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Abstract. Bearings are key elements for a detailed dynamical analysis of
rotating machines. In this way, a rotating component sustained by flexible
supports and transmitting power creates typical problems that are found in
several machines, being that small or large turbines, turbo generators, motors,
compressors or pumps. Therefore, representative mathematical models, such as
the use of bearings nonlinear forces modeling, have been developed in order to
simulate specific systems working conditions. The numerical solution of the
equation of motion, when considering nonlinear complete solution of finite
hydrodynamic bearings, is highly expensive in terms of computational pro-
cessing time. A solution to overcome this problem without losing the nonlinear
characteristics of the component is use a high order Taylor series expansion to
characterize the hydrodynamic forces obtained by the Reynolds equation. This
procedure accelerates the nominal behavior predictions, facilitating fault models
insertion and making feasible actions in control systems design. So, this papers
aims to analyze the use of nonlinear coefficients, generated by the high order
Taylor series expansion, to simulate the rotor dynamics under strong nonlinear
bearing behavior. The results obtained were compared with Reynolds and linear
simulations, and demonstrated that the nonlinear coefficients can be successful
to represent bearing behavior even in extreme situations.
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1 Introduction

Rotordynamic study became prominent in the second half of 19th century, when the
inclusion of rotation speed in the analysis of the dynamic behavior of rotating machines
was made necessary. Since then, the search for higher power, lower weight, higher
speeds and greater reliability in this kind of machinery has driven the pursuit for
solutions that are economically feasible.

However, for a detailed analysis it is necessary take into account several parame-
ters, i.e., besides the rotor dynamics, other system components, as the bearings, must be
considered. Although these elements are usually linearly approximated by stiffness and
damping coefficients [1, 2] they can have a strong nonlinear behavior. This charac-
teristic is still studied for many researchers [3–6], which emphasize the use of
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hydrodynamic bearing model for the real understanding of rotating machines, espe-
cially when it presents high vibration amplitudes.

The solution of nonlinear rotor-bearing dynamic problems is highly time con-
suming, because the Reynolds equations, that gives the nonlinear hydrodynamic forces,
must be simultaneously solved with the equation of motion for each time step. Thus,
ways to simplify the hydrodynamic forces in order to reduce computational time, with
minimum loss of the nonlinear characteristics, are still subject of research until the
present time.

Initially, some works [7–9] utilized the analytical short bearing model proposed by
Capone [10, 11], since this simplification generates good results for bearings with small
L/D ratio. Nevertheless, due to this limitation new alternatives were evaluated to
improve the solution effectiveness for finite length bearings.

Besides analytical solutions, other alternatives were proposed to model the
hydrodynamic forces and reduce processing time of the nonlinear dynamic solutions.
The Taylor series expansion of the force, trough perturbations in displacement and
velocity around the equilibrium position, is one of the most promising. Unlike linear
model, the truncation happens for high order terms, generating nonlinear coefficients.

Using least square method and experimental time series for the hydrodynamic
forces, Zhao et al. [12] proposed the identification of dynamic coefficients for three
different models (24, 28 and 36 coefficients). For all analyzed cases, the nonlinear
models were able to represent the bearing force, while the linear model presented
discrepancies. In addition, it was observed that the linearized solution presented
hydrodynamic force results comparable to the nonlinear model only for excitations
lower than 2.5% of the radial clearance.

Asgharifard-Sharabiani and Ahmadian [13] used a subset selection technique to
retain the 40 most influent coefficients from a 13th order Taylor series expansion, for a
rigid rotor supported by tilting-pad bearings. The system degrees of freedom do not
consider the angular movement of the pads and the model was valid only for weak
nonlinearities. This made possible the use of the same linear coefficients obtained by
small perturbation method for the linear part of the new expansion. Therefore, the
obtained dynamic results were compared with simulations taking into account the
Reynolds model showing good agreement.

The research found in literature for adjustment of nonlinear forces by Taylor series
expansion, usually employs simplified rotors for the analysis, not considering basics
characteristics found in real situations, as for instance rotor flexibility. Additionally, the
analysis were also restricted for situations of weak nonlinearities. Hence, the present
work aims to analyze the use of nonlinear force approximation by high order Taylor
series expansion, through ridge regression method, in the context of strong nonlin-
earities. The adjusted forces are obtained from the simulation of a flexible rotor
modeled by finite elements and supported by hydrodynamic journal bearings.
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2 Methodology

Typical elements of rotating systems are rotors, shafts, bearings and foundation, the last
one considered rigid for this paper, being a largely employed configuration the
Laval/Jeffcott rotor, showed in Fig. 1. Modeling the system through the finite element
method [14, 15], with Timoshenko beam, it is possible to represent a continuous
system in a finite number of elements, each node having four degrees of freedom, two
of translation (y and z) and two of rotation (ϴy and ϴz). Therefore, using the Lagrange
formulation it is possible to find the equation of motion [16]:

M½ � €qf gþ C½ � þX G½ �ð Þ _qf gþ K½ � qf g ¼ FUf gþ FWf gþ FHf g ð1Þ

where, [M], [C], [G], [K] are respectively the global mass, damping, gyroscopic and
stiffness matrices, X is the rotor’s rotation speed, {q} is the vector with the degrees of
freedom, {FU} is the unbalance force vector, {FW} is the weight force vector and {FH}
is the hydrodynamic force vector.

The hydrodynamic force is obtained through the pressure distribution generated by
the journal motion inside the bearing, which is calculated by the Reynolds equation.
This equation derives from the equations of momentum conservation and mass con-
servation for a viscous fluid, under certain hypothesis. For the bearing scheme seen in
Fig. 2, the isoviscous Reynolds equation can be mathematically written as [17]:
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being, p the pressure, ϴ and x the circumferential and axial coordinates, µ the oil film
viscosity, U the tangential journal velocity, t the time and h the lubricant film thickness:

h ¼ CRþ y sin h� z cos h ð3Þ

CR is the bearing radial clearance, and y and z, respectively the horizontal and vertical
coordinates of the journal center.

Fig. 1. Typical rotor model: (a) x-z view; (b) y-z view.
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With the estimated pressure field, it is possible to evaluate the resultant forces in the
oil film. For this, the pressure distribution should be integrated over the bearing area
generating the horizontal and vertical force components:
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Thus, the hydrodynamic forces are dependent on the shaft rotational speed as well
as position and velocity of the journal center inside the bearing:

FH ¼ FH X; y; z; _y; _zð Þ ð5Þ

So, for displacements around the equilibrium position, a Taylor series expansion
[18], depending on the previously described variables, can be performed to create an
analytical expression that represents the force generated by the oil film:

FHi ¼
Xn
j¼o

xf g � af gð Þ j
j !

@ jf xf gð Þ
@ xf g j

�����
af g

ð6Þ

in which, j represents y or z, {x} is the vector with the function variables, {a} is the
vector with the bearing equilibrium position for a given rotation and n is the expansion
order.

For the first order expansion, one have the classical hydrodynamic force lin-
earization proposed by Lund [1, 2]. In this case, the force is described by eight dynamic
coefficients of stiffness (Kmn) and damping (Cmn):

Fig. 2. Radial journal bearing scheme: (a) lateral view; (b) axial view
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Fy ¼ Fy0 þKyy � DyþKyz � DzþCyy � D _yþCyz � D_z
Fz ¼ Fz0 þKzy � DyþKzz � DzþCzy � D _yþCzz � D_z ð7Þ

being the coefficients determined by the partial derivative of the force evaluated in the
journal equilibrium position:

Kyz ¼ @Fy
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@ _z

���
0

ð8Þ

However, it is known that the bearing nature can be highly nonlinear and that the
linearization is only valid for small vibrations amplitudes. So, for a more accurate
analysis of rotating machines, the nonlinear model must be adopted. Nevertheless, the
use of nonlinear hydrodynamic forces, by means of simultaneous solution of the
Reynolds equation and the equation of motion, is very time consuming. To minimize
this problem, it is possible to use an analytical expression based on high order Taylor
series expansion as proposed by Zhao et al. [12].

