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Abstract. Rotating machines are widely used in industry. Unforeseen machine
failures affect production schedules, product quality, and production costs.
Therefore, condition monitoring of rotating machine can play an important role
in machine availability. There is a growing number of methods for Machine
Condition Monitoring (MCM). Yet, the performance of these methods is limited
by the massive amounts of data need to be collected for MCM. This work
proposes a computational method which can greatly reduce the high dimen-
sional vibration dataset to a set of compressively-sampled measurements using
Compressive Sampling (CS). Then, to learn fewer features from these
compressively-sampled measurements we propose an effective multi-step fea-
ture learning algorithm that combines the advantages of Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), and Canonical Correla-
tion Analysis (CCA). Finally, with these learned features, we use multi-class
Support Vector Machine (SVM) to classify machine health conditions. Exper-
iments on a roller element bearing fault classification task based on vibration
signals are used to evaluate the efficiency of the proposed method. The most
obvious finding to emerge from this study is that we are able to achieve high
classification accuracy even from highly reduced vibration signal measurements.
Moreover, the efficiency of our proposed method outperforms some recently
published results. The proposed method offers better accuracy and has lower
costs in time and storage requirements.

Keywords: Machine condition monitoring � Compressive sampling
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1 Introduction

Manufacturing companies in today’s global marketplace race, use their best efforts to
cut costs and improve product quality to maintain their competitiveness. The health and
availability of such rotating machines in industry have a direct effect on production
schedules, production quality, and production costs. Unforeseen machine failures may
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lead to unexpected machine downtime, accidents, and injuries. Condition Monitoring
(CM) of rotating machine can play an important role in addressing these issues by
reducing unplanned downtime of machinery, avoiding machine breakdown, and
improving reliability and safety. Various components can be monitored in rotating
machine, e.g., bearings, shafts, gearboxes, etc. Of these components, rolling element
bearings are amongst the most important components to be monitored as their failures
may lead to more significant failures in the machine. CM techniques in rotating
machinery encompass the practice of monitoring measurable signals, e.g., vibration and
acoustic signals that can be used uniquely or in mixture to identify changes in machine
condition [1]. Consequently, this allows Condition Based Maintenance (CBM) to be
arranged, or may be other actions to be taken to prevent machine breakdowns.

In general, the overall framework of rotating machine CM contains three main
steps: (1) data acquisition; (2) signal processing; and (3) machine condition identifi-
cation, as shown in Fig. 1. In the data acquisition step, vibration signals have been
widely used since various characteristic features can be observed from vibration sig-
nals. In the second step, the collected signals are analysed by using signal processing
techniques to extract features that represent the health condition of the monitored
rotating machine. In the third step, an algorithm is used to identify the condition of
rotating machine. The acquisition of vibration signals can be done through vibration
sensors, e.g., velocity sensors and accelerometers [2].

The sampling theorems including Shannon-Nyquist theorem are in the core of the
current sensing systems. However, Nyquist sampling rate which is at least twice the
highest frequency enclosed in the signal is high for some recent emerging applications,
e.g., industrial rotating machine, that provide a means of measuring a huge amount of
data to be transmitted, stored, and processed. Likewise, some applications that include
wideband it is often very costly to collect samples at the necessary rate.

In place of processing the original collected vibration signals, i.e., raw signals, the
common methodology is to identify a lower – dimensional features space that can
represent the acquired large amount of vibration signals while retaining the important
information of the machine conditions. Normally, vibration signals can be analysed in
three key sets including, time domain, frequency domain, and time-frequency domain
[3, 4]. Time-domain based techniques extract features from the raw vibration signals
using several statistical parameters, e.g., Impulse factor, skewness, kurtosis, Crest
Factor, root mean square, peak-to-peak value, etc. [5]. The frequency domain based
techniques, e.g., baseband auto-spectral density, linear frequency spectrum, and phase-
averaged linear spectra, which can be produced by Fourier transforming time series,
have the ability to observe substantial diagnosis information based on the frequency

Fig. 1. The overall framework of machine condition monitoring.
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features which are not easily to be observed from time domain series [6]. The time-
frequency domain based techniques have been utilised for non-stationary waveform
signals that are very common when machinery fault happens. In the literature, several
time-frequency domain based techniques have been proposed and applied to vibration
based machinery fault diagnosis, e.g., Wavelet Transform (WT), Hilbert-Huang
transform (HHT) [7], Short Time Fourier Transform (STFT) [8], Empirical Mode
Decomposition (EMD) [9] etc. Furthermore, the application of Spectral Kurtosis and
Kurtogram have been investigated and effectively utilised for both vibration signal and
acoustic emission in relation to bearing defect identification [10].

