
optical fiber one, on a structure for modal analysis purpose. The method is based on a
genetic algorithm optimization able to find the best fiber configuration to correctly
identify a number of structural modes under some constraints related to the fiber length
and its measuring characteristics.

The proposed method has been first numerically and experimentally tested on a
structure represented by a thin plate. The results obtained by placing the fiber based on
the optimization algorithm have been compared to those obtained by placing the fiber
in generic configurations, showing a strong improvement on the estimation of structural
modal shapes. The second test has been performed on a 3D blade specimen: also in this
case, the measured displacements fit well with those of FEM modal analysis.

Thanks to the advantages of optical fiber sensors, this approach can be used in
several of applications, such as vibration monitoring of composite structures.
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Abstract. In the present work, a rotor train system is connected by a flexible
coupling and integrated with an auxiliary active magnetic bearing. Due to
angular misalignment that exists between the shafts, coupling stiffness varies
with shaft rotation. A mathematical function that is time-dependent and which
can yield integer harmonics has been chosen to numerically model coupling
additive stiffness. The equations of motion have been obtained from Lagrange’s
equation. The amplitude and phase of peaks of rotor vibration and AMB current
signatures have been obtained in time and frequency domains using least-
squares regression technique and full spectrum technique, respectively. They are
eventually utilized to identify the intact and additive stiffness of coupling, vis-
cous damping, unbalance magnitude and phase, and the AMB displacement and
current stiffness. A SIMULINKTM has been built to generate time domain
responses of discs and AMB current. From the EOM of rotors regression
equations have been formed in frequency domain to create an inverse problem.
The identification algorithm has been found to be robust against noise levels up
to 5%.

Keywords: Rotor-train � Misalignment � Active magnetic bearing
Full spectrum

1 Introduction

Among the faults that are encountered in field operation of rotating system,
misalignment is the one of the predominant faults. It arises due to of loss of co-axiality
between rotors and bearings, which is caused due to improper assembly and defor-
mation caused due to thermal effects. It leads to decrease in transmission efficiency,
bearing wear, noise and reduction of life in bearings.

Gibbons [1] made study on parallel misalignment and gave expressions for forces
and moments generated in the coupling. Sekhar and Prabhu [2] and Rao and Sekhar[3]
considered both parallel and angular misalignment in flexible coupling and set up
formulae for reaction forces and moments. Prabhu [4] studied the influence of
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misalignment on various harmonics of vibration response in rotor system with multiple
disks supported on journal bearings. It was concluded that with increase in misalign-
ment the amplitude of 2nd harmonic initially decreased and then increased. Rao et al.
[5] studied parallel misalignment in a coupled Jeffcott rotor test rig. Higher vibrations
and loopy orbits were noticed at one-half and one-third of the first critical speed.
Numerical studies done in [6] on rigidly coupled rotors indicated that parallel
misalignment could produce both translational and angular excitations.

In [7] rigid coupling stiffness is considered to be a sum of static and fluctuating
components. The effect of parallel offset in a rotor system is considered in the presence
of torsional excitation. In [8], the parallel and angular misalignments were introduced
in a test set up, fluctuating forces and moments were then measured at the bearing
location with a 6-axis load cell and input as force terms in the finite element model.
The FFT of the vibration responses yielded all the integer harmonics. Jalan and
Mohanty [9] identified unbalance and misalignment by comparing the equivalent forces
generated due to faults obtained from both experiment and theoretical fault model.
Avendano and Childs [10] used CosmosTM solid modeling tool to create three types of
disc-pack couplings. The forces and moments obtained from FE analysis for various
misalignment conditions were fit into Fourier series expansion. Verma et al. [11] used
both vibration and motor current signals for misalignment detection in machinery fault
simulator. In [12], it was reported that the spectral characteristics of torque sensor
measurements for the parallel and angular misalignments differ from each other.
Moreover, wavelets are found to be more sensitive than FFT to the presence of
misalignment. Lal and Tiwari [13, 14] studied the numerical and experimental iden-
tification of coupling parameters in rigid and flexible rotor systems from run-down
data.

Works on misalignments broadly deal with the following methods (i) numerical and
experimental identification of static forces and moments, (ii) experimental
identification/diagnosis using techniques such as orbits, spectral plots, thermal imaging
[15], stator current analysis [11]. For more information on diagnostics of misalignment,
apart from the numerous papers, the readers are referred to the books by [16, 17, 18, 19,
20] For information on applications of AMB in condition monitoring and vibration
suppression, readers are requested to refer to [21].

This work aims to study the static and more importantly time dependent coupling
misalignment forces in coupled rotor systems using an AMB. AMB current has been
used for suppressing vibration and identification of unbalance magnitude and phase,
coupling stiffness parameters, displacement and current constants of AMB. The
mathematical formulation of coupled rotor-AMB system has been developed. The
development of SimulinkTM model is then described. The equations used for the
identification of harmonics of displacement of the two rotors and the AMB current
using time domain regression technique have been developed. The application of full
spectrum to the present problem has been explained. Finally, the equations used for the
identification of system parameters have been developed and tested numerically.

222 R. Siva Srinivas et al.



2 System Configuration

2.1 Introduction

Coupled rotor systems are widely used in industrial gas turbines, compressors, and
turbo generators. Power is transmitted from driving unit to driven unit across multiple
stages of rotors through couplings. The coupling used can be of rigid or flexible type,
the choice depending upon the rpm, power transmitted and application. Rigid couplings
offer better power transmission with not much allowance for misalignment, while
flexible couplings allow significant misalignment between the bearing centers of
rotating units.

Coupled Rotor-Bearing-AMB System. A motor drives a coupled rotor bearing
system through a drive coupling. The drive is transmitted from rotor-1 to rotor-2 by an
intermediate flexible coupling (see Fig. 1). The behavior of intermediate coupling
alone is considered in this work. The unbalance force is defined by a residual mass
located at an angle from the reference x axis (see Fig. 2).

3 Assumptions

1. Coupling is modeled as a torsion spring since only angular misalignment is con-
sidered in the present study (see Fig. 3). The cross-coupled stiffness of coupling is
less than direct stiffness.

2. Since the formulation uses Jeffcott rotors, the slopes at coupling and support are
assumed to be equal. Putting it differently, it is assumed that coupling is near to
support axially.

3. Coupling is assumed to be flexible and disc is assumed to be heavy. These are the
crucial assumptions in the development of mathematical model for the present
problem.

4. The previous assumptions lead to a linear mathematical relation between the
deflection of central disc and coupling slope. This is on account of the fact that the
slope of shaft at coupling location is due to the central heavy disc.

5. In other words, the linear and angular deflections of rotors produced by coupling
forces and moments are less than that due to their self-weight, i.e. weight domi-
nance is assumed. Similar assumption has been made by [4].

Fig. 1. Coupled rotor bearing system supported on auxiliary AMB
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6. Since the coupling is flexible, reaction moments and the corresponding slopes due
to misalignment are small compared to that caused by the heavy disc at the shaft
center. This assumption does not hold good for the rigid coupling model.

4 Mathematical Modeling

Translational displacements at 2 disc locations, i.e. x1; y1; x2; y2, are the generalized
coordinates of the coupled rotor system. The slopes at coupling locations for shafts are
given by ux1 ;uy1 ;ux2 ;uy2 . With heavy central disc assumption, there is a linear relation
between disc deflections and shaft slopes at coupling locations. From the relations for
deflection and slope of a simply supported shaft with point load at center, the following
relation applies

ux1 ¼
3y1
l
; ux2 ¼

3y2
l
; uy1 ¼

3x1
l
; uy2 ¼

3x2
l

ð1Þ

Fig. 2. Angular position of unbalance

Fig. 3. Flexible coupling replaced by helical torsion spring
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The expressions for kinetic energy and potential energy are given by

KE ¼ 1
2
m1 _x

2
1 þ

1
2
m1 _y

2
1 þ

1
2
m2 _x

2
2 þ

1
2
m2 _y

2
2 ð2Þ

PE ¼ 1
2
k1x21 þ

1
2
k1y21 þ

1
2
k1x22 þ

1
2
k1y22 þ

1
2
kux

ðuy1 þuy2Þþ
1
2
kuy

ðux1 þux2Þ ð3Þ

Since there is no slope at the central span disc the rotational kinetic energy term
about transverse axes is zero. The equations of motion for rotor-1 and rotor-2 are
obtained by applying Lagrange’s equation. Since AMB acts as auxiliary support for
rotor-2, the corresponding terms appear on the RHS of Eq. 2. To reduce computational
complexity the equations are written in complex form by introducing, r ¼ xþ iy.
The FFT of the complex form also helps in the extraction of harmonics, which shall be
discussed in later sections

m1€r1 þ c1 _r1 þðk1 þ ktoÞr1 � kto r2 ¼ funb1 þ fmis1 � Fconst1 ð4Þ

m2€r2 þ c2 _r2 þðk2 þ kto � ksÞr2 � kto r1 ¼ funb2 þ fmis2 � fcur � Fconst2 ð5Þ

where

ktx ¼ 3=lð Þ2kux
and kty ¼ 3=lð Þ2kuy

ð6Þ

Complex unbalance forces for rotors are given by

funbi ¼ mieix
2ejðxtþ biÞ ð7Þ

Complex coupling misalignment forces for rotors are given by

fmis1 ¼ fmis2 ¼ 1=2ð ÞsðtÞDk dx1 þ dx2ð Þ 1þ e2jxt
� � ð8Þ

Constant coupling force is given by

Fconst1 ¼ Fconst2 ¼ kt0 dx1 þ dx2ð Þ ð9Þ

Complex AMB current force is given by

fcur ¼ kI
Xþ n

i¼�n

Iie
ijxt ð10Þ

4.1 Coupling Excitation Function

Experimental data on the misalignment published by [8] have shown the presence of all
integer harmonics on either side of full-spectrum. Hence, it is essential that a suitable
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coupling stiffness function, which generates integer harmonics in the response, is
chosen as a steering function in the mathematical model.

40% duty cycle pulse waveform with (see Fig. 4) is used to represent coupling
misalignment. The Fourier expansion is shown below

sðtÞ ¼ 0:5þ 0:6055 cosðxtÞþ 0:1871 cosð2xtÞ � 0:1247 cosð3xtÞ
� 0:1514 cosð4xtÞþ 0:1009 cosð6xtÞþ 0:0535 cosð7xtÞ ð11Þ

The expanded form of complex coupling misalignment forces is then given by

fmis1 ¼ fmis2 ¼ Dk dx1 þ dx2ð Þ 0:25þ 0:3027ejxt þ 0:1201e�jxt
�

þ 0:2967e2jxt þ 0:0089e�2jxt þ 0:1202e3jxt � 0:0312e�3jxt

þ 0:0089e4jxt�0:0037e�4jxt � 0:0312e5jxt � 0:0133e�5jxt þ . . .
� ð12Þ

The above Fourier expansion from [22] shall be used in the derivation of time
dependent coupling excitation force caused by bearing misalignment.

Numerical Experiment with SimulinkTM Model. The simplified model of the
SimulinkTM block that has been built from Eqs. (4) and (5) (see Fig. 5). Assumed
values used for the generation of responses in time domain are shown in Table 1.

0 0.01 0.02 0.03 0.04 0.05 0.06
Time(s)

0

0.5

1

s(
t)

Fig. 4. Time domain signal of 40% duty cycle square wave

Fig. 5. Simulink model of coupled rotor – AMB system
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The model generates complex displacement of rotor-1, rotor-2, complex AMB current
and a multi-harmonic reference signal in time domain. The role and necessity of
reference signal shall be discussed in Sect. 5.

5 Estimation of Coefficients of Harmonics in Time Domain:
Least Squares Regression Method

Complex vibration responses of rotor-1 which are caused by misalignment at various
instants of time and obtained from SimulinkTM model are multi-harmonic in nature and
are given by

A1ð Þn�i XR1ð Þi�1¼ br1ð Þn�1 ð13Þ

with

A1ð Þn�i¼

1 ejxt1 � � � ejð5xÞt1 � � � ejð�xÞt1 � � � ejð�5xÞt1
1 ejxt2 � � � ejð5xÞt2 � � � ejð�xÞt2 � � � ejð�5xÞt2
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 ejxtn � � � ejð5xÞtn � � � ejð�xÞtn � � � ejð�5xÞtn

� � �
� � �
..
.

..

.

� � �

2
666664

3
777775

ð14Þ

br1ð Þn�1¼ r1cðt1Þ r1cðt2Þ r1cðt3Þ . . . . . . . . . r1cðt2Þf gT ð15Þ

And the vectors of unknowns are given by

XR1ð Þi�1¼ R10ðxÞ R11ðxÞ . . . R15ðxÞ . . . R�11ðxÞ . . . R�15ðxÞ . . .f gT
ð16Þ

Table 1. Assumed parameters of rotor system

m1; kg 2 k2;N/m 7.5e5
m2; kg 2.5 ku;Nm=rad 300
c1, N/m-s 75 kt;N=m 10800
c2, N/m-s 50 Dk;N=m 5000
k1;N=m 7.5e5 dx1 ; lm 26
kI ;A=m 42.1 dx2 ; lm 30
e1; lm 2.40 kp;A=m 12200

e2; lm 1.92 ki, A/m-s 2e3
b1; rad p=6 kd, A-s/m 3
b2; rad p=4 kS;N=m 105210
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Analogous matrix relations exist for rotor-2 vibration response and AMB current.
All three relations are combined in to a single matrix equation. The complex harmonics
of vibration and current are obtained by solving this equation

XR1 XR2 XI½ � ¼ AT
1A1

� ��1
AT

1 br1 br2 bi½ � ð17Þ

where A is the regression matrix, X is the vector of unknowns (complex harmonics, in
this case) to be determined and b is the vector of known quantities.

6 Estimation of Coefficients of Harmonics in Frequency
Domain: Full Spectrum FFT

The frequencies contained in the time domain current and displacement signals can be
extracted using Fast Fourier Transform (FFT) algorithm. Since both positive and
negative frequencies are contained in the signal, a full spectrum plot needs to be used to
understand the qualitative nature of fault the time domain signal represents. A com-
prehensive treatment of the mathematical procedure to obtain full spectrum and its
application to rotating machinery diagnostics has been given in [23]. Coefficients of
harmonics from −5 to +5 can be seen in the full spectrum amplitude plot of rotor-1
complex displacement (see Fig. 6). The phase plot shows the phase angle of each
harmonic with reference to the timing marker on the shaft.

6.1 Phase Correction and Its Necessity

It has been noticed that as the time instants of signal acquisition change, a variation in
phase information takes place. The amplitude information of harmonics, on the other
hand, remains unaffected by this time shift. To account for this phase variation,

Fig. 6. Full spectrum of amplitude and phase of rotor-1 complex displacement
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a complex multi-harmonic reference signal has been envisaged by Singh and Tiwari
[24], who were the first to utilize this technique for the identification of phase of the
harmonics of current and displacement of a cracked Laval rotor (see Fig. 7). Table 2
shows the comparison of amplitudes and phases of harmonics obtained from time
domain and full spectrum with phase compensation. It can be seen that the full
spectrum shows good similarity to the values obtained from time domain inverse
problem. Using full spectrum technique with “peak finding algorithm”, the coefficients
of harmonics of interest can be obtained quicker than it can be done with time domain
analysis.

Phase Compensation

Complex 
Reference signal 

picked at the 
same random 

instant

Harmonics of 
vibration signal 

suffer from phase 
shift

Harmonics of 
reference signal 

undergo the 
same amount of 

phase shift

Time domain 
estimation from 
Inverse problem 

Full Spectrum

Complex 
Vibration signal 

picked at random 
instant

Phase of  
Harmonics 
Unaffected

Fig. 7. Flow chart of phase compensation procedure

Table 2. Comparison of harmonics obtained from time domain and full spectrum with phase
compensation

Rotor 1 Complex amplitude Phase
Harmonic Time domain Full spectrum Time domain Full spectrum

0 6.9723E−07 6.9721E−07 3.1415 3.1415
1 8.3553E−06 8.3553E−06 0.5023 0.5023
2 1.2485E−07 1.2483E−07 −0.0256 −0.0257
3 6.2611E−03 6.2599E−08 −0.0477 −0.0478
4 6.9469E−09 6.9379E−09 −0.0958 −0.0965
5 6.6242E−08 6.6247E−08 2.8065 2.8065

−1 4.5310E−08 4.5322E−08 0.0115 0.0117
−2 3.7451E−09 3.7524E−09 0.0261 0.0271
−3 1.6252E−08 1.6246E−08 −3.0940 −3.0942
−4 2.8879E−09 2.8834E−09 −3.0462 −3.0469
−5 2.8238E−08 2.8233E−08 −2.8065 −2.8065
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7 Identification of Rotor, Coupling and AMB Parameters
in Frequency Domain by Least Squares Regression Method

The expressions for complex displacement, velocity, acceleration and complex current
are substituted in Eqs. (4) and (5). After writing the equations of rotor-1 and rotor-2 for
i ¼ 0; i ¼ 1; i 6¼ 1, real and imaginary parts are separated from equations. The equa-
tions are later grouped into identifiable parameters and known parameters and grouped
in regression matrix form as shown below.

A2X2 ¼ b2 ð18Þ

The system parameters or identifiable parameters are grouped in the column vector
X2. They can be obtained by solving

X2 ¼ A2ð ÞT A2ð Þ�1
h i�1

A2ð ÞTb2 ð19Þ

The values of X2 and b2 can be obtained from n number of spin speeds, which
improves the condition number of regression matrix, thereby yielding closer estimates.

Start

Select speeds

Run the SimulinkTM model built from equations of motion with         
“assumed” values of system parameters

Extract time domain responses of vibration and current signals

Extract coefficients of real and imaginary components of harmonics 
of vibration and current

Build linear regression matrix from system equations of motion by 
segregating the known responses and unknown system parameters

Obtain full spectrum of vibration , current and reference signal

Obtain the coupling parameters, rotor unbalance and AMB 
parameters

Stop

Perform phase
compensation

Add 
signal noise to 

simulate 
experimental data

( )1 2, nω ω ωL

Fig. 8. Sequence of steps in rotor-coupling-AMB parameter identification
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A2ðx1Þ
A2ðx2Þ

..

.

A2ðxnÞ

8>>><
>>>:

9>>>=
>>>;
X2 ¼

b2ðx1Þ
b2ðx2Þ

..

.

b2ðxnÞ

8>>><
>>>:

9>>>=
>>>;

ð20Þ

The sequence of steps followed right from mathematical modeling till parameter
identification is shown in the flow chart (see Fig. 8).

8 Results and Discussion

Table 3 shows the estimates of rotor-coupling-AMB parameters obtained from the
inverse problem (17) at 18 Hz spin speed. The estimates obtained from clean signal are
almost identical to the assumed values with error % less than −1%.

Rotor-2’s equivalent viscous damping, AMB constants undergo comparatively
higher deviations compared to other estimates. Gaussian noise at various levels (1, 2,
and 5%) has been added to the clean signal and estimation was carried out. Rotor-2

Table 3. Error percentage in identified parameters at various levels of noise at 18 Hz

Assumed values Estimated values
0% 1% 2% 5%

c1 75 75.00 75.01 74.99 74.99
0.0 0.02 −0.02 −0.01

c2 50 49.82 49.32 48.65 48.72
−0.95 −1.36 −2.70 −2.56

kt 10800 10800.00 10805.56 10725.78 10793.31
0.00 0.05 −0.69 −0.06

Dkn 5000 5000.00 2001.07 1985.95 1998.52
0.0 0.05 −0.70 −0.07

e1 240E−6 239.99E−06 2.41E−04 2.42E−04 2.43E−04
0.00 0.47 0.72 1.32

b1 30 30.00 30.00 30.00 30.00
0.00 0.00 0.00 0.01

e2 240E−6 240E−06 1.93E−04 1.93E−04 1.95E−04
0.0 0.46 0.76 1.34

b2 45 44.99 45.00 44.99 44.99
−0.01 −0.01 −0.01 −0.01

ks 105210 104987 104189.74 104139.42 104200.22
−0.98 −0.97 −1.02 −0.96

ki 42.1 42.08 41.98 40.69 40.42
−0.16 −0.30 −3.35 −3.98
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damping and AMB current stiffness have been underestimated by as much as 2.56 and
3.98%, respectively, at 5% noise level. The variation in static and additive coupling
stiffness values stands at a reasonable 0.7%. Next the error percentages in the esti-
mation of system parameters for a range of speeds are performed. The rotor system is
ramped up with an angular acceleration of 20p rad/s2 to identify the critical speed. The
Hilbert envelope of vibration response of rotor-1 in x direction reveals the peaks in
response, which correspond to critical speeds (see Fig. 9). The speeds on the either side
of half power points can be taken for estimation (20 to 30 Hz). Here AMB displace-
ment stiffness has displayed considerable variation from the assumed value by as much

Fig. 9. Hilbert envelope of Rotor-1 X displacement during ramp –up ða ¼ 20p rad/s2Þ

Fig. 10. Error percentage in identified parameters at various individual spin speeds (20–30 Hz)
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as 59.96%, while AMB current stiffness displayed a variation of about 10% (see
Fig. 10). Even though the speed range is sufficiently away from half power points, a
large variance is observed at 24 and 25 Hz. This can be explained by the fact that the
aforesaid speeds are half the 1st critical speed, which is 316 rad/s. This can be resolved
by considering the accumulated data from many speeds and feeding them to Eq. (18).
When collective data from the same speed range (20 to 30 Hz) is considered, the
estimates show very good closeness to the assumed values (see Table 4). This exercise
adequately justifies the usefulness of including multiple speeds in the identification
algorithm.

9 Conclusions

A mathematical model of coupled rotor system has been developed from Jeffcott rotor
formulation. A SimulinkTM model has been constructed from complex equations of
motion. The model has been used to perform numerical experiments to generate
vibration and current data in time domain. A reference signal which is multi-harmonic
in nature has been used to correct the anomaly of phase variation that happens to the
coefficients of vibration and current when signals are picked at different instants of time
which would adversely affect the parameter identification if left uncorrected. A modal
based identification algorithm has been developed that utilizes the coefficients of
amplitude and phase harmonics of rotor vibration and AMB current, obtained either
from inverse problem in time domain or from full spectrum, to estimate the flexible
coupling, rotor and AMB parameters. The algorithm has been found to be robust to
noise levels up to as much as 5%. The algorithm can be tested with data obtained from
experimental data. The mathematical model can be extended to the case of Jeffcott rotor
with offset disc to incorporate gyroscopic effects also.

Table 4. Parameters estimated after considering collective data from 20 to 30 Hz in the
identification algorithm

Parameter Assumed values Estimated values

c1 75 74.99
c2 50 50.6
kt 10800 10800
Dkn 5000 5000
e1 240E−06 239.99E−06
b1 30 29.99
e2 240E−06 240E−06
b2 45 45
ks 105210 105196
ki 42.1 42.09

Identification of Coupling Parameters in Flexibly Coupled 233



References

1. Gibbons, C.B.: Coupling misalignment forces. In: Proceedings of the Fifth Turbo Machinery
Symposium, pp. 111–116. Gas Turbine Laboratories, Texas A&M University (1976)

2. Sekhar, A.S., Prabhu, B.S.: Effects of coupling misalignment on vibrations of rotating
machinery. J. Sound Vib. 185(4), 655–671 (1995)

3. Rao, A.S., Sekhar, A.S.: Vibration analysis of rotor-coupling-bearing system with
misaligned shafts. In: ASME International Gas Turbine and Aero Engine Congress and
Exhibition, Birmingham, 8 p. (1996)

4. Prabhu, B.S.: An experimental investigation on the misalignment effects in journal bearings.
Tribol. Trans. 40(2), 235–242 (1997)

5. Rao, J.S., Sreenivas, R., Chawla, A.: Experimental investigation of misaligned rotors. In:
Proceedings of ASME Turbo expo: Power for Land, Sea, and Air, New Orleans, Louisiana,
8 p. (2001)

6. Al-Hussain, K.M., Redmond, I.: Dynamic response of two rotors connected by rigid
mechanical coupling with parallel misalignment. J. Sound Vib. 249(3), 483–498 (2002)

7. Lees, A.W.: Misalignment in rigidly coupled rotors. J. Sound Vib. 305(1–2), 261–271
(2007)

8. Patel, T.H., Darpe, A.K.: Experimental investigations on vibration response of misaligned
rotors. Mech. Syst. Signal Process. 23(7), 2236–2252 (2009)

9. Jalan, A.K., Mohanty, A.R.: Model based fault diagnosis of a rotor-bearing system for
misalignment and unbalance under steady state condition. J. Sound Vib. 327(3–5), 604–622
(2009)

10. Avendano, R.D., Childs, D.W.: One explanation for 2 N response due to misalignment in
rotors connected by flexible couplings. In: Proceedings of ASME Turbo Expo, GT 2012,
Copenhagen, Denmark, pp. 563–573 (2012)

11. Verma, A.K., Sarangi, S., Kolekar, M.H.: Experimental investigation of misalignment effects
on rotor shaft vibration and on stator current signature. J. Fail. Anal. Prev. 14(2), 125–138
(2014)

12. Reddy, M.C.S., Sekhar, A.S.: Detection and monitoring of coupling misalignment in rotors
using torque measurements. Measurement 61, 111–122 (2015)

13. Lal, M., Tiwari, R.: Multi-fault identification in simple rotor-bearing-coupling systems based
on forced response measurements. Mech. Mach. Theory 51, 87–109 (2012)

14. Lal, M., Tiwari, R.: Experimental estimation of misalignment effects in rotor-bearing-
coupling systems. In: Proceedings of the 9th IFToMM International Conference on Rotor
Dynamics, pp. 779–789. Springer, Milan (2015)

15. Mohanty, A.R., Fatima, S.: Shaft misalignment detection by thermal imaging of support
bearings. IFAC-PapersOnline 48(121), 554–559 (2015)

16. Taylor, J.I.: The Vibration Analysis Handbook, 2nd edn. Vibration consultants Inc., Tampa
(2003)

17. Mohanty, A.R.: Machinery Condition Monitoring: Principles and Practices, 2nd edn. CRC
Press, Taylor and Francis Group, Boca Raton (2014)

18. Tiwari, R.: Rotor Systems: Analysis and Identification, 1st edn. CRC Press, Taylor and
Francis Group, Boca Raton (2017)

19. Giridhar, P., Scheffer, C.: Practical Vibration Analysis and Predictive Maintenance, 1st edn.
Elsevier, Burlington (2004)

20. Macmillan, R.B.: Rotating machinery: Practical Solutions to Unbalance and Misalignment.
Fairmont Press, Lilburn (2003)

234 R. Siva Srinivas et al.



21. Siva Srinivas, R., Tiwari, R., Kannababu, Ch.: Application of active magnetic bearings in
flexible rotordynamic systems—a state-of-the-art review. Mech. Syst. Signal Process. 106,
537–572 (2018)

22. Kreyszig, E.: Advanced Engineering Mathematics, 9th edn. Wiley, Hoboken (2011)
23. Goldman, P., Muszynskaa, A.: Application of full spectrum to rotating machinery

diagnostics. In: Orbit, First Quarter, pp. 17–21 (1999)
24. Singh, S., Tiwari, R.: Model-based fatigue crack identification in rotors integrated with

magnetic bearings. J. Vib. Control 23(6), 980–1000 (2015)

Identification of Coupling Parameters in Flexibly Coupled 235



Model-Based Identification of
Rotor-Bearing System Parameters

Employing Adaptive Filtering

Eduardo Moraes Coraça(B) and Milton Dias Junior

Structural and Machinery Dynamics Laboratory - LDEM,
School of Mechanical Engineering, University of Campinas - UNICAMP,

Campinas, SP 13083-860, Brazil
eduardocoraca@gmail.com, milton@fem.unicamp.br

Abstract. Instability issues and excessive vibration amplitudes are
common problems encountered in large rotating machinery applications.
In order to predict problems and overcome them, reliable rotor models
are required. In the previous decades there has been a great improvement
on finite element modeling, which was extensively used in rotordynamics
problems. However, there is a great difficulty when bearings have to be
considered, and the unbalance present in the machine must be known for
good response prediction. This paper proposes a method of bearing and
unbalance parameter estimation from measured responses at the bear-
ings and considering a Finite Element model of the shaft. The proposed
algorithm utilizes the adaptive filtering technique known as the RLS filter
employing the QR decomposition. Simulations were conducted and good
results were achieved for both stationary and speed-dependent bearing
parameters.

Keywords: Rotor dynamics · System identification
Adaptive filtering · Bearings · Unbalance

1 Introduction

In modern rotating machinery applications, such as turbines, pumps and com-
pressors, the delivery of large amounts of energy in small-sized equipment is
possible due to high rotating speeds. Serious problems come accompanied with
the high speeds, such as instability issues and excessive vibration due to mass
unbalance. In the previous decades, mathematical tools allied with increasing
computational power allowed the development of complex rotordynamics mod-
els, which have been used for problems prediction and solving. Although accurate
models for the shaft and disk dynamics were developed, good foundation and
bearing models are impractical, which is a problem as these components play
important roles in the overall system dynamic performance.

Many authors proposed methods for the experimental identification of bear-
ing and foundation parameters employing a model of the rotor and disks, known
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as model-based identification. The techniques can be categorized with respect to
the type of model employed (modal or physical), to the method of determining
operational forces and to the measuring system used [10]. The mathematical
foundations for modal analysis of asymmetric rotors, presenting time-varying
matrices, has been proposed [6], and also for the case when there are periodi-
cally varying parameters [14]. For the identification of physical parameters, there
are several methods employing known modal or physical parameters to estimate
physical properties of bearings, foundation and unbalance [9,13,15,16]. Although
the basis for the methods is the same, involving a model of the rotor and vibration
measurements at specific locations, different ways of tackling the mathematical
problem were presented, since it is of an ill-posed nature.

Adaptive filtering techniques may be employed as a mathematical tool for
solving the estimation problem. In rotating machinery applications the RLS filter
has been used for order tracking [1,17]. In the field of structure health monitoring
(SHM), the same filter was employed for damage identification of structures
[2]. As a parameter estimation tool for structural vibration, the RLS with QR
decomposition was employed for the identification of the modal parameters of a
structure when it was excited by an harmonic unwanted force [5], and also for
the identification of natural frequencies of rotors in run-up conditions [4]. The
Kalman filter has also been used for identification purposes in rotating machinery
applications [11].

In this paper a model-based identification method is presented and applied
to a rotor system modeled by the Finite Element Method. The goal is to extract
dynamic bearing parameters, stiffness and damping, by taking its dynamic stiff-
ness matrix as an unknown. Unbalance parameters, amplitude and phase angle,
are also identified in the process, while assuming the foundation is rigid. To do
so, an accurate model of the rotor is needed, as well as the unbalance response
functions at the bearings locations, obtainable in a real situation. In order to
estimate the parameters, adaptive filtering is employed. A RLS filter with QR
decomposition, which ensures good numerical properties, is presented and refor-
mulated based on the equations used in the identification process.

2 Adaptive Filtering Algorithm

In this section the RLS adaptive filtering algorithm is presented, which will be
applied to the identification of rotor bearing parameters in the following sections.
In order to present the concepts, a general FIR filter is employed as a basis filter,
which will have its coefficients varied following an adaptive algorithm [3].

The output y(n) of a FIR filter of length M at the discrete time n is related
to the input u(n) and its previous values through the filter coefficients wk, k =
1, 2, . . . ,M −1. Equation 1 shows the filter difference equation, where w∗

k denotes
the complex conjugate of wk, w is a vector containing each wk, wH denotes
the Hermitian (conjugate transpose of w) and u(n) is a vector containing the
previous values of the input.
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y(n) =
M−1∑

k=0

w∗
ku(n − k) = wHu(n) (1)

In the context of signal estimation, the filter coefficients should be tuned such
that the output follows a reference, or desired, signal d(n). An adaptive filter
can be used to adjust w in real-time according to an algorithm.

2.1 RLS Algorithm

The RLS algorithm is derived by minimizing the squared error of the filter
estimation. Figure 1 shows a block diagram of the RLS filter acting in the context
of system identification. The desired signal d(n) is the output of a system to be
identified and the error e(n) is given by Eq. 2.

−+wH = w∗
0 w∗

1 . . . w∗
M−1

u(n) y(n)

d(n)

e(n)

RLS Algorithm

Fig. 1. RLS filter block diagram.

e(n) = d(n) − y(n) = d(n) − wHu(n) (2)

Considering that the signals were acquired from time M to N and by min-
imizing the squared error with respect to the filter coefficients, it is possible to
derive an expression for the set of wk coefficients that provides the best estimate
of d(n) from the input u(n). This is known as the Normal Equations, given by
Eq. 3, where Φ is the autocorrelation matrix of the input of dimension MxM ,
given by Eq. 4, and z is the cross-correlation vector of the input of dimension
Mx1 and the desired signal, given by Eq. 5.

z = Φw (3)

Φ =
N∑

n=M

u(n)uH(n) (4)

z =
N∑

n=M

u(n)d∗(n) (5)
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The previous equations provide the filter coefficients that best adjust the
input to the desired signal in a least squares sense. In order to implement it
in real-time, Eq. 3 must be solved for each time-step, and Eqs. 4 and 5 must
be modified. A forgetting factor λ is introduced, which lies in the interval 0 ≤
λ ≤ 1. It is responsible for forgetting past values when its value is lesser than
unity or considering all the acquired data when it is equal to the unit. The
second modification is the recursive calculation of Φ and z, which enables the
computation of its values based on their previous values and the new acquired
data. Equations 6 and 7 indicate the new set of expressions.

Φ(n) = λΦ(n − 1) + u(n)uH(n) (6)

z(n) = λz(n − 1) + u(n)d∗(n) (7)

From past values and new data at time n, it is possible to solve Eq. 3 for
w through matrix inversion. However, this would be impractical to solve in real
time, as the numerical cost would by too large. In order to solve this problem,
the matrix inversion lemma can be employed. For a non-singular matrix A that
can be written as a function of matrices B, C and D according to Eq. 8, its
inverse is given by Eq. 9.

A = B−1 + CD−1CH (8)

A−1 = B − BC(D + CHBC)−1CHB (9)

Defining P(n) = Φ−1(n) and A = Φ(n), B = λΦ(n−1), C = u(n), D = I,
the propagation equation for P(n) is given in Eq. 10, where k(n) is a gain vector,
given in Eq. 11.

P(n) = λ−1P(n − 1) − λ−1k(n)uH(n)P(n − 1) (10)

k(n) = P(n)u(n) =
λ−1P(n − 1)u(n)

1 + λ−1uHP(n − 1)u(n)
(11)

The filter coefficients at time n can be finally calculated through Eq. 13,
where ζ(n) is an a priori error, given by Eq. 12.

ζ(n) = d(n) − ŵH(n − 1)u(n) (12)

w(n) = w(n − 1) − k(n)ζ∗(n) (13)

Equations 10 to 13 define the RLS algorithm, which requires an initial con-
dition for P(0). In a practical scenario, numerical errors and noise may lead a
bad conditioning of matrix P, which makes the estimator unstable.

2.2 QRD/RLS Algorithm

The QRD/RLS algorithm can be used to avoid instabilities. This method uses the
QR decomposition to turn the normal equations into an upper triangular prob-
lem. Then, the filter coefficients can be determined through back-substitution.
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The QR decomposition of a matrix M returns two matrices: an unitary matrix
Q, such that QQH = I, and an upper triangular matrix R, as shown in Eq. 14.

QM =
[
R
0

]
(14)

A positive-definite matrix A can be written as the product of an upper trian-
gular matrix R and its Hermitian, which is known as the Cholesky decomposition
[12].The application of this technique to Φ(n) leads to Eq. 15 and the normal
equations can be written as Eq. 16.

Φ(n) = R(n)RH(n) (15)

R(n)RH(n)w(n) = z(n) (16)

The propagation equations of the QRD/RLS algorithm can be written as the
QR decomposition given by Eq. 17, where ζ(n) is the a posteriori error, γ(n) is
a conversion factor, u(n) is the input data vector and p(n) = RH(n)w(n) [3].

Q
[
λ1/2RH(n − 1) λ1/2p(n − 1) 0

uH(n) d∗(n) 1

]
=

[
RH(n) p(n) R−1(n)u(n)

0T ζ∗(n)γ∗1/2(n) γ∗1/2(n)

]

(17)
In the present work, the QR decomposition of the first matrix in Eq. 17 is

accomplished through MATLAB’s command qr. Matrix R is initialized accord-
ing to Eq. 18, where δ is a regulating parameter.

R(0) = δ1/2I (18)

2.3 Vector QRD/RLS Algorithm

The previous algorithm can be extended to the MIMO case, where there are N
input and N outputs. The input is now a data matrix U(n), of dimension NxM
and the desired response is a vector d(n), of dimension Nx1, which are related
with the filter coefficients according to Eq. 19.

d(n) = U(n)w(n) (19)

The propagation equations are now given by Eq. 20, where ε is a normalized
vector of dimension Nx1, Λ is a conversion factor vector of dimension Nx1 and
Δ is a vector of dimension Nx1 given by Eq. 21.

Q
[
λ1/2RH(n − 1) λ1/2p(n − 1) 0

U(n) d(n) Δ

]
=

[
RH(n) p(n) R−1(n)U(n)

0T ε(n) Γ1/2(n)

]
(20)

Δ =
[
0 . . . 0 1

]T (21)
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3 Rotor Modeling and Identification Procedure

In the previous section the QRD/RLS adaptive filter algorithm was presented,
which will be used to identify the unbalance present in rotating machinery and
the stiffness and damping coefficients of the bearings. In this section, a rotor
model will be presented using the Finite Element Method (FEM), which will be
used for simulating different machines. The unbalance response will be discussed,
then the identification procedure will be presented.

3.1 Rotor Model

The rotating structure is modeled by dividing the system into four sub-systems:
shaft, disks, bearings and foundation. In this work a rigid foundation was consid-
ered, hence the fourth sub-system is not taken into account. The shaft is modeled
employing unidimensional beam elements, each one having two nodes. Each node
contains two translation degrees of freedom (DOF), y and z, and two rotation
DOFs, φy and φz. The equations of motion of the i-th shaft element are given by
Eq. 22, where MS

(i) is the shaft mass matrix, KS
(i) the shaft stiffness matrix,

GS
(i) the shaft gyroscopic matrix, CS

(i) the shaft internal damping matrix and
Ω is the rotating speed. Vector fS(i) contains the shaft internal forces connecting
the elements and vector qS

(i) contains the 8 DOFs of the i-th element, given in
Eq. 23 [8].

MS
(i)q̈S

(i) +
(
CS

(i) + ΩGS
(i)

)
q̇S

(i) +
(
KS

(i) + ΩCS
(i)

)
qS

(i) = fS(i) (22)

qS
(i) =

{
y(i) z(i) φ

(i)
y φ

(i)
z y(i+1) z(i+1) φ

(i+1)
y φ

(i+1)
z

}T

(23)

The disks are modeled as rigid bodies and, for the k-th element, the equations
of motion are given in Eq. 24, where MD

(k) is the disk mass matrix, GD
(k)

the disk gyroscopic matrix, fD(k) the internal forces connecting the disk to the
shaft and the external unbalance forces. qD

(k) contains the 4 DOFS of the k-th
element. given in Eq. 25.

MD
(k)q̈D

(k) + ΩGD
(k) ˙qD

(k) = fD(k) (24)

qD
(k) =

{
y(k) z(k) φ

(k)
y φ

(k)
z

}T

(25)

The bearings Finite Element model utilizes a stiffness matrix KB and a
damping matrix CB that, for the m-th bearing element, are given by Eqs. 26
and 27, respectively. Terms with subscripts yy and zz represent direct stiffness
and damping coefficients, while subscripts yz and zy represent cross stiffness
and damping coefficients. These terms are the unknowns of the identification
procedure. Equation 28 represents the equations of motion for the m-th bearing
element, where qB

(k) contains the 2 DOFS of the m-th element, given in Eq. 29.

KB
(m) =

[
k
(m)
yy k

(m)
yz

k
(m)
zy k

(m)
zz

]
(26)
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CB
(m) =

[
c
(m)
yy c

(m)
yz

c
(m)
zy c

(m)
zz

]
(27)

CB
(m)q̇B

(m) + KB
(m)qB

(m) = fB(m) (28)

qB
(m) =

{
y(m) z(m)

}T
(29)

In order to assemble the equations of motion before, a global displacement
vector q is defined, which contains the displacement, y and z, and rotations, φy

and φz, of all nodes. The global mass M, damping C, gyroscopic G and stiffness
K matrices can then be assembled. Equation 30 indicates the global equation of
motion of the Finite Element model, where f(t) is the external force vector. Note
that the shaft internal damping is not considered, hence matrix C contains only
bearing parameters.

Mq̈ + (C + ΩG) q̇ + Kq = f(t) (30)

3.2 Unbalance Response

In the presence of unbalance, which may occur in the disks and also in the shaft,
the rotor will vibrate. For the k-th node, the unbalance force is given by Eq. 32,
where vector g is given in Eq. 31 and has zero values in the nodes where there
is no unbalance. Product mkek is the unbalance amplitude of the k-th node [7].

g =
{{

. . . mkekejαk . . .
} {

. . . −jmkekejαk . . .
}

0T 0T
}T (31)

fu(t) = Ω2gejΩt (32)

When f(t) = fu(t), Eq. 30 can be solved by assuming that the response can
be written as q = quejΩt, where qu is the unbalance amplitude response vector.
By substituting this expression into Eq. 32, it is possible to demonstrate that
the response due to unbalance can be determined by solving Eq. 33, where Z is
the dynamic stiffness matrix, given in Eq. 34.

Zqu = g (33)

Z = −Ω2M + jΩ (C + ΩG) + K (34)

3.3 Identification Procedure

In order to identify the bearing parameters and the unbalance amplitude in a
running machine, it is assumed that the vibration is measured in the y and z
directions in the bearing nodes. The proposed procedure also assumes that a
Finite Element model of the remaining of the rotor is available.

Vector qu from Eq. 33 can be separated in four groups, containing the shaft
inner DOFs (qR,i), connection DOFs between shaft and bearings (qR,B), con-
nection DOFs between bearings and foundation (qF,B) and the inner DOFs of
the foundation (qF,i) [13]. Since the foundation is assumed rigid, vectors qF,B
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and qF,i are null. Matrix Z can be divided following the same approach, which
leads to Eq. 35.

[
ZR,ii ZR,iB

ZR,Bi ZR,BB + ZB

] {
qR,i

qR,B

}
=

{
fR,i

0

}
(35)

Matrices ZR,ii, ZR,iB, ZR,Bi and ZR,BB are known, because they only con-
tain information about the shaft, which is known if the FEM matrices are known.
Matrix ZB is unknown as it contains information about the bearings. Vector fR,i

contains the unbalance amplitude driving the system, which is also unknown.
Equations 36 and 37 can be written from Eq. 35.

ZR,iiqR,i + ZR,iBqR,B = fR,i (36)

ZR,BiqR,i + (ZR,BB + ZB)qR,B = 0 (37)

Isolating qR,i from Eq. 36 and substituting in 37, Eq. 38 can be written, where
matrix Y is given by Eq. 39.

(ZR,BB − YZR,iB)qR,B = −ZBqR,B − YfR,i (38)

Y = ZR,BiZR,ii
−1 (39)

The unbalance force k-th plane can be expressed through Eq. 40 by modifying
Eq. 32. Vector tk is a distribution vector, containing only 1 and −j for the planes
where unbalance is present and zeros otherwise. Term ak is given in Eq. 41 and
it contains the unbalance parameters for the k-th plane.

fuk = Ω2
{{

0 . . . 1 . . . 0
} {

0 . . . −j . . . 0
}

0T 0T
}T

ak = Ω2tkak (40)

ak = mkekejαk (41)

Considering Np unbalance planes, vectors fuk must be assembled. This can
be achieved by considering a matrix T, where each column is a bk vector, and a
vector a, where each entry is an ak element. Hence, the unbalance force can be
written according to Eq. 42.

fu = Ω2Ta (42)

For matrix ZB, it can be expanded according to Eq. 43 in terms of the bear-
ings stiffness and damping matrices, KB and CB respectively. In order to provide
better identification performance, this matrix is written in terms of matrices Z0

and Z1, as shown, which will be identified and, from them, it is possible to
reconstruct ZB.

ZB = KB + jΩCB = Z0 + ΩZ1 (43)

Substituting Eqs. 43 and 42 into 38, it is possible to write Eq. 44, which will
be directly used with the adaptive filter algorithm to predict the unbalance and
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bearing parameters. The vectors and matrices shown are expanded for the Nb

bearings and Np unbalance planes.

(ZR,BB − YZR,iB)qR,B

= −

⎧
⎪⎨

⎪⎩

Z0
(1)qB

(1)

...
Z0

(NB)qB
(NB)

⎫
⎪⎬

⎪⎭
−

⎧
⎪⎨

⎪⎩

Z1
(1)ΩqB

(1)

...
Z1

(NB)ΩqB
(NB)

⎫
⎪⎬

⎪⎭
− Ω2YT

⎧
⎪⎨

⎪⎩

a1

...
aNp

⎫
⎪⎬

⎪⎭
(44)

Matrices ZR,BB, ZR,iB and Y are known from the finite element model of
the shaft. Vector qb

(k) contains the unbalance response amplitude at the k-th
bearing of the rotor and it must be measured for each speed Ω. Finally, the user
must set the number of unbalance planes Np and their location, hence matrix T
is also known.

The vector QRD/RLS algorithm can be applied in order to solve Eq. 44 for
Z0, Z1 and a. The desired response vector d(n) is given by Eq. 45, which is equal
to the left side of Eq. 44. Here, instead of performing tasks for each time step n,
the algorithm is run for each speed Ω(n).

d(n) = [ZR,BB(Ω(n)) − Y(Ω(n))ZR,iB(Ω(n))]qR,B(Ω(n)) (45)

Data matrix U(n) is given by Eq. 46, and the filter coefficients are written
in terms of several vectors containing the entries of Z0, Z1 and a, as shown in
Eqs. 47 and 48. Note that matrices Z0 and Z1 are composed of Nb sub-matrices of
dimension 2 × 2 containing direct (yy and zz) and cross components (yz and zy).

U(n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

qB
(1) ΩqB

(1) 0 0 . . . 0 0 0 0

0 0 qB
(1) ΩqB

(1) . . . 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 . . . qB
(Nb) ΩqB

(Nb) 0 0

0 0 0 0 . . . 0 0 qB
(Nb) ΩqB

(Nb)

⎞
⎟⎟⎟⎟⎟⎟⎠

(−Ω2YT
)

⎤
⎥⎥⎥⎥⎥⎥⎦

(46)
w(n) =

(
v(1)T . . . v(Nb)

T
aT

)T
(47)

v(m) =
(
Z0

(m)
yy Z0

(m)
yz Z1

(m)
yy Z1

(m)
yz Z0

(m)
zy Z0

(m)
zz Z1

(m)
zy Z1

(m)
zz

)T
(48)

From the identified values it is possible to determine the physical parameters
through Eqs. 41 and 43.

4 Simulation Results and Discussion

In this section a rotor will be studied utilizing a Finite Element model. Two
cases will be analyzed: one with fixed bearing properties and one with speed-
dependent parameters. The shaft has an Young’s modulus E = 200 × 109 N

m ,
density ρ = 7800 kg

m3 , Poisson’s coefficient ν = 0.3, length L = 1.3 m, diameter
D = 0.1 m and presents no unbalance. The disks have an outer diameter of
Do = 0.12 m, thickness of t = 0.05 m, the same material as the shaft and its
inner diameter matches the shaft’s diameter.
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4.1 Fixed Bearing Properties

The model shown in Fig. 2(a) will be used. There is a total of 27 nodes and 31
elements. Bearings are located at nodes 1 (Bearing 1) and 27 (Bearing 2), and
three disks are located at nodes 5, 11 and 21. Bearing and unbalance properties
are given in Tables 1 and 2, respectively.

Table 1. Bearings properties

Bearing kyy

(
N
m

)
kyz

(
N
m

)
kzy

(
N
m

)
kzz

(
N
m

)
cyy

(
Ns
m

)
cyz

(
Ns
m

)
czy

(
Ns
m

)
czz

(
Ns
m

)

1 5× 107 0.5× 107 1× 107 7× 107 500 50 100 700

2 5× 107 1× 107 0.5× 107 7× 107 500 100 50 700

From the Finite Element model with the previously specified parameters, the
unbalance response of each bearing node was obtained. The speed range was set
from 0 rpm to 15000 rpm. The Campbell Diagram is shown in Fig. 2(b), where
fn are the natural frequencies of the rotor as a function of the speed Ω. The
dashed line indicates where the natural frequencies are equal to the shaft speed,
and the intersections of this line with the full one represent the critical speeds.
The measured unbalance responses at the bearings are indicated in Figs. 3(a)
and 3(b).
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(a) Finite Element model.
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(b) Campbell diagram.

Fig. 2. Finite Element model of the rotor under study and its respective Campbell
Diagram.

The unbalance responses at the bearing nodes are processed by the algorithm
described in the previous section. The chosen filter parameters were λ = 0.999
and δ =1 × 10−7, and the initial guess for the filter weights was set to zero. The
estimated stiffness kyy, kyz, kzy and kzz are shown in Fig. 4(a), and the estimated
damping coefficients cyy, cyz, czy and czz are shown in Fig. 4(b).

The estimated properties change as the speed of rotation changes, since the
filter coefficients is recursively updated for each speed sample. The parameters
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Table 2. Unbalance properties

Node me (kg.m) α (◦)

5 0.004 0

11 0.003 15

21 0.007 23
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(a) Bearing 1.
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(b) Bearing 2.

Fig. 3. Unbalance responses measured at the bearings.

converged to the correct values and, since the largest estimation error relative to
the true parameters was from the order of 0.0001%, their values are not shown
here. Although the converged properties are correct, filter convergence was very
slow, which happened because the method is sample-based. Thus, more samples
of unbalance response leads to a faster convergence. One possible method to
improve results would be to employ a constant rotation during a number os
samples before moving to the next speed. Unbalance parameters were perfectly
estimated and are not shown here.

4.2 Speed-Dependent Bearing Properties

Considering the same rotor, bearing properties are now given by Eq. 49, where
subscript (SD) indicates speed-dependent parameters and ij = yy, yz, zy, zz.
Damping and unbalance remained constant and are equal to the previous case.

k
(SD)
ij =

kij

2.25 × 108
Ω2 (49)

As there are speed-dependent parameters, forgetting factor was set to λ =
0.99. The identified stiffness are shown in Fig. 5(a), where the reference values
are given by the discrete points and the identified ones are given by the full
lines. The identified parameters followed the reference with minor discrepan-
cies. Figure 5(b) shows the identified damping parameters which clearly did not
converge to the expected values.
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Fig. 4. Bearings estimated properties.

5000

5000

10000

10000

15000

15000

5

5

0
0

0
0

15

15

10

10

10

10

x

x

7

7

kyy

kyy

kzz

kzz

kyz

kyz

kzy

kzy

Ω (rpm)

Ω (rpm)

B
ea

ri
ng

1
(N m

)
B

ea
ri

ng
2

(N m
)

(a) Estimated stiffness.

-2

5000

5000

10000

10000

15000

15000

0

0

0

0

2

2

−1

−1

1

1

3

3

10

10

x

x

4

4

cyy

cyy

czz

czz

cyz

cyz

czy

czy

Ω (rpm)

Ω (rpm)

B
ea

ri
ng

1
(N

s
m

)
B

ea
ri

ng
2

(N
s

m
)

(b) Estimated damping.

Fig. 5. Bearings estimated speed-dependent properties.
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Table 3. Estimated unbalance parameters at 15000 rpm

Node me (kg.m) α (◦)

5 0.0042 −0.309

11 0.0030 17.760

21 0.0073 23.250

Table 3 shows the estimated unbalance parameters at 15000 rpm and it can
be seen that they are very close to the reference values from Table 2. Figure 6(a)
presents a comparison between the Campbell Diagrams of the fixed and speed-
dependent situations, where it can be seen the stiffness influence at higher speeds.
From the estimated parameters it was possible to estimate natural frequencies,
indicated by the discrete points in Fig. 6(b), where the dashed line represents
the 1x speed component. The natural frequencies could be well estimated, even
the ones that were not excited by the rotor.
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Fig. 6. Campbell diagram and identified natural frequencies.

By analyzing the presented results it can be seen that the proposed method
is very useful for the identification of rotating machinery bearing and unbalance
parameters. Although damping was not well estimated, the remaining param-
eters could be characterized, providing good natural frequencies estimates. It
is important to note that the method relies upon the format specified for the
dynamic stiffness of the bearings, given by Eq. 43. A linear model with respect
to Ω was used but different formats should be employed, as a higher order poly-
nomial, which could lead to better estimates.

5 Conclusions

In this paper an estimation algorithm was presented for the bearing and unbal-
ance parameters of rotor systems. The method, which relies on the use of an
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adaptive filter algorithm, was employed considering the use of a Finite Element
model of the rotor and unbalance response measurement at the bearings. Simu-
lations were conducted including both fixed and speed-dependent bearing prop-
erties. In the former case, the method provided good estimates, except for the
bearing damping, while for the latter the technique was able to perfectly iden-
tify all properties. As the studies conducted so far included simulations only, the
authors would like to emphasize the need of experimental testing in future stud-
ies. Also, the use of different equation format for the bearings dynamic stiffness
should be evaluated.
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Abstract. Tie rod built-up rotor structures are widely used in power machinery
for different types of gas turbine engines. Typical tie rod rotor structure consists
from several disks and intermediate parts that are tightened together by central
tie rod shaft. This type of construction allows assembling together compressor or
turbine disks made from high strength materials whose welding is impossible or
hard. Another benefit over solid cast rotor of the same size is lighter weight and
possibility to replace damaged parts/disks during repair or retrofit. However
modeling of this type of rotors is more complicated, time consuming and dif-
ferent from modeling of solid cast rotors or rotors with shrink fit disks/parts,
since multiple interfaces between the built-up rotor components can reduce the
shaft stiffness significantly. Fine meshed solid models are known to get a very
accurate and close value with natural frequencies of real structures, however
significant amount of time usually is required to get solution for them and
further application of these models for rotordynamic simulations is not conve-
nient. Thus beam models are still widely used, but cautions must be taken when
preparing them, since obtained beam rotor model might be much more rigid than
the real structure. Current paper is focused on rotordynamic modeling of typical
built-up gas turbine rotor with central tie rod shaft. Paper describes a method
how to correct beam model in order to achieve a better matching with fine
meshed solid model. Described method was further used for rotor modeling of
real 2 MW gas turbine rotor. Obtained simulation results were compared with
experimental results from modal testing and good agreement was achieved.

Keywords: Built-up rotor � Tie-rod shaft � Rotordynamics � Modal testing
Natural frequencies � Free-free modes

1 Introduction

Tie rod built-up rotors are widely used by engineers for design of rotors working in
different industries. Example of built-up rotors with central tie rod shafts can be found in
stationary gas turbines used for power generation [1], in aviation and aircraft engines
[2, 3], among turbocharger rotors [4]. Application of built-up rotors usually helps
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designers to increase speed of machine manufacturing due to parallel processing of all
assembled parts. Work pieces for single disks usually have a quality advantage over the
work pieces for solid-forged rotors. Built-up rotors have possibility to have a lighter
weight over the same size solid rotors and allow assembling the rotor from components
manufactured from materials which are hard to weld or impossible. Another benefit of
their application is that built-up rotors are easier for integration of cooling system in
structure design. Moor and Lerche pointed out in [5] that multiple interfaces between the
built-up rotor components can reduce the shaft stiffness, depending on the interface
diameter and design used. API standard recognizes built-up rotors [6] and recommends
to approximate joints being an integral piece of metal when creating a rotor model for
rotor dynamic simulation, however there is no detail description for rotordynamic
modeling of built-up rotors with central tie rod. This brings to difficulties in modeling of
such rotors especially on design stage when exact values of connection stiffness between
rotor components are not known. Despite of tendency to more and more use of solid
finite element models for rotordynamic analysis [7–10], beam models are still widely
used [5, 11, 12] due to significant gain in time used for simulation. However cautions
must be taken during preparation of beam model since obtain beam rotor model might
be much more rigid than the real structure. Books on rotordynamics [13–16] usually
give a general guide for rotor modeling: nodal points must be placed at each location
along the rotor with the step change in the diameter and each location with inertia disk,
bearing, seal and any other source of external disturbance force. These guidelines are
well working for heavy industrial cast rotors or rotors with shrunk disks, but bring to
difficulties when implementing for modeling of disks in gas turbine engines which are
usually integrated in rotor structure and significantly influence on its bending stiffness.
In addition complex geometries such as disks used in aircraft engines are hard to model
with single layer beam elements. To increase accuracy of modeling Lalanne [17] rec-
ommended to divide the disk on more lumped elements with addition of inertia prop-
erties for each element. Vance et al. [18] showed another approach of modeling disks
which eliminates the need to add concentrated masses: to model the core structure of
each disk with beam elements. This method is efficient for modeling of turbomachinery
rotors with huge impeller disks. Hence stiffness and inertia properties of impeller disks
are provided by element definition. However the bending stiffness of the structure is not
able to change as sharp as its diameter, hence choice of inner and outer diameters of rotor
elements depends a lot from experience of the user and may influence the obtained result
significantly. In such a way application of solid models built from CAD becomes more
and more popular, since meshing features in commercial codes make obtained mesh
very accurate and accomplish in very little time compared to procedures in beam
modeling [19]. Though, significant size of the solid model meshed with lots of elements,
and huge memory slot required to store it are the other side of medal. Therefore beam
models are still widely used due to their fast speed solution (what is very important on
the design stage, when final design is not chosen yet and engineer should perform
multiple analysis to develop it), small size and possibility to cooperate with different
bearing codes. Current paper is focused on rotordynamic modeling of typical built-up
gas turbine rotor with central tie rod shaft. Paper also describes a method how to correct
beam model in order to achieve a better matching with fine meshed solid model.
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2 Numerical Simulation

2.1 Modeling of Built-Up Rotors with Central Tie Rod Shaft

Before performing rotordynamic analysis of the engine its rotor model should be
created and verified. As mentioned by Vance and Murphy [20] identification of rotor
free-free modes using modal analysis is an excellent way of checking the accuracy of
the mass-elastic model without involving uncertainties in the bearing parameters. For
prediction of rotor free-free modes the problem is reduced to eigenvalue problem:

K� kM½ � uf g ¼ 0; ð1Þ

where k ¼ x2
i – are eigenvalues (i = 1, 2…, n); xi – are natural frequencies; {u} –

eigenvector; K½ � ¼ Ks½ � þ ½Kbear� – rotor stiffness matrix, which consists from shaft and
bearing stiffness matrix; M½ � ¼ Ms

T þ Ms
R

� � þ Md
T þ Md

R

� �
– rotor mass matrix

which includes translational mass and rotational inertia matrices for shaft and disk
components. Since the structure is assumed to be freely supported stiffness matrix is
positive singular matrix where some eigenvalues become zero and are associated with
rigid body modes, while the others are positive and associated with bending modes.

