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Abstract. The objective of this work is the fault diagnosis in diesel
engines to assist the predictive maintenance, through the analysis of the
variation of the pressure curves inside the cylinders and the torsional
vibration response of the crankshaft. Hence a fault simulation model
based on a zero-dimensional thermodynamic model was developed. The
adopted feature vectors were chosen from the thermodynamic model and
obtained from processing signals as pressure and temperature inside the
cylinder, as well as, torsional vibration of the engines flywheel. These
vectors are used as input of the machine learning technique in order to
discriminate among several machine conditions, such as normal, pressure
reduction in the intake manifold, compression ratio and amount of fuel
injected reduction into the cylinders. The machine learning techniques
for classification adopted in this work were the multilayer perceptron
(MLP) and random forest (RF).

Keywords: Machine learning · Fault identification · Vibration analysis

1 Introduction

In the offshore industry, where the daily operation cost of units rises to exorbitant
amounts, unexpected production outages can mean major economic losses. In
addition, the unexpected failure of the equipment on board can produce accidents
causing damage to the structure, putting at risk the crew, and possibly resulting
in environmental impact.

Diesel engines can be used in the offshore industry (support vessels and
oil production units) in the main propulsion system, in electric power plants
and in the mechanical drive of pumps and compressors. Therefore, the proper
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functioning of the engine components is critical to provide the torque and power
for which they were designed. This dependence on diesel engines makes them
have a high economic penalty when out of operation, especially when these stops
are not programmed.

The artificial neural networks as well as other supervised classifiers are appro-
priate for machinery applications as they can be trained offline and tested in
real-time signals (online), indicating whether there is or not the failure presence
in the system and with a reduced time compared to diagnosis through tradi-
tional parameter estimation in dynamic model [1], i.e., the artificial intelligence
has the advantage of predicting the failure pattern faster than other numerical
methods, which are not based on machine learning [2].

This paper proposes an improvement in the method described by [3], through
the use of the technique of machine leaning, with the purpose of providing speed in
the detection/identification of failures in diesel engines. For this, they will be used
classifiers based on artificial neural networks (ANN) and random forest (RF).

Random forest is an ensemble classification method, which means that it
combines the decision of a set of classifiers through a voting process, in order to
classify an unknown example. An ensemble classifier is generally more effective
than any of the individual classifiers that compounds it [4].

The proposed system follows a modular architecture similar to the ones
described in [5,6] for a condition-based maintenance system as showed in Fig. 1,
which comprises five blocks: the dynamic model block consists in solving the
equations of the model based on the severities applied and the fault signals are
returned; the database generation block deals with the creation of the normal
signals and their association with the fault signals; the AWGN process block is
responsible for adding white noise to all 701 signals of the database; the feature
extraction block uses techniques to generate features from the data signals that

Fig. 1. Block diagram of the proposed system composed by the dynamic model block,
the database generation block (split into fault and normal signals creation), the AWGN
process block, the feature extraction block, and the classification block (composed by
a ANN and RF classifiers).
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will be used in the classification block; and the last block, the classification block,
is where the machine learning tests occur and the results are displayed through
confusion matrices.

2 System Description

The system consists in a diesel engine failures simulation based on the work
of [3], which implemented and validated a set of simulation algorithms using
the manufacturer’s data. Thus creating a program for the simulation of fault
routines covering the most common types of failures in diesel engines according
to the following cases: normal operation, compression fault, injected fuel mass
fault and pressure in the intake manifold fault. The motor chosen as the case
study is the series Acteon 6.12TCE with four stroke cycle engine manufactured
by MWM Diesel Motors [7].

By modifying the operational parameters (failure parameters) of the engine,
the fault signals are created, thus obtaining a model that allows simulating the
various conditions of failure in the diesel engine [3,8]. Changing the variables of
the functions described in Eqs. (1)–(3) it is possible to emulate the operational
condition or a fault situation.

Pi(θ) = f(Pa, Pr, Tp, ri,mai
,mci

, θinji
), (1)

Ti(θ) = f(Pa, Pr, Tp, ri,mai
,mci

, θinji
), and (2)

V (t) = f(Pa, Pr, Tp, {r} , {ma} , {mc} , {θinj} , {K}), (3)

where Pi(θ) is the instantaneous pressure curve in the interior of each cylinder
i as a function of the angle of the crankshaft θ; Ti(θ) is the instantaneous tem-
perature curve inside each cylinder; V (t) is the instantaneous torsional vibration
response measured at the flywheel as a function of the time t; Pa is the pressure
in the intake manifold; Pr is the common rail pressure; Tp is the temperature on
the cylinder walls; ri is the compression ratio; mai

is the mass of air admitted
to the cylinders; mci

is the mass of fuel injected into the cylinders; θinji
is the

angle of injection start in each cylinder and K is the stiffness of the cranks.
All the simulated signals are generated by solving Eqs. (4)–(6) using as input

parameters the severity conditions that will emulate the engine operating con-
dition.

