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Abstract. This paper analyzes the performance of wavelet packet transform
(WPT) and support vector machine (SVM) based fault diagnostics of induction
motors (IMs) at various operating conditions. Four mechanical faults (namely,
bearing fault, bowed rotor, unbalanced rotor, and misaligned rotor) and three
electrical faults (namely, stator winding fault, broken rotor bar and phase
unbalance) are considered for the diagnosis. In addition, two levels of severity of
stator winding fault and phase unbalance are also considered. In order to
develop the present fault diagnostics, firstly the vibration and current signals
acquired from laboratory experiments are decomposed by the WPT via Haar
wavelet. A number of useful wavelet features are then extracted from the
decomposed signals of different IM faults. For estimating the correct fault type,
the one-versus-one multiclass method of the SVM is finally applied by inputting
the most suitable features. Here the most suitable features are chosen using the
wrapper model of feature selection. The diagnostics is executed and checked for
various operational conditions (i.e., the load and the speed) of IM to test the
robustness of developed diagnostics. This work is of practical significance as
training or testing data are not always available at all motor operational
conditions.
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1 Introduction

Condition monitoring and fault diagnosis of crucial machines is gaining importance in
the industry in order to detect and diagnose the state of the machines so that catas-
trophic failure can be avoided. Efficient monitoring and diagnosis of machines can
improve the reliability, and reduce the maintenance and downtime cost of the
machines. Electric motors have become the workhorse and one of the most critical
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devices in all type of industries. By far the Induction Motor (IM) is most widely used
electric motor because of their potential advantages such as ruggedness, low cost, low
maintenance, and capability to run under harsh operating environments [1]. In spite of
their reliability, IM when subjected to undesirable mechanical, electrical and envi-
ronmental stresses may develop various modes of faults. These faults result in a
complete failure of the IM and finally unexpected shutdown of the production process
and sometimes personal injuries. In the last two to three decades, numerous fault
monitoring and diagnostics have been developed to avoid unexpected IM failure.

The IM failure occurs due to the progression of any mechanical faults for example
bearing faults and rotor faults and/or electrical faults for example the broken rotor bar,
stator winding and phase unbalance fault [2, 3]. Many condition monitoring techniques
are used for early detection these faults based on the current, vibration, acoustic
emission, magnetic flux, and thermal [3]. However, the vibration and current signals
are the most preferred signal in industries owing to their ease of measurement and
reliability [4]. Also these signals can detect most of the electrical and mechanical
related faults in the motor. Faults can be detected by investigating appropriate features
of measured signals such as the fault characteristic frequency. Various conventional
monitoring techniques are available to detect IM faults based on the fast Fourier
transform (FFT), Hilbert transform (HT) and high resolution spectrum analysis, short
time Fourier transform (STFT), park vector approach, etc. [5, 6]. However, these
techniques are not always reliable. In recent years, significant efforts have been made to
use the artificial intelligence (AI) technique for the reliable fault diagnosis of IMs [7].

An appreciable improvement in condition monitoring and fault diagnosis methods
have been achieved using the AI techniques such as artificial neural network, fuzzy
logic, neuro-fuzzy, etc., [7–9]. Nowadays, a competitive AI technique called the SVM
is gaining recognition in the field of fault diagnostics. The SVM claimed to have best
generalization capabilities and high success rate even with small number of samples
[10]. AI techniques are preferred as they are data based techniques; therefore, they do
not involve any detail knowledge of IM parameters or its modeling. The suitable
statistical features from time domain, frequency domain or time-frequency domains
extracted using available data are used as input to the AI classifier for the fault diag-
nosis. Nowadays, wavelet transforms (WT) in time-frequency analysis is being used in
order to extract the suitable features because they can represent the signal with a limited
number of coefficients. In addition, they have good energy concentration properties
because of compact support of the basis function used in WT. Three versions of WT
namely continuous wavelet transform, discrete wavelet transform and wavelet packet
transform have been developed. Moreover, the WPT is being preferred as a signal
processing tool in the AI based diagnostics of faults. Many mother wavelets (like,
Daubechies, Symlet, discrete Meyer, etc.) have been developed in the IM fault diag-
nosis [11].

In order to perform diagnostics of IM fault using AI and wavelet, researchers
generally used experimental data, which is acquired in the laboratory. However, it is
very important to check if the developed fault diagnosis methodology is robust against
the various operating condition of IM, which is hardly attempt by the researchers.
Therefore, this paper aims to investigate the performance of AI and wavelet based
diagnosis of IM fault for various operational conditions. In this work, in order to
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develop effective AI-wavelet based diagnostics, the WPT is used as a signal processing
tool and the SVM is used as classifier. In total nine mechanical and electrical fault
conditions are considered for the diagnosis with a healthy IM. The current as well as
vibration signals are used to take care of individual effectiveness in the detection of
mechanical and electrical faults. For performing the proposed diagnosis, firstly, the
experimental data was acquired from all faulty IMs and healthy IM for various oper-
ational conditions. The useful statistical features based on WPT are then extracted from
the experimental data. For effective fault diagnosis the useful features are chosen using
wrapper model of feature selection. In this study, a multiclass SVM called one-versus-
one method is employed. In order to select optimal parameters of SVM, a cross-
validation technique is used. For checking the robustness of the methodology, the
diagnostics is executed for several operational conditions (i.e., load and speed) of IMs.

2 SVM Theory

SVM is first developed by Boser, Guyon and Vapnik in 1992 [12, 13]. The SVM is first
developed as a binary classifier and its principles can be explained in two-dimensional
domain as presented in Fig. 1. It present the classification of two class, i.e., class A
(square) and class B (circle). In order to classify these classes, SVM create a hyperplane
or a set of hyperplanes between two classes and finally select an optimal separating
hyperplane by maximizing the margin, namely, the gap between the nearest data point
of two classes.

The optimal separating hyperplane can be obtained using following optimization
problem:

Minimum ½sðwÞ� ¼ 1
2

wk k2 þC
Xm
j¼1

nj ð1Þ

Subject to; yif ðxiÞ ¼ yiðwxi þ bÞ� 1� ni; i ¼ 1; . . .;m ð2Þ

where, training datasets ðxj; yjÞ
� �m

j¼1; xj 2 Rl; yj 2 �1; 1f g; xj is input vector, yj is

label of the xj, m is the number of input vector, l is the input dimension, w is normal
direction of a hyperplane, b is a scalar, nj denotes positive slack variables and C is the
generalization parameter. The function that corresponds to the hyperplane is linear for a
linearly separable data. Though, the data is not always linearly separable. Therefore,
the SVM is also developed for the non-linear separable data with the help of a kernel
trick. Furthermore, the SVM have been developed for handling the multi-class clas-
sification cases [14]. A multiclass case are handled by decomposing it into a number of
two class case. Various multiclass techniques such as one-versus-all, one-versus-one
and direct acyclic graph have been introduced. From literature it is found that the one-
versus-one is most effective technique because of its good classification ability and less
computational or training time.
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3 WPT Theory

The WPT was first introduced by Coifman and Wickerhauser by generalizing the DWT
[15]. A richer signal analysis could be possible due to enhanced resolution obtained in
the higher frequency region. WPT has a framework of the multi-resolution analysis
(MRA) similar to DWT. The WPT is advantageous because it provides similar fre-
quency bandwidth in each resolution by diving not only low but also high frequency
sub band. In other words, DWT split only the approximation version while WPT
simultaneously disintegrate approximation as well as detail versions. Therefore, in
WPT, the informations carried by the parent signal are not altered (lost or increased)
caused by signal decomposition. Thus, WPT is most preferable signal processing
techniques and especially for non-stationary signals [11]. The wavelet packet function
can be defined by a time-frequency function set with the help of following equations:-

Wm
j;k ¼ 2

1
2Wm 2 jt � k

� �
; ð3Þ

Where, variable m (m = 0, 1, 2 …) denotes the modulation or oscillation parameter.
The integer j and k denote the scale and translation variable, respectively. The initial
two wavelet packet functions are defined as scaling and mother wavelet functions,
respectively.

W0
0;0ðtÞ ¼ /ðtÞ; ð4Þ

and

W1
0;0ðtÞ ¼ wðtÞ; ð5Þ

Another form of wavelet packet function can be written as follows:-

Fig. 1. Illustration of basic principle of SVM
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W2m
0;0ðtÞ ¼

ffiffiffi
2

p X
k

hðkÞWm
1;kð2t � kÞ; ð6Þ

and

W2mþ 1
0;0 ðtÞ ¼

ffiffiffi
2

p X
k

gðkÞWm
1;kð2t � kÞ; ð7Þ

where, h(k) and g(k) denote the low and high pass filter coefficients, respectively. They
are directly related to predefined scaling and mother wavelet function. For a function

f ðtÞ; the wavelet packet coefficient Wm
j;k computed via the inner product f ðtÞ;Wm

j;k

D E
is

written as,

Wm
j;k ¼ f ðtÞ;Wm

j;k

D E
¼

Z
f ðtÞWm

j;kðtÞdt: ð8Þ

When a signal S (sampling frequency, fs) is considered for the decomposition by
WPT up to third resolution level, i.e. j = 3, the signal is segregated into eight subspaces
(or packets), i.e. 2 j. The frequency interval of each packet for a frequency interval of
ð0; 2�1fsÞ of the whole scaling space is [16]:

ððm� 1Þ2�j�1fs;m2�j�1fsÞ; m ¼ 1; 2; . . .; 8 ð9Þ

4 Experimentation and Feature Extraction

In this section, first experiments were performed in order to generate the sufficient data
for fault diagnosis, and then suitable features based on the WPT were extracted from
raw datasets.

4.1 Experimental Set-Up and Procedure

Experimental test carried out on a test rig as shown in Fig. 2. The rig comprises of a
Machine Fault Simulator (MFS), a data acquisition system with a signal monitor, three
AC current probes, and a tri-axial accelerometer. The MFS comprises of a test IM
(three-phase, 0.5 HP and 50 Hz), shaft, bearings, pulley, belt, a variable frequency
drive for changing the speed and a magnetic clutch attached with a gear box for
changing the load. Six IMs were used to generate six different faulty conditions,
namely healthy motor (HM), bearing fault (BF), broken rotor bar (BRB), unbalanced
rotor (UR), misaligned rotor (MR) and bowed rotor (BR), and two IMs were used to
generate two faults with two severity levels, i.e. phase unbalances (PUF1 and PUF2)
and stator winding faults (SWF1 and SWF2). Altogether ten IM fault conditions are
considered in this study. Three current probes were attached to three phases of IM and
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an accelerometer was attached to the upper surface of the IM adjacent to shaft end to
measure current and vibration, respectively.

The current probes and accelerometer were finally attached to the DAQ for the
collection of the data. The data was acquired with 1 kHz sampling rate and
10000 samples. In total, 25 datasets are acquired in 250 s. The data was generated from
ten faulty IMs for a wide speed range (i.e., 10 Hz to 40 Hz in interval of 5 Hz) and
three load conditions {i.e., no load (0% of rated torque), light load (0.11% of rated
torque), and high load (0.55% of rated torque)}.

4.2 Feature Extraction

In an AI based fault diagnosis, the feature extraction is an important step for extracting
specific characteristics of the parent signal. In spite of using a potential classifier
inappropriate feature may decrease the classification performance. Thus, the WPT
which is one of the preferable technique for feature extraction is adopted in this study.
The Haar wavelet is applied to time domain data upto 3rd levels. In order to extract
suitable statistical features, firstly wavelet packet coefficients are found at all the
available nodes of the 3-level wavelet tree. Though, it is not feasible to directly use
these coefficients as fault features because it can reduce the classification performance.
This is because most of nodes do not contain valuable information for the extraction of
features. Thus, an appropriate node is selected and features are then extracted corre-
sponding to the selected node. For the selection of appropriate node, either single-level
basis selection (SLBS) or multi-level basis selection (MLBS) approach are used. In
order to select any particular approach, criterion like best basis selection (BBS) and
local discriminant basis (LDB) extension of BBS are usually employed [17]. In this
study, SLBS approach is used which allows the search space to select only the lowest
level of tree. For the selection of most appropriate node, a relative wavelet energy
(RWE) criterion is employed. From this criterion, most suitable node is the one which
shows maximum RWE. The RWE depends on the energy concentration of a certain
signal and frequency bands of the particular node. The RWE represents the probability
distribution of energy and is calculated as:

Fig. 2. (a) Experimental set up (b) IM with different faults
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RWEm ¼ pm ¼ EðmÞ
Eoverall

with
X
m

pm ¼ 1 ð10Þ

The EðmÞ denotes overall energy of disintegrated signal of a particular node and is
calculated as:

EðmÞ ¼
Xn
j¼1

Cm;j

�� ��2 ð11Þ

where Cm;j is the jth wavelet coefficient of the mth node, j indicates the number of
wavelet coefficients, Eoverall denotes overall energy of the signal corresponding to all
the nodes.

Eoverall ¼
XN
m¼1

EðmÞ ð12Þ

where i = 1, 2, …, N indicates each node. The RWE is computed from Eq. (10). For
the current and vibration signals, suitable nodes are chosen corresponding to the
maximum RWE value. After choosing the most suitable node, fault features are
extracted using the coefficients of the chosen node. Initially fourteen features {e.g., first
eight higher moments (µ1 to µ8), standard deviation (r), skewness (v), kurtosis (к Crest
factor (CF), peak-to-peak (RPP), mean to standard deviation (Rmsd),)} are extracted
for selecting the most appropriate fault features.

5 Diagnosis Results and Discussions

The OVO-SVM is employed for IM fault diagnosis. In this work, LIBSVM tool has
been used to apply SVM [18]. Firstly, total dataset is distributed for training and testing
of the classifier in the ratio of 80% and 20%, respectively. Now the different label is
allotted to all the faults including Healthy Motor (HM) such as HM-1, BRB-2, PUF1-3,
PUF2-4, SWF1-5, SWF2-6, BF-7, UR-8, BR-9 and MR-10. The training of SVM
classifier is then performed at each IM operational conditions using the training data. It
is noted that the training of SVM is done here using the RBF kernel. The RBF kernel
comprises two basic hyper-parameters, the kernel parameter c and the Lagrange
multiplier, C. These parameters must be optimized for an effective fault diagnosis.
These two parameters are optimized by the cross-validation method along with grid
search methods. Several pairs of (C, c) are evaluate and the one with maximum training
or cross-validation (CV) accuracy is selected. This is done with each wavelet feature
one by one. The optimization of (C, c) for µ1 and µ2 features of the wavelet for a case
when cross-validation is applied at 40 Hz and high load is shown in Fig. 3. It shows
that the maximum training or CV accuracy is obtained as 99.5% and 98.5% for µ1 and
µ2, respectively. The optimal pair of (C, c) is then selected corresponding to the highest
CV accuracy. After selecting the best pair of (C, c) the final training is performed using
this pair. The trained SVM model is now used to classify or diagnose total ten faulty
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motor conditions. The classification or prediction performance of the classifier can be
described by percentage prediction rate, i.e. the number of successfully classified test
data out of total number of test data.

For effective fault diagnosis, it is crucial to select the best wavelet features, which
can represent each fault condition, effectively. Therefore, in order to choose effective
wavelet feature(s), initially fourteen features are considered. The wrapper model is
employed for the selection of effective features for the present diagnosis. According to
the wrapper model, the feature(s) with highest classifier’s prediction accuracy is/are the
effective feature(s). Now the diagnosis is performed by inputting the selected features
one by one when the testing of classifier is done at the same operating conditions as the
training. The diagnostics is executed at seven different speeds (from 10 Hz, 15 Hz,
20 Hz, 25 Hz, 30 Hz, 35 Hz, and40 Hz) for a high load condition and average results
in terms of prediction performances are shown in Fig. 4. It is observed that the most of
features, like initial six higher moments (µ1–µ6), Rpp and r are able to classify the
considered IM faults with more than 90% prediction accuracy. Other features like Rmsd,
v and к are also able classify the faults to some extent. However, for other considered
features like µ7, µ8 and CF, the prediction accuracy has gone below 75%, which are
unacceptable in the fault diagnosis. From the results, it can be concluded the following
features (µ1–µ6), Rpp and r features of wavelets are better characterized most of IM
faults than other considered wavelet features. However, among these the µ1 feature of
wavelet shows the highest prediction accuracy, i.e. 98.6%. Therefore, it can be con-
cluded that µ1 is most effective wavelet (Haar) feature for the present fault diagnosis.
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Fig. 3. CV or training accuracy at 40 Hz and high load
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After selecting the most effective feature, i.e., µ1, the fault diagnosis is now con-
sidered and checked for a range of IM operational conditions. First, diagnostics is done
for the high load condition as presented in Table 1. The average of overall prediction
accuracy is 98.6% for the considered motor speeds. All faults, except BRB at 20 Hz
(66.7%), SWF2 at 30 Hz (66.7%) and BR at 15 Hz (83.3%) and 25 Hz (83.3%) are
100% classified or predicted perfectly at all considered speeds for the high load con-
dition. Now the diagnostics is done for no load condition applied to the motor and
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Fig. 4. Wavelet feature selection based on the wrapper model