Obtaining y tð Þ, z tð Þ, _y tð Þ, _z tð Þ, �FHy tð Þ and �FHz tð Þ from a time series analysis, the
ridge regression method [19] can be used to minimize the squared difference between
the adjusted force (Fi kð Þ) and the force calculated through the Reynolds equation
solution (�FHi kð Þ). The minimization results in the expansion nonlinear coefficients:

Kf gi¼ argmin
K2<N

XM
k¼1

�FHi kð Þ � Fi kð Þ½ �2 þ k
XN
j¼1

K2
iJ ð9Þ

or in matrix form:

Kf gi¼ argmin
K2<N

FHf gi� X½ �i Kf gi
�� ��2

2 þ k Kf gi
�� ��2

2 ð10Þ

where, {K}i is the nonlinear coefficients vector, N is the coefficient number generated
by the Taylor expansion, M is the number of time steps used to obtain the hydrody-
namic forces, [X] is the predictor matrix and k� 0 is the adjustment parameter.

The optimization problem described in Eq. 10 has analytical solution, since it is
enough to derive the objective function with respect to the coefficients K:

Kf gi ¼ X½ �Ti X½ �i þ k I½ �� 	�1
X½ �Ti FHf gi ð11Þ

Therefore, for each bearing, and for each direction of the hydrodynamic force, there is a
minimization problem, which can generate N coefficients defined by the order of the
Taylor series expansion.

The k parameter defines the amount of penalization applied to the original least
square. When k ! 0 the same solution generated by the least square method is found.
When k ! 1 the solution is null. A shrinkage of the coefficients happens for inter-
mediate values, causing a reduction in variance but an increase in bias. Moreover, the
penalty introduction improves the conditioning of [X]i

T[X]i matrix. To calculate k an
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one-dimensional minimization process (line search) is used to generate the smallest
value for the objective function (Eq. 10).

3 Discussion and Results

The rotor used in the simulations was a Laval/Jeffcott rotor, discretized by finite
elements as previously mentioned. Ten Timoshenko beam elements and a central rigid
disk element, placed at node 6, were used to compose the system. Two identical
hydrodynamic bearings are located at nodes 3 and 9. Figure 3 shows the rotor finite
element model, Table 1 the detailed discretization, and Table 2 shows the bearing
parameters. The excitation force adopted comes from unbalance and was inserted at
disk position. The damping matrix [C] is proportional to the stiffness matrix [K], and
the proportional coefficient is b ¼ 1:5� 10�5. Moreover, shaft and disk are made of
steel with elastic modulus of 200 GPa and density of 7850 kg/m3.

Because Reynolds equation is a second order differential equation, it does not have
a closed solution. Therefore, numerical methods are necessary to find the pressure
distribution inside the bearing. The finite volume method, that transform partial dif-
ferential equations in a set of algebraic equations, was adopted for the simulations [20].
The first critical speed is 22 Hz and, consequently, at 44 Hz the system is subjected to
fluid-induced instability.

Table 1. Finite elements details.

Element n° Type Internal diameter (mm) External diameter (mm) Length (mm)

1 Beam 0 12 40
2 Beam 0 31 10
3 Beam 0 31 10
4 Beam 0 12 266.5
5 Beam 0 23.5 23.5
6 Beam 0 23.5 23.5
7 Beam 0 12 266.5
8 Beam 0 31 10
9 Beam 0 31 10
10 Beam 0 12 40
11 Rigid disk 23.5 95 47

Table 2. Bearings Parameters.

Bearing diameter (D) 31 mm

Bearing length (L) 20 mm
Bearing radial clearance (CR) 90 µm
Oil viscosity (µ) 50 mPa.s
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Furthermore, when considering nonlinearities in a machine simulation, its
dynamical behavior is completely changed, and a robust integration method must be
employed. So, in this work, the nonlinear implicit iterative Newmark integrator is used.
Hence, for each time step, a variable prediction is calculated by Newmark equations
and updated by Newton-Raphson method until the equation of motion is satisfied [21].

Fig. 3. Finite element model

Fig. 4. Simulation results for rotational speed equal to 22 Hz: (a) Horizontal hydrodynamic
force; (b) Vertical hydrodynamic force; (c) Bearing orbit; (d) Disk orbit.
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Fig. 5. Simulation results for rotational speed equal to 44 Hz: (a) Horizontal hydrodynamic
force; (b) Vertical hydrodynamic force; (c) Bearing orbit; (d) Disk orbit; (e) Horizontal bearing
displacement; (f) Vertical bearing displacement.
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The Reynolds equation should be solved for each bearing and at each iteration of the
procedure, resulting in elevated computational time.

To overcome this problem the hydrodynamic force approximation described in
Sect. 2 is utilized. The amount of time needed for a good force adjustment depends on
the machine operation condition. However, the transitory part of the movement is of
great interest, because it is the path followed by the rotor under this situation and
expands the region covered by the adjustment. Despite the initial cost to obtain and
adjust the hydrodynamic force given by the Reynolds equation, the simulation time
drops from hours to minutes. For this work, it was used a Taylor series expansion up to
the fifth order, since this was the lowest order able to fit the case under fluid induced
instability.

The simulation cases analyzed take into account situations with strong nonlinear
bearing behavior. So, critical rotation speeds, as the first natural frequency (22 Hz) and
the fluid induced instability (44 Hz), are selected. Additionally, high unbalance level

Fig. 6. Simulation results for rotational speed equal to 10 Hz and 500 N applied load:
(a) Horizontal hydrodynamic force; (b) Vertical hydrodynamic force; (c) Bearing orbit; (d) Disk
orbit.
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contributes to increase nonlinearities, and for the situations previously mentioned a
8.5 g mass placed at 37 mm from the center of the disk is used (Balance Quality Grade
G12,8 [22]). Because the rotor is symmetrical, the bearings have the same response. So,
only the first bearing is used in the analysis. Notice that results for Reynolds and
Nonlinear coefficients are coincident for most of the cases. Those results are shown in
Figs. 4 and 5.

Figure 4a, b show the hydrodynamic forces for horizontal and vertical direction
obtained by Reynolds equation, high order Taylor expansion and linear coefficients for
22 Hz. As can be seen, in the beginning of the transitory motion, all hydrodynamic
forces are comparable. However, when the displacement amplitude increases, the linear
force can no longer represent the original hydrodynamic forces obtained by Reynolds
equation. On the other hand, the force calculated by nonlinear coefficients is in good
agreement during all period. The same behavior can be seen for the fluid induced
instability in Fig. 5a, b, e, f.

Fig. 7. Simulation results for rotational speed equal to 10 Hz, 500 N applied load and unbalance
at node 1: (a) Horizontal hydrodynamic force; (b) Vertical hydrodynamic force; (c) Bearing orbit;
(d) Disk orbit.
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Furthermore, observing the orbits presented in Fig. 4c, d, it is clear that the non-
linear coefficients can represent the rotor orbits with higher accuracy while the linear
forces violates the bearing clearance and have different shape and size for the disk orbit.

For the fluid induced instability, the nonlinear coefficients can well reproduce the
limit circle described by the journal inside the bearing (Fig. 5c) and the whirling
movement of the disk (Fig. 5d). Moreover, small discrepancies can be observed in the
orbits.

Three special cases, with high eccentricity and extreme unbalance level are also
analyzed. Concentrated vertical forces were applied at both bearing nodes in order to
keep bearing eccentricity ratio value equal to 0.9. The unbalanced mass was changed to
1.7 kg (Balance Quality Grade G1170). Those hypothetical cases should not occur in
reality but are simulated to verify the efficiency of the adjustment under extreme
nonlinear situations. For the results in Fig. 6, the concentrated force was set to 500 N
and the rotation speed to 10 Hz. In order to make the vibration amplitude of bearing 1

Fig. 8. Simulation results for rotational speed equal to 20 Hz and 800 N applied load:
(a) Horizontal hydrodynamic force; (b) Vertical hydrodynamic force; (c) Bearing orbit; (d) Disk
orbit.

Numerical Identification of Nonlinear Hydrodynamic Forces 11



higher, two approaches were followed: (1) the unbalance force was changed from node
6 to node 1 (results in Fig. 7) and (2) preserving unbalance at node 6, at rotational
speed of 20 Hz (Balance Quality Grade G2338) (Fig. 8).

Observing Figs. 6, 7 and 8, it is clear that as the bearing vibration amplitude
increases higher is the difference between linear and nonlinear models. However, in all
cases of linear approximation, the orbits touch or violate the bearing wall, while the
nonlinear coefficients model follows the Reynolds orbits.

The most critical case is the one shown in Fig. 8, where high eccentricity is
combined with a rotational speed close to the first natural frequency. In this situation,
despite a good force adjustment, there are some discrepancies in the journal motion
comparing Reynolds and nonlinear coefficients solution. Nevertheless, nonlinear
coefficients can perform the overall bearing behavior while linear approximation totally
fails.

This difference comes from the amount of penalization used in the adjustment. The
desirable value for the penalization parameter is the one that minimizes the objective

Fig. 9. Objective function behavior: (a) For horizontal force adjustment; (b) Zoom in for
horizontal force adjustment; (c) For vertical force adjustment; (d) Zoom in for vertical force
adjustment.
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function, as can be seen in Fig. 9. However, Fig. 9d shows that all k values give
objective functions higher than the original least square (k = 0). In this situations, the
tradeoff between variance and bias, that traduces the model accuracy, should be ana-
lyzed in order to define a suitable value for k, since for the original least square method
the solution is unbiased but can have high variance. Therefore, for some situations
under extremely high nonlinearities, lower variance can be desirable, but this will cause
loss in accuracy. Observing Fig. 10 it is possible to obtain k.

Nevertheless, for these simulations, it is possible to note that linear and nonlinear
hydrodynamic forces are close, but the bearing orbits associated to them are not. In
high eccentricities, the wedge term associated to the Reynolds equation is dominant for
the pressure generation and consequently for the force calculation. Therefore, shape
and behavior of the movement does not affect considerably the force value. However,
the linear solution cannot reproduce high order harmonics making linear orbits ellip-
tical, while nonlinear coefficients can satisfactorily reproduce the orbits.

4 Conclusions

The paper presented the use of high order Taylor series expansion, by means of
nonlinear coefficients, to approximate bearings’ hydrodynamic forces. The simulations
were accomplished for rotors submitted to high nonlinear bearing behavior, as critical
speeds, fluid induced instability and cases with high eccentricities.

The results showed that nonlinear coefficients model can satisfactorily reproduce
hydrodynamic forces and rotor dynamics, greatly reducing the simulation time.
Moreover, for situations with extremely high nonlinearities the penalty parameter k of
the ridge regression should promote variance reduction to favor convergence of the
dynamic problem. Additionally, when the rotor experiences high eccentricity the linear

Fig. 10. Tradeoff between variance and bias: (a) For the horizontal force adjustment; (b) For the
vertical force adjustment.
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and nonlinear hydrodynamic forces have close behavior. However, the response with
linear force cannot reproduce high order harmonics changing the bearing orbit shape,
what does not happen when nonlinear coefficients are used.
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