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Abstract. When diagnosing the vibration of a rotating machine flexibly sup-
ported by vibration isolating material, the natural frequency of the rigid body
mode of the machine must be considered, in addition to the natural frequency of
the rotating shaft. There are two kinds of vibration isolating materials; one has a
fixed spring constant, giving it the characteristic of a linear spring, and the other
has nonlinear characteristics in which the spring constant varies with the mass of
the machine. When the machine is supported by a linear spring, since the natural
frequency varies depending on the mass of the machine, avoiding resonance
requires optimal setting of the rotation speed or selection of an appropriate
vibration isolating material for the equipment to be used. Meanwhile, some
nonlinear springs have constant natural frequencies even if the mass of the
machine changes. As the mass of the machine increases, the spring constant also
increases. Selection of such a vibration isolating material is easy, because the
resonance frequency is known in advance. In this study, we analyze the
vibration of a rotating machine flexibly supported by vibration isolating mate-
rial. Vibration analysis was carried out on a simple model of a rotating machine
supported by a linear spring or a nonlinear spring. Subsequently, the experi-
mental equipment was manufactured and numerical calculations were performed
by using the derived numerical model.
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1 Introduction

For monitoring vibration as a method of monitoring the condition of rotation
machinery (electric motor, pump), ISO 10816 [1] has been applied widely. The criteria
of the standard are classified by the size of the rotating machines, and each of these
machines is monitored based on the vibration velocity during operation. However, in
using actual machines, for example, in order not to transfer the vibration from a vehicle
or a ship to the machines, or in order not to transfer the vibration from equipment in the
opposite direction, equipment may be fixed non-rigidly. These machines are loosely
attached on top of an exclusive stand by means of cushioning material.

In such a situation, vibrations tend to be large as compared with the case of rigidly
supported equipment. Direct application of the conventional criteria is difficult, because
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a large amplitude is measured even for normal machines. Therefore, the criteria of
conventional evaluation methods have been expanded for some equipment, and
vibration amplitude is evaluated by reference to provisional criteria.

In order to evaluate the flexibly supported equipment, this study is intended to
establish an evaluation method that considers the classification of not only the size of
equipment but also the stiffness or damping between the equipment base and ground.
One simple disk rotor which is supported by ball bearings at both ends is prepared by
reference to the previous studies [2–5]. The base of the experimental system is fixed to
ground rigidly or flexibly. Numerical models of the rotor and the base of rotor were
derived, and combined as a total model, and then numerical simulations were per-
formed under flexible conditions of linear and non-linear springs. The resonance fre-
quencies of rotor vibrations were evaluated by resonance curve derived by means of
numerical simulations, in order to obtain basic data.

2 Experimental System

2.1 Rigid Support

Figure 1 shows the experimental system [6]. The experimental system consists of an
aluminum base and a rotor having one disk. Disk mass is 2.2 kg. The shaft is supported
by ball bearings on both ends, and is then rotated by an AC servo motor via a coupling.
Vibration displacement of the shaft center is measured using an eddy current dis-
placement meter. The rotational speed of the shaft is measured by using a notched ring
mounted on the shaft for pulse measurement.

Fig. 1. Experimental system of rigid support
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2.2 Support by Linear Springs

In order to evaluate the flexibly supported equipment in addition to the rigidly sup-
ported equipment, as shown in Fig. 2 [6], the base of the same experimental system is
supported by four plate springs in the same simulated circumstance as for a flexible
support. The plate springs are made of soft steel having a thickness of 1 mm, and have
the shape shown in Fig. 3. The plate spring is used to adjust the length to support,
because it can change the support stiffness. In this study, numerical calculations were
performed with five springs having lengths of 10 to 50 mm in 10 mm increments.

2.3 Support by Non-linear Springs

Figure 4 shows the experimental equipment supported by vibration isolating rubber
members (non-linear springs). The rotating system is almost same as that shown in
Fig. 2. The rubber members are made of molded silicone rubber and have non-linear

Fig. 2. Experimental system flexibly supported by plate springs (linear spring)

Fig. 3. Plate spring (thickness = 1[mm])
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characteristics. In this study, numerical calculations were performed with added mass
and added moment of inertia.

2.4 Characteristics of Vibration Isolating Rubber Members

Figure 5 shows an example of rubber spring model. In the vibration isolating rubber
used in this paper, the relation between load P [N] and displacement x [m] is as follows:

P ¼ 10AþBx ð1Þ

where A and B are constants. When a large mass is set on a small rubber, the relation
may be expressed in Eq. (1). Considering the spring constant of the rubber as the slope
of displacement vs. load relation, the spring constant at the position where the load and
the rubber reaction force are balanced is expressed as follows.

dP
dx

¼ ln 10 � B � 10AþBx ¼ ln 10 � B � P ð2Þ

According to Eq. 2, it can be seen that the stiffness of the rubber is proportional to
the load P. Natural frequency of the rotating machine supported by the rubber is as
follows:

vibration isolating rubber 

Fig. 4. Experimental system flexibly supported by vibration isolating rubber members (non-
linear spring)

Fig. 5. Rubber spring model
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ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 10 � B � P

P=g

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 10 � B � g

p
ð3Þ

where m [kg] is mass of the rotating machine, g [m/s2] is gravitational acceleration and
P ¼ mg. Since all the variables in Eq. 3 are constants, the natural frequency is constant
regardless of the mass of the rotating machine.

3 Numerical Model and Simulations

3.1 Modeling Rotor on Rigid Support Base and Simulations

The rotor of the rotating machine is modeled by the finite element method, with the
rotor divided into 25 elements. Figure 6 shows the FE model of the rotor. The equation
of motion is as follows:

M€XþC _XþKX ¼ F ð4Þ

M is mass matrix, C is damping matrix, and K is stiffness matrix. Gyroscopic
effects are omitted in this experimental system, because the disc is located at the center
of the shaft and does not tilt in the 1st mode. In this model, changes in 1st critical speed
(34 Hz) due to the gyro effect are less than 0.001 Hz, while the rated speed is 60 rps.
The equation of motion is transformed to a reduction model by using the mode-
synthesis method [7, 8]. In this modeling method, after modeling the rotor, the rotor
and the base of machine model are combined to form a total model. If the base of the
machine changes, the model can be easily rebuilt. Figure 7 shows the rigid modes and
inner bending modes by which the reduction model is derived from mode synthesis
method. /3 mode has an asymmetric shape, because the disk is located at the center of
the shaft, where mode amplitude is very small. The mode matrix is defined by these
modes as follows:

Fig. 6. FEM model
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U ¼ ðd1; d2;/1;/2;/3Þ ð5Þ

Coordinate conversion is defined as follows:

X ¼ UXU XU ¼ ðx3; x25; g1; g2; g3Þ ð6Þ

x3 and x25 are the coordinates of bearing positions. g1, g2 and g3 are mode coor-
dinates of bending modes. When Eqs. (5) and (6) are substituted into Eq. (4), the
following mode-synthesis reduction model is obtained:

MU
€XU þCU

_XU þKUXU ¼ FU ð7Þ

where MU ¼ UtMU, CU ¼ UtCU, KU ¼ UtKU, these are as follows:

MU ¼

dt1Md1 dt1Md2 dt1Mu1 dt1M/2 dt1M/3

dt2Md1 dt2Md2 dt2Mu1 dt2M/2 dt2M/3

/t
1Md1 /t

1Md2 /t
1M/1 /t

1M/2 /t
1M/3

/t
2Md1 /t

2Md2 /t
2M/1 /t

2M/2 /t
2M/3

/t
3Md1 /t

3Md2 /t
3M/1 /t

3M/2 /t
3M/3

2
6666664

3
7777775

¼

0:69 0:61 0:038 �0:0023 0:00020

0:61 0:67 0:038 0:0024 0:000096

0:0038 0:038 0:0023 0 0

�0:0023 0:0024 0 0:000031 0

0:00020 0:000096 0 0 0:0000017

2
6666664

3
7777775

ð8Þ

Fig. 7. Mode shape

166 H. Fujiwara et al.



CU ¼ diag: cb cb 0:03 0:15 0:15½ � ð9Þ
KU ¼ diag: kb kb 88 515 481½ � ð10Þ

where cb is bearing damping coefficient, and kb is bearing stiffness. If kb ¼ 8:0� 106

N/m, the natural frequencies from the first mode to the third mode are 34.6 Hz, 250 Hz,
and 846 Hz, respectively. In this model, changes in 1st critical speed due to gyro effect
are less than 0.001 Hz, since the disc is located at the center of the shaft and does not
tilt in the 1st mode. Therefore we ignore the gyro effect in this paper. In the case of
cb ¼ 60:4 Ns/m, the response curve of unbalance is obtained as Fig. 8.