As far as the problem of the high dimensionality of the acquired vibration signals is
concerned, dimensionality reduction techniques are employed as a data pre-processing
stage or as part of the data analysis. Reducing the dimension of vibration signals is
useful as it improves the computational efficiency and may develop the accuracy of the
analysis. Normally, low-dimensional space of vibration signals can be generated by
selecting a subgroup of the original features or by transforming it to a new reduced
group of features. For instance, Sakthivel et al. [11] transformed statistical features
extracted from vibration signals using several dimensionality reduction techniques
including, Principal Component Analysis (PCA), Kernel PCA, Maximum Variance
Unfolding (MVU), Local Tangent Space Analysis (LTSA), Diffusion Maps (DM),
Laplacian Eigenmaps (LE), and Local Linear Embedding (LLE); then, they are clas-
sified using Decision Tree (DT), Bayes Net (BN), and Naïve Bayes (NB) classifiers.
Wang et al. [12] proposed a PCA-based technique on defined time-frequency statistical
features of rolling bearing vibration signals and faults diagnosis was evaluated using a
fuzzy C-means (FCM) model. Widodo et al. [13] studied the application of Indepen-
dent Component Analysis (ICA) and Support Vector Machines (SVMs) to detect and
diagnosis induction motor faults using vibration signals. Ciabattoni et al. [14] presented
a novel Linear Discriminant Analysis (LDA) based algorithm to deal with fault
vibration data dimension reduction and fault detection problems.

Compressive Sampling (CS) [15] is a new technique that supports sampling below
Nyquist rate and shows great possibilities to reconstruct the high dimensional signals
from fewer measurements using various signal reconstruction techniques, e.g., Com-
pressive Sampling Matching Pursuit (CoSaMP) [16]. In recent years, several publi-
cations have been appeared documenting the use of CS in machine fault diagnosis. For
example, Wong et al. [17] demonstrated that it is possible to sample the vibration of
roller element bearing at less than Nyquist rate using CS framework and recover the
signal for fault classification. In the same way, Li et al. [18] shown the possibility of
diagnosis the fault of train’s rolling bearing from the reconstructed vibration signal
based on CS. Another significant aspect of CS is the use of compressed measurements
to diagnosis machine fault without reconstructing the original signal [19–22].

Motivated by the advantages of CS, PCA, LDA, and CCA, this paper proposes a
new intelligent fault diagnosis method for rotating machinery. We demonstrate how to
create a basis from CS based compressively-sampled data that contains highly corre-
lated potential features of sufficient principal components and discriminative compo-
nents for fault classification.
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2 Compressive Sampling (CS)

The basic idea of CS is that many real-world signals that have sparse representations in
some domain, e.g., Fourier Transform (FT), can be recovered from fewer measure-
ments satisfying certain conditions. To obtain a compressed signal y ε Rm x 1 from a
given collected vibration signal x ε Rn x 1 using the standard framework of CS can be
explained as following [23]

x ¼ ws ð1Þ

where s ε Rn x 1 is a column vector with k nonzero coefficients and represents the sparse
components of x. w ε Rn x n is the sparsifying transform, e.g., Fast Fourier Transform
(FFT) matrix. The compression process can be achieved through a measurement matrix
/ ε Rm x n and a compressive sampling rate (a) where m = a * n and m � n. The
equation that describes the compressed signal y ε Rm x 1 is as follows:

y ¼ /ws ð2Þ

The measurement matrix / should satisfy the Restricted Isometry Property (RIP),
i.e., satisfy the data minimal information loss, to obtain compressed measurements that
have the quality of the original signal. Random matrices, e.g., Gaussian random matrix,
satisfy the RIP [24]. The possibility to reconstruct the original signal from these
compressed samples indicate that the compressed samples possess the quality of the
original signal.

Having explained CS framework, the following section will give brief descriptions
of PCA, LDA, and CCA algorithms.

3 Subspace Learning Techniques

In terms of subspace learning techniques that used in this study, this section has
presented brief descriptions of PCA, LDA, and CCA algorithms.

3.1 PCA

PCA is an orthogonal linear feature projection algorithm that aims to find all the
components (eigenvectors) in descending order of significance. The procedure of PCA
involves the following steps.