Simplified model of overhang gas turbine rotor with central tie rod shaft was used
for study in the current paper, Fig. 1. For simplicity blades were not taken into account.
In the same manner, for simplification all components for model were set to be made of
steel (q = 7800 kg/m3, E = 2.0E+11 N/m2, G = 7.7E+10 N/m2). Spline joint was
assumed to be used for coupling shaft connection and Curvic coupling joints for shaft-
turbine disk connection and disks connection. Assembled condition is achieved with
help of central tie rod shaft which has 3 steps and goes through the main shaft. Front
nut is tightened from the coupling side to implement tie rod shaft pretension. Model
was prepared from 3D geometry in ANSYS using solid elements (Solid 186), Fig. 2.

The main difficulty for creation of this type of model consists from correct
understanding of applied boundary conditions between rotor components and parts.
Some of these values are hard to obtain experimentally, but they have significant

Fig. 1. Model of overhang built-up gas turbine rotor with central tie rod shaft with highlighted
boundary conditions used for simulation in ANSYS: B-bounded; NS-no separation
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influence on rotor free-free bending mode natural frequencies and mode shapes. On the
design stage for the rotor which is assumed to be well assembled two types of contact
connections can be used in ANSYS: bounded contact and no separation contact.
Bounded contact is a contact when two contacting surfaces are not allowed to separate
(assumed to be glued) or slide. No separation is similar to bounded type of connection,
but connected parts are allowed to slide slightly.

In addition, several beam models for the same type of rotor were prepared in
XLRotor rotordynamic code for comparison with solid model. Consistent mass option
was used for formulation of mass matrix of each model and solver based on finite
element method was used for eigenanalysis. Model No. 1 is a multi-level model where
each component (coupling, shaft, tie rod shaft, turbine disks) were modeled as separate
parts connected by user-defined spring elements with 16 input columns: 4 translational
(KT) and 4 rotational stiffness (KR). Damping was set to zero. Connection elements
were highlighted in Fig. 3. For initial model high translational (1E+12 N/mm) and
rotational (1E+12 N-mm/rad) stiffness were set. Inner and outer diameters for the
beams were set to follow component geometry obtained from CAD. Model No. 2 is a 2
level model where coupling, shaft and turbine disks were modeled as one structure,
assuming that joints between parts are stiff and approximated as integral piece of metal
as recommended in [6]. Tie rod shaft was modeled as separate rotor connected with the
main shaft using the same user-defined spring elements. Model 3 is a single level model
built using beam layers. During eigenvalue and response calculations XLRotor auto-
matically merges layers for beams which are at the same station [21]. Element number
used for this model is twice less than for Model No. 1. Comparison of mass properties
for all obtained models is shown in Table 1. All models had mass properties close to
exact 3D model. Obtained simulation results for first 3 ordinal free-free bending modes
for all beam models were summarized in Fig. 4.

Mesh of the model

Mode 1
347.82 Hz

Mode 2
1079.2 Hz

Mode 3
1866.0 Hz

Fig. 2. Simulation results for solid rotor model – free-free bending modes
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Fig. 3. Beam models for overhang built-up gas turbine rotor with central tie rod shaft

Table 1. Mass properties for model

3D
model

Solid model (51294
elements), kg

Beam models, kg
Model
No. 1 (101
elements)

Model
No. 2 (92
elements)

Model
No. 3 (53
elements)

44.193 44.193 44.172 44.172 44.172

Fig. 4. Simulation results for beam models - free-free bending modes: (a) Model No. 1;
(b) Model No. 2; (c) Model No. 3
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Simulation results revealed that only for Model No. 1 all 3 ordinal bending modes,
Fig. 4(a), were close with solid model results, Fig. 2. Model No. 2 and No. 3 were able
to repeat first and second shaft bending modes but failed to present tie rod shaft
bending mode. In addition they had shown much higher natural frequency in com-
parison with Model No. 1. Hence modeling of the structure using beam layers should
be performed with caution and requires experience. When components are modeled as
integral piece, beam element properties (OD and ID) should be set reasonably in order
not to obtain much rigid structure. Model No. 1 in this case has an advantage over the
other beam models described in this paper. Although natural frequencies for it also
didn’t match well with solid model (mode 1 difference - D = 7.52%, mode 2 -
D = 12.54%, mode 3 - D = 22.92%), a good matching in mode shapes was reached.
For natural frequencies a better matching can be achieved by setting the connection
stiffness between model components and method for its implementation will be
described in next section of this paper.

2.2 Method for Correction of Beam Model for Built-Up Rotor
with Central Tie Rod Shaft

During free-free modal testing structure is freely supported and its bearing stiffness are
set to zero, but internal connections between rotor components exist and influence on
[Kbear] component of matrix [K] in Eq. (1). Rotor structure in Model No. 1 has only 10
connection elements but more complicated models may have much more internal
connections, hence the question is how to understand which connection should be
chosen and set to get a better matching for exact rotor mode shape.

The answer could be found with help of vibration energy analysis. Industrial
application of energy distribution method in lateral analysis for rotor modeling was
described by Gunter and Gaston [22]. Various forms of energy, work and their con-
tribution to the dynamics of the system were also described by Chen [23]. Vibration
energy analysis is currently integrated in all advanced rotordynamic commercial codes
[15]. For this purpose the system damping is neglected and supports are considered as
isotropic. Obtained shaft whirl modes are circular and energy distribution remains
constant through the orbit. Since the amplitude of a free whirl mode is arbitrary, energy
distribution is usually displayed as percentage of total energy of the system for the
mode of interest. Potential energy of rotating shaft element in matrix form could be
written as:

V ¼ 1
2
qT Kb þKb þKa
� �

q; ð2Þ

where q – is the displacement vector for rotor elements; Kb – bending stiffness; Kb –

shear stiffness; Ka – geometric stiffness due to axial force. Ehrich pointed out in [13]
that energy maps are very useful on the design stage, especially in preliminary design,
but they also can be used for model refining to increase its accuracy and get better
matching with experiment when rotor model is going to be prepared for further
rotordynamic analysis. Evaluation of rotor potential energy distribution for Model
No. 1 revealed that modes 1–2 were pure shaft bending modes since more than 90% of
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energy was concentrated on the shaft, Fig. 5(a). However small concentration of
potential energy for turbine disks - shaft connection element brought to conclusion that
natural frequency of these modes can be changed by decreasing the stiffness for
identified dominate element. Reduction of rotational stiffness for turbine disks - shaft
connection element can help to achieve better matching between beam and solid model.
When rotational stiffness was reduced to 5E+10 N-mm/rad simulation results can
match closer with experiment: Mode 1 - D = 0.08%; Mode 2 - D = 0.09%, Fig. 5(c).

Meanwhile for mode 3 most of potential energy was concentrated on the tie rod
shaft and inspection of the plot in Fig. 5(a) from the first glance didn’t bring to
conclusion which connection was dominant for this mode. However comparison of the
mode shapes obtained for solid and beam models revealed that tie rod central step in
solid model had much larger area of contact surface with the rotor shaft. As a results
additional connection element with only translational stiffness KT was added to the
beam model in area of tie rod central step. Influence of translational stiffness for added
connection element on natural frequencies of mode 3 is shown in Fig. 6. A better
matching with solid model was achieved when translational stiffness for additional
connection element at the central step of tie rod shaft was increased to KT = 1.7E
+07 N/mm. Influence of this connection element on mode 3 natural frequency is clear
from potential energy map obtained for rotor model when all bending modes were
corrected to be close to solid model result, Fig. 6(c). Comparison of the obtained
simulation results for initial (Model No. 1), corrected beam model and solid model was
summarized in form of Table 2.

Fig. 5. (a) Potential energy map for initial Model No. 1 (b) Influence of rotational stiffness used
for shaft-turbine connection on natural frequencies of beam model (c) Modes 1–2 mode shapes
and natural frequencies for corrected beam model
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2.3 Influence of Axial Load on Natural Frequencies of Built-Up Rotor
with Central Tie Rod

Tightening of the front nut for tie rod shaft helps to achieve assembled condition for the
built-up rotor described in Sect. 2.1, Fig. 1. At the same time it brings to appearance of
tension load in the tie rod shaft. Importance of bolt pretension incorporation in sim-
ulations for assembled built-up rotors was highlighted in [5, 11, 15, 24]. Influence of
pre-tightening force on modal parameters for simplified rod-fastened rotors was also
confirmed by experimental modal testing in [25].

In the current paper effect of axial load on natural frequencies for free-free bending
modes was also studied for built-up rotor with central tie rod shaft on the base of beam
corrected model described in Sect. 2.2. Based on ISO 898 [26] the minimum ultimate
tensile load for M20 thread diameter of the tie rod shaft was identified to be 299 kN (for
12.8 property class). Pretension force was applied on beammodel of tie rod shaft in form
of axial load. At the same time equal value of compression load was applied on rotor

Fig. 6. (a) Influence of translational stiffness for added connection element on mode 3 for beam
model; (b) Mode 3 mode shape and natural frequency for corrected beam model; (c) Potential
energy map for corrected beam model

Table 2. Comparison of natural frequencies for solid and beam models

Mode No. Natural frequency, Hz
Solid model Model No. 1 (initial) Model No. 1 (corrected)

1 347.82 374.00 (D = 7.53%) 348.10 (D = 0.08%)
2 1079.20 1214.50 (D = 12.54%) 1080.12 (D = 0.09%)
3 1866.00 1438.31 (D = 22.92%) 1867.37 (D = 0.07%)
Average difference, % D = 14.33% D = 0.08%
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components which were held together by tie rod shaft. Simulation results revealed that
increase of pretension force applied on tie rod shaft in comparison with non-loaded
condition had a minor effect on modes 1–2, but on mode 3 natural frequencies influence
was considerable, Fig. 7. With maximum applied pretension force natural frequencies:
for mode 1 – decreased on 0.07% (due to compression load on the shaft), for mode 2 –

increased on 0.05%, for mode 3 – increased on 10.2%. Influence of increase of pretension
force on natural frequencies for modes 1–2 in comparisonwith mode 3 was smaller, since
modes 1–2 were identified as full structure bending modes, Fig. 4(a), while mode 3 was a
tie rod shaft bending mode. Thus, received simulation results confirmed necessity to
include axial load from bolt pretension for assembled structures when preparing rotor
model for rotordynamic simulations, since neglect of it may lead to additional decrease of
accuracy of obtained model when it is going to be compared with experimental results
from modal testing, especially for bending modes associated with tie rod shaft.

3 Experimental Results

3.1 Modal Testing for Components of Built-Up Rotor with Central Tie
Rod Shaft

Experimental modal testing was performed for components (tie rod shaft and rotor
shaft) of real 2 MW built-up gas turbine rotor of ZK2000 engine in order to identify
structure free-free bending modes and to compare them with simulation results. Both
shafts were hanged using knitted ropes. Schematic view of used data acquisition system
for modal testing is shown in Fig. 8. For every shaft 5 acceleration probes (Type
8774B050A Kistler) were used for measurements. Probes location is shown in Fig. 9.
DASP software was used for processing of experiment results. Impact testing helped to
get frequency response functions (FRF) for each rotor shaft. Mode shapes were
obtained from FRF by measuring the peak amplitudes for its imaginary parts.

Fig. 7. Influence of applied pretension force on natural frequencies for first 3 ordinal free-free
bending modes of built-up rotor with central tie rod shaft
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Obtained experimentally mode shapes for the first 3 ordinal free-free bending modes
are shown in Fig. 10, and were in agreement with obtained simulation results from beam
models. Due to company regulations exact values of natural frequencies could not be
presented in the paper, but difference for obtained simulation results with experimental
was summarized in Table 3. Results revealed that for the first 3 ordinal free-free bending
modes average difference between simulation and experiment for tie rod rotor shaft
beam model was about D = 1%. For the rotor shaft beam model D = 1.3%.

Fig. 8. Scheme of data acquisition system used for modal testing

Fig. 9. Schematic view on probes location for components of built-up 2 MW gas turbine rotor:
(a) Tie rod shaft; (b) Rotor shaft

Table 3. Comparison of simulation results with experiment for beam models of components of
built-up 2 MW gas turbine rotor

Mode No. Difference with
experiment D, %
Tie rod shaft Rotor shaft

1 −1.41 −0.60
2 −1.17 0.96
3 −0.53 2.23
Average D, % 1.04 1.26
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3.2 Modal Testing for Assembled Built-Up Rotor with Central Tie Rod
Shaft

In the same manner as in previous section experimental modal testing was performed
for assembled built-up gas turbine rotor of ZK2000 engine. The rotor was hung using
single rope. Rope was girding the rotor in the zone between compressor-impeller and
turbine disks, close to its center of gravity, what made the shaft silent and balanced
during experimental modal testing. Eleven acceleration probes were used for mea-
surements, Fig. 11. Impact excitation with modal hammer and measurements were
performed in horizontal plane in order to reduce influence of the rope on natural
frequencies.

Fig. 10. Mode shapes comparison – experiment vs. simulation: (a) Tie rod shaft; (b) Rotor shaft

Fig. 11. Probes location for modal testing of built-up gas turbine rotor of ZK2000 engine
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Obtained experimentally mode shapes for the first 3 ordinal free-free bending
modes are shown in Fig. 12(a). Beam model for assembled built-up rotor of ZK2000
with included pretension load at tie rod shaft was also prepared. In general obtained by
simulation mode shapes were in agreement with experimental results, Fig. 12(b).
However due to complexity of the assembled rotor consisting from multiple parts and
substitution of continuous structure on model with discrete elements with connections
between components, matching was worse in comparison with results obtained for
modal testing of single components, Fig. 10. In addition, natural frequencies of the
initially constructed beam model didn’t match easily, with average difference D = 12%
with experiment for the first 3 ordinal modes. However using the method described in
Sect. 2, identifying dominate connection elements for each mode of interest beam
model for built-up rotor was corrected and better matching was obtained with average
difference D = 1.25% for the first 3 ordinal modes, Table 4.

Fig. 12. (a) Experimentally obtained mode shapes for ZK2000 rotor (b) Comparison of
simulation results for beam model of ZK2000 rotor with experiment

Table 4. Comparison of simulation results with experiment for different beam models of built-
up 2 MW gas turbine rotor

Mode No. Difference with experiment D, %
Initial beam model Corrected beam model

1 12.69 1.36
2 10.56 −1.09
3 −13.15 1.32
Average D, % 12.13 1.25
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4 Conclusion

It can be summed up in the conclusion:

• Existence of multiple interface surfaces inside built-up rotors can significantly
reduce bending stiffness of the assembled rotor structure, what makes rotordynamic
modeling of such rotors more complicated and time consuming. Application of
modeling method when components are modeled as integral piece using beam
elements and method when components are modeled using beam layers requires
experience and should be performed with caution. When beam element properties
(OD and ID) are not set reasonably, much rigid structure can be obtained. Solid
models obtained from CAD and meshed in commercial codes can help to obtain a
very accurate and close with experiment result. In this case for creation of beam
models, when experimental results are not available, solid models can be used as a
reference;

• Rotor model built with multi-level method where components are connected with
user-defined elements is usually more convenient for further rotordynamic analysis,
since tuning of connection stiffness between components can help to get better
matching with experimental results obtained from modal testing. However, when
connection stiffness between rotor components are not properly set model can have
significant difference both with experiment and solid model;

• Inspection of potential energy maps for beam model of assembled rotor structure for
each mode of interest can point out which connection element has a dominate
influence on certain mode. Changing connection stiffness in dominate connection
element can help to get a better matching with experimental results for certain
mode;

• Simulation results revealed that increase of pretension force applied on tie rod shaft
in comparison with non-loaded condition brings to increase of natural frequencies
for tie rod shaft mode and confirmed necessity to include axial load from bolt
pretension for assembled structures when preparing rotor model for rotordynamic
simulations. Bending modes of the rotor structure may decrease slightly due to
negative axial load from compression when assembled condition is modeled;

• Described in paper method for model tuning using inspection of potential energy
maps was successfully implemented for creation of beam model for real gas turbine
rotor. Further correction of the beam model helped to get good agreement with
experimentally obtained mode shape and reduce difference in natural frequencies
with experiment for numerical model to almost 1%;

• Performed experimental modal testing had shown that for single rotor parts like
rotor shaft and tie rod shaft very close matching in natural frequencies for free-free
bending modes between simulation and experimental results can be achieved for
initially created beam models. Once the rotor is assembled, connection stiffness
between rotor components and parts may influence the results matching signifi-
cantly both for mode shapes and natural frequencies. Thus initially created beam
model could have difference with experiment and will require further correction.
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Abstract. The current work uses two types of excitation on a rotating
shaft to identify its modal frequencies. The first one is a non-contact
excitation where an oscillating magnet is placed near the shaft, eddy
currents generated by the oscillating magnetic field excites vibrations in
the shaft. In the second type of excitation, a miniature electrodynami-
cal exciter powered by a decoder amplifier board is placed on the shaft
to excite vibrations with predefined frequencies in a signal (mp3 for-
mat) stored on the USB flash drive connected to the board. The shaft
is rotated at different speeds and vibration accelerations are measured
using a small data logger placed on the shaft while excited using these two
excitation systems. These two types of asynchronous excitation on the
shaft excites both forward and backward whirl vibration modes of the
rotor system. The modal frequencies are identified at the peak ampli-
tudes in the waterfall plots of the measured vibration accelerations to
a chirp excitation of the shaft. A Campbell diagram is plotted with
the identified modal frequencies of the shaft in the rotating frame of
reference.

Keywords: Modal frequency · Rotor · Excitation
Campbell diagram · Rotating frame of reference

1 Introduction

Rotating systems consisting several components like shafts, bearings, couplings,
seals, foundations etc. are commonly used in many industries. Their reliable
operation is crucial to avoid any breakdown or production losses. Manufactur-
ing tolerances of the rotating system components and their assembling induces
unbalance and causes vibrations. For a reliable operation under various oper-
ating conditions (like rotational speed, loads, temperature etc.), the rotating
system components need to be designed appropriately to limit vibrations within
a safe limit through detailed simulations for predicting their dynamic behavior.
The rotating system components like bearings, couplings, and seals are modeled
using mathematical models. Many researchers have derived simplified models
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for such subsystems so that they can be coupled with rotating system models
for simulating their dynamic behavior. However, the validity of such models can
be verified if it is possible to extract modal frequencies of the rotating system
experimentally. The modal frequencies of a rotating system are dependent on
its rotational speed due to the speed and load dependent bearing properties and
gyroscopic effects. These modal frequencies can be calculated using a numer-
ical model (Finite Element Method, FEM) of the rotating system, but their
extraction from its vibrations in the experiments is cumbersome. Conventional
vibration exciters cannot be directly used to excite rotating systems due to their
rotational motion. They need to be either non-contact or portable excitation
systems that can be directly mounted on the rotating shaft. The literature on
such vibration excitations are discussed in the following text.

Sinou et al. [1] supported bearing housing of a rotating system through four
beams connected to a stationary rigid mass and excited the bearing housing using
a shaker to identify natural frequencies of the first vibration mode. This asyn-
chronous excitation at different rotational speeds of the shaft excited forward
and backward whirl modes of the rotating system. Sodano [2] used a permanent
magnet on the electromagnetic shaker to apply non-contact force generated by
the eddy currents induced in a conductor due to the movement of the magnet rel-
ative to it. This force is proportional to the velocity of the magnet and depends
on the distance between the magnet and the conductor. Nandi et al. [3] used
two permanent magnets placed on a piezoelectric stack and excited a cantilever
beam using the non-contact force generated by the moving magnetic field. Other
non-contact excitations, like speaker [4], ultrasound radiation [5], laser [6], PZT
patches [7] are used for exciting light and delicate structures. Esu [8] used a
Visaton Ex 45 S electrodynamic exciter [9] to identify natural frequencies of a
stationary small-scale wind turbine blade. This exciter resembles a loudspeaker
without membrane. It consists of an oscillating mass whose movement is con-
trolled by an input signal to the exciter. The mounting plate of the exciter is
placed on the target surface which needs to be excited. This exciter is portable
with dimensions 45× 45× 15 mm and it only weighs 60 g.

Out of all the excitations discussed before, the authors chose eddy current
excitation and Visaton Ex 45 S electrodynamic exciter as relevant for exciting
rotating systems without making major changes in the rotor system. A simple
rotor system supported on ball bearings is excited with these two excitations and
vibration accelerations are measured using a MIDE Slam Stick X data logger [10]
placed on the rotating shaft. The vibrations are measured in a rotating frame
of reference. The modal frequencies are identified at different rotational speeds
from the waterfall plots of the measured vibration signals.

2 Test Rig

A Spectraquest Rotordynamic Simulator is used in this work to carry out exper-
iments and the schematic of the test rig is shown in Fig. 1. It consists of a steel
shaft with diameter � 0.01905 m and length 0.914 m and it is supported by two
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ball bearings at distances of 0.099 m and 0.824 m respectively from the end of
the shaft connected to coupling. An aluminum disc of mass 1.322 kg is located
at the half way between two bearing supports. The eddy current excitation is
applied at 0.27 m from the Bearing 1 location. The speaker and accelerometer
are placed on the outer periphery of a small cylinder clamped on the shaft at
0.535 m from the Bearing 1 location. The test rig with these excitation systems is
shown in the Fig. 2. More details about the excitation and measurement systems
are discussed in the following text.

Fig. 1. Schematic of the test rig and excitation systems

2.1 Eddy Current Excitation

A neodymium magnet with dimensions � 15 mm, height 8 mm is placed on the
TIRAvib S-50018 shaker’s moving surface as shown in the Figs. 1 and 2. This
magnet is located at around 6 mm from the shaft surface, any closer distance
than this can lead to a risk of contact with the rotating shaft. A chirp signal
is given as an input to the shaker. Then, the magnet moves with a velocity
vm(ωt) and the shaft vibrates with a velocity vs(t) as shown in the Fig. 1. The
moving magnetic field of the magnet is opposed by the magnetic field generated
by eddy currents induced in the shaft. This results in a force between the mag-
net and the shaft. This force depends on the distance between the magnet and
shaft, and the net velocity between the magnet and shaft. Sodano [2] theoret-
ically modelled these forces and compared them with the values measured in
an experiment. He also performed a modal analysis of the cantilever beam and
compared frequency response function (FRF) calculated using the impact and
eddy current excitations.
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Fig. 2. Experimental setup

2.2 Electrodynamical Exciter

The Visaton Ex 45 S electrodynamic exciter needs signal amplification using an
audio power amplifier and the authors used an mp3 format decoder amplifier
board [11] for this purpose. A chirp signal is generated using MATLAB and
converted to mp3 format and stored in a flash drive connected to the amplifier
board. A small power bank is used to power this board. All these components
are portable and light weight, which makes their use feasible as shown in the
Fig. 2 for rotor excitation.

2.3 MIDE Slam Stick X

The MIDE Slam Stick X [10] is a data logger that measures accelerations in three
axes with a sampling rate up to 20 kHz using a piezoelectric sensor and stores the
data in its internal memory. It weighs about 40 g with dimensions 76× 30× 8 mm
and it can be attached to the target surface using bolts or adhesive tape. The light
and miniature design of the data logger make it suitable for measuring vibration
accelerations on the rotating shaft. It measures vibrations in the rotating frame
of reference. In the current work, vibrations are measured using a sampling rate
of 4096 Hz.
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3 Results and Discussion

An accelerance frequency response function (FRF) of the stationary shaft is
calculated after an impact test of the test rig (refer Fig. 2) and it is shown in
the Fig. 3. Two vibration modes can be identified within the 300 Hz frequency
range. Their frequency values in the current case (which only has structural
damping) are estimated with better accuracy, using a circle fit method to FRF
in the Nyquist plane [12], these values are estimated in this study as 46.797 and
205.55 Hz using the DEWESoftTMFRF [13] module. The speaker excitation
system increased mass and stiffness of the original shaft. As a result its natural
frequencies are changed and the percentage change (with respect to the natural
frequencies of the original shaft) in the natural frequencies due to the speaker
excitation system is −3.28% for the first mode and −19.18% for the second
mode. The influence of asymmetry introduced by the placement of speaker and
accelerometers on the periphery of a circular fixture clamped on the shaft is very
small (change in natural frequencies are observed to be less than 1%).

Fig. 3. Accelerance frequency response function

The shaft is rotated at three different speeds 9, 14 and 18 Hz and excited
with eddy current and electrodynamical excitations described in the previous
section. The locations of these excitations on the shaft can be moved flexibly.
The excitation forces are not measured in this study, but the dynamic behavior
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Note: FW and BW refers to forward and backward whirling in the rotating frame of reference

Fig. 4. Waterfall plots of vibration accelerations with eddy current excitation
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of the shaft to these excitations is recorded. The frequencies in the chirp signal
vary from 0 to 300 Hz in 50 s.

Fig. 5. Measured vibration accelerations to speaker excitation

The waterfall plots generated using vibrations measured on the shaft while
in rotation and excited by the eddy currents generated by the moving magnet
are shown in the Fig. 4. The acceleration magnitude axis of the figure is zoomed
in to clearly show the frequencies of vibrations generated in the shaft due to
this excitation. The asynchronous excitation to the shaft excited both forward
and backward whirl bending vibration modes. The vibration response reaches
maximum amplitude when the excitation frequency matches with the modal
frequencies of the shaft. The forward and backward modal frequencies of the first
vibration mode are identified in Fig. 4 at the peak amplitudes in waterfall plots.
The vibrations at higher excitation frequencies (above the first mode natural
frequency) are not noticed in the waterfall plots. The forces generated by eddy
currents are observed to be very small in comparison to the unbalance forces
as the peak amplitude at the resonance condition is much smaller than the
vibration amplitude at rotational frequency. The location chosen for eddy current
excitation is close to the midpoint of the shaft between bearing supports which
matches with the anti-node (i.e. maximum deformation point) in first vibration
mode and a node in the second vibration mode. The weaker excitation force
closer to node location could be the reason for not noticing second vibration
mode in the waterfall plots. As the modal frequencies of the test rig are not
calculated using a numerical model (FEM), the modal frequencies of a simple
rotor are derived in the rotating frame of reference (refer Chap. 7 in [14]) in
Appendix to show their dependency on the rotational frequency.

The accelerations measured on the speaker and the shaft to an excitation by
the speaker are shown in Fig. 5. The speaker and its supporting structure have
two resonances between 85 and 110 Hz and they are faraway from the first two
natural frequencies of the shaft (refer Fig. 3). The amplitudes of these resonances
are reduced significantly in the acceleration measurements on the shaft and the
resonance peak corresponding to second vibration mode appears dominant. The
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Note: FW and BW refers to forward and backward whirling in the rotating frame of reference

Fig. 6. Waterfall plots of vibration accelerations with electrodynamical excitation
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Note: FW and BW refers to forward and backward whirling in the rotating frame of reference

Fig. 7. Campbell diagram plotted with eigen frequencies identified in the experiments

speaker is not able to excite first vibration mode of the shaft. So, the vibration
accelerations for speaker excitation frequencies above 110 Hz are only used to
identify the second vibration mode of the shaft.

The waterfall plots generated using the vibration response of the shaft sub-
jected to electrodynamical excitation at different rotational speeds are shown in
the Fig. 6. As the electrodynamical exciter used in this study can be regarded
as a loudspeaker without membrane, the speaker frequency response function
at low frequencies will generally have lower magnitude if those frequencies are
around the lower limit of the human hearing frequency range. The location of
the Visaton electrodynamical exciter is close to antinode of the second vibration
mode and in the midway between antinode and node of the first vibration mode.
The vibrations at lower frequencies (around the first vibration mode natural fre-
quency) are not appearing in the waterfall plots may be due to these two reasons,
whereas, the second vibration mode is clearly excited by this exciter. However,
these postulates can be confirmed with the measurement of forces generated by
the exciter with respect to frequency. This asynchronous excitation excites both
forward and backward whirl modes and these frequencies are also changing with
the rotational frequency. A Campbell diagram is plotted with the identified for-
ward and backward whirl frequencies of the first and second vibration modes of
the test rig in Fig. 7.

4 Conclusions and Future Work

A preliminary experiment to use eddy current excitation and a miniature electro-
dynamical exciter for identifying modal frequencies of the rotor in the rotating
frame of reference is carried out in this study. Neither of these two excitations
can excite both first and second vibration modes of the test rig. A further study
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experimenting with the locations of excitation and response is to be carried out
like any other modal analysis to ascertain their suitability for exciting modal
frequencies of the rotating systems. The strength of excitation forces can be
enhanced using a stronger magnet and choosing a high power electrodynamical
exciter. The authors planned these activities for the future work along with the
comparison of frequencies identified in experiments with those calculated using
a numerical model. However, a Campbell diagram with the first two vibration
modes of the test rig is generated in this preliminary study using two new types
of excitations to the rotating shaft. The idea of using these excitation systems
in real machinery is not matured at this stage and it has the limitation of weak
excitation forces and also need access to the shaft for its excitation.
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part of “Swedish Hydropower Centre - SVC”. SVC (www.svc.nu) has been established
by the Swedish Energy Agency, Elforsk and Svenska Kraftnät together with Lule̊a
University of Technology, The Royal Institute of Technology, Chalmers University of
Technology and Uppsala University.

Appendix

The transformation between stationary (xy) and rotating (x̃ỹ) coordinate
systems shown in the above figure is obtained as follows. The coordinates of
a point in the stationary frame are denoted by u, v and in the rotating frame
they are denoted by ũ, ṽ. The relation between stationary and rotating frame
coordinates is given by

{
u
v

}
=

[
cos(Ωt) −sin(Ωt)
sin(Ωt) cos(Ωt)

]{
ũ
ṽ

}
= [T ]

{
ũ
ṽ

}

Then, the differentiation with respect to time gives
{

u̇
v̇

}
= [T ]

{ ˙̃u
˙̃v

}
+ [Ṫ ]

{
ũ
ṽ

}
,

{
ü
v̈

}
= [T ]

({¨̃u
¨̃v

}
− Ω2

{
ũ
ṽ

})
+ 2[Ṫ ]

{ ˙̃u
˙̃v

}

where,

[Ṫ ] = Ω

[−sin(Ωt) −cos(Ωt)
cos(Ωt) −sin(Ωt)

]

www.svc.nu
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The eigenvalues of a simple rotor in the rotating frame of reference are derived
here using these transformations. The rotor system consists of a light flexible
asymmetric shaft (stiffness in x̃ and ỹ directions are different) supported in
isotropic bearings and a thin, rigid axisymmetrical disc of mass m is located
at the mid-span. The elastic forces acting on the disc in terms of the shaft
deformation variables in the rotating frame attached to it and the shaft stiffnesses
kx, ky are given as {

fx̃
fỹ

}
=

[
kx 0
0 ky

] {
ũ
ṽ

}

Using the Newton’s second law, the equation of motion of the disc in sta-
tionary coordinates is expressed as

m

{
ü
v̈

}
=

{
fx
fy

}

Using the transformation matrices derived before, the above equation is
rewritten as

m[T ]
({¨̃u

¨̃v

}
− Ω2

{
ũ
ṽ

})
+ 2m[Ṫ ]

{ ˙̃u
˙̃v

}
= [T ]

{
fx̃
fỹ

}

Premultiplying both sides of the above equation with [T ]T and using the
orthogonality property of the matrix [T ], i.e. [T ][T ]T = I, we get

m

{¨̃u
¨̃v

}
+ 2mΩ

[
0 −1
1 0

]{ ˙̃u
˙̃v

}
− mΩ2

{
ũ
ṽ

}
+

[
kx 0
0 ky

] {
ũ
ṽ

}
=

{
0
0

}

Dividing the above equation by m, we get
{¨̃u

¨̃v

}
+ 2Ω

[
0 −1
1 0

] { ˙̃u
˙̃v

}
+

[
ω2
nx − Ω2 0

0 ω2
ny − Ω2

] {
ũ
ṽ

}
=

{
0
0

}

where, ω2
nx = kx/m and ω2

ny = ky/m are the natural frequencies of the stationary
shaft in x̃ and ỹ directions respectively.

To obtain free vibration response of the above equation, a solution of the
form ũ = ũ0e

st and ṽ = ṽ0e
st is assumed. Then, we get

[
s2 + ω2

nx − Ω2 −2Ωs
2Ωs s2 + ω2

ny − Ω2

] {
ũ0

ṽ0

}
=

{
0
0

}

The eigenvalues of the system in rotating coordinates are obtained from the
below equation. ∣∣∣∣s

2 + ω2
nx − Ω2 −2Ωs

2Ωs s2 + ω2
ny − Ω2

∣∣∣∣ = 0

It produces a quartic equation in s,

s4 + (ω2
nx + ω2

ny + 2Ω2)s2 + (ω2
nx − Ω2)(ω2

ny − Ω2) = 0
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with roots,

s21,2 =
1
2

{
− (

ω2
nx + ω2

ny + 2Ω2
) ± √(

ω2
nx − ω2

ny

)
+ 8Ω2

(
ω2
nx + ω2

ny

)}

For the Jeffctott rotor, i.e. ωnx = ωny = ωn, the roots will be reduced to

s21,2 = − (
ω2
n + Ω2

) ± 2Ωωn = − (Ω ± ωn)2

The four roots in the case of Jeffcott rotor are,

s1,3 = ±i (Ω − ωn) , s2,4 = ±i (Ω + ωn)

Two eigenvalues in the stationary reference frame, i.e. ωn (natural frequencies
in x̃ and ỹ directions are equal for Jeffcott rotor) are transformed to (Ω −
ωn) and (Ω + ωn). These eigenvalues change with rotational speed, whenever
the rotational speed matches with the natural frequency, a condition known as
resonance is reached. This can be identified from the Campbell diagram, when
this eigenvalue approaches the Ω axis, i.e. (Ω − ωn) = 0. The eigenvalues of the
Jeffcott rotor in stationary frame can be calculated using the relation, s′ = s−iΩ.
This relation is not applicable in the case of a complex rotor. The eigenvalues
of complex rotors can be calculated using the numerical models like FEM where
the element matrices are derived for the shafts, disk elements in the rotating
frame. Friswell et al. [14] derived these matrices and calculated eigenvalues in
the rotating frame.
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Abstract. Rotating structures exhibit speed dependent natural frequencies and
mode shapes that play an important role in the overall dynamics. Accurate
experimental identification of these phenomena is of great importance for val-
idating uncertainties in numerical models and for detecting potentially danger-
ous asynchronous frequencies, often obscured by the imbalance synchronous
vibrations. As the speed dependent natural frequencies cannot be assessed
experimentally without actually rotating the structure at the vicinity of these
speeds, the task of exciting and measuring asynchronous frequencies during
rotation without risking the integrity of the machine, becomes a great challenge.
The present paper proposes an automatic and efficient method to excite a

rotating structure at a selected modeshape, while controlling the vibration
amplitude, such that a non-destructive test takes place.
Automatic excitation of marginally stable vibration occurs upon introducing a

phase shifting filter and a nonlinear feedback element. A digital signal processor
carries out the latter, therefore the system behavior and the vibration levels are
fully controllable.
Theoretical analysis, based on the describing function method and modal

filtering, is carried out and verified by numerical simulations. Finally, some
experimental results are described and analyzed. The experimental system
exhibits different modes of vibration that are excited selectively, at any desired
speed of rotation and at any desired magnitude. This approach effectively
reconstructs the Campbell diagram with only basic knowledge of the system’s
modal behavior. It is also shown that one can switch, in situ while rotating the
system, between modes of vibration in the presence of large imbalance forces.

Keywords: Autoresonance � Self-excited vibration
Synchronous demodulation � Modal filtering � Campbell diagram
Describing function

1 Introduction

Rotating systems exhibit some unique dynamical phenomena. One of the most sig-
nificant phenomena, which this research deals with, is that the system natural fre-
quencies of a rotating system may vary with the rotation speed mainly as a result of
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gyroscopic effects and stress stiffening [1]. This speed dependence becomes even more
significant in high-speed rotors. Such rotors store a large amount of kinetic energy and
the conversion of only 1% of this energy into strain energy would most likely cause
them to fail [2]. Therefore, careful modeling of such systems, anticipating dangerous
operating modes is essential.

The vibration of rotating system is mostly driven by synchronous unbalance forces,
which always exist at some level. Resonance or critical speed in rotating systems
occurs when the rotor speed equals to one of the system natural frequencies (critical
speed), which is speed dependent. Consequently, predicting critical speeds from a static
experiment is impractical. On the other hand, reaching rotational speed close to critical
speed endanger the system integrity. The method presented here seeks to overcome
some of these challenges by experimentally anticipating the critical speeds while
rotating below them.

The map of natural frequencies vs. speed, the Campbell diagram, can be computed
analytically [1, 3], with sufficient accuracy for simple rotor models, or by using
numerical or FEM (Finite Element Model) simulation, [4], for more complicated cases.
Still, none of these methods produces an accurate and sometimes even not good enough
prediction of the system’s critical speeds due to two main reasons: (a) model simpli-
fication with physical assumptions that do not take place in reality, (b) model uncer-
tainties (due to manufacturing and assembly imperfections, unknown material
properties, joints stiffness and friction and other non-linearities). Therefore, recon-
structing the Campbell diagram experimentally is an important tool for identifying the
actual critical speeds, predicting suspected instability zones in non-axisymmetric
rotors, and for verifying and calibrating computational models.

The currently employed experimental approaches [2, 4, 5] are limited to identifi-
cation of the system only at the speed of rotation, while most of the non-synchronous
dynamics remains obscured by the unbalance response. The ability to extract weakly
excited non-synchronous forward and backward modes requires most often compli-
cated hardware arrangement employing an array of sensors [6] and advanced signal
processing tools, but these cannot overcome the lack of information at low rotation
speeds.

The novel method presented in this paper allows the detectability of otherwise
hidden non-synchronous natural frequencies and modes of vibration, which are
inherently rotation-speed dependent, while doing so with minimal interference on the
system and only basic knowledge of its modal behavior is required. The method seeks
to enhance the ability to construct a physical model, enable comparison and validation
of analytic models and detect structural faults by injecting suitable test signals.

This paper presents the model and tools used to applying the proposed method as
well as analyzing the results of simulations and experiments performed on a laboratory
test rig. The first part contains a general explanation of the research method and its
applying principles. The second part presents the experimental system and analyzes the
results of simulations and experiments that demonstrate the main phenomena and
emphasize the usability of the proposed method. This part also includes analysis and
estimation of the excited oscillations amplitude and frequency by means of a
descriptive function. This is followed by explanation about detection and subtraction of
the output signal synchronous content in order to excite and detect asynchronous
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frequencies. Next, a rotating systems oriented method for controlling whirl direction
modes is described and the simulation scheme includes the basic blocks is presented.
Last, comparison of numerical to experimental results is being executed.

2 Auto Resonance Based Identification

The method, which extends the work in [5], employs a, phase shifted negative feed-
back to induce limit cycle (LC) oscillations. The oscillation amplitude is bounded due
to a nonlinear discontinuous element, mostly a relay-like element in the closed loop,
see Fig. 2. The LC oscillations are then used to estimate the physical parameters of the
system. The parameter identification is carried out with a describing-function approach
type of analysis to achieve limit cycle stability at a desired resonance, while main-
taining a controlled magnitude of oscillations. This method enables the system to self-
tune and lock on resonance of a desired mode shape (or combinations of mode shapes),
and consequently revealing the system’s natural characteristics.

The main principle is to make the system marginally stable at resonance and hence
to improve dramatically the signal to noise ratio and the detectability of parameters
related to high-speed dynamics. The idea is to use the system output for auto-
resonating, also known as self-excitation, the system by feeding it negatively, phase
shifted and amplitude limited back to the system input. With this method there is no
need to know much about the system in advance.

Using negative feedback is compatible with Nyquist criterion. This criterion leans
on the Nyquist plot which introduces both the system’s amplitude and phase of the
steady-state frequency response. Nyquist determined that a system is marginally stable
if the plot crosses the real axis at the value (−1, 0) in the complex plain [2]. The method
can be heuristically described as rotation and expansion (applying gain) of the Nyquist
plot so it would match the marginally stable state as illustrated at Fig. 1.

The feedback phase shift relates to the system input-output phase at the critical
speed of the desirable mode to be excited. The required phase shift can be found from
the system’s phase in the open loop. As will be explained below for rotating systems, a

Fig. 1. Illustration of Nyquist plot, for positive frequencies, change. Left: system response,
right: phase shifted response.
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90° input-output phase shift can be achieved either by applying an integrator to the
feedback or by feeding a signal measured at spatial 90° location with respect to the
actuator.

To achieve a marginally stable limit cycle, while avoiding divergence of the system
[6], a limiter is added before the system input, Fig. 2. Moreover, the limiter allows
controlling the limit cycle’s amplitude. The common manner to apply such constraints
is to use a relay that converts the signal to a limited amplitude square wave. The relay
can be implemented via hardware or as a software algorithm. Among other forms of a
relay-like limiting functions is the hyperbolic tangent function.

3 Numerical and Experimental Study

In order to examine the implementation of the method and the validation of the ana-
lytical development, several experiments were executed on an existing experimental
system [7]. This chapter contains description of the experimental system structure
modeling and some simulation and experiments results comparison and analysis.

3.1 Experimental System Description

The system described in Fig. 3 consists of a rigid rotor lying on two ball bearings
mounted on a plate, free to move only in the horizontal plane by four elastic supports
(round beams), subjected to two externally controlled forces (linear voice-coils) and
rotated by a brushless DC motor. The test procedure program code that operates the
motor and controls the actuators was written in Matlab® Simulink and realized by a
dSPACE™ controller. Two current controllers translate voltage signal commands from
the dSPACE™ into actuation current, driving the voice coils (f1, f2).

The motion of the plate (x1, x2 Fig. 3) was measured by laser displacement sensors
(Fig. 4) and the shaft’s rotational velocity, controlled by the DC motor, was measured
by a magnetic encoder at the shaft’s end. On the shaft, there are two discs with co-radial
threads for balancing the rotor or implement a known imbalance.

Fig. 2. A basic scheme of the method causing autoresonance of the linear-time-invariant
(LTI) oscillating system. Integration is represented by 1/s.
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In order to excite oscillations of an individual modeshape of this system, it is
sufficient to use only one actuator and an accordingly designed operating scheme
controls only voice coil 1.

The experimental parameters common to the entire series of experiments are the
rotation speed and the imbalance.

Voice coil windings

DC motor

x1 x2

Elastic supports

f1 f2

Fig. 3. Rigid rotor balancing demonstrator, consisting of rotating shaft and discs, flexible
foundation supports, electromechanical voice-coil actuators at which the two forces f1, f2 are
applied and elastic supports, [7]

Fig. 4. Test rig showing the laser displacement sensors, electrical motor and the voice coil
actuators
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3.2 Mathematical Model and Numerical Scheme Description

In order to simulate the system and the algorithm numerically and analytically, a model
derived from an identification process carried out as described in [7] was employed.
Figure 5 shows a schematic dynamic model of the system. This is an asymmetric
model with respect to the stiffness and center of gravity position (G). The system two
degrees of freedom (DOF) are x; h and the measurement and actuation coordinates are
x1; x2. The springs represent the flexible beams bending stiffness, which are located at
distances Lk1;Lk2 from G, respectively. The measurement and actuation points are
positioned at distances Lx1;Lx2 from G. Actuators excitation forces are noted f1; f2, and
imbalance forces due to asymmetric rotating shaft are fib 1; f ib 2. The distances of the
imbalance forces from the center of gravity are l1; l2.

The system identification parameters are the system mass and stiffness matrix that
describes the equations of motion at x1; x2 coordinates. In addition, modal damping,
system frequencies, and imbalance are also evaluated in this process.

Amplitude Estimation of the Excited Oscillation (Limit Cycle). The Describing
Function (DF) analysis allows us to estimate the limit cycle (LC) amplitude and fre-
quency of the marginally stable closed loop. This is an important and useful analytical
tool for the simulation validation and future test rig design [6].

According to the Nyquist theorem, a LC exists when the negative feedback open
loop response crosses the real axis at −1. Thus, the basic equation to be solved is:

N Að ÞG sð Þ ¼ �1 ð1Þ

Fig. 5. Test rig scheme model
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Where N Að Þ is the DF of the non-linear block (a limiter), and G sð Þ is the system
transfer function. For a relay, as has been used here, the DF is [6]:

N Að Þ ¼ 4D
pA

; ð2Þ

where D is the relay magnitude and A is the yet unknown LC Amplitude.
Substituting Eq. (2) into Eq. (1) leads to expression of the amplitude of vibration at

steady state:

Aj j ¼ 4D
p

G sð Þj j: ð3Þ

From Eq. (3) one can also learn about the ability of restrict the LC amplitude using
the controllable relay threshold level, D.

Synchronous Detection. In rotating systems, there is an inherent spectral content at
the synchronous frequency, caused by forces synchronous to the rotation speed (e.g.
imbalance and shaft bow). Consequently, synchronous physical phenomena is most
likely to obscure all other non-synchronous phenomena. Since this research is aiming
to reconstruct non-synchronous natural frequencies in the Campbell diagram, a method
for extracting the non-synchronous part of the measurement signal is essential. The
measured non-synchronous signals of the identified natural frequencies are used for
auto-resonating the system. Improving signal to noise ratio by extracting the non-
synchronous measurement can be achieved by the synchronous detection method that
realizes a lock-in amplifier equivalent. This method is widely used for low-level signals
measurements [8] and for signals demodulation in effective radio transmission [9].

A block diagram scheme, which includes the synchronous detection, is shown in
Fig. 6. The “synchronous subtraction” block receives the system output signal as input,
detects and subtracts the synchronous content and passes as an output only the syn-
chronous content. Simulated implementation example, for Jeffcott rotor model [1], is
shown at Fig. 7. The example demonstrates the different between the system oscillation
content with respect to amplitude and frequency before and after activation of the
synchronous detection. The synchronous component of the signal due to imbalance
obviously exists at all times, at the amplitude of the system imbalance response, but
only after applying the synchronous subtraction it is able to excite the desired, non-
synchronous, such that the response is according to the desired modeshape.

Controlling Whirl Direction Using Virtues of Rotating Systems. A rotating system
at steady state is mainly excited by unbalance forces, which are synchronous and
mostly in-phase with the shaft rotation (apart from special cases of non-axisymmetric
bearings). For this reason, excitation of backward whirl is a non-trivial task, as well as
controlling whirl direction. In identification problems, knowing the backward whirl
frequencies helps to better estimate the system dynamical parameters, especially in
gyroscopic systems where the backward natural frequencies differ from the forward
ones.
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In the simulations conducted so far (considering a Jeffcott rotor model), it was
demonstrated that with the proposed method, exciting forward or backward whirl can
be achieved in a quite simple way. The concept, so called “cross coordinates”, is to use
the nature of rotating system that includes inherently two perpendicular degrees of
freedom (x, y). Exciting forward whirl is accomplished by injecting the negative y
output into the x coordinate feedback and the y coordinate feedback is the positive x
output. Backward whirl is excited by switching the feedback signs. Figure 8 shows the
changing of the phase between the two outputs at the switching moment from forward
to backward whirl.

Although controlling whirl direction can be achieved also with integrator phase
shift, instead of the cross coordinates, and feedback sign changing, the “Cross coor-
dinates method” uses the nature of rotating systems and eliminates the need to use an
integrator that may add integration errors and undesired low frequency gain.

Simulation Scheme. In accordance with the executed experiments, several simula-
tions were carried out for analytical examination of the phenomena examined in the
experiments. The simulation scheme, as shown in Fig. 9, includes the basic blocks of
the proposed method. These blocks are the system model (state space representation),

Fig. 7. Simulated Jeffcott rotor response before and under synchronous detection implemen-
tation. (a) system vibration and the two, synchronous and non-synchronous, content (at offset).
(b) response frequencies spectrum

Fig. 6. Block diagram scheme – including synchronous detection
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Fig. 8. Simulated response in the x, y directions, during whirl direction controlling simulation.
(a) response during switching from forward to backward by reversing the sign of the feedback,
(b) forward whirl, (c) backward whirl.

Fig. 9. Simulation scheme (Simulink™).
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synchronous detection that isolates the frequency of rotation, modal filter weighting the
response vector according to a desired spatial response, an integrator and a relay.
Imbalance forces and random noise can be added artificially in the simulation.

3.3 Comparison of Numerical to Experimental Results

In this chapter, the major results of the experiments and simulations are presented
graphically. The graphs present the relevant region of interest for the examined phe-
nomenon. Later on, an analysis of the results and their comparison to the experiments
are performed in order to draw conclusions about the study’s hypothesis.

Vibration amplitude control by changing the relay threshold. This experiment was
performed in order to examine the ability of controlling the limit cycle amplitude by
changing the relay threshold (from 0.1 to 0.2). Figure 11 shows the results at transition
range for experiment (left) and simulation (right).

According to analytical analysis, Eq. (3), the relationship between the relay
threshold and the limit cycle amplitude is a linear. The simulated Nyquist plot of the
system, see Fig. 10, includes two circles, each have a zero Real value at different
frequency (natural frequencies). Numerical calculation of the limit cycle amplitude at
the different modes of vibration for X1 DOF is performed by placing the experimental
parameters and the relevant imaginary value of the frequency response as described
before to Eq. (3). From doing so for the two DOF ðX1;X2Þ one can estimate the system
response at the experiments.

An analysis of the results reveals a difference of about 10% in the LC amplitude
between the analytic evaluation and the experimental measurements. This estimation is
needed only to ensure safety and protect the test rig, and inaccurate estimation doesn’t
damage the ability of applying the method.

Fig. 10. Nyquist plot of GX1X1 sð Þ frequency response
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Real Time Vibration Modes Switching. The purpose of this simulation and test is to
examine the ability to control the excited modeshape during experiment using the
modal filter [5, 10]. The modal filter is applied throughout the simulation but the input
eigenvector changes in the middle of the run from the first mode estimated eigenvector,
[1 1], to the second mode estimated eigenvector, [1 −1]. As shown in Fig. 12, the
system’s response varies from first mode to the second and the vibration frequency
changes accordingly.

The experiments and a simulations were performed such that the transition between
different modes of excitation was performed continuously by changing the input vector
to the modal filter.

The experiment and simulation results indicate that it is possible to switch between
the oscillations modeshape of the system in a reasonable time manner. It should be
noted that the transition between the system’s natural frequencies occurs much faster
than the limit cycle amplitude development.

Another experiment examined the essentiality of a modal filter in the feedback
loop. Here, the modeshape which the system is aimed to be locked on using the modal
filter is the second modeshape. It is shown, from the experiment and the simulations
results, that the system’s response without applying modal filter is a LC vibration at the
lower natural frequency because the system’s stiffness is lower at this modeshape
direction. With the operation of the modal filter (at around t = 10 s, Fig. 12) the system
is locked on the second modeshape, according to the input vector, [1 −1], assigned to
the modal filter in this experiment.

Another important thing one can learn from this experiment is that the estimated
eigenvector can be used as input to the modal filter to control the excited modeshape.
That is, there is no need to know system modeshapes precisely in advance. This fact is
another significant advantage to the characterization method proposed in this research
because it does not require a complicated calculation or a preliminary system
identification.

Fig. 11. Relay threshold change from D = 0.1 to D = 0.2
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4 Summary and Conclusions

Identification of the natural frequencies as a function of rotational speed is of great
interest in characterizing rotating systems, identifying dynamic phenomena and cali-
brating simulations. This is not a trivial task to preform experimentally with current
standard tools and in a way that does not endanger the system. This study proposes an
auto-resonance based method that allows to excite an asynchronous frequency at a
selected modeshape and controlled intensity. Thus identifying the natural frequencies
of the different modes of vibration depending on the rotation speed automatically and
safely.

In order to implement the method, several tools were used as followed. The
Describing Function analysis was used to develop a closed form solution for estimating
the LC amplitudes and frequencies. Resonance excitation was shown to be excited by
using either integrator or the cross coordinate method. The later can be useful, elegant
feature for whirl direction control. The response amplitude was kept limited and
controllable using a relay and its threshold level respectively. Subtracting the syn-
chronous content of the measured signal in order enabled the excitation of asyn-
chronous frequency and improve the signal to noise ratio is done with synchronous
detection. Locking to a desired mode of vibration and switching between modeshapes
at real time was found practical by changing the modal filter. It was shown that
educated guess of the system modeshapes were enough for applying successfully the
proposed method.

Fig. 12. Response during switching of the excited mode goal. (a) - first mode steady vibration,
(b) - second mode, steady vibration (after transient has ceased)
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This paper presented the principles of auto-resonance based identification, theo-
retical background, numerical investigation and experiments performed on a laboratory
test rig. The work performed so far showed practical feasibility for implementing this
detection method for building the full natural frequency – rotation speed map in
experiment. The experiments verified the theory, and were compared with simulations
with good agreement. Thus, we can use these analytical tools for parameters sensitivity
analysis and system design.
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Abstract. An experimental facility for testing full-scale bladed disks in
vacuum conditions and under centrifugal load is described in this paper.
The special feature of the PHARE#1 test rig is its multichannel excita-
tion system which allows to excite woven composite fan blades with any
spatial and phase distribution as well as synchronous or non-synchronous
vibration forcing with respect to rotation speed. The configuration of
the excitation system allows each blade to be excited independently
and therefore nodal diameter excitations can be performed with trav-
eling (forward, backward or mixed) or standing waves. First rotations
of the PHARE#1 test rig produced results at different rotation speeds,
for several modes, nodal diameters and excitation levels. Typical results
analysis and findings are presented in this paper.

Keywords: Modal testing · Full-scale woven composite fan
Traveling and standing waves · Nodal diameter excitations
Piezoelectric actuators · Vacuum conditions

1 Introduction

Bladed disks are key components of turbojet engines. It is also one of the
most prolific subjects of research and development in the aeronautical field, as
evidenced by latest bladed disk technological advances such as shape (wide-
chord blade) or material (composite material) evolutions. These innovations
have allowed to increase by-pass ratio and reduce greatly the whole turbojet
mass. However, they involve changes in fan dynamic behavior and sensitivity to
vibrations. It is then essential to understand and control their vibration behav-
ior to make sure they do not lead to their early fatigue failure. To improve
comprehension of latest-generation bladed disk dynamics, a first step is to col-
lect experimental data on these structures under conditions closest to operating
conditions.

The PHARE#1 (standing for: rotAting macHinery Platform for control of
Environmental Risks) facility has been developed in the last few years at the
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École Centrale de Lyon in the perspective of mastering bladed disk vibratory
phenomena. PHARE#1 is a research test rig dedicated to vibration tests of
full-scale rotating industrial systems at their actual operating speed conditions.
The entire test rig is highly instrumented, which allows a very large area of
scientific investigations. Main research themes associated with the PHARE#1
facility are forced vibrations on bladed disks [1–4], contact instabilities between
blades and carter [5–8], friction and wear effects [9,10] and passive [11–13] or
active vibration [14,15] control methods.

The first testing campaign of the PHARE#1 test rig focuses on forced
responses of a complete full-scale fan in rotation and more specifically on struc-
tural damping and friction induced damping studies. The blades incorporate a
new generation of 3D woven composite materials and molded resin injection,
this technology is also known as RTM (Resin Transfer Molding) [16]. This fan
is similar to those used in the latest generation of fans, like the LEAP. Fluid-
structure interactions are, in the case of a turbojet engine, the major source
of vibrations brought to bladed disks. However, to study their vibration behav-
ior in a pure solid mechanical and structure dynamic point of view, they are
studied in vacuum conditions. Thanks to these conditions, actual fans can be
rotated at nominal speed with a reasonable driving power in a free-aerodynamic
disturbance environment. To dynamically force blades with realistic vibration
amplitudes, an excitation system based on piezoelectric actuators [17] has been
developed. Each blade is equipped with a network of several piezoelectric patches
allowing it to be actuated independently by means of a software developed in the
Laboratory of Tribology and Systems Dynamics. This very versatile excitation
method can provide any spatial and/or temporal excitation distribution to the
rotating test piece independently of the rotation speed.

This paper is divided in three parts. The first part includes a description of
the PHARE#1 capability and its instrumentation. The following part focuses
on the excitation system design and its associated control software. To conclude
this paper, some first successful results, obtained for several rotating speeds,
nodal diameters and excitation levels, are presented and discussed.

2 PHARE#1 Facility

The PHARE#1 test rig has been designed in order to perform full-scale vibration
studies on fan units as well as High Pressure Compressor (HPC) stage units of
modern civil aircraft in vacuum conditions at nominal speed (Figs. 1 and 2).

2.1 Test Rig

The main element of the bench is the vacuum chamber (Fig. 1 ➀) which allows
rotating systems to be placed in conditions close to total vacuum. Chamber
useful dimensions are 3 m diameter for 4 m axial length. A double stage rotating
vane vacuum pump extracts air from the chamber. The front part is reinforced
with thick armor plates to protect from impact in case of accidental element
loss.
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Fig. 1. CAD cross-section view of the PHARE#1 test rig

The vacuum chamber is strongly attached to a heavy concrete inertia block
(Fig. 1 ➁). The seismic block is designed to prevent machine and machine’s
foundations from critical vibration levels in case of accidental blade loss.

A retractable door (Fig. 1 ➂), covering the chamber entire surface, allows to
install the test vehicle (Fig. 1 ➃) and the fan in the front side. An inflatable seal
ensures airtightness when the door is closed.

A 700 kW electric driving motor (Fig. 1 ➄) allows fast ramp up and down in
vacuum and driving speeds up to 8000 RPM for Low Pressure stage applications
or 25000 RPM (using a speed multiplier) for High Pressure stage applications.
The motor is regulated by a powerful electric speed drive in order to achieve
accurate rotating conditions.

