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Abstract. The induction motor (IM) may lose their normal efficiency and
finally fail due to chronic mechanical or electrical faults or both. For the pre-
vention of failure, the early detection of these faults is necessary. The vibration
and current signals are measured and collected for varying speeds and load
conditions of IMs from an experimental laboratory test rig. Experiments are
conducted for four different mechanical fault conditions and five electrical fault
conditions including one intact condition. The identification of fault predictions
is studied by considering of all mechanical faults, electrical faults and no fault
condition. The one-against-one Multiclass-Support Vector Machine Algorithms
(MSVM) with radial basis function (RBF) kernel has been trained at various
operating conditions of IMs and predictions performance is presented.
Two MSVM algorithms, C-SVM and nu-SVM, are used for the investigation.
The RBF kernel parameter (gama) and MSVM parameter (C and nu) are opti-
mally selected by the Genetic Algorithm (GA) for better performance for each
case. Prediction performances are presented for different speeds and load
conditions.
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1 Introduction and Literature Review

Induction motor (IM) is an essential part in many industries, which drives the moving
and lifting arrangements. There is an urgent need to give some special attention to
smooth running of the IM in order to have a stable and high performance. Due to
various stress due to severe operating conditions, the wear and tears may happen on the
different parts and leads to mechanical and electrical faults. By early fault detection of
IMs and proper preventive maintenance improve the machine life or loss of valuable
production time and avoiding more serious accidents. Numerous condition monitoring
techniques are developed in last four to five decades based on the acoustic emission,
stator current, vibration, etc. [1, 2].
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Among several conditioning methods, the monitoring of the current and vibration
are so common due to their low cost and non-intrusiveness. The accuracy of these
techniques depends on the loading of the machine, and also the signal-to-noise ratio of
measuring instruments [3]. Signal-based methods commonly use the stator current as a
measurement since it is sensitive to the rotor and stator faults (i.e. the stator winding
fault, broken rotor bar fault, and phase unbalance and single phasing), and it is a
suitable method to obtain a diagnostic index and a threshold stating the edge between
faulty and healthy conditions. Detecting and identifying mechanical faults (i.e. bearing
faults, unbalance rotor, bowed and misaligned rotor) and separating them from each
other are major challenges in electrical drive systems. Generally, vibration is com-
monly used for detecting the healthy and faulty condition [4]. The IM may fail due to
electrical or mechanical fault or combination of both. In this condition, it will be
beneficial to study the both electrical and mechanical faults or corresponding signatures
together.

In recent years, many intelligent based methods have been offered such as artificial
neural network, fuzzy expert system, condition-based reasoning, random forest, etc.
Among those, the SVM is uncommon in the field of condition monitoring and fault
diagnosis of machinery. The SVM performance is excellent in respect of accuracy [5].
Also the SVM is suitable to online identification of IM faults: broken rotor bar,
unbalanced voltage, air-gap eccentricity fault and outer raceway bearing defect [6].
Nguyen and Lee [7] and Nguyen et al. [8] investigated mechanical faults diagnosis of
IMs based on time domain vibration signal using the SVM, decision tree and GA. They
used C-SVM with RBF kernel. Widodo et al. [9] presented the fault diagnosis of IM
using combination of independent component analysis (ICA) and SVM based on the
vibration and current signatures. The combination of ICA and SVM can serve as an
encouraging alternative. From literature survey, it is evident that faults prediction of
IMs using multi-class SVM (MSVM) algorithms is still uncommon and has lot of
potential, especially of the mechanical and electrical faults prediction together. Also the
optimal selection of MSVM parameters for C-SVM and nu-SVM is not found in the
literature. Hence, it can be explored further for the perfect multiclass fault prediction in
IMs. In this paper, a comprehensive study on the prediction of faults (mechanical and
electrical) in IMs has been attempted using the MSVM classifier with optimal selection
of classifier parameters for best result.

2 Introduction to SVM Classifier

The SVM is a supervised learning method by examining data and identifying patterns,
which is used for classification and regression analysis. Vapnik [10] was the first
inventor and the recent version was proposed by Cortes and Vapnik [11]. Generally,
the SVM version is used for classification between two data by placing the data in a
hyper plane along with couple of support vectors. The following paragraph is written
about the C-support vector machine and nu-support vector machine, which are used for
classification.
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C-Support Vector Machine (C-SVM): Given training vector xi 2 Rn; i ¼ 1; . . .; l; in
two classes, and an indicator vector y 2 Rl such that yi 2 1;�1f g, C-SVC (Boser et al.
[12]; Cortes and Vapnik [11]) formulated the following primal optimization problem

min
w;b;n

1
2w

TwþC
Pl

i¼1
ni

Subject to yi wT/ xið Þþ bf g� 1� ni
With ni � 0; i ¼ 1; . . .; l;

ð1Þ

where / xið Þ function maps xi into a higher-dimensional space, w is the weight vector,
b is the bias, n is the slack variable allowed for the misclassification of difficult or noisy
point, and C[ 0 is the regularization parameter.

nu-Support Vector Machine (nu-SVM): The nu-support vector classification (Scholkopf
et al. [13]) introduces a new parameter nu 2 0; 1ð Þ. It has been proved that nu an upper
bound on the fraction of support vectors. Giving training vectors xi 2 Rn; i ¼ 1; . . .; l, in
two classes, and a vector y 2 Rl such that yi 2 1;�1f g, the primal optimization problem
could be written as

min
w;b;n;q

1
2w

Tw� nu qþ 1
l

Pl

i¼1
ni

Subject to yi wT/ xið Þþ bf g� q� ni
with ni � 0; i ¼ 1; . . .; l; q� 0

ð2Þ

Performance Index: The classification of the testing data could be found with the SVM
algorithm. Suppose that a set of testing data are analyzed by the SVM and classified,
among them some are classified correctly and remaining is not. The term classification
accuracy can be written as

Accuracy ¼ Number of correctly classified data=Total number of testing datað Þ � 100%

ð3Þ

Multi-class Classification: In reality the classification demands more than two classes
of faults to be classified. In the rotor machinery fault diagnosis, classification of same
machine element faults for example in motor faults: bearing fault, rotor misalignment
fault, bowed rotor fault, unbalanced rotor fault, and for different machine element
faults: gear faults, motor faults, bearing faults. This type of multi-classification was
addressed by several methods (one-against-all, one-against-one, direct acyclic graph,
etc.). The method ‘one-against-one’ presented by the Knerr et al. [14] and Kressel [15]
is applied here.

If k is the number of classes, then k(k − 1)/2 classifiers are constructed and each one
trains data from two classes. For the training data from the ith and jth classes, it could be
solved in the two classification problem.
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min
wij;bij;nij

1
2 w

ijð ÞTwij þC
P

t
nij
� �

t

Subject to
wijð ÞT/ xtð Þþ bij � 1� nijt ; if xt in the ithclass
wijð ÞT/ xtð Þþ bij � � 1þ nijt ; if xt in the jthclass
nij � 0

ð4Þ

In the classification, we use a voting strategy in which each binary classification is
considered to be a voting, where votes could be casted for all data points, x, at the end a
point is designated to be in a class with the maximum number of votes. In case those
two classes have identical votes, though it may not be a good strategy, it chooses the
class appearing first in the array of storing class names. Many methods are available for
the multi-class SVM classification (MSVM); and Hsu and Lin [16] gave a detailed
comparison and concluded that ‘one-against-one’ is a competitive approach.
The LIBSVM [17, 18] freely available software package is used for the multi-class
classification.

3 Parameter Selections

Two MSVM parameters C and nu, named as regularization and support vector fraction,
respectively; and another related to the kernel (gama or c) to be fixed before classifi-
cation. The accuracy depends upon the choice of these parameters. The best one can be
picked by the help of tools, like the grid-search technique (GSM), the genetic algorithm
(GA), etc. The following paragraph gives briefs of these two methods.