• Calculate the mean vector of the data.
• Compute the covariance matrix of the data.
• Obtain the eigenvalues and eigenvectors of the covariance matrix.

PCA can be employed to form a low-dimensional feature vector [25]. To reduce the
dimensionality of the data by means of PCA, one ignores the least significant com-
ponents from the PCA. Suppose that the input dataset Y ¼ y1; y2; . . .; yL½ � has L
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observations and m-dimensional space. PCA transforms Y to Ŷ ¼ ŷ1; ŷ2; . . .; ŷL½ � in a
new m1-dimensional space that can be represented by the following equation:

Ŷ ¼ WTY ð3Þ

here W is projection matrix in which each column vector is composed of the corre-
sponding eigenvectors of m1 largest eigenvalues (m1 � m) of the covariance matrix
C that can be computed as follows

C ¼ 1
L

XL

i¼1
ðyi � �yÞðyi � �yÞT ð4Þ

where

�y ¼ 1
L

XL

i¼1
yi ð5Þ

3.2 Fisher LDA

Unlike PCA, searching for the most significant components of samples, Fisher LDA
[26] aims to discover discriminant components that distinguish different class samples.
In fact, LDA collects the samples from the same class and expand the margin of
samples from different classes. This method considers maximizing the Fisher criterion
function J(W), i.e., the ratio of the between the class scatter SBð Þ to the within class
scatter (SwÞ such that

J Wð Þ ¼ WTSBW jj
WTSwW jj ð6Þ

SB ¼ 1
L

Xc

i¼1
li l

i � l
� �

li � l
� �T ð7Þ

Sw ¼ 1
L

Xc

i¼1

Xli

j¼1
ðyij � liÞ yij � li

� �T
ð8Þ

where L is the total number of observations, c is the number of classes, y � R L x m is the
training dataset, yi1 represents the dataset belong to c-th class, li is the number of
observations of the i-th class, li is the mean vector of class i, and l is the mean vector
of all training dataset. LDA projects the space of the original data onto a (c – 1) –
dimension space by finding the optimal projection matrix W that maximizes the J (W)
in Eq. (6) such that

Ŵ¼argmax
W

J Wð Þ ð9Þ

here Ŵ is composed of the selected eigenvectors (ŵ1; . . .; ŵm2) with the first m2 largest
eigenvalues (m2 = c − 1).
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3.3 CCA

Different from PCA and LDA that encompass only one dataset, CCA is a statistical
method for finding linear combinations of two datasets by maximizing their correlation
[27]. For example, let ðy1; y2Þ 2 Rm1;Rm2 be two vectors with covariance ðP11;

P
22Þ

and cross-covariance ðP12Þ. CCA finds linear combinations of y1 and y2 vectors
�w1y1; �w2y2ð Þ that are maximally correlated such that the following objective function is
maximised

ðw1;w2Þ¼arg max
W1;W2

ð�w1y1; �w2y2Þ ð10Þ

¼ arg max
W1;W2

�w1
P

12 w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w1

P
11 w1�w2

P
22 w2

p ð11Þ

where
P

11;
P

22; and
P

22; can be computed as
P

11 ¼ 1
m y1�y1;

P
22 ¼ 1

m y2�y2;P
12 ¼ 1

m y1�y2. Based on the theory of CCA, the objective function in (10) can be
rewritten as follows:

arg max
W1;W2

�w1

X
12
w2

s:t �w1

X
11
w1 ¼ 1; �w2

X
22
w2 ¼ 1:

ð12Þ

More details of the mathematical formulation of CCA can be found in [26].

4 The Proposed Method

To classify the condition of rotating machine from collected vibration signals, a novel
condition monitoring method is proposed in this paper. The intention of this method is
to reduce vibration signals dimensionality as much as possible while retaining
appropriate fault information from which a basis of sufficient principal components
(PCs) and enough discriminant components (DCs) will be created for fault classifica-
tion. As shown in Fig. 2, our proposed method employed CS to obtain compressed
measurements that possess the quality of the original vibration signals. Then, a multi-
step methodology of PCA, LDA, and CCA is utilised to extract further reduced features
from the obtained compressed measurements. Finally, with these extracted features
SVM is used to classify rotating machine health condition.

