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Preface

Rotordynamics is an area of engineering which congregates a very well-defined
community between science and technology. Huge part of power generation uses
rotating machines, and engineering had an incredible development since the first
steam energy devices. The International Federation for the Promotion of
Mechanism and Machine Science (IFToMM) opened to this community the pos-
sibility to present the advances in this area in a quadrennial conference: This
resulted in 1982 in the first IFToMM International Conference on Rotordynamic
Problems in Power Plants. The importance of periodically exchanging new ideas
and comparing experimental test rigs and field measurements cannot be underes-
timated. The evolution that took place can easily be followed comparing the papers
published in the proceedings since that time. It was obvious to broaden the spec-
trum and the name became since 1986 IFToMM International Conference on
Rotordynamics. This conference turned out to be a reward for each of the countries
and their cities (Tokyo 1986, Lyon 1990, Chicago 1994, Darmstadt 1998, Sydney
2002, Vienna 2006, Seoul 2010, Milano, 2014) for the efforts developing their own
research groups on this subject.

Formal academic graduate programs started in Brazil in the late 60s. Only in the
70s, the binomial higher education and research, including hands-on activities in
laboratories, started to change the teaching in engineering. UNICAMP, a young
university at that time, was a pioneer in graduating engineers able to conceive,
design, and construct their ideas. The first crisis of oil prices led to the development
of a group handling rotating machines, building flywheels for energy storage,
investigating hybrid power systems, and looking for other alternative solutions. In
the beginning of the 80s, there was small group of people working in rotordy-
namics. And there were some recent huge power plants like Ilha Solteira, Jupiá,
Itaipú: They needed engineers which could explain the phenomena appearing in a
Francis and Kaplan turbines. UNICAMP was eager to put their graduate students to
work on open problems in this area. The year was 1982 and the first meeting in
Rome was also a good opportunity to start international academic cooperation with
several European countries and young researchers on this area as well as engineers
had their own cooperation with companies dealing with rotating machines. Several
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young scientists then went to Europe to complete their PhD. One highlight in the
2000’s was the Alfa II Project, leaded by Prof. Bachschmidt from Politecnico di
Milano on Vibration, Control and Diagnostics (VICONDIA) that put together the
Politecnico de Catalunia, DTU, PUC-Rio, UFRJ, University of Uberlândia, ISPJAE
from La Habana (Cuba) and University of Concepcion (Chile). But there were
several other cooperation programs between Brazilian research groups and, usually,
European institutions.

This resulted in a well-developed research area in Brazil. In 1986, the biennial
DINAME meeting was started, as a result of a cooperation with Germany, sup-
ported by the Alexander von Humboldt Foundation and Volkswagen Foundation
investigating the dynamics of a hydraulic Francis turbine. This meeting keeps its
tradition and is open to all dynamic problems in mechanical systems. The groups
working with rotating machines spread out through the country, and you will find
expertise in several applications like turbines, compressors, turbochargers, cen-
trifuges, helicopter blades, dental drills, oil drill strings.

The Brazilian Committee responsible for organizing the present IFToMM
Conference felt comfortable to propose Rio de Janeiro in 2018 as the next venue.
And this proposal was approved by the IFToMM Rotordynamic Committee at the
Milano Conference. The Brazilian Committee is honored to execute this mission.
The committee is composed by specialists from several universities throughout the
country that shared the burden to organize an important international event. The
interaction with industry is the scope of the industry technical committee. The result
of the initiative is the selection of 153 papers under 175 submissions, being
therefore the second largest IFToMM Rotordynamic conference besides being the
first one in Latin America.

The present four volumes printed by Springer Nature with approximately 153
papers reproduce the state of the art of the research throughout the world. These
papers were carefully reviewed by two independent reviewers, and its quality as a
publication was attested. Volume 1 will focus on bearings and seals, Volume 2 on
condition monitoring, fault diagnostics, prognostics as well as dynamic analysis and
stability, Volume 3 on active components and vibration control; blades, bladed
systems, and impellers; modal testing and identification; nonlinear phenomena in
rotordynamics; torsional vibration and geared system dynamics, and Volume 4 on
some innovative applications from aero-engines; automotive rotating systems;
balancing; electromechanical interactions in rotordynamics; fluid–structure inter-
actions; hydro power plant; parametric and self-excitation; rotordynamics of micro-,
nano- and cryogenic machines; turbochargers; uncertainties, reliability, and life
predictions of rotating machinery; wind turbines and generators.

As chairwoman and as chairman of the conference, we did not spare efforts in
trying to do the best for a successful conference. As we proposed to organize the
meeting in 2014, Rio de Janeiro was putting all the effort in the Olympic Games. It
was perfectly organized, and everybody was proud of it. It was a climax for the city.
In these last two years, there were radical changes some for good like the fight
against corruption, some for bad due to the failure in politics and losing control of
several important aspects in the everyday life. But Rio is the “marvelous city”
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where nature made its best to combine ocean and mountains, and we hope all of the
participants will have the opportunity to enjoy it.

Both chairs of the Conference express their gratitude to the TC of Rotordynamics
for the thrust and the opportunity given, to the efficient work of the reviewers, to all
authors and their students giving reason for the existence of the Conference, to the
unbearable support from our colleagues of the local committees. We also appraise
the support of the rector of UNICAMP, of its Faculty of Mechanical Engineering and
to FUNCAMP foundation for the unconditional support and help with the logistics.
We also express our satisfaction for the sponsoring of BorgWarner, MTS Brazil,
Siemens, and the funding agencies CNPq—National Council for Scientific and
Technological Development and CAