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Abstract. The research focuses on fault detection and diagnostics of
cracks in a rotating shaft by using the Extended Phase Space Topology
approach (EPST). EPST is based on extracting features from the con-
structed density profile of the system vibration responses. The extracted
features are ranked and the optimal set is selected by using mutual
information. Finally, an artificial neural network is used as a classifier
to distinguish between the different shaft conditions. The method was
implemented on a laboratory scale rotor test rig that was seeded with two
damage conditions produced by a crack propagator. As will be shown, the
study demonstrates that the density distribution provides rich informa-
tion about the shaft structural condition. Furthermore, results show that
the innovative EPST procedure has outstanding performance in shaft
crack detection with minimal knowledge about the dynamic responses of
the system.
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1 Introduction

Visual inspection, X-ray examinations, ultrasonic testing, and penetrating liq-
uid are non-destructive evaluation techniques used in rotating shafts for crack
detection purposes. These methods are traditionally applied during maintenance
or intervention procedures. However, they have proved to be costly, since satis-
factory results depend on detailed and, consequently, long inspections [1]. Thus,
in recent years, experts have been developing modern structural health moni-
toring (SHM) techniques able to be applied in the machine during operation to
reduce the costs involved and, at the same time, increase safety, performance,
and working time.

SHM techniques based on vibration measurements are recognized as useful
alternatives because they lead to satisfactory results even when the location of
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the damage is not accessible or even unknown [2]. Even an incipient crack, for
instance, is capable of changing the shaft stiffness and damping properties, which
is reflected in the measured vibration responses. Thus, SHM techniques based
on vibration signals have been proposed by several researchers [3–7].

Most SHM techniques devoted to crack detection monitor the synchronous
vibration responses of the machine during normal or transient working conditions
[8]. However, although widely used in industry, when applied under non-ideal
conditions, such techniques eventually detect cracks that have already propa-
gated significantly across the shaft cross-section [9–11]. It is worth mentioning
that the influence of the crack on dynamic behavior of the shaft still depends
on its location. It is maximum for cracks found in regions of maximum curva-
ture and is nonexistent in regions of zero curvature. Therefore, the attention
of researchers is being devoted to more sophisticated methodologies capable of
identifying incipient cracks, which is usually difficult to observe in the directly
measured vibration responses.

The Phase Space Topology (PST) and Extended Phase Space Topology
(EPST) methods are examples of the mentioned sophisticated approaches. In
earlier work, PST was introduced in our lab to characterize different phase space
trajectories with quantitative measures [12,13]. The phase space represents all
the states of the system evolving with time. Analyzing the topology of the phase
space trajectory provides valuable information about the dynamics of a system
in a qualitative fashion [14]. PST was applied to a nonlinear pendulum system
and a nonlinear oscillator system in order to estimate the parameters of each
system and to characterize different conditions of each system. As an extension
of the previous work, EPST was introduced in [15–18] as a machinery diag-
nostics method and is based on characterizing the phase space topology of the
system by determining some characteristic values. After extracting a feature set
by using EPST, mutual information was used as a feature ranking and selecting
technique. This technique was developed in our past work [19–22] to diagnose
rolling bearing with various health conditions. Mutual information between the
feature and the defect is used as a quantitative measure of quality.

In the present contribution, EPST was applied to the vibration responses of
a horizontal rotating machine in order to detect and diagnose shaft faults. Three
different shaft conditions were considered including non-defective rotor (HR),
and a rotor with two damage conditions (DC1 and DC2) produced by a crack
propagator over 24-h and 48-h time periods. The horizontal and vertical shaft
displacements were measured by using proximity probes for each rotor structural
condition. An optimal set of features were extracted from the vibrational signals
to build an artificial neural network and to classify the rotor actual condition.

This paper is organized as follows. In Sect. 2, the mathematical details of
EPST are introduced. Section 3 explains the steps of using mutual information
to rank and select the optimal feature set. Section 4 describes the experimental
test rig and measurement of data used in this study. In Sect. 5, the process of
feature extraction and classifier training is described and the final prediction
results are presented. Finally, Sect. 6 summarizes and concludes this paper.
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2 Feature Extraction Method

The PST approach [12,13] is based on the transformation of phase space into
the density space and characterizing the density with quantitative measures.
It was shown that, depending on the geometry and shape of the phase space,
the density diagram contains peaks of various heights and sharpness at multiple
locations. This stems from the fact that the dynamical system occupies more
time at specific regions of the space causing higher densities in those regions. The
properties of the peaks in the density diagrams including the location, height,
and sharpness of the peaks were used as features in the initial approach.

Despite the success of this approach, the need to search for the peaks in the
density diagrams makes it difficult or sometimes even impractical to implement,
especially for systems with noisy or more complex phase space patterns. The
upgraded version of this approach, which will be described below, is based on
approximating the density distribution with Legendre polynomials.

Regarding the kernel density estimation, let X=(x1, x2, ..., xn) be an inde-
pendent and identically distributed sampled data drawn from a distribution with
an unknown density function f . The shape of this function can be estimated by
its kernel density estimator.

f̂h(x) =
1

nh

n∑

i=1

K

(
x − xi

h

)
(1)

where, h >0 is a smoothing parameter called bandwidth and K(.) is the ker-
nel function which satisfies the following requirements. ˆ indicates that it is an
estimate and h indicates that its value can depend on h.

∞∫

−∞
K(u)du = 1 (2)

K(−u) = K(u) ∀u (3)

There is a range of kernel functions that can be used, including uniform, tri-
angular, biweight, triweight, Epanechnikov, normal, etc. Due to its conventional
and convenient mathematical properties, the standard normal density function
was used in the present contribution, defined as the following:

K(u) =
1√
2π

e− 1
2u2

(4)

Let x be a state of the system and yd = f̂h(x) its density computed using
the kernel density estimator. yd is then approximated with Legendre orthogonal
polynomials. Legendre polynomials can directly be obtained from Rodrigues’
formula which is given by:

Pm(x) =
1

2mm!
dm

dxm

[
(x2 − 1)m

]
(5)
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where m = 0, 1, 2, . . ., or can be obtained from the recursive definition by using
Bonnet’s recursion formula:

(m + 1)Pm+1(x) = (2m + 1)xPm(x) − mPm−1(x) (6)

where the first two terms are given by:

P0(x) = 1, P1(x) = x (7)

The coefficients of the Legendre polynomials are obtained by using the linear
least squares method assuming the following linear regression model:

f(x, β) =
m∑

j=0

βjPj(x) (8)

Letting

Xij =
∂f(xi, β)

∂βj
= Pj(xi) (9)

where, the estimated coefficients are given by:

β̂ = (XT X)−1XT yd (10)

where the coefficients β̂ constitute the features in our approach that can be used
in classification or regression problems.

The approximated density based on Legendre Polynomials is calculated by
using the following equation:

f = Xβ̂ (11)

Root mean square error (RMSE) and Pearson’s correlation coefficient (PCC)
were calculated to compute the quality of the fit by using the following equations:

RMSE =

√
1
N

ZZT (12)

where, Z = yd − f is the residuals and N is the number of points in the density
function.

PCC =
aT b√

(aT a)(bT b)
; (13)

where, a = yd − E{yd} and b = f − E{f}, E{.} is the expected value.
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3 Feature Ranking and Selection by Using Mutual
Information

Let vi be the random variable with probability distribution function (PDF) p(vi)
corresponding to the ith feature. Let C be any classifier that maps the features
into NC classes and ck the corresponding random variable with PDF p(ck),
k = 1, , 2, ..., NC . Note that ck is a discrete random variable. The entropy and
mutual information are defined as in Eqs. (14) and (15).

H(vi) = −
∫

p(vi) log p(vi)dv (14)

I(vi; ck) = −
∫

p(vi, ck) log
p(vi, ck)

p(vi)p(ck)
dv (15)

Further, the entropy and mutual information are related by Eq. (16).

I(vi; ck) = H(ck) − H(ck|vk) (16)

In order to calculate the mutual information, it is necessary to find p(ck) and
p(ck|xi) from the data. However, it is easy to find p(ck) as it is a discrete random
variable. By Bayesian rule we have

p(ck|xi) =
p(xi|ck)p(ck)

p(xi)
(17)

The PDF of a continuous random variable v can be estimated using kernel
density estimator in Eq. (1). From Eqs. (1) and (18), p(vi|ck) can be calculated
as follows:

p(vi|ck) =
1

Nkh

Nk∑

i=1

K(
v − vki

h
) (18)

where Nk are the number of samples in the kth class and vki
are the features

belonging to kth class.
Mutual information between a feature and a class can be calculated by using

Eq. (19).

I(vi, c) =
NC∑

k=1

p(ck) log p(ck)

−
∫ NC∑

k=1

p(vi|ck)p(ck) log p(vi|ck)dv (19)

However, in order to calculate the mutual information between a set of fea-
tures, v = [v1 v2 , ..., vn] and a class, it is necessary to calculate the joint PDF
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p(v) of the feature set and the conditional joint PDF p(v|c). Although it is pos-
sible to do this, it is cumbersome and often inaccurate. A simpler procedure is
to use Eq. (20).