As shown in Fig. 3, to obtain compressed measurements using CS framework in
(2), we began by obtaining the sparse representation S 2 Rnx1 from the raw vibration
signal x 2 Rnx1 using FFT. Then, the compression process is applied using Gaussian
random matrix and an appropriate compressive sampling rate (a) to produce the
compressed measurement y 2 Rmx1. After the compression process, the compressively-
sampled signals were used to create a further reduced features vector of sufficient
principal components and enough discriminant components using a proposed multi-
step technique.
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In this technique, PCA and LAD are first applied individually to extract subspaces
of principal components ŷ1 2 Rm1x1 and discriminant components ŷ2 2 Rm2x1 from the
compressed samples y 2 Rmx1 where m1 is a chosen number of principal components
and m2 = c − 1; here c is the number of classes associated to each machine condition.
Once the PCA and LDA based subspaces were extracted, CCA is used to maximize the

Fig. 2. The proposed method.
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correlation between ŷ1 and ŷ2 by finding the weighted linear composites w1 and w2.
The size of w1 and w2 are defined by the smaller number of components of ŷ1 and ŷ2,
i.e., m1 and m2 respectively. The linear combination of ŷ1ðŷ1CCA ¼ w1 � ŷ1Þ and
ŷ2ðŷ2CCA ¼ w2 � ŷ2Þ will maximize their correlation.

Following this process, the learned features ŷ1CCA and ŷ2CCA are concatenated to
obtain a vector that comprise high correlated representations of principal components
and discriminative components. Finally, we used multi-class SVM classifier to classify
machine condition.

Our proposed method is validated through computer experiments of a fault clas-
sification case study of rolling element bearings.

5 Experimental Study

The bearing dataset used in this study is provided by the Case Western Reserve
University (CWRU) [28]. The vibration signals were acquired from the drive end of a
motor in a test rig (Fig. 4) under normal condition (NO), outer race (OR) fault, inner
race (IR) fault, and rolling element (RE) fault. The dataset are further grouped by fault
width (0.18, 0.36, and 0.53) under four motor loads (0, 1, 2, and 3 hp) with different
shaft speeds (1797, 1772, 1750, 1730 rpm). The sampling rate used to sample the data
was 12 kHz. In this study, the motor bearing dataset composed of these vibration
signals with 10 bearing health condition and 100 signal examples for each health
condition per fault width under four load conditions. Therefore, the total dataset

Fig. 3. The compression process of acquired vibration signal using CS framework.

Intelligent Condition Monitoring for Rotating Machinery 245



contains 400 examples for each health condition (4000 signal examples for all health
conditions) with 1200 data points for each signal. Figure 5 depicts some typical time
series plots for the ten different aforementioned health conditions. Moreover, the
explanation of this dataset is presented in Table 1.

To classify the motor bearings health condition in this case study, we applied our
proposed method to this bearing dataset. Half of the bearing vibration signal examples
were selected randomly for training, and the other half of the signal examples were
used for testing. To apply our method, we began by obtaining the compressed mea-
surements from the training set with 2000 examples and with 1200 time samples for
every example using CS framework. We used FFT basis sparse representations of
training signals and random Gaussian matrix as measurement matrix with different
values of the compressive sampling rate (a) with 0.05, 0.07, and 0.1.

Fig. 4. CWRU bearing test rig [28].

Table 1. Description of bearing health conditions under four loads with different fault width.

Health condition Number of samples Fault width (mm) Classification label

NO 400 0 1
OR1 400 0.18 2
OR2 400 0.36 3
OR3 400 0.53 4
IR1 400 0.18 5
IR2 400 0.36 6
IR3 400 0.53 7
RE1 400 0.18 8
RE2 400 0.36 9
RE3 400 0.53 10
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To learn features from the training set with compressed measurements, we applied
our proposed multi-step approach using 9 components for LDA and 10 principal
components for PCA for each of the compressed measurements described above. The
concatenated features produced from this approach were used to train our classifier. For
the classification problem, we employed SVM with “fitcecoc” function [29] on the
learned features, i.e., the concatenated features. It uses c(c − 1)/2 binary SVM models
using one-versus-one coding design, where c is the number of unique class labels. This
will return a fully trained error-correcting output codes (ECOC) multiclass model that
cross-validated using 10-fold cross-validation. The overall classification results and
their related root mean square errors of 20 experiments are shown in Table 2.

Fig. 5. Typical time series plots for the ten different health conditions.

Table 2. Classification results with their corresponding root mean square (RMSE) and
computational time using various compressive sampling rates (a).