In order to drive the tested structure inside the vacuum chamber, a sealed
spindle (Fig. 1 ➅) ensures connection between the driving motor and the main
shaft. It is able to transmit the maximum torque provided by the motor as well
as rotate at high speed for future HPC applications thanks to its bearings and
its air-oil own lubrication technology. This unit features a circumferential carbon
ring seal in order to drive the rotating shaft through the vacuum chamber wall.
It also supports the telemetry unit and feed-through wiring for piezoelectric
actuators as described in Subsect. 2.2.

Lubrication of the test vehicle’s bearings is provided by means of a particular
hydraulic unit able to return and cool lubricating oil from vacuum to the main
oil tank at ambient pressure.
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Fig. 2. Fan installed inside vacuum chamber

2.2 Instrumentation

All parts of the test rig mentioned in Subsect. 2.1 are monitored with numerous
sensors (vibration, speed, thermal and fluid parameters measurement, . . . ) in
order to ensure proper functioning of each unit as well as monitoring experimen-
tal conditions.

The test vehicle is also heavily instrumented for balancing and monitoring
purposes. Accelerometers, shaft contactless displacement sensors, strain gages
and key phaser give global behavior of the test vehicle. Most of these sensors,
operating inside the chamber, are connected via sealed cable glands to condi-
tioning and data acquisition systems.

The telemetry system (Fig. 1 ➆) carries out measurements (strain gages and
thermocouples) from the rotating frame to the stationary one. This telemetry
has a capacity of 44 channels mixing static or dynamic strain measurements and
8 channels for temperature measurements.

A total of more than 150 sensors monitor the test bench and the rotating
structure.

3 Piezoelectric Excitation System

To provide necessary dynamic excitation for modal testing in vacuum, each fan
blade is actuated by several piezoelectric patches distributed on pressure and
suction sides of the blades. Piezoelectric actuators allow to convert electrical
energy into mechanical energy even in rotating conditions and to excite the fan
regardless of its rotation speed. Moreover, flexibility and non-intrusiveness are
their major advantages.
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3.1 Excitation Circuit

An overview of the needed circuitry for blade actuation is presented Fig. 3.

Fig. 3. Piezoelectric excitation set-up

Digital signals are generated by means of a software developed on LabView
TM

in the laboratory. Among other functionalities, this software allows frequency and
interblade phase control of the excitation of each blade. A National Instrument

TM

analog output device generates analog signals for each of the eighteen blades.
These signals are amplified by a linear power amplifier of 1500 W specially
designed for this application.

In order to ensure transmission of the eighteen power signals delivered by the
amplifier from the stationary frame to the rotating frame, a slip ring (Fig. 1 ➇)
is mounted at the rear of the shaft line. Power cables run inside the shaft line
before reaching connection to piezoelectric actuators. These are shielded and
constituted by twisted pairs in order to limit the risk of ElectroMagnetic Com-
patibility issue (EMC).

Piezoelectric actuators chosen for this application are made of Lead Zirconate
Titanate (PZT-5H). These patches are a good compromise between flexibility (to
fit the blade surface curvature) and excitation performance (high piezoelectric
coupling factor).

Piezoelectric patches are most effective when positioned in blade higher strain
areas [18]. A preliminary study was carried out to optimize the number of piezo-
electric patches to be installed and their location on the blades (Fig. 4). As
the aim is to study influence of several parameters on blade dynamics, patch
location results from a compromise between maximum strain zones of the tar-
get modes (first bending mode: 1B and second bending mode: 2B) for several
rotation speeds (Fig. 4a). It has been shown that, as rotation speed increases,
dynamic strain distribution changes [18]. Eighteen piezoelectric actuators were
finally bonded to each blade: 8 on the suction side and 10 on the pressure side
(Fig. 4b). Piezoelectric patches are wired in parallel to deliver the same volt-
age to all actuators. Actuators on each side of the blade are connected out of
phase for maximizing their effect on bending modes. A total of 324 piezoelectric
patches are installed on the fan.
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Figure 4a represents modal equivalent Von Mises strain contours of 1B mode
on suction and pressure sides of the composite fan blade. Figure 4b provides
pictures of a blade equipped with piezoeletric actuators and two strain gages at
blade’s foot.

Fig. 4. Location of piezoelectric actuators

3.2 Excitation Signal

The configuration of the excitation system allows to excite each blade inde-
pendently allowing generation of different spatial excitation patterns. It is then
possible to constrain a particular nodal diameter (ND) mode (Fig. 5a) of the
bladed disk. Standing or traveling wave excitations are generated for this pur-
pose [1,19] (1). It should be noted that traveling directions are both related to
rotation direction and blade numbering (Fig. 2) in order to avoid some possible
confusions.

vk(t) = vf sin(ωt − ϕkini
) + vb sin(ωt + ϕkini

) (1)

With ϕkini
= kNd2π

N and ω = 2πf
The notations vk, vf and vb are the k-blade excitation amplitude and excita-

tion amplitudes of the forward and backward traveling wave components, respec-
tively. ω, ϕkini

and f are the forcing angular frequency, the initial interphase
blade angle and the excitation frequency of each traveling wave, respectively. Nd

is the number of nodal diameters of the excitation pattern, Nd ∈ [
0, N

2

]
if N

pair or Nd ∈ [
0, N

2 − 1
]

if N odd. N is the number of fan blades.
All mentioned excitation waves can be generated using (1)

• A standing wave (SW) : vf = vb

• A forward wave (FW) : vb = 0
• A backward wave (BW) : vf = 0
• A mixed forward and backward wave (MW) : vb �= 0, vf �= 0 and vf �= ub
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Figure 5 gives three representations of a 2B-2ND forward traveling wave
response. The same spatial characterization can be used for both wave excitation
pattern and wave response by means of nodal diameter concept. Figure 5a is a
spatial representation of the computed displacement field at t = 0. Figure 5b
is a time history of each blade amplitude response. Figure 5c is a full spectrum
amplitude performed on the time series of Fig. 5b and then reversed to display
BW in the negative part of the diagram and FW in the positive part.

Fig. 5. Traveling wave response

4 Experimental Results

The fan tested here is a full-scale fan composed by eighteen woven composite
blades with titanium leading edges.

The main objective of the first test campaign is to evaluate fan structural
damping. The fan is tested under vacuum conditions allowing to concentrate only
on structural damping. In addition, forces generated by piezoelectric actuators
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allow to estimate friction induced damping at blade’s attachment while master-
ing forces applied to the fan. During this campaign, several vibration modes of
different fan configurations will be tested, for multiple rotation speeds, nodal
diameter excitations (standing and traveling waves) and excitation levels.

Two strain gages are installed at the bottom of each blade capturing blade
vibrations. Two gages are required to distinguish torsional from flexural vibra-
tion modes. Four thermocouples are distributed on the fan near the contact area
between blades and disk in order to evaluate thermal conditions at the blade/disk
interface.

Resonance excitations are performed using a stepped sine with increased
frequencies through mode resonances. Like a swept sine [20], distortion effects
may be brought to the estimation of steady-state response if the sweeping is
too fast. A sufficient laps time must then be waited after each increment of the
stepped sine forcing frequency in order to let the transient part of the response
to vanish.

4.1 Testing of the 2B-2ND Mode

2ND forward traveling wave excitations are performed to excite the 2B mode for
several excitation voltages (Fig. 6) and rotation speeds (Fig. 9). Rotation speeds
are expressed in term of a percent of the fan nominal speed (%Nn). Figure 6’s
diagrams represent normalized strain forced responses amplitude and phase of
the fan subjected to a 2ND forward traveling wave excitation for a rotation
speed of 50% Nn. Each forced responses includes only the first harmonic and all
forced responses have the same phase reference: the excitation signal measured
for blade 1.

A slight frequency shift of the resonance peaks appearing with the increase
in excitation voltage may be noticed on Fig. 6 and on all the blades. Moreover,
two resonance peaks can be distinguished, notably on Fig. 6b.

A multichannel linear modal identification using least-squares rational func-
tion estimation method [21] is performed on each forced response to evaluate
natural frequencies, damping ratios and mode shapes. The steady-state model
of the response for modal parameter extraction is governed by Eq. (2) [22].

uk(w) =
n∑

j=1

(
rk,j

ωjξj + i(ω − ωj

√
1 − ξ2j )

+
r∗
k,j

ωjξj + i(ω + ωj

√
1 − ξ2j )

) (2)

where the subscripts •k and •j refer to the blade number and to the number
of modes assumed in frequency band. uk is the k-blade frequency response and
the sum of modal participations coming from each mode. r is a residual vector
(∈ C) which is proportional to the mode shape and r∗, his conjugate complex.
Here, residual vector is defined as rk,j = zk,jzj · v where zj is the j-mode shape
contribution and v represents the excitaition vector operating on the blades. ω
and ωj are the forcing frequencies and the jth modal frequency respectively. ξj

is the viscous damping ratio. The system exhibiting slight non-linearities, this
linear approach is therefore an approximation.
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Fig. 6. 2B mode forced responses at 50% Nn excited by a 2ND FW (left: 6th blade,
right: 13th blade)

Figure 7 shows a superposition of the experimental forced responses of the
blade 8, the forced response synthesized using modal parameters and the modal
participation of each mode, an amplitude (Fig. 7a) and a phase (Fig. 7b) dia-
grams are presented. Two modes are identified on forced responses of the 2B-2ND
mode at 50%Nn and for a 2 V excitation (Fig. 7). A full spectrum is performed
on the two extracted modal participation vectors for a 2 V excitation (Fig. 8).

The full spectrum spatial analysis put in evidence that each identified mode
shape has a backward and a forward two nodal diameter component. Although,
it can be seen that the 2ND mode shape no1 corresponding to the lower modal
frequency is predominantly backward and on the other hand that the higher
modal frequency mode is mostly forward. The participation amplitude of the
second mode is twice as high as the first mode, which is logical since the excita-
tion provided is a forward traveling wave.

Figure 9 represents the modal parameter evolution as fonction of the maximal
modal participation of the fan blades.
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Fig. 7. Modal synthesis of blade 8’s experimental forced response at 50% Nn
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Fig. 8. 2B-2ND mode spatial full spectrum amplitude of modal participation vectors
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Figure 9a confirms that a slight frequency shift depending on the modal par-
ticipation amplitude of each mode is observable for the two modes. Moreover,
Fig. 9b shows an increase of the damping ratio as the first mode maximal modal
participation amplitude of all blades increases. These variations in natural fre-
quency and damping ratio reflect a friction behavior [9]. Figure 9b indicates that
the damping ratio of the first mode has a poor sensitivity to modal amplitude
most certainly due to the low modal amplitude of mode 1 participation.

Figure 9 also reveals an increase in natural frequencies and a decrease in
damping ratios with rotation speed which is a typical behavior for rotating
bladed disks [9,11].

4.2 Testing of the 2B-3ND Mode

3ND forward traveling wave excitations are performed to excite the 2B mode
family at 70% Nn for several excitation voltages as shown in Fig. 10. Figure 10’s
diagrams represent normalized strain forced responses amplitude and phase of
the fan subjected to a 3ND forward traveling wave excitation for a rotation speed
of 70% Nn.
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Fig. 10. 2B mode forced responses at 70% Nn excited by a 3ND FW (left: 6th blade,
right: 13th blade)

For the same blades, the forced responses differ between 2ND (Fig. 6) and
3ND (Fig. 10) modes. The same conclusions can be derived from the evolution
of the forced responses according to modal participation amplitude for 2ND or
3ND excitation, i.e. the existence of two modes and the presence of a frequency
shift.

A full spectrum is performed on the two extracted 3ND modal participation
vectors for a 2 V excitation.
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Fig. 11. 2B-3ND mode spatial full spectrum amplitude of mode shapes

Like the 2ND excitation, the first mode corresponds to a backward traveling
wave (Fig. 11a) while the second mode corresponds to a forward traveling wave
(Fig. 11b). Nevertheless, contribution of other traveling waves are higher than
those of the 2ND excitation.
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Fig. 12. Influence of nodal diameter and modal amplitude on modal parameters. 1st
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Figure 12 represents the modal parameter evolution as fonction of the maxi-
mal modal participation of the fan blades.

Figure 12a indicates that 3ND mode natural frequencies are higher than those
of the 2ND modes. and that the frequency shift is similar between the two
nodal diameter modes. Furthermore, the natural frequency difference between
the first and the second mode is constant as a function of the modal participation
amplitude.
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Figure 12b shows different behaviors for the two modes. For the first mode,
the 2ND mode damping ratio does not vary while the 3ND mode damping ratio
increases as a function of the modal participation amplitude. For the second
mode, the 3ND damping ratio increases but the 2ND mode evolution is greater.
Numerical simulations performed on a complete fan will allow to draw a full
comparison with all the experimental observations reported in this paper.

5 Conclusion

The PHARE#1 test rig has been developed in the perspective of studying bladed
disk vibratory phenomena. The test rig allows a very large area of scientific topics
from forced vibrations on bladed disks to contact instabilities. This test rig is
worldwide unique as far as it is equivalent in term of size, power and features
to testing means found in industrial companies with the originality that it is
surrounded by a close academic environment.

The first bladed disk tested is a complete full-scale fan composed by eighteen
woven composite blades. The main objectives of the test campaign is to estimate
the damping (structural and induced by friction at blade attachment) of the fan.
First results of the PHARE#1 test rig presented on this paper are quite con-
vincing as they show evolutions of modal characteristics that are generally found
in turbomachines (increased natural frequency and decreased damping when the
rotation speed increases). The response magnitudes reached make it possible to
observe nonlinear friction highlighted by a decrease in natural frequencies and
an increase in damping ratios as a function of the excitation level. In addition,
two modes has been identified for each forced response: the mode correspond-
ing to the lower modal frequency is mostly backward whereas the higher modal
frequency mode is predominantly forward.

These first tests will be followed shortly by new ones, with different configu-
rations in order to test the influence on structural and friction induced damping
of particular fan components such as foils or platforms.

These tests may be correlated with numerical simulations of a mistuned fan
under centrifugal loads [23] and excited by piezoelectric actuators in order to
draw a full comparison with the experimental observations reported in this paper.
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Excited blade vibration for aeroelastic investigations of a rotating blisk using piezo-
electric macro fiber composites. In: Proceedings of the ASME Turbo Expo 2013:
Power for Land, Sea and Air (2013)
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Abstract. In this work, it was proposed to use Kriging surrogate models for
rotordynamics prediction in rotor-bearing systems. The motivation is to sig-
nificantly reduce computation effort when evaluating the design space. First,
fundamentals of rotordynamics are reviewed and the rotor-bearing system is
modeled using the Finite Element (FE) method. Modal analysis is used to
determine whirl frequencies and critical speeds while system dynamic behavior
is evaluated in terms of the unbalance response. Subsequently, approximations
of the input/output relationships created by the FE simulations are obtained by
applying the Kriging interpolating method. The derived models work as fast-
running surrogates for the full model. Comparison of the results from Kriging
surrogates obtained using different training samples shows that the proposed
methodology provides a computationally efficient and low-dimension mathe-
matical relationship that can accurately predict rotor-bearing system outputs
with considerably low training effort.

Keywords: Kriging surrogate modeling � Rotor-bearing systems
Rotordynamics prediction

1 Introduction

In engineering design, surrogate modeling techniques are of particular interest when
high-fidelity, thus computationally expensive analysis are required, such as rotordy-
namics analysis. The dynamic behavior of complex rotor systems is usually solved by
means of computational models such as the Finite Element (FE), where the complexity
of the model increases with the wealth of information it contains.

Also, computational cost increases when the values of system parameters are
indeterminate, i.e. they may vary within particular ranges, what is called uncertainty.

Although the recurrent call of the deterministic computational model for processing
uncertain quantities through Monte Carlo sampling is robust and independent of the
model dimension, it has remarkably slow convergence rate and requires large number
of time-consuming simulations to guarantee an accurate and efficient coverage of the
design space, which is sometimes impractical for rotordynamics analysis in most
rotating machinery design.
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In this context, the use of an adequate approximation of the system response
appears as an effective way to accomplish reasonable reduction of numerical effort.
Surrogate models, or metamodels, are analytic relationships that approximate the
multivariable input/output dynamic behavior of higher order models, based on a limited
set of computationally expensive simulations. A surrogate is built from sampled data
obtained by intelligently exploring the design space. It only requires tens to a few
hundreds of full computational model runs for the training. Once validated, the sur-
rogate model becomes a very effective low cost substitute of the original model for a
wide variety of purposes, such as robust optimization, design automation, parametric
studies and uncertainty analysis [1].

There are several surrogate models techniques available in the literature, such as
polynomial response surface models, radial basis functions, Kriging, support vector
regression and artificial neural networks [2].

Here, the method known as Kriging surrogate modeling is approached. Kriging is a
statistics-based interpolating technique capable of handling deterministic noise-free
data, which drew a lot of attention during the past decade.

It was first used in mining and geostatistical applications and has been increasingly
used, especially in structural and aerodynamic optimization. Kriging-based surrogate
provides an explicit function to represent the relationship between the inputs and
outputs with a small initial training sample set in linear or nonlinear system.

The purpose of this work is to evaluate the use Kriging-based surrogate modeling
for rotordynamics prediction (natural frequencies and unbalance response) of rotor-
bearing systems. Results of Kriging surrogates are compared for different training
samples and the efficiency of the Kriging model for rotordynamics prediction is further
analyzed.

Section 2 brings the fundamentals of rotor-bearing system modeling and an over-
view of the Kriging surrogate modeling. The application of Kriging interpolation to the
rotordynamics system is described in Sect. 3, followed by the assessment of the
accuracy of the Kriging surrogate. The main conclusions are finally presented in
Sect. 4.

2 Mathematical Modeling and Kriging Surrogates: A Brief
Description

2.1 Rotor-Bearing Model

The dynamic behavior of rotor-bearing systems depends considerably on the geometry
and properties of the rotor and bearing parameters, which in the sense of dynamics have
corresponding inertial, elastic, gyroscopic and damping forces [3].

A rotor-bearing system model is typically composed of three essential components:
the shaft, the disks and the bearings. In most cases, a common source of rotor excitation
resultant from a mass unbalance is also present on the rotor, which must also be
considered [4].

In current industry practice, each component of the rotating systems is discretized
using the Finite Element method in order to model and predict its dynamic behavior
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and bearing performance. A common approach for discretization is to use a shaft-line
model, in which the mesh is created by simply choosing nodes at key locations along
the shaft line [5].

The shaft with distributed mass and elasticity is represented as a set of two-node
circular cross-section Timoshenko beam elements, each with eight degrees of freedom,
and characterized by both strain and kinetic energies.

Disks represent the rotating components, either attached to the shaft or an integral
part of the shaft, with relatively short axial length and large diameter (e.g., compressor
impellers, turbine wheels and balancing rings). They are characterized by the kinetic
energy, and modeled as rigid elements when studying its effects on rotordynamics [6].
Usually present on disks, mass unbalance is also defined in terms of the kinetic energy.

The elements that support the shaft are the bearings, which may be classified into
rigid or elastic. In practice, a rigid bearing is equivalent to a high stiffness bearing
whereas an elastic bearing is characterized by finite stiffness properties and by viscous
damping properties [7]. In this work, we use hydrodynamic journal bearings as the
shaft elastic support elements. These fluid-film bearings have noticeable speed-
dependent properties, which has to be incorporated in the rotor-bearing model by
changing the linear stiffness and damping elementary matrices as the shaft speed varies
[5].

The speed-dependent linearized stiffness and damping coefficients for the journal
bearing can be calculated analytically as a function of the journal eccentricity and the
modified Sommerfeld number, assuming Ocvirk’s short-bearing approximation
[5, 8–10]. As expected, the stiffness matrix is not symmetric, introducing anisotropy
into the model.

Rotor-bearing system time-domain equations of motion, including the effects of
rotatory inertia, gyroscopic moments and damping, are obtained by assembling element
matrices derived from Lagrange’s equations and is written in matrix form as:

M€q tð ÞþC _q tð ÞþKq tð Þ ¼ F tð Þ ð1Þ

where q are the generalized coordinate displacement vector, M is the inertia matrix, C
contains the linearized bearing damping matrix and the gyroscopic matrix, K is the
stiffness matrix and F is the force vector.

This matrix equation represents a set of n second-order ordinary differential
equations. This system is solved for two different cases: first for eigenvalues and
eigenvectors (i.e., natural frequencies and mode shapes) using modal analysis and
lately for frequency response to harmonic excitation forces (i.e., unbalance forces) [11].

Regarding the modal analysis, due to the nonproportional damping the standard
eigenvalue problem cannot be used, since the normal modes do not decouple the
damping matrix [12]. The solution of the free vibration system leads to a quadratic
eigenvalue problem. To solve it, it is convenient to reformulate the second-order
equation of motion into a set of 2n first-order differential equations:

C M
M 0

� �
_q
€q

� �
þ K 0

0 �M

� �
q
_q

� �
¼ 0

0

� �
ð2Þ
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Thus, writing in the state space form, the equation of motion becomes:

Axþ _xx ¼ 0 ð3Þ

where the state vector with 2n elements is:

x ¼ q
_q

� �
ð4Þ

Solutions are sought of the form:

x tð Þ ¼ vest ð5Þ

Thus, the eigenvalue problem is defined as:

sAþB½ �m ¼ 0 or �A�1B� sI
� �

m ¼ 0 ð6Þ

where the dynamic matrix is �A�1B, m are the eigenvectors and the eigenvalues are:

si; snþ i ¼ xi �fi � j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2i

q	 

¼ �fixi � jxdi ð7Þ

The response of the system to a generic force varying harmonically in time such as
synchronous mass unbalance can be determined by assuming a harmonic solution for
the equation of motion and obtaining a solution in the frequency domain:

Y xð Þ ¼ �x2Mþ jxCþK
� ��1

F xð Þ ð8Þ

2.2 Overview of Kriging Method

The interpolation method known as Kriging is popular in approximating computation-
intensive generated data which are deterministic in nature [13]. It was conceived by the
mining engineer Krige [14] in geoestatistics and later developed by Matheron [15].
Kriging was definitely introduced into engineering design following the work of Sacks
et al. [16], who applied the method to construct an approximation model based on data
from computer experiments [17].

The Kriging approach treats the function of interest as a realization of a stochastic
process [18, 19]. It is a statistical-based approximation method for design and analysis
of computer experiments [20]. Prediction with a Kriging model requires the inversion
and multiplication of several matrices, thus the Kriging model does not exists as a
“closed-form” polynomial equation.

In order to train the Kriging model it is necessary to start with a set of sample data
and observed responses. After a first identification of k input variables that have a
significant impact on system output, the design variable vector x ¼ x1; x2; . . .; xkf gT is
determined as well as the ranges of each variable. The next step is the definition of n of
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these k-vectors, X ¼ x 1ð Þ; x 2ð Þ; . . .; x nð Þ� �T
, that will represent the design space. The

notion of design space covers the set of all possible experiments or simulations that
may interest the analyst. In this regard, the design of experiments is used to intelligently
determine a few points out of the full factorial set that provide sufficient information
about the full response space instead of covering the whole design space. The Latin
hypercube sampling (LHS) is a commonly used technique to select the values of input

variables [21]. The observed responses are stored in a vector y ¼ y 1ð Þ; y 2ð Þ; . . .; y nð Þ� �T
.

As stated before, the observed responses are considered as if they were from the

realization of a random process. The vector Y ¼ Y x 1ð Þ �
; Y x 2ð Þ �

; . . .; Y x nð Þ �� �T

denotes the random field and the random variables are correlated using the Kriging
basis function with Gaussian form:

cor Y x ið Þ
� �

; Y x lð Þ
� �h i

¼ exp �
Xk

j¼1
hj x

ið Þ
j � x lð Þ

j

��� ���pj� �
ð9Þ

This correlation function shows that if x ið Þ
j ¼ x lð Þ

j the correlation is one. Likewise, if
the distance between the two points grows, the correlation tends to zero. The parameter
hj allows the width of the basis function to change from variable to variable. By
looking at the elements of the vector h, the most important variables can be determined.
The smoothness parameter pj is typically fixed at two (Gaussian basis exponent) for
smooth correlations. From this expression, we obtain the correlation matrix:

W ¼
cor Y x 1ð Þ �

; Y x1ð Þ� � � � � cor Y x 1ð Þ �
; Y x nð Þ �� �

..

. . .
. ..

.

cor Y x nð Þ �
; Y x 1ð Þ �� � � � � cor Y x nð Þ �

; Y x nð Þ �� �
2
64

3
75 ð10Þ

One advantage of using a basis function with Gaussian form is that it always lead to
a symmetric positive definite correlation matrix, thereby guaranteeing the computation
of its inverse via Cholesky factorization [17].

Once we have a set of correlated random variables Y , where the correlations depend
on the absolute distance between the sample data and the parameters h and p, the next
step is to tune the Kriging model by choosing h and p to maximize the likelihood of the
observed data y. For this, we use a metaheuristic global search method such as a genetic
algorithm or simulated annealing, which has proved to produce the best results.

After the search, we can finally use the maximum likelihood estimation
(MLE) values for the model parameters h and p to calculate the correlation matrix and
make predictions of the response at new points using the Kriging model.

According to Jones [22], the standard formula for the Kriging prediction at a new
point x�, can be written as:

by x�ð Þ ¼ blþwTW�1 y� 1blð Þ ð11Þ
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where bl is the MLE for the mean l:

bl ¼ ð1TW�1yÞ= 1TW�11
 � ð12Þ

and w is the vector of correlations between the observed data and our new prediction:

w ¼
cor Y x 1ð Þ �

; Y x�ð Þ� �
..
.

cor Y x nð Þ �
; Y x�ð Þ� �

8><
>:

9>=
>; ¼

w 1ð Þ

..

.

w nð Þ

8><
>:

9>=
>; ð13Þ

3 Numerical Results and Discussion

In order to demonstrate the applicability and accuracy of the Kriging-based surrogate in
rotordynamics prediction, a numerical study of a rotor-bearing system was carried out
using the MATLAB® software package. Figure 1 illustrates the FE model to be
evaluated [5].

The rotor-bearing system is composed of a steel shaft (E = 211 GPa, m = 0.3 and
q = 7,810 kg/m3) with 6 beam elements, two rigid steel disk elements, and it is sup-
ported by oil-film journal bearings located in both ends. The nominal bore diameter of
the journal bearing is the same as the shaft.

A synchronous excitation is also added by an unbalance moment of 5 � 10−4 kg-m
positioned at the right disk element. Details of the rotor-bearing baseline parameters are
presented in Table 1.

The rotor-bearing system dynamic behavior was assessed with the shaft spinning at
4,000 rev/min. The modal analysis for this condition indicates a first undamped natural
frequency of 17.08 Hz and the first six modes shapes are illustrated in Fig. 2. Observe

Fig. 1. Rotor-bearing FE model.

Table 1. Rotor-bearing model baseline

Shaft length, m 1.500
Shaft diameter, m 0.050
Left disk diameter, m 0.280
Right disk diameter, m 0.350
Disk thickness, m 0.070
Bearing diameter, m 0.050
Bearing length, m 0.030
Bearing radial clearance, lm 100
Bearing oil film viscosity, Pa-s 0.1
Bearing static load, N 525
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that when the displacement at the bearings location is small, fluid-film damping is
expected to be less effective for the rotor-bearing system damping as a whole.

The frequency response to the mass unbalance in Fig. 3 indicates that the system
passes through a first critical speed near 1,000 rev/min, which corresponds exactly to
the first mode excitation. In the proximities of 4,000 rev/min, a second critical speed is
experienced, however with a higher damping. There is at least an order of magnitude
between the amplitudes at the right disk element (node 5) and the amplitudes at the
bearings location (nodes 1 and 7).

Since the system dynamic behavior is extremely dependent on bearing stiffness and
damping, an evaluation of bearing parameters influence is desirable to rotordynamics
predictions.

Here, both hydrodynamic journal bearings’ length, radial clearance and oil film
viscosity were chosen as the critical design variables, which are allowed to vary at
specific ranges. Table 2 indicates the baseline, minimum, and maximum values for
these parameters.

Fig. 2. Rotor-bearing mode shapes at 4,000 rev/min.

Fig. 3. Rotor-bearing unbalance response magnitude at different locations.
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Kriging methodology was then applied to construct a surrogate for the FE model
based on initial samples of design points. The objective is to assess Kriging-based
surrogate accuracy and efficiency in predicting system dynamic behavior.

The proposed application of Kriging interpolation to the rotor-bearing system for
rotordynamics predictions is illustrated in Fig. 4 flowchart.

The LHS technique was used to generate the values of input variables, which are
evaluated by the FE model. To investigate the effect of sampling size, different training

Table 2. Critical design variables baseline parameters.

Parameter Baseline Minimum Maximum

Left bearing length, m 0.030 0.020 0.038
Left bearing radial clearance, lm 100 50 125
Left bearing oil film viscosity, Pa-s 0.100 0.010 0.200
Right bearing length, m 0.030 0.020 0.038
Right bearing radial clearance, lm 100 50 125
Right bearing oil film viscosity, Pa-s 0.100 0.010 0.200

Fig. 4. Kriging method flowchart.

Kriging-Based Surrogate Modeling for Rotordynamics Prediction 313



samples, containing 40, 70,100 or 200 design points, were used to construct the sur-
rogates, as suggested by Han et al. [23] in his work with bearing parameter
identification.

The 1st mode undamped natural frequency and the unbalance response amplitude at
the right disk element, both calculated with the rotor spinning at 4,000 rev/min, were
used as the observed outputs for the sample data.

3.1 Kriging-Based Surrogate for Eigenfrequency Prediction

Figure 5 shows the tile plot obtained from the Kriging-based surrogate prediction for
the system 1st mode undamped natural frequency. Each tile presents a filled contour of
the eigenfrequency, in hertz, versus two of the six design variables, keeping the
remaining variables at the baseline value. This plot is very useful to understanding how
the variables involved impact the evaluated function, in this case the natural frequency.

Clearly, the fluid-film viscosity plays a very important role in changing system
natural frequency. In general, high lengths, high viscosities and low radial clearances
reduce journal-bearing eccentricity, leading to higher bearing stiffness and damping.
The consequence to the rotor-bearing system is increased natural frequencies.

Figures 6 and 7 show the good agreement between Kriging-based surrogate pre-
diction and the result from the FE model. The normalized root mean square errors

Fig. 5. 1st mode undamped natural frequency landscape, in Hz.
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(NRMSE) are 1.76% and 2.39%, respectively. To give an idea of the goodness of fit, a
coefficient of determination R2 = 0.8 roughly corresponds to a NRMSE of 10% [17].
Notice the fine resolution of the vertical axis, also indicated in the color bar. The
surrogate was trained using 200 design points, which are also displayed.

Fig. 6. Left bearing viscosity vs. clearance influence on 1st mode undamped natural frequency.
NRMSE = 1.76%.

Fig. 7. Right bearing length vs. left bearing viscosity influence on 1st mode undamped natural
frequency. NRMSE = 2.39%.
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3.2 Kriging-Based Surrogate for Unbalance Response Prediction

The Kriging-based surrogate prediction for the system unbalance response amplitude at
the right disk element is shown in Fig. 8 tile plot. Clearance appears to have great
influence in the frequency response.

Figures 9 and 10 show that low radial clearances and high oil-film viscosities
increase system response to unbalance, especially due to the stiffening effect observed
at the bearings. Although journal-bearing damping is also higher in these conditions, its
effectiveness in reducing system unbalance response might be low if the displacement
at the bearings location is small. As observed, Kriging model predictions present good
correlation with the FE results. The normalized root mean square errors (NRMSE) are
2.36% and 5.81%, respectively. Again, a fine resolution was used to enhance the
visualization of the predicted surfaces.

3.3 Effectiveness of Kriging-Based Surrogate for Rotordynamics

The efficiency and accuracy of Kriging-based surrogate models for rotordynamics were
assessed by quantifying the computational effort reduction and the normalized root
mean square error (NRMSE) for Kriging predictions when compared with the full FE
model predictions.

Fig. 8. Unbalance response amplitude at the right disk element landscape, in m.
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Figure 11 shows the increasing of time required in the overall training process with
the number of training points. It includes sampling, full model simulations and the
search for the parameters that maximize the likelihood of the observed data. We
observe that time spent on intelligent sampling such as LHS grows exponentially
whereas simulation time increases linearly. Thus, depending on the number of design
variables and sample size, training the Kriging surrogate model might become costly.

Meanwhile, the great advantage of using a Kriging-based surrogate shows up while
using the Kriging correlations to make predictions at new points. Figure 12 brings a

Fig. 9. Right vs. left bearing radial clearance influence on unbalance response amplitude at the
right disk element. NRMSE = 2.36%.

Fig. 10. Left bearing oil-film viscosity vs. left bearing radial clearance influence on unbalance
response amplitude at the right disk element. NRMSE = 5.81%.
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comparison of the time required by the Kriging model and the FE model to predict the
rotor-system response (i.e., eigenfrequency or unbalance response) at a single design
point. The result points out that Kriging prediction is three order of magnitude faster
than running the full model. Despite the reduction of this advantage with the increase of
the training data size (prediction goes through all the training points, i.e., it interpolates
the data), the computational effort can be reduced in more than 99% even with large
training samples.

Regarding the surrogate model accuracy in terms of NRMSE, it is desirable this
metric to be as small as possible. Figure 13 shows how Kriging predictions for the 1st
undamped natural frequency approximate the FE model results when increasing the
initial training data. The NRMSE for all three correlations reached values close to 2%
for the training samples with 200 points.
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The same is presented in Fig. 14 for the unbalance response at right disk element.
The NRMSE was higher but still converged for values below 8% in this case.

4 Conclusion

In this work, the applicability of Kriging-based surrogate modeling for rotordynamics
prediction in rotor-bearing systems was assessed. These surrogates are used as sub-
stitutes for the rotor-bearing Finite Element model and are capable of quickly pre-
dicting responses, thus facilitating the evaluation of different points into the design
space.
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Kriging surrogate predictions for eigenfrequencies and unbalance response were
compared with the FE model using the root mean square error metric for different
training samples and the results indicate that the models can accurately predict rotor-
bearing system outputs with considerably low computational effort. Ultimately, given
Kriging model efficiency in rotordynamics prediction, the results demonstrate the
feasibility and effectiveness of the proposed application for purposes such as multi-
disciplinary design optimization and uncertainty propagation in rotor-bearing systems.
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Abstract. Rotating drilling for oil or geothermic applications uses a
very slenderness structure hanging from to a derrick and made of a drill-
string inside the drill well and linked to the bottom hole assembly (BHA).
Vibrations provided by the nonlinear dynamics is due to the distributed
unbalance masses, to well-assembly interactions, pulsating mud flow, bit-
bouncing, stick-slip phenomena, etc. Understanding and controlling the
vibration level of the rotating assembly in the well becomes an important
key to avoid the fatigue failures and improve the reliability of the drilling
operations. The paper focuses on the finite element modelling of the
drilling assembly non-linear dynamics. The drill string-well bore contacts
are modeled by a set of elastic stops. First, the static position of drilling
assembly in the 3D-geometry well is calculated. Therefore, contact points
and pre-stresses are predicted. The effect of the speed of rotation on the
eigenvalues is then studied by plotting the Campbell diagram.

Keywords: Rotating drillstring · Nonlinear dynamics
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1 Introduction

Rotating drilling for oil or geothermic applications uses a very slenderness struc-
ture hanging from to a derrick and made of a drill-string inside the drill well and
linked to the bottom hole assembly (BHA). The drill-string is composed with
a great amount of screwed steel nine-meter pipes. The BHA is equipped with
drill-collars, stabilizers and with a drill-bit. The BHA made of extra-heavy pipes
insures the Weight-On-Bit (WOB). The stabilizers act as bearings to make eas-
ier the drilling direction and faster the penetration speed. The drilling assembly
rotates in a well bore which is several hundred meters long and whose top part
is equipped of steel tube casings. The downward mud flow is pumped in the
interior of drill-pipes and the mud flow rides up in the well-pipe annular space
to clear out the cut rock debris, the calories and to insure a lubrication.
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Vibrations [1] provided by the nonlinear dynamics is due to the distributed
unbalance masses, to the well-assembly interactions, pulsating mud flow, bit-
bouncing, stick-slip phenomena [2–4], etc. Multiple vibrations induce premature
wear and damage of equipment, mainly due to fatigue failures [5]. Understand-
ing and controlling the vibration level of the rotating assembly in the 3D well
becomes an important key to improve the reliability of the drilling operations.

One of the existing controlling techniques is the determination of the natu-
ral frequencies of the axial, the torsional and lateral vibrations. The analytical
investigation of axial vibrations has been conducted since the 1960s [6]. The
torsional behavior was modeled by using the wave equation [7], a single degree
of freedom approach [8] or the continuous system approach [9]. Lateral vibra-
tions have been the focus of several publications by two modeling techniques
involving the finite-element discretization [10–12]. However, the dependence of
natural frequencies of drilling assembly on the rotating velocity has not been
thoroughly investigated. This analysis is well known in rotordynamics [19] as
the Campbell diagrams to identify the speeds of rotation which may induce the
system instabilities and the critical speeds which may yield the response reso-
nances. The drilling assembly can be considered as a long rotor which has a more
complicated dynamics due to the fluids effects and the multiple contacts with
the well. The Campbell diagrams of simple rotors in fluid have been studied in
a few works [14–17] involving both theoretical and experimental approaches.

This paper focuses on the finite element modelling of the drilling assembly to
plot the Campbell diagram by using Timoshenko beams. Section 2 represents the
beam element formulation and summarizes the modelling of well-bore-assembly
contacts and the fluid forces and interactions with the drill strings. Section 3
shows the algorithm of the Campbell computation. First, the static position of
the drilling assembly in the 3D-geometry well is calculated. Contact points and
pre-stresses are then predicted. The following step consists in analyzing the effect
of the speed of rotation on the eigenvalues by plotting the Campbell diagram.
Finally in Sect. 4, the results are discussed to identify the instability ranges of
speeds of rotation and the critical speeds of rotation. The modal coupling is also
illustrated by some mode shapes.

2 Modeling of the System Dynamics by Beam Elements

2.1 Drilling Assembly

All components of the drilling assembly are modeled by using beam elements.
Each element contains two nodes and six degrees of freedom (dofs) per node. The
energy of one beam element is characterized by its kinetic and strain energies.

The kinetic energy of a rotating element is given by
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where ue(z), ve(z), we(z), θe
x(z), θe

y(z), θe
z(z) are the displacements and rotations

in the element frame of reference (see Fig. 1a), ρ is the mass density, l is the
element length. The beam elements considered in this work have circular cross-
sections with the inner and outer radii Re and Ri, the cross-sectional area S is
π(R2

e − R2
i ). The cross-sectional moment of inertia I is π(R4

e − R4
i )/4 and the

polar moment of inertia around the z-axis Ip = 2I. The first two terms represents
the kinetic energies due to the axial and torsional movements respectively. The
next two terms correspond to the lateral displacements. The last term shows the
Coriolis effect due to the rotating velocity Ω.

The strain energy is defined by
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where E and G are the Young and shear modulus.

Fig. 1. (a) Element frame, (b) element (blue) and nodal (red) frames of reference.

For each node of an element, six displacements can be interpolated by the
nodal displacements as
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where the interpolating functions are defined by :
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Considering the nodal displacement vector δe = [ue
i , v

e
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e
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T
i=1,2,

the elementary kinetic and strain energies are then rewritten as
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and
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Assembling all element gives the total kinetic and strain energies of the structure
Eca = 1

2 δ̇
T
Maδ̇ + δT (ΩCac)δ̇ and Eda = 1

2δT Kaδ where δ contains dofs of all
nodes defined in the nodal frame. As shown in Fig. 1b, the frame of one node
is the frame of its left element. The shear effect is introduced by a coefficient
12EI/(GSβl2) which slightly modifies the terms of stiffness matrix. Sβ is the
reduced cross-sectional with β = 0.9.

The axial force F e
0 and torque T e

0 modify also the structure stiffness. The
axial force gives a supplementary strain energy while the non conservative axial
torque is modelled by using the virtual work:
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These energies yields the geometric stiffness matrices Ke

GF , Ke
GT of each element

and the total matrices KGF , KGT .

2.2 Well-Assembly Interactions

When the structure deforms laterally, the contact between the rotating drillstring
and the well may occur and gives rise to friction and shock effects. The contact
between one node of structure and the well is modeled by a radial elastic stop
of nominal stiffness kc and damping cc. As shown in Fig. 2, the normal contact
force is defined in the frame of reference of the contact node as:

−→
F cn = −

(
Kc(G)G + Cc(G)Ġ

)
[u/r, v/r, 0]T (8)

with G =
√

u2 + v2 − j0 the contact gap, j0 the radial clearance and Ġ =
(u̇u+ v̇v)/r the penetration velocity. The contact law is regularized by using the
arctan function for the stiffness and damping, see [13]:
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where λ is the regularization parameter.
The tangent friction force is related to the sliding velocity vg [13]. Both the

tangential force and torque are modeled by the smoothed Coulomb law, so that
the force is given by

−→
F ct = −μ(vg)

(
Kc(G)G + Cc(G)Ġ

)
[−v/r, u/r, 0]T (10)
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and the friction torque is described by
−→
T ct = −μ(vg)

(
Kc(G)G + Cc(G)Ġ

)
Re

−→z . (11)

The friction function μ(vg) is defined by the dynamic and static friction coeffi-
cients and is regularized as in [13].

Fig. 2. Contact between one node of drillstring and the well casing represented in the
local frame of this node.

2.3 Fluid Effects

The fluid inside the drill-pipes and in the well-pipe annular space induces the
elastic forces on the structure. In this work, the effects of inner fluid are char-
acterized by the inertial force while the effects of the outer fluid are based on
the model developed in [14–17]. The authors considered the influence of fluid
elastic forces induced by co-rotating flow surrounding the shaft with a relatively
slow speeds of rotation. This model does not take into account the axial fluid
flow can be applied for fluids with the small compressibility and the cylindrical
beams of a large length-radius ratio.

The viscosity effects are defined in the modal basis [15,16] and are detailed
in Sect. 3.2. The inertial force of outer fluid in the x − y plane of the element
frame is taken from [16] and reads as:

−

⎡
⎣ma

(
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fi) the added mass, Rfe and Rfi the
outer and inner radii of the annular space, ρf the mass density of fluid.

Dissipation in the steady state rotating outer fluid is taken into account by
the friction force [16]:
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where ff is the friction coefficient.
By using Eq. (3), the inertial and friction forces from the outer fluid are

rewritten as Me
feδ̈

e + ΩCe
feδ̇

e + Ω2Ke
feδ

e and the element inertial force of the
inner fluid corresponds to Me

fiδ̈
e. The assembly of all elements yields the total

matrices Mfe, Cfe, Kfe and Mfi.

3 Computation of the Campbell Diagram

In this section, the algorithm for the Campbell diagram computation is pre-
sented (see Fig. 3). First, the static position of the drilling assembly in the well
is calculated by taking into account the well-pipe contacts and all static external
forces. The internal axial force and torque of each beam element are then com-
puted and give the geometric stiffness matrices KGF and KGT by using Eq. (7).
The prestressed state of the drilling assembly is applied by adding these matrices
to the structure stiffness. The contact nodes from the static position are identi-
fied and presumed to be in the permanent contact with the well for the modal
analysis. Their lateral displacements are limited by adding the contact stiffness
matrix Kb. Finally, the Campbell diagram is computed by implementing the
modal reduction technique. These two steps are shown in details in the following
subsections.

Fig. 3. Principle for computing the Campbell diagram.

3.1 Static Computation

The static equilibrium equation is given by

Kaδ = Fs + Fc(δ) (14)

where Fs is the static force vector due to the gravity, to the Archimède force,
to the external static forces and torques. Fc denotes the contact forces and
torques. Fc contains the normal contact force Fcn. In the case where the drill-
pipe is rotated and stuck on the well casing, Fc includes also the static tangential
friction forces and torques Fcts. The static friction force and torque applied at
each contact node can be obtained from Sect. 2.2:

−→
F cts = −μsKc(G)G[−v/r, u/r, 0]T ,

−→
T cts = −μsKc(G)GRez (15)
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In this case, Eq. (14) describes the “quasi”-static equilibrium. Otherwise, no
friction terms are considered and Eq. (14) shows the real static equilibrium. This
equation is solved by applying the Newton-Raphson method with four steps:

1. Initial guess δ0 is chosen as K−1
a Fs.

2. Assuming that δi is known at the i-th iteration, the correction term is defined
by :

dδi = −
(
Ka − ∂Fc

∂δ
(δi)

)−1

(Kaδi − Fs − Fc(δi)) (16)

where
∂Fc

∂δ
denotes the total Jacobian matrix Fc with respect to δ.

3. Applying the correction : δi+1 = δi + dδi.

4. If
‖dδi‖2
‖δi+1‖2

< ε0, ε0 being the criterion error, the convergence is obtained.

Otherwise, the process returns to step 2.

3.2 Reduction in the Modal Basis

Since the drilling assembly is a large system with a potential length of several
kilometers, the pseudo-modal method is applied to reduce the dof number. This
method is based on the modal basis which is the solution of the following eigen-
problem:

K̃1φm = ω2
mMφm (17)

where (ωm,φm) denotes the set of eigenvalue and eigenvector of each mode,
K̃1 = (K1+KT

1 )/2 with M = Ma+Mfi+Mfe and K1 = Ka+KGF +KGT +Kb.
The eigenmodes of a rotating system, δk = Xkerkt, is the solution of

quadratic eigenproblem:

(r2kM + rkC + K)Xk = 0 (18)

where C = Cad+(Cac+Cfe)Ω and K = K1+KfeΩ
2. Cad denotes the structural

damping matrix defined by cMMa +cK(Ka +KGF +KGT ) with cM , cK the two
Rayleigh coefficients.

By using the modal reduction matrix Φ whose each column corresponds to
the eigenvector φm of the modal basis, Eq. (18) is transformed as :

(r2km + rkc + k)qk = 0 (19)

with X = Φq, m = ΦT MΦ, k = ΦT KΦ, c = ΦT CΦ + cη. cη is a diagonal
matrix representing the viscous damping [15,16] in which η is the kinematic
viscosity coefficient.

Since k and c are not symmetric, the eigenvalue rk is a complex with the
form 2π(α±jf) where f is the eigen-frequency. The system is stable if α ≤ 0 and
becomes unstable if α > 0. The dependence of f on the speed of rotation gives
the Campbell diagram. The rotating modes are classified by three categories: (F)
like-flexural modes, (T) like-torsional modes and (L) like-longitudinal modes.
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The classification criterion is based on three coefficients defined by the ratios of
energies:

Ni =

∑
e

Ee
ci

Eca
+

∑
e

Ee
di

Eda
, i = {F, T, L} (20)

where Ee
ci = 1

2 |(rXi)∗Ma(rXi)|, Ee
di = 1

2 |X∗
i KaXi|. ∗ denotes the transposed

conjugately operator. One mode is qualified (F) if NF > NT , NL ; (T) if NT >
NF , NL ; (L) if NL > NF , NT .

4 Results

4.1 Test Cases

Let a 2000 m drilling assembly be presented in Fig. 4. It consists of a polycrys-
talline diamond compact (PDC) drill-bit, drill-collars, stabilizers-gauges and a
chain of drill-pipes. The drilling assembly are made of steel and characterized
by ρ = 7860 kg.m−3, E = 2.1 1011 Pa, ν = 0.3. The two Rayleigh damping
coefficients are: cM = 0.03 s−1 and cK = 0 s. The geometric properties of each
component are shown in Table 1. A drill-pipe consists of two tooljoints of 0.3 m
length and a body of 8.9 m length (see Fig. 4). The outer and inner diameters
of the tooljoint are 0.162 m and 0.095 m. Two geometries of the well neutral
lines are plotted by Fig. 5. As shown in Table 2, the well consists of three parts
(casing 1, casing 2, openhole) of decreasing diameter from the surface. The static
friction coefficients of the contact between the structure and the casings, open-
hole are respectively 0.2 and 0.3. The inner and outer fluids have the rheological
properties: ρf = 1200 kg.m−3, ff = 0.013, η = 10−6 m2.s−1.

Fig. 4. Components of drilling assembly and geometry of drill-pipe.

The mesh contains 1811 beam elements and 1812 nodes. The drill-bit and a
tooljoint are modeled by one element. The pipe body contains 5 elements. Each
drill collar and stabilizer are discretized by 20 and 5 elements respectively. The
lateral displacements of gauge nodes, of last bit node and six dofs of the surface
node are blocked. An axial torque of −4905 N.m and a axial force of −49050 N
are applied at the bit to model the Torque on Bit (TOB) and the Weight on Bit
(WOB).
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Table 1. Geometric properties of the components of drilling assembly

Type Length (m) Outer diameter (m) Inner diameter (m)

Drill-bit 0.5 – –

Drill-collar 10 0.159 0.071

Stabilizer 5 0.159 0.071

Drill-pipe 9.5 0.127 0.108

Fig. 5. (a) 2D-S well, (b) 3D well represented in the Cartesian coordinates.

The elastic stops modelling the contacts have the nominal stiffness kc =
107 N/m with the regularized parameter λ = 7 107 m−1. Different clearances j0
between the undeformed drilling components and the well are: 0.163 m (pipe-
body - casing 1), 0.048 m (pipe-body - casing 2), 0.045 m (pipe-body - openhole),
0.029 m (stabilizer - openhole and drill-collar - openhole), 0.145 m (tooljoint -
casing 1), 0.030 m (tooljoint - casing 2), 0.0270 m (tooljoint - openhole). Sup-
plementary clearances are considered to take into account the change of the
structure and well cross-section: 0.031 m, 0.145 m.

4.2 Static Computation

The quasi-static equilibrium position of the structure is computed for the two
wells of Fig. 5 by taking into account the friction contacts. The difference between
the quasi-static and static positions are then highlighted.

Table 2. Geometric properties of the well

Type Outer diameter (m) Inner diameter (m)

Casing 1 0.473 0.451

Casing 2 0.244 0.222

Openhole 0.216 0.216
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Figure 6 shows three displacements of the quasi-static positions of the struc-
ture as a function of the curvilinear position. One can observe that the lateral
displacements u and v are limited by the structure-well contacts. Since the geom-
etry of the S well is steeper than the 3D well (see Fig. 5), the structure weight
induces a larger axial displacement w of the structure in the S well than in the 3D
well. Figure 7 represents the normal and tangential friction forces, the tangential
friction torque applied to the structure. For the S well, the contact forces are
the largest for a depth Z from 400 m to 1200 m, especially for the curved zones
of the well. For the 3D well, the most important contact forces are observed at
Z � 50 m close to the surface and Z � 800 m close to the bit.

Figure 8 compares the quasi-static/static positions of one cross section at the
curvilinear position 113 m from the surface, computed with/without friction. The
friction effects modify slightly the contact direction. Figure 9 represents the axial
force and torque for each finite element. The continuous and dash lines denote
the results computed with/without friction. The axial force and torque of one
element are proportional to the difference between two nodal axial displacements
and two nodal torsion angles respectively. The axial force and torque of the
last element are equal to the ones imposed at the bit. The friction effects have
no influence on the element axial forces. However, the element axial torque is
strongly modified by the tangential friction torque. Moreover, the element axial
torque curve shows more oscillations with the friction effect. Indeed, the friction
torque applied to one contact node yields the jump of the axial torque curve
between two adjacent beam elements associated with this node.

Fig. 6. Node displacements for the static equilibrium position of the drilling assembly
in the cases: (a) 2D-S well, (b) 3D well as a function of the curvilinear position by
taking into account the friction forces.

The results computed with the friction effects are used for plotting the Camp-
bell diagrams in the next section. The geometric stiffness obtained from the static
equilibrium computation represents the pre-loaded state of the structure due to
the curve well geometry, the structure-well contacts, the fluid effects and the
static forces such as the gravity, the constant TOB and WOB. The system stiff-
ness is modified by adding this geometric stiffness to compute the Campbell
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Fig. 7. Normal contact force (red), tangential friction force (blue) and torque (green)
applied to the drilling assembly for the (a) 2D-S well and for the (b) 3D well.

Fig. 8. Cross-section of the drilling structure at the curvilinear abscissa s = 113 m for
the (a) 2D-S well and in the (b) 3D well. Black: no friction, blue: with friction

Fig. 9. Element axial force and torque obtained from the equilibrium positions. Con-
tinuous lines: with friction, dash lines: no friction.

diagram. Analyzing the Campbell diagram with constant TOB and WOB is a
first approach which permits understanding roughly the modal contribution of
the drilling structure.
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4.3 Campbell Diagram

In this section, the natural frequencies are computed as a function of the speed
of rotation to determine the Campbell diagram. The speed range which may
induce the system instability is then identified. Some mode shapes are studied
to show the phenomenon of the modal coupling.

The pseudo-modal method with the first 10 modes is applied to reduce the
computational system size. Figure 10 represents the Campbell diagrams of the
drilling structure from 0 rpm to 600 rpm. The drilling assembly has low-frequency
modes due to its long structure. The dotted lines denote the (L), (T), (F) modes.
The cyan color shows the (F) modes which make the system unstable. The system
becomes unstable from the rotating speed of 250 rpm for the S well and 200
rpm for the 3D well. The gray continuous curves linking the points represents
the mode shape tracking, based on the NC2O criterion [18]. The intersection
between the mode curves and the dashed line gives the frequencies equal to the
speeds of rotation. They are considered as the critical speeds which may yield
to the dangerous resonances when the system is excited by the external forces
(the mass-unbalanced and asynchronous forces) [19].

Fig. 10. Campbell diagram of the drilling structure for (a) 2D-S well and for (b) 3D
well. Blue : (F) modes, red : (T) modes, black: (L) modes, cyan : instable (F) modes,
dashed line : critical line, gray continuous curves : the mode shape tracking.

For the case of S well, the Campbell diagram represented by Fig. 10a shows
that two curves of each (F) mode are strongly deviated at the low speeds of
rotation due to the outer fluid effects and then converge at the high speeds of
rotation. The gap between these curves at high speeds of rotation is due to the
damping effects such as the structural damping, the fluid viscosity and friction.
As shown in [16], the outer fluid friction has more important effects than the
viscous and structural damping. The horizontal curves of (L) and (T) modes
show the negligible dependence on the rotating speed. On the contrary to the S
well, the Campbell diagram for 3D well in Fig. 10b shows two horizontal curves
which do not have a pure flexural, torsional or longitudinal nature. Since the
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Fig. 11. Normalized lateral displacement of some (F) modes of the drilling structure
in the (a, b) 2D-S well and in the (c, d) 3D well. Blue : orbit, green : the mode shape
at t = 0.

Fig. 12. Normalized lateral displacement orbits of one (F) modes and one (T) modes
of the drilling structure in the 3D well.

geometry of this well is more complicated than the 2D well, the modal coupling
mechanism occurs stronger and will be illustrated by Fig. 12.

Figure 11 shows the orbits of some (F) modes as a function of the curvilinear
position. Their most important displacements can be observed in the vicinity of
the surface (s = 0 m) and of the drill-bit (s � 1800 m).

Figure 12 shows two modes representing the coupling between the flexural
and torsional motions for the case of 3D well. These modes are on the horizontal
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curve of Fig. 10b with the blue and red colors. The orbits of flexural motions can
be observed only in the vicinity of the surface. The lower part of the structure
have both torsional and flexural motions. The mode in Fig. 12a shows more
energy related to flexural motions than to torsional ones. Hence, the classification
criterion given by Eq. (20) consider it as a (F) mode. On the contrary, this mode
in Fig. 12b shows that the torsional motions has more important energy than
the flexural ones, which suggest to consider it as a (T) mode.

5 Conclusion

In this work, the static position is computed by taking into account the structure-
well contact. The influence of the static friction effects on the equilibrium posi-
tion is studied. The Campbell diagram is then computed over an operating range
of the drilling speeds of rotation by considering the prestressed structure with
a constant TOB and WOB and by assuming that the contact nodes remains
in the permanent contact with the well. The unstable speeds of rotation and
the critical speeds are observed. The rotating fluids show a strong influence on
the (F) modes, contrary to the (L) and (T) modes. The modal coupling mech-
anisms are more remarkable for the structure in a 3D well than in a 2D well.
In the future works, the model can be extended to take into account the speed
dependent TOB and WOB for the Campbell diagram computation.
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Abstract. The paper investigates experimentally and numerically the nonlinear
dynamics of a rotor supported by Active Magnetic Bearings (AMBs) and sub-
jected to more or less severe motions from its support. In case of strong base
excitations, the rotor can contact its touchdown bearings (TDBs) which are
emergency bearings. The objective is to analyze the effect of the combination of
mass unbalance forces, base motion excitations and contact nonlinearities on a
rotor-AMB system response. The Finite Element method was used to model the
on-board rotor. External force vectors and matrices with parametric coefficients
related to the base motions appear in the equations of motion. The contact was
modelled with a bilinear normal contact law and the tangential sliding friction
effects are considered. Experiments were carried out on a lab-scale test rig that
was mounted on a 6-axis shaker. At this stage, only harmonic base motions were
considered. The numerical model was able to describe accurately the observed
phenomena. AMBs were able to maintain the system under control, and the
system remains stable even during the contact phase.

Keywords: Active Magnetic Bearings � Rotordynamics � Base motion
Rotor-stator contact � Touchdown bearings

1 Introduction

Turbomachinery play a key role in the transformation, extraction or transport of the
different types of available energies. Depending on the targeted applications, these
machines may have to face more or less severe environmental conditions, such as
turbomachinery used in nuclear plant when subjected to earthquake, as recently in
Fukushima where the station was deeply damaged. The same behavior could be
observed for Floating Production Storage and Offloading (FPSO) units used for the
offshore production and storage of oil due to large waves or stormy events. Turbo-
machines have to be able to withstand severe environmental conditions.

The base motion generates complex rotordynamics in particular in the case of
deformable foundations or base rotations yielding parametric instabilities. At certain
angular speed of the support, combined with the natural frequencies of the rotor,
instability zones emerge and depend on the amplitude of the rotation angle [1–3]. When
on-board rotors are supported by nonlinear bearings, complex dynamics are expected
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[4, 5]. Depending on the amplitude of the applied sinusoidal base motion (translation or
rotation), the rotor-bearing system exhibits periodic, quasi-periodic or even chaotic
motions. Therefore, the dynamic behavior of on-board rotating machines should be
carefully analyzed to improve the reliability and to maintain a maximal operability of
the machines.