I(x; c) =
1

|S|
∑

viεS

I(vi; c) − 1
|S − 1|2

∑

vi,vjεS

I(vi; vj)

v = {v : vεS ⊂ V } (20)

The first part of the right hand side of Eq. (20) is the mean of the mutual
information of each of the features and class; it is a measure of relevance of the
set S. The second part consists of information between the features themselves;
it is a measure of redundancy of the set S. Using this method it is necessary to
only calculate the joint PDF of two features at a time. This method, when used
in a sequential search, has similar performance to the actual value [23].

The feature selection process by using these measures is an optimization
problem and can be formally defined as in Eq. (21).

max I(v; c), v = {v : vεS ⊂ V } (21)

where V is the set containing the features and S is some subset of it. If the size
of S is equal to size of V then the solution of Eq. (21) will be an ordered set of
features.

Equation (21) can be solved by using the greedy search technique. In the first
step of this technique, set S is initialized to an empty set and a feature pool set
defined as F is initialized to V . Next, S is populated iteratively with a feature
from the feature pool such that it maximizes I(v; c) at each stage. The selected
feature is then removed from the feature pool. This process is continued till the
feature pool is empty. The algorithm for ranking can be summarized as follows:

1. From the data find p(ck) and H(ck), k = 1, 2, 3, ..., NC .
2. Set S = {}, F = V .
3. While F is not an empty set, DO

(a) Set i = 1, Start Loop 1
(b) Append the ith element of F to S, i.e. Si = {S, Fi}.
(c) Set j = 1, Start Loop 2
(d) Using Eq. 19 find I(vj , c).
(e) Using Eq. 1 find I(vi, vj).
(f) If reached the end of Si End Loop 2, else increment j → j + 1 and go to

Step d.
(g) Estimate mutual information of set Si, I(Si, c) using Eq. 20.
(h) If reached the end of F End Loop 1, else increment i → i + 1 and go to

Step b.
(i) Find the element v∗

i corresponding to Maximum I(Si, c).
(j) Append v∗

i to S and remove it from F .
4. END WHILE
5. The final set S is the ordered feature set.
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4 Experimental Setup

This study was implemented on data collected from a rotor test rig shown in
Fig. 1. This machine consists of a flexible steel shaft mounted on two roller bear-
ings. Two orthogonal proximity probes oriented in the horizontal and vertical
directions were used to measure the vibration response of the shaft. The tests
were conducted with a balanced shaft operating at 1200 rpm. From a represen-
tative finite element model of the rotor, the first two critical speeds were deter-
mined, being approximately 1685 rev/min (28.1 Hz) and 5430 rev/min (90.5 Hz).

Fig. 1. The rotor test rig.

This experiment consists of three stages corresponding to three different
structural conditions. The first stage was performed on the notched shaft, which
is considered the healthy rotor condition (HR). Then, the crack propagator was
used over a period of 24 h to produce a fatigue crack, which is the first damage
condition (DC1). The third stage studied the rotor after using the crack prop-
agator for another 24 h period to produce the second damage condition (DC2).
All measurements were conducted on the rotor after removing the crack prop-
agator device. In this case, a notch was first machined in the shaft. Then, a
crack propagator was coupled to the shaft aiming to apply a constant downward
force. Consequently, a fatigue crack could be nucleated, or propagated, at the
notch position with the rotor in operation. Figure 2 shows the propagated crack
that was produced by the crack propagator at an instant of time during the
experiment.

Data was collected for the three rotor conditions including healthy rotor
(HR), and rotor with the two damage conditions produced by a crack propagator
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(DC1 and DC2) at a sampling rate of 4096 Hz and for a time length of 1 s. For
each condition, 5 sets of data were collected for a total number of 15 sampled
signals. Samples of the measured vibration for different rotor conditions in the
vertical direction are shown in Fig. 3.

Fig. 2. A propagated crack during the experiment.

5 Analysis and Fault Classification

In order to analyze the vibration responses for various rotor conditions, each
data set was divided into two segments. The total number of data segments that
were obtained is 30. EPST is based on characterizing the phase space topology of
the system by determining some characteristic values. A phase plane is the two-
dimensional case of the phase space portrait and in the context of this problem,
the orbit plot can be considered as a projection of the phase space into two
dimensions. Therefore, the orbit plots of the shaft were investigated first.