3.1 Grid Search Method (GSM)

In this method, cross validation (CV) accuracies are calculated for different set of
parameters. These sets are generated by a mesh grid. The best CV is selected from
among CVs and corresponding parameter is picked. Final classification is done with
that parameter. LIBSVM [17, 18] is used for this technique.

3.2 Genetic Algorithms (GAs)

The detail explanation of GA is avoided; reader may refer the book of Deb [19, 20].
The freely available GA software developed by Kay [21, 22] is used. Figure 1 shows
the flow chart for selection of parameters. Initially, total data set (features) is divided
into two components. The first component is again divided into two subdivisions one
for training with the genetically generated parameters and other for testing to find the
accuracy (which is based on Eq. (3)). The best accuracy is finally picked and corre-
sponding parameters are chosen. Those chosen parameters are used for the final testing
to find the accuracy. Table 1 indicates the components used for the GA.
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4 Experimental Setup and Feature Extraction

In this section the experimental setup and measurements of vibration and current signal
are explained. The procedure for time domain data collection and features generation
from the healthy and faulty IMs are presented.

Final testing 
data set 

Extracted feature (data set) 

Parameter estimation data set 

Building MSVM classifier 

Training data set Testing data set 

Trained 
MSVM clas-

sifier 

GA based 
parameter 
selection 

GA based selec-
tion over? 

Optimized final MSVM classifierOutput

Conditioned signal 

No

Yes

Fig. 1. Flow chart for selection of SVM parameters by GA

Table 1. Optimization fitness function and design parameters

Fitness function Design parameters Bounds

C-SVM with RBF kernel
Maximize f(x)* X ¼ c Cb cT For c: 0–1

For C: 0–1.5
nu-SVM with RBF kernel
Maximize f(x) *

X ¼ c mb cT For c: 0–1
For nu: 0–1

*(number of correctly predicted data/total number of
testing data) � 100
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4.1 Experimental Setup

The Machine Fault Simulator (MFS) is the laboratory experimental test rig (shown in
Fig. 2). It consists of an IM (0.37 kW, 50 Hz, 4-pole, and rated RPM-3450) connected
with one end of a shaft using a flexible coupling. The shaft is mounted in a bed by
means of ball bearing. One pulley-belt drive is connected on the other end the shaft.
This pulley-belt drive is connected with a gear box. A magnetic brake clutch is attached
with this gear box to load the IM. Eight IMs are replaced one by one to generate the
data for ten different faulty/healthy conditions.

One tri-axial accelerometer (sensitivity: 10.23 mV/m/s2, 10.27 mV/m/s2,
10.34 mV/m/s2) is mounted on the top of the motor to capture the data. The position of
the accelerometer is found near to the bearing of the armature of the motor because the
bearing is the only load carrying component. Three AC current probes are attached
with input power line of the IM to measure its variations. All the sensors are connected
to the DAQ (NI make) to collect the variation of current and vibration. NI LabView
software is used for recording the current and vibration time domain data. A constant
DC power source is used to power one tachometer for measurement of speed of the
shaft. The time domain data are acquired at the sampling rate of 2000 Hz for nine
faulty and one healthy IM (or no defect motor, i.e. ND). Total 300 raw data-sets
(300 � 2000 sample points) were collected for each IM faulty conditions.

Among the eight IMs, fours IMs have mechanical faults (i.e. bearing fault (BF),
rotor misalignment fault (RMF), bowed rotor fault (BRF), unbalanced rotor fault
(URF)) and another three IMs have electrical faults (i.e. the broken rotor bar fault
(BRBF), stator winding fault with maximum and minimum resistance (MSWF and
SWF, respectively), and phase unbalance and single phasing fault with maximum and
minimum resistance (MPUSPF and PUSPF), respectively. Here, two different severity
levels of stator winding fault and phase unbalance-single phasing was introduced by