Active magnetic beatings (AMBs) are increasingly utilized in industrial applica-
tions for their many advantages such as frictionless support, no lubrication system, and
a reduced footprint. They are inherently unstable, therefore a feedback control is
needed and the PID is the most implemented controller in industrial applications [6].
Rotor-AMB systems are systematically equipped with touchdown bearings (TDBs)
supporting the shaft when magnetic levitation is no more provided. In case of large
displacements, contact between the rotor and the TDBs could occur leading to potential
instabilities.

The use of magnetic forces can limit the effects of base motions. Several studies
showed the effectiveness of AMBs to maintain the system stable [7–9]. However, in
most cases, the amplitude of the rotor response due to the base motions was limited and
interaction with TDBs was not generated. Few studies have considered this nonlin-
earity triggered by base motions while AMBs still operate. This could lead to dan-
gerous rotordynamics such as backward whirl followed by dry whip instabilities [10].

This research project contributes to the improvement of knowledge concerning the
dynamic behavior of turbomachinery supported by AMBs when subjected to external
events. In particular, to investigate, numerically and experimentally, the dynamic
behavior of a rotor-AMB system subjected to strong base motion leading the rotor to
contact TDB while AMB still operate. The effects of flexible support was considered by
other researchers [11], in this study the support is considered rigid.

First, the modelling approach is developed with the implementation of the rigid
base motion inputs in the equations of motion. Then the experimental dispositive is
described. The results obtained are shown and discussed at the end.

2 Numerical Model

The different models needed to perform transient simulations considering a rotor-AMB
system subjected to external disturbances and potential TDB contacts are presented.
The on-board rotor and the touchdown bearing models are described separately; the
modelling approach is modular and each model can be either employed or not in the
simulations.

2.1 On-Board Rotor

Usually, the rotor is composed of shaft, bearings, discs, and unbalance distribution, and
here, the support is considered (Fig. 1). It is assumed that: the shaft is flexible and
modelled by beam elements for lateral analysis; the discs are rigid and symmetric; the
unbalance distribution is modelled by discrete masses and the support is rigid but
mobile.
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Lagrangian method is used. It consists in describing the motion of the rotor with
respect to the rigid support R, as usually done in conventional rotordynamics studies
[12], and the support motion with respect to the ground Rg, which is a Galilean frame.
An intermediate frame is set-up to take into account the energy formulation of base
motion inputs and to investigate the deflection of the rotor neutral line in the frame
attached to the rigid support [13].

The Galilean frame Rg of center Og is fixed and attached to the ground. The non-
inertial frame R of center O is attached to the rigid base. And the local non-inertial
frame Rl of center Ol is attached to the deflection line of the rotor. The frames of
reference are first established and then vectors describing the different motions between
each others are calculated. To derive the different energies of each components of the
rotor, the instantaneous angular velocity vector and the position vector are needed.
These vectors are expressed with respect to the Galilean frame Rg in the rigid support
frame R. The energetic contribution and the virtual work of each components should be
calculated: the flexible shaft contributes with the kinetic and strain energies; the discs
with the kinetic energy; the discrete mass unbalances with the kinetic energy, and the
bearing restoring forces with the virtual work.

The different contributions of the base are expressed in the frame associated with
the rigid base in motion with respect to the Galilean frame. The base motions modify
only the kinetic energies. Once the energies are set-up, they are derived by using the
Lagrange’s equations leading to the equations of motion as:

M€dþ XCg þxyC
xy

bm

� �
_dþ Keð þ _xyK

_xy

bm þX xyK
Xxy

bm þxx2Kxx2

bm þ
xy2Kxy2

bm þxz2Kxz2

bm þxxxzKxxxz

bm

�
d ¼ Fmu þFbm þFg þFamb þFc

ð1Þ

with M, Ke and Cg are respectively the mass, the structural stiffness and the gyroscopic
matrices. X is the rotor rotational speed, d; _d; €d are the rotor displacement, velocity
and acceleration. Fmu is the mass unbalance force vector taking into account the normal
centrifugal and tangential centripetal forces. The subscript bm stands for the base

Fig. 1. On-board rotor frame
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motion effects. The external force vector Fbm contains all the contribution of the
translations of the support combined with its rotations, Fg the effect of gravity, Famb the
forces delivered by the AMBs, which is the output of an augmented PID that takes into
account the characteristics of the utilized AMBs. The model used is not developed in
this paper. Fc represents the TDBs contact force vectors that will be developed in the
next section.xx ; y; z is the rotational speed of the support along the direction x, y or z.
Cx
bm ; Kx

bm are the additional (gyroscopic or stiffness) matrices due to the support
rotations. Obviously, the support rotations introduce time-varying parametric excita-
tions that could generate lateral instabilities.

2.2 TouchDown Bearing Model

TDBs have two main functions. The first one is to protect the AMBs from large
unexpected transient loads that exceed the design capacity of AMBs. The second is to
ensure a back-up support when AMBs are no longer available.

Usually, a ribbon damper is fitted between the outer race and the housing; it brings
softness and damping when rotor-TDB interactions occur. TDBs generate contact
forces in normal fn and tangential ft directions, as shown in Fig. 2. The normal com-
ponent fn is described by a contact law. Its mechanical expression is given by Eq. (2),
where drs is the rotor-TDB relative clearance and drd is the ribbon crushing capacity.

fn ¼
kbrg drs � drdð Þþ cbrg _dþ keqdrd ; drs � drd
keqdrs þ ceq _drs ; drd [ drs � 0
0 ; drs [ 0

8<
: ð2Þ

with kbrg; cbrg the dynamic parameters of the ball bearing. When the rotor interacts with
the TDB, it first contacts the coupled ball bearing ribbon damper system, considered in
series mode. The related contact force is composed of the equivalent stiffness keq and
damping ceq. When the ribbon is fully crushed, meaning that drs � drd it only has a
static contribution and the rotor faces the ball bearing stiffness. This model is char-
acterized by softness and large damping when the ribbon is not crushed, then by a high
stiffness and a low damping.

Fig. 2. TDB model
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The tangential component ft considers the sliding friction generated at the rotor-
TDB interface due to different rotational speeds and considers the tangential damping
provided by the ribbon damper counteracting the rotor whirl. The sliding friction is
generated by using the regularized Stribeck model. The latter drives the TDB in
rotation and Xtdb represents its speed of rotation. An equivalent rotational inertia (balls
and inner race) as well as a resistive torque are considered to compute this component.

The modelling approach that takes into account base motions, AMBs, mass
unbalance, gyroscopic effects, gravity and contact with TDBs is schemed in Fig. 3.

The nonlinear contributions such us the additional forces due to the base motion
(support block) or the efforts due to the contact of the rotor with the TDB (TDB block)
are considered as restoring forces. It was the same concerning the forces delivered by
the AMB (AMB block). The gravity as well as the gyroscopic effects were also
considered in the second member of the equation of motion. This modelling approach
enable to have a linear part concerning the rotor, consequently, the modal reduction can
be applied easily [14].

The model developed enables system simulation in different configurations. For
this work, only harmonic base motions were considered.

3 Experimental Model

The experiments were performed using an academic test rig, which is a commercial
product manufactured by SKF® and was delivered with a dedicated PID controller.
The test rig is equipped with two identical AMB called NDE (Non Drive End) and DE

Fig. 3. Numerical model schema
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(Drive End) bearings. Each bearing has a maximum static capability of 280 N with air
gaps of 0.432 mm. The action lines are positioned in the configuration load between
axes. They are powered in differential driving mode with a bias current of 1 A. Cur-
rents are provided in the range of 0–3A using PWM amplifiers. Two displacement
sensors (variable reluctance probes) are integrated in the housing of each bearing and
are non-colocalised with actuators.

The rotor is designed to obtain the dynamic behavior of high speed turbomachinery
with a rigid shaft in the operating speed range and low gyroscopic effects. The rotor is
made of standard steel, its mass is 6.5 kg and its length is 645 mm with a disc, 120 mm
in diameter and 25 mm in thickness, placed at two-thirds of the bearing span from the
DE side. The rotor is driven by a 500 W electric motor with a maximum speed of 12
600 rpm. The torque transmission is provided through a flexible coupling. The oper-
ating speed range is from 0 to 9 500 rpm (160 Hz), which includes the first two rigid
modes. The rotational speed is measured by using a tachometer placed close to the
motor. TDBs are cageless single row deep groove ball bearings with 0.1 mm clearance
that was provided by the manufacturer.

To perform base motion tests, the academic test rig was mounted on a 6-axis
hydraulic shaker as shown in Fig. 4 (the yellow cube). The shaker, provided by TEAM
Corporation, is a fully integrated system. It has 6 real-time pilots able to apply various
combinations of solicitations along and around the 3 axes (translations and rotations) to
a maximum mass of 450 kg in a range [0–250] Hz. A maximum acceleration of 10 G,
±50 mm in translation and ±4° in rotation can be generated.

The data acquisition system of the shaker was used. Base accelerations were
recorded in the three directions (Xcube, Ycube, Zcube) using four tri-axial
accelerometers fixed on the shaker. The displacement and current sensors for each
action line (V13, W13, V24, W24), and the rotational speed were also recorded. The
sampling frequency was set to 24 756 Hz.

Fig. 4. Experimental test rig
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The tests were carried out in vertical translation, by using harmonic excitations. For
all the configurations tested, the same level of mass unbalance was applied; 32 g.mm at
0 degree that corresponds to four times the recommended unbalance by the API
standards. The support motion was a 20 Hz sine translation ranging from 0.1 to 1.1 G.
The chosen frequency and amplitude represent the best frequency range to exhibit TDB
contact phenomena. The rotor rotational speed was set to 6 000 rpm. To smoothly
trigger the rotor-TDB contact, the acceleration level targeted by the shaker is set-up
progressively enabling reduced overshoot. This phase of operation lasted almost 30 s.
Once reached, the shaker motion was maintained for approximately 40 s to catch
potential onset of nonlinear dynamic regimes. The excitation signals were not purely
sinusoidal, the contribution of the shaker operating frequencies were present. During
the different test configurations, AMBs were kept operational. The shaker stop was also
recorded to check and analyze the capacity of the controller and the AMBs to center
and to control the rotor after severe contact situations.

4 Results

Measured and predicted rotor vertical displacements were compared. The accelerations
recorded on the shaker were implemented in the numerical model.

First, the results obtained are analyzed for the whole test duration then, a zoom on
ten periods using orbit plots provides better insights into the involved phenomena.
Figure 5 shows the predicted and measured rotor displacements in vertical direction for
a rotating speed of 6 000 rpm and subjected to a progressively increased acceleration of
the shaker up to 1.1 G. The dotted lines represent the TDBs at both DE and NDE.

The base motion starts close to 10 s and contact occurred close to 35 s. The
measured vertical responses seem to be described qualitatively well by the numerical
model. The controller manages the unbalance forces combined with base motions and
TDB contacts. Once the shaker stops, the rotor quickly recovers its centered position in
both predictions and measures.

Fig. 5. Predicted (a) and measured (b) vertical displacements, 6 000 rpm, 0–1.1 G, 20 Hz
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Fig. 6. Predicted (a) and measured (b) orbits, 6 000 rpm, 0–1.1 G, 20 Hz

As the acceleration level was set-up progressively, orbit plots permit analyzing the
combined effects of mass unbalance and base motion loads for cases without or with
TDB interactions. In Fig. 6, the orbits during the different phases were analyzed. For
each phase, the last ten periods according to the base motion frequency were presented.
At phase 1 (recorded results at 5 s), the shaker was shut down and only the mass
unbalance forces were present. The orbits obtained were relatively circular (symmetric
system), and the amplitude is largely smaller than the TDB clearance. Then during
phase 2, the excitation level was increased progressively from 0 to 1.1 G (recorded
results at 28.6 s, when the acceleration level equals 0.3 G). It could be noticed that the
model describes closely the phenomena observed. Here, no contact between the rotor
and the TDBs, and typical combinations of vertical base motion, unbalance forces were
exhibited. Orbits were periodic due to integer ratio between the rotor speed and the
excitation frequency. During phase 3, the highest level was maintained (recorded
results at 60.7 s and 1.1 G acceleration level). The predicted and measured orbits were
close. Rotor-TDBs interactions were generated and the periodicity of orbits was con-
served with respect to the non-contacting case. Orbit shapes were flattened and the
rotor had mainly forward whirl, indicating weak sliding friction effects. This could be
due to the fact that the TDBs were driven in rotation and therefore, the sliding friction
coefficient was small at the rotor-TDB interface.

Finally, the AMBs remained stable in both numerical and experimental analysis.
The model is able to correctly describe the combination of base motion, mass unbal-
ance, AMBs and TDBs contacts generating complex dynamics.
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Measured orbits are slightly tilted and this may be related to small discrepancies in
the proximity sensor sensitivity. The global measured energetic level of vibrations is
higher than the predicted one since the acceleration signals were filtered before being
implemented in the model. Moreover, the vibrations coming from the foundation were
not considered in the numerical model since the support is assumed infinitely rigid.
However, the model describes closely the main observed phenomena.

5 Conclusions

The aim was to investigate experimentally and numerically the nonlinear dynamics of a
rotor supported by Active Magnetic Bearings and subjected to severe motions from its
support. The test configurations were chosen to be representative of real turbomachines
operating conditions. The PID controller was tuned for conventional operating con-
ditions, and no specific work on the control loop was done. The aim was to check if the
control could be able withstand the nonlinearities due to the contact.

The model was able to reproduce the overall dynamics and the main observed
phenomena considering an academic on-board rotor-AMB system.

Even if the PID controller was tuned without considering this particular excitation,
the controller remains globally stable in both numerical and experimental tests. No dry
whip instabilities were noticed in both experimental and numerical investigations. Orbit
shapes were flattened and the rotor has mainly forward whirl, indicating weak sliding
friction effects. The behavior observed may indicate that the TDBs were driven in
rotation reaching the rotor rotational speed during harmonic tests; therefore, tangential
friction effects were limited.

Even if the model of the AMB and the controller were not presented, we observed
that the restoring magnetic forces generated by actuators remained in an acceptable
linear range. Neither AMB nonlinearities nor amplifier saturation were exhibited in
both predictions and measures. The dynamic capacity of the AMBs are oversized
considering the test rig. We are now investing the same behavior by using adapted
dynamic capacity.

This numerical validation provides confidence considering the prediction of the
dynamic behavior of on-board industrial turbomachinery.
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Abstract. The seal force and oil-film force are two of the main factors which
would cause the instability of rotor system, so it is important to further study the
nonlinear dynamic characteristics of the multi-disk rotor-bearing-seal system. In
order to establish the multi-disk rotor-bearing-brush seal system model of a gas
turbine, the seal force model of brush seal and the nonlinear oil-film force model
based on short bearing theory were adopted considering the lateral deflection of
the disks. The equation of motion was solved by time simulation using the
fourth order Runge-Kutta method. The influences of key parameters including
rotor speed and eccentricity phase-difference on the vibration response and
dynamic behavior of multi-disk rotor-bearing-brush seal system were discussed.
The result showed that the system became more stable when the eccentricity
phase-difference decreased.

Keywords: Nonlinear dynamics � Brush seal
Multi-disk rotor-bearing-seal system � Numerical analysis

1 Introduction

Brush seals have superior sealing performance, which could enhance the thrust force
and working efficiency of gas turbine [1, 2]. When the gas turbine is working under
high temperature, high pressure, and high velocity condition, there would be some
complex dynamic behavior fault arising, which could seriously affect the security and
reliability of the system [3–5].

Currently the dynamic behaviors of multi-disk rotor-brush seal system are mostly
studied by numerical simulation or test results for a specific structure. Chu and Lu [6]
proposed a dynamic stiffness-based method to detect the rubbing position effectively in a
multi-disk rotor system. The authors found that the dynamic stiffness at the position with
rotor-to-stator rub increased as the rubbing developed, but the variation of stiffness at
other positions was not obvious. Wan et al. [7] theoretically and experimentally studied
the dynamic response of an unbalanced multi-disk rotor system with flexible coupling
misalignment, and the governing equations of the system was deduced by the lumped
mass model considering the nonlinear oil film force. But these researches are still not
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perfect, so the effects of coupling of the contact of bristle pack and rotor surface, and the
fluid flow in the bristle pack to the dynamic behavior of the system need further study.

In this paper, the authors adopted the seal force model of brush seal and the
nonlinear oil-film force model based on short bearing theory considering the lateral
deflection of the disks, in order to build the nonlinear dynamic model of a multi-disk
rotor-bearing-brush seal system. The effects of the rotor speed and eccentricity phase
difference on the vibration response and dynamic behavior of a multi-disk rotor-
bearing-seal system were discussed under different operating conditions by axis orbit,
Poincaré map, and spectrum cascade.

2 Nonlinear Dynamic Model of a Multi-disk Rotor-Bearing-
Brush Seal System

2.1 Nonlinear Dynamic Model of the Multi-disk Rotor-Bearing-Seal
System

Figure 1 shows the rotor-bearing-seal system of a gas turbine. The finite element model is
obtained by discretization based on the structural features of the system, as shown in
Fig. 1a. In this paper, the compressor and turbine are simplified as disk m8 and disk m9,
which located at joint 8 and joint 9, respectively. Similarly, the supporting bearings are
simplified as disk m4 and disk m12, which located at joint 4 and joint 12, respectively.

(a) Finite element model of the system. 

(b) Simplified model of the system. 

Fig. 1. Rotor-bearing-seal system of a gas turbine.
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Considering the lateral deflection of the disks, the nonlinear dynamic equation of
the system can be obtained by the simplified model as below:

M€qþC _qþKq ¼ �Fg þFb þFs þFe ð1Þ

With

C ¼ Kq ¼

�6EI 1
l348

�2x8 þ 2x4 þ hy8l48 þ hy4l48
� �h i

�6EI 1
l348

�2y8 þ 2y4 þ hx8l48 þ hx4l48ð Þ
h i

6EI 1
l348
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� �þ 1

l389
�2x9 þ 2x8 þ hy9l89 þ hy8l89
� �h i

6EI 1
l348

�2y8 þ 2y4 þ hx8l48 þ hx4l48ð Þþ 1
l389

�2y9 þ 2y8 þ hx9l89 þ hx8l89ð Þ
h i

�2EI 1
l289

3y9 � 3y8 � hx9l89 � 2hx8l89ð Þ � 1
l248

3y8 � 3y4 � hx8l48 � 2hx4l48ð Þ
h i

�2EI 1
l289

3x9 � 3x8 � hy9l89 � 2hy8l89
� �� 1

l248
3x8 � 3x4 � hy8l48 � 2hy4l48
� �h i

6EI 1
l389

�2x9 þ 2x8 þ hy9l89 þ hy8l89
� �þ 1

l3912
�2x12 þ 2x9 þ hy12l912 þ hy9l912
� �h i

6EI 1
l389

�2y9 þ 2y8 þ hx9l89 þ hx8l89ð Þþ 1
l3912

�2y12 þ 2y9 þ hx12l912 þ hx9l912ð Þ
h i

�2EI 1
l2912

3y12 � 3y9 � hx12l912 � 2hx9l912ð Þ � 1
l289

3y9 � 3y8 � hx9l89 � 2hx8l89ð Þ
h i

�2EI 1
l2912

3x12 � 3x9 � hy12l912 � 2hy9l912
� �� 1

l289
3x9 � 3x8 � hy9l89 � 2hy8l89
� �h i

6EI 1
l3912

�2x12 þ 2x9 þ hy12l912 þ hy9l912
� �h i

6EI 1
l3912

�2y12 þ 2y9 þ hx12l912 þ hx9l912ð Þ
h i

2
66666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777775

where M is the mass matrix of the system, M ¼ Mx 0
0 My

� �
, Mx ¼ My ¼ diag

½m4;m8; Jd8;m9; Jd9;m12�, C is the damping matrix of the system, C ¼ Cx 0
0 Cy

� �
,

Cx ¼ Cy ¼ diag½c4; c8; ch8; c9; ch9; c12�, K is the stiffness matrix of the system, q is the
displacement of geometry center Oi in the X and Y direction, respectively,
q ¼ ½x4; y4; x8; y8; hx8; hy8; x9; y9; hx9; hy9; x12; y12�T , Fg is the gravity vector of the sys-
tem, Fg ¼ ½0;m4g; 0;m8g; 0; 0; 0;m9g; 0; 0; 0;m12g�T , Fb is the nonlinear oil-film force

vector [8, 9], Fb ¼ ½Fbx4;Fby4; 0; 0; 0; 0; 0; 0; 0; 0;Fbx12;Fby12�T ,
Fbxi

Fbyi

" #
¼ S0

fbxi
fbyi

" #
,

i ¼ 4; 12, Fs is the seal force vector [10], Fs ¼ ½0; 0;Fsx8;Fsy8; 0; 0;

Fsx9;Fsy9; 0; 0; 0; 0�T ,
Fsxi

Fsyi

" #
¼ Fbi cosðaþ h� l� /Þ

Fbi sinðaþ h� l� /Þ

" #
, i ¼ 8; 9, Fe is the unbal-

anced force vector,
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Fe ¼ ½0; 0;m8eu8x
2 cosðxtÞ;m8eu8x

2 sinðxtÞ; 0; 0;m9eu9x
2 cosðxtþ rÞ;

m8eu8x
2 sinðxtþ rÞ; 0; 0; 0; 0�T :

For the facility of calculation, dimensionless transformations are introduced into the
Eq. (1):

xt ¼ s; Xi ¼ xi
d
; Yi ¼ yi

d
;
d
ds

¼ d
xdt

;
d2

d2s
¼ d2

x2dt2

where _Xi ¼ _xi
xd, _Yi ¼ _yi

xd, €Xi ¼ €xi
x2d, €Yi ¼ €yi

x2d,
_Hi ¼ _hi

x,
€Hi ¼ €hi

x2, Eui ¼ eui
d , G ¼ g

x2d,

Mi ¼ mixw
3

ll412
, ki ¼ 6EIi

l3i
, Ki ¼ ki � w3

xll412
, Ci ¼ ci � w3

xll412
, Chi ¼ chi � xw3

ll412c2
, Li ¼ li

l412
,

J�di ¼ Jdixw
3

ll412d
2, J�pi ¼

Jpixw
3

ll412d
2, fsi ¼ Fsiw

3

ll412xd
, fbi ¼ S0Fbiw

2

ll412xr
, S0 ¼ l0xrlðrdÞ2ð l

2rÞ2, l0 is the abso-

lute viscosity of lubricate, d is the clearance of radius, x is the rotor speed.
Then C can be rewritten as below:

C0 ¼

K48
M4

�2X8 þ 2X4 þHy8L48 þHy4L48
� �

K48
M4

�2Y8 þ 2Y4 þHx8L48 þHx4L48ð Þ
� K48

M8
�2X8 þ 2X4 þHy8L48 þHy4L48
� �þ K89

M8
�2X9 þ 2X8 þHy9L89 þHy8L89
� �

� K48
M8

�2Y8 þ 2Y4 þHx8L48 þHx4L48ð Þþ K89
M8

�2Y9 þ 2Y8 þHx9L89 þHx8L89ð Þ
K89L89
3J�d8

3Y9 � 3Y8 �Hx9L89 � 2Hx8L89ð Þ � K48L48
3J�d4

3Y8 � 3Y4 �Hx8L48 � 2Hx4L48ð Þ
K89L89
3J�d8

3X9 � 3X8 �Hy9L89 � 2Hy8L89
� �� K48L48

3J�d4
3X8 � 3X4 �Hy8L48 � 2Hy4L48
� �

� K89
M9

�2X9 þ 2X8 þHy9L89 þHy8L89
� �þ K912

M9
�2X12 þ 2X9 þHy12L912 þHy9L912
� �

� K89
M9

�2Y9 þ 2Y8 þHx9L89 þHx8L89ð Þþ K912
M9

�2Y12 þ 2Y9 þHx12L912 þHx9L912ð Þ
K912L912
3J�d12

3Y12 � 3Y9 �Hx12L912 � 2Hx12L912ð Þ � K89L89
3J�d8

3Y9 � 3Y8 �Hx9L89 � 2Hx8L89ð Þ
K912L912
3J�d12

3X12 � 3X9 �Hy12L912 � 2Hy12L912
� �� K89L89

3J�d8
3X9 � 3X8 �Hy9L89 � 2Hy8L89
� �

� K912
M12

�2X12 þ 2X9 þHy12L912 þHy9L912
� �

� K912
M12

�2Y12 þ 2Y9 þHx12L912 þHx9L912ð Þ

2
666666666666666666666666666664

3
777777777777777777777777777775

where mi and Mi are the mass of disk and dimensionless mass of disk, respectively, ki
and Ki are the stiffness of shaft and dimensionless stiffness of shaft, respectively, ci and
Ci are the damping of disk and dimensionless damping of disk, respectively, chi and Chi

are the deflection damping of disk and dimensionless deflection damping of disk,
respectively, Jdi and J�di are the moment of inertia of disc diameter and dimensionless
moment of inertia of disc diameter, respectively, Jpi and J�pi are polar moment of inertia
of disc and dimensionless polar moment of inertia of disc, respectively, eui and Eui are
the eccentricity of disk mass and dimensionless eccentricity of disk mass, respectively,
fsi and Fsi are the dimensionless seal force and seal force, respectively, fbi and Fbi are the
dimensionless oil-film force and oil-film force, respectively, r is the phase-difference of
disk 8 and disk 9, r is the radius of bearing, w is the clearance ratio, w ¼ c=r, li and Li are
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the span between disk and dimensionless span between disk, respectively, g and G are
the acceleration of gravity and dimensionless acceleration of gravity, respectively, E is
the elastic modulus, and Ii is the moment of inertia of cross-section of shaft.

As the moment of inertia of discs M4 and M12 can be negligible, the rotation angle
of disc 4 and disc 12 hx4; hy4; hx12; hy12 can be obtained through the bending moment
equation and shear equation in the bending deformation formula of the beam.
Assuming the left side and right side bending moment of disk 4 and disk 12 are equal,
that is MR

4 ¼ M48 0ð Þ and ML
12 ¼ M912 lð Þ, then the expression of the rotation angle can

be derived as follows:

hx4 ¼ ð3y8 � 3y4 � hx8l48Þ=ð2l48Þ
hy4 ¼ ð3x8 � 3x4 � hy8l48Þ=ð2l48Þ

�
ð2Þ

hx12 ¼ ð3y12 � 3y9 � 2hx9l912Þ=l912
hy12 ¼ ð3x12 � 3x9 � 2hy9l912Þ=l912

�
ð3Þ

Suppose

k ¼ k1; k2; . . .; ki; . . .; k24½ �T

¼ x4; _x4; y4; _y4; x8; _x8; y8; _y8; hx8; _hx8; hy8; _hy8; x9; _x9; y9; _y9; hx9; _hx9; hy9; _hy9; x12; _x12; y12; _y12
h iT

then

_k ¼ _k1 ; _k2; . . .; _ki; . . . ; _k24
h iT

¼ _x4;€x4; _y4;€y4; _x8;€x8; _y8;€y8; _hx8; €hx8; _hy8; €hy8; _x9;€x9; _y9;€y9; _hx9; €hx9; _hy9; €hy9; _x12;€x12; _y12;€y12
h iT

Thus, the Eq. (1) can be converted to a first-order equation.

2.2 Numerical Results and Discussion

The fourth order Runge-Kutta method is adopted to solve the dimensionless equation
of Eq. (1). And then the vibration response of the system under a certain parameter
condition can be obtained and the response results can be analyzed. In order to make
the selected parameters close to the actual structure of the gas turbine, the geometry
parameters of the rotor-bearing-brush seal system are given as follows: m8 ¼ 10000 kg,
m9 ¼ 3200 kg, m4 ¼ m12 ¼ 400 kg, k48 ¼ 3:19� 108 N/m, k89 ¼ 3:02� 108 N/m,
k912 ¼ 3:13� 108 N/m, l48 ¼ 1:5 m, l89 ¼ 2 m, l912 ¼ 1:5 m, l ¼ 0:02.

The influence of the rotor speed on the response of the rotor-bearing-brush seal
system usually is more obvious. Figures 2, 3, 4 and 5 show the axis orbit and Poincaré
map of joint 4, joint 8, joint 9, and joint 12 with different rotor rotational speed,
respectively. As observed in Figs. 2 and 5, the variation of amplitude versus rotor
speed at the position of bearing is not obvious, and all of the axis orbits are regular
ellipse. When the rotor speed is 960 rad/s, the Poincaré map of joint 4 and joint 12
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presents a closed circle, which shows the system are in quasi-periodic motion. But
when the rotor speed is 760 rad/s, the Poincaré map of joint 4 and joint 12 are discrete
scattered points, which shows the system are in chaos motion and the system is
unstable.

(a) Axis orbit. 

(b) Poincaré map. 
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Fig. 2. Axis orbit and Poincaré map of joint 4 with different rotor rotational speed.
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(a) Axis orbit. 

(b) Poincaré map. 
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Fig. 3. Axis orbit and Poincaré map of joint 8 with different rotor rotational speed.

356 Y. Wei et al.



(a) Axis orbit. 

(b) Poincaré map. 

200
400

600
800

1000

-20
-10

0
10

20
-20

-10

0

10

20

ω /rad.s-1Displacement x

D
is

pl
ac

em
en

t y
960 rad/s
760 rad/s
560 rad/s
360 rad/s

200
400

600
800

1000

-10

0

10

20
-4

-2

0

2

4

ω /rad.s-1Displacement x

x ′

960 rad/s
760 rad/s
560 rad/s
360 rad/s

Fig. 4. Axis orbit and Poincaré map of joint 9 with different rotor rotational speed.
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(a) Axis orbit. 

(b) Poincaré map. 
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Fig. 5. Axis orbit and Poincaré map of joint 12 with different rotor rotational speed.
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(a) Axis orbit. 

(b) Poincaré map. 
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Fig. 6. Axis orbit and Poincaré map with different eccentricity phase-difference when rotor
rotational speed x = 900 rad/s.
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(a) Rotational speed ω=30 rad/s. 

(b) Rotational speed ω=900 rad/s. 
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Fig. 7. Spectrum cascade with different eccentricity phase-difference.
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As observed in Figs. 3 and 4, the amplitude at the position of disk increase with the
rotor speed at first, and then decrease with the increase of rotor speed. The axis orbit of
joint 8 and joint 9 is a circular ring, when the rotor speed is 360, 560, and 960 rad/s.
And the Poincaré map of joint 8 and joint 9 is a closed ring when the rotor speed is
960 rad/s, which indicates the system are in quasi-periodic motion. But when the rotor
speed is 760 rad/s, the axis orbit of joint 9 is irregular, which shows the system is in
chaos motion.

The eccentricity phase-difference between the discs of joint 8 and joint 9 would
affect the unbalanced force and the dynamic characteristics of the rotor system.
Figure 6 shows the axis orbit and Poincaré map with different eccentricity phase-
difference when rotor rotational speed is 900 rad/s. As observed in Fig. 6a, with dif-
ferent phase-difference, the axis orbits are circular ring, and the amplitude increases
with the increase of the phase difference. As observed in Fig. 6b, when the phase-
difference is p/6 and p/2, the Poincaré map is a closed ring, which indicates the system
is in quasi-periodic motion. But when the phase-difference is 5p/6, some scattered
points are appeared around the closed circle in the Poincaré map, and the axis orbit
tends to be unstable. Therefore, decrease the eccentricity phase-difference between two
disks during installation is beneficial to the stability of the system.

Figure 7 shows the spectrum cascade as a function of the eccentricity phase-
difference. As observed in Fig. 7a, when the rotor speed is 30 rad/s, the power spec-
trum at the position of fundamental frequency is much greater than other position. The
frequency division gradually decreases from the initial position to the 1 times funda-
mental frequency, and some small frequency division appear at the position of 2 times
and 3 times fundamental frequency. As observed in Fig. 7b, when the rotor speed is
900 rad/s, there is a larger frequency division at the position of 1/3 times fundamental
frequency, but power spectrum is very small at the position of 1 times fundamental
frequency.

3 Conclusions

In order to build the nonlinear dynamic model of a multi-disk rotor-bearing-brush seal
system, the seal force model of brush seal and the nonlinear oil-film force model based
on short bearing theory were adopted considering the lateral deflection of the disks. The
influences of the rotor speed and eccentricity phase-difference on the dynamic response
of a multi-disk rotor-bearing-brush seal system were discussed. The conclusions were
drawn below:

1. The variation of amplitude versus rotor speed at the position of bearing is not
obvious.

2. The amplitude at the position of disk increase with the rotor speed at first, and then
decrease with the increase of rotor speed.

3. Decrease the eccentricity phase-difference of the rotor system between two disks
during the installation is beneficial to the stability of the system.
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Abstract. The present work tackles the dead band clearance problem of rotors
guided by ball or roller bearings. There are situations when the rotor can be only
temporary in contact with the casing. The closed-loose nature of the rotor-stator
contact leads to a non-linear rotordynamic response. A test rig dedicated to the
experimental analysis of this problem was presented in a previous paper [8]. The
test rig is based on a vertical rotor guided by ball bearings and lifted by an
aerostatic thrust bearing. The ball bearings are mounted with three different
radial clearances: “small”, “medium” and “large”. The results for the low and
mild radial clearances showed a linear behavior of the rotor characterized by
synchronous responses with forward or backward whirls. A non-linear signature
of the rotor was obtained for the large radial clearance with sub-synchronous
bifurcations and internal resonances. The present paper presents the numerical
analysis of the same rotor and is intended to reproduce the experimental results.
The rotor was modeled with Timoshenko beam elements. Full non-linear cal-
culations were performed by simulating a constant acceleration of the rotor from
zero to 400 Hz in 50 s. Calculations showed that the value of the dead-band
clearance is a capital parameter for triggering non-linear responses of the rotor.

Keywords: Rotordynamics � Dead-band clearance problem

1 Introduction

Ball and roller bearings guiding rotors are generally mounted with no radial clearance
between the outer ring and the casing of the machine. However, there are situations
when a small radial clearance is present. Therefore, when operating, the rotor may be
only temporary in contact with the casing. The gap between the rotor and the casing
might be closed or loose. This closed-loose nature of the rotor-stator contact leads to a
non-linear rotordynamic response known as the dead-band clearance (DBC) problem.
The literature shows that when present in a rotating machinery, a dead-band clearance
triggers a typical non-linear response of the rotor.

A non-linear analytic model for investigating the influence of the radial clearance
was developed by Yamamoto early in 1959 [1]. It was shown that an increase of the
ratio between the radial clearance and the unbalance eccentricity lead to a decrease of
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the rotor critical speed. Following this results, the DBC is associated with a modifi-
cation of the critical speed. Childs performed a similar theoretical analysis [2]. His
results confirmed Yamamoto’s findings but also showed that the radial clearance
between the outer ring of the ball bearings and the casing is the source of sub-
synchronous vibrations. Moreover, Childs underlines that the amplitudes of sub-
synchronous vibrations increase with increasing unbalance while the amplitudes of
synchronous components decrease. Other theoretical analyses [3, 4] confirmed the
previous findings, namely that the increase of the DBC decreases the critical speeds and
the vibration amplitudes at critical speeds.

In 1993 Lin [5] presents a simple experimental test rig based on a slender rotor with
a disk at its mid-length and guided by two ball bearings at its ends. The ball bearing
situated at the non-drive end had an adjustable DBC. Sub-synchronous vibrations due
to the DBC were measured when the rotation speed was close to twice the first critical
frequency. The frequency of the sub-synchronous vibrations was constant and equal to
the first critical frequency. The sub-synchronous vibrations were present only near the
rotation speed equal to twice the first critical and disappeared once the rotation speed
increases. Lin [5] considers that the sub-synchronous component is not a self-sustained
vibration but a benign regime triggered by the DBC. This observation was also
underlined in a slightly different context [6, 7].

A paper recently presented by Amami et al. [8] was focused on the experimental
analysis of the DBC problem in a vertically mounted, complex rotor. The test rig
components were designed for three values of the DBC (small, medium and large) but,
due to manufacturing errors, the experiments enlightened a somewhat different situa-
tion. The results for the small and medium radial clearances showed a linear behavior
of the rotor characterized by synchronous responses with forward or backward whirls.
A non-linear signature of the rotor was obtained for the large radial clearance with sub-
synchronous bifurcations and internal resonances.

The present paper presents the numerical analysis of the rotor tested in [8] and is
intended to reproduce the experimental results. The rotor was modeled with Timosh-
enko beam elements and contacts between the rotor and the casing were modeled with
a contact stiffness. Full non-linear calculations were performed by simulating a constant
acceleration of the rotor from zero to 400 Hz in 50 s.

Calculations showed that the value of the dead-band clearance is a capital
parameter for triggering non-linear responses of the rotor. The numerical results for
zero clearance and anisotropic support stiffness reproduced qualitatively the linear
responses evidenced by experimental findings for small and medium DBC. High
amplitude, sub synchronous vibrations were obtained for non-zero values of the
clearance.

2 Summary of the Experimental Results

2.1 Description of the Test Rig

Figure 1 depicts the rotor and its vertical installation in the test rig. The rotor has three
disks. It is guided by two pair of ball bearings, by two aerostatic bearings, is supported
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at its bottom end by an aerostatic thrust bearing and is entrained at its upper end by an
impulse (Pelton) turbine. The aerostatic bearings replace the annular straight seals
normally present in the rotating machine. They are strongly pressurized and they
represent the only source of radial damping of the rotor. The thrust bearing lifts the
rotor and enables its rotation with a minimal torque. It is mounted on a wire mesh
damper for minimizing the amplitudes of any axial vibration that could interfere.

The ball bearings are mounted by pairs and are axially preloaded by a wave spring.
They are mounted with a radial clearance between the outer rings and the casing of the
test rig. The variation of this clearance is obtained by manufacturing the casing parts of
the test rig with different inner diameters. Each disk of the rotor is provided with two
inductive, orthogonally mounted displacements probes. An optical probe and a mark on
the top disk measure the rotation speed and the reference phase.

2.2 Experimental Results

Experimental results were obtained in [8] with three different radial clearances between
the outer rings and the casing of the test rig. These clearances are designated as “small”,
“medium” and “large”. Tests were performed by entraining the rotor up to 400 Hz
followed by a free coast down.

Figure 2 depicts the full spectrum plots recorded on the upper (# 1) and on the
lower disk (# 3) for the “small” DBC during acceleration from 0 to 400 Hz. The
vibration amplitudes of the middle disk (# 2) are much lower because it is mounted
very close to the node of the rigid conical mode. Therefore, for brevity, the results
obtained for this disk are not presented.

The presence of only the synchronous component on Fig. 2 indicates a linear
response of the rotor. This means that the outer ring of the ball bearings is continuously
in contact with the casing. The explanation of this result is the fact that the “small”
DBC was eliminated by the manufacturing errors.

The full spectrum diagrams show distinct zones of forward and backward whirls.
The switch from forward to backward whirl and again to forward whirl occurs when
the direct stiffness of the support is anisotropic. This means that the contact conditions
of the outer rings of the ball bearings with the casing are anisotropic.

The results obtained with the “medium” DBC, twice larger than the previous one
are depicted in Fig. 3 and show the same linear response. However, the backward
precession is present on a shorter interval and for lower values of the rotation fre-
quency. This means the contact stiffness decreased following the increase of the DBC
from “small” to “medium”.

The results obtained with the “large” DBC, three times larger than the “small” DBC
are depicted in Fig. 4. A net clearance between the outer rings of all ball bearings and
the casing is now obtained. The diagrams show a clear non-linear response. A first
critical frequency close to 140 Hz following X and Y is detected. This critical fre-
quency was close to 230 Hz for the “small” DBC, decreased to 160 Hz for the
“medium” DBC and was identified only following the X direction. A second critical
speed following the Y direction is visible at 220 Hz. This critical speed was identified
close to 320 Hz for the “small” DBC and decreases to 225 Hz for the “medium” DBC.
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The critical speeds identified for the “large” DBC are systematically lower that are
those identified for the “small” and “medium” DBC. For rotation frequencies higher
than 220 Hz, the response is clearly non-linear, the results showing a bifurcation
followed by sub-synchronous vibrations. A clear sub-synchronous component detaches
at a rotation frequency close to 220 Hz. This component becomes rapidly vertical and
of large amplitude, its frequency being fixed at a constant value comprised between 130
and 140 Hz and corresponding to the first critical speed.

Fig. 1. The rotor and its installation in the test rig [8]
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Fig. 3. Full-spectrum plot for the «medium» DBC [8]

Fig. 4. Full-spectrum plot for the «large» DBC [8]

Fig. 2. Full-spectrum plot for the «small» DBC [8]
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3 Rotor Model

The rotor was modeled with Timoshenko beam elements. The ball bearings and the
contacts were modeled with a contact stiffness as further indicated in Sects. 4.1 and 4.2.

Rayleigh damping was added to the rotor model after experimental tests. As
indicated in Fig. 5a, impacts were applied at one end of the suspended rotor and
acceleration responses were measured on the second disk. The frequency response is
depicted in Fig. 5b. Modal damping was identified by using the half power method and
the approximation of Rayleigh damping is depicted in Fig. 6.

4 Numerical Analysis

The numerical simulation of this DBC problem is a quite difficult task due to the large
number of unknown parameters that must be selected and triggered. The simulation is
performed in two steps: first for the “small” and “medium” DBC where, due to
manufacturing errors, the non-linear response was not present and then for the “large”
DBC.

Fig. 5. Frequency response of the suspended (free-free) rotor

Fig. 6. Approximation of the Rayleigh damping
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4.1 Results for the “Small” and “Medium” DBC

As mentioned, for the “small” and “medium” DBC configurations, the experimental
results showed a linear response of the rotor. This was a clear indication that the outer
rings of the ball bearings were constantly in contact with the casing and no DBC was
present. However, the contact stiffness proved to be anisotropic because the results
enlightened two conical modes, following X and Y and a shift from forward to backward
and again to forward whirl. After trials, a value of 2.5�106 N/m was adopted for the X
stiffness of each ball bearing and 107 N/m for the Y stiffness. These parameters were
further refined by adopting a 3.5�106 N/m value for the X stiffness of the lower pair of
ball bearings depicted in Fig. 1. The two aerostatic bearings were considered to have a
direct stiffness of 2.6�106 N/m; their cross coupling stiffness and direct damping was
discarded. Full non-linear calculations were performed by simulating a constant
acceleration of the rotor from zero to 400 Hz in 50 s. Estimating the unbalance amount
is also difficult. After trials and comparisons with the experimental results, two 1.5 g
mm unbalances were added at the ends of the rotor with a 120° phase difference.

The results are depicted in Figs. 7 and 8 for disks 1 and 3.

Fig. 7. Numerical full-spectrum plots obtained for the rotor model without DBC

Fig. 8. Synchronous amplitudes obtained for the rotor model without DBC
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The full-spectrum diagrams depicted in Fig. 7 clearly show the backward whirl.
The disks 1 and 3 show a forward whirl from 0 to 179 Hz, a backward whirl between
179 and 246 Hz and again a forward whirl up to 400 Hz. The synchronous amplitudes
of the disks depicted in Fig. 8 enable also to identify the X and Y modes. These plots
are close to the experimental results obtained for the “small” DBC depicted in Fig. 2.

4.2 Results for the “Large” DBC

The experimental results obtained for the “large” DBC showed a different, non-linear
signature. The loose contact between the outer rings of the ball bearings and the casing
was modeled by imposing a radial clearance and a contact stiffness of 1012 N/m. If the
radial displacement of the corresponding discretization node is lower than the radial
clearance, then no force is imposed, otherwise the contact stiffness becomes active. No
friction arising from contact was considered. This is a realistic assumption because the
outer rings of the ball bearings can freely rotate. The value of the radial clearance was
the same in X and Y directions and for all ball bearings. The values of the other
parameters were the same as for the “small” and “medium” DBC and calculations were
again performed by simulating a constant acceleration from zero to 400 Hz in 50 s.

Figure 9 depicts the results obtained with values of the DBC from 5 to 20 µm.
Results obtained with a DBC of 5 µm show two synchronous amplitude peaks at 125
and 170 Hz and two corresponding sub-synchronous components starting with 300 Hz.
A backward whirl regime is also present in the response of disk 3. The results are
similar for a DBC of 10 µm but a chaotic regime is present for rotation frequencies
comprised between 170 and 280 Hz. Moreover, the backward whirl regime vanishes.
Following the increase of the DBC at 15 µm, the 170 Hz synchronous amplitude peak
of disk 1 disappears with but remains present on disk 3. The chaotic regime is still
present but on a lesser extent. The chaotic regime disappears with the further increase
of the DBC at 20 µm. Two amplitude peaks are identified on disk 3 at 125 and 190 Hz
and a single peak on disk 1 at 125 Hz. The chaotic regime is absent and sub-
synchronous vibrations of constant frequency are triggered at 125 and 190 Hz. In all
cases, the amplitudes of the sub-synchronous vibrations are very large if not dominant.

A 12 µm value of the DBC gave the closest agreement with the experimental
results depicted in Fig. 4. The theoretical full spectrum diagrams of the amplitudes are
depicted in Fig. 10. The diagrams show no backward whirl. A first amplitude peak is
identified at 120 Hz for both disks; a second peak appears at 170 Hz but only for the
disk 3. These values are lower than the frequencies of the corresponding modes
underlined for the “small” and “medium” DBC. A sub synchronous component is
visible on disk 1 for rotation frequencies larger than 120 Hz followed by a quasi-
periodic regime after 170 Hz. Two sub synchronous components appear for disk 3,
triggered at rotation frequencies of 120 and 170 Hz. Figure 11 depicts the syn-
chronously filtered amplitudes. It should be underlined that for rotation frequencies
larger than 120 and 170 Hz, when the regime is highly non-linear, a large percentage of
energy is carried by the sub synchronous components (i.e. their amplitudes are larger
than the synchronous ones).
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Fig. 9. Parametric analysis of the impact of the DBC (a. 5 µm, b. 10 µm, c. 15 µm, d. 20 µm)
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The comparison between Figs. 4 and 10 shows only a limited agreement. This is due
to the large number of parameters that must be selected and carefully triggered. A sys-
tematic parametric analysis including also the contact stiffness can be found in [9].

5 Summary and Conclusions

The paper presents the impact of the DBC on the dynamic response of a complex rotor.
Two pairs of ball bearings guided the vertically mounted rotor. Numerical results were
obtained by performing a full non-linear analysis with a traditional rotordynamic
model. The analysis was performed for a case with no DBC but with anisotropic
stiffness and for cases with DBC comprised between 5 and 20 µm. The results show
that the value of the DBC is a capital parameter: high amplitude, sub synchronous
vibrations or chaotic regimes can be triggered depending on the value of this clearance.

It was found that the results obtained with a DBC of 12 µm agree qualitatively with
the test rig measurements for the “large” radial clearance. They also confirm the

Fig. 10. Numerical full-spectrum plots obtained for the rotor model with a 12 µm DBC

Fig. 11. Synchronous amplitudes obtained for the rotor model with a 12 µm DBC
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theoretical predictions from the references discussed in the introduction part of the
paper, namely, the presence of the DBC lowers the critical frequencies and triggers a
non-linear response with high amplitude sub-synchronous components. The numerical
simulations also underline the multitude of parameters that must be introduced into a
rotordynamic model for correctly simulating non-linear responses, the value of the
dead-band clearance being of capital importance.

Acknowledgements. The authors are grateful to Centre National d’Etudes Spatiales and to
Airbus Safran Launchers for supporting this work.
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Abstract. This paper presents both experimental and numerical study on the
dropdown of a generator rotor in a two-stage radial gas turbine utilizing AMB
system. The simulation unifies the FE-model of the flexible rotor and the
dynamic model of backup bearings. The system under investigation includes a
flexible rotor, an axial and two radial AMBs and two backup bearings, double
row angular contact ball bearings. The recorded behavior of the studied rotor in
the sudden failure of the electromagnetic field is demonstrated. Furthermore, the
fine-tuned rotor-system model is used for studying the contact force and the
contact stress in the backup bearing. The comparison between the measured
results and the simulated results confirms that the used simulation tool can be
applied for the design consideration of rotor-backup bearing system and enables
to investigate the effect of various design parameters on the dynamic behavior of
rotor in the dropdown.

Keywords: Backup bearing � Rotor � Dropdown

1 Introduction

Applying active magnetic bearing (AMB) system in high-speed turbomachinery has
numerous advantages in preference to utilizing the conventional mechanical bearing. In
order to avoid fatal failure in loss of electromagnetic field principally because of the
electric short circuit and the fault in the control system, these machineries are equipped
with the backup bearings to secure the rotor and AMB components, mainly the radial
actuators and position sensors, from the damages in the dropdown. The backup
bearings bear the high contact load and a friction rub. The backup bearing can be also
known as either auxiliary bearing or touchdown bearing. During the last years, several
researches have been conducted on the simulation of the dropdown. In the study of
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Kärkkäinen et al. [1] the contact forces and friction force during the dropdown has been
demonstrated. The contact of the rotor and backup bearing, open-loop, and closed-loop
control system for AMB as well as transient analysis of the temperature in the rotor
drop have been also discussed in the papers presented by Keogh [2, 3]. Recently, Liu
et al. [4] developed a numerical model based on signal processing to recognize the
complete rub of the rotor, bounce of the rotor after the contact with backup bearing and
the pendulum movement of the rotor.

In the design aspect of the backup bearing, it is essential to decrease the defor-
mation of the backup bearing and maintain the maximum stress in bearing below the
endurance limit for the stress in the bearing. There are a limited number of studies
about the contact stress in the backup bearing [5, 6]. Sun [5] applied the Lundberg-
Palmgren theory to evaluate the fatigue life of the backup bearing. This theory
specifically can be used for the steady state condition of the bearing. Lee and Palazzolo
[6] considered the stress counting method, rainflow method, for calculation of the
fatigue life of the backup bearing. Besides that, the effect of the off-sized ball in the
contact stress of the backup bearing has been studied by Neisi et al. [7]. Above study
indicated that the dimension and location of the off-sized ball/balls can influence the
contact stress in the backup bearing. Apart from this several researches have been
conducted on the thermal analysis of backup bearings [8–10].

Most of the available studies on the AMB supported rotors are devoted to the
numerical simulation of dropdown and few publications can be found studied the rotor
dropdown both experimentally and numerically. An experimental study on the drop-
down test by Schmied and Pradetto [11] showed that because of the time lag in the
control system, the electromagnetic force might exist in the machine. Therefore, the
results of the simulation can be different compared to the recorded behavior of the rotor
in the test bench. The comparison between the measured and the simulated results can
be used for the design consideration of rotor-backup bearing system and enables to
evaluate the influence of various design parameters on the dynamic behavior of rotor in
the dropdown and still needs to be studied. For this reason, this work presents both
experimental and numerical study on the dropdown of a generator rotor in a two-stage
radial gas turbine employing AMB system. The unit composed of LP and HP rotors
operating at supercritical speed. This work concentrates on the study the dropdown of
LP rotor. The normal operation speed of both rotors is 550 Hz and the unit generates up
to 400 kW electric power. The FE-model of the rotor is validated with the experimental
modal analysis. The system under investigation includes a flexible rotor, an axial and
two radial AMBs and two backup bearings, double row angular contact ball bear-
ings. In this study, the recorded behavior of the studied rotor in sudden failure of the
electromagnetic field is demonstrated. The description of the support stiffness and
friction coefficients in the bearings are fine-tuned in the rotor model to meet the
measured results during the dropdown. In addition, the fine-tuned rotor-system model
is used for studying the contact force and contact stress in the backup bearing. Fur-
thermore, the rotor orbit and the displacement of the rotor during the dropdown are
featured.
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2 Model of Rotor and Backup Bearing

Figure 1 shows the rotor under investigation. The rotor is modeled using shear
deformable beam elements. In a rotor dropdown, the backup bearing supports the rotor
by nonlinear contact load. The equation of motion is as follows [12]:

M€Xþ CþxGð Þ _XþKX ¼ x2F1 þF2 ð1Þ

where M, C, K, and G are mass, damping, stiffness and gyroscopic matrix, respec-
tively. X is the vector of the generalized coordinate. The vector F1 is the vector of nodal
unbalance and F2 represents the vector externally applied forces. The angular velocity
of the rotor is x.

Applying a pair of angular contact ball bearings as backup bearings enable to take
the advantage of the ability of backup bearing to withstand both the axial and radial
loads, low friction, lubricant free and compact size. The backup bearings are considered
as consumable parts. After several dropdowns, because of the high contact forces and
mechanical rub, it is required to replace them. The model for the backup bearing,
duplex pair of angular contact ball bearing, is developed on the basis of the ball bearing
model introduced by Sopanen and Mikkola [13]. The bearing forces are calculated
based on the bearing geometry, material property and the deformation of the bearing in
the dropdown. In the model, the relative displacement between races is given by:

erj ¼ ex cos bj þ ey sin bj
etj ¼ ez � wx sin bj þwy cos bj

� �
Rin þ rinð Þ ð2Þ

where ex;y;z represent the relative displacements of the bearing races (Fig. 2), and wx

and wy show the tilting of the inner race in x, y-axis. bj is the attitude angle of j
th ball.

Thus, the distance between the races can be calculated as follows:

Dj ¼ rout þ rin �
Rin þ rin þ erj � Rout þ rout

cosuj
ð3Þ

Bearing 2
Drive end

Bearing 1 
Non-Drive end

Fig. 1. Rotor under investigation
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where uj is the contact angle.

uj ¼ tan�1 etj
Rin þ rin þ erj � Rout þ rout

 !
ð4Þ

where Rin and rin represent the inner race radius and inner race groove radius,
correspondingly.

The following equation expresses the total elastic deformation of the inner ring.

dtotj ¼ dj � Dj ð5Þ

The Hertzian contact theory has been used for the calculation of the contact force in
the dropdown. Where the contact force between ball jth and the inner race is as follows
[12]:

Fj ¼ Ktot
c dtotj

� �3=2
ð6Þ

where the total contact stiffness is denoted as Ktot
c [13].

2.1 Model of the Contact Between Rotor and Backup Bearing

The contact between the rotor and backup bearing is modeled based upon the modified
Hertzian contact model [1]:

Fr ¼ Kd10=9 1þ 3=2ð Þk _d
� �

; er [ cr and Fr [ 0
0; er � cr and Fr � 0

(
ð7Þ

Fig. 2. Ball bearing model
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where K represents the contact stiffness between the rotor and inner race and k, is a
contact parameter. In above equation, the penetration of the rotor in the backup bearing
can be calculated as follows:

d ¼ er � cr ð8Þ

where cr is the radius of the air gap between the rotor and backup bearing, and the
radial displacement of the rotor is denoted as er [1].

The friction force between the rotor and backup bearing can be obtained by:

Fl ¼ lFr ð9Þ

where l is the friction coefficient and the detailed calculation of the friction coefficient
is described in the study of Kärkkäinen et al. [1]. In the model, the coordinate system in
the FE-model of rotor and bearing model are mapped together.

2.2 Model of Contact Stress in Backup Bearing

The design of the backup bearing requires to evaluate the contact load, deformation of
the bearing and make sure that the stress carried by backup bearings does not exceed the
maximum allowable stress for bearings. The Hertzian contact model can be imple-
mented for the calculation of the contact stress in the backup bearing. In this method, the
stress can be calculated from the projection of elliptic contact area between the ball and
bearing race. The highest stress can be found at the at the geometrical contact area [14]:

rmax ¼ 3Qj

2pab
ð10Þ

where the semi-major and minor axes of the elliptic contact are denoted as a and b,
correspondingly.

3 Case Studies and Results

The parameters required to analyze the case study of the rotor are shown in Table 1.
The FE-model of the rotor is depicted in Fig. 3. The backup bearings are a pair of
angular contact ball bearings type XCB71914-E-2RSD-T-P4S-U (Schaeffler) mounted
in X-arrangement. The parameter used for the supports is shown in Table 2.

Backup bearing location

Fig. 3. The main dimensions and finite element model of the rotor.
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The mass properties of the compressor and turbine impellers are shown in Table 3.
In the FE-model of the rotor, the impellers are modeled as mass points and they are
connected to the rotor by spring model.

3.1 Orbital Motion of Rotor

Figure 4 features the rotor orbit at the location of backup bearings. In the dropdown,
the rotor falls down and contacts the backup bearing. After the initial hit, the rotor
bounces back and again hits the bearing. This can repeat until the rotor steady set in the
bearing.

Table 1. The main data for the simulation of the rotor dropdown

Initial rotation speed of the rotor 60 Hz
Modulus of elasticity 2.0�1011 Pa
Mass of rotor 59.5 kg
Poisson’s ratio 0.3
Contact stiffness between rotor and backup bearings 2.4�109 N/mm1.11

Air gap 250 µm
Unbalance mass at Non drive end of generator active part 4.4�10−6 kg m @ 0°
Unbalance mass at drive end of generator active part 4.4�10−6 kg m @ 0°
Unbalance mass at compressor impeller 0.6�10−6 kg m @ 0°
Unbalance mass at turbine impeller 3.1�10−6 kg m @ 0°
Static contact friction coefficient between rotor and inner race 0.15
Dynamic contact friction coefficient between rotor and inner race 0.1

Table 2. The parameters used for rigid and soft supports

Mass 5 kg
Stiffness 2.4�109 N/m
Damping 2.8�103 Ns/m

Table 3. Mass properties of the impellers

Compressor Turbine

Material Aluminum alloy 7075-T6 Heat resistant alloy steel
Mass (kg) 2.7 9.9
Center of mass x, y, z (m) 0, 0, 0.0648 0, 0, 0.03749
Moment of inertia Id, Ip (kg m2) 0.0197, 0.0126 0.0436, 0.0449
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3.2 Contact Forces and Stress

The contact force in the backup bearing is modeled on the basis of the bearing model
presented in the paper by Kurvinen et al. [15]. As can be seen in Fig. 5, in the first hit
of the rotor with backup bearing, the bearing bears high contact force, about 2346 N at
the drive end (Bearing 2). In the subsequent contacts, the magnitude of the contact
force is decreased and after continues rub in the backup bearing reaches to the stable
value. The figure shows that in the initial contacts of the rotor and bearing, the contact
force in the drive end (Bearing 2) is approximately 1.36 times of the force in the Non-
drive end (Bearing 1) and in the following contacts, the difference between the contact
forces in the bearings is reduced. In the beginning of the dropdown, the rotor has a
considerable kinematic energy. Therefore, when the rotor hits the bearing for the first
time, the highest contact force is observed. As a result of the friction between the rotor
and backup bearing, part of the kinetic energy of rotor is dissipated as friction heat
generation. For this reason, in the subsequent contacts, the magnitude of contact force
is reduced. It should be noted that due to the movement of the ball inside the bearing,
the location where the highest contact force exists is changing. Furthermore, the center

Fig. 4. Rotor orbit, dropdown simulation at 60 Hz

Fig. 5. Contact force in the bearing
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of mass of the rotor is close to the drive end or rotor (Bearing 2). Therefore, the force in
the Bearing 2 is higher than the Bearing 1. After obtaining the contact force between
the balls and inner race, the maximum Hertzian contact stress between balls and
bearing ring is obtained (Eq. 10). The highest contact stress in the contact of the rotor
and Bearing1 and Bearing 2 found to be 3451 and 3549 MPa, respectively.

3.3 Experimental Result

The prototype of two-stage radial gas turbine shown in Fig. 6 produces 400 kW
electricity. The nominal operation speed of both rotors is 550 Hz. The dropdown test of
the rotor was carried out at two different speeds: 60 and 100 Hz. Before the dropdown,
the rotor was supported by active magnetic bearings. Then, the magnetic bearing source
was switched off and the unit is shut down. The measurement setup is equipped with
two non-contact displacement sensors at the location of each backup bearings and the
relative displacement of the rotor is recorded. These sensors are mounted at 45° with
respect to the vertical axis of the rotor. For this reason, it is required to map the
recorded data to the coordinate system used in the FE-model of the rotor. By means of
a third noncontact probe, the displacement of the rotor in the axial direction is mea-
sured. The dropdown speed has been also recorded.

Figure 7 depicts the recorded orbital movement of the rotor for the dropdown test at
60 and 100 Hz. As can be seen in Fig. 7(a and b), when the rotor drops, the rotor
moves downward, then bounces back and it hits the backup bearing over and over until

Exhaust gas outlet

Air intake Power train

Recuperator

Low and high pressure
turbine units including generators

Automation,
AMB controls

Fig. 6. The figure of the prototype for two-stage radial gas turbine under investigation.
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thoroughly settles on the bottom of the bearing inner ring. When the rotor is dropped at
higher initial rotational speed, the first bounce is higher.

The comparison of the orbital movement of the rotor shown in Fig. 4 (simulation
tool) and the rotor orbit measured in the test (Fig. 7a and b) reveals that the simulation
model is able to feature the orbital movement of the rotor. However, the amplitude of
the rotor orbit in the measurement found to be different from the simulation. The test
results show that the radial displacement of the rotor exceeds 280 lm, while the
simulation results indicated that in the first contact, the displacement of the rotor
exceeds 250 lm. Then, the radial displacement is reduced around the air gap and the
rotor starts to have a wobbling movement on the bottom of the bearing and the radial
displacement is reduced around the air gap. There are several possible explanations can
be found for this difference between the amplitude of orbit in the simulation and test
result. In the numerical simulation, the air gap clearance is in accordance to the air gap
clearance in the design phase of machine. One of the primary reasons for this dis-
crepancy can be due to the problem in the sensitivity of sensor and the electrical runout
particularly because of the dent, scratch in the probe area of the rotor and rotor runout.
Furthermore, the structure of the support of the machine is complicated and the sim-
ulation of dropdown generally requires simplifications in supports definition. The rotor
orbit is obtained from the displacement of the rotor in horizontal and vertical direction
and the effect of the support stiffness in the amplitude of the rotor displacement cannot
be neglected.

Figure 8 depicts the displacement of the rotor for the dropdown at 60 Hz at the
drive end backup bearing. It is clear from Fig. 8 that when the electromagnetic field
switched off, the rotor has high displacement in the vertical direction, while the hori-
zontal displacement of the rotor is considerably lower. Figure 8a shows that the rotor
starts to have the highest oscillation in the horizontal direction about 200 lm which is
less than the air gap and gradually the horizontal displacement of the rotor is reduced
and the rotor stabilized around the vertical centerline of the bearings. Figure 8b features

Fig. 7. Orbit movement of rotor at different dropdown speeds (a) 60 Hz (b) 100 Hz
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that the rotor descends and the vertical displacement of the rotor is over 320 lm.
Afterwards, the rotor moves up. In the following contacts, the displacement of the rotor
decreases. In the first interaction of rotor and backup bearing, the contact force is so
high that the vertical displacement of the rotor exceeding the air gap, then the rotor is
reflected from the inner ring. Later, the vertical displacement of the rotor is reduced and
the rotor starts to stabilize within the air gap.

The displacement of the rotor at the location of the non-drive end backup bearing is
shown in Fig. 9. The same as the drive end bearing, the highest displacement of the
rotor at vertical direction was recorded at the first contact of the rotor and bearing and
then the amplitude of the displacement is decreased. The results reveal a clear differ-
ence between the recorded displacement of the rotor at the backup bearing in the drive
end and non-drive end. First, the recording shows that the maximum displacement of
the rotor at the non-drive end is approximately 300 lm that is less than the maximum
displacement at the drive end of the rotor. Second, the comparison of Figs. 8b and 9b
shows that the rotor contacts the bearings at different times. Third, it can be found from
the measurement data that the rotor hits the drive end more than the non-drive end.

The mass center of the rotor is close to the drive end bearing. The static force
equilibrium of the rotor shows that the force in drive end bearing is higher than non-
drive end bearing. Therefore, the vertical displacement of the rotor at the drive end
bearing is higher and it is confirmed by measurement results. In addition, the high
number of contacts of the rotor with drive end bearing can be attributed the conical
movement of the rotor that has a good agreement with the results of our previous study
on the rotor dynamic analysis of the rotor (The rotor dynamic analysis indicated that at
lower frequencies the rotor has a conical mode shape).

In the test setup, the axial displacement of the rotor is measured by non-contact
displacement probe close to the axial disc of the rotor. The axial clearance of the axial
safety bearing is 900 lm. Figure 10 shows the axial displacement of the rotor for the
dropdown test at 60 Hz. The measurement shows that from the start of the dropdown
until the first contact of rotor and backup bearing the rotor has an axial displacement of

Fig. 8. Displacement of rotor at the location of backup bearing (drive end), dropdown test at
60 Hz (a) x-direction (b) y-direction
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80 lm. Then, very rapidly, the rotor moves axially in opposite direction. And from
40 lm at 0.02 s, the rotor experiences the higher axial displacement of 110 lm at
0.05 s. Then, the direction of the movement reversed until 0.1 s. After that, the axial
displacement of the rotor is reduced and the rotor experiences several backs and forth
movements.

Even though the magnitude of the axial displacement of the rotor seems to be small
compared to the maximum limit for the clearance, the data provides an important
information about the behavior of the rotor. In the normal operation of the machine, the
pressurized air in the outlet of the compressor directed to the turbine impeller and when
the switch of electromagnetic field turned off, the axial force resulted from the back
pressure in the compressor impeller causes that the rotor moves reversely. The rotor
undergoes several backs and forth axial movement particular because of the unstable
fluid flow in the dropdown. In the numerical simulation, the axial pressure in the
compressor section is not taken into account. It should be remind that this dropdown test
was carried out at very low speed rather than the operation speed of rotor (550 Hz). The
existence of the axial pressure from the compressor impeller can provide a physical

Fig. 9. Displacement of rotor at the location of backup bearing (Nondrive end), dropdown test at
60 Hz (a) x-direction (b) y-direction

Fig. 10. Axial displacement of rotor, dropdown test at 60 Hz
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explanation that the outcome of the simulation of the two-stage radial gas turbine
generator rotor, mainly at operating speed, expected to be different from the real
behavior of the rotor in the dropdown. In future, the effect of the force from the magnetic
field and also the axial force in the compressor impeller needs to be considered.

4 Conclusion

On the circumstance that the electromagnetic field fails, the rotor drops and the backup
bearing surfers from high contact load. A numerical and experimental study on the
dropdown of the case study of the rotor in a two-stage radial gas turbine generator unit
was carried out. The contact forces and the stress in the backup bearing were studied.
For the purpose of the calculation of the contact forces in the dropdown, the Hertzian
contact model was implemented. The contact force between the rotor and backup
bearing and the contact force in the bearing was calculated. The results indicated that
the backup bearing is exposed to time-varying load. The backup bearing bears the high
contact load during the initial hit of the rotor with the bearing. In addition, the max-
imum Hertzian stress between the ball and the bearing race was obtained. In the test
setup, the dropdown of the rotor for various dropdown speed was carried out. The
displacement of the rotor in the location of backup bearing and the rotor orbits was
featured. The simulation result had a agreement with the recorded behavior of the rotor
in the experimental dropdown. For further improvement in the dropdown simulation,
the axial pressure in the compressor impeller should be taken into account.
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Abstract. One of the most important malfunction that can cause severe
damage in rotating machines is the contact between fixed and rotating
parts. The most common sources for rubbing is mass unbalance and
instabilities due to fluid-rotor interaction. In this way, this paper presents
a continuous rotor model for rubbing applications considering transverse
shear, rotatory inertia, and gyroscopic moments. The contribution of
it is to present a model to be applied in cases where these effects are
not negligible. It is shown that for low slenderness ratio the model is
equivalent to the commonly used Euler-Bernoulli continuous model. The
normal and friction contact forces between the rotor and the stator are
modeled using the Hertz contact theory, which is a nonlinear contact
model, and the Coulomb friction model, respectively. In addition, the
response of the rotor under impact was studied in the frequency domain
using Wavelet Techniques for detection and characterization of rubbing
phenomenon.

Keywords: Continuous model · Hertz contact model
Rotor-stator contact · Wavelet transform

1 Introduction

The occurrence of the rubbing phenomenon in a rotating machine is a serious
problem that can lead to mechanical failures of the machine components. This
phenomenon is seen due to many reasons such as rotor vibrations due unbalance,
excessive displacements due to rotor misalignment, rotor permanent bow, or fluid
related constant radial forces [1]. In turbomachines, like aircraft engines, rubbing
may result from different thermal growth between the rotor and stator and from
a blade loss, which induce high displacement due to the huge unbalance created.
Investigations on the dynamics of rotating machinery have been made for more
than a hundred years. Some primitive models, such as the Jeffcott rotor, con-
sisting of massless shafts with rigid rotors have already been extensively studied
[2,3]. Although these primitive rotor models are not suitable for modeling real
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-319-99270-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_28&domain=pdf


388 M. Varanis et al.

rotating machines, they provide an important insight into the physics of rotat-
ing systems. The models that are used to predict the properties of real rotating
systems consist in flexible or continuous rotor models. In [4], a complete review
on rotor models is provided. In order to overcome the difficulties in working with
the continuous models, some discretization methods were proposed like transfer
matrix method [5] and finite elements methods [6,7]. The early models were made
mainly to compute the natural frequencies of the rotating systems, and they were
mostly only valid in linear systems. As nonlinear effects have been seen in many
experimental procedures [8–10], the models needed to be improved to predict
such effects. Some numerical works also presented the occurrence of nonlinear
effects in rotating systems [11–18]. These effects were mainly due to oil bearing
non-linear characteristics or rubs and impacts in journal bearing systems [19].

An initial study on rubbing was performed by Szcygielski [20], which con-
sisted in a piecewise linear and globally nonlinear model and presented a good
qualitative agreement between experimental results. A complete review on rub-
bing phenomena was performed by Muszynska [21]. Most of the models proposed
to describe rotating systems with rub were very simplified lumped mass models,
because of the computational problems related to more complex ones due to non-
linear effects. Such models are inadequate because the nonlinear effects excite a
wide spectrum band and hence more detailed models need to be considered [19].
Some continuous rotor models are presented in [1,12,13,19,22]. The rubbing
forces have a non-smooth behavior in stiffness, which makes the systems exhibit
some complicated oscillations. Studies on the rubbing phenomenon showed that
the rotating system presented a rich class of nonlinear dynamics such as sub and
super-synchronous responses, quasi-periodic responses and chaotic motions [23].

A great number of the rotor models found in the literature are based on
the Euler-Bernoulli beam theory. This approach does not take into account the
effects of the rotatory inertia and shear deformation of the rotor, which are not
significant for slender rotors. However, for rotors with high slenderness ratio,
the error in the natural frequencies computed using the Euler-Bernoulli theory
are high. The effect of the rotary inertia and shear deformation reduces the
fundamental natural frequency by 0.3% in a uniform beam with a slenderness
ratio of 1:20, and the effect is bigger for higher modes [24]. Thus, in such cases,
the Timoshenko beam theory needs to be applied.

In this work, a continuous rotor model with rubbing is presented. The effects
of the rotatory inertia, shear deformation and gyroscopic moments are included
in the model. The contact forces are modeled using the Hertz contact theory
and the Coulomb friction model. In addition, Wavelet Techniques were applied
in the responses to characterize the rubbing in the frequency domain.

2 Background

2.1 Continuous Rotor Model

The model that was studied in this work consists in a continuous rotor model of
a thick shaft simply supported at both ends, as depicted in Fig. 1. It is important
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Fig. 1. Schematic representation of the rotor.

to point out that the bearing behavior was not considered in the model, as the
boundaries were considered simply supported ends. Although this approach is
unrealistic, it was followed to simplify the analysis of the rubbing effect in the
vibration model. The equations of motion of the movement of the rotor in the
vertical (v) and horizontal (w) directions are written as, respectively [25],

EI
∂4v

∂x4
− EIρ

κG

∂4v

∂x2∂t2
+ ρA

∂2v

∂t2
− ρAr20

[(
∂4v

∂x2∂t2
− ρ

κG

∂4v

∂t4

)

+ 2Ω

(
∂3w

∂x2∂t
− ρ

κG

∂3w

∂t3

)]
= Fu,y(t)δd(x − a) + Fc,y(t)δd(x − a)

(1)

EI
∂4w
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− EIρ
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∂4w
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∂2w

∂t2
− ρAr20
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− ρ

κG

∂3v
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= Fu,z(t)δd(x − a) + Fc,z(t)δd(x − a).

(2)

where x is the axial axis, t is time, E is the Young’s modulus, I is the area
moment of inertia, ρ is the density, κ is the form factor and has the value 10/9
for circular cross-sections, G is the shear modulus, A the cross-section area, r0 is
the radius of gyration, Ω is the rotating speed, δd is the Dirac delta function and
a is the point of application of the forces, which in the model is considered in
the middle of the shaft. The forces acting on the rotor are due to unbalance Fu,
considered here a point force, and the forces due to the contact Fc. Equations (1)
and (2) can be written in a more convenient form by introducing the following
dimensionless variables,

v′ =
v

L
, w′ =

w

L
, τ = Ωt, χ =

x

L
, c2 =

AρL4Ω2

EI
,

r =
r0
L

, δ =
9
5
(1 + ν), a′ =

a

L
.

(3)
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where L is the length of the shaft and ν is the Poisson’s ratio. Applying the
relations of Eq. (3) in Eqs. (1) and (2) and rearranging, one may have,

∂4v′

∂χ4
− r2c2(δ + 1)

∂4v′

∂χ2∂τ2
− 2r2c2
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∂τ3
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∂τ3

+ c4r4δ
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∂τ4
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(5)

The variable c denotes the dimensionless rotational speed, r is the slenderness
ratio, and δ denotes the shear influence. The terms in the left side of Eqs. (4)
and (5) represent, respectively, the flexural stiffness effect, the transverse shear
and rotatory inertia effect, the gyroscopic effect of distributed mass, the lateral
inertia effect, the interaction between the transverse shear and gyroscopic effects,
and the interaction between the transverse shear and the rotatory inertia effects.
The solution of the homogeneous part of Eqs. (4) and (5) are given as follows,
respectively,

v′(χ, τ) =
∞∑

i=1

φi(χ)ηi(τ) =
∞∑

i=1

Aie
αiχejaiτ (6)

w′(χ, τ) =
∞∑

i=1

φi(χ)ζi(τ) =
∞∑

i=1

Bie
αiχejaiτ (7)

where ai = ωi/Ω, being ωi the natural frequency of the i-th mode of vibration
of the system, and αi can be found solving the characteristic equation. The
values of αi, Ai and Bi that satisfy the characteristic equation correspond to a
unique value of c. Moreover, the boundary conditions should be used to obtain
the system natural frequencies, which will be the values of c that make the
determinant of the coefficient matrix of the algebraic system of equations zero
and satisfy the characteristic equation [25]. In addition, the natural frequencies
of a thick rotor are obtained in [4,26].

2.2 Rotor-Stator Rub Model

In order to model the contact of the rotor with the stator, the Hertz contact
theory was used, which states that the relation between the contact force and
the indentation are not linear, i.e.,[27]

F = khεn (8)

where F is the contact force, kh is the Hertz stiffness, ε is the indentation, and
n = 3/2. Despite the good representation of the impact phenomenon given by
the relation of Eq. (8), it suffers the limitation of not representing the energy
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Fig. 2. Contact forces.

dissipated during the impact. To overcome this problem another model was
introduced by [28], which has the following form,

F = khεn + bhεpε̇q (9)

where bh is the Hertz damping coefficient and the dot represent a time differen-
tiation. It is generally considered that p = n and q = 1 [29], thus one can write
Eq. (9) as,

F = khε3/2(1 + bhε̇). (10)

Figure 2 shows the forces acting on the rotor when impacting the stator.
The indentation of the rotor-stator contact will be ε = d − g, being d =√

v(x, t)2 + w(x, t)2 the position of the center of the rotor and g is the gap
size. Thus, the magnitude of the normal force for the rotor will be,

Fn = kh(d − g)3/2

[
1 +

bh

d

(
∂v(a, t)

∂t
v(a, t) + w(a, t)

∂w(a, t)
∂t

)]
. (11)

It is worth noting that Eq. (11) is always positive, thus it becomes zero when d <
g, which means that there is no contact. The horizontal and vertical components
of the contact force can be obtained by, respectively,

Fn,y = −Fn cos θ = −Fn
y

d
(12)

Fn,z = −Fn sin θ = −Fn
z

d
(13)

being θ the angle between the rotor’s position with relation to the horizontal
axis, as shown in Fig. 2. For the tangential force, the Coulomb friction model
was used, thus giving,

Ft = μFn. (14)
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where μ is the friction coefficient. Similarly to the normal force, the horizontal
and vertical components are obtained by, respectively,

Ft,y = −Ft sin θ = −Ft
z

d
, (15)

Ft,z = Ft cos θ = Ft
y

d
. (16)

2.3 Wavelet Transform

The wavelet techniques have been used to describe the pattern of motion to
verified the chaotic systems. The scale parameter is analogous to the concept
of scales used in maps, so in small scales we have more compressed Wavelets
with rapidly variable details. On large scales, however, there are more enlarged
Wavelets, more visible features and slowly changing. In other words, small scales
provide good resolution in the time domain, i.e., the temporal information is
preserved. While large scales provide good resolution of the frequency domain.

It is possible to find de Continuous Wavelet Transform (CWT) of signal f at
time u and scale s. Suppose that f ∈ L2(R), then the CWT is defined as,

Wf(u, s) := 〈f, ψ∗
u,s〉

∫ +∞

−∞
f(t)ψ∗

u,sdt (17)

where

ψ∗
u,s :=

1
s
ψ

(
t − u

s

)
, u ∈ R, s > 0 (18)

The frequency component of the signal f , as regard to the wavelet ψu,s at
time u and scale s, is given by Wf(u, s) [30]. The scalogram of f , denoted by ℘,
is defined as [30,31]:

℘ :=‖ Wf(u, s) ‖=
(∫ +∞

−∞
| Wf(u, s) |2 du)

)1/2

(19)

Knowing this relationship, it is possible to interpret ℘(s) as the energy of the
CWT of f at scale s. The scalogram can be used to detect which is the most rep-
resentative scales (or frequencies) of the signal f [30]. The term innerscalogram
of f at scale s was defined in [30], and is given as:

℘inner(s) :=‖ Wf(u, s) ‖J(s)=

(∫ d(s)

c(s)

| Wf(u, s) |2 du

)1/2

(20)

A great number of applications of the wavelet transform in rotating machines
analysis can be found in [31–33].
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3 Results and Discussion

In order to solve the differential equations, the Adams-Bashforth-Moulton inte-
gration scheme was used. The most commonly used method, the Runge-kutta
scheme, was not applicable, since the rotor model takes into account the rotatory
inertia, which turns the problem stiff. One of the most important and challenging
tasks in simulating continuous systems is the selection of the time step (Δt) and
the number of modes (n). The best alternative in selecting Δt is to assuming it
as one-tenth of the inverse of the bandwidth of the response [19]. The method-
ology followed is fixing a time step Δt and obtaining the responses. Then the
time-step is then sub-divided as Δt/2, Δt/4, Δt/8, Δt/16 and the simulations
are performed for each time-step. If the responses obtained do not vary much,
the time-step is fixed. A similar procedure is performed for the selection of the
number of modes, where the number is varied and the responses compared.
The time-step and the number of modes selected were Δt = 0.001 and n = 3,
respectively.

The parameters necessary for the simulations are listed in Table 1. The geo-
metric parameters of the rotor were chosen so that the effects of a non-slender
shaft could be significant. To first study the effect of the impact parameters in
the response of the model, the values of the stiffness (kh), damping (bh), and
the gap distance (g) were varied, obtaining three different cases. The rotating
speed was maintained in 1.5 times the first critical speed of the rotor, giving
a value of 2.6 kHz. Figure 3 shows the responses of the rotor for the first case,
with the parameters as kh = 103 N/m3/2, bh = 102 s/m and g = 3 × 10−3 mm.
The black lines in Fig. 3a and 4c correspond to the gap distance. These param-
eters of stiffness and damping correspond to a soft impact as one can note by
the high indentation in the responses. In the second case, the gap distance was
increased to g = 3.5−3 mm and the other parameters maintained. It is seen that
the responses now present a periodic characteristic, as shown in Fig. 4. This char-
acteristic is reached in the permanent regime where the system presents periodic
impacts throughout its vibrational motion, as shown in Fig. 4e. By comparing
Figs. 3 and 4, one can note as well that, although the frequency of excitation
in both cases were the same, the first case presented a higher frequency of

Table 1. Parameters used in the simulations.

Parameter Variable Value

Length of the rotor L 0.4 m

Diameter of the rotor d 100 mm

Slenderness ratio r 0.0625

Young’s modulus E 71 GPa

Shear modulus G 26.2 GPa

Poisson’s ratio ν 0.334

Density ρ 26.6 N/m3

Friction coefficient μ 0.02
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Fig. 3. Case 1, responses of the model with kh = 103 N/m3/2, bh = 102 s/m and
g = 3 × 10−3 mm: (a) horizontal displacement, (b) horizontal state-space portrait, (c)
vertical displacement, (d) vertical state-pace portrait, (e) normal contact force and (f)
rotor planar trajectory

oscillation. Figure 5 shows the responses obtained for the third and last case,
maintaining the other parameters and altering just the Hertz damping coeffi-
cient to bh = 103. The major difference noted in the responses is the reduction
of the contact force, as seen in Fig. 5e. This reduction happens because the coef-
ficient bh depends inversely on the coefficient of restitution (COR), which is a
parameter that represents the energy loss in the impact. Thus as bh is increased,
the impacts tend to be more elastic. Moreover, Fig. 6 presents a comparison
between the vertical displacement of the model presented here with no rubbing
and a classic Euler-Bernoulli model. As the Euler-Bernoulli model is a model for
slender shafts, the slenderness ratio of the model presented here is reduced for a
proper comparison. It is seen that the model for the thick shaft represents well
a slender one, as one can note by Fig. 6.

Figure 7 presents the application of the Continuous Wavelet Transform
(CWT) in the acceleration responses of the model. The CWT was also applied
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Fig. 4. Case 2, responses of the model with kh = 103 N/m3/2, bh = 102 s/m and
g = 3.5 × 10−3 mm: (a) horizontal displacement, (b) horizontal state-space portrait,
(c) vertical displacement, (d) vertical state-pace portrait, (e) normal contact force and
(f) rotor planar trajectory

in the case with no impact to characterize the rubbing in the responses. The
figures show the three natural frequencies of the three modes considered and the
frequency of excitation. By comparing the cases with impacts (Figs. 7a, b and
c) with the case with no impact (Fig. 7d), it is noted that the rubbing excite a
frequency of the rotor at approximately 20 kHz. The most remarkable example
of this is presented in Fig. 7a, where no other frequency rather than the 20 kHz
appears due to its high energy. This happens because in the Case 1 the rub-
bing was stronger. A same characteristic is seen in Case 2 (Fig. 7d), where the
other frequencies can be seen but a high energy is concentrated in the 20 kHz
frequency. In addition, despite the value of the impact force in Case 3 being
smaller that the force in Case 2, as discussed before, the spectral energy due
to rubbing is higher in Case 3 than in Case 2, the latter which presented little
difference comparing with the case with no impact.
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Fig. 5. Case 3, responses of the model with kh = 103 N/m3/2, bh = 103 s/m and
g = 3.5 × 10−3 mm: (a) horizontal displacement, (b) horizontal state-space portrait,
(c) vertical displacement, (d) vertical state-pace portrait, (e) normal contact force and
(f) rotor planar trajectory

Fig. 6. Comparison between the vertical displacement given by the Timoshenko model
proposed and the classic Euler-Bernoulli model for r = 0.0013.
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Fig. 7. Application of the CWT in the responses: (a) Case 1, (b) Case 2, (c) Case 3
and (d) Case with no impact.

4 Conclusions

This paper presented a rotor model with rubbing for a shaft with high slender-
ness ratio. The model considered the effects of the transverse shear, rotatory
inertia and the gyroscopic moments. In order to study the rubbing, the impact
parameters were studied by varying its values and analyzing the responses given
by the system, which presented different characteristics. Also, to validate the
model proposed, its responses with no rubbing were compared to the classical
Euler-Bernoulli model. In addition, the Wavelet Transform was used to charac-
terize the rubbing in the frequency domain, which is noted by the excitation of
a certain rotor frequency.
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Abstract. This paper discusses a modified model reduction technique
for the nonlinear rubbing analysis of a rotor disk with its stator. The rotor
system consisting of a rigid disk, shaft and bearings is modeled using
finite elements, incorporating the effects of rotary inertia and gyroscopic
moments of both shaft and disk. The stator is modeled as an added
stiffness to the rotor system without considering the stator dynamics
and dry friction effect at the contact. The nonlinearities are localized at
the rub location which permits the use of model reduction techniques,
making the finite element model more compact. Component Mode Syn-
thesis with a Craig-Bampton type sub-structuring is an efficient tech-
nique for model reduction. But, this method has some limitations due
to the presence of nonlinearities in the system. In this paper, a modi-
fied Component Mode Synthesis method with dynamic sub-structuring
is developed for the reduction of complete finite element model into a
smaller model containing nonlinear degrees of freedom (DOF) only. This
method has an advantage over existing methods is that it can be used
for systems with non-symmetric element matrices. The reduced model is
solved using Harmonic Balance Method (HBM) coupled with a hyper-
sphere based continuation algorithm.

Keywords: Rotor-stator rub · Component mode synthesis
Craig-Bampton type sub-structuring · Harmonic Balance Method

1 Introduction

Recent developments in the manufacturing technologies and machine design pro-
cedures enhanced the use of weightless, slender shafts in rotating machineries for
achieving higher efficiency. As a consequence, the flexibility of shaft is increased,
resulting in a high amplitude whirling at operating speeds. When the whirling
amplitude exceeds the clearance, rotor starts to rub on the inner surface of sta-
tor. This type of rubbing alter the entire dynamics of the system which was
first observed in steam turbines [1]. Later, a considerable amount of experimen-
tal, analytical and numerical research works were reported on rotor-stator rub
phenomena.
c© Springer Nature Switzerland AG 2019
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In most of the earlier works, the rubbing was modeled as a Jeffcott rotor
contacting the stator through springs. Even though it is a simple model, it pro-
vides lots of information regarding the rubbing phenomena. A detailed review
of major physical phenomena involved in rubbing was reported in survey papers
by Muszynska [2] and Ehrich [3]. As a result of rubbing, responses such as peri-
odic synchronous full annular rubs, partial rubs in quasi-periodic whirl, chaotic
motion and destructive self-excited dry friction backward whirl were observed
in rotating machineries through several experimental and numerical studies. Co-
existences of these responses were also noticed depending upon the physical
parameters and operating conditions of the system [4]. Effect of different physi-
cal parameters such as stiffness, damping, Coulomb friction, acceleration of rotor,
support structure asymmetry, thermal effects and disk flexibility on the dynam-
ics of rubbing phenomena were summarized in the review paper by Ahmad [5].

Black [6] conducted an experimental as well as numerical study to investigate
the synchronous whirling of a shaft within a radially flexible annulus having
small radial clearance. Contact between shaft and annulus was observed at a
speed just below the critical speed, if the mass eccentricity was sufficient in
relation to the damping. After contact, the high speed behavior of the shaft was
altered and a rightward leaning of critical peak was observed and was named
as “Super whirling”. Later, Yu [7] noticed a similar behavior when the shaft
rubs against seals made up of teflon and bronze in a two-disk rotor system. It
was also reported that the behavior of rotor with decreasing speed was entirely
different from that of increasing speed. The range of super whirling was small
during run down compared to that during run up. In addition, a jump down and
a jump up phenomena were observed during run up and run down respectively.
When the mass unbalance in the system is very high enough to produce large
contact force, dry whip (backward whirling) is initiated in the system [8]. Co-
efficient of friction, stator stiffness and damping co-efficient are the important
parameters which will control the initiation of dry whip [9]. Jiang [10] explained
the physical reason for the onset of dry whip as the rotor is in resonance at a
negative (natural) frequency of the coupled nonlinear rotor-stator system.

Majority of the numerical models were solved using time integration schemes
like Runge-Kutta method and Newmark-beta method and some were solved
using semi-analytic method like Harmonic Balance Method (HBM). Choy and
Padovan [11] developed a numerical model using Jeffcott rotor and an elastically
supported rigid stator to study the effects of casing stiffness, imbalance load
level, friction co-efficient and system damping on rotor response behavior. Later,
Choy [12] introduced a modal impact model in which the relative motion of the
rotor was expressed by a linear combination of its modes. Use of this modal
impact model in combination with numerical FFT reduced a significant amount
of computation time in the response analysis. Goldman [13] investigated the
chaotic behavior of rubbing phenomena using an impact model, incorporating
the local stator stiffness and radial/tangential damping properties. The effect
of anisotropy of rotor on rubbing was analyzed and an additional 1/2× regime
called butterfly rub was observed as a result of anisotropy. In order to represent
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a loose pedestal condition, Goldman [14] included base stiffness and damping in
the model and found that an increase in base damping results in a decrease of the
restitution co-efficient and leads to a gradual reduction of the chaotic vibration
bands on the bifurcation diagrams.

Popprath [15] developed a rub model including the contact damping and
plastic deformation at the contact zone and solved the governing differential
equations using an integration algorithm suitable for numerically stiff systems.
The contact damping has significant effect on the type of motion generated and
as damping is decreased, periodic solutions with few contacts become less likely
and non-periodic behavior of the system dominated. Khanlo [16] added Coriolis
and centrifugal effects in the model and found that the rub-impact occurred
at lower speeds due to these effects. Karpenko [17] incorporated a visco-elastic
preloaded snubber ring into the Jeffcott rotor model and observed that preload-
ing helps in stabilizing overall dynamics of the system. von Groll [18] used a
periodic harmonic balance method along with arc length continuation for obtain-
ing the rubbing responses of a nonlinear piecewise rotor system under periodic
excitations. Even though the results were not matching with the measurements
from a test rig, the solution process of HBM was less expensive than time-domain
methods. Peletan [19] introduced a quasi-periodic HBM coupled with a pseudo
arc-length continuation algorithm to trace the partial rub branch, which was not
available using periodic HBM.

Later, many researchers used finite element models for the study of rubbing
phenomena in rotor-stator systems. Ma [20,21] developed a FE model of a two
disk rotor-bearing system for simulating fixed point rubbing. The augmented
Lagrangian method was applied to deal with contact constraint conditions and
the Coulomb friction model was used to simulate rotor-stator frictional charac-
teristics. Yang [22,23] simulated the fixed point rubbing in a dual-rotor system,
representing the low and high pressure rotors of an aero-engine. Two convex
points on the casing was used to simulate fixed point rubbing and the equations
were solved using Runge-Kutta method. The surface of disks and casing were
painted with softer coatings and the impact force between the low pressure rotor
and the casing convex point was obtained [24]. Recently, Xiang [25] studied the
nonlinear dynamic behavior of an asymmetric double-disk rotor-bearing system
under rub-impact and oil-film forces. Rub impact was modeled with a Hertzian
contact and a Coloumb friction, where as the oil-film forces were derived using
Reynolds equation. The dynamic equations with coupled rub-impact and oil-film
forces were numerically solved using the Runge-Kutta method.

In most of the FE models, the rubbing is localized at the bearing location
or at the interface between disk and stator. Hence, it will be inadvisable to
apply nonlinear solution techniques to all degrees of freedom, as it consumes
more time. A complete FE model can be reduced to smaller models containing
nonlinear degrees of freedom only, using some model reduction techniques such
as static condensation method, dynamic reduction method, improved reduced
system (IRS) and Craig-Bampton (CB) reduction method. Kim [26] used a
dynamic reduction method (impedance method) along with HBM to investigate
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the rubbing response in a multi-disk rotor system. This method proved to be
accurate (with ≤ 5% error) and efficient means for determining the rubbing
responses in rotor system. Gustavsson [27] used an IRS method for reducing the
complete FE model (32 DOF) of a turbine-generator rotor into a system with 8
degrees of freedom. Numerical integration techniques were used for solving the
reduced set of governing equations.

Nelson [28] developed a method using component mode synthesis to perform
stability analysis [29] and nonlinear analysis of a multi-shaft, rotor-bearing sys-
tem. The formulation allowed the simulation of system response due to blade
loss, distributed unbalance, base shock, maneuver loads, and specified fixed frame
forces. The resulting equations were numerically integrated and the transient sys-
tem response associated with blade loss dynamics with squeeze film dampers,
and with interference rubs were also obtained. Later, Batailly [30] used a Craig-
Bampton based component mode synthesis along with an in house time march-
ing solver for studying the unilateral contact induced blade/casing vibratory
interactions in impellers. Recently, Krishna and Padmanabhan [31] developed
an improved reduced order solution technique [32] for the nonlinear analysis
of the rotor-stator rubbing. In this technique, the whole FE model is divided
into two systems, namely primary and secondary systems. The primary system
consisted of all the nonlinear degrees of freedom and were retained in physical
coordinates, whereas all the linear DOF were included in the secondary system
and were reduced using Craig-Bampton based component mode synthesis. Gyro-
scopic effect and rotary inertia of the shaft were not included in this analysis.
One of the major limitations of their study is that the method is not applicable
to the systems having non-symmetric element matrices.

The current work mainly focuses on the development of a modified model
reduction technique for the analysis of synchronous full annular rubbing in rotor
system, incorporating the effects of gyroscopic moment and rotary inertia of both
shaft and disk. The rotor system is modeled using a finite element formulation
given by Nelson and McVaugh [33] and the stator is modeled as a single stiffness.
The proposed method works efficiently for the systems with skew-symmetric
and non-symmetric element matrices. Harmonic Balance method with a hyper-
sphere based continuation technique [32] is used for solving the reduced governing
equations.

2 Mathematical Model

The equations of motion of a general rotor-stator system can be written in finite
element formulation as,

Mẍ + Cẋ − wGẋ + Kx + f(x, ẋ) = Fext(t) (1)

where M, C, G and K are the mass, damping, gyroscopic and stiffness matrices
of size N×N. f(x, ẋ) is the nonlinear function and Fext(t) is the excitation
vector, both having a size of N×1. x, ẋ and ẍ are the displacement, velocity
and acceleration vectors of size N×1. Mass matrix M is a symmetric matrix
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which includes translational and rotational components of mass for both shaft
and disk. Damping matrix C can be symmetric or non-symmetric, depending on
whether it contains the viscous damping of bearing or internal damping of shaft.
Gyroscopic matrix G is always skew-symmetric which includes the gyroscopic
effects of shaft as well as disk. Stiffness matrix K is a symmetric matrix including
the stiffnesses of shaft and bearings, assuming bearing stiffnesses are symmetric
(no cross coupled terms).

2.1 Formulation of Reduction Technique

As in the study of Krishna and Padmanabhan [31], the overall system is divided
into primary and secondary systems in which the nonlinear DOF along with its
boundary DOF constitute the primary system and the remaining linear DOF
constitute the secondary system. The primary system is retained in its physical
co-ordinates, whereas the secondary system is reduced using Craig-Bampton
based component mode synthesis. The method used in the paper of Glasgow [29]
is used for the formulation of Craig-Bampton based sub-structuring of secondary
system.

The equation of motion for the secondary system is written as,

Msẍs + Csẋs − wGsẋs + Ksxs = 0 (2)

First order form of the Eq. (2) is used for the further development of reduction
technique and is written as,[
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Ms 0

]{
ẋs
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]{
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ẋs

}
=

{
0
0

}
(3)

The displacement vector in the Eq. (3) is partitioned into interior and boundary
co-ordinates as,

xs =
{
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s

}
(4)

where xi
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ẋi
s

ẋb
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For further simplicity of derivation, the state vector hs is transformed using the
relation,
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The Eq. (6) is substituted in Eq. (3) and pre-multiplied with the transpose of
transformation matrix, T to obtain the first order component equation as,
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where
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s ) Mjj

s

Mjj
s 0
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Kjj

s 0
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s

]
for j = i, b (9)

The state vector in Eq. (8) is transformed into a set of retained normal modes
and boundary DOF using Craig-Bampton sub-structuring [34],

{
yi
s

yb
s

}
=

[
ΦR Ψ
0 I

]{
qi
s

yb
s

}
= VR zs (10)

The associated left transformation matrix is written as,

VL =
[
ΦL Ψ
0 I

]
(11)

where ΦR and ΦL are respectively the matrices of m(m << N) retained right
and left normal complex modes of interior DOF such that,

ΦL
TAii

s ΦR = D

ΦL
TBii

s ΦR = −ΛD
(12)

where D is the diagonal matrix of normalization constants of size m × m, Λ is
the diagonal matrix of retained eigen values of size m × m, qi

s is the generalized
co-ordinates of internal DOF of size m × 1 and Ψ is the constraint mode matrix
and is given as,

Ψ =
[−(Kii

s )−1Kib
s 0

0 −(Kii
s )−1Kib

s

]
(13)

The substitution of Eq. (10) into Eq. (8) and pre-multiplying with the transpose
of VL yields the reduced equation of secondary system as,

Ps żs + Qs zs = 0 (14)

The size of the Eq. (14) is equal to the sum of number of retained complex modes
and twice the number of boundary co-ordinates.

In case of primary system, all the DOF are retained in physical co-ordinates
due to the presence of nonlinearity. First order form of the equation of motion
for primary system is written as,

[
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The state vector in the Eq. (15) is transformed as in Eq. (6) and pre-multiplied
with the transpose of T to get the equation of motion as,
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In order to keep the component mode procedure same as secondary system, an
identity matrix transformation is used instead of VR as,
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}
= Ip zp (17)

The substitution of Eq. (17) into Eq. (16) and pre-multiplying with the transpose
of Ip yields the final equation of primary system as,

Ppżp + Qpzp + fp = Fp (18)

Now, the two component Eqs. (14 and 18) are assembled together using a trans-
formation matrix S such that,

P = ST P̄S Q = ST Q̄S (19)

where
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]
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and transformation matrix S is obtained as,
⎧⎪⎪⎨
⎪⎪⎩

qi
p

yb
p

qi
s

yb
s

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣
I 0 0
0 I 0
0 0 I
0 I 0

⎤
⎥⎥⎦

⎧⎨
⎩

qi
p

yb

qi
s

⎫⎬
⎭ = Sz (21)

The final assembled equation for the complete system is written as,

Pż + Qz + f = F (22)

In order to get an additional computational advantage, the final system Eq.
(22) is further reduced using physical sub-structuring with nonlinear DOF are
taken as master and remaining DOF as slave. The modified equation can be
written as,
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}
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}
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(23)

Harmonic Balance Method with hypersphere based continuation technique [32] is
used to solve the Eq. (23). This method is very efficient in determining the steady
state response of the system as compared to numerical integration techniques.
The continuation technique helps in tracing the multiple solution branches for
the given set of conditions.
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2.2 Nonlinear Contact Model

In this paper, the friction effect at the contact point is not considered. The
nonlinear contact force acting at the rotor-stator interface is given by,

fn = Θ kc(r − δ) (24)

where kc is the contact stiffness, r is the relative radial displacement of rotor, δ
is the radial clearance and Θ is the gap function which is equal to zero when no
contact occurs and is equal to 1 when contact occurs.

3 Numerical Examples

3.1 Unbalance Response of a Rotor-Bearing System

In order to demonstrate the application of proposed model reduction technique
in the linear analysis of rotors, a typical rotor-bearing system reported in the
paper by Nelson and McVaugh [33] is analyzed. Rotary inertia and gyroscopic
effect of both shaft and disk were included in the finite element formulation
of the system. In their paper, Nelson and McVaugh [33] modeled the shaft
as a six element member with each element consisting of several sub-elements.
A reduction technique based on static condensation was used to reduce the inter-
nal displacements into the element endpoint displacements. But, in the current
work, in order to verify the proposed methodology, the rotor-bearing system is
modeled with 18 elements (equal to total number of sub-elements in [33]) and
are partitioned into primary and secondary systems as shown in Fig. 1. The final
assembled system has a total of 20 DOF and are reduced to 2 DOF (Y&Z dis-
placements at disk location) using dynamic sub-structuring. The details of model
reduction are given in Table 1. The unbalance response of the given rotor-bearing
system is obtained using the proposed methodology and is compared with the
results from [33]. Figure 2 shows the comparison of results and are found to be
in good agreement.

Fig. 1. Component mode partition of the rotor
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Table 1. The details of model reduction applied to rotor model

System # of nodes Actual
DOF

Retained
modes

Physical
DOF

Total
DOF

Complete model 19 76 0 76 76

Primary 3 12 0 12 12

Secondary 1 4 16 4 4 8

Secondary 2 14 56 4 4 8

Assembled model After component mode synthesis 20

Reduced model After dynamic sub-structuring 2

Fig. 2. Unbalance response of the rotor-bearing system

3.2 Nonlinear Analysis of Rotor-Stator Rub

A rotor-stator rub model reported in the paper by Krishna and Padmanabhan
[31] is used for the nonlinear analysis of rotor using the proposed methodology.
The details of geometric and material property of the model are given in [31]. The
gyroscopic effect and rotary inertia of the shaft were included in the current paper
which were neglected in [31]. Results of the present methodology is compared
with that of [31] and is shown in Fig. 3. From the Fig. 3, it is clear that the
responses of the system using present methodology and the method described
in [31] are similar. This may be due to the negligible values of shaft gyroscopic
effect, since the geometrical dimensions of the shaft is very small compared to
that of disk.
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Fig. 3. Nonlinear response of the rotor system at disk location

4 Conclusions

In this paper, a modified model reduction technique is used along with Harmonic
Balance Method to analyze the rubbing phenomena in rotor-stator system. The
method proved to be effective in handling the FE models with skew-symmetric
element matrices. The gyroscopic matrices of shaft elements that are always
skew-symmetric in nature are included in the analysis. An important feature of
the proposed reduction method is that it can be applied to the systems with
non-symmetric element matrices. This is due to the fact that the complex eigen
value decomposition is used in component mode synthesis of the system. From
the current study, it was observed that for a rotor system with slender shaft
and large disk, the effects of shaft gyroscopic moments and rotary inertia are
negligible. This may be due to their small geometrical dimensions compared to
that of disk. In future, the effects of internal viscous and hysteretic damping can
be incorporated in the analysis. In addition, dry friction effect at the contact
point can be included in the contact model to study the partial rubbing and dry
friction backward whirl.
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Abstract. The analysed rotordynamic system is modeled as a non-
linear variable mass system and represents a part of a production line
where an axially moving material is coiled on a rotating drum. The suit-
able and accurate simulation of the vibrations in a coiling process is
important to predict the vibrations during standard operation and for
special non-steady operation conditions. Variable parameters are present
and bending vibrations of the rotor with the coiling drum and the
transversal oscillations of the elastic strip are coupled. The longitudinal
and transversal motion of the axially moving strip and the bending deflec-
tion of the coiling drum are considered by Rayleigh-Ritz approximations
which involve the application of the extended equation of Lagrange for
open systems. Simulations are performed for a non-linear rotordynamic
system for different operation conditions. The results computed with a
semi-analytic time-integrations algorithm are shown.

Keywords: Variable mass system · Coiling process
Variable parameters · Extended equation of Lagrange

1 Introduction

For the simulation of the vibrations in a coiling process a suitable mechanical
model is necessary. In the coiling process an axially moving strip moves con-
tinuously towards a rotating drum where it is coiled. For instance between two
successive coiling processes the strip passes through a Steckel mill where the
thickness is reduced. In this paper the mechanical model starts at the exit of
the Steckel mill and considers the axial motion of the strip with the transversal
oscillations. Then the strip is coiled and when the strip is attached to the drum it
contributes to the bending stiffness and increases the mass and the outer radius
of the drum. As the exact description of the coiling process is very complicated,
it is assumed that the coiled strip is fixed on the coiling drum when it touches
the drum so that the stiffness of the drum increases with the rotation angle.
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The accumulation of the mass on the coiling drum has a certain influence on the
vibrations of the total system during operation. The resulting mechanical model
is a non-linear dynamic model with varying mass and system parameters, which
are defined by the variable outer radius of the drum, the variable bending stiff-
ness and a variable eccentricity of the rotating drum. Due to the coiled material
the mass of the coiling drum increases or decreases continuously. For the outer
radius of the coiling drum an Archimedian Spiral is assumed, which gives a posi-
tion dependent outer radius and bending stiffness of the rotating shaft with the
drum. For the simulation of the coiling process with the long computation time
a semi-analytic time integration method was implemented.

For the derivation of the equations of motion Rayleigh-Ritz approximations
are used to get a minimal number of degrees of freedom in the mechanical model.
The application of the extended equations of Lagrange, see [1], is necessary as
the mass in the system is not constant, which is a restriction for the well-known
equations of Lagrange, see [2]. In the extended equations of Lagrange the control
volume concept with the surface integrals with partial derivatives as a kernel are
present. The control volume concept for the non-linear dynamic system takes
the flow of mass through the boundary into account. For the application of
this control volume concept it is important to distinguish between the material
control volume and the spatial control volume. If the relative speed between
the surface of the control volume and the transported material does not depend
on the applied degrees of freedom and their time derivatives, it can be seen
from the equations in [1] and also [3] that the surface integral terms vanish and
the classical form of the Lagrange equations results. In [4] additionally some
literature on dynamic systems with variable mass is cited and in [5–9] different
mechanical models with variable parameters have been analysed. In [10,11] an
alternative approach for the influence of the variable mass is considered using
reactive forces, where also some examples are discussed and the effect of the
reactive force is studied for the case of winding up a band. A model for an
industrial application with additional strip guiding rolls was analysed in [7,8],
where the strip tension force was computed for a given entrance speed of the
strip. In [12,13] the effect of the time variable eccentricity is considered where
the time derivatives of the eccentricity are involved and it is shown that very
small vibration amplitudes result.

The temperature of the coiled strip is usually not constant over the long
process time, so that a thermal deflection of the shaft of the coiling drum can
occur due to a certain non-homogeneous temperature distribution. The thermal
deflection represents a kinematic parameter in the mechanical model and has
a high influence on the strip tension force. The strip tension force is a critical
process parameter which should be constant and at least should be positive.
The effect of the thermal deflection of the coiling drum results in high vibration
amplitudes which was analysed in [9] for the uncoupled system where computed
results are shown for the controlled system with thermal deflection. Predeforma-
tion or misalignment of the shaft can be caused by production tolerances, inho-
mogeneous temperature distribution or maintenance errors. In this paper the
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coupled vibrations are analysed and numerical studies are performed in order to
increase the knowledge about the complicated variable mass non-linear dynamic
system of the coiling drum and the axially moving strip. For the dynamic system
the initial and boundary conditions are defined and with the defined operation
conditions a developed semi-analytic time-integration algorithm computes the
solution. An algorithm was used which has been presented in [5,14] and has
been extended in [15] to substructure analysis.

2 Mechanical Modelling of the Coiling Process

The mechanical model of the coiling process includes the coiling drum on elastic
shaft in rigid bearings and the moving strip, see Fig. 1. Rayleigh-Ritz approxima-
tions and the extended equations of Lagrange have been used for the derivation
of the mechanical model. The resulting mechanical model has five degrees of
freedom, the horizontal and vertical deflection x, y, the rotation angle ϕ of the
coiling drum, the transversal deflection of the moving strip q and the entrance
speed of the strip ṡL. The strip tension force FB is given as a predefined value
at the entrance of the system. The torque at the coiling drum MT is controlled
to maintain a suitable process.

Fig. 1. Mechanical model of the rotating drum with the axially moving strip

For the derivation of the equations of motion it is important to distinguish
between the material control volume and the spatial control volume, see [1].
The spatial control volume is an arbitrary moving non-material volume with a
surface that has a speed w which is different from the velocity of the material at
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the surface v. The transport of kinetic energy and mass can be determined and
is related to the spatial derivative of the total kinetic energy at the boundary of
the control volume so that the extended equation of Lagrange, see [1], can be
written in the form

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

1
2

∮
∂Vi

∂v2

∂q̇i
ρ (v − w)ndS −

∮
∂Vi

ρ
v2

2
∂ (v − w)

∂q̇i
ndS = Qi, (1)

where n is the outward normal vector at the boundary of the control volume.
The control volume of the mechanical system can be seen in Fig. 2. The surface
integral terms vanish if the velocity at the boundary of the control volume are
prescribed and independent of the degrees of freedom qi of the system.

Fig. 2. Control Volume for the Mechanical model of the rotating drum with the axially
moving strip

2.1 Model of the Coiling Drum

The coiling drum is modeled as a beam with varying bending stiffness. In a first
step the outer radius of the drum increases in accordance to an Archimedian
spiral

r = r0 +
hϕ

2π
, (2)

where h is the thickness of the strip. For the actual bending stiffness of the
rotating shaft it is assumed that the coiled strip is attached to the drum and
contributes to the stiffness. The total mass of the coiling drum is mC = m0 +
ρAsR and its time derivative is ṁC = ρAṡR, where ρ is the density of the strip
material, A is the cross section of the strip, sR is the coiled length of the strip
and ṡR its time derivative.

The mechanical system of the coiling drum, which is considered in this paper,
is shown in Fig. 1. The equations of motion are written in the coordinates of the
center of the shaft. The exact position of the center of gravity of the coiling
drum including the strip changes during the coiling process and can be com-
puted according to the results shown in [12,13]. Because of the symmetry in the
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mechanical model we consider vibrations of the coiling drum in the x-y-plane
only. At the coiling drum the torsion moment MT is applied, b is the width
of the strip and h is the strip thickness. ṡL is the entrance speed of the strip
and ṡR is the absolute speed of the strip when attaching the coiling drum. The
coiling drum rests on rigid bearings, so that only the stiffness of the shaft is
taken into account. It is assumed that the thermal deflection is caused by a
non-homogeneous temperature distribution within the coiling drum and results
in a total deflection a which is measured in the mid-plane of the drum. The
actual coordinates of the center of gravity of the drum are denoted by xS and
yS , whereas for the center of the shaft the coordinates denoted by xW and yW

are used. Due to the thermal deflection the position of the center of the unde-
formed shaft was defined by xW0 and yW0. In the following computations the
strip tension force FB(t) is predefined and the resulting model has five degrees
of freedom xW , yW , ϕ, qi and sL. In the special case with a prescribed speed
ṡL at the left boundary, the mechanical model results in four degrees of freedom
which is not considered here.

The kinetic energy of the coiling drum is computed by

TC = mC
ẋ2

S + ẏ2
S

2
+ JC

ϕ̇2

2
(3)

with the momentum of inertia defined by

JC =
mC

2
(
r2 + r̄20

)
(4)

where r̄0 is the inner radius of the coiling drum and r is the outer radius given
in Eq. (2). The potential energy is

VC =
cC

2

[
(xW − xW0)

2 + (yW − yW0)
2
]

− mCgyS , (5)

where cC is the actual computed bending stiffness of the coiling drum. The
controlled torque applied at the coiling drum is given by

MT = M0 + αC (ṡL,D − ṡL) + βC (sL,D − sL) + χC (ẋWD − ẋW ) + δC (xWD − xW ) ,
(6)

where sL,D, ṡL,D, xWD and ẋWD are the target values and αC , βC , χC and δC

are defined parameters of the controller.

2.2 Model of the Moving Strip

With the axial speed of the strip on the left entry position ṡL the longitudinal
motion of the strip is defined by

u∗(ξ, t) = sL + (sR − sL)
ξ

l0
, u̇∗(ξ, t) = ṡL + (ṡR − ṡL)

ξ

l0
, (7)

where l0 is the free length of the strip between the entry position and the drum,
see Fig. 1, and ξ is the longitudinal coordinate. sR and ṡR are the kinematic
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variables for the coiled strip length and speed at the point on the coiling drum.
For the transversal direction a Rayleigh-Ritz approximation

w∗
B(ξ, t) = ψ(ξ)q(t) (8)

is used where the shape function

ψ(ξ) = sin2

(
πξ

l0

)
(9)

is considered. The strip moves into the control volume at a fixed vertical position
on the left boundary and the position where it attaches the drum is defined by the
actual radius r and the vertical deflection yW of the drum. The total transversal
deflection is assumed by

w∗(ξ, t) = w∗
B(ξ, t) + (yW − r)

ξ

l0
, (10)

where w∗
B(ξ, t) is the bending deflection of the strip. The total velocity of the

moving strip is

ẇ∗(ξ, t) = ẇ∗
B(ξ, t) +

dw∗
B(ξ, t)
dξ

u̇∗(ξ, t) + (ẏW − ṙ)
ξ

l0
. (11)

The kinetic energy of the moving strip is computed by

TS =
1
2

l0∫
0

ρAu̇∗(ξ, t)2dξ +
1
2

l0∫
0

ρAẇ∗(ξ, t)2dξ (12)

resulting in

TS =
mS

6

[
ṡ2R + ṡL (ṡL+ṡR)+2 (ẏW − ṙ)2

]
+

mSq

2l0

[
3
8
q̇ (ṡL − ṡR)−ṡR (ẏW −ṙ)

]

+
mS q̇

4

(
3
4
q̇ + ẏW − ṙ

)
+

π2mSq2

12l20

[(
ṡ2L + ṡLṡR+̇s2R

)] − mSq2

32l20
(ṡL − sR)2 .

(13)

With the strain in the strip εS = εxx − zw′′ + 1
2w′2 the potential energy is

given by

VS =
1
2

l0∫
0

[
EA

(
∂u∗(ξ, t)

∂ξ

)2

+ EJS

(
∂2w∗(ξ, t)

∂ξ2

)2
]

dξ (14)

+
1
2

l0∫
0

FB

(
∂w∗

B(ξ, t)
∂ξ

)2

dξ
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with the Youngs modulus E and the bending stiffness of the strip JS = bh3

12 .
Inserting the Rayleigh-Ritz approximations from Eqs. (8) and (9) we get

VS =
cC

2
(sR − sL)2 +

π4EJS

l30
q2 +

π2FB

4l0
q2 (15)

The horizontal motion of the strip in longitudinal direction at the right position
where it touches the coiling drum is defined by

sR =

t∫
0

rϕ̇dt + xW − π2

l0

q2

4
+ a sin (ϕ + δ) (16)

ṡR = rϕ̇ + ẋW − π2

2l0
qq̇ + aϕ̇ cos (ϕ + δ) (17)

for the Rayleigh-Ritz approximations and homogeneous initial conditions for sR.
ϕ is the rotation angle, a is the thermal deflection in the middle of the coiling
drum and xW is the horizontal deflection of the center of the rotating drum. For
the Archimedian spiral of Eq. (2) the coiled length can be integrated to get

sR = r0ϕ +
hϕ2

4π
+ xW − π2q2

4l0
+ a sin (ϕ + δ) . (18)

2.3 Extended Equations of Lagrange

The extended Equation of Lagrange for a non-material reference volume, which
is given in Eq. (1) has to be used. In order to evaluate the surface integral
terms corresponding to Fig. 2 the related velocities have to be defined. As some
mass is transported into the mechanical system under consideration, we have to
distinguish a material-fixed control volume (in this case a control surface) with
the velocity vector

w (t) =

⎡
⎣ 0

ẏW − ṙ
0

⎤
⎦ (19)

and some material flowing through the boundary with the actual velocity vector
of the mass

v (t) =

⎡
⎣ ṡL

ẏW − ṙ
0

⎤
⎦ . (20)

The surface integral terms for these areas can be computed, where material
flows through the surface with a constant speed within the surface. With these
kinematic assumptions the integral terms can be evaluated which result from the
extended Lagrange Equation (Eq. (1)) for each degree of freedom and result to

Px = 0 (21)
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Py = − (ẏW − ṙ) ρṡLA (22)

Pϕ = − (ẏW − ṙ) h
2π ρṡLA (23)

PsL
= (ẏW −ṙ)2−ṡ2

L

2 ρA (24)

Pq = 0 (25)

Finally the generalized forces which will be needed also in the extended Lagrange
Equation (Eq. (1)) are given by

Qx =
∂V

∂xW
− dxẋW (26)

Qy =
∂V

∂yW
− dy ẏW (27)

Qϕ =
∂V

∂ϕ
+ MD (28)

QsL
=

∂V

∂sL
− FB (29)

Qq =
∂V

∂q
− dq q̇ (30)

It can be seen in the equations for the generalized forces, that some damping
factors have been introduced with respect to the transversal motion of the coiling
drum and the strip.

2.4 Equations of Motion for the Total Model

The derivation of the equations of motion based on the above equations for the
kinetic and potential energy as well as the additional equations considering the
flow through the boundary of the control volume the equations for the degrees
of freedom of motion result. As they are lengthly equations they are not given
here explicitly.