Pi(θ) = f(Pa, · · · , θinji
,ΔPa,ΔPr,ΔTp,Δri,Δmai

,Δmci
,Δθinji

), (4)
Ti(θ) = f(Pa, · · · , θinji

,ΔPa,ΔPr,ΔTp,Δri,Δmai
,Δmci

,Δθinji
), and (5)

V (t) = f(Pa, · · · , {K} ,ΔPa,ΔPr,ΔTp, {Δr} , · · · , {ΔK}). (6)

The input variables for the severities allocation Δ [·] is represented in Eq. (7).

Δp(%) =
pn − pf

pn
· 100, (7)

where Δp(%) is the percentage variation of the considered failure parameter
p (severity inserted for the failures emulation); pn is the parameter in normal
operating condition and pf is the parameter in fault condition.
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The previously presented equations were based on the thermodynamic and
dynamic models respectively. They were validated with experimental data pro-
vided by the motor performance information (pressures, torque, vibration and
torsion). From the calibrated model, it is possible to make the appropriate
changes that allow to simulate diesel engine operating faults. Four operating
situations were emulated using the system described:

1. Normal (without faults): it is a no fault situation (without the presence of
operating situations 2, 3, 4, described below), i.e., representing as accurately
as possible the operational condition presented by the performance curves of
the manufacturer, or for simulation purposes, with no severity (Δ [·]) related
to the input variables of Eqs. (4)–(6);

2. Pressure reduction in the intake manifold: this situation occurs when
there is a change in the ambient conditions (for naturally aspirated engines),
improper operation of the turbocharger, deposits in the intake valves, varia-
tion of the opening and closing angles of the intake valves, or for simulation
purposes, with severity inserted into the input variable ΔPa of Eqs. (4)–(6);

3. Compression ratio reduction in the cylinders: this situation occurs
when there is variation of the cylinder head gasket, change in the dead vol-
ume of the combustion chamber due to deposits or corrosion and kinematic
variation of the components, or for simulation purposes, with severity inserted
into the input variable Δr of Eqs. (4)–(6);

4. Reduction of amount of fuel injected into the cylinders: this situation
occurs when there is corrosion of the segment rings or cylinder walls, improper
sealing of the intake valves due to corrosion, spring failure and deposits, or
problems with the injection pump, or for simulation purposes, with severity
inserted into the input variable Δmc of Eqs. (4)–(6).

The outputs from the simulation fault algorithm are the variables Pi(θ), Ti(θ)
and V (t). Pi(θ) and V (t) are used in the feature extraction stage, thereafter to
be used for training the machine learning classifiers, and Ti(θ) is used to the
diagnosis phase using the thermodynamic model, which will be employed as a
comparative basis to evaluate the classifier performance.

The 6-channel pressure simulated signals Pi(θ) were obtained from each cylin-
der wall and converted to discrete-time domain generating the signals labelled
as sp1(n), sp2(n), sp3(n), sp4(n), sp5(n) and sp6(n), respectively to each cylinder
wall. A torsional simulated signal V (t) was obtained from engine flywheel and
also converted to discrete-time domain generating the signal labelled as sv(n).
The discrete signals spi

(n) and sv(n) compound a 7-channel data signal. All the
signals were simulated using sampling frequency of 15 kHz for 1.008 s, making
a total of 15120 samples for each channel signal.

3 Dynamic Model

In order to detect, identify and quantify failures in a diesel engine, a coupled
model was proposed by [3]. The proposed model consists on a zero-dimensional
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thermodynamic model, from which the pressure profiles inside cylinders are gen-
erated, and a torsional dynamic model of the crankshaft is used to obtain the
torsional vibration for different operational condition.

For the developed model a 4-stroke diesel engine with common rail injection
system was considered, as presented in [3].

The gas mixture inside cylinder pass through several processes: intake, com-
pression, combustion, expansion and exhaust, but as the focus of interest is
only the performance, the pressure in the intake and the exhaust processes were
considered constant according to the air standard diesel cycle. Meanwhile, the
compression, combustion and expansion processes were represented by the uni-
versal gas equation [9,10].

Regarding the performance, even that a real diesel engine takes into account
the mass flow through the valves during the intake and exhaust processes, it can
be neglected once the mass of the control volume is considered constant [9,10].

Although the obtained model refers to a single cylinder, it is possible to
obtain the pressure profile for the 6 cylinders if the interval and ignition order
were respected [11].

The torsional model for the crankshaft was developed considering the isolated
crankshaft chain a system with 11 degrees of freedom, to which an equivalent
lumped parameter model was developed [11–13]. The equation of motion for the
refereed system is presented in Eq. (8),

[J]
{

θ̈(t)
}

+ [C]
{

θ̇(t)
}

+ [K] {θ(t)} = {M(t)} , (8)

where [J], [C] and [K], are the inertial matrix, the damping matrix and the
torsional stiffness matrix, respectively. The vectors {θ(t)},

{
θ̇(t)

}
and

{
θ̈(t)

}

are the angular position and its derivatives, and {M(t)} is the vector of external
torques related to dynamic loads originated by the inertial and the combustion
loads.

In the torsional dynamics only the tangential loads are effective for the exter-
nal torques. The Eq. (9) gives the external torque for a single slide-crank system.

Mi (θ) = Fti (θ) .r, (9)

where Fti (θ) is the effective force for the calculation of the torque related to a
single slide-crank system, and r the distance from the crankshaft’s center to the
point of application of the effective force.

Although the obtained model refers to a single cylinder, it is possible to
obtain the torque for the 6 cylinders if the interval and ignition order were
respected [11].

4 Database

The database is expected to emulate all operating scenarios under study. In our
case, all possible diesel machine faults and system conditions variations, which
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correspond to severities levels containing enough information to characterize and
discriminate the faults. In this work the developed database covered the following
operating conditions:

– Normal (without faults): in this class, no fault is implemented and 51
different instances (realizations) are created from the insertion of 0.1% of
maximum severity with normal Gaussian probability distribution covering a
range between 0 and 0.1% in the 27 input variables of severity adopted from
the dynamic model ΔPa, ΔPr, ΔTp, Δri, Δmai

, Δmci
, Δθinji

. The objective
of this step is to emulate the real motor in normal operation, where the
machine variables drifts with a small range around the optimal functioning.

– Pressure reduction in the intake manifold: Several scenarios with sever-
ities of [1, 2, 3, · · · , 50]% for the variable ΔPr are considered, making a total
of 50 “pressure reduction in the intake manifold” scenarios.

– Compression ratio reduction in the cylinders: This condition involves
all cylinders to create the scenarios. Several scenarios with severities of
[1, 2, 3, · · · , 50]% related to variables Δri and the cylinders i = [1, 2, 3, 4, 5, 6]
are considered, making a total of 50 “compression ratio reduction” different
scenarios for each cylinder, respectively, generating a total of 300 “compres-
sion ratio reduction” scenarios.

– Reduction of amount of fuel injected into the cylinders: This condi-
tion involves the all cylinders to create the scenarios. Several scenarios with
severities of [1, 2, 3, · · · , 50]% related to variables Δmci

and the cylinders
i = [1, 2, 3, 4, 5, 6] are considered, making a total of 50 “reduction of amount
of fuel injected” different scenarios addressed for each cylinder, making a total
of 300 “reduction of amount of fuel injected into the cylinders” addressed sce-
narios.

In all scenarios, the motor rotation frequency was set at 2500 RPM. Accord-
ing to [3] the rotation of 2500 RPM was used, since it presented the lowest
joint error rate in the estimation of the mean and maximum pressures of the
burning cycle, between the experimental data (according to data supplied by
the manufacturer) and the simulated data, during the validation stage of the
thermodynamic and dynamic models.

The entire database comprises a total of 701 different fault scenarios for
4 distinct operational conditions. 51 of which from the normal class, 50 from
“pressure reduction in the intake manifold” class, 300 from “compression ratio
reduction in the cylinders” class and 300 from the “reduction of amount of fuel
injected into the cylinders” class. This database is named 701-signal database.

5 Feature Extraction

The technique for feature extraction consists in estimating the mean and maxi-
mum pressure values from the 6 pressure cylinder signals sp1(n), sp2(n), sp3(n),
sp4(n), sp5(n) and sp6(n), and obtaining spectral information from the torsional
vibration signal sv(n). The adopted measures associated to the faults in order
to discriminate them are:
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– Maximum pressure inside the cylinders estimation: it is the maximum
value of each discrete pressure curve associated to each cylinder sp1(n), sp2(n),
sp3(n), sp4(n), sp5(n) and sp6(n), generating Mp1 , Mp2 , Mp3 , Mp4 , Mp5 and
Mp6 , respectively. Equation (10) summarizes this subset of features.