Figure 4 shows the obtained orbit plots for all three rotor conditions. As
can be seen, the shapes of the orbit plots vary with the rotor condition and
this variation becomes manifest for the HR and DC1 conditions. Note that the
rotor response of the second damage condition (DC2) has a smaller orbit plot
compared to the first damage condition (DC1). This counter/intuition response
is often reported [24], and can be associated with the shape of the crack sur-
face changing from DC1 to DC2 conditions. Additionally, a small bow could
be generated in the shaft by the crack propagator during the tests explaining
the variation of the 1X vibration component. These observation indicate that
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Fig. 3. Samples of the time responses of the vertical proximity probe for the three
rotor conditions.

condition monitoring of rotors can be performed by characterizing the rotation
profile of the shaft.

The density distribution of the vibration data was estimated by using the
kernel density estimator. Samples of the estimated density distributions for dif-
ferent rotor conditions in the horizontal and vertical directions (direction of the
orbit plots axis) are shown in Figs. 5 and 6, respectively.

Inspecting the orbit plots and their corresponding density distributions, sev-
eral conclusion can be drawn. First, every loop in the orbit plot has two peaks
in the density distribution profile due to the higher concentration points at the
returning points. Additional loops in the orbit plots produces additional peaks
in the density distribution profile. Second, the estimated density distributions
of three rotor conditions are distinguishable in the horizontal and the vertical
directions. The density distributions are bimodal which indicates having two
frequently occurring states. Finally, The density distribution of the first dam-
age condition (DC1) has a wider range and lower frequency compared with the
other rotor conditions. Furthermore, the density distribution of the second crack
damage has the highest frequency. These observations indicate that the density
distribution of the vibration data provides valuable information for characteriz-
ing the dynamic response of different rotor conditions.

After estimating the density distribution for each sample set including both
directions, the density distribution profiles were approximated by using Legendre
polynomials of order 30 (see Eq. (8)). This order was chosen based on the fit
quality between the actual and the approximated densities, which was measured
by calculating the RMSE and PCC values. The coefficients β of the Legendre
polynomials were computed for each of the 30 sampled signals using the linear
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Fig. 4. Orbit plots for the three rotor conditions.

least squares method as shown in Eq. (10). The extracted features for horizontal
and vertical data were 62 features in total for each sample set. By using the
mutual information as explained in Sect. 3, the feature set was ranked and shown
in Table 1. In βs

i , i represents the coefficient number and s is the proximity probe
direction (horizontal or vertical).

Table 1. The ranked features using mutual information

Class Ranked orthogonal function coefficients

1 2 3 4 5 6 7 8 9

βs
i βv

13 βh
0 βv

11 βv
2 βv

15 βh
2 βv

9 βh
1 βv

0

A neural network of 25 hidden neurons was trained by using 50% of the data
samples and backpropogation algorithm. Additionally, 50% of the data samples
were used for testing the trained classifier. Confusion matrices that document the
performance of the training and testing classification model are shown in Fig. 7.
The training and the testing confusion matrix show a virtually perfect result.
The classifier was able to correctly predict all the cases with 100% accuracy.
Note that in this classification model all the extracted features were used and
the ranked features were not used.

In order to select the best feature subset that represents the dynamic system,
the mutual information techniques was used to rank the training data set. Then,
an iterative process creates a neural network of 25 hidden neurons and k inputs
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Fig. 5. Density distribution of horizontal displacement for the three rotor conditions.

Fig. 6. Density distribution of vertical displacement for the three rotor conditions.

(features). The k features are first k subset in the ranked feature set. Finally, the
testing set is used to calculate the accuracy of prediction and the optimal subset
is selected based on the highest classification accuracy. The feature selection
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process is summarized in Fig. 8. Prediction results of the first three iterations
are presented in Table 2.

Table 2. The accuracy of the neural network using k ranked features

k Training accuracy Testing accuracy

1 66.6% 66.6%

2 66.6% 66.6%

3 100% 100%

Fig. 7. Confusion matrices for training and testing data using all extracted features.
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Fig. 8. Process diagram of Feature selection algorithm.

6 Conclusion

The present contribution showed that phase space and the orbit plots have valu-
able information regarding the condition of the rotor system. Additionally, it was
demonstrated that characterizing the density distribution of the orbit plots by
using orthogonal functions basis can be useful in describing the behavior of the
dynamic system. A horizontal rotating machine operating at a constant speed
was studied in order to detect fatigue cracks with different levels. Outstanding
performance was achieved by using the EPST features with 100% classification
accuracy. EPST is based on the density distribution of the projection of the
phase space topology. Furthermore, feature selection was performed in order to
select an optimal subset. Remarkable classification results were accomplished
by only using three features. We feel that the EPST method is overwhelmingly
successful in its capability to be applied to incipient crack detection with mini-
mal knowledge about the rotating machine. It is worth mentioning that in real
applications, without any knowledge about the crack presence, any malfunctions
can be detected by using the conveyed methodology.
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