2.5 Semi-analytic Time-Integration Algorithm

The developed semi-analytic time-integration algorithm is based on the modal
analysis of a modified dynamic system. For the resulting modally decoupled
equations for the i-th degree of freedom

q̈i + 2ζiωiq̇i + ω2
i qi = fi(t) −

N∑
j=0,i �=j

(αjqj − δj q̇j − κj q̈j) (31)

the solution is computed using the Duhamel-convolution integral with defined
approximations of the evolution of the solution within a time-step. The resulting
algorithm was analysed with respect to the numerical behaviour and it was found
that it is superiour to the conventional known time-integration methods, see
[5,14,15]. This semi-analytic algorithm was used for the time integration and
with a suitable time step converged solutions are guaranteed.
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3 Computed Results

For the derived mechanical model the solution was computed for different oper-
ation conditions and parametric studies have been performed. For the com-
putation results presented in this contribution the parameters of the coiling
drum are l0 = 5 m, r̄0 = 0.45 m, h = 10 mm, b = 0.5 m, E = 105 kN/mm2,
cC = 107 kN/m, ρ = 7800 kg/m3, m0 = 1200 kg. The controller parameters are
given by αC = 15 kNs, βC = 10 kN, χC = 10 MNs and δC = 10 kN. The target
parameters are sL,D = ṡL,Dt, ṡL,D = 5, 25 m/s, xWD = 0 m and ẋWD = 0 m/s.
In all computed examples it is guaranteed that there is a converged solution
based on a suitable time step.

Fig. 3. First example: Strip tension
force

Fig. 4. First example: Computed
torque at the coiling drum

For a first example a constant strip tension force of FB = 100kN is applied as
shown in Fig. 3. The load is increased within 1 s and is kept constant afterwards.
With the given control parameters a steady operation is performed, resulting
in a torque at the drum shown in Fig. 4. The torque increases proportional
with the increasing outer radius of the coiling drum. The coiled strip length
and the strip speed are given in Fig. 5. The corresponding outer radius of the
coiling drum is shown in Fig. 6. The results for the horizontal position of the
center of the coiling drum show small vibrations, see Fig. 7 and the mean value
of the deflection results from the constant strip tension force. For the vertical
position small vibrations are present as the drum is rotating and the gravity of
the increasing mass results in an increasing weight of the drum which causes
an increasing vertical delection yW in Fig. 8. The small vibration amplitudes
correspond to the non-homogeneous initial conditions and to the linear increase
of the outer radius. It is mentioned that for the assumption of a step function
of the outer radius according to r = r0 + h� ϕ

2π � high vibration amplitudes occur
after every rotation. The corresponding computational results are shown in Fig. 9
for a sequence of Heaviside-functions, where the high fluctuations of the strip
tension force can be seen. Some additional effort is necessary for the computation
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of this case as negative strip tension forces are not permitted. Due to the coiling
process and the design of the coiling drum the outer radius shows some more
complicated shapes which have been analyzed.

Fig. 5. First example: Coiled strip
length and strip speed

Fig. 6. First example: Outer radius of
the coiling drum

Fig. 7. First example: Horizontal posi-
tion of the center of the coiling drum

Fig. 8. First example: Vertical position
of the center of the coiling drum

For a second example the strip tension force is FB = FB0

(
1 + sin(πt/2)

2

)
with

FB0 = 50kN and all the other parameters are kept unchanged. The computation
is carried out and the controlled torque at the drum is shown in Fig. 10. From the
results of the transversal strip vibrations in Fig. 11 the coupling effect with the
varying frequency and amplitude is shown. In Figs. 12 and 13 the results for the
motion of the center of gravity of the coiling drum are drawn for the horizontal
and vertical direction. The horizontal motion is caused by the varying strip
tension force and the vertical motion is induced by the variation of the strip
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Fig. 9. First example: Normalized strip tension force for a radius function with a
sequence of Heaviside-functions

Fig. 10. Second example: Torque at
the coiling drum

Fig. 11. Second example: Amplitude
and velocity of transversal motion of
the strip

tension force. In the vertical position it can be seen that the influence on the
weight is not considered in this example.

For the third example the parameters for the mechanical model of Fig. 1
are the same, except for r̄0 = 0.4 m and FB = 50 kN, which are now kept
constant. The computed results are shown for two different thermal deflections of
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Fig. 12. Second example: Horizontal
position of the center of the coiling
drum

Fig. 13. Second example: Vertical
position of the center of the coiling
drum

0 10 20 30 40
0

10

20

30

40

Time [s]

M
[k

N
m

]
T

Fig. 14. Third example: Computed
torque at the coiling drum for a = 0.1
(blue) and 0.23 mm (red)
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Fig. 15. Third example: Computed
strip tension force for a = 0.1 (blue)
and 0.23 mm (red)
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Fig. 16. Third example: Moving strip
- Transversal oscillations for a = 0.1
(blue) and 0.23 mm (red)
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Fig. 17. Third example: Computed
axial strip speed for a = 0.1 (blue) and
0.23 mm (red)

a = 0.1 mm and a = 0.23 mm. Figure 14 shows the computed torque and in Fig. 15
the strip tension force is shown. If a = 0.23 mm the minimum strip tension force
is computed to be FB ≥ 0 N. The transversal deflection of the moving strip is
given in Fig. 16 which is a results of the strip tension force FB and the motion
of the coiling drum with the thermal deflection a. For the higher excitation
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amplitude of the thermal deflection the transversal oscillations of the strip are
higher. The excitation frequency and the frequency of transient vibration are
very different. In Fig. 17 the axial speed of the strip is shown as there is a
constant FB maintained at the left boundary. This result is similar to that for
the first example, see Fig. 5, but with a much smaller strip tension force and
a thermal deflection of the shaft of the coiling drum. Different fluctuations in
the axial strip speed can be seen which are caused by the two different thermal
deflection values.

4 Conclusion

A mechanical model with a variable mass and varying parameters of a coiling
process was derived. The simulation results for three different examples show
that for a steady state production process with a constant axial speed the vibra-
tion amplitudes are very small. For the non-linear dynamic system with variable
mass vibrations are computed for given forces at the left entrance boundary
and a controlled torque. For a defined variation of the strip tension force at the
entrance the vibration amplitudes are higher than for a constant strip tension
force. The frequency and amplitude for the transversal strip oscillation depend
on the strip tension force. The influence of the process parameters are studied to
reduce the vibrations and results are given for two different thermal deflection
values.
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Abstract. Linear rotor-dynamic analyses such as Campbell diagrams of
damped eigenvalues and unbalance response analyses are well established for
the practical design layout of rotors. They are also required according to many
standards such as API. Nonlinear analyses are widely avoided because of their
complexity, even if they would be necessary for relevant practical answers.
Sometimes questionable substitute linear analyses are carried out in such cases.
In this paper four cases requiring nonlinear analyses are described: A vertical
pump with water lubricated bearings, a turbocharger with semi-floating oil
lubricated bearings, an electric motor with rolling element bearings running
through a resonance and a Pelton turbine on tilting pad bearings losing two
buckets. The vertical pump is linearly unstable, because of the unloaded bear-
ings. The nonlinear analyses are necessary to receive the limit cycles of the
unstable system. In case of the turbocharger the outer oil film of the semi-
floating ring bearing is highly nonlinear and cannot be correctly described lin-
early. In case of the motor running through a resonance the dynamic bearing
loads are very high, because the rolling element bearings are not able to provide
much damping. The behavior then becomes nonlinear. Moreover, the bearing
clearance can lead to nonlinear behavior, if the bearings are not preloaded. The
blade loss for the Pelton turbine leads to nonlinear behavior due to the high
dynamic bearing load.

Keywords: Non-linear phenomena in rotordynamics
Dynamic analysis and stability � Fluid film bearings � Rolling element bearings

1 Introduction

Nonlinear analyses are rarely carried out in practical engineering. There are good
reasons for that: In many cases linear analyses are sufficient to get correct answers for
the design of a machine although real machines are always nonlinear to some extent.
Nonlinear analyses take considerable more effort than well-established linear analyses
such as undamped critical speed maps, damped Campbell diagrams and damped
unbalance response analyses. Most of these linear analyses are required by standards
such as API standards [1], whereas so far, no standard asks for nonlinear analyses.
Nonlinear analyses normally take a much bigger effort for the following reasons: The
nonlinear effects must be modelled, analysis times are much longer (usually the non-
linear equations are integrated in the time domain by solvers such as Runge Kutta), the
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solver may be numerical unstable, and the resulting behavior can be complex requiring
some effort for the interpretation of the result.

In some cases, however, nonlinear analyses cannot be avoided for correct answers.
Four such cases are described in this paper:

1. A vertical pump with water lubricated bearings: Fluid film bearings are normally
linearized around their static load, which yield the linear stiffness and damping
coefficients. The linearized behavior can give good results in a wide range of
dynamic loads, not exceeding the static load. If the static load is zero or small, then
strictly speaking the behavior is always nonlinear. Moreover, in the present example
the rotor is unstable, because it has unloaded cylindrical bearings. A linear analysis
does not tell at which level the unstable system (limit cycle) stabilizes. To get this
result, which is essential for an assessment of the rotor behavior, a nonlinear
analysis is necessary.

2. A turbocharger with semi-floating ring bearings: The outer oil film of bearings
functions as a squeeze film damper without centering device (e.g. a squirrel cage)
for the ring. The behavior of such a damper is essentially nonlinear, because a
centering force for the ring only arises by a vibration of the ring. Therefore, only a
nonlinear analysis can correctly simulate such a rotor. For the investigated tur-
bocharger, which is also described in [2], extensive measurements were made by
the vendor ABB. The analyses are compared to these measurements.

3. An electric motor with rolling element bearings running through a resonance: In
contrast to fluid film bearings rolling element bearings do not provide notable
damping. Without additional damping device such as a squeeze film damper, rotors
supported on rolling element bearings are therefore not suited to run in resonance or
even above a critical, which requires crossing it. The latter may be acceptable in
case of sufficient acceleration. Practically such applications exist. The example here
is derived from a real motor not running above a critical. Nevertheless, we will
demonstrate the effects arising when crossing the critical with this example. Since
the damping is low, high vibrations and high dynamic bearing forces arise, which
require a nonlinear analysis. Linearized bearing characteristics around a static
equilibrium are no longer applicable.

4. A vertical Pelton turbine on tilting pad oil bearings losing three buckets: The loss of
two buckets causes large dynamic forces requiring a nonlinear analysis. The results
of the nonlinear simulation are compared to linear results.

All examples are practically relevant. The investigated turbocharger corresponds to
a built machine, which has been measured. The other examples are derived from real
applications. Crossing of resonances on ball bearings without damping device is
practically done, although not for the type of motor investigated here. The speed range
of the electric motor has been extended to show the corresponding effects.

All analyses were carried out with the comprehensive rotordynamic program
MADYN 2000 [3].
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2 Nonlinearities and Solving the Nonlinear Equations

2.1 Nonlinear Fluid Film Bearings

The nonlinear fluid film forces on the rotor are described in a 2, 3-coordinate system
according to Eqs. (1) and (2) as a function of the rotor position (see Fig. 1).

� F3
F2

� �
¼ SoFactor

So e; cð Þsina
So e; cð Þcosa

� �
þ b33 e; cð Þ b32 e; cð Þ

b32 e; cð Þ b22 e; cð Þ
� �

1
DRX

_x3
_x2

� �� �
ð1Þ

SoFactor ¼ F
So

¼ BDgX

W2 ð2Þ

with So as the Sommerfeld number, b as dimensionless damping coefficients, DR as the
radial minimum clearance, e as the dimensionless eccentricity with reference DR, c as
the position angle, X as the rotor speed _x as the rotor velocities, B as the bearing width,
D as the bearing diameter, η as the fluid viscosity, and W as the dimensionless bearing
clearance 2DR/D.

As can be seen the force is split into two parts: one part is caused by rotation of the
journal (the part described by the So-number) and the other by lateral movements (the
part described by the damping coefficients). Both parts are calculated by solving the
Reynolds equation. The energy equation is solved simultaneously for the temperature
distribution unless an analysis with constant temperature is carried out. Various effects
such as turbulence and 2-phase flow in cavitation zones can be considered (see [4]).
A simplified analysis neglecting turbulence and assuming iso-viscous fluid according to
a mean temperature as it is described in the DIN standard [5] is also possible. The
solution is done for a grid of journal positions e, c within the possible clearance range.
Both parts of the force are highly dependent on e, c and thus nonlinear.

α
γ

ε

Fig. 1. Coordinate system to describe the bearing force and its direction as a function of the
rotor position described by the eccentricity e and position angle c.
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For the calculation of run-ups, the bearing analysis according to DIN is especially
suited, since the Sommerfeld similarity applies for this analysis type. The speed
dependence of the bearing characteristic then can be fully considered by the dimen-
sionless damping coefficients and the Sommerfeld number, which varies with the
speed. There is no additional dependency such as the Reynolds number for turbulence,
which cannot be considered for this analysis type. In many applications turbulences
plays a minor role.

2.2 Nonlinear Rolling Element Bearings

The rolling element bearing forces are calculated with the help of the Hertzian theory as
described in ISO/TS 16281 and DIN 26281, respectively (see [6]). The forces due to
Hertzian pressure can be linearized for small dynamic forces near large static forces.
However, they are basically nonlinear. Moreover, dynamic loads for many bearing
types such as deep groove or angular contact ball bearings can change the contact
angles between the balls and the inner and outer race, which contributes to a nonlinear
behavior. The bearing clearance can also cause nonlinear behavior. Additionally, a
coupling between the axial and radial direction occurs for many bearing types as the
above-mentioned ball bearings. The bearing forces the two radial directions 2 and 3 and
moments about these axes as well as the axial force as a function of the radial and axial
displacements and tilting angles about the radial axes are calculated in a routine
according to the above-mentioned theory, which is provided by MESYS (see [7]).

Rolling element bearings provide almost no damping force. Nevertheless, a
damping force can be considered in MADYN 2000 for harmonic response analyses by
a damping matrix, which is proportional to the stiffness matrix of the statically loaded
bearing. The stiffness matrix describes the linearized forces. The factor is calculated
according to Eq. (3). It yields a damping according to a defined damping ratio at the
exciting frequency.

D ¼ 2D
x

K ð3Þ

with the D as the damping matrix, K as the stiffness matrix of the rolling element
bearing, D as a damping ratio to be defined and x as the exciting frequency. The
matrices are 5 � 5 matrices for the two radial displacements, the two tilting angles
about the radial axes and the axial displacement.

A similar damping force can be used in non-linear transient analyses. The damping
matrix then is calculated with a reference frequency, which can be the speed or a
specifically defined frequency.

2.3 Solving the Nonlinear Equation

For solving the system of nonlinear equations, the nonlinear bearing forces are put on
the right-hand side as shown in Eq. (4).
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In Eq. (4) M is the mass matrix, D the damping matrix, G the gyroscopic matrix,
K the stiffness matrix and E the unit matrix. The vector x contains structural coordinates
of the rotor and support system modelled in MADYN 2000. Supports can also be
imported in the form of state space systems, which have the additional coordinates q (see
for example [8, 9]). The sub-matrices Aij describe the coupling of MADYN 2000
coordinates to the imported state space supports. These matrices are created with the
help of the support system matrix, observer and control matrix. Certain bearing types
such as magnetic bearings or full models of tilting pad bearings may also have additional
coordinates (see for example [10]). The examples of the present paper do not have such
bearings and the additional coordinates are not included in Eq. (4). F is the vector of
external exciting forces, which can only be applied to structural MADYN 2000 coor-
dinates and FNL the vector of nonlinear forces. The stiffness matrix K and damping
matrix D as well as the sub-matrices Aij may contain linear bearing coefficients, if some
bearings are treated as linear. The vector Bq describes the forces on the state space stator
system. It is created with the help of the state space observer and control matrix.

Equation (4) can also be written in the following form:

_z ¼ AzþB tð ÞþBNL x; _x; qð Þ ð5Þ

Before solving the equation by integration with a Runge Kutta solver, it is bi-
modally reduced with the help of the complex left and right eigenvectors of the system
UL UR as shown in Eq. (6).

U
0
L _zUR ¼ U

0
LAUR þU

0
L B tð ÞþBNL x; _x; qð Þf g ð6Þ

The linear part thus is decoupled. The method is described in detail in [11] and
summarized in [12]. The resulting system to solve is as follows:

_w ¼ KwþU
0
L B tð ÞþBNL x; _x; qð Þf g ð7Þ

with

z ¼ URw ð8Þ

The matrix K hereby is the diagonal matrix of the considered eigenvalues of the
linear system.

The linear system is speed dependent; hence the eigenvalues and matrices of the
eigenvectors are also speed dependent. For the analyses of a run up or down, the
matrices are created for a suitable number of speed steps and then interpolated during
the solution of the equation for each time step.
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3 Vertical Pump with Cylindrical Water Lubricated Bearings

3.1 Description of the Model

The model of the vertical pump is shown in Fig. 2. The complete length of the
assembly is about 12 m. The upper part with a motor is on the left side. The pump has
only one impeller at the bottom shown on the right side. The pump rotor is shaded in
blue. The casing of the pump, which is a pipe, is modelled as a shaft with zero speed. It
is shaded in grey (partly visible as a black line). The pipe is fixed to a foundation,
which is denoted as customer support in the model. It consists of a flange of the pipe.
The flange is fixed with general springs to the ground. The general springs represent the
stiffness of the foundation and introduce anisotropy to the system. The motor rotor is
not modelled as part of the shaft, since it is coupled to the pump shaft with a flexible
coupling. The whole motor including its housing is modelled as a rigid mass fixed to
the flange at the customer support stiffness (the sphere in Fig. 2). The distance of the
center of gravity to the support is bridged with a rigid element.

The pump shaft is supported in the pipe with an angular contact rolling element
bearing, which also carries the axial load. The upper bush and casing bearing are closed
cylindrical bearings. The other bush bearings are cylindrical bearings with 3 equal pads
and a deep groove between the pads. The ambient pressure of the upper bush bearing
corresponds to the pump discharge pressure of 10 bar. For the other bush bearings and
the casing bearing the Archimedes hydrostatic pressure adds to the discharge pressure,
which is about 1 bar for the lowest bearing. The elevated ambient pressure influences the
cavitation, which is considered in the bearing model with a 2-phase model (see [2, 4]).
A contact stiffness to account for a surface roughness of 10 lm has been considered for
all bearings according to the model in [13].

An added mass for the pipe is considered. The mass of the enclosed water is added.
For the rotor an added mass according to the formula (9) published in [14] has been
used to estimate the effect. It yields a mass of about 3% of the rotor mass and therefore
is neglected.

l ¼ pd
OD3

8s
ð9Þ

with µ as the added mass per length, d as the density, OD as the rotor outer diameter
and s as the radial clearance, which is very large for our case (�2 OD).

Fig. 2. Model of the vertical pump
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3.2 Linear Behavior, Campbell Diagram

The Campbell diagram for a speed range up to 150% speed and a frequency range to
50 Hz, which corresponds to two times nominal speed can be seen in Fig. 3. The
corresponding mode shapes can be seen in Fig. 4. Note, that the colors for corre-
sponding modes are the same in both figures. The dashed line in the shape plot
represents the pipe deformation and the solid line to the rotor deformation. The shapes
are shown in two projections at the instant when the maximum deflection occurs. The
two planes for the projections are indicated in the plot next to the shape plot. The first
projection with the fat line is into the plane defined by the maximum deflection and the
rotor axis, the second projection with the thin line into the perpendicular plane. The
whirling direction and mean global orbit shape (also see [3]) are indicated as well.

The first two modes are a cantilever like bending of the pipe and the rotor in two
perpendicular directions. There is almost no relative displacement between rotor and
pipe. The next modes are bending modes of the rotor with increasing order and
increasing relative displacement. The modes appear as elliptically forward and back-
ward whirling modes. They are elliptic due to the anisotropy of the support stiffness.
The forward modes with relative displacement become unstable (mode 4, 5, 7, 9) if
their frequency is below 50% speed, which is the whirling speed of the fluid in the
cylindrical bearings.

Fig. 3. Campbell diagram with eigenvalues
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Fig. 4. Natural modes at nominal speed 1500 rpm
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3.3 Results of a Nonlinear Run Up Analysis

Since the linear system is unstable, a nonlinear analysis must be carried out to deter-
mine limit cycles revealing a realistic vibration level of the rotor. A nonlinear run up
analysis with an unbalance of G10 at the impeller has been carried out. The reference
mass for the G value is the rotor section at the impeller. The run up has been carried out
from 10% to 110% speed in 60 s, which is almost stationary for this system.

Results of this analysis can be seen in the following figures: The absolute dis-
placements of the pipe at the bearing locations in Fig. 5, the orbits of the relative
displacements in the fluid bearings in Fig. 6 and the 3D shape at 1500 rpm in Fig. 7.

The vibrations of the pipe indeed are huge. At 1500 rpm, 100% speed the level at
bush bearing 2 is several mm. The shape at about 1500 rpm in Fig. 7 corresponds to
the 2nd bending, mode 4 in Fig. 4. The by far dominating frequency is about 10 Hz,
which approximately corresponds to the frequency of this mode. The vibration level at
the ball bearing in the top is much lower. At 1500 rpm it is about 300 lm, which
corresponds to a still high rms value of 33 mm/s. This is the location where vibrations
of such machines are typically measured. Other locations with bearings are difficult to
access.

The relative vibration level in the fluid bearings at nominal speed in Fig. 6 is about
90% of the bearing clearance for all bearings without considering the surface rough-
ness, which means, that the contact stiffness just begins to become effective.

The force at nominal speed in bush bearing 2 is about 2400 N corresponding to a
specific dynamic load of 3 bar.

Fig. 5. Absolut vibrations of the pipe at bearing locations
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The vibration behavior of the pump as presented here is not acceptable or at least at
the limit. The surrounding water, which is not considered in the analysis, probably
helps attenuating the vibration, especially at such levels as calculated here.

Fig. 6. Orbits of relative vibrations in the fluid bearings

Fig. 7. Shape at nominal speed of 1500 rpm
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4 Turbocharger with Semi-floating Ring Bearings

4.1 Description of the Model

The structure of the rotor model is shown in Fig. 8. The rotor is supported in two semi-
floating ring bearings, which are shown in Fig. 9. The casing is considered as rigid,
since it is very stiff compared to the rather soft support.

Fig. 8. Model of the turbocharger

Fig. 9. Geometry and clearance of the semi-floating ring bearings, left inner film, right outer
squeeze film
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The inner film of the floating ring bearing has three hydrodynamic pockets, which
are machined in the non-rotation ring. The outer film is plain cylindrical with a central
groove distributing the oil. The outer film functions as a squeeze film.

The non-linear bearing characteristics were calculated according to DIN. Speed
dependent oil temperature and thermal expansion of the ring and casing are considered.
The speed dependence of the temperature and thus the viscosity as well as the clearance
change influence the bearing characteristics through the Sommerfeld number.

4.2 Results of a Nonlinear Run Up Analysis with a Comparison
to Measurements

The run up is calculated from 10% to 120% speed. The run up time is 10 s. The orbits
of the rotor journal relative to the ring as well as the ring orbits are shown in Fig. 10.
Measured and calculated vibration spectra are shown in Fig. 11.

Fig. 10. Orbits of the rotor relative to the ring (left) and the ring (right)

Fig. 11. Spectrogram of the run up at sensor 1 (left measurement, right simulation)
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The squeeze film of the outer ring is completely free. It has no centering device
such as a squirrel cage. A centering force is only created by vibrations of the ring. In
the right plot of Fig. 10 the centering effect can be clearly seen. At low speed the two
rings have a large eccentricity corresponding to the outer film clearances, which are
different for the two bearings. With increasing speed and increasing vibration they are
centered. On the compressor side the centering occurs in two stages. The 2nd stage is
caused by a sudden change of pattern of the sub-synchronous vibration at about 100%
speed, which can be seen in the calculated spectrum in Fig. 11.

The measured and calculated spectrograms clearly show the synchronous and sub-
synchronous vibration amplitudes. A component with twice the frequency of each of
the dominating frequency can also be seen. The agreement regarding frequency and
amplitude between measurement and calculation is very good.

5 Motor with Deep Groove Contact Rolling Element
Bearings

5.1 Description of the Model

The rotor with deep groove rolling element bearings can be seen in Fig. 12. The outer
races of the deep groove ball bearings are modelled as shafts. The rolling element
bearings connect the shaft and the outer races. Since for deep groove bearings the axial
direction, radial direction as well as the rotation about the radial axes are coupled, all
bending degrees of freedom as well as the axial degree of freedom are considered. The
outer rings have only axial degrees of freedom, i.e. they are radially rigid. An axial
preload is applied to the left bearing A. Bearing A is axially free, its outer ring is
supported in axial direction by a weak axial spring. The outer ring of the right bearing
B is rigidly supported in axial direction. It is an axially fixed bearing.

The speed dependence of the bearings due to centrifugal and gyroscopic forces of
the rolling elements is considered.

Fig. 12. Rotor with rolling element bearings
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5.2 Linear Behavior, Campbell Diagram

The Campbell diagram and mode shapes in the critical speeds for linearized bearing
characteristics is shown in Fig. 13. The linearization is about the statically loaded
bearings due to the weight and an axial preload of 700 N.

As can be seen the bending critical (mode 3 forward whirling) is above 100%
speed, which is typical for rotors on rolling element bearings, since running through a
critical is a problem with the poor damping, that this bearing type can provide. Beside
the bending critical there is an axial mode, with a resonance close to nominal speed.

5.3 Results of a Nonlinear Run Up Analysis

A run up from 20% to 160% speed within 5 s for an unbalance in the middle of the
rotor with a level of G2.5 has been calculated for this system with non-linear bearing
properties. During the run up the critical speed is crossed, which is not foreseen for this
machine, but envisaged in other cases.

The vibrations at the bearings in radial and axial direction are shown in Figs. 14
and 15. They reveal some remarkable behavior. The critical is lower than expected
according to the Campbell diagram. The maximum vibration occurs at about
15500 rpm, whereas the critical in the Campbell diagram is at 16500 rpm. The axial
resonance can be seen in the axial vibration at a speed where it can be expected
according to the linear analysis. In the radial resonance large axial fluctuations occur
combined with an axial shift, which can be explained as follows and which also
explains the lower critical speed.

Due to the high radial loading of the bearing when approaching the resonance, the
balls of the bearing seek a more centered position in the groove, which results in an
axial shift of the shaft and a new contact angle. The new contact angle yields a lower
stiffness despite the high radial load. In [15] this is explained more in detail including
the change of stiffness due to the different contact angle.

Due to the axial preload the bearing does not have clearance in axial direction. In
case of no preload further nonlinear effects can occur, which are described in [15].

Fig. 13. Campbell diagram and shapes in the critical speeds
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6 Loss of Three Buckets of a Pelton Turbine

6.1 Description of the Model

The model for a vertical Pelton turbine is shown in Fig. 16. The Pelton runner is
modelled as a rigid disk on the left side of the rotor. In the middle of the rotor is a
generator. The rotor is supported on fluid film bearings. The bearing on the left turbine
side is also shown in Fig. 16. It is a tilting pad bearing with 8 pads. In the model this
bearing has a spring mass support representing the foundation. Its natural frequency is
far above running speed and the rotor bending frequency. On the right side the bearing
and support are modelled by a substitute spring. The turbine bearing is loaded with a
static lateral force caused by the water jet.

Fig. 14. Displacements in radial 2- and 3-direction at the bearings during run up

Fig. 15. Displacement in in axial direction at the bearings during run up
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6.2 Results of the Nonlinear Analysis of the Bucket Loss, Comparison
to Linear Results

The bucket loss is calculated by suddenly applying a rotation force at nominal speed to
the Pelton runner corresponding to the centrifugal force. In our case this force is 4.5
times the static jet force of 1000 kN. The initial condition for the analysis is the static
equilibrium position due to the force from the water jet at the turbine. The turbine is
running below its 1st bending mode. The separation margin is 45%.

The results of the analysis with a nonlinear turbine bearing can be seen in Fig. 17.
For the orbit a comparison to a linear analysis is shown, with a linearization of the
turbine bearing about its static equilibrium.

In case of the nonlinear analysis the orbit remains within the bearing clearance. It
follows the bearing contour. At the pad pivot points the deflection is 85% of the
minimum bearing clearance. Note, that 10 lm surface roughness is considered in the
nonlinear analysis. For the linear analysis the deflections by far exceed the bearing
clearance.

In the shape in Fig. 17 the arrow at the turbine bearing indicates the displacement
of the support. It can be seen, that the relative displacement in the bearing is very small
compared to the support displacement, which is almost 8 mm.

The maximum force on the turbine support is 13000 kN. The values are practically
equal for the linear and nonlinear analysis. This applies for this model with a rather
simple support structure and rather stiff rotor. It cannot be generalized.

Fig. 16. Model of a vertical Pelton turbine with the geometry of the turbine bearing

linear

nonlinear

Fig. 17. Linearly and nonlinearly calculated orbit after a bucket loss, shape of nonlinear analysis
at the instant of maximum deflection
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7 Summary

Four examples are presented requiring unpopular nonlinear rotordynamic analyses for
different reasons. In all examples the nonlinearity is in the bearings. For a vertical
pump, which is linearly unstable, the nonlinear analysis is necessary for determining
limit cycles. In case of a turbocharger with semi-floating ring bearings the reason for a
nonlinear analysis is the essential nonlinear behavior of the outer oil film, which
functions as a squeeze film damper without centering device. A motor rotor on rolling
element bearings running through a resonance requires nonlinear analyses, because of
the large forces, which change contact angles and do no longer allow linearizing the
Hertzian pressure. For the simulation of a bucket loss of a Pelton turbine with an 8-
tilting pad fluid film bearing on the turbine side, the necessity for a nonlinear analysis
again arises due the large bearing forces, exceeding the static load by a factor of 4.5.
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Abstract. In this paper, the functionality of a swashplate mechanism coupled
with a series of one-way overrunning clutches is studied. The novel mechanism
is constructed by coupling a swashplate and one-way overrunning clutch with
other mechanical components to allow producing a continuously varying gear
ratio. To access the capability of the proposed mechanism, a multibody dynamic
simulation of the said mechanism was carried out as follows. First, the kine-
matics of the components making the mechanism is studied, then followed by
the dynamics of the entire system. Preliminary predictions dictate that the
proposed mechanism has the potential to produce continuously variable output
motion including the zero-output using a constant input. However, the results
indicate that the swashplate mechanism should be studied further to allow
obtaining a smooth output. Initial results indicate that the proposed mechanism
has the potential of converting a constant rotational motion to a continuously
variable rotational speed.

Keywords: Swash plate � One-way overrunning clutch
Continuously variable drive

1 Introduction

In recent days, the development of automotive transmission is directed towards low
emission and fuel-efficient solutions. The use of internal combustion engine (ICEs) or
electric motor (in hybrid and electric vehicles) is common in automotive applications.
The electric motor or ICEs have their own drawbacks. The major drawback can be the
tradeoff between torque and rotational speed. In general, the electrical motor maximum
power can be achieved at the point where torque and rotational speed are at the half of
the maximum torque and rotational speed. In case of ICEs, the maximum torque that
can be achieved can be different based on the engine type but there still exists the
tradeoff for achieving maximum power. For an engine or electric motor to achieve
maximum power, either of the two should be running at their optimal range. In this
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case, the solution which can produce continuously variable ratio with constant input
can be beneficial.

The swashplate mechanism has a long history dating back to around 1930s. Dif-
ferent variations of the swashplate mechanism depending on the applications can be
found in in the literature. The main areas of application of the swashplate include the
aeronautic, automotive and in hydraulic systems. The swashplate mechanism is used in
the hydraulic fixed displacement and variable displacement pumps. In hydraulic sys-
tems, it can be used to convert the rotational motion to the reciprocating motion or vice-
versa. In the aeronautics industry, swashplates are typically used in helicopters for
controlling the blade pitch. Some studies on the development of helicopter blade pitch
control system without using swashplates can be found in [1, 2]. In the automotive
industries, their application is mainly in compressors for automotive air conditioners.
Studies on different aspects of swashplate mechanism in regards to the application in
air conditioning system can be found in [3–5]. Zeiger et al. [6] developed a mathe-
matical model on the torque acting on the swashplate used in axial piston pump. The
dynamic behavior of a swashplate with anti-rotation mechanism was studied by Ishii
et al. [7]. The study on the application of swashplate mechanism in different application
area but for the similar purpose is done by Zuti et al. [8].

The one-way overrunning clutches are the devices, which transmits torque and
rotation in one direction and freewheels or disengages in the other. The one-way
overrunning clutches are mechanically operated. The most common example of the
one-way clutch can be seen on bicycles. In modern automatic transmissions, sprag type
and roller type one-way clutches are used to brake members of the planetary gear set.
Several different types of one-way clutches are available. The common types are
ratchet and pawl, locking roller, locking needle roller, sprag clutch and wrap spring
clutch. Roach et al. [9] made a comparison study on different types of one-way
overrunning clutch using compliance criteria.

In this paper, the functionality of a swashplate mechanism coupled with a series of
one-way overrunning clutches is studied to understand the capability of such a
mechanism for producing a continuously varying gear ratio. A novel mechanism is
constructed by coupling a swashplate and one-way overrunning clutches with other
components like push rods and bevel gear sets. From the preliminary predictions, the
proposed mechanism has the potential to produce continuously variable output motion
including the zero output with constant input. This study will contribute to the
development of the mechanism towards the application where there is need of con-
verting a constant rotational motion to the continuously variable rotational speed.

To assess the capability of the proposed mechanism, a multibody dynamic simu-
lation of the said mechanism was carried out. First, the kinematics of the components
making the mechanism is studied, then followed by the dynamics of the entire system.

The main goal of this study is to develop a dynamic model of a swashplate and one-
way overrunning clutch mechanism that allows the generation of a continuously
varying motion. In accordance with this goal, the main objectives are:

(1) Develop a multibody dynamic model of a swashplate and one-way overrunning
clutch mechanism
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(2) Assess the operation range of the swashplate and one-way overrunning clutch
mechanism using the multibody simulation approach

(3) Devise a guideline to enhance the swashplate and one-way overrunning clutch
mechanism.

2 Mechanism

The main concept of the mechanism is to convert constant rotational motion into the
continuously variable rotational motion. The mechanism consists of the input shaft, a
slider mechanism fixed to the shaft, tilt plate mechanism, push rods, rocker arms, a
bevel gear set with three gears and a pinion. The simplified model of the mechanism is
depicted in Fig. 1.

In this mechanism, the input shaft is driven by a power source with constant input.
The slider mechanism can translate along the axial direction of the shaft since it is
constrained to the input shaft using the translational (prismatic) joint. The major
function of the slider mechanism is to change the tilt angle of the swashplate. When the
input shaft is rotating, it constrains the swashplate to create wobbling motion. When the
tilt angle is zero degrees, the wobbling motion is not created in the swashplate. The
wobbling motion is converted to translational motion using pushrods in a similar
manner as seen in hydraulic displacement pumps where reciprocating motion of the
piston rods is created by connecting them to the swashplate. Pushrods are mounted
along the circumference of the swashplate using the spherical joint. The other end of
push rods is connected to the rocker arm that is connected to the bevel gear shaft using
a one-way overrunning clutch. The translational motion of the pushrods is converted to
the rotational motion using rocker arm and transferred to bevel gear shaft using one-
way overrunning clutch. Three bevel gears are coupled to one bevel pinion from which
output is achieved.

Fig. 1. Schematic of the proposed mechanism
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In the proposed mechanism, with a change in tilt angle h, the output can be con-
tinuously varied using a constant speed input. The stationary output can be achieved
with tilt angle set to zero and the angle can be continuously increased resulting in the
continuously increasing output. The mechanism allows the input to be constant and
fixed at the optimal speed for the maximum efficiency. This feature is especially required
when the input is provided using an electric motor or internal combustion engines
(ICEs) since they have a certain range of rotational speed when efficiency is at peak.

2.1 Simulation Model

The simulation model is created in MSC ADAMS. The simulation model consists of
several parts and joints described in ADAMS. Some of the parts are imported as cad
files while some of the parts were created using inbuilt feature of ADAMS. The
simulation model of the mechanism can be seen in Fig. 2. The operation of the one-
way overrunning clutch is based on contacts and friction between its components. The
detailed study of the one-way overrunning clutch is not the focus of this study, as such
its functionality is implemented using a torque function like the torsional springs. The
torque, T, transferred by the one-way overrunning clutch is defined as:

T ¼ ðk � ðh� hrevÞþ c � _hÞ � STEPð _h; 0; 0; 0:1; 1Þ ð1Þ

where k is the torsional stiffness, c is the torsional damping, h is the relative angle, _h is
the relative angular velocity and hrev is the angle created while overrunning. The STEP
function used will return torque applied as either zero or torque depending on the
direction of the rotation. Equation (1) describes the basic functionality of the one-way
overrunning clutch, however, it should be noted that it is a simplified model. For
example, the friction of the overrunning clutch is not described in detail. However, it is
assumed that basic functionality is sufficiently captured.

The bevel gears were created using a gear geometry inbuilt feature embedded in
MSC ADAMS. The details of the bevel gear used in the model are given in Table 1.
The details of other machine element components like bearings, bolts, screws were not
included in the simulation model.

Table 1. Details of the bevel gear

Bevel 1 Bevel 2 Bevel 3 Bevel Pinion

No. of teeth 43 43 43 27
Pressure angle 20°
Mean spiral angle 35°
Face width 22 mm
Transversal module 2.2
Orientation (x, y, z) (°) 180, 90, 180 300, 90, 180 60, 90, 180 0, 180, 0
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Most of the joints used in the simulation model are created using the standard joints
like revolute joint, spherical joint, cylindrical joint, translational joint available in
MSC ADAMS. In addition, some primitive joints option available were used in con-
straining some components. For example, a perpendicular primitive joint was used to
constrain the rotation of the swashplate in the axial direction of the shaft. The per-
pendicular primitive joint in MSC ADAMS constraints one rotational degrees of
freedom of the mechanism.

3 Results and Analysis

The results reported here were achieved through several case studies. The variants of
the case studies include force and torque distribution, and velocity at different load
conditions. Initially, a motion study of the simulation model was carried out to
understand the kinematics of the mechanism. After the motion study was carried out
the simulation was performed by using a DC motor.

3.1 Case Study: Motion Study

The motion study of the mechanism was performed by using a constant input motion.
Here the case studies included the following: (1) using a maximum swashplate tilt
angle and (2) allowing variation of the swashplate tilt angle. The point motion feature
available in ADAMS was used as the input to the simulation model.

Maximum Tilt Angle
Here a constant input motion and a maximum tilt angle of 12.5° were specified for

the swashplate. The compactness of the design space (housing) dictates that the
maximum tilt angle be limited to 12.5°. This limitation however, does not impose any
restriction on the system design capability, as it is only for precaution to allow parts to
move and wobble without crashing into other parts. The minimum and maximum

Fig. 2. Simulation model of the mechanism
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working range of tilt angle were defined to be 0°–12.5°. Figure 3 shows the effect of tilt
angle on the translational velocity of push rods.

From Fig. 3, it is evident that the velocity of each pushrod is not equal in mag-
nitude and that there is a phase shift between the pair of rods. The placement of rods
and the anti-rotation mechanism of swashplate resulted in the different velocities of the
pushrods. The resulting effect of this behavior can be seen in the further results of the
mechanism.

The results obtained for the output and bevel gears can be seen in Fig. 4. Here an
input speed of 6.28 rad/s (60 rpm) as can be seen from Fig. 4 is implemented. Also
observed from Fig. 4 is the behavior of the bevel gear speed.

The speed of the bevel gears together with the output speed show signs of ripple
effects (Fig. 4). In the mechanism three bevel gears are coupled to one bevel pinion and
bevel gears are connected to the bevel shafts using one-way overrunning clutches. In
such case where one bevel gear has high speed than the others, then it will become the

Fig. 3. Translational velocity of push rods in axial direction of input shaft with constant tilt
angle

Fig. 4. Rotational speed of input, output and bevel gears
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only driving gear and bevel pinion including other two bevel gears will be the driven
ones. This phenomenon is caused by the characteristic (overrunning) of the one way
overrunning clutch. Equal speed of bevel gears can be observed from Fig. 4 which
suggests that the simplified model of one-way overrunning clutch is functional.

The different translational velocity of the push rods causes the ripple seen in the
output rotational speed. The anti-rotation constraint used in the tilt plate results in the
complicated behavior of the pushrods. However, the ripple can be optimized by
optimizing the placement of push rods.

Changing Tilt Angle
This study was performed to understand the influence of continuously changing the

tilt angle of the swashplate on the entire mechanism. The input and output motion were
studied as well. The results of the simulation can be seen in Fig. 5. The figure shows
the constant input motion of 6.28 rad/s (60 rpm) and achieved continuously variable
output motion with changing tilt angle. The tilt angle is changed using a step function.
The step function changes the tilt angle of the swashplate continuously from 12.5° to 0°
within a specified duration of 5 s. It can be seen from Fig. 5b that the output rotational
speed is varying continuously with the changing tilt angle of the swashplate. Also seen
in Fig. 5 is how output rotational speed is varying continuously with the changing tilt
angle of the swashplate.

The minimum and maximum output rotational speeds of the mechanism can be
observed when the tilt angle is 0° and 12.5° respectively. The output rotational speed of
the bevel pinion showed some ripple, so an average of rotational speed is plotted using
a cubic polynomial function. The trend line of cubic polynomial was used to plot the
trend line to represent the smooth behavior of the output without a ripple. See Fig. 5b.

(a) (b)       

Fig. 5. (a) Changing tilt angle, (b) Input and output with changing tilt angle
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3.2 Case Study: Study with Load at Output

Here a resistance load is applied to the output of the mechanism. The input was
provided by using Eq. (2) which describes the torque provided by the DC motor as

Tmotor ¼ Ts � xTs=xn ð2Þ

where, Tmotor represents the torque provided by the motor, Ts represents the stall torque
of the DC motor, xn represents the no-load speed of the motor and x represents the
rotational velocity. The stall torque and no-load speed were defined as the design
variable and rotational velocity was created as the function measure. The simulation
was conducted by setting stall torque to 3000 Nmm and no-load speed to 60 rpm
(6.28 rad/s). The resistance load was defined as the single component torque input of
−1500 Nmm to the bevel pinion, which is the output of the mechanism. The direction
of the resistance torque was opposite to the rotation direction of the output. Here the
resistance torque is applied to the 50% of the maximum input torque that DC motor can
produce.

The proposed mechanism has the limit of 0°…12.5° tilt angle, and in this part, it is
assumed that swashplate is operating with maximum tilt angle. The results were
obtained for the input and output torques, forces on components like pushrods and
other mechanisms. The simulation was studied with the constant tilt angle of the
swashplate. Figure 6 shows the input and output rotational speeds while the torque in
different components can be seen from Fig. 7. The ripple which was observed earlier
can also be seen from the results obtained here as well. Similar kind of behavior of the
ripple can be observed from both the rotational speed and torque results.

The DC motor specification were used for the input torque and speed while con-
stant resistance load was applied to the output. The ripple in the input can be observed
from Figs. 6 and 7. The input from the DC motor depends on the resistance load and in
this case, constant resistance load was applied to the output. As seen from earlier
results, the ripple was observed in the output when constant input was provided. In this
case, since constant resistance load was applied to the output and DC motor was used
as the input, the ripple is observed in the input.

Fig. 6. Input motor speed and output speed
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The different components of the forces in the rods were studied. The study showed
that the z-component force (shaft axial direction) present in the rod is dominant over
other components and is the most contributing. The study was focused on the z-
component of the forces present in the rods.

It can be seen from Fig. 8 that the forces in all the rods are not equal. This will
result in the torque ripple in the output. If the magnitude of the forces in the push rods
are observed, the trend of the torque ripple observed in the output can be related to the
magnitude of the forces in the rods. It can be also noticed that only one pushrod seems
to be functional at a time. It is mainly due to use of one-way overrunning clutches. The
overrunning feature of the one-way overrunning clutch caused this phenomenon. The
magnitude of the force in the push rods is not constant and each rod is functional when
the maximum force is present in the rod. The rod with maximum force dominates the
functionality of other rods due to the overrunning feature of the one-way clutch.
Similar trend was also observed in the motion study of the bevel gears where one high
speed bevel gear was dominating the speed of the whole bevel gear set. It can be
concluded that the force is not distributed equally among the push rods.

The magnitude of the forces present in different pushrods can be seen from Fig. 8.
The trend of the magnitude of the push rods can be compared to the trend seen in the
behavior of the torque and rotational speed. The trend of the magnitude of push rods
correlates the behavior seen earlier in torque and rotational speed case.

Fig. 7. Torque in different components

Fig. 8. Magnitude of force in pushrod

Multibody Dynamics Simulation of a Mechanism 453



4 Conclusion

A mechanism for generating continuously variable motion has been proposed.
A simulation model using multibody dynamics approach has been developed. A va-
riety of case studies have been conducted to understand the intrinsic characteristics of
the proposed mechanism. The results obtained from the simulation suggests that the
mechanism can produce continuously variable output, using constant input, however
in this design the output speed is not smooth dictating the need for future improvement
to the model. Nonetheless, the mechanism presented in this paper can be used in place
of push belt pulley mechanisms commonly found in CVTs. In terms of performance,
push belts can be considered as the weakest part of a CVT. The proposed mechanism
is fully mechanical and can be assumed to be efficient to serve a purpose of producing
continuously varying motion. As seen from the simulation results the proposed
mechanism can produce continuously varying speed and can produce a neutral output
when the input is running at constant speed. Additional components like those used in
several CVTs can be added together to form the Infinitely Variable Transmission
which can produce continuously variable forward ratio, neutral and continuously
variable reverse. Several issues with one-way overrunning clutches and swashplate
mechanism were identified during the study of the mechanism. The issue of ripple was
observed during the study and it is claimed to be a consequence of the swashplate.
Some further studies on swashplate mechanism are required to achieve smooth output
(without ripple). Addition of a flywheel in the proposed mechanism can be considered
for the further studies in order to reduce the ripple observed in this study. Studies on
push rods and their placement should be considered as the further studies to make the
mechanism more smooth and efficient. Also, flexibility of the push rods and their
impacts on the dynamic behavior of the system should be considered for the further
studies.
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Abstract. The drilling process consists basically of a drive motor at the
top end (surface) that provides torque to rotate a cut tool (drill-bit) at
the bottom end. To connect these extremities there is a torque trans-
mitting slender element so-called drill-string. Due to the slenderness, the
borehole wall/drill-string, and, mainly, the drill-bit/rock interactions, the
system undergoes axial, lateral and torsional vibrations. Among these
modes, torsional vibration is present in most drilling processes and may
reach an undesired severe phenomenon: stick-slip. In this work, we per-
form experiments on a torsional test rig, which executes dry friction-
induced vibrations. The test bench consists in a DC-motor, a low-stiffness
shaft and two discs. The motor provides rotation to the whole set-up: one
disc (R1) is placed on the opposite extremity of the motor, and the sec-
ond one is intermediately placed (R2). Resistive torques may be applied
in both discs and the behaviour of the system is analysed. It is possible
to observe torsional vibrations and the stick- slip when a friction torque
is applied on R1 and during this phenomenon, another friction torque is
applied on R2. The presence of the second frictional torque as strategy of
mitigation has a major influence on the dynamics as it may change from
a stable limit cycle to a stable equilibrium and then preventing stick-slip
phenomenon.

Keywords: Torsional vibration · Nonlinear dynamics
Drilling system · Stick-slip mitigation

1 Introduction

A drilling system consists in a set of equipment (surface and downhole) capable
to create holes in the earth sub-surface for oil and/or natural gas extractions [26].
The equipment may be located onshore or offshore. Most of oil wells are vertically
placed, but there are also inclined and/or even horizontal configurations [7].
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It happens in order to overcome some constraints that a vertical well could
not attend, such as, blowout well control via relief wells, hit reservoir targets
which are located under inaccessible locations (ex: rivers, cities, etc.), to contour
geological accidents (ex: salt and rock failures), among other [23]. Also, the
directional drilling technique provides a larger contact area between well and
oil reservoir which may enhance oil extraction, since the these reservoirs often
present a larger horizontal dimension than its vertical dimension [1].

Basically, the drilling system comprises a motor (electric or hydraulic) located
at the top end position and the bottom end part, named the Bottom-Hole Assem-
bly (BHA). The former imposes the rotational motion in the drilling system
(surface RPM - SRPM), while the latter comprises the heavyweight drill-pipes
and the drill-collars that are responsible to transmit the necessary weight to drill
without buckling. Also, in the bottom there is a cut tool named drill-bit respon-
sible to gouge the rock. Between these extremities, there is torque-transmitting
element called drill-string (connection of a series of pipes). At the top end,
the top-drive imposes an angular velocity (surface RPM - SRPM). Thereafter,
an axial force called weight-on-bit (WOB) is imposed, and this combination
of WOB and SRPM provides the needed torque on bit (TOB) to induce rock
failures (crushing, shearing or grinding) [2].

Because of slenderness diameter-to-length ratio of the drilling system, tor-
sional vibration mode is present in most drilling processes and may reach an
undesired severe stage: stick-slip. This stage causes a complete arrest of the
drill-bit (stick phase), while the top continues to rotate and to store elastic
torsional energy in the drill-string. Suddenly, the stored energy overcomes the
friction torque and the drill-bit is released to rotate (slip phase) - converting
potential energy into kinetic energy. During slip phase, the angular velocity of
the drill-bit may increase till three times the imposed nominal angular velocity
[4,5,18].

The stick-slip phenomenon occurs approximately 50% of the total drilling
time [8] (apud [17]) and it is the main source of component failures during the
drilling process, and also, it may excite axial vibration in its severe way: bit-
bounce [21]. Patil et al. [17] also states that torsional vibrations while drilling
is one of the severe types of drill-string vibration which deteriorates the over-
all drilling performance, causing damaged bit, failure of bottom-hole assembly,
torsional fatigue of drill-string, and excites other vibration modes. Also, during
the stick phase, the system does not drill which also increases costs and time of
operation [10,11].

In order to propose a mitigation strategy of the torsional vibration in slen-
der structures, this paper analyses the nonlinear dynamics of an experimental
set-up isolating torsional vibrations from other effects. First, the dynamic char-
acteristics of the test rig are obtained and should be coherent with a drill-string
model. Then, the occurrence of stick-slip of the bottom disc and its dependence
on force and rotation is observed. The scope of this analysis is the investigation
of a mitigation strategy to prevent torsional vibration via a resistive torque on
the middle disc, which can be imagined as a bottom hole driver.
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This paper is presented as follows: Sect. 2 describes the drill-string experi-
mental set-up and contains physical parameter values of the test rig. Section 3
presents the modelling of the system described in Sect. 2. Also, a model valida-
tion and stability analysis are performed. Following in the Sect. 4, the mitigation
strategy and results are presented. Finally, Sect. 5 contains the conclusions of this
work.

2 Drill-String Experimental Set-Up

2.1 Description of the Test Rig

The test rig consists of three degrees of freedom: disc 1 (R1), disc 2 (R2) and the
DC-motor inertia (R3): one disc (R1) is placed on the opposite extremity of the
motor, and the second one (R2) is intermediary placed. Resistive torques may be
independently applied on both discs and the behaviour of the system is analysed.
It is fully instrumented so it is possible to observe torsional vibrations and the
stick-slip when a friction torque is applied on R1 and during this phenomenon,
another friction torque is applied on R2. A low-stiffness shaft (2.40 m length and
3 mm diameter) is responsible to transmit rotation from DC-motor to the discs
(see Fig. 1).

Fig. 1. Drill-string experimental set-up. (a) R1 and brake device 1, (b) R2 and brake
device 2 and (c) DC-motor.

The brake devices consist of pins in contact with the discs R1 and R2. This
dry contact generates a friction torque leading to torsional vibration (or even
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stick-slip). The normal forces (N1 and N2) created by contact of the pins with the
discs are acquired by force sensors. For the friction torque on R2, there is a servo
motor responsible for moving the pin (active torque). The mitigation strategy is
based on this mechanical component. Figure 2 illustrates the components located
on R1 and R2, while Fig. 3 shows a scheme of the experimental set-up.

Fig. 2. Discs, brake devices and measure components: 1, 5 - the discs R1 and R2; 2, 6
- incremental encoders; 3, 8 - force sensors; 4, 7 - contact pins; 9 - servo motor.

Fig. 3. Electric-mechanical test rig system [19].

3 Modelling of the Test Rig

3.1 Equations of Motion

The electric subsystem is modelled as a voltage source connected in series with a
resistor and an inductor, providing torque τm. The angular velocity θ̇m imposed
by τm is eight times greater than the angular velocity θ̇3 transmitted to the
mechanical subsystem due to the transmission factor η = 8 : 1.
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Mathematically, the electric subsystem may be expressed as

L
d i

dt
= u − R i − KE θ̇m

τm = KT i − Cm θ̇m − Tf − Jm θ̈m, (1)

where i denotes electric current of the DC-motor. L and R are the armature
inductance and resistance, respectively. The angular velocity θ̇m is the velocity
of the inertia of the DC-motor Jm. Cm and KT are the speed regulation and
constant torque of the motor, respectively. Further, KE consists in the voltage
constant and Tf is the internal friction torque. The input voltage is denoted
by u.

The mechanical subsystem illustrated above corresponds mathematically to

J1θ̈1 + d1

(
θ̇1 − θ̇2

)
+ k1 (θ1 − θ2) = −Tr1

J2θ̈1 + d1

(
θ̇2 − θ̇1

)
+ d2

(
θ̇2 − θ̇3

)
+ k2 (θ2 − θ3) + k1 (θ2 − θ1) = −Tr2

d2

(
θ̇3 − θ̇2

)
+ k2 (θ3 − θ2) = τs,

(2)

where Ji for i = 1, 2 represents the moment of inertia of each degree of freedom.
The angular displacements, velocities and accelerations are denoted by θi, θ̇i

and θ̈i for i = 1, 2, 3, respectively. The relations between the subsystems are
τs = η τm and θ̇m = η θ̇3. The third equation of 2 will be changed to

d2

(
θ̇3 − θ̇2

)
+ k2 (θ3 − θ2) = η

(
KT i − Cmη θ̇3 − Tf − Jmη θ̈3

)

L d i
dt + R i + KE η θ̇3 = u.

(3)

The stiffnesses are denoted by k1 and k2, as well as d1 and d2 denote the
damping. The parameters k1 and d1 correspond the stiffness and the damping
between R1 and R2, respectively, while k2 and d2 represent the stiffness and
damping between R2 and R3 (see Fig. 3). From Eq. 3, the system may be rewrit-
ten as state space formulation in order to be integrated. The following equations
(Eqs. 4 and 5) show the state variables and state equations, respectively.

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1 − θ2
θ2 − θ3

θ̇1
θ̇2
θ̇3
i

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4)

ẋ1 = x3 − x4

ẋ2 = x4 − x5

ẋ3 = [−d1x3 + d1x4 − k1 x1 − Tr1 ]/J1

ẋ4 = [d1x3 − (d1 + d2)x4 − d2x5 + k1 x1 − k2 x2 − Tr2 ]/J2

ẋ5 =
[
k2 x2 − (η2Cm + d2)x5 + d2x4 + ηKT x6 − ηTf

]
/J3

ẋ6 = [−R x6 − ηKE x5 + u] /L,

(5)
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where J3 = η2 Jm. The DC-motor internally contains a PI controller to maintain
the desired velocity θ̇3. The input voltage was modelled as

u = kp(ωref − x5) + ki

∫ t

0

(ωref − x5)dt. (6)

Next, the friction torque model [12,22,25] is expressed as

Tr1(θ̇1) = N1 r1

[
μk + (μs − μk) · e−vb|θ̇1|

]
· sign(θ̇1) , (7)

N1 and r1 are the normal force and distance between the contact point and
the rotation centre of the disc 1. The static and kinetic friction coefficients are
represented by μs and μk, respectively. The parameter vb represents the decay
factor. Herein, the sign(θ̇1) is defined as

sign(θ̇1) =
{

1 for θ̇1 ≥ 0
−1 for θ̇1 < 0

. (8)

To solve Eq. 5 numerically while avoiding the discontinuity of equation 7 one
needs to rewrite the last one as follows [24]

Tr1(θ̇1) = N1 r1

{
μs θ̇1/ωs for |θ̇1| < ωs[
μk + (μs − μk) · e−vb|θ̇1|

]
· sign(θ̇1) for |θ̇1| ≥ ωs

, (9)

where ωs = 10−3.

3.2 Model Validation

In order to verify the correct correlation between numerical and experimental
results, a qualitative and quantitative validation is addressed. This procedure
aims to illustrate that the numerical modelling corresponds to the experimental
set-up. The identification of the mechanical parameters were performed and the
values are described in Table 1, while Table 2 contains the electrical constants
of DC-motor (via DC-motor manual).

Qualitative Comparison. For this analysis, the voltage relating to 3.14 rad/s
(30 rpm) was imposed on the DC-motor, thus the angular velocities of the model
were compared with experimental data. The friction torques on R1 and R2 were
unconsidered (Tr1 = Tr2 = 0). Figure 4 depicts the numerical and experimental
data, where the numerical one presents a similar behaviour of the acquired data.

Quantitative Comparison. Quantitatively, the numerical model also pre-
sented very matched results. According to [6], the Correlation Method is widely
used for its easy implementation. This method (Pearson correlation coefficient)
consists in
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Table 1. Mechanical parameters of test rig.

Mechanical constants

Parameter Description Value unit

J1 R1 moment of inertia 0.0288 kgm2

J2 R2 moment of inertia 0.0149 kgm2

J3 DC-motor moment of inertia 0.0237 kgm2

k1 Stiffness between R1-R2 1.1175 Nm/rad

k2 Stiffness between R2-Motor 0.3659 Nm/rad

d1 Damping between R1-R2 0.0202 Nms/rad

d2 Damping between R2-Motor 0.0167 Nms/rad

μs Static friction coefficient 0.47 −
μk Kinetic friction coefficient 0.30 −
vb Decay factor 0.978 s/rad

Table 2. Electrical parameters of DC-motor.

Parameter Description Value Unit

L Armature inductance 8.437 ∗ 10−4 H

R Armature resistance 0.33 Ω

KT Torque constant 0.126 Nm/A

KE Voltage constant 0.0602 V/(rad/s)

Tf Friction torque 0.1196 Nm

Cm Speed regulation constant 1.784 ∗ 10−4 Nm/(rad/s)

kp Proportional constant 2.800 −
ki Integral constant 3.500 −

Fig. 4. Numerical and experimental angular velocity (a) θ̇1 and (b) θ̇2 for 3.14 rad/s.
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PC =
∑n

i=0 X1i · X2i −
∑n

i=0 X1i ·∑n
i=0 X2i

n√(∑n
i=0 X2

1i
− (∑n

i=0 X1i)
2

n

)
·
(∑n

i=0 X2
2i

− (∑n
i=0 X2i)

2

n

) , (10)

where X1i and X2i are data of the experimental and numerical model, and n
is the number of points. If PC is equal to 1 it means a perfect match between
experimental and numerical data. Otherwise, PC = 0 means a total mismatch
between data.