Mpi
= max[spi

(n)], (10)

where Mpi
is the maximum value from pressure curves spi

(n) for each cylin-
der i.

– Mean pressure inside the cylinders estimation: it is the first-order
expected value (mean) of each discrete pressure curve associated to each
cylinder sp1(n), sp2(n), sp3(n), sp4(n), sp5(n) and sp6(n), generating μp1 , μp2 ,
μp3 , μp4 , μp5 and μp6 , respectively. Equation (11) summarizes this subset of
features.

E[spi
(n)] = μpi

=
1
N

N∑
n=1

spi
(n), (11)

where, E[·] is the expected value, μ, associated to each cylinder-pressure
curve; N is the number of samples of spi

(n).
– Spectral analysis: It is the technique to estimate the torsional frequency

spectrum similarly to the one described in [5]. It consists in calculating a
NDFT-point DFT of sv(n) according to Eq. (12), generating Sv(k), which
will be used to calculate F (k), A(k), and P (k) representing frequency (Hz),
amplitude (N.m) and phase (degrees) amounts, respectively. The Eqs. (13)–
(15) summarize this subset of features.

Sv(k) =
1

NDFT

NDFT−1∑
k=0

sv(n)W kn
N , (12)

where Sv(k) is the NDFT-point DFT of sv(n) with W kn
N = e

− j2π
NDFT and j

representing the complex number.

F (k) =
kFs

NDFT
, (13)

where F (k) is the harmonic frequency of torsional spectrum Sv(k); k is the
frequency bin associated to a frequency (Hz) and Fs is the data acquisition
sampling frequency.

A(k) = |Sv(k)| , (14)

where A(k) is the amplitude (N.m) of torsional spectrum Sv(k).

P (k) =
360
2π

arg[Sv(k)], (15)

where P (k) is the phase (degree) of torsional spectrum Sv(k) and arg[·] rep-
resents the complex argument of the spectrum, i.e., that is the phase of dis-
placement between the real and imaginary part of the complex variable.
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5.1 Feature Vector

Compared to the technique presented in [5,6], the proposed one differs by apply-
ing the feature extraction in torsional vibration and addressing mean and max-
imum values in features vector.

In order to generate the feature vector, the first step is to estimate the maxi-
mum values of pressure curves for each cylinder according to Eq. (10) providing
the features subset:

Mpi
= [Mp1 ,Mp2 ,Mp3 , · · · ,Mp6 ] . (16)

The second step is to obtain the mean values from the cylinders pressures
curves, according to Eq. (11), where the features subset is:

μpi
= [μp1 , μp2 , μp3 , · · · , μp6 ] . (17)

The third step is to calculate the spectral values from the torsional vibration
curves Sv(k) according to Eqs. (12)–(15), and its first 24 harmonics, i.e., the first
24 half orders of the engine. Considering the rotation fixed at 2500 RPM the first
half order is given by 1

2
2500
60 Hz. Consequently, 24-half order frequency vector is

f = [21.083, 41.667, · · · , 500], where its elements are the frequencies of the first
24 half orders frequencies. The relation between the spectral bin and frequency
is directly obtained from k = [f ]NDFT

Fs
. The subset related to the spectral values

is then given by:

F (k) = [F (k1), F (k2), F (k3), · · · , F (k24)] , (18)

where pj is the pressure curve associated to each cylinder, with j = 1, 2, · · · , 6.

A(k) = [A(k1), A(k2), A(k3), · · · , A(k24)] , and (19)

P (k) = [P (k1), P (k2), P (k3), · · · , P (k24)] , (20)

where kj is the frequency bin associated to each element of 24-half order vector,
with j = 1, 2, · · · , 24.

The final step is to combine all measures in a feature vector, Vf , using steps
described from Eqs. (16)–(20) concatenating the 3 spectral variables, maximum
and mean values, which can be expressed by:

Vf = {Mp1 , Mp2 , Mp3 , · · · , Mp6 , μp1 , μp2 , μp3 , · · · , μp6 ,

F (k1), F (k2), F (k3), · · · , F (k24), A(k1), A(k2), A(k3), · · · , A(k24),
P (k1), P (k2), P (k3), · · · , P (k24)}. (21)

The feature vector Vf achieving a 84 dimensionality vector, which will be used
for the training and the test steps of the machine learning algorithms discussed in
the next section. The respective values of the distribution of 701-signal database
of the several subsets of the vector Vf , which is composed of Mpi

, μpi
, F (k),

A(k) and P (k), according to Eqs. (16)–(20), where are organized in box plot and
shown in Fig. 2.
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Fig. 2. Box plot of 701-signal database for F (k), A(k), P (k), μpi and Mpi , respectively.
The plot shows the median, 25% quartile, 75% quartile and the lower and upper range
(whiskers), which are the max and min for each distribution, respectively.

6 Experimental Results

The fault classification experiment consists in adopting similar procedure pre-
sented in [5,6] to evaluate the system ability of fault discrimination by adding
the maximum and average pressure and spectral measures, not only for normal,
but also to other faults. These tasks were performed with the classifiers: random
forest (RF) with the feature vector as input, the number of trees of 84 obtained
empirically as made in [5] and the output with the size of the number of fault
classes; and multilayer perceptron (MLP) with input layer with the same size of
input feature vector, one hidden layer with the amount of neurons approximately
equals to the input layer size also obtained empirically, and the output layer with
the number of neurons equals to the number of classes to be discriminated.

The original 701-signal database was divided into 2 disjoint sets with approx-
imately 80% and 20% of the signals for training and test, respectively and into 3
disjoint sets with approximately 70%, 10%, and 20% of the signals for training,
validation and test, respectively to ANN classifier. Each of the sets is chosen
to represent the data with maximum variability from fault severity intensity
aspect. The validation set is employed to avoid the ANN to become excessively
specialized on the training signals thus losing its generalization capability [5].

In order to avoid data biased performance in classification, the k-fold cross-
validation technique was applied in all classification tests, dividing the base
701-signal in k = 5 folds with the purpose of circularly changing the test sub-
set maintaining the proportion of 80 and 20% for the training and test sets,
respectively.
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Fig. 3. Process of applying 15 dB SNR of additive noise in torque variable. In graph
above, the dashed line is the signal with noise addition and the straight line is
the original signal without noise. The new variable torque with AWGN (

{
M̌(t)

}
) is{

M̌(t)
}

= {M(t)} + ν(t), where ν(t) is white Gaussian noise with 15 dB SNR. The
process is the same for the remaining variables (pressure and torsional vibration).

All tables related to the fault classification experiment present the classifica-
tion performance X/Y, also called confusion matrix, for the test data from the
701-signal database, where X represents the recognized and Y is the total num-
ber of signals for the target class. The total accuracy classification performance
of confusion matrix is represented by W ±σ, where W is the total accuracy and
σ is its standard deviation during k-fold validation.

In the 701-signal base different noise levels were applied with 60, 30, 15
and 0 dB of SNR using additive Gaussian white noise (AWGN) in the original
signals, in order to evaluate their influence on classification performance. The
Fig. 3 shows the variables torque {M(t)} without noise addition as in Eq. (8),
and torque with 15 dB SNR AWGN (

{
M̌(t)

}
).

The performance of the machine learning was compared with the approach
using the Levenberg-Marquardt least squares (LMLS) technique [3] in order to
assess the efficiency of the proposed system.

6.1 Classification Results Using 60 dB SNR AWGN

For the tests below, all base faults were included by testing the performance
for all fault scenarios of the 701-signal database. Different classes divisions were
used to investigate the performance of the classifier for different configurations
in the output layer, in addition to obtaining the results by expanding the classes
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Table 1. Confusion matrix with 4-class
pattern recognition using feature vector
Vf with 60 dB noise and random forest.

Class Target
c1 c2 c3 c4

c1 10/10 0/9 0/61 0/60

c2 0/10 9/9 1/61 0/60

c3 0/10 0/9 60/61 0/60

c4 0/10 0/9 0/61 60/60

Total 99.3 ± 0.23 (%)

Table 2. Confusion matrix with 4-class
pattern recognition using feature vector
Vf with 60 dB noise and ANN.

Class Target
c1 c2 c3 c4

c1 10/10 0/9 4/61 2/60

c2 0/10 9/9 0/61 0/60

c3 0/10 0/9 57/61 0/60

c4 0/10 0/9 0/61 58/60

Total 95.7 ± 0.97 (%)

Table 3. Confusion matrix with 8-class pattern recognition using feature vector Vf

with 60 dB noise and random forest.

Class Target

c1 c2 c3 c4 c5 c6 c7 c8

c1 5/5 0/18 0/27 0/14 1/20 0/16 0/28 0/12

c2 0/5 18/18 0/27 0/14 0/20 0/16 0/28 0/12

c3 0/5 0/18 27/27 0/14 0/20 0/16 0/28 0/12

c4 0/5 0/18 0/27 14/14 0/20 0/16 0/28 0/12

c5 0/5 0/18 0/27 0/14 19/20 0/16 0/28 0/12

c6 0/5 0/18 0/27 0/14 0/20 16/16 0/28 0/12

c7 0/5 0/18 0/27 0/14 0/20 0/16 28/28 0/12

c8 0/5 0/18 0/27 0/14 0/20 0/16 0/28 12/12

Total (%) 99.3 ± 0.27

Table 4. Confusion matrix with 8-class pattern recognition using feature vector Vf

with 60 dB noise and ANN.

Class Target

c1 c2 c3 c4 c5 c6 c7 c8

c1 5/5 0/18 0/27 0/14 0/20 1/16 0/28 0/12

c2 0/5 18/18 0/27 0/14 0/20 0/16 0/28 0/12

c3 0/5 0/18 27/27 0/14 0/20 0/16 0/28 0/12

c4 0/5 0/18 0/27 14/14 0/20 0/16 0/28 0/12

c5 0/5 0/18 0/27 0/14 20/20 0/16 0/28 0/12

c6 0/5 0/18 0/27 0/14 0/20 15/16 0/28 0/12

c7 0/5 0/18 0/27 0/14 0/20 0/16 28/28 0/12

c8 0/5 0/18 0/27 0/14 0/20 0/16 0/28 12/12

Total (%) 99.3 ± 0.85
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Table 5. Confusion matrix with 4-class
severity pattern recognition using feature
vector Vf with 60 dB noise and RF.

Class Target
S1 S2 S3 S4

S1 13/13 0/20 0/49 0/58

S2 0/13 19/20 1/49 0/58

S3 0/13 1/20 48/49 1/58

S4 0/13 0/20 0/49 57/58

Total 97.9 ± 0.85 (%)

Table 6. Confusion matrix with 4-class
severity pattern recognition using feature
vector Vf with 60 dB noise and ANN.

Class Target
S1 S2 S3 S4

S1 0/13 0/20 0/49 0/58

S2 13/13 19/20 2/49 0/58

S3 0/13 1/20 46/49 2/58

S4 0/13 0/20 1/49 56/58

Total 86.4 ± 2.7 (%)

of failures. The tests were defined by the number of classes to be predicted by
the classifier and in each test it was adopted the following class nomenclature:

– 4-class test: normal (c1), pressure reduction in the intake manifold (c2), com-
pression ratio reduction in the cylinders (c3) and reduction of amount of fuel
injected into the cylinders (c4);

– 8-class test: normal (c1), cylinder failure: cylinder 1 (c2), cylinder 2 (c3),
cylinder 3 (c4), cylinder 4 (c5), cylinder 5 (c6) and cylinder 6 (c7) and failure
on all cylinders (c8);

– 4-class severity test (S4): percentage severity level (S): 1 ≤ S ≤ 10 (S1),
10 < S ≤ 20 (S2), 20 < S ≤ 30 (S3) and 30 < S ≤ 50 (S4).

Tables 1, 2, 3, 4, 5 and 6 present similar framework to the ones described
in [5,6], i.e., it performs a classification task using Vf with an ANN of 84-84-4
and 84-84-8 neurons in the input, hidden and output layers for tests with 4 and
8 classes, respectively and 84 trees with 500 splits to the RF classifier.

Comparing Tables 1, 2, 3, 4, 5 and 6, it is clearly noticed that the use of RF
improves each individual class performance and consequently the overall system
accuracy from up to 99% in the 4 and 8-class tests. Comparing the performance
with the ANN classifiers for the same task, there was a decrease in accuracy of
3.6% for both, the 4 and 8-class tests. However, for the severity classification test,
there was a difference of 11.5% in performance between RF and ANN classifiers.

6.2 Classification Results Combining All Scenarios in a Summary
Table

For the tests below, all database faults were included to evaluate the perfor-
mance for all fault scenarios of the 701-signal database. In this section a similar
configuration as the one adopted in Sect. 6.1 was applied, except for an extra
test class. The test were established with the same nomenclature for 4-class,
8-class and 4-class severity as presented in Sect. 6.1 and an additional 14-class
nomenclature defined as follows:



86 D. Pestana-Viana et al.

Table 7. Classification accuracy results for RF and ANN classifiers with 60, 30, 15
and 0 dB SNR using feature vector Vf .

Noise (dB) N. class Accuracy (%)

RF ANN

60 4 99.3 ± 0.2 95.7 ± 1.0

8 99.3 ± 0.3 99.3 ± 0.9

14 99.3 ± 0.3 96.4 ± 0.9

S4 97.9 ± 0.9 86.4 ± 2.7

30 4 98.6 ± 0.3 92.9 ± 1.0

8 98.6 ± 0.3 97.1 ± 0.8

14 97.9 ± 0.4 95.8 ± 1.0

S4 97.9 ± 0.9 86.1 ± 2.3

15 4 95.1 ± 0.3 88.6 ± 1.0

8 95.8 ± 0.3 90.7 ± 0.8

14 94.4 ± 0.4 92.1 ± 0.8

S4 92.3 ± 0.9 76.4 ± 3.2

0 4 83.5 ± 0.9 75.7 ± 1.0

8 81.4 ± 0.8 79.3 ± 1.3

14 80.7 ± 0.9 72.9 ± 1.2

S4 76.4 ± 1.3 60.7 ± 3.7

– 14-class test: normal (c1), pressure reduction in the intake manifold (c2),
compression ratio reduction in: cylinder 1 (c3), cylinder 2 (c4), cylinder 3
(c5), cylinder 4 (c6), cylinder 5 (c7) and cylinder 6 (c8) and reduction of
amount of fuel injected in: cylinder 1 (c9), cylinder 2 (c10), cylinder 3 (c11),
cylinder 4 (c12), cylinder 5 (c13) and cylinder 6 (c14).

The results shown in Table 7 indicate an overall classification performance
for RF classifier of 99.3%, which is suitable for the problem of diesel faults
classification, making the method proposed effective for the recognition of failure
patterns under analysis in this work. The ANN classifier, in general, obtained
lower performance when compared to the RF, making the RF more appropriate
for the classification tasks addressed in this work.

6.3 Comparative Analysis of LMLS and the Proposed Approaches

The comparative analysis between LMLS technique [3] and the proposed
approaches using 4 different classifiers aiming to detect the type of fault (nor-
mal, ΔPa, Δr and Δmc), the location of fault (normal, cylinder 1 to 6, and all
cylinders), the type and location of fault combined, and the fault severity range,
is addressed in order to observe the qualitative aspects of both techniques.
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It has to be noticed that LMLS technique and the proposed approaches
present significant structural differences. The LMLS algorithm requires that the
type of fault is known previously to the system application and returns the sever-
ity level in numerical terms, while the proposed approaches uses classification
techniques to detect the fault type and location, and its severity range.

Table 8 presents the scenarios, where the techniques were analyzed. Cases 1
to 6 were contaminated with only one type of fault each with a certain severity
level and measurement noise. Only fault ΔPa with 25% of severity in cylinder 1
was addressed in case 1. In case 2 only fault Δr in cylinder 1 with 25% of severity
was simulated and case 3 only fault Δmc with 25% of severity and cylinder 1
was considered. The cases 7, 8 and 9 are equivalent to 1, 2 and 3 aggregating
noise comprising 15 dB of SNR in fault signals. In the 6 cases the dynamic model
coupled with the thermodynamic was used.

Table 8. Summary table with faults and severity levels addressed for each input sce-
nario/case.

Case Cyl. SNR(dB) Simulated fault & severity (%)

ΔPa Δr Δmc

1 1 - 25 - -

2 1 - - 25 -

3 1 - - - 25

4 1 15 25 - -

5 1 15 - 25 -

6 1 15 - - 25

In Table 9 the absolute severity estimation error for cases 1 to 6 were less
than 10−5% indicating a high efficiency if estimating severity levels for LMLS
technique. However it should be mentioned that algorithm requires previous
knowledge of the fault type to be analyzed and takes about 38 h to evaluate a
single scenario. The proposed approaches evaluates 4 different classifiers. The
first, a 4-class (4-c) experiment recognizes the 3 types of faults under analysis
as being of the classes c2, c3 and c4, associated to ΔPa, Δr and Δmc, respec-
tively. The 8-class (8-c) classifiers detect appropriately in which cylinder the fault
occurred as being class c2, i.e., cylinder 1. The combined fault type and location
fault classifier, which is a 14-class (14-c) classifier, was able to detect accurately
the classes c2, c3 and c9 related to ΔPa and cylinder 1, Δr and cylinder 1,
and Δmc and cylinder 1, respectively. And finally the severity range evaluation
used a 4-class severity classifier (S4) and could assertively point out the class s3
corresponding to the severity range from 20% to 30%. The computational cost
of one assessment of the proposed approach took about 21 ms.
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Table 9. Table of maximum error in identifying the severity for each variable using
LMLS technique and Machine Learning Random Forest (MLRF) classification results
for 4-c, 8-c, 14-c and S4 classifiers, for different noise levels and 2500 RPM.

Case Methodology Time

LMLS Proposed LMLS (%) Proposed

ΔPa Δr Δmc 4-c 8-c 14-c S4 (hours) (ms)

1 < 10−5 0 0 c2 c2 c2 s3 38 21

2 0 < 10−5 0 c3 c2 c3 s3 38 21

3 0 0 < 10−5 c4 c2 c9 s3 38 21

4 < 10−5 0 0 c2 c2 c2 s3 38 21

5 0 < 10−5 0 c3 c2 c3 s3 38 21

6 0 0 < 10−5 c4 c2 c9 s3 38 21

Both techniques performed quite well in the presence of noise for all testes
scenarios. The LMLS technique is very accurate in estimating the numerical level
of fault severity. However it requires previous information about the severity
type to be analyzed and has an excessively computational cost compared to
proposed technique. The proposed approaches are based on classification and
could accurately recognize the fault classes and severity range analyzed in the
test scenarios. Different from LMLS, the proposed approaches do not require
previous information about the fault. However they do not provide a numerical
severity level and take a very reduced computational time.

The computational time evaluation was performed in a common personal
computer, with the following characteristics: CPU core i5, 8 GB RAM, without
GPU and using the 2 physical cores for parallel processing.

7 Conclusions

This paper proposed a modification in fault identification technique compared to
the one adopted in [3], differing by the utilization of machine learning technique.
To evaluate this approach, a new database with 701 fault scenarios was devel-
oped. The proposed feature vector applied to the 4-class recognition problem
(normal, pressure reduction in the intake manifold, compression ratio reduction
and reduction of amount of fuel injected) described in [3,8] have reached the
maximum system performance of 99.3%.

Even in a more complex discrimination task, a 14-class problem, where the
compression ratio and amount of fuel injected reduction are divided into indi-
vidual cylinder fault, and new fault categories are added, the proposed feature
vector applied to the classification system achieved 99.3% of overall accuracy
in low signal-to-noise ratio (60 dB SNR). The addition of higher signal-to-noise
ratios, 30, 15 and 0 dB SNR, decreases the overall classification performance. In
real systems, the SNR should be taken into account and techniques to keep it as
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small as possible should be employed. Otherwise, it could severely impairs the
classification performance.

In future work, it is intended to combine the advantages of the proposed
approaches and LMLS possibly including a machine learning regression step to
estimate the severity level numerically and assess signals corrupted by multiple
faults.
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118, March 2016

7. Mendes, A.S.: Development and validation of a methodology for torsional
vibrations analysis in internal combustion engines, 135p. M.Sc. Dissertation–
Universidade Estadual de Campinas (UEC) (2005)

8. Monteiro, U.: Thermodynamic simulation of gas turbines for fault diagnosis. D.Sc.
Thesis–Universidade Federal do Rio de Janeiro (UFRJ) (2010)

9. Heywood, J.: Internal Combustion Engine Fundamentals. Mechanical Engineering.
McGraw-Hill, New York (1988)

10. Stone, R.: Introduction to Internal Combustion Engines, 2nd edn. Macmillan, Bas-
ingstoke (1992)

11. Mendes, A.S.: Development and validation of a methodology for torsional vibra-
tions analysis in internal combustion engines (2005)

12. Inman, D.J.: Engineering Vibrations, 4th edn. Pearson, London (2014)
13. Rao, S.S.: Mechanical Vibrations, 5th edn. Pearson, London (2010). Recherche


	Application of Machine Learning in Diesel Engines Fault Identification
	1 Introduction
	2 System Description
	3 Dynamic Model
	4 Database
	5 Feature Extraction
	5.1 Feature Vector

	6 Experimental Results
	6.1 Classification Results Using 60 dB SNR AWGN
	6.2 Classification Results Combining All Scenarios in a Summary Table
	6.3 Comparative Analysis of LMLS and the Proposed Approaches

	7 Conclusions
	References