Sampling rate
(a)

Training accuracy
(%)

Training time
(s)

Testing accuracy
(%)

Testing time
(s)

a = 0.1
120 samples

100 ± 0.0 4.83 ± 0.01 99.9 ± 0.1 1.62 ± 0.02

a = 0.07
84 samples

99.9 ± 0.1 4.61 ± 0.01 99.6 ± 0.2 1.41 ± 0.02

a = 0.05
60 samples

99.6 ± 0.2 4.36 ± 0.09 99.2 ± 0.3 1.24 ± 0.07
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As Table 2 shows, our proposed method deliver high classification accuracy for
each value of a with a small RMSE. Particularly, the testing classification accuracy for
a = 0.1 is 99.9%, and the testing time required by our method is only 1.62 s. In
general, the computational time increased slightly with the increase in a value. For
example, the total time for training and testing with the smallest value of a, i.e.,
a = 0.05 (5.6 s) increased by less than 20% compared with the total time required by
the largest value of a = 0.1 (6.45 s).

Table 3(a) and (b) shows some sample confusion matrices of ten types of a health
condition in the classification results for values of a = 0.1 and 0.07 respectively. It can
be clearly seen that with a = 0.1 in Table 3(a), only two signal examples of IR1 is
likely to be estimated as IR3, i.e., the proposed method misclassified only 1% of testing
examples of IR1 as IR3. With a = 0.7 in Table 3(b), only one of IR1 (0.5 of IR1 testing
examples) is likely to be confused with IR3, two of IR2 (1% of IR2 testing examples)
to be classified as IR1, and five of IR3 (2.5% of testing examples) is expected to be
classified as IR1.

Table 3. Sample confusion matrix

(a) Compressively-sampled data α = 0.1

 (b) Compressively-sampled data α = 0.7 
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For additional assessment of the efficiency of our proposed method, several
experiments were conducted for a = 0.1 with training size of 10% and 40%, and 20
trials for each experiment. The results of these experiments are compared to some
recently published results [30–33]. Table 4 shows the comparisons. The first column
denotes to the scenarios of the motor operation and load conditions in which the
bearing samples acquired, these scenarios will be stated as fixed load and variable
loads. The second column describes the methods utilised to classify bearing conditions.
The third column defines the percentage of samples used for training. The fourth
column refers to the related load of the data used with each method, and the fifth
column presents testing accuracies obtained using these methods.

It can be clearly seen that compared with methods presented in Table 4, in both
load conditions our method with the smallest percentage (10%) of samples of the
original samples, i.e., compressed using a = 0.1, achieved the highest classification
accuracies. In particular, results of 10% training size of data collected under variable
loads of 0, 1, 2, and 3 horsepower and separated loads of 0 and 3 horsepower with
99.8% classification accuracy. With 40% training size of data collected under variable
loads, the proposed method achieved 99.9% classification accuracy. Taken together,
these results show that the proposed method has the ability to classify the bearing
conditions with high accuracy compared to other results reported in [30–33].

6 Conclusion

A new method for rotating machinery condition monitoring has been proposed. In this
method, CS is used to generate compressively-sampled signals. Then, a multi-step
feature learning approach joining the advantages of PCA, LDA, and CCA is proposed
to learn further reduced features for fault classification. With these learned features,
multi-class SVM classifier is employed to deal with the classification problem. From
the experimental results, the proposed method has achieved a high classification
accuracy with a significantly reduced dimension of the original signals and its

Table 4. A comparison with results from literature on CWRU vibration dataset of roller
bearings

Methods Training
size (%)

No of
classes

Load
(hp)

Testing
Accuracy (%)

Fixed
load

[30] 10 10 3 92.5
[31] 75 10 0 88.9
The proposed method 10 10 3 99.8 ± 0.2
a = 0.1 0 99.8 ± 0.1

Variable
loads

[32] 40 11 0,1,2,3 97.91 ± 0.09
[33] 10 10 0,1,2,3 99.66 ± 0.19
The proposed method 10 10 0,1,2,3 99.8 ± 0.1
a = 0.1 40 10 0,1,2,3 99.9 ± 0.1
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performance was benchmarked against some existing methods. Moreover, the high
classification results achieved in both fixed and variable loads suggest that the proposed
method is suitable in rotating machine condition monitoring where the properties of
overloads or unexpected load changes may be a reason of rotating machine faults.
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