Another indicator is the Amplitude Pulse Level (APL) which measures the
difference between the data maximum amplitudes [6]. This is quantified as

APL =
|max(X1) − max(X2)|

|max(X1)| . (11)

In this indicator, APL = 0 means a perfect match whereas APL = 1 means
a total mismatch. In the Table 3 is shown the validation method indicators
expressed by Eqs. 10 and 11 for the angular velocity θ̇1 of the experimental
and numerical results.

Table 3. Quantitative comparison between experimental and numerical of the θ̇1.

ωref [rpm] PC [−] APL [−]

30 0.898 0.010

40 0.893 0.172

50 0.941 0.114

70 0.955 0.119

Fig. 5. Test rig response for 3.14 rad/s (30 rpm) with (a) stick-slip and (b) stick-slip
zoomed. N1 = 25.0 N and Tr2 = 0.0 Nm. Continuous gray and dashed black lines
contain experimental and numerical results respectively.
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Stick-Slip Behaviour Comparison. Moreover, the behaviour during stick-
slip of the system is compared (see Fig. 5). The stick time (which means the
time during the stick phase [11]) and the amplitude of oscillations are similar.
However, in the Fig. 5(a), one may observe the increasing phase loss between the
amplitude oscillations of the numerical and experimental models.

3.3 Local Stability and Bifurcation Diagrams

Herein from this section the angular phases are denote as

δ12 = θ1 − θ2, δ23 = θ2 − θ3. (12)

Firstly, a local stability analysis in other to identify periodic and equilibria
solution zones is performed. The torsional vibration map (TVM) is obtained
via Hurwitz criterion [5,9,14]. Figure 6(a) illustrates two zones: one with stable
periodic solutions and the other with equilibrium solutions [15]. This means that
in the left side of the curve, the system undergoes torsional vibrations (upper
Fig. 6(b)) and, in right side, it presents no vibration (lower Fig. 6(b)).

Fig. 6. (a) Torsional vibration map and (b) time response of the R1 for 2 rad/s and 4
rad/s. N1 = 0.0 N at 0 < t < 50 and N1 = 20.0 N at t > 50.

Furthermore, in order to identify stable solutions with ωref as bifurcation
parameter, path-following technique and shooting method via PyDSTool package
[3] are used to obtain limit cycles numerically [13,16] for the experimental set-
up model as illustrated in Fig. 7. In this figure, the applied normal N1 is kept
constant and equal to 10 N.

One may note that the set-up system presents two Hopf bifurcations denoted
by H1 and H2. A periodic branch p1 rises at H1 and stable limit cycles are present
in the response of the system for ωref = 0.04 rad/s, while e1 denotes an unstable
equilibrium branch. The points 1, 2 and 3 on the periodic branch p1 were depicted
in order to illustrate the the orbit in the phase plane. At ωref = 2.9 rad/s, an
unstable periodic branch p2 appears and e2 rises as an equilibrium branch at
ωref = 2.02 rad/s (H2).
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Fig. 7. Bifurcation diagram of the experimental set-up with ωref as control parameter
for N1 = 10.0 N and Tr2 = 0.0 Nm.

4 Mitigation Strategy and Results

Analysing Fig. 7, one may observe the possibility of periodic and equilibrium
solutions for 2.0 ≤ ωref ≤ 2.9 rad/s. To check the possibility of solution in this
velocity range, the torsional vibration factor1 was used [2,19,20] as expressed
below:

fTV =
max(θ̇1) − min(θ̇1)

2ωref
, (13)

where fTV = 0 means no torsional vibration prevails, θ̇1 = ωref and the solution
is an equilibrium point, otherwise fTV > 0 means torsional oscillations and the
system presents stable limit cycles. Basins of attraction are depicted in Fig. 8.
The initial conditions were

x0 =
[
δ12, δ23, θ̇1, θ̇2, θ̇3, i

]T
=

[
δ12, 0.0, θ̇1, ωref , ωref , 1.022

]T
. (14)

Herein, the current i = 1.022 A is the necessary value for steady-state with no
perturbation obtained via simulation (acquired numerically). Therewith, the
solution depends on the perturbation to which the system is subjected in this
angular velocity range. Thereby, the mitigation strategy consists in applying a

1 Some authors denote this factor as “stick-slip severity”, but the system may oscillate
without stick-slip phenomenon.
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Fig. 8. Basins of attraction for (a) ωref = 2.0 rad/s and (b) ωref = 2.9 rad/s. The
applied forces N1 = 10.0 N and Tr2 = 0.0 Nm. The white and black regions mean
equilibria and periodic solutions, respectively.

resistive torque in R2 in order to create an acceptable and sufficient perturbation
to change the solution from the periodic branch to the equilibrium branch, i.e.,
the system may pass from torsional vibration to no torsional vibration.

The resistive torque Tr2 may be written as follows

Tr2 = N2 r2 μs

{
sin(πδ12) for δ̇12 > 0
sin(−πδ12) for δ̇12 < 0.

(15)

Equation 15 is equivalent to applying impulsive torques depending on the mag-
nititude of the phase, δ12, and direction of the phase variation, δ̇12. Equation 16
provides the main energies involved. The damping energy is very small compared
to the others.

Ek1 = 1
2J1

(
ωref − θ̇1

)2

, Ek2 = 1
2J2

(
ωref − θ̇2

)2

,

Ep1 = 1
2k1 δ212, Ep2 = 1

2k2 δ223,

Wr2 = Tr2

∫ t2
t1

(
ωref − θ̇2

)
dt.

(16)

This resistive torque Tr2 prevents the kinetic energy Ek1 increasing by the extrac-
tion of potential energies Ep1 and Ep2 . Therewith, it acts as an energy transfer
control from potential energy to kinetic energy. In other words, the resistive
torque represented by Eq. 15 avoid large values of δ12.

It worth to remark that the energy and work of the unperturbed system
were subtracted in order to observe only the variation of these magnitudes. The
potential and kinetic energies of the system are depicted before and after the
application of the resistive torque Tr2 (Eq. 15) in Fig. 9 for ωref = 2.5 rad/s. The
strategy mitigation is applied during 50 s - from 100 to 150 s.

Moreover, in Fig. 10(a)–(b) it is depicted the influence of the Wr2 on the
kinetic and potential energies, respectively, over time. Following, Fig. 10(c)–(d)
illustrates the mitigation of the θ̇1 and θ̇2, respectively, over time.
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Fig. 9. Kinetic and potential energies as function of time (a) before and (b) after the
application Tr2 . N1 = 10.0 N, N2 = 1.0 N and ωref = 2.5 rad/s.

Fig. 10. Influence of the mitigation strategy (a) on the kinetic energies over time, (b)
on the potential energies over time, (c) on θ̇1 and (d) on θ̇2. N1 = 10.0 N, N2 = 1.0 N
and ωref = 2.5 rad/s.
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5 Conclusions

This work proposed a mitigation of the torsional vibration of a slender mechan-
ical system. The experimental set-up may represent a drilling system under
torsional vibration in its severe stage: stick-slip.

The validation of the numerical model was performed and presented a good
match, qualitatively and quantitatively. This validation is important in order to
investigate severe circumstances that may be not possible to verify experimen-
tally. Some non-modelled phenomena may influence the response of the system
such as temperature between the disc and pin. For example, it may increase
the friction coefficients which herein were considered constants. Furthermore,
manufacturing limitations imposed a slight rotation out of plane of the disc R1

and therewith variation in the normal force N1 is observed. An improvement of
the experimental set-up and the friction model, as one may see in Fig. 5, may
provide an even better match between numerical and experimental models.

The numerical results proved that a friction torque acting on R2 may pro-
vide the sufficient perturbation to change the solution of the system. Thereby,
in the ωref range, the system must present bi-stable behaviour. In Fig. 8, one
may observe the mentioned bi-stable solutions: Fig. 8(a) presents a small equi-
librium region which may difficult the change between stable solutions and the
amplitudes are 2.4 times the ωref , whereas Fig. 8(b) presents a significant equi-
librium region which may lead to an effortless change of solutions with maximum
amplitude of 2.10 times the ωref . Comparing the energy magnitudes in Figs. 9
and 10, the Wr2 provides acceptable values of energy extraction via friction with
N2 = N1/10. In fact, it must also be investigate in order to assume the mini-
mum value possible. It should be remarked that the combination of N1 and ωref

(representing weight-on-bit and Surface RPM, respectively, in field operation)
was not modified to mitigation purpose.

At the moment in field operations, there is no tool capable to induce torsional
oscillations as studied here. However, this work aims to provide theoretical basis
for improvement of future operations and better understanding about stick-slip
phenomenon.
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Abstract. Vibrations in turning machining are one of the most com-
mon sources of problems. Bad quality finishing, decrease of the tool life,
dimensional errors, and noise are some of the issues generated by these
vibrations. To understand the role of each component, this work presents
a model of a metal lathe including its drivetrain, and simulates it during
the internal turning operation. The drivetrain is composed by an electric
motor connected to the spindle through a pulley and belt transmission.
The spindle was modeled as a rotor supported by rolling bearings, while
the chuck with jaws and the workpiece were considered to be rigidly
attached to the spindle. The interface between the workpiece and the tool
was modeled considering their relative displacement and the machining
condition, thus generating a set of cutting and drag forces that varies
during the operation. The tool holder was modeled by three-node finite
volume beam elements that are attached to the turret. The turret was
connected to the machine frame through a total joint (configured as pris-
matic). This model was implemented in the dynamic simulation software
MBDyn and a module was developed in C++ to mimic the interaction
between workpiece and tool. Different configurations of the machine were
tested, such as the diameter of the tool holder and the rotation speed of
the spindle, and their influence on the drivetrain is reported.

Keywords: Metal lathe · Drivetrain vibrations · Multibody dynamics

1 Introduction

Machining is one of the most important manufacturing process in the metal-
work industry. Operations like turning, milling, drilling, and grinding lead to
the achievement of pre-established form, dimension, and surface finish of a part.
Turning is a relatively fast, precise and cheap operation, which renders it the
one of the most effective ways to produce mechanical cylindrical components.
However, machining processes usually relies on rotating parts that are subjected
to a large variety of vibration phenomena. These vibrations are one of the most
common sources of problems, causing bad quality finishing, decrease of the tool
life, dimensional errors and noise [15].
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The drivetrain of a machining equipment is one of its mains components,
because most of the power required to cut metal flows through it. The drivetrain
is composed by an electric motor connected to the spindle through a pulley/belt
transmission. To understand its behavior this work presents a model of a metal
lathe and simulates it during the internal turning process, also known as boring
operation.

The spindle is the main component of the drivetrain of any machining equip-
ment. Usually being one slender rotating shaft, it brings all sorts of vibration
problems, which is exactly the opposite of what its function demands. Aini
et al. [1] modeled a grinding machine spindle as a rigid shaft supported by
angular contact ball bearings. They studied the effect of the radial force, spindle
speed, frictional damping and thrust loads. In their simulations, they discovered
that the axial mode was less than half of the frequency of the radial modes and
the behavior of the spindle was influenced by the preload in the bearings.

Mannan et al. [11] also studied the vibration on a grinding machine, but they
focused on the torsional vibrations. They used a simple three degrees of freedom
model to represent workpiece, wheel and spindle. They concluded that the width
of cut can lead to the torsional instability of the system due to chatter. Altintas
and Weck [2] made a review of the modeling of chatter in metal cutting and
grinding processes. They highlighted that although the boring bar is the most
flexible part of the hole enlargement process, other parts such as the shaft, chuck
and the tool holder can lead to chatter.

Ertürk et al. [6] proposed an analytical model of the spindle-tool dynamics
of a drilling machine. They modeled the spindle as a discretized beam using
the Timoshenko beam model, with the spindle supported by elastic bearings.
The FRF (frequency response function) of the tool generated by the proposal
model was compared to the response obtained from a commercial finite element
software. They presented a good agreement. Due to the geometry of the drilling
machine spindle they showed that the Euler-Bernoulli beam could lead to inac-
curate results at high frequencies when compared to the Timoshenko beam.

Roukema and Altintas [13] presented a time domain model of a drilling oper-
ation to study the torsional-axial chatter vibrations. The cutting force was cal-
culated by a mechanistic model that uses the feedrate, depth of cut and drill
geometry to determine the torque and thrust on the tool. The simulation also
considers the generated surfaces to predict the occurrence of vibration phenom-
ena such as chatter. The simulated results were close to the experimental ones,
although the authors point out that the process damping would be required to
predict the stability of the drilling operation.

Guo et al. [8] analyzed a lathe spindle system under the influence of an
unbalanced workpiece. They developed a pure torsional lumped mass system
to model the geared drivetrain. The authors concluded that the spindle can
not operate at same speed of its natural frequencies because of the instability
generated by the unbalance of the chosen workpiece, a crankshaft.
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In the next section the methodology adopted to develop the computational
model of the metal lathe using a multibody dynamics approach as well as the
details of the cutting force calculation are presented.

2 Methodology

The metal lathe can be considered a mechanical constrained system, which can
be formulated as a system of Differential-Algebraic Equations (DAE) [12]:

Mq̇ − β = 0

β̇ +
(

∂φ

∂q

)T

λφ +
(

∂ψ

∂q̇

)T

λψ =
∑

f (q, q̇, t) (1)

φ (q, t) = 0

ψ (q, q̇, t) = 0

where M is the inertia matrix, β is the momentum vector, q is the position
vector, φ is the system of holonomic constraint equations, ψ is the system of non-
holonomic constraint equations, λφ is the Lagrange multiplier associated with
the holonomic constraints, λψ is the Lagrange multiplier associated with the
non-holonomic constraints, f is the vector of external loads, and ˙(♣) represents
the time derivative of (♣).

This formulation is implemented in the open source software MBDyn, which
is a multiphysics platform that can simulate complex systems. The models on
MBDyn are based on nodes, like the ones used on finite element softwares. Nodes
provide degrees of freedom, and they can be associated to different physical
domains, such as mechanical, thermal and electrical. This structure makes easier
to integrate different components of the same machine in one simulation.

Constraints and forces have to be applied on nodes, thus they become part
of the modeled system. This is performed by adding two sets of equations to
variables associated with each node. The first set is used in the assembly of the
system of Eq. (1), and the second set is used during the nonlinear solution phase,
if it is necessary.

New elements can be created to compose the model by adding new modules
to MBDyn. These modules are written in C++, and they basically contain the
system of equations that model the dynamic behavior of the element and its
Jacobian matrix. These modules are compiled with MBDyn, and they become
part of the software which enable the use of this new element in any model.

The next section presents the set of equations that model the cutting forces in
the turning process, which were implemented in a module of MBDyn to compose
the complete model of the lathe drivetrain.

2.1 Cutting Model

Using the geometry represented in Fig. 1 it is possible to reproduce the behavior
of the cutting process using a semi-analytical model that relates one node fixed to
the tool holder (Node 1) and one node attached to the workpiece (Node 2). The
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Fig. 1. Geometry of the cutting model.

tool (insert) is considered to be rigidly attached to the tool holder. The kinematic
relationship between nodes 1 and 2 is used to calculate the forces through the
cutting model, then these forces are transformed to the absolute coordinates and
applied to each one of the nodes. The calculation of the moments generated by
these forces should consider the point of application of the cutting force, which
moves during the machining process. The forces and moments applied to both
nodes can be calculated by:

f1 = −R1rfcut
f2 = R1rfcut (2)
c1 = −R1x̃1 × R1rfcut − R1rccut
c2 = R2x̃2 × R1rfcut + R1rccut

where f1 and f2 are the forces applied to nodes 1 and 2, c1 and c2 are the
moments applied to nodes 1 and 2, R1r = R1R̃1 is the rotation matrix of the
tool edge, R1 is the rotation matrix of the tool holder node, and R̃1 is the
rotation matrix of tool edge in relation to the node of the tool holder (node
1), x̃1 is the offset between the tool holder node and the cutting edge, and x̃2

is the offset between the cutting edge and the node attached to the workpiece,
fcut and ccut are the cutting force and moment. The calculation of cutting force
fcut was adapted from the model proposed by Xiao et al. [17] to the multibody
environment. They based their model on the analytical approach developed by
Tarng et al. [16], but instead of using an analytical formulation, they obtained
the cutting properties (shear and friction angles, and shear stress) from the data
reported by Kashimura [10].

The cutting force is calculated using the following equation:

Fc = R cos(λ − α)
Ft = R sin(λ − α) (3)

R =
kabt1w

sin φ cos(φ + λ − α)
U(t1)

fcut = {0 − Ft − Fc}T



474 E. P. Okabe and D. I. Suyama

where R is the cutting force magnitude, λ is the friction angle, α is the rake
angle, kab is the shear stress, t1 is the chip thickness, w is the cutting width, and
U(t1) is the unit step, which is zero unless t1 is positive. Using the experimental
data reported by Kashimura [10] for the S45C carbon steel, the shear angle, the
friction angle and the shear stress become:

φ = exp(0.0587v + 1.0398t1 + 0.6742α − 1.2392)
λ = exp(−0.0546v − 0.8856t1 + 0.8923α − 0.2388) (4)

kab = exp(0.0059v − 0.4246t1 + 0.0818α + 6.3211)

where v is the cutting speed. The dynamic variables of the cutting model must
be calculated using the relative motion between the tool edge and the workpiece:

xrel = R1x̃1 + x1 − x2;
ωrel = R1r

T (ω2 − ω1) (5)
ẋrel = ẋ1 + ω1 × R1x̃1 − ẋ2

where x1 is the position of the tool holder node, x2 is the position of the work-
piece node, ωrel is the relative angular velocity between the tool and the work-
piece, ω1 and ω2 are the angular velocity of the nodes associated to the tool
(node 1) and workpiece (node 2), ẋrel is the relative linear velocity, ẋ1 and ẋ2

are the linear velocities of the nodes 1 and 2.
Equation 5 provides the information to determine the dynamic variables of

the cutting model:

w = (xfeed − xrel[x]) · 103

t1 = (
√
xrel[y]2 + xrel[z]2 − r) · 103 (6)

v = −ωrel [x] · r

ẏ =
xrel[y] · ẋrel[y] + xrel[z] · ẋrel[z]√

xrel[y]2 + xrel[z]2

α = α0 − arctan
(

ẏ

v

)
− arctan

(
xrel[y]
xrel[z]

)

where xfeed is a function which determines the tool feed [4], the brackets [i]
indicates that the ith component of the vector (for instance, xrel[x] refers to the
x component of the position vector xrel), r is the radius of the workpiece, α0 is
the initial rake angle.

This formulation was implemented on the MBDyn as an element through a
module written in C++. Once compiled this element could be included in the
metal lathe model.

3 Metal Lathe Modeling

Although the cutting model is essential to model the dynamic behavior of a metal
lathe, the interaction between workpiece and tool is just one of the elements of
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the model. Figure 2 shows an outline of the metal lathe modeled in this work
with the coordinate system adopted, which is not the usual coordinate system
seen in machining research, where the X-axis would be in the place of the Y-axis
of Fig. 2.

Fig. 2. Outline of the metal lathe and its coordinate system.

The spindle was modeled as discretized beam elements that uses the finite
volume formulation proposed by Ghiringhelli et al. [7]. It is a large displacement
slender beam that is computationally efficient and can be easily integrated in
multibody models. This element is composed by three nodes that are directly
related to the dynamic nodes of MBDyn.

The spindle is supported by five ball bearings that were represented by the
nonlinear model proposed by Gargiulo as reported by Hambric et al. [9]. This
configuration renders the support of the spindle extremely stiff, which is desirable
to keep the precision of the cutting process even under heavy load machining.

One of the ends of the spindle is connected to an induction motor through
a pulley-belt system. This motor was modeled using the formulation proposed
by Dresig and Holzweißig [5] to represent an asynchronous motor. This element
was implemented by Reinhard Resch in the MBDyn and it simplifies the electro-
magnetic equation expressing the dynamic behavior of the motor through only
three variables: slippage, breakdown slippage and breakdown torque.

The pulley-belt system was modeled using an elastic rod element that rep-
resents the tension applied by the belts to both pulleys and a deformable axial
joint (torsional spring) that transmits the rotation from the motor rotor to
the spindle. The stiffness and damping properties of the belt were determined
using the experimental data presented by Shangguan and Zeng [14] and Čepon
et al. [3].
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The chuck and the workpiece were modeled as rigid bodies that are rigidly
attached to the spindle end node. The turret was also modeled as a rigid body
that supports the tool holder and moves along the X-axis.

The tool holder was modeled as a discretized finite volume beams like the
spindle. Internal turning is known to cause vibration problems during machining,
due to the cantilever geometry of the tool holder, which is a slender beam with
a tool in the tip.

Finally the holder head and tool itself (insert) were modeled as a rigid body
attached to the other end of the holder.

The model has 28 structural nodes and each node has 6 d.o.f. (degrees of
freedom). Thus the model has a total of 168 d.o.f. of which 116 are constrained
by the algebraic equations (Eq. 1). The integration method of MBDyn is a A/L
linear multistep algorithm [12] with a constant time step of 1 × 10−4 s (or a
sampling frequency equals to 10 kHz).

The system is completely static in the initial time only subjected to the
gravity force. The electric motor accelerates the spindle to a defined speed and
then the turret moves to start the machining process.

Table 1 summarizes the parameters used in the simulation of the lathe.

4 Results

To verify the dynamic behavior of the lathe, it was simulated in six different
conditions. The influence of the flexibility of the tool holder (boring bar) was
verified by using two different diameters: 16 and 20 mm. They were tested under
two rotation speeds: 1000 rpm (132 m/min) and 2000 rpm (264 m/min), so the
cutting force could be tested under different cutting speeds. To give a realistic
excitation source vibration for the system, the workpiece radius is considered to
have a random variation with an amplitude of 0.1 mm.

The last two tests were used to check the effect of the chatter on the drive-
train. To mimic this behavior, a sine function with an amplitude of 0.1 mm was
added to the workpiece radius. This sine function has a frequency of 650 Hz,
which is close to the vibration frequency of the tool holder during the machin-
ing process. Figure 3 shows the power spectral density of the angular velocity of
the chuck before the tool starts to machine the workpiece (left) and during the
machining (right). Before the cutting a peak around 35 Hz can be seen on all
simulated situations, which is associated to the first mode of the drivetrain sys-
tem (motor, belt and spindle). That vibration comes from the fast acceleration
of the spindle imposed by the motor. This peak decreases when the machining
takes place, however, another peak shows up at 585 Hz related to the first flexu-
ral mode of the tool holder. Even though the frequency associated to this mode
is different from the 16 mm to 20 mm tool holder, the peaks occur at the same
frequency.

Another information that can be extracted from Fig. 3 is that the diameter
of the tool holder had a greater influence on the angular velocity of the chuck
than the increase of the rotation speed itself. In the opposite end of the spindle
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Table 1. Lathe model parameters

Part Parameter Value

Induction motor Slippage 0.1

Breakdown torque 58.83 Nm

Viscous damping 0.0015

Rotation speed 1000 and 2000 rpm

Tool holder Length 125 mm

Diameter 16/20 mm

Material steel

Spindle External diameter 75 mm

Internal diameter 40 mm

Length 567 mm

Material Steel

Ball bearings Sphere diameter 11 mm

Number of spheres 22

Contact angle 25◦

Chuck Length 80 mm

Mass 14.25 kg

Moment of inertia Ixx 0.051 kg·m2

Moment of inertia Iyy, Izz 0.033 kg·m2

Workpiece Mass 1 kg

Moment of inertia Ixx 1·10−6 kg·m2

Moment of inertia Iyy, Izz 8·10−6 kg·m2

Internal diameter 40 mm

Material steel S45C

Cutting properties Speed 132 and 264 m/min

Feedrate 0.1 mm/rev

Rake angle 3◦

Pulley-belt Transmission ratio 1:1

there is the pulley set which is connected to the motor. Its angular velocity can
be seen on Fig. 4 and the same behavior is observed although the second peak
has a lower frequency (∼500 Hz) and it is more damped. Figure 5 shows that
the influence of the tool holder is much less pronounced in the motor than the
spindle (Fig. 4), which means that the belt is filtering the vibration coming from
the spindle. Another point to be observed is that the vibration power of the
mode related to the drivetrain is largely reduced during the machining, which
means that the cutting process effectively constrains the torsional motion of the
spindle.
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Fig. 3. Power spectral density of the angular velocity of the chuck before (left) and
during machining (right).

Fig. 4. Power spectral density of the angular velocity of the spindle pulley before (left)
and during machining (right).

Fig. 5. Power spectral density of the angular velocity of the motor rotor before (left)
and during machining (right).

To verify the effect of the drivetrain on the tool, its angular velocity is rep-
resented on Fig. 6. While there is an small influence of the tool holder on the
motor (Fig. 5), the opposite is not true.

Another phenomenon very interesting to analyze is the chatter, which is
more pronounced in the internal machining operation. The chatter is related
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Fig. 6. Power spectral density of the angular velocity of the tool during machining.

Fig. 7. Power spectral density of the moment applied to the spindle.

to the vibration of the tool holder that is imprinted in the machined surface
of the workpiece. When the tool is executing other passes on this surface, the
tool holder is excited by the impression left which increases the vibration and
deteriorates the surface finish. The chatter phenomenon can decrease the tool
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life span and it causes vibration problems on the components of the drivetrain.
To simulate the chatter phenomenon, a sine wave was added to the workpiece
radius profile with a frequency that matches the flexural mode of the tool holder
and amplitude of 0.1 mm.

Figure 7 shows the power spectral density of the moment applied to the spin-
dle through the chuck. The moment due to chatter is much higher than normal
cutting operation (without chatter) and there is a second peak on 1285 Hz, which
is approximately twice the frequency of the first peak (650 Hz).

Fig. 8. Power spectral density of the moment applied to the motor.

The vibration caused by the chatter is also present in the moment applied
to the motor which can be observed in Fig. 8.

5 Conclusions

A complete model of lathe drivetrain was simulated under machining conditions
using a multibody dynamics software, that demonstrated the influence of the
cutting process on the torsional vibration of drivetrain components. The internal
turning machining was adopted in order to highlight the effect of the flexibility
of the tool holder.

Results showed that there is a considerable effect of this flexibility on the
spindle behavior, but this effect is filtered by the pulley-belt set to the motor.
The vibration of the drivetrain does not seem to affect the tool motion, that is
largely influenced by the behavior of the tool holder.
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However, the influence of the chatter phenomenon is transmitted through the
spindle to the electric motor, which indicates that the vibration generated by it
can damage the motor.
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Abstract. In conventional automotive gearboxes, all gears are engaged, but not
all of them are involved in transmitting power to the wheels. These unloaded
gear pairs are, nevertheless, subjected to light forces due to slight torque and
speed variations and also to the interaction between the tooth surfaces and the
lubricant. Under certain circumstances, these conditions can lead to repeated
impacts among teeth flanks and counter flanks. As a consequence, undesirable
vibrations and noises are produced, which are commonly denominated as rattle
phenomena, that result in premature fails and damage of other elements coupled
to the transmission, as well as in a lack of passengers comfort. Within this
framework, in this study, a survey of the available formulations, which simulate
the forces behavior in lubricant environment under rattle conditions, has been
performed. In a previous work, the authors assessed different formulations for
this purpose, observing significant differences among them and also concluding
that two effects should be considered in order to properly model rattle condi-
tions. One is linked with the pressure variation due to the fluid entrance in the
tooth conjunction, whilst the other is related to the lubricant squeeze when teeth
profiles are approaching. Having this in mind, in this paper, the dynamic
behavior of gear transmissions under low-torque conditions were assessed with
different hydrodynamic formulations, which consider both squeeze and fluid
entrance effects. With this purpose, these nonlinear forces derived from each
formulation were obtained and compared for a sample transmission, simulating
several working conditions of torque, speed and lubricant viscosity. The results
are shown by means of the dynamic transmission error as well as the forces
present in the conjunction.

Keywords: Rattle � Lubricant � Low-torque conditions and squeeze

1 Introduction

Gear rattle is a phenomenon that occurs in multistage gearboxes, which gear pairs are
constantly in mesh. During their operation, there are stages which actually transmit the
power from the input to the output shaft, whilst there are others which are engaged but
their goal is not to transmit the torque in that specific moment. The former are usually
called as active gear pairs and the latter as inactive stages. This rattle phenomenon is
located in the inactive gear pair and consists of repeated contacts between their flanks
and counter-flanks. These contacts are mainly produced by the engine dynamics effect
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on inactive stages and results into a lack of passenger comfort and harmful vibrations to
the elements connected to the gearbox [1–3].

In order to understand this phenomenon, this study is focused on the simulation of
inactive stage dynamics, thus, the studied gear pair is subjected to low levels of torque.
In these operating conditions, the lubricant between teeth does not behave as in the
active stages. This is the reason why comprehending the lubricant role is the major
challenge to solve this issue.

This work goal is to analyze the role of the lubricant under rattle conditions and, for
this reason, a survey of the available formulations, which simulate the forces in the
conjunction under these operating conditions, has been performed. Specifically, as the
regime of lubrication is hydrodynamic, several approximations can be made in the
Reynolds equation, leading to an expression which superposes two fluid effects. The
first is produced by the lubricant squeeze when the tooth profiles are approaching and
the second is due to the lubricant entrance to the conjunction.

In literature, there are some studies which simulate transmissions under these
conditions [2, 4–11], but surprisingly they propose formulations which take into
account only one of these effects or consider both effects but with different constraints.
From this state of the art, the conclusion was that there is not a unique solution to
model the lubricant forces. Nevertheless, in previous authors’ works [12], some of
these formulations were assessed, leading to establish that both effects were necessary
to accurately simulate rattle conditions.

This is the reason why, continuing this previous preliminary study [12], this study
assesses a gear pair dynamics under rattle conditions for different fluid viscosities,
implementing formulations which consider both squeeze and entraining fluid effects.
To do so, the use of an enhanced model previously developed by the authors [13–15],
which is characterized by considering simultaneously meshing efforts on both tooth
sides, was required, in which six hydrodynamic formulations were implemented.

2 Hydrodynamic Force Formulations

The role played by the lubricant in rattle conditions is of crucial importance in order to
accurately simulate the gear pair dynamics. In this framework, the first step to obtain
the forces present in the contact between teeth is to determine the lubrication regime. In
this regard, Greenwood and Stribeck non-dimensional parameters were calculated [16].
Once was assured that the lubrication regime was hydrodynamic, the lubricant force
was defined by calculating the lineal viscous damping following Kelvin-Voigt′s model:

FC ¼ Ceq
_d ð1Þ

In this respect, in order to obtain the equivalent viscous damping, the Reynolds
equation was solved considering the hydrodynamic regime constraints. These con-
straints are related to the local deflections of the teeth and the rheological properties of
the fluid. Specifically, no local tooth deflections are produced under hydrodynamic
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lubrication since low-torque levels are applied as well as the fluid properties, such as
density and viscosity, could be approximated to be constant in the conjunction vicinity.
Taking these considerations into account, the Reynolds equation can be simplified to:
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Where q and η are the density and dynamic viscosity of the fluid, h is the fluid film
thickness, p the fluid pressure distribution and ui are the profile velocities in the
x direction (tangential to the teeth profile).

Solving this expression 2, the pressure distribution is obtained, which is the pre-
vious step to calculate the hydrodynamic force. In order to do this, the film thickness is
considered to be the gear profile cross-section, which in turn can be represented by its
Taylor series expansion:

h ¼ hC þ x2

2qeq
ð3Þ

As can be observed, only two terms of the Taylor expansion are enough to
reproduce the profile curve since the contact only affects a small area (microns order).
This equations depends on the central film thickness hC and the equivalent radius of
curvature qeq.

Moreover, in order to integrate Reynolds equation, the limits of the affected area
have to de defined (x1 < x < x2):
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In this respect, most of the authors which have dealt with gear rattle phenomena
consider different x domains and different approaches to obtain the pressure distribution
[2–11]. For the sake of simplicity, a summary of the six formulations implemented in
the model is presented in the next section and the reader interested in this matter is
referred to [2–12], where each formulation is described.

3 Model Description

Although the gear transmission dynamic model previously developed by the authors is
of 19 degrees of freedom (d.o.f.), in this application, an isolated gear pair was assessed,
and therefore a 2 d.o.f. model, which is represented in Fig. 1, was used.
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Its dynamic equations are detailed next:

J1R1€h1R1 þ f1R1ðh1R1; h2R1; _h1R1; _h2R1Þ ¼ T1R1;

J2R1€h2R1 þ f2R1ðh1R1; h2R1; _h1R1; _h2R1Þ ¼ T2R1;

(
ð5Þ

hiRj is the rotational degree of freedom linked to JiRj inertia, where i is referred to
the shaft number and j to the gear number. In this application, there are 2 shafts with
one gear each. Moreover, TiRj represents the external torque and fiRj the torque due to
the forces in the conjunctions (Fk), which in turn depends on the equivalent stiffness
and viscous damping of the contact Keqk and Ceqk, as presented in Eq. 6.

Fk ¼
0 dk [ hmax

FHDLk ¼ CWedge
eqk Vek � CSqueeze

eqk
_dk

hC ¼ dk
hC ¼ hmin

�
hmax [ dk [ hmin

hmin [ dk [ 0
FEHLk ¼ Keqkdk dk\0

8><
>: ð6Þ

The force formulation choice is dependent of the distances dk (being k the number
referred to each contact) between pairs of teeth potentially in contact. If this distance is
higher than a fixed value hmax, the fluid effect is considered to be negligible. Fur-
thermore, in order to avoid infinite values of viscous damping, a saturation film
thickness value equal to ten times the mean profile roughness was adopted (hmin =
10Ra). It can be observed that there is not a transition from hydrodynamic to elasto-
hydrodynamic regime, since only rattle conditions are analyzed. When geometric
overlap exists, the force is calculated by a no-linear spring which simulates the meshing
stiffness. This stiffness is obtained by the superposition of a finite element model
(FEM) of the gears and a hertzian formulation, which provides the local deformations
of the teeth in contact. Then, the dynamic equilibrium among inertial, external and
meshing forces is reached by an iterative process, checking the existence of new
contacts in both flanks. For the sake of brevity, the stiffness calculation methodology is
not further presented in this work, referring to the interested reader to [13–15].

θ1R1

θ2R1

fiRj(keqk,Ceqk)

J1R1
J2R1

T2R1T1R1

keqk

Ceqk

Fig. 1. 2 d.o.f. gear dynamic model scheme.
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Regarding the hydrodynamic forces, the negative value of the squeeze term is due
to the fact that the force is positive when the profiles are approaching. Conversely,
when the profiles are moving away, this term is null, since the actual effect is not
represented by this formula, as shown in Eq. 7:

FHDLk ¼
CWedge
eqk Vek � CSqueeze

eqk
_dk _dk\0

CWedge
eqk Vek

_dk [ 0

(
ð7Þ

The equivalent viscous damping CWedge
eq and CSqueeze

eq of the six formulations
implemented are listed in Table 1.

4 Case of Study

The parameters of the assessed gear transmission are presented in Table 2.

Table 1. Equivalent viscous damping expressions of the implemented hydrodynamic forces.
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Table 2. Gear transmission parameters.

Parameter Value Parameter Value

Pinnion teeth 18 Rack addendum 1.25 m
Wheel teeth 36 Rack deddendum 1 m
Pinnion Inertia [Kgm2] 1.7519 e−04 Rack tip radius 0.25 m
Inercia Rueda [Kgm2] 0.0028 Face width [mm] 26.7
Module [mm] 3 Oil viscosity [Pas] 0.08/0.008
Young Modulus [GPa] 210 Center distance [mm] 81.1
Poisson Coef. 0.3 hmin [mm] 8 e−3
Pressure angle [degree] 20 hmax [mm] 1
Half-width contact (a) [mm] 1 Mean roughness (Ra) [mm] 8 e−4
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The tests performed to this gear transmission consist of introducing speed pertur-
bations to two specific mean pinion velocities (X), as well as applying a viscous
resistive torque to the driven wheel which simulates a journal bearing behavior, since
the automotive gears are generally supported by them, and therefore, they are the
typical resistance which gears under rattle conditions have to overcome.

_h1R1 ¼ Xþ#sinDxt and T2R1 ¼
pgblbr

3
b

2C
_h2R1 ð8Þ

Where X is the mean velocity which takes values of 500 and 1000 rpm, 0 and Dx
are the amplitude and frequency of the speed perturbation, which values are shown in
Table 3.

These values of perturbation amplitude were chosen in order to obtain the same
displacement in the three tests. Moreover, the external torque T2R1 is defined by the
lubricant, length, radius and clearance of the journal bearing (ηb, lb, rb and C), which
values are listed in Table 4.

5 Results

As the pinion velocity is predefined in the tests performed, there is only one d.o.f.,
which is represented by the Dynamic Transmission Error (DTE). In Fig. 2, the DTE is
shown when the pinion mean velocity is 500 rpm for the three considered perturba-
tions. Furthermore, each column correspond to a different value of lubricant dynamic
viscosity, 0.08 Pas on the left graphics and 0.008 Pas on the right. The horizontal black
lines represent the backlash, therefore when the DTE is outside this range, physical
interference between profiles occurred. The pitch point is considered as the reference of
angular position, being this the reason why the backlash lower value is zero.

On the left side, it can be observed that the six implemented formulations follow a
similar trend, observing that Martin’s consideration in the fluid entraining effect makes

Table 3. Perturbation parameters.

Dx [Hz] 0 [rad/s]
4 10.472
8 5.236
16 2.618

Table 4. Bearing parameters.

Parameter Value Parameter Value

Bearing radius (rb) [mm] 10 Bearing length (lb) [mm] 15
Radial clearance (C) [mm] 0.025 Bearing viscosity (ηb) [Pas] 0.08/0.008
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the difference between Rahnejat’s and Sasaki’s formulations and the other four.
Specifically, in these four formulations, some impacts occurred, provoking some dis-
persion among results.

Nevertheless, on the right side, the opposite occurs with low viscosities, observing
that squeeze effect is more important in this case, and therefore, some discrepancies
among formulations are perceived.

In Fig. 3, the results are presented when the pinion mean velocity is 1000 rpm,
following the same structure as in the previous figure.

Regarding the results, similar conclusions as in 500-rpm case were perceived. The
Martin’s consideration makes the difference in high-viscosity case, although no impacts
existed with this mean velocity, whilst in low-viscosity case, as impacts occurred,
squeeze effect outweighs the entraining velocity one.

Thus, in both pinion-speed cases, the fluid entraining effect is dominant for higher
values of dynamic viscosity because it tends to separate teeth and locate them in the
half of the backslash. However, as viscosity decreases, this effect is palliated, and
therefore, fluctuations and impacts are provoked, being the squeeze effect predominant
in this scenario.
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Fig. 2. DTE when six hydrodynamic force formulations were implemented (X = 500 rpm). On
the left column, the dynamic viscosity was 0.08 Pas whilst on the right one, it was 0.008 Pas.
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6 Conclusions

A gear rattle assessment was performed in this study, where six hydrodynamic force
formulations were implemented to the gear transmission model previously developed
by the authors.

The six implemented formulations follow a similar trend, observing that Martin’s
consideration in the fluid entraining effect makes the difference between Rahnejat’s and
Sasaki’s formulations and the other four. This is specially discerned in the high value of
dynamic viscosity case, in which the entraining effect outweighs the fluid squeeze.
Nevertheless, the opposite occurs with low viscosities, observing that squeeze effect is
more important in this case, and therefore, some discrepancies among formulations are
perceived. This is produced because the entraining effect tends to separate teeth and
locate them in the half of the backslash, occurring when the viscosity is significant.
Thus, the viscosity parameter clearly influences the role of the effects present in the
conjunction, specifically, with the increment of the viscosity, the entraining velocity
effect becomes more important than the squeeze one, being the contrary case when the
viscosity decreases.
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Fig. 3. DTE for the six hydrodynamic force formulations (X = 1000 rpm). The dynamic
viscosity was 0.08 Pas on the left column, whilst on the right, it was 0.008 Pas.
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Abstract. This paper aims at constructing a novel hysteretic (non-
reversible) bit-rock interaction model for the torsional dynamics of a
drillstring. Non-reversible means that the torque on bit is not represented
only in terms of the bit speed, but also of the bit acceleration, producing
a hysteretic behavior. Here, the drillstring is considered as a continu-
ous system which is discretized by means of the finite element method,
where a reduced-order model is applied using the normal modes of the
associated conservative system. The nonlinear torsional vibrations of the
drillstring system are analyzed comparing the proposed bit-rock inter-
action model to a commonly used reversible model (without hysteresis).
The parameters of the proposed hysteretic bit-rock interaction and of
the commonly used reversible model are fitted to field data. Results show
the system including a bit-rock interaction model with hysteresis effects
reproduces a good approach of stick-slip cycle, and the simulated drill-
string dynamics using the bit-rock interaction presents a similar behavior
comparing to the field data.
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1 Introduction

Drillstring is a slender structure used for exploitation of oil reserves. It is com-
posed mainly of two parts: drillpipes and bottomhole-assembly. A top drive
rotates the system at the top, which transmits the torque to the bit that drills the
rock. One of the concerns with the drillstring dynamics is its torsional vibrations
that might lead to stick-slip oscillations [5,8–10,28]. In this severe conditions,
the bit sticks (zero speed) then slips (high speed), and that might cause, for
instance, measurement equipment failure, low rate of penetration, bit damage,
and fatigue [31].

Spanos et al. [27] has published an overview of drilling vibrations. Specially
for bit-rock interaction during the drilling process, [18,24] have shown that the
torque on bit varies nonlinearly with the bit speed, presenting large fluctua-
tions. Concerning drillstring torsional dynamics and stick-slip oscillations, sev-
eral papers discuss about them [8,9,15,16,23,24,29], and normally a pure tor-
sional model is enough to represent this kind of system: to represent test rigs,
[15] applied a torsional model successfully to analyze the friction-induced limit
cycling, and in [9] a torsional model is used to implement a control strategy.
Field data of a five kilometer drill string is analyzed in [24], where again a
pure torsional model presented satisfactory results reproducing field data, where
torsional vibration was the dominant phenomenon observed. More generally, a
coupled axial-lateral-torsional model should be applied [23,28].

There are many phenomena involved during the drilling process: fluid-rock
interaction, proper well profile (inclination and azimuth), pipe-rock interaction,
among others. Therefore, a full description model of bit-rock interaction includ-
ing all dynamics is really hard to obtain due to lack of downhole data. Experimen-
tally, hysteretic cycles for the bit-rock interaction were observed in [11,18–20],
which can be caused by tangential stiffness during the bit-rock interaction, and
by the frictional memory due a delay in the friction force, being evident dur-
ing the stick phase and the switch between stick and slip phases [30]. Although
of these observations, up to the authors knowledge the only hysteretic bit-rock
interaction model found in the literature was proposed in [5]. The authors in
[5] used the experimental results presented in [11], and applied their hysteretic
model, which employs a switching mechanism, in the analysis of Proportional-
Integral (PI) control strategy, aiming at mitigating stick-slip oscillations.

This paper aims at constructing a novel hysteretic (non-reversible) bit-rock
interaction model for the torsional dynamics of a drillstring [19] based on the
field data presented in [24]. Non-reversible means that the torque on bit is not
represented only in terms of the bit speed, but also of the bit acceleration, pro-
ducing a hysteretic behavior. The drillstring is considered as a continuous sys-
tem which is discretized by means of the finite element method [6,7,25], where
a reduced-order model is applied using the normal modes of the associated con-
servative system. The nonlinear torsional vibrations of the drillstring system are
analyzed comparing the proposed bit-rock interaction model to a commonly used
reversible model (without hysteresis). Least-Square method is used for parame-
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ter identification is applied to obtain the parameters of the models according to
field data [24].

The main contribution of this paper is to propose an original model for the
bit-rock interaction taking into account the hysteretic effects. Here, (1) a new
nonlinear hysteretic model is constructed to describe the bit-rock interaction
(nonlinear torque function) as a function of the bit speed and bit acceleration, (2)
experimental identification using Least-Square method is applied to obtain the
parameters of the mean nonlinear part, and (3) a hysteretic function is proposed
for the envelope of this process, which is also a function of the acceleration and
bit speed.

This article is organized as follows. The drillstring torsional dynamical model
is presented in Sect. 2.1. The continuous system is discretized by means of the
finite element method and a reduced-order model is constructed using the normal
modes of the associated conservative system. In Sect. 2.1, the proposed bit-rock
interaction model including hysteresis is also presented, as well as the reversible
model (without hysteresis). This proposed model is compared with field data in
Sect. 5. The numerical analysis are presented in Sect. 6 and, finally, the conclud-
ing remarks are made in Sect. 8.

2 Dynamical Model

2.1 Torsional Model

As mentioned before, the drillstring is basically composed by (1) the drillpipes
(DP) and (2) the bottomhole-assembly (BHA), as it is schematically represented
in Fig. 1. DP are slender tubes that can reach kilometers, while BHA is composed
by thicker tubes (drill collars) together with the measurement equipment and a
drill bit on its bottom, and its length can reach hundreds of meters.

A vertical wellbore is considered, and only torsional vibrations are taken into
account in the modeling. That is, it is assumed that there are no contact between
the column and the wellbore, as well as the lateral and axial vibrations are small.
A constant speed Ω is imposed at the top and a reaction torque appears due
to the bit-rock interaction. Therefore, θ(x, t) is the solution of the following
boundary value problem:

ρIp
∂2θ(x, t)

∂t2
− GIp

∂2θ(x, t)
∂x2

= T (x, t), (1)

in which the boundary conditions are
{

θ(0, t) = Ωt

θ̇(0, t) = Ω
, (2)

and the initial conditions are

θ(x, 0) = 0, θ̇(x, 0) = Ω , (3)
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Fig. 1. General scheme of a drillstring.

where θ(x, t) is the angular rotation about the x-axis, T (x, t) is the torque vector,
Ip is the cross sectional polar moment of inertia, and ρ and G are the density
and shear modulus of the material of the column.

Different from [21,22], the present paper will solve the system considering its
rotational displacements about a rotating frame. Let θrel(x, t) be the relative
torsional degree of freedom in the rotating frame associated to the top sectional
area (at x = 0). We introduce the absolute rotational displacement as

θ(x, t) = Ωt + θrel(x, t). (4)

Let u(t) be the vector of θrel(x, t) nodal values of a mesh of the drillstring.
A computational model is constructed by the finite element method considering
the drillstring top clamped (there is not relative displacement between the top
drive and the first element on the top of the drillstring). Adding a proportional
damping to the system, the vector u(t) is solution of the non-linear differential
equation

[M ]ü(t) + [D]u̇(t) + [K]u(t) = T (u̇(t)), (5)

with the initial conditions

u(0) = 0, u̇(0) = 0. (6)

where [M ] is the mass matrix, [D] is the damping matrix, [K] is the stiffness
matrix, and T (u̇(t)) is the generalized torque vector. All the components of
generalized torque vector are zero except the one corresponding to the drill bit.
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The nonlinear torque applied to the bit (corresponding to the drillstring’s length
equal to L) is denoted by T̄bit(θ̇bit(t)) and will be described further in this text.

The normal modes of the conservative homogeneous system are used to con-
struct a reduced-order model. The m first eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λm

associated with elastic modes {φ1,ϕ2, . . . ,ϕm} are solutions of the generalized
eigenvalue problem

[K]ϕ = λ[M ]ϕ. (7)

The reduced-order model is obtained by projecting the full computational
model on the subspace spanned by the m first elastic modes calculated using
Eq. (7). Let [Φ] be n × m matrix whose columns are the m first elastic modes.
We can then introduce the following approximation

u(t) = [Φ] q, (8)

in which q is the vector of the m generalized coordinates which are solution of
the reduced matrix equation

[M̃ ]q̈(t) + [D̃]q̇(t) + [K̃]q(t) = T̃ (q̇(t)), (9)

with the initial conditions

q(0) = 0, q̇(0) = 0. (10)

In these equations, [M̃ ] = [Φ]T [M ] [Φ], [D̃] = [Φ]T [D] [Φ] and [K̃] =
[Φ]T [K] [Φ] are m × m mass, damping and stiffness reduced-order matrices, and
where T̃ (q̇(t)) = [Φ]Tf([Φ]q̇(t)) is the vector of the reduced-order generalized
torque. The set of Eqs. (8), (9) and (10) can be solved using commonly used
integration schemes, such as the Euler scheme or the Runge-Kutta, for instance.

3 Deterministic Model - A Reversible Model

Now, let us introduce the deterministic bit-rock interaction model. This model
introduced by Eq. 11 represents an average approximation of stick-slip behavior,
that means a reversible model. The following nominal bit-rock interaction model
is presented in [8,25,28] which combines Coulomb friction (hyperbolic tangent
behavior), Stribeck friction (negatively sloped behavior), and viscous friction
(directly proportional to the bit speed):

T̄bit(θ̇bit(t)) = α0

[
(tanh(α1 θ̇bit(t)) +

α2 θ̇bit(t)
1 + α3 θ̇ 2

bit(t)

]
, (11)

where α0, α1, α2, and α3, are calibration parameters of this model with appro-
priate units. All these parameters must be identified experimentally, and α0 is
a remarkable parameter because of its dependence of weight on bit and friction
coefficient.
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4 Hysteretic Model

Stick-slip is a self-excited drilling torsional oscillation due the friction between
the bit and the rock, because of the cumulative of energy throughout the drill-
string (top drive does not stop during the stick phase). This energy induces the
slip phase behavior, which is released promoting the acceleration of bit above
the top drive acceleration. This oscillation reaches a maximum value of the bit
speed during this cycle, decelerating after that.

Therefore, these stick-slip oscillations can present a hysteretic behavior,
which is formed by two motion phenomenons: one of microscopic magnitude
(being evident during the stick phase), and another one of macroscopic magni-
tude (being evident during the switch between stick and slip phases). This micro-
scopic motion phenomenon is caused by tangential stiffness during the interac-
tion between the bodies [1,3,12–14]. The macroscopic motion phenomenon is
related to the frictional memory due a delay in the friction force, where the size
of the loops increase according to the angular velocity variations become faster
[4,17], that means according to the acceleration.

Let θ̇bit(t) be the absolute angular speed at the bit. As a first attempt, we
propose the following model for bit-rock interaction considering hysteretic effects:

Tbit(θ̇bit(t), t) =
[
T̄bit(θ̇bit(t))

]
(Hη(θ̇bit(t)), θ̈bit(t)))), (12)

in which

(1) T̄bit(θ̇bit(t)) is the deterministic bit-rock interaction model considering hys-
teretic effects;

(2) Hη(θ̇bit(t)), θ̈bit(t))) is the hysteresis function;
(3) θ̈bit(t)) is the instantaneous bit acceleration in hysteresis function. The hys-

teretic effect can be described by a simple function (Hη(θ̇bit(t)), θ̈bit(t))))
that depends on the instantaneous bit acceleration θ̈bit(t) (see 13), as fol-
lows [19],

Hη(θ̇bit(t)), θ̈bit(t))) = 1 + sign(θ̇bit(t))γ1 tanh(γ2θ̈bit(t)) (13)

where γ1 and γ2 are calibration parameters related to the hysteresis effects with
appropriate units.

This simple function is dependent of the instantaneous bit acceleration
θ̈bit(t)), which can be obtained by the differential of θ̇bit(t) related to time.
It is noticed that the hysteresis function has a hyperbolic tangent term instead
of signθ̈bit(t)), because of function’s smoothness, and due its simplicity can be
applied in another deterministic models of bit-rock interaction [19].

5 Bit-Rock Interaction: Proposed Model vs. Field Data

Field data (downhole information) presented in [24] are considered in this paper,
which were acquired using a downhole mechanics measurement unit capable of
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Fig. 2. Experimental torque on bit versus bit speed filtered prior to recording at 50 Hz,
and bit speed related to time of sampling, both were reproduced from [24] graphs.

Fig. 3. Experimental torque on bit, bit speed, torque on bit versus bit speed and bit
acceleration in 6 stick-slip cycles over a regular grid (395 records), and its sliding-
window average,using a length equal to 0.01 rad/s (395 records).

providing both real-time measurement through mud telemetry and continuously
recorded high-frequency data throughout the run. This unit was installed at the
BHA above the bit with a suite of 19 sensors, which are able to sample triax-
ial accelerations, gyro rpm, magnetometer rpm, axial loading, torque, bending
moment [26] at 10,000 Hz. These data are filtered prior to recording at 50 Hz.
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Figure 2 shows the field data measurements reproduced from [24], where the
imposed angular rotation at the top is Ω = 12.57 rad/s (120 RPM). Figure 2
shows how the torque increases when the bit sticks, and the bit speed alternates
stick phases (almost zero speed) and slip phases (high speeds).

Field data showed here correspond to one sample, and statistic characteristics
depend on the number of samples for being representative. To circumvent this
limitation, let us avail each stick-slip cycle. If we consider that each slip phase
depends exclusively on the previous stick phase, all the stick-slip cycles are inde-
pendents. In that case, each stick-slip cycle can be considered one sample, being
possible to construct statistic characteristics. Figure 3 separates the stick-slip
cycles over a regular grid of 395 records in each stick-slip cycle within the range
[0, 7.9] s, despising the first and the last stick-slip cycle showed in Fig. 2.

Field data presented in this section show large fluctuations of the torque
on bit. To have a closer look at these fluctuations and the hysteresis behavior,
Fig. 3 shows the experimental measurements for one stick-slip cycle (T exp

bit (t))
for each cycle, and for bit acceleration. Despite of the independence of stick-slip
cycles, it can be seen that the torque fluctuations are not uncorrelated, i.e., it
confirms that there is a correlation structure of the random process. The averages
TSWAexp
bit (t) and θ̈SWAexp

bit (t) are obtained by sliding-window method (SWA) [2],
using a length equal to 0.01 rad/s.

6 Numerical Results

Figure 4 shows the revisited experimental records (only 6 stick-slip cycles) of the
bit-rock interaction with respect to the bit speed (T exp,rev

bit ), together with its
revisited sliding-window average over the time domain [2], and the hysteretic fit-
ted model (TExp data applied to Identifiedmodel

bit ). These parameters are fitted using
the least square method. This interaction model is supported by measurements
[18,24]. The identified parameters for hysteresis function are given by γ1 = 1.95,
and γ2 = 3.00× 10−3, which are the average from identified values of the torque
on bit fluctuations in each cycle. The identified values for αi,i=0,...,3 calibration
parameters are α0 = 4, 705.80, α1 = 8, 105.70, α2 = 4.02, and α3 = 4.00. The
averages (blue lines) are obtained by sliding-window method using a width equal
to 0.01 rad/s.

Figure 5 shows the hysteretic behavior from the model over a regular grid, in
order to check the mirrored offset of the curve, respecting the three models of
friction considered in this work (Coulomb friction, Stribeck friction, and viscous
friction models).

Figure 6 shows a reasonable agreement between the model and average exper-
imental bit-rock interaction. Nevertheless, it can be seen that the experimental
data show large fluctuations and a stochastic model for the bit-rock interaction
could be used to improve the model predictions of the drillstring dynamics.
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Fig. 4. Experimental bit-rock interaction and identified average model.

Fig. 5. Hysteretic behaviour of the bit-rock interaction from the model over a regular
grid.

7 Simulation of the Torsional Dynamics

The drillstring dynamics is simulated in the condition of the experimental data.
Table 1 contains the parameters of the drillstring used for the simulation.

The mass and stiffness matrices are constructed using 100 finite elements (lin-
ear shape functions). The generalized damping matrix is diagonal with damping
ratios equal to 0.005 for the first mode, 0.03 for the second and third modes, and
0.005 for all the other modes. The non-linear Eq. (9) is solved using a modified
Euler scheme with a time step 0.512 ms.

As it is a first attempt to construct a stochastic model for the bit-rock inter-
action fitting field data, one realization of the computational model is compared
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Fig. 6. Comparison between field data mean cycle and hysteretic model over a regular
grid.

Table 1. Drillstring characteristics.

DP BHA

Elastic modulus [GPa] 220 220

Poisson’s coefficient 0.29 0.29

Volumetric mass density [kg/m3] 7, 800 7, 800

Length [m] 4, 733.60 466.45

Inner radius [m] 0.0595 0.0363

Outer radius [m] 0.070 0.0803

with the experimental results. The idea is to verify if the numerical results can
approximate the dynamic behavior observed in the field data.

Figure 7 compares the bit speed obtained by the computational model to
with the field data. It is observed that the dynamic behavior is similar. Both
dynamics present stick-slip oscillations and have a similar aspect, although the
amplitude of the response of the computational model is a little higher than the
field data for some cycles (almost 20% higher).

Finally, Fig. 8 shows a very good agreement between the bit-rock interaction
model proposed herein and the field data. The simulated levels of fluctuation are
in good agreement with experiments, albeit the numerical results shows torque
values for higher bit speeds. And the cycle’s trajectory has presented the same
correlation tendencies as the experimental ones. The nominal bit-rock interaction
model considered is a regularized Coulomb friction model with decreasing torque
approaching the dynamic friction torque as the bit speed increases. Therefore,
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Fig. 7. Comparison between simulated and field data bit speed, where field data were
reproduced from [24].

Fig. 8. Simulated bit-rock interaction and just one cycle within the range [20, 30] s.
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the torque goes to zero when the bit speed approaches zero. Physically, when
the bit sticks, the torque might assume any value from zero to its static friction
limit. Hence, the difference in the results might be due to the deterministic model
chose for the torque on bit.

8 Concluding Remarks

In this paper, a new modeling for the bit-rock interaction has been proposed con-
sidering hysteresis effects of friction. The proposed model depends on 6 param-
eters that can be fitted or used for a sensitivity analysis.

The torsional dynamics of the system is analyzed, which is represented as
a torsion bar discretized by means of the finite element method. A reduced-
order model was constructed to speed up the computations. On the bottom of
this system, the proposed bit-rock interaction model with hysteresis effects is
applied and this system is able to reproduce a good approach of stick-slip cycle.

The simulated drillstring dynamics using the bit-rock interaction presented
a similar behavior comparing to the field data. Specially, the torque on bit as
a function of the bit speed presented the same behaviour as the ones observed
experimentally.