Current probe 

DC power source 
Test motor 

Motor speed 
controller 

Accelerometer 

Display monitor 

NI DAQ 

Gear box 

Magnetic break 
clutch 

Fig. 2. Experimental set-up of induction motor with loading and measurement arrangement
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varying the resistance of winding. An external control box was connected to one phase
of the winding to vary the resistance (0–1 O) of the same. Measurements were taken in
a range of angular speeds (10 Hz to 40 Hz in 5 Hz interval), and also for three different
external loads (or torques) on the motor, no load named as T1 (0 N m i.e., 0% of rated
torque), light load named as T2 (0.113 N m i.e., 11% of rated torque) and high-load
named as T3 (0.565 N m i.e., 55% of rated torque). Raw data sets were stored in the
DAQ at individual speeds and loads for various IM faults for further processing.
The MPUSPF data below 15 Hz rotational speed is not able to take for all the three
loading condition.

4.2 Feature Extraction

In order to predict faults, the feature selection is critical, which comprises all vital
information of fault conditions. Features are needed to feed as an input to the MSVM
classifier for the training and the testing. Standard deviation, skewness and kurtosis are
calculated from the time domain data (vibration and current) and these are used for
features [23, 24]. Altogether, 6 � 300 (for 3 � 300 data sets of three orthogonal
direction vibration signals) and 6 � 300 (for 3 � 300 data sets of three phase current
signals) features are calculated for further classification. That means 12 � 300 sets of
data are available for a single faults, hence for 10 numbers of mechanical and electrical
faults 12 � 10 � 300 sets of data are available for a particular speed.

5 Fault Prediction Using MSVM

5.1 Feature Optimization of MSVM Parameters

During the optimization of MSVM parameters by GA, 12 � 10 � 180 data points
were used for the training of fault classification, and 12 � 10 � 90 data points were
used for the testing. The variation of initial and final fitness values (i.e., the percentage
accuracy) with the population for C-SVM and nu-SVM for 40 Hz rotational speeds are
shown in Fig. 3(a)–(f) with three loads, respectively. Populations (including inside and
outside the limit of constrains) are shown in these figures. Initial populations indicate
the divergence of domain and final populations indicate the most of its chosen popu-
lation reaches the converged level.

In the case of GSM, 12 � 10 � 270 data points are used for the parameter
estimation. The cross-validation accuracy in the GSM for 40 Hz rotational speed for
the C-SVM and the nu-SVM is shown in Fig. 4(a)–(f) with three loads, respectively. In
these the contour line for percentage accuracy is plotted and the best CV accuracy is
marked. Correspondingly, the best SVM parameter is found from the best CV accuracy
and the testing accuracy is tabulated. The optimized percentage accuracy of different
MSVM formulation is shown in Tables 2 and 3 (for C-SVM and nu-SVM with T1
load), Tables 4 and 5 (for C-SVM and nu-SVM with T2 load), Tables 6 and 7 (for C-
SVM and nu-SVM with T3 load). The accuracy with bold mark refers to the best ones
in that particular speed.
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5.2 Prediction Ability

After optimization of MSVM parameters 12� 10� 30 data points are used for the
final testing of the fault classification for GA and GSM. Many occasions the accuracy is
more in GA as compared with the GSM, which reflect the soundness of the GA.

At T1 Load. It observes the testing accuracy, the lowest one is equal to 80.84% and
this occurs at 15 Hz rotational speeds for nu-SVM case. Tables 2 and 3 illustrate the
percentage prediction in various rotational speeds against the best prediction. The
prediction 58.62% is the individual lowest against RMF case at 10 Hz rotational speed.

At T2 Load: It observes the testing accuracy, the lowest one is equal to 83.91% and
this occurs at 10 Hz rotational speeds for C-SVM case. Tables 4 and 5 illustrate the
percentage prediction in various rotational speeds against the best prediction. The
prediction 55.17% is the individual lowest against ND case at 15 Hz rotational speed.

(a) 40 Hz (C-SVM with T1 load) (b) 40 Hz (nu-SVM with T1 load) 

(c) 40 Hz (C-SVM with T2 load) (d) 40 Hz (nu-SVM with T2 load) 

(e) 40 Hz (C-SVM with T3 load) (f) 40 Hz (nu-SVM with T3 load) 
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Fig. 3. Variation of initial and final fitness with population in GA optimization for two MSVM
with three loads
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At T3 Load: It observes the testing accuracy, the lowest one is equal to 84.25% and
this occurs at 10 Hz rotational speeds for C-SVM case. Tables 6 and 7 illustrate the
percentage prediction in various rotational speeds against the best prediction. The
prediction 55.17% is the individual lowest against ND case at 15 Hz rotational speed.

Initially for each of the ten classification cases (i.e., BF, RMF, BRF, UR, BRBF,
MSWF, SWF, MPUSPF, PUSPF and ND), the training data was provided at the
running speeds from 10 Hz to 40 Hz in the intervals of 5 Hz and then the multiclass
classification capability of two classes of MSVM was noted for these running speeds. It
is concluded that MSVM has the ability to make perfect classifications if the training
data is available for that particular running speed. It is also observed that the prediction
accuracy gradually increases with the increase of the rotational speed and load. This is
due to the high signal-to-noise level at the high rotation speed due to better manifes-
tation of faults in vibration signals at these speeds. It is observed that nu-SVM showed
good predictions. Overall at 15 Hz rotational speed the prediction is lowest.

(a) 40 Hz (C-SVM with T1 load) (b) 40 Hz (nu-SVM with T1 load) 

(c) 40 Hz (C-SVM with T2 load) (d) 40 Hz (nu-SVM with T2 load) 

(e) 40 Hz (C-SVM with T3 load) (f) 40 Hz (nu-SVM with T3 load) 
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Table 2. Fault classifications with C-SVM for T1 load

Spd Opt. Gama C BF BRBF BRF MPUSPF MSWF ND PUSPF RMF SWF URF T/accu

10 GSM 0.70711 2.00000 100.00 86.21 86.21 0.00 79.31 75.86 100.00 58.62 96.55 86.21 85.44

GA 0.55484 1.98592 100.00 86.11 86.21 0.00 79.31 75.86 100.00 58.62 96.55 89.66 85.82

15 GSM 0.06250 2.00000 100.00 89.66 75.86 0.00 93.10 89.66 100.00 93.10 0.00 96.55 81.99

GA 0.51576 1.95949 100.00 89.66 68.97 0.00 100.00 93.10 100.00 96.55 0.00 90.10 82.38

20 GSM 0.12500 2.00000 100.00 100.00 93.10 100.00 96.55 96.55 96.55 100.00 100.00 100.00 98.27

GA 0.18965 1.97667 100.00 100.00 93.10 100.00 99.89 96.56 100.00 100.00 100.00 100.00 98.62

25 GSM 0.35355 2.00000 100.00 96.53 89.66 93.10 100.00 86.21 93.10 95.55 93.10 93.10 94.14

GA 0.17737 1.97667 100.00 96.56 89.66 89.66 100.00 86.21 96.56 93.10 93.10 89.66 93.45

30 GSM 0.70711 2.00000 100.00 89.66 96.55 100.00 93.10 86.21 93.10 100.00 100.00 79.31 93.79

GA 0.47310 1.95858 100.00 89.65 96.56 100.00 93.10 86.21 93.10 100.00 100.00 82.76 94.14

35 GSM 0.50000 2.00000 100.00 58.62 100.00 100.00 96.55 86.21 96.55 93.10 93.10 96.55 92.07

GA 0.01901 1.95748 100.00 96.56 96.56 100.00 79.31 86.21 100.00 96.56 93.10 96.56 94.48

40 GSM 0.25000 2.00000 100.00 96.55 100.00 100.00 100.00 93.10 96.55 96.55 100.00 96.55 97.93

GA 0.18965 1.97667 100.00 96.56 100.00 100.00 100.00 93.10 96.56 96.56 100.00 96.56 97.93

Table 3. Fault classifications with nu-SVM for T1 load

Spd Opt. Gama nu BF BRBF BRF MPUSPF MSWF ND PUSPF RMF SWF URF T/accu

10 GSM 0.06250 0.12500 96.55 96.55 93.10 0.00 100.00 89.66 100.00 89.66 96.55 89.66 94.64

GA 0.08853 0.06478 100.00 96.55 86.21 0.00 100.00 93.10 100.00 72.41 100.00 89.66 93.10

15 GSM 0.17678 0.17678 100.00 93.10 75.86 0.00 0.00 82.76 100.00 89.66 96.55 96.55 81.61

GA 0.01776 0.09680 100.00 100.00 75.86 0.00 0.00 72.41 100.00 89.66 96.55 93.10 80.84

20 GSM 0.00552 0.06250 100.00 100.00 93.10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.31

GA 0.01776 0.05404 100.00 100.00 100.00 93.10 100.00 100.00 100.00 100.00 100.00 100.00 99.31

25 GSM 0.08839 0.12500 100.00 96.55 82.76 100.00 100.00 86.21 100.00 93.10 93.10 89.66 94.14

GA 0.08774 0.11451 100.00 96.56 86.21 100.00 100.00 86.21 100.00 93.10 93.10 96.56 95.17

30 GSM 0.08839 0.08839 100.00 86.21 96.55 100.00 100.00 82.76 96.55 96.55 100.00 93.10 95.17

GA 0.20945 0.18525 100.00 86.21 96.56 100.00 93.10 93.10 93.10 100.00 100.00 82.76 94.48

35 GSM 0.02210 0.04419 100.00 68.97 93.10 100.00 96.55 86.21 100.00 96.55 93.10 93.10 92.76

GA 0.01104 0.11761 100.00 93.10 93.10 100.00 96.56 82.76 100.00 96.56 96.56 100.00 95.86

40 GSM 0.06250 0.03125 100.00 96.55 100.00 100.00 100.00 93.10 100.00 96.55 100.00 100.00 98.62

GA 0.07892 0.08154 100.00 96.56 100.00 100.00 100.00 100.00 100.00 96.56 100.00 100.00 99.31

Table 4. Fault classifications with C-SVM for T2 load

Spd Opt. Gama C BF BRBF BRF MPUSPF MSWF ND PUSPF RMF SWF URF T/accu

10 GSM 0.70711 2.00000 100.00 82.76 86.21 0.00 82.76 65.52 100.00 95.79 68.97 86.21 84.29

GA 0.97228 1.90135 100.00 82.76 86.21 0.00 79.31 65.52 100.00 86.21 68.97 86.21 83.91

15 GSM 0.35355 2.00000 100.00 93.10 93.10 0.00 79.31 62.07 100.00 99.62 100.00 96.55 90.42

GA 0.45657 1.97667 100.00 93.10 93.10 0.00 75.86 62.07 100.00 96.55 100.00 96.55 90.80

20 GSM 0.70711 2.00000 100.00 79.31 93.10 93.10 100.00 72.41 89.66 100.00 89.66 100.00 91.72

GA 0.86998 1.96747 90.00 71.38 83.79 83.79 90.00 62.07 80.69 86.90 83.79 90.00 91.38

25 GSM 0.35355 2.00000 100.00 89.66 100.00 96.55 75.86 79.31 96.55 100.00 93.10 96.55 92.76

GA 0.50919 1.98361 90.00 80.69 90.00 86.90 74.48 71.39 83.79 90.00 83.79 90.00 90.45

30 GSM 0.70711 2.00000 100.00 82.76 96.55 100.00 82.76 75.86 100.00 96.55 86.21 44.83 86.55

GA 0.88097 1.95949 90.00 71.38 86.90 90.00 74.48 74.48 90.00 86.90 77.59 43.45 87.24

35 GSM 0.70711 2.00000 100.00 93.10 96.55 100.00 75.86 86.11 100.00 93.10 62.07 100.00 90.69

GA 0.37514 1.91838 90.00 83.79 86.90 90.00 77.59 77.59 90.00 86.90 52.76 90.00 91.72

40 GSM 0.25000 2.00000 100.00 93.10 100.00 96.55 89.66 82.76 96.55 100.00 86.21 93.10 93.79

GA 0.18965 1.97667 90.00 83.79 90.00 90.00 83.79 74.48 90.00 90.00 77.59 86.90 95.17
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Table 5. Fault classifications with nu-SVM for T2 load

Spd Opt. Gama nu BF BRBF BRF MPUSPF MSWF ND PUSPF RMF SWF URF T/accu

10 GSM 0.04419 0.12500 100.00 89.66 86.21 0.00 96.55 86.21 100.00 96.55 100.00 96.55 94.64

GA 0.09810 0.06478 100.00 93.10 93.10 0.00 100.00 79.31 100.00 93.10 100.00 100.00 95.40

15 GSM 0.06250 0.06250 100.00 100.00 96.55 0.00 86.21 55.17 100.00 100.00 100.00 93.10 92.34

GA 0.09810 0.04826 100.00 100.00 93.10 0.00 89.66 55.17 100.00 100.00 100.00 100.00 93.10

20 GSM 0.12500 0.06250 100.00 93.10 93.10 100.00 100.00 75.86 100.00 100.00 100.00 100.00 96.21

GA 0.10559 0.08615 90.00 86.90 83.79 90.00 90.00 71.38 90.00 90.00 90.00 90.00 96.89

25 GSM 0.04419 0.12500 100.00 89.66 100.00 100.00 100.00 75.86 100.00 100.00 100.00 93.10 95.86

GA 0.05931 0.07403 90.00 86.90 90.00 90.00 90.00 74.48 90.00 90.00 90.00 90.00 97.93

30 GSM 0.08839 0.08839 100.00 75.86 96.55 100.00 96.55 86.21 100.00 100.00 100.00 68.97 92.41

GA 0.02505 0.10469 90.00 74.48 86.90 90.00 86.90 83.79 90.00 90.00 90.00 71.38 94.83

35 GSM 0.04419 0.12500 100.00 100.00 96.55 96.55 100.00 89.66 96.55 100.00 100.00 96.55 97.59

GA 0.23854 0.18336 90.00 83.79 86.90 86.90 90.00 80.69 86.90 86.90 86.90 90.00 96.55

40 GSM 0.03125 0.17678 100.00 89.66 100.00 100.00 96.55 79.31 100.00 96.55 100.00 89.66 95.17

GA 0.21905 0.06478 90.00 80.69 90.00 90.00 90.00 62.07 90.00 90.00 90.00 80.69 94.83

Table 6. Fault classifications with C-SVM for T3 load

Spd Opt. Gama C BF BRBF BRF MPUSPF MSWF ND PUSPF RMF SWF URF T/accu

10 GSM 0.70711 2.00000 93.10 82.76 86.21 0.00 58.62 79.31 100.00 99.62 75.86 100.00 85.06

GA 0.46791 1.95949 96.55 75.86 89.66 0.00 55.17 75.86 100.00 86.21 79.31 100.00 84.29

15 GSM 0.35355 2.00000 100.00 89.66 96.55 0.00 100.00 68.97 100.00 95.79 55.17 93.10 87.74

GA 0.19583 1.97667 100.00 79.31 96.55 0.00 96.55 68.97 100.00 82.76 58.62 96.55 86.59

20 GSM 0.70711 2.00000 100.00 96.55 93.10 93.10 41.38 79.31 96.55 100.00 75.86 96.55 87.24

GA 0.43643 1.94832 100.00 96.55 96.55 96.55 51.72 79.31 96.55 100.00 79.31 96.55 89.31

25 GSM 0.17678 2.00000 100.00 96.55 100.00 72.41 65.52 96.55 86.21 100.00 82.76 96.55 89.66

GA 0.33258 1.99182 100.00 96.55 100.00 72.41 65.52 96.55 89.66 100.00 82.76 96.55 90.00

30 GSM 0.70711 2.00000 100.00 96.55 96.55 100.00 41.38 86.21 96.55 96.55 72.41 86.21 87.24

GA 0.17627 1.63595 100.00 96.55 96.55 100.00 37.93 82.76 100.00 96.55 68.97 82.76 86.21

35 GSM 0.50000 2.00000 100.00 100.00 96.55 89.66 86.21 89.66 96.55 100.00 72.41 82.76 91.38

GA 0.68128 1.99182 100.00 100.00 96.55 89.66 89..66 89.66 96.55 100.00 72.41 82.76 91.72

40 GSM 0.17678 2.00000 100.00 96.55 100.00 96.55 82.76 93.10 93.10 100.00 86.21 100.00 94.83

GA 0.36218 1.96611 100.00 96.55 100.00 96.55 82.76 93.10 93.10 100.00 86.21 100.00 94.83

Table 7. Fault classifications with nu-SVM for T2 load

Spd Opt. Gama nu BF BRBF BRF MPUSPF MSWF ND PUSPF RMF SWF URF T/accu

10 GSM 0.06250 0.12500 96.55 93.10 79.31 0.00 96.55 89.66 100.00 93.10 100.00 96.55 93.87

GA 0.02233 0.17296 96.55 100.00 75.86 0.00 96.55 86.21 100.00 89.66 100.00 96.55 93.49

15 GSM 0.04419 0.12500 100.00 89.66 100.00 0.00 100.00 72.41 100.00 86.21 93.10 96.55 93.10

GA 0.13522 0.06478 100.00 89.66 100.00 0.00 100.00 72.41 100.00 89.66 96.55 100.00 94.25

20 GSM 0.04419 0.08839 100.00 100.00 93.10 100.00 100.00 82.76 100.00 100.00 100.00 96.55 97.24

GA 0.03230 0.14934 100.00 96.55 93.10 100.00 100.00 86.21 100.00 100.00 100.00 96.55 97.24

25 GSM 0.02210 0.12500 100.00 96.55 100.00 100.00 100.00 96.55 100.00 100.00 93.10 96.55 98.28

GA 0.09881 0.11807 100.00 96.55 100.00 93.10 100.00 96.55 96.55 100.00 100.00 96.55 97.93

30 GSM 0.06250 0.12500 100.00 96.55 96.55 100.00 100.00 93.10 100.00 96.55 100.00 82.76 96.55

GA 0.10784 0.06814 100.00 89.66 96.55 100.00 100.00 86.21 100.00 96.55 100.00 86.21 95.52

35 GSM 0.04419 0.06250 100.00 100.00 96.55 100.00 100.00 89.66 96.55 100.00 93.10 86.21 96.21

GA 0.13130 0.06316 100.00 96.55 96.55 93.10 100.00 89.66 96.55 100.00 96.55 89.66 95.86

40 GSM 0.00781 0.17678 100.00 96.55 100.00 100.00 100.00 89.66 100.00 100.00 89.66 100.00 97.59

GA 0.01350 0.19914 100.00 96.55 100.00 100.00 100.00 93.10 100.00 100.00 100.00 100.00 98.97
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6 Conclusions

In this work, the induction motor fault classification capabilities of the C-SVM and the
nu-SVM in MSVM with the use of the best parameter chosen by the GA is demon-
strated and results are compared with the parameter chosen by the conventional GSM
technique. The raw data in time domain were measured and stored from an experi-
mental setup with the interchanging of nine defective IMs (BF, RMF, BRF, UR,
BRBF, MSWF, SWF, MPUSPF, PUSPF) along with the healthy (ND) by a tri-axial
accelerometer and three current probes in a range of motor speeds and three load levels.
Three statistical features were calculated from the raw data. The classification accuracy
was calculated with RBF kernel in C-SVM and nu-SVM by the using of the GA and
GSM techniques. The convergence of population was also demonstrated. The GA
based technique shows its ability to improved accuracy with respect to the GSM based
technique. The prediction ability of MSVM progressively increases at higher speeds
due to better manifestation of fault dynamics in signals. Among the two MSVM, using
of nu-SVM shows better results. This same technique can also be applied for the other
kernels as discussed in LIBSVM tool. Another important factor is to train the MSVM
by a range of rotational speeds and to test it for the prediction at out of the range
rotational speed by the proposed method. The frequency domain and time-frequency
domain data analysis can also be done with the proposed method.
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