3.2 Modeling Rotor on Flexibly Support Base by Linear Springs

In order to model the rotor and flexible support base together, it is necessary to consider
the motion of the machine base which supports rotating parts. In Fig. 9, translating and
tilting motions of the center of gravity of the base are expressed as follows:

m 0
0 IG

� �
€xG
€hG

� �
þ 2cg �ða� bÞcg

�ða� bÞcg ða2 þ b2Þcg
� �

_xG
_hG

� �

þ 2kg �ða� bÞkg
�ða� bÞkg ða2 þ b2Þkg

� �
xG
hG

� �
¼ FG

MG

� � ð11Þ

Fig. 8. Resonance curve of rigid support in numerical simulation

Fig. 9. Experimental equipment Model (flexible support by linear springs)
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The translating and tilting motions are transformed to the motions of the bearing
positions, and Eq. (11) is expressed by using xl and xr as bearing coordinates as
follows:

1
cþ d

� �2 d c
�1 1

� �T
m 0
0 IG

� �
d c
�1 1

� �
€xl
€xr

� �

þ 1
cþ d

� �2 d c
�1 1

� �t 2cg �ða� bÞcg
�ða� bÞcg ða2 þ b2Þcg

� �
d c
�1 1

� �
_xl
_xr

� �

þ 1
cþ d

� �2 d c
�1 1

� �t 2kg �ða� bÞkg
�ða� bÞkg ða2 þ b2Þkg

� �
d c
�1 1

� �
xl
xr

� �
¼ Fl

Fr

� �
ð12Þ

where m and IG are the mass and the moment of inertia about the center of gravity of
the experimental system not including the rotor, and cg and kg are damping coefficient
and stiffness between base and ground, respectively.

Mass matrix, damping matrix, and stiffness matrix in Eq. (12) are defined as Mb,
Cb, and Kb, respectively, and equation of motion is expressed as follows:

Mb
€xl
€xr

� �
þCb

_xi
_xr

� �
þKb

xi
xr

� �
¼ Fl

Fr

� �
ð13Þ

Equation (7) serving as the reduction model of the rotor and Eq. (13) serving as the
base model are combined by using bearing damping cb and stiffness kb. Mass matrix,
damping matrix, and stiffness matrix of the total system are defined as Mall, Call, and
Kall, respectively, and equation of motion of the total system is expressed as follows:

Mall

€XU

€xl
€xr

2
4

3
5þCall

_XU

_xl
_xr

2
4

3
5þKall

€XU

€xl
€xr

2
4

3
5 ¼

FU

Fl

Fr

2
4

3
5 ð14Þ

where Mall, Call, and Kall are expressed as follows:

Mall ¼ MU 0
0 Mb

� �
ð15Þ

Call ¼

cb 0 0 0 0 �cb 0
0 cb 0 0 0 0 �cb
0 0 0:03 0 0 0 0
0 0 0 0:15 0 0 0
0 0 0 0 0:15 0 0

�cb 0 0 0 0 cb þ 2:8cg 1:6cg
0 �cb 0 0 0 �1:6cg cs þ 2:4cg

2
666666664

3
777777775

ð16Þ
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Kall ¼

kb 0 0 0 0 �kb 0
0 kb 0 0 0 0 �kb
0 0 88 0 0 0 0
0 0 0 515 0 0 0
0 0 0 0 481 0 0

�kb 0 0 0 0 kb þ 2:8kb 1:6kb
0 �kb 0 0 0 �1:6kb cs þ 2:4kb

2
666666664

3
777777775

ð17Þ

Eight cb are inserted manually in damping matrix (Eq. (16)) to connect xl of the
base to x3 of the shaft and to connect xr and x25. In the same manner, eight kb are
inserted in stiffness matrix (Eq. (17)) to connect these coordinates. cg and kg are
damping coefficient and stiffness of the plate springs. cg is 5.0 Ns/m, as measured by a
hammering test (Table 1).

In simulations, response curves of unbalance are obtained when the length of the
plate spring changes. Figure 10 shows response curve in changing the stiffness cor-
responding to the plate springs (L = 10–50 mm). The stiffness for L = 10 mm is the
largest, and that for L = 50 mm is the lowest. In the case of the rigidly supported base,
a large amplitude value exists at the natural frequency of the rotor, but in the case of
flexible support, three large amplitude values exist, at the natural frequencies of the
translating and tilting of the flexible supported base in addition to that of the rotor.
When the base is supported by a plate spring as L = 10 mm, two peaks exist, because
the highest natural frequency of the base is beyond the range of rotational speed. These
figure machine conditions are good, but large amplitude values are measured at certain
rotational speeds because of the base vibration. Therefore, in the case of using linear
springs the spring constant must be selected so that the frequency of the base does not
coincide with the rated rotation speed (Table 2).

Table 1. Simulation conditions (linear spring)

Length L [mm] Spring constant kg [N/m]

case a1 10 7:15� 105

case a2 20 3:47� 105

case a3 30 2:07� 105

case a4 40 1:50� 105

case a5 50 1:23� 105
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Fig. 10. Resonance curve of flexible support in numerical simulations (linear springs)

Table 2. Resonance frequencies (linear spring)

Translating mode of
base [Hz]

Tilting mode of
base [Hz]

Bending mode of
rotor [Hz]

case a1 43.9 upper 60 Hz 31.6
case a2 37.2 54.1 26.0
case a3 20.8 43.3 34.9
case a4 17.8 32.4 39.4
case a5 16.3 29.7 38.3
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3.3 Modeling Rotor on Flexibly Support Base by Non-linear Springs
and Simulations

Figure 11 shows the experimental model supported by vibration isolating rubber
members. In the case of the numerical model using non-linear springs, kg ¼ 0, cg ¼ 0
in Eqs. (16), (17) and Fl and Fr in Eq. (14) consists of reaction force of rubber and
gravity force. These forces are expressed as follows:

Fl

Fr

� �
¼ 1 1

�c d

� ��1
1 1
�a b

� �
Fll

Frr

� �
�

d
cþ d mg
c

cþ d mg

� �
ð18Þ

Fll ¼ 2 � 10A�Bxll

Frr ¼ 2 � 10A�Bxrr
ð19Þ

where Fll and Frr are reaction force of the rubber members (left and right).

Numerical calculations using the rubber springs can be performed by linearizing the
spring constant at the balance point of gravity, but in order to be able to calculate
various nonlinear springs in the future, calculations are performed without linearizing
the spring constant.

The following three types of numerical calculations were performed (Table 3).

– case b1: The mass of the experimental system is 23.2 kg and moment of inertia is
0.90 kg m2.

Fig. 11. Experimental equipment Model (flexible support by non-linear springs)

Table 3. Simulation conditions (non-linear spring)

Mass [kg] Moment of inertia [kg m2]

case b1 23.2 0.90
case b2 mass addition 29.8 0.90
case b3 moment of inertia addition. 29.8 1.59
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– case b2: Mass (6.6 kg) is added at the center of gravity, making total mass 29.8 kg.
The moment of inertia is the same as in case b1.

– case b3: Total mass is the same as in case b2. Added mass moves from the center of
gravity, making the moment of inertia 1.59 kg m2

Figures 12, 13 and 14 show the results of numerical calculations for cases b1, b2
and b3, respectively. Table 4 shows the resonance frequencies of resonance curve. In
the case b1, resonance frequency of the base translating mode is 16.6 Hz, that of the
base tilting mode is 30.0 Hz and that of the rotor bending mode is 45.8 Hz. In the case
of b2, the resonance frequencies of base translating mode and rotor bending mode are
the same as in case b1. The base tilting mode is 33.8 Hz. This result shows that the
frequency does not change even if the mass increases. On the other hand, the tilting
mode frequency changes. In the case of b3, the resonance frequency of the base
translating mode is the same as that for cases b1 and b2. The rotor bending mode is
almost the same as in cases b1 and b2. The tilting mode is 24.7 Hz. The result of case
b3 shows that when the moment of inertia changes, the tilting mode frequency changes
but the translating frequency does not change.

Therefore, when the rotating machine is supported by rubber having nonlinear
characteristics, the resonance frequency of the translating mode does not change with
the mass and the moment of inertia, but the natural frequency of the tilt mode changes.
When the mass or the moment of inertia of a machine changes, it is necessary to pay
attention to changes in resonance frequencies.

Fig. 12. Resonance curve of case b1 (non-linear spring support)
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Fig. 13. Resonance curve of case b2 (non-linear spring support)

Fig. 14. Resonance curve of case b3 (non-linear spring support)
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4 Conclusions

In this paper, numerical calculations were performed with respect to rigid and flexible
support experimental systems. By using the mode-synthesis method, at rotor and a base
were respectively modeled and a total model was derived by combining the two
models. In the case of using linear springs, the spring constant must be selected so that
the frequency of the base does not coincide with the rated rotation speed. In the case of
using nonlinear springs, the frequency of the translational mode does not change, but
since the tilting mode changes, it must be set so that it does not coincide with the
rotational speed.
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