Future works concern the validation of the model through a series of labora-
tory experiments. It would be particularly interesting to investigate the influence
of the (1) top speed Ω, (2) weight on bit, and (3) the rock characteristics. It
would also be interesting to take into account uncertainties in the drillstring
computational model and stochastic modeling of bit-rock interaction using hys-
teresis function.
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Abstract. In current Internal Combustion Engines (ICE), efforts have been
conducted in order to reduce emissions levels and improve fuel efficiency. Some
alternatives consistent with this strategy are: engine downsizing and reduction of
the idling speed. However, adopting such strategies incur in a trade-off between
ICE efficiency and increased torsional vibration levels that could damage Front-
End Accessory Drive (FEAD) systems and components. The alternator pulley is
another potential source of increased torsional vibration due to being coupled to
the largest inertia of the FEAD assembly. Therefore, alternator pulley tech-
nologies have evolved aiming to provide vibration attenuation capability. The
objectives of this work are to demonstrate the development of an alternator
pulley to reduce the torsional vibration in the FEAD, and the development of a
virtual model to evaluate the FEAD performance. Development of alternator
pulleys to reduce torsional vibration generated by the crankshaft fluctuation can
avoid premature failure and durability issues with other components of the
system. Usually, these pulleys employ two distinct types of springs: a clutch
spring and a torsion spring. Through analytical and numerical models previously
developed for each spring, the set of springs of the decoupling pulley under
development could be properly designed. Finally, functional prototypes are
evaluated in static torque tests, dynamic evaluation in test benches and in-
vehicle test. Simulations based on finite element method has demonstrated
excellent correlation on vibration attenuation levels of the FEAD, based on a
comparison with experimental results.

Keywords: Internal combustion engines � Torsional vibration
Alternator pulley � FEAD

1 Introduction

The evolution of vehicle performance and the stringent regulations to emissions
reduction together with consumer expectation of performance and low consumption,
demand constant technical evolution of all automotive mechanical systems, and drives
the industry towards continuous search of new solutions and new technologies.

With regard to fuel consumption improvement, several aspects have been devel-
oped, among them the downsizing of internal combustion engines (ICE) and more
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precise management and control systems. The reduction of idling speed is also one of
the actions driven by reaching the consumption objective, since this specific engine
operational condition has great influence on the daily duty cycle, especially in large
urban areas.

The idle speed reduction and increased electrical demands of modern vehicles shifts
attention to the Front-End Accessory Drive (FEAD) due to the increase in torsional
vibration levels, which directly influences the behavior of the FEAD belt and conse-
quently the systems performance with impact in the comfort of the vehicle’s passengers
and durability of the FEAD components.

This work shows the development and optimization of an alternator pulley that
contributes to the reduction of torsional vibration levels in the FEAD system and
presents the construction of virtual models of the alternator pulley and complete FEAD
system in order to evaluate its dynamic behavior in relation to different operational
conditions during normal vehicle use.

This article is structured as follows: Sect. 2 presents details related to the alternator
pulley under study, describing its operation, the procedure followed for the definition
of its internal components, and briefly describing the construction of the proposed
numerical models. Section 3 presents the FEAD system under analysis, its compo-
nents, layout, vehicle instrumentation and the proposed virtual model. Section 4 dis-
cusses the results obtained with the virtual models, and the correlations with
experimental tests. Finally, Sect. 5 summarizes the conclusions regarding the work and
suggests further studies to be carried out.

2 Alternator Pulley

Alternator pulleys have the primary function of transmitting and converting the linear
speed of the belt in a rotational motion of the alternator shaft, which generates electric
energy for the battery and for the operation of vehicle’s electric systems. This primary
pulley function (torque transmission) no longer meets the current system requirements,
and new technologies have been and are still being developed to evolve the func-
tionalities of this component. Table 1 presents the terminology and main characteristics
of the most usual types of alternator pulleys [1].

Table 1. Alternator pulleys models and main characteristics.

Alt pulley
acronym

Acronym meaning Functions Standard
OWC type

Solid Solid Torque transmission only N/A
OAP Overrunning

alternator pulley
Torque transmission + overrunning Roller

OWC
Decoupler
pulley

Overrunning
alternator
decoupler

Torque
transmission + overrunning + damping
of torsional vibrations

Spring
OWC

ADP Alternator
decoupler pulley

Torque transmission + damping of
torsional vibrations

N/A
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As presented by [2], some of the advantages of the OAP and of the decoupler
pulley concepts are: increased belt life due to reduced vibration and excessive ten-
sioning; increased belt tensioner life, by the reduction of the angular movement; the
improvements in NVH; engine kickback absorption; and reduction of fuel consumption
and emissions.

The choice for the development of the decoupling model as a vibrational damping
is due to the greater benefits it can provide to the FEAD system. The target alternator
pulley’s model is presented in a section view of Fig. 1. The large number of compo-
nents that make up the assembly poses challenges during the design, in order to meet
the requirements of interface with the alternator and FEAD, along with the performance
and durability necessary.

With the defined geometric constraints and the requirements of the system in hands
then the springs that provide the functionality of the product have been studied in
detail. The following topics briefly summarize the steps necessary in order to correctly
design these components.

2.1 Clutch Spring

The clutch spring has the function of providing the overrunning function for the pulley,
allowing the decoupling of the alternator rotor inertia during transient changes of
engine speed and, during sudden deceleration of the belt, preventing belt slip and chirp
noise by allowing free-wheeling effect of alternator rotor shaft. In the direction of the
alternator rotor acceleration, it must provide enough torque to meet the demand of the
system.

The principle of operation of the clutch spring is the Capstan effect, as previously
discussed in [3, 4, 5]. Analytical calculations were developed for the clutch spring
initial parameter definition for the application; these analytical equations are described
in more detail in [6].

For the numerical models presented in this article, the Altair Radioss commercial
software was adopted. A method based on Lagrangian 3D formulation and finite

Fig. 1. Complete decoupler pulley or “One-way clutch with damper system” pulley.
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element method with explicit integration in time is applied [7]. The dynamic equilib-
rium equations consider inertia effects and damping forces.

In order to optimize the process of validation and evaluation of the clutch spring
performance, a simplified model is proposed, as depicted in Fig. 2(a), which considers
all the constraints and boundary conditions of the installation in the final geometry
(diametral and axial space). In Fig. 2(b) it is possible to observe the hexagonal mesh
used in the model with 0.75 mm of average size in the spring.

The purpose of this model is to evaluate the level of stress on the spring, the ability
to transmit torque (maximum value until the spring slips in the locking direction) and
the resistive torque in the overrunning direction (clutch function). As boundary con-
ditions applied to the model, all elements except those of the spring are rigid, hub A has
all degrees of freedom (DOF) locked, hub B has the rotation imposed around the X axis
of the model through an angular velocity curve over time.

All components are characterized as steel (E = 210 GPa, q = 7800 kg/m3,
m = 0.30) and the clutch spring is treated as elastoplastic taking into account material
data supplied by the manufacturer. The spring is inserted into the hubs with an
interference fit. In the first stage of the simulation (before the start of the rotation
imposed on hub B), the spring does not have contact with the hubs, in this initial period
the diameter of the spring is adjusted through a component that varies its internal
diameter, thus reducing the spring to the desired installation diameter. Upon reaching
the desired diameter the contacts with the hubs are activated and the contact of the
spring with the assembly component is disabled, thus enabling the spring to be installed
according to the designed interference forces.

2.2 Torsion Spring

The torsion spring has the function of reducing the transmission of torsional vibrations
from the engine crankshaft to the alternator and other FEAD accessories (such as water
pump, air conditioning (AC) compressor and belt tensioner).

As shown by [8], this type of spring is generally used to transmit torque in the
direction of wire coiling, but in the application under evaluation the torsion spring
operates in the opposite direction (unwinding). This type of loading is not often

Fig. 2. (a) Simplified spring housing geometry. (b) Functional evaluation of geometry meshing.

508 L. F. Berto et al.



recommended, therefore studies to specify the required parameters for the correct
functionality of the system had to be performed due to limited knowledge available in
technical literature.

For the optimal design of the spring the design must take into consideration the
requirements of the FEAD system and the geometric constraints. FEAD requirements
are influenced by the number of cylinders of the target engine, idle speed and target
vibration attenuation levels. Geometric constraints could limit the external diameter of
the spring, its number of coils, wire cross section, axial force and maximum angular
displacement of the torsion spring during operation.

The analytical calculation procedure applied can be seen in [6]. Special assump-
tions have been considered as the literature shows only the application of torque on
torsion springs in the winding direction of the wire so a new modeling proposition has
been developed for this research.

Figure 3 presents the FEA model developed for the torsion spring functional
evaluation. In this model each imposed geometric constraint is considered and several
variations of these parameters are evaluated until the optimal configuration for the
application was achieved.

The numerical model is based on the same parameters presented for the clutch
spring. The objective of the model is evaluate the torque curve by angle, the stiffness
behavior during the working cycle, the maximum value provided until the spring
reaches opening limiter and the resulting stresses generated. Every component except
the spring are specified as rigid, steel material (E = 210 GPa, q = 7800 kg/m3,
m = 0.30) and the torsion spring is defined as a elastoplastic material, with hexahedral
mesh and element average size of 1.2 mm. The torsion spring also goes through an
initial stage of assembly where it has its initial axial length decreased to the installation
compression defined to generate the desired axial load on the hubs.

2.3 Complete Pulley

The complete pulley considers the performance of the two springs, clutch and torsion.
The analysis of this coupled system demands further evaluation of the functional
behavior of the springs and components, considering that the complete pulley presents

Fig. 3. Virtual model for functional evaluation of the torsion spring.
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springs in a series operation (Fig. 1). Considering the final geometry of the pulley
assembly, many contact regions can be noticed, which requires studies to define
parameters such as gaps and coefficients of friction (COFs). Special attention should be
given to the front and rear bushings, since these regions greatly influence the dynamic
response of the system.

3 FEAD

The Front-End Accessory Drive (FEAD) consists of the engine accessory system,
usually comprised of a crankshaft pulley, AC pulley, alternator pulley and water pump
pulley. These systems may also have power steering pump pulleys, idler pulleys and
tensioners depending on the configuration. All of these accessories are connected and
driven by a poly-V belt.

Some of the operating requirements for these systems are: (a) to maintain the belt
tension, (b) avoid speed spikes on belt and accessories, (c) minimize slippage, decrease
transmission losses, (d) low vibration in the belt span. Fulfillment of these requirements
as a whole is the main goal for the FEAD operation. However, the torsional vibration
generated by different types of ICE configurations, different operating conditions and
different models of accessories, implies that each configuration provides a distinct
response to the input parameters of the system. Depending on the engine model and
configuration, the FEAD undergoes variations, as in the positioning of the accessories
and the components that form the system.

In Fig. 4 two FEAD layouts are presented, in Fig. 4(a) we have one system with 6
pulleys (crankshaft, AC compressor, water pump, alternator, idler and tensioner), where
it makes use of a rigid pulley in the alternator. While in Fig. 4(b), we have a configu-
ration with only 4 pulleys (crankshaft, AC compressor, alternator and water pump), in
this case the system uses a decoupler pulley as standard part of the vehicle. The FEAD of
Fig. 4(b) will be adopted in the studies herein presented as a target application.

The vehicle used in the present research is a Ford Ka+, which has a naturally
aspirated 1.5l, inline-4 cylinder, flex-fuel engine, equipped with a 5-speed manual
transmission. Test procedures started with the vehicle having only 500 miles

(a)                                      (b)

Fig. 4. Two FEAD layouts. (a) with rigid alternator pulley, (b) with decoupler pulley.
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accumulated. This vehicle was selected because it is equipped with a decoupler pulley
as original equipment. For the system under analysis, a measurement system was set up
with the following types of sensors: Hall Effect, microphone, laser tachometer, shunt
and accelerometers to measure rotational speed, noise, vibration, voltage and current,
respectively, as presented in detail by [1].

The numerical model constructed for the FEAD under analysis is shown in Fig. 5.
As in the study of the alternator pulley, commercial code Altair Radioss was used in the
analyses. In this proposed procedure, each pulley is considered as a rigid body and
have the interface with the belt simplified for smooth surface; the belt is flexible and
modeled with shell elements following the same methodology applied by [9].

All components are made of steel (E = 210 GPa, q = 7800 kg/m3, m = 0.30),
except the belt that is characterized as rubber with ideal elastic properties to have the
equivalent behavior of the physical belt (E = 10 GPa, q = 2000 kg/m3, m = 0.49). The
thickness of the belt is 2.4 mm. Coulomb friction is considered between the belt and
the pulleys and the losses occurring in the system are processed with linear viscous
damping Rayleigh Damping (a = 0.02, b = 0.0).

Considering the crankshaft pulley as the master pulley of the system, the remaining
ones follow the dimensional relation: AC pulley 1:1.20; alternator pulley 1:2.64; and
water pump pulley 1:1.21.

The simulation starts with a non-deformed belt configuration and then during the
initial simulation period the FEAD is mounted to the installation positions, thus gen-
erating the belt tension. This simulation of belt pre-stressing is shown in Fig. 6.

Fig. 5. FEAD virtual model.

Fig. 6. FEAD pre-simulation to pre-stress belt to installation position.
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Based on the modeling efforts of the research completed, the simulation results and
the correlation with experimental tests are presented in the following section.

4 Simulation and Experimental Test Results

4.1 Pulley

Different pulley configurations, with different sets of clutch spring and torsion spring
were evaluated during the preliminary tests, with the purpose of acquiring the
knowledge about the behavior of the springs with respect to possible variations within
the constraints imposed.

For the functional evaluation, bench tests based on OEM specifications were per-
formed on an Instron MT-2 torque testing machine, as described in [6, 8]. The setup
used for the bench tests in the functional evaluations used a speed of 5 rpm, with
angular displacement of up to 150° and return to the zero angular position at the same
speed. For the correlation with the numerical models a curve with these same
parameters was adopted, however to accelerate the simulation process, a sensitivity
evaluation was initially performed with respect to velocity, being assumed a speed of
30 rpm in the simulations, without influence on the results’ quality.

In Fig. 7 it is shown the correlations obtained between the bench tests and the
numerical models of the clutch and torsion springs. In the clutch spring (Fig. 7(a)), we
see that the model was able to keep the locking torque close to the values found in the
test bench, only the activation of the coils was faster in the virtual model than in the
tests. This was not seen as a problem for the correct component evaluation, maintaining
a correlation at 94%. The torsion spring (Fig. 7(b)) satisfactorily demonstrated all
benchmarking behavior, including the maximum deflection angle. The stiffness of the
virtual model was slightly above that observed in the test, but overall the correlation
was evaluated as close to 90%.

By reaching good correlation between the prototypes and the models in FEA, the
optimization work is carried out through virtual iterations. This process took into
account the preliminary analytical calculations and the imposed geometric limitations.

(a)                                                                      (b) 
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Fig. 7. (a) Experimental and simulation results of the clutch spring. (b) Experimental and
simulation results comparison of the torsion spring.
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Relying on the expected goals with the springs behavior individually, the next step
was to build the complete pulley model. This model passes through two different stages
of validation through simulation. The first is the functional validation, following the
same parameters of the simulations performed in the individual springs. Figure 8
demonstrates the results obtained with one of these models, in which the initial part of
the cycle up to 56° depicts the torsion spring movement until it reaches the deflection
limiter. After the torsion spring reaches its maximum opening angle, the pulley
operation relies upon the clutch spring only, as it transmits torque up to the slip torque
limit (reached at 63°) where it allows for slippage, protecting internal components from
damage.

The second step is the dynamic evaluation of the model, where the curve imposed is
characterized by an average rotation of 2000 rpm and a torsional input of ±200 or
±300 rpm with a frequency of 23 Hz. These parameters come from validation tests
required by OEM applications. Figure 9 presents the result obtained for the dynamic
behavior with the two torsional input curves cited above, with the complete pulley model.

The model is configured to start simulation with the components at the speed of
2000 rpm, thus reducing the processing time since it is not necessary to have the
acceleration ramp up to the average speed of the test. An important point to note is that
the speed remains constant in the initial part of the simulation because, similarly to the
described in the models of the individual springs evaluated, they have installation steps
that also have to be performed on the complete pulley.
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Fig. 8. Results of the functional evaluation cycle of the complete pulley.
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After the internal components are assembled (0–75 ms), the alternator resistive load
input is added (from 80–120 ms), at the end of the load input starts the torsional cycle
of ±200 rpm, 23 Hz (at 120 ms). During the initial cycles (up to 450 ms) we have a
strong transient behavior, which is due to these two sources, input of the alternator load
and beginning of the torsional cycle. After this period we see the attenuated behavior of
the pulley shaft (450 to 1000 ms). At 1000 ms, the cycle is changed to ±300 rpm,
23 Hz and the alternator load is increased, and we can observe a transient behavior due
to change of input parameters up to 1250 ms, from which it can be observed that the
system goes into a steady state regime, also showing the designed attenuation.

With these complete alternator pulley results meeting the performance require-
ments, the next step is to insert it into the FEAD as a whole. Therefore, studies of this
system are necessary to understand the parameters to be observed. These preliminary
studies are presented in the following section.

4.2 FEAD

Aiming to increase the knowledge about the system behavior, the first working stage
with the FEAD analysis was carried in the vehicle, with instrumentation studies
(transducer tests, evaluation of the preliminary data acquired). It has also contributed to
the validation of the experimental procedure and to analyze the most relevant infor-
mation to be collected to acquire comprehensive understanding about each component.
Several data acquisition routines were performed, both with the vehicle stationary and in
motion. Further details on instrumentation performed on the vehicle can be found in [1].

Figure 10 presents data collection of the vehicle in dynamic cycle, low speed and
high load of the ICE. It is known as “lugging condition” and this test procedure is one
of the toughest requirements for the validation of the FEAD and alternator pulley.
These results are presented with a rigid pulley in the alternator, as baseline with no
influence in changing torsional vibration behavior of the FEAD system as a whole.
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With experimental data of the vehicle available, a time interval is selected (high-
lighted in Fig. 10) for evaluation of the FEAD virtual model under development. The
first step is to adjust the data to allow pre-simulation of the system, for belt tensioning
and then acceleration of the system up to the speed provided by the engine to the
crankshaft pulley. These adjustments to the curve imposed on the model can be
observed in Fig. 11.

Along with the angular velocity input data, the model also takes into account the
resistive and inertial loads imposed by the ICE accessories. In the model, the inertia of
the alternator rotor, water pump and AC (uncoupled pulley) are considered. After setup
and acceleration of the simulation model up to the speed under analysis, the resistive
torques demanded by the alternator electric load and water pump, based on their
corresponding angular velocities, are applied in the model as resistive torque in
opposition to the drive torque imposed by the crankshaft.

The resulting velocities in each of the pulleys are shown in Fig. 12. It can be
noticed that the model has been able to accelerate all the accessories and to handle the
inertia and the resistive torques imposed by the ICE accessories. The water pump
pulley has a negative speed because it rotates in the opposite direction of the other
pulleys.
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The friction considered in the model between the belt and the pulleys is considered
a coherent value, taking into account the simplification adopted to remove the poly-v
profile from the components. By bringing all the curves to the same reference with
respect to crankshaft speed, it is possible to observe that the system behaves as
expected, with all components having the same average rotation as depicted in Fig. 13.

The definition of the dynamic COF between the pulleys and the belt in the virtual
model and the correlation was one of the main efforts to achieve virtual model vali-
dation. Since slip of the belt on the pulleys exists, the alternator pulley and their
different types result in different slip rates. Figure 14 shows the comparison of angular
displacement between the test data and two results of the virtual model during the
calibration of the friction coefficient. A COF of 0.13 was defined as ideal for the virtual
model.

Since the alternator pulley is the main focus of the research, a comparison between
the data collected through vehicle instrumentation and those obtained through the
proposed virtual model is also studied. Figure 15 depicts the high correlation of the
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alternator pulley model speeds in comparison with the experimental data, denoting it as
a potential alternative to predict the dynamic behavior of the FEAD before an actual
prototype is constructed.

With the decoupler pulley integrated into the system, it is possible to note that the
alternator shaft has a smooth response compared to the rigid pulley, as shown in
Fig. 15. The main point observed in the response of the decoupler pulley is related to
the attenuation of the torsional vibration represented by the smallest torsional amplitude
and by the time lag of the output signal compared to the input curve.

When the results are analyzed in the frequency domain, both rigid and decoupler
pulley model responses are in the same frequencies in comparison with the experi-
mental test data as shown in Fig. 16, without the presence of other orders. In the
decoupler pulley model the attenuation was around 12%, comparing the amplitude of
the Rigid Pulley and the Decoupler Pulley Shaft, as shown in Fig. 16.
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When simulation results are observed in idling cycle in frequency domain, the
attenuation of the decoupler pulley showed to be close to 60%, comparing the
amplitude of the Pulley Body and Shaft, Fig. 17.

Modeling and evaluation of the virtual FEAD can be considered valid to be adopted
to the evaluation and analysis of the decoupler pulley influence in the response of the
alternator and its interaction with remaining accessories of the FEAD system.

Some belt parameter adjustments can still be developed to improve even more the
correlation shown previously, even though current results already meet the expected
objective of the virtual model.

5 Conclusion

The use of virtual models presented herein have proven that FEA models can be a
robust and adequate tool in the preliminary design stage of alternator pulleys. The
methodology proposed in the research has shown an effective correlation in comparison
with the bench tests performed.

The correlation of the virtual model with the experimental tests enables the model
to be effectively used in the reduction of prototypes to be manufactured and tested. This
allows for faster achievement of the desired pulley performance, thus enabling initial
prototypes to efficiently reach demanding targets for performance and durability.

The FEAD model presented here includes the baseline for the development of a
model to evaluate the performance of the alternator pulley presented, along with the
correlations of the initial evaluations of performance. The main objective is to reduce
the number of prototypes to be manufactured and tested in test benches or vehicles. The
modeling methodology developed has shown satisfactory performance against the
objectives of the research. The next step of the work is to evaluate the effect of the
different decoupler pulley concepts in the virtual model of the FEAD and its correlation
with in-vehicle experimental test data.
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1 Definitions/Abbreviations

ICE – Internal Combustion Engine

FEAD – Front-End Accessory Drive

FEA – Finite Element Analysis

OWC – One-Way Clutch

AC pulley – Air-Conditioning Pulley

E – Young’s Modulus

q – Density

m – Poisson Coefficient

DOF – Degree of Freedom

ms – Millisecond

COF – Coefficient of Friction
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Abstract. A planetary gearbox of a horizontal axis wind turbine drive train is
modelled as a vibratory system and vibration response is investigated for
detecting a typical gear tooth flaw. A detailed dynamic model involving two
translational and one rotational degree of freedom for each component of the
planetary stage is formulated. The gearbox stage considered in the study is a low
speed planetary gear stage (three identical planets with spur teeth, sun and fixed
ring gear) as the typical arrangement commonly used in wind turbine industry.
The effect of gravity is incorporated in the mathematical formulation as the mass
of the drivetrain components is considerable in such application. The vibration
response of the elements is influenced by the gear mesh stiffness variations. The
presence of a tooth crack shifts the localized mean value of gear mesh stiffness
to a lower value. The localized change in turn influences the vibration response
of all the components. In order to extract fault-induced vibration features, a
difference signal is generated from the synchronous time domain vibration
signals for the healthy and cracked tooth. The time domain and frequency
domain data of the proposed difference signal are studied. They reveal useful
information for the purpose of detection of gear tooth crack. The spectral
characteristics can be used for condition monitoring and early detection of gear
tooth crack for a wind turbine gearbox.

Keywords: Planetary gear box � Gear mesh stiffness � Gravity excitation
Detection of crack in gears

1 Introduction

The increase in demand of electricity has triggered the search of alternative sources of
power generation. Wind energy is therefore gaining more importance due to its Eco
friendliness. The rise in the number of wind farms is accompanied with the challenges
of its low cost operation. One of the key elements of the wind turbine power train is the
gearbox. The dynamics of a typical gearbox has been investigated in detail in the past.
Lin and Parker [1] investigated the natural frequencies and vibration modes of general
planetary gears. This work rigorously identifies key properties of the natural frequency
spectra and vibration modes. Peeters et al. [3] studied torsional vibration model of the
drive train which he extended further to investigate the stresses induced. Bearing
stiffness and dynamic bearing loads for rigid 6 DOF model was analyzed. Ambarisha
and Parker [4] analytically derived design rules to suppress certain harmonics of planet
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mode. Todorov et al. [5] proposed a dynamic multi-body model of a drive train with an
electrical generator. In this model the aerodynamic torque is applied as an external
load. Shi et al. [6] presented a mathematical model for a horizontal axial wind turbine
drivetrain using the torsional multi-body dynamic model. Zhang et al. [7] studied the
effect of gravity on the wind turbine gear box. In order to obtain accurate vibration
response predictions to understand the coupled dynamic characteristics of the wind
turbine gear transmission system, a comprehensive, fully coupled, dynamic model is
established. In wind farms, planetary gearboxes are subject to potential damage due to
tough working conditions like heavy load, wind gust and dust corrosion. The faulty
planetary gearbox could lead to catastrophic failure of the entire wind turbine, and
consequently heavy investment and productivity losses. Therefore, monitoring and
diagnosis of planetary gearboxes is an important topic for research on wind turbines.

In this paper, influence of a fatigue crack in a gear tooth of sun on the vibration
response is investigated. In order to extract fault related vibration feature, the time
domain response for the two cases (with crack and without crack) are used to generate a
difference signal in time domain and the spectral features of this signal are used in
framing the gear tooth health diagnosis strategy.

2 Three Degree of Freedom Model for Gearbox

The gearbox investigated in this study is depicted in Fig. 1. The gearbox consists of 3
spur planet gears orbiting around the sun gear with a fixed ring. The planets, sun and
ring are all treated as rigid bodies. Gear mesh stiffness is modelled as linear spring
acting along the line of action. This model is valid for heavily to moderately loaded
gears. The gearbox is modelled with two translational and one rotational degree of
freedom. Gear mesh stiffness is time variant. The excitation consists of external
aerodynamic load, gravity along with parametric excitation from the fluctuation of the
gear mesh stiffness.

The Lagrange’s equation for the gearbox can be written by considering the total
kinetic energy and the total strain energy of the system. The total potential energy of

Fig. 1. Main components of a gear box [5]
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the gearbox is contributed from the elastic deformation of the flexible components. The
relevant kinetic and potential energies of the ring, carrier, sun and the three planets are
listed below. The potential energy of the sun-planet and ring-planet is a function of the
dynamic transmission error dsp and drp for the sun-planet and the ring-planet gear pairs
respectively. The gear mesh stiffness for various gear pairs is modelled as linear springs
acting along the line of action.

Extensive research has already been done in the field of planetary gears where the
mathematical expressions for a lumped parameter model are widely found in literature
[8]. The Lagrangian for each components of a gearbox considering three degrees of
freedom are as follows:

For Ring

L1 ¼ 1
2
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r h
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Fig. 2. Multi body representation of a planetary gear box
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For Carrier

L2 ¼ 1
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For planet 1
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For planet 2
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For planet 3
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For sun
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The dynamic transmission error for the nth sun-planet and nth ring-planet gear mesh is
depicted in Fig. 3.

dsn ¼ �xs sin Wsnð Þþ ys cos Wsnð Þ� nn sin asð Þ � gn cos asð Þþ us þ un ð7Þ

drn ¼ �xr sin Wrnð Þþ yr cos Wrnð Þþ nn sin arð Þþ gn cos arð Þþ ur þ un ð8Þ

Where, the circumferential location for nth planet (Wn) is given by

Wn ¼ 2p n� 1ð Þ=P and Wsn ¼ Wn � as ð9Þ

Where, P is the number of planets on the carrier
The equation of motion for the gearbox system is given by

M€qþK tð Þq ¼ F tð Þ ð10Þ
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Where, q (t) represents the response vector comprising the three degrees of freedom for
each of the elements of the gear train, i.e. {yi xi hi}. M and K(t) are the global mass and
stiffness matrices of the entire planetary stage with contribution from planets, sun and
ring gear.

On solving the Lagrange’s equations, the following equation of motion are derived
for each component of the gearbox.

For sun

ms€y�
X

ksndsn sinwsn þ ksys ¼ 0 ð11Þ

ms€x�
X

ksndsn sinwsn þ ksxs ¼ 0 ð12Þ

Is=r
2
s

� �
€us þ

X
ksndsn ¼ Ts=rs ð13Þ

Similar equations are derived for the ring, carrier and planet.
The force vector without considering gravity effect

F ¼ 0; 0;�Tc=rc; 0; 0; Tr=rr; 0; 0; Ts=rs; 0; 0; 0; 0; 0; 0; 0; 0; 0½ �

Where Tc, Tr, and Ts are the Torques and rs, rc, and rs are the radii of the carrier, ring
and the sun gear respectively.

The time varying gear mesh stiffness is pictorially depicted in Fig. 4.
The gear mesh stiffness is modelled as linear springs with time-varying stiffness

with krp, ksp as the mean components. Each mesh stiffness is expressed in the Fourier
series as

krp tð Þ ¼ krp þ krp=crp
X1
i¼1

arp sinxmtþ brp cosxmt ð14Þ

ksp tð Þ ¼ ksp þ ksp=csp
X1
i¼1

asp sinxmtþ bsp cosxmt ð15Þ

Fig. 3. Schematic of the dynamic transmission error
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Where crp and csp are the contact ratios for the ring-planet and sun-planet gear pairs
respectively. The Fourier coefficients in the Eqs. (14) and (15) are [2]:

arp ¼ � 2
lp
sin lp crp � 2crp

� �� 	
sin lpcrp

� �

brp ¼ � 2
lp
cos lp crp � 2crp

� �� 	
sin lpcrp

� �

asp ¼ � 2
lp
sin lp csp � 2csp

� �� 	
sin lpcsp

� �

bsp ¼ � 2
lp
cos lp csp � 2csp

� �� 	
sin lpcsp

� �

csp and crp are the mesh phasing angle at the sun-planet and ring-planet gear pairs.

2.1 Modelling for Gravity Effect

Gravitational force acting on the carrier, ring, sun and planets is periodic in the rotating
carrier frame, resulting in fundamental external excitation source. The gravity force
vector is

Fg tð Þ ¼ fcx fcy 0 frx fry 0 fsx fsy 0 fp1n fp1g 0 fp2n fp2g 0 fp3n fp3g 0
� 	

With w representing c, r or s for carrier, ring or sun respectively, the force fwx and fwyare
written as

fwx ¼ �mwg sin Xctð Þ ð16Þ

fwy ¼ �mwg cos Xctð Þ ð17Þ

Fig. 4. Gear mesh model of two gears in contact
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and the forces on the nth planet are

fpjn ¼ �mjg sin Xctþwnð Þ ð18Þ

fpjg ¼ �mjg cos Xctþwnð Þ ð19Þ

where, Xc ¼ xm=Nr (for the fixed ring)
xm = mesh frequency
Nr = number of teeth on the ring.
When gravity is not considered, the tooth loads at the different sun planet meshes

do not vary with time and are identical on all the planets. Gravitational forces disturb
the system symmetry and hence cause variation in the tooth loads causing large motion
in the gears which lead to tooth wedging. The unequal load sharing between planets
leads to unsymmetrical forces on the bearings and as a result bearing failure is
susceptible.

Table 1. System design parameters

Parameter Parameter values used
in simulation

Jc inertia of carrier (kg-m2) 57.72
mc mass of carrier (kg) 786
Jp inertia of planet (kg-m2) 1.12
mpn mass of planet (kg) 57.799
Js inertia of sun (kg-m2) 0.86
ms mass of sun (kg) 146
ks stiffness of sun gear (N/m) 1 � 106

kst torsional stiffness of sun (N-m/rad) 3 � 107

krp gear mesh stiffness between ring-planet 0.73 � 108

ksp gear mesh stiffness between sun-planet 0.73 � 108

ar,s pressure angle (deg) 24.6
kbp, kbs bearing stiffness at sun and planet 1 � 107

kg12, kg34 bearing stiffness at gears 5 � 107

crp contact ratio between ring and planet 1.934
csp contact ratio between sun and planet 1.6242
rc radius of carrier (mm) 270
rs radius of sun (mm) 110
rp radius of planet (mm) 160
Tc aerodynamic static torque on carrier (N-m) 15000
Ns Teeth on sun gear 16
Np Teeth on planet gear 32
Nr Teeth on ring gear 80
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3 Results and Discussion

Due to large weight of wind turbine components gravity has a significant impact on the
vibration characteristics of the gearbox components. Equations of motion for all the
gearbox components are derived using Lagrange method which are then solved
numerically using b-Newmark method of integration with a sampling rate of 104

samples/sec. Time Domain data for sun gear is generated to study the effect of gravity
on the vibration characteristics of the planetary gearbox of a wind turbine drivetrain.
The gear mesh stiffness is assumed to be time varying as shown in Eqs. (14) and (15).
As the point of contact changes, the stiffness at the gear mesh varies. This variation is
directly affected by the gear contact ratio. In this study, a gear contact ratio greater than
1 is taken at all the gear pairs i.e. more than one teeth are in contact at the same time.
The system parameters are given in Table 1 which are typical for a horizontal wind
turbine. In order to study the dynamic behavior of the gearbox under the effect of
gravity coupled with time varying mesh stiffness, time domain response of the sun is
generated in the transverse directions.

The dynamic response of sun gear due to gear mesh stiffness variation with gravity
is of higher magnitude than that without the consideration of gravity. The magnitude of
response in the horizontal and vertical directions increases by several orders of mag-
nitude (from the order of 10−13 to 10−4) due to large mass of the drivetrain components.
The response without the consideration of gravity is the result of mainly the parametric

Fig. 5. Dynamic response of sun in y direction without and with gravity effect
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excitation due to gear mesh stiffness variation under the influence of static torque and in
absence of any dynamic external loading. It may be noted that the amplitude of the
response is of the order of 10−13 m. When the effect of gravity is included as an
external source of excitation, the vibration response in time domain is predominantly at
the rotational frequency of the carrier (0.5 Hz). Similar response is noticed in the
horizontal direction (not shown).

3.1 Simulation of Gear Tooth Crack

The tooth crack model is developed for a standard involute spur sun gear which is in
mesh with the 3 planets. Both the planet and the sun have three degrees of freedom.

If 2pnxst� hs � 2pnxstþ hcð Þ where hc is the angle for which the cracked tooth
remains in mesh calculated as (2p/Nss), the stiffness ksp is reduced by a factor of r.

The factor r depends on the depth of the crack and in this study the value of r is
considered to be 0.75 for crack in the sun tooth. The gear mesh stiffness variation for
the sun-planet gear pair with one cracked gear tooth in the sun gear is shown in Fig. 6.
The stiffness varies during each engagement with the planet tooth and every time the
cracked tooth on the sun engages with the planet tooth, the gear mesh stiffness drops
during that engagement as seen in the figure. The cracked tooth is assumed to come
into contact with the first planet gear at the start of the time (t = 0). In one cycle of the
sun gear the cracked tooth comes in contact thrice but the mesh phasing phenomenon
between the planets and the sun gear and the contact ratio which is greater than one
(1.6242) causes the three dips to differ in shape.

3.2 Dynamic Response with Cracked Tooth

The gear mesh stiffness occurs due to elastic bending of the gear teeth in contact. This
variation is directly affected by the gear contact ratio. In this study, a gear contact ratio
greater than 1 is taken at all the gear pairs i.e. more than one teeth are in contact at the
same time. Fault in gear tooth has a direct impact on the gear mesh stiffness at a
localized region and varies in proportion to the severity of the fault.

Fig. 6. Gear mesh stiffness (ksp) variation for sun planet pair with crack in sun gear

528 R. Joshi and A. K. Darpe



When the cracked tooth comes in meshing the mean value of the gear mesh
stiffness is shifted to a lower value due to localized reduction of effective bending stress
of the tooth. In this model the crack of constant depth is assumed on the sun gear.
Meshing of the sun gear with the three planet gears causes the gear mesh stiffness to dip
three times in one cycle of sun rotation as shown in Fig. 6. This sudden decrease has
been incorporated in the mathematical model to generate the dynamic response of the
sun gear. The dynamic response of the sun gear without a cracked tooth is first sim-
ulated by solving the governing equations of motion. Once the data for several cycles
are obtained, the similar vibration response for sun gear having a cracked tooth
(r = 0.75) is obtained.

4 Diagnosis of Presence of Crack Using Difference Signal

Dynamic response generated for the sun gear from the healthy and defective gear tooth
cases are used to generate an difference signal by subtracting the healthy gear signal
from the defective one in time domain, ensuring that the initial position of the gears are
identical.

Using the time domain data for sun gear torsional vibration response as shown in
Fig. 7, a difference signal in time domain between healthy sun gear and sun gear with a
cracked gear tooth is obtained. This Difference signal is used for further processing in
exploring the possibility of gear tooth crack detection based on lateral and torsional
vibration response. Similar Difference Signals are obtained for vertical and horizontal

Fig. 7. Torsional vibration time domain data for sun gear (a) healthy tooth (b) cracked tooth
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directions. The Difference signal in torsional vibration is shown in Fig. 8. The simu-
lated signal shown is a steady state difference signal after the initial transients die out
within first 3–4 s. The steady state torsional vibration signal corresponding to one cycle
of sun rotation exhibits sudden changes in the torsional displacement (3 times in one
rotation) as can be observed in Fig. 8.

The difference Signal in time domain itself gives enough indication of presence of
an anomaly in the engagement of the tooth of sun and planet. To get a better idea of the
spectral nature of the Difference signal, the frequency domain decomposition of the
faulty tooth time domain data is carried out and the resulting spectrum is shown in
Fig. 9. The rotational speed of the sun gear is 150 rpm which is 2.5 Hz. In one cycle of
rotation the cracked tooth comes into meshing three times that causes the stiffness to
dip during the mesh. The amplitude of vibration suddenly increases. Thus, three peaks
in the time domain data reflect the three engagements of the sun with the planet gear in
one rotation of the sun. The FFT of difference signal in torsional direction (Fig. 8)
shows that the frequency of 7.5 Hz is prominent, which is the frequency at which the
cracked tooth of the sun meshes with the three planet gears. The harmonics of this fault
frequency indicate a presence of fault in the sun gear. The harmonics of the rotational
frequency of the sun (2.5 Hz) are visible in the frequency domain.

Fig. 8. Difference signal for torsional vibration response of the sun gear

Fig. 9. Frequency spectrum of the difference signal for torsional vibration of the sun gear with a
cracked tooth
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The difference signal is also generated for vertical direction as the effect of gravity
is prominent along this mode of vibration as shown in Fig. 10. One cycle of the sun
gear (0.4 s) shows three peaks in the time domain. The time domain difference signal
for vertical vibration of the sun gear indicates modulation of the 7.5 Hz frequency at
which the sun gear tooth engages with the three planets during each orbital motion of
the planet with their carrier. Due to the effect of gravity, one orbital motion of the
planet causes modulation of the 3 cycles per rotation of the sun at the frequency of
carrier rotation. Hence the sudden impulses in the x displacement are modulated in time
with a repetition period of 2 s that corresponds to carrier rotation frequency.

(a)

(b)

(c)

Fig. 10. Residual vibration response along x direction of the sun gear with a tooth crack
(a) Time domain data (b) frequency spectrum (c) close up view of spectrum
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The frequency spectrum of the Difference signal in vertical direction of the sun gear
(shown in Fig. 10b and c) shows (2.5 n ± 0.5) Hz family of side bands. These side-
bands assume significantly higher amplitudes when they are closer to the fault fre-
quency (7.5 Hz) and its harmonics. The amplitude of these side bands for 7 Hz and
8 Hz and similarly at 14.5 Hz and 15.5 Hz are observed to have very high values.

The spectrum also distinctly exhibits the gear mesh frequency and its second
harmonic. Thus, in absence of gravity, such rich spectrum would not have been
noticed. The modulation is induced due to the gravity loading of the planet gear on the
sun gear.

5 Conclusions

In order to explore and extract vibration response features to detect cracked gear tooth
in the wind turbine gear transmission system, a dynamic mathematical model with three
degrees of freedom per component is obtained using the Lagrange’s method consid-
ering the effect of gravity. Using numerical integration and accounting for the gear
mesh stiffness variation, the vibration response in transverse and torsional directions for
the gears is evaluated. Due to the presence of a crack in the sun gear tooth, a localized
stiffness reduction is simulated. To enable detection of changes in the dynamic
response, the reference healthy gear vibration response is subtracted from the one for
the cracked sun gear tooth in time domain to generate the difference signal. Both time-
domain and frequency-domain features of the difference signals for the sun gear are
studied. Presence of family of side bands around the sun rotational frequency and its
harmonics separated by the carrier rotation frequency is noticed distinctly. It is noticed
that these sidebands are stronger near the fault frequency (n times the rotational fre-
quency of sun, where n is the number of planets) and its harmonics. These spectral
characteristics of the difference signal can be useful in identifying the gear tooth crack
in the wind turbine gearbox.
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Abstract. Theoretical investigations on rotor-stator rub phenomenon are
available on wide range of problems. However the experimental studies are
limited in numbers. Further, the measurement studies on torsional vibration
during rub are hardly any. The present work reports and discusses measurement
of rotor’s torsional vibrations during its contact with the stator and examines the
possible rub diagnostic features. A simple rotor bearing system is made to
interact with a stator pin mounted on a stiffer stator frame. The rotor assembly,
with two discs and two support bearings, intends to model a turbopump where
the central disc simulates the impeller and the overhanging disc is meant to
represent turbine. A flexible coupling between the driver and the driven unit is
provided to reduce the effects of any misalignment remaining in the system and
to isolate the rotor from the motor. The measurement of torsional vibration is
carried out using a torsional laser vibrometer. The measured signals during rub
and no rub conditions are compared in time as well as in frequency domain to
bring out the torsional vibrations features related to rub. Excitation of various
torsional modes of the rotor system is experienced due to the frictional torque
caused by the occurrence of rub. The presence of rotor’s torsional mode fre-
quencies, rotational harmonics and the bending natural frequency in the spec-
trum of torsional velocity signals are indicative of rub.

Keywords: Rotor-stator rub � Torsional vibration � Rotational laser vibrometer

1 Introduction

Rotating machines are essential to almost every domain of our modern world such as
power generation, transportation, space application, machine tools etc. A constant
pursuit of achieving higher power and efficiency makes these machines to operate
under severe mechanical stresses and tighter clearances. Under these circumstances,
contact between rotating and stationary part is likely to occur especially in the vicinity
of critical speeds. It is one of the few causes that influence both lateral and torsional
vibrations. Investigations on rotor stator rub phenomenon, discussing about the lateral
vibration of the rotor, is available on wider range of problems. However the studies on
torsional vibrational behaviour during rub are limited [1–3]. The unnoticed torsional
vibration can lead to fatigue induced cracks and failures in any rotating machines.

© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 62, pp. 534–544, 2019.
https://doi.org/10.1007/978-3-319-99270-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_39&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_39&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99270-9_39&amp;domain=pdf


The existing state of art on the rotor stator rub indicates the absence of experimental
work on the torsional vibration features of the rotor during rub. However, some studies
on lateral vibration measurement during rub are available. Among first few experi-
mental work reported on rotor-stator rub, Beatty [4] correlates the proposed mathe-
matical model with experimentally measured lateral vibration data during rub. It was
observed that the amplitude of harmonic frequency component increases as the rubbing
progresses to contact larger rotor circumference leading to excessive wear, instability
and seizure. Muszynska and Goldman [5] have experimentally verified the presence of
synchronous, sub-synchronous and chaotic vibration pattern of the rubbing rotor.

Pennacchi et al. [6] presented some results from an experimental test rig that
reproduces a real machine rub condition and the effect of rotor rub on the labyrinth seal
is analysed. The theoretically developed rotor model is verified and is proposed for
reliable fault simulations with short-arc rub and relatively soft seal. On similar lines,
Torkhani et al. [7] developed an experimental set-up for measuring rotor response
during light, medium and heavy rub and have verified the theoretical model for reliable
rub diagnostics. Gradually varying unbalance load is generated for different intensities
of rub and the quantities such as non-linear shaft vibration, contact duration, trans-
mitted force and the angular deceleration are measured. The theoretical and experi-
mental findings are shown to be in good agreement except in some orbital response. In
order to look for some unique rub identification characteristic, Li et al. [8] proposed a
fault feature extraction method based on load identification and measured impact
response. It was concluded that the impact force can characterize the rub fault and the
method effectively extracts the impact force.

Theoretical and experimental works on rotor-stator rub are reviewed by Muszynska
[9] and Richardet et al. [10] that help in identifying the areas exhaustively studied as
well as the research gaps related to the rub problems. Features related to rub such as
sub-harmonics and super-harmonics of rotational frequencies are reported by several
researchers [4, 11, 12]. Prediction of instability due to cross coupling induced by
frictional forces is reported [4].

Torsional vibration during rub is considered for the first time in theoretical simu-
lations by Edwards et al. [13] that showed that the system is more stable with torsional
effect included. Thereafter, few more theoretical investigation are carried out by Sun
et al. [14], Al-Bedoor [15], Mohiuddin and Khuliff [16], Patel and Darpe [17] and
Khanlo et al. [18]. These studies mainly discuss about incorporating the torsional
degree of freedom into the system and identify rub diagnostic features.

To the best of the authors’ knowledge, the first reported work on the measurement
of torsional vibration during rub is by Diangui [1]. The study however is not an
extensive one and only provides frequency spectrum of torsional and lateral vibration
responses that exhibit natural frequencies along with the rotational harmonics. Lately,
Vlajic et al. [2, 3] investigated torsional vibration response of a long flexible rotor in
continuous contact with the surrounding stator for both forward synchronous whirling
and backward dry-friction whirling. The torsional vibration is found to be excited by
stick-slip forces during backward whirling motion. The measured torsional strain data
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contain drive frequency, whirl frequency, torsional natural frequency and combination
of whirl and drive frequency.

Compared to the volume of studies carried out on lateral vibrations for rub
investigation, the literature on torsional vibration is very limited in theoretical work and
practically insignificant in experimental studies. In view of the importance of the
torsional vibration in rotating machinery, the present work reports an experimental
study on the torsional vibration behaviour of a rubbing rotor for the rub diagnosis. The
torsional vibration measurement is carried out using rotational laser vibrometer on a
simplified two disc rotor system that undergoes through a single point contact with a
stator pin. The measured vibration signals for different operating speeds identify the
torsional vibration characteristics related to rub.

2 Experimental Setup of the Test Rig

The rotor system for the present test set-up is shown in Fig. 1. It consists of a bright
steel rotor shaft of diameter 13 mm. There are two discs attached to the rotor shaft that
is supported by two ball bearings mounted in the bearing pedestals at both the ends.
Disc-1 is located at the centre of two support bearings that simulates the impeller, and
the Dics-2 is placed in an overhang position close to the bearing-2 to represent the
turbine. The rotor shaft is driven by a DC motor coupled through a flexible coupling at
one end. The purpose of flexible coupling between the driver and the driven unit is to
reduce the effects of any misalignment remaining in the system and to isolate the rotor
from the motor. The stator considered for the interaction with the rotor is a slender pin
mounted on a rectangular stator frame fixed to the rotor base. The full rotor-stator
assembly is mounted on a platform (Fig. 1) which is fixed to a rigid base plate that is

Fig. 1. (a) Experimental test rig assembly for rotor-stator rub (b) Stator pin.
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further mounted on the grounded T-slot test bed. The geometric and material properties
of the rotor system assembly are enlisted in Table 1.

2.1 Test Rig Setup

The rotor shaft, discs, base plate for fixtures mounting, the stator pin and the stator
frame are fabricated. Two deep groove ball bearings, one at the motor side and the
second at the other end, are used to support the rotor. The schematic diagram of the full
rotor-stator system with instrumentation and data acquisition process is shown in
Fig. 2, and the experimental test rig with instrumentation is shown in Fig. 3.

Table 1. Material and geometrical property of the rotor-stator system

Component Material Parameter Dimension

Rotor shaft Silver steel Length 500 mm
Diameter 13 mm

Disc-1 EN24 Diameter 80 mm
Thickness 35 mm

Disc-2 EN24 Diameter 78 mm
Thickness 30 mm

Stator rod Mild steel Length 50 mm
Diameter 8 mm

Fig. 2. Schematic diagram of the experimental set up with sensors and data acquisition system.

Experimental Investigations on Torsional Vibrations 537



2.2 Instrumentation and the Measurement Process

The lateral vibration of the rotor shaft in vertical and horizontal direction is acquired
using proximity sensors positioned near the disc-1 as shown in Fig. 1. The torsional
vibration is measured at the disc-2 location (Fig. 3) through rotational laser vibrometer
(RLV5500). The data acquisition cards used for the measurement are NI-4432 in the
LabView environment. A brief description of the equipment, sensors and data acqui-
sition card is summarised below.

• DC motor with feedback controller is used to drive the rotor shaft. The feedback
mechanism uses an eddy current based displacement sensor mounted on the motor
shaft that provides rotational speed information to the controller which is connected
to the motor for speed control.

• Two deep groove ball bearings (Bearing 1; SKF 6001-2Z and Bearing 2; SKF 6201-
2Z) are used to support the rotor assembly.

• For the lateral vibration measurements, eddy current based displacement sensor of
sensitivity 8 V/mm is used. The proximity sensor is from the Bentley Nevada rotor kit
(Proximator model: 20885-01, Sensor sensitivity = 200 mVolt/mil = 7.87 V/mm)

• For torsional vibration measurements, Polytec make rotational laser vibrometer
(RLV-5500) is used. The parallel laser beam is made to incident on the retro-
reflective tape glued on the disc-1 at which the torsional vibration is being measured.

Fig. 3. Full experimental setup with instrumentation
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• The tachometer PLT200 of Monarch make is used for the RPM measurement and
the pulse output given by the tachometer is used as the reference signal for the data
processing.

• A five channel NI-4432 data acquisition card with output voltage range of ± 40 V,
simultaneous sampling of 102.4 kS/s per channel and A/D converter resolution of
24 bits is used for the lateral and torsional vibration measurements in the Labview
platform.

2.3 Torsional Vibration Measurement

A rotational laser vibrometer (RLV) [19, 20] is used for the torsional vibration mea-
surement which consists of a laser sensor head (RLV-500) and a controller (RLV-
5000). The sensor head has a Laser unit and a compact sensor. The laser unit includes a
Helium-Neon laser and two high-precision interferometers for converting minute fre-
quency changes of the reflected laser light into electrical signals. These signals are then
decoded in Controller. The output of the decoding process is voltage signals propor-
tional to the real-time angular velocity which can be integrated to get angular dis-
placement. The principle of measurement in the laser vibrometer is based on the
Doppler effect. The measurement of instantaneous rotational velocity is done in the first
place and then it is further integrated in the controller itself to send out the angular
displacement in terms of AC voltage signals.

3 Results and Discussion

This section discusses the measurement of vibration signals during rub as well as
without rub. In order to understand and interpret the acquired signals properly, the
system natural frequencies are first evaluated experimentally. Thereafter, the vibration
response of the rotor operating at certain speed is acquired for rub and no rub condi-
tions. The acquired signals are then analysed in time and frequency domain and the
vibration characteristics of torsional oscillations and the features related to rub are
explained.

3.1 Measurement of Rotor Natural Frequencies

The rap test is conducted on the rotor for the measurement of its bending and the
torsional natural frequencies. During rap test, the transducer location for lateral
vibration response measurement is on the shaft near disc-1 as shown in Figs. 1 and 2.
The dual laser beam for the torsional vibration measurement is focused on the disc-1
during the rap test. For the evaluation of bending natural frequency, radial impact is
made on the disc-1 while rotor shaft remains connected to the motor through the
flexible coupling. No any constraint is imposed on the rotor system for the test.
However for the measurement of torsional natural frequency motor shaft is constrained
to rotate and a tangential impact is made on the disc-1. In the free-free condition, with
motor coupled to the rotor, rigid rotation was dominant and it was difficult to capture
the torsional natural frequency.
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The observed bending mode natural frequency of the rotor is found to be 74 Hz.
The acquired signals for lateral measurement during rap test are not shown here.
However, the time response of the rap test in torsional measurement and the corre-
sponding frequency spectrum are shown in Fig. 4 that depicts the torsional natural
frequency of 324 Hz. In addition to that, the bending natural frequency of 74 Hz is also
observed in frequency spectrum of torsional vibration response.

3.2 Steady State Operation Without Rub

The rotor system with unbalance of 6.5 gm at an eccentricity of 1.59 cm at the central
disc of the rotor system is operated at a certain speed without allowing rub to take
place. The measured signal consists of horizontal and vertical vibration response
acquired through the eddy current probes. The purpose of this test is to know the
baseline vibration amplitudes in lateral directions under steady state operation in
absence of rotor-stator contact. Based on the measured amplitudes in lateral vibration,
the clearance between the rotor and stator is maintained accordingly for rub and no rub
conditions. Measurements are recorded at operating speeds of 2000 rpm and 2273 rpm.

3.3 Measurement of Rotor Response with Rub at Rotational Speed
of 2000 RPM (33.3 Hz)

Measurement of rotor’s lateral and torsional vibration is carried out during rub for
operational speed of 2000 rpm (33.34 Hz). The steady state response amplitudes in
vertical and horizontal directions are observed to be 286 micron (peak-to-peak). For the

Fig. 4. Rap test for torsional natural frequency; (a) time response, (b) frequency spectrum.
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rotor stator contact, a stator pin (Fig. 1b) is mounted horizontally on a very high
stiffness stator frame (Fig. 1a) which is fixed to the base plate. Depending on the
observed steady state amplitude in horizontal direction, a clearance between rotor and
stator is maintained at 70% of the peak amplitude. The clearance maintained in this
particular case is approximately 100 micron. The spinning rotor under whirling con-
dition comes into contact with the stator pin and the vibration measurement during rub
is carried out through various sensors and data acquisition system. The measured signal
consists of torsional displacement, torsional velocity and the horizontal vibration of the
rotor shaft.

The time and frequency domain signals for the torsional vibration response are
shown in Figs. 5 and 6. In the time response of torsional displacement (Fig. 5a), it can
be observed that there is a dominant low frequency component on which a high
frequency signal is riding. The corresponding spectrum (Fig. 6a) also shows that the
lower frequency is 6.5 Hz and the higher frequency is 324 Hz. The higher frequency
(324 Hz) is the rotor torsional natural frequency while lower one is also a torsional
natural frequency of the system when the motor is coupled to the rotor through the
flexible coupling (Fig. 1). As the stiffness of the flexible coupling is very low, the
equivalent torsional stiffness of the parts between the two inertial components (motor
and the disc-1) becomes very low. Hence, the first torsional natural frequency of the
rotor system including motor becomes 6.5 Hz due to which, it is difficult to excite the
rotor system in the higher torsional mode corresponding to 324 Hz during rub.
However, both the frequencies are observed in the torsional vibration signal during rub

Fig. 5. Time domain response observed during rub at operating speed of 2000 rpm; (a) torsional
displacement, (b) torsional velocity.
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(Fig. 6a), although the 324 Hz frequency component is weaker as compared with the
6.5 Hz frequency component.

On the contrary, the torsional velocity response (Fig. 5b) appears to be dominated
with rotor’s torsional natural frequency (324 Hz) while the lower frequency (6.5 Hz) is
also present in the time response signal. The corresponding frequency spectrum
(Fig. 6b) reveals the same information for the presence of various frequency compo-
nents. In addition to that, the frequency spectrum of torsional velocity also shows
harmonics (1X, 2X) of rotational speed.

A close observation on the Fig. 5a indicates that the higher frequency (i.e. torsional
natural frequency, 324 Hz) waveform is riding on the lower frequency waveform (i.e.
1st torsional natural frequency including the motor, 6.5 Hz). However, in the torsional
velocity response (Fig. 5b) the higher frequency waveform is dominant and is mod-
ulated with 6.5 Hz frequency. It is important to note that the measurement of torsional
vibration response is made through rotational laser vibrometer (RLV) which is based
on Doppler effect principle. As explained earlier in the Sect. 2.3 that the transducer
measures the rotational velocity fluctuation directly and then integrates it to convert
into rotational deflection signal hence the higher frequency component weakens
significantly.

3.4 Measurement of Rotor Response with Rub at Rotational Speed
of 2274 RPM (37.9 Hz)

For the repeatability of the experimental findings, similar test at a speed of 2274 rpm is
carried out and the frequency spectrum for torsional displacement and torsional
velocity are shown in Fig. 7. At this speed the clearance between rotor and stator is
maintained at 127 micron which is 70% of the peak displacement in horizontal
direction under steady state operation without rubbing.

Fig. 6. Frequency spectrum of the response observed during rub at operating speed of 2000
rpm; (a) torsional displacement, (b) torsional velocity.
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In the spectrum plot of torsional displacement, the frequency component of 6.5 Hz
is observed along with the rotational harmonics and the rotor’s torsional natural fre-
quency (324 Hz). The observation is similar to the observed frequency components in
the spectrum of torsional displacement for speed 2000 rpm (33 Hz) except for the
dominating appearance of the rotational frequency component. The reason for such a
clear rotational frequency component in the torsional response is explained in the next
paragraph. Further, in the torsional velocity response spectrum, the rotor’s torsional
natural frequency component is clearly dominating. The rotational frequency compo-
nents however are also significant.

There is a coincidence at this particular rotational speed (37.9 Hz), that it is close to
the half of rotor’s bending natural frequency (37.9 � ½(74)). Due to the rubbing,
residual misalignment and other irregularity associated with the experimental setup, the
2X frequency component gets closer to the rotor’s bending natural frequency and hence
a virtual resonance is experienced by the rotor that gives rise to the rotational frequency
components in the spectrum plots.

4 Conclusions

The primary objective of this work is to measure and study the torsional vibration
characteristics for a rubbing rotor that simulates a turbopump consisting of impeller and
a turbine. The experimental test rig for the present work consists of a rotor shaft with
two discs and supported by two ball bearings. The experiments are performed to
measure the vibration signals of rotor’s torsional vibration during rotor-stator contact.
During rub, the frequency content of the torsional vibration spectrum indicates a clear
presence of rotor’s torsional mode frequencies along with the rotational harmonics and
the bending natural frequency. The torsional velocity response shows clear indications
about the presence of torsional frequencies and hence the occurrence of rub.

Fig. 7. Frequency spectrum of the response observed during rub at operating speed of 2274
rpm; (a) torsional displacement and (b) torsional velocity.
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