Table 1. Fault diagnosis for various operating conditions

Train speed Test speed Prediction accuracy, %

HM BRB PUF1 PUF2 SWF1 SWF2 BF UR BR MR Over

For T3 (high load)
10 10 100 100 100 100 100 100 100 100 100 100 100

15 15 100 100 100 100 100 100 100 100 83.3 100 98.3
20 20 100 66.7 100 100 100 100 100 100 100 100 96.7

25 25 100 100 100 100 100 100 100 100 83.3 100 98.3
30 30 100 100 100 100 100 66.7 100 100 100 100 96.7
35 35 100 100 100 100 100 100 100 100 100 100 100

40 40 100 100 100 100 100 100 100 100 100 100 100
Avg. 100 95.2 100 100 100 95.2 100 100 95.2 100 98.6

For T1 (no load)
10 10 100 100 100 100 100 100 83.3 100 100 100 98.3
15 15 100 100 100 100 100 100 100 100 100 100 100

20 20 100 100 100 100 66.7 100 100 100 100 100 96.7
25 25 100 100 100 100 100 100 100 100 100 100 100

30 30 100 100 100 100 100 100 100 100 100 100 100
35 35 100 100 100 100 100 100 100 100 100 100 100
40 40 100 100 100 100 100 66.7 100 100 100 100 96.7

Avg. 100 100 100 100 95.2 95.2 97.6 100 100 100 98.8
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results are tabulated in Table 1. The average of overall prediction accuracy is 98.8% for
considered motor speeds. All faults, except SWF1 at 20 Hz (66.7%), SWF2 at 40 Hz
(66.7%) and BF at 10 Hz (83.3%) are perfectly classified at all considered speeds for
no load condition. From results, it can be concluded that fault diagnostics with the Haar
wavelet and the µ1 has yielded nearly perfect prediction, not only for different IM
faults, but also for their severity at all speeds and different levels of load torques. The
prediction performance of the present fault diagnostics is nearly same for all operating
conditions of IMs. The diagnosis is independent of operating condition of IM. That
means the diagnosis of IM fault based on the SVM classifier and the WPT (Haar
wavelet) can be accomplished at all the considered load and speed.

6 Conclusions

This paper presents the performance analysis of the SVM and the WPT based IM fault
diagnostics at various speeds and loads. The vibration and current signals are used to
diagnose various mechanical and electrical fault conditions. In this work, Haar wavelet
function is used to perform the diagnosis. Initially, fourteen wavelet features are
considered for the study and then selected the most effective feature using wrapper
model feature selection procedure. It is found that the µ1 feature of Haar wavelet can
characterize all IM fault conditions better than other considered features. Finally, in
order to check fault diagnosis performances over different operating conditions of IMs,
the diagnosis is performed for various speeds and mechanical loadings. The diagnosis
is then considered based on one of the effective wavelet feature, i.e., µ1. Average
prediction accuracies are found to be 98.6% and 98.8% corresponding to the high load
and no load conditions, respectively. Results show that the combination of the SVM
and µ1 feature of the Haar wavelet is capable of diagnosing IM faults as well as their
severities effectively at all considered operational conditions. It is also observed that the
performance for the present diagnosis does not depend over angular speed as well as
external load of IMs. In this study, 80% and 20% of the total data sets are considered
for training and testing, respectively. However, the metrics used could be rearranged to
test a low percent of training data to test different scenarios. In addition, other wavelet
functions, like Gaussian, Shannon, Morlet, etc. can also be used for the comparative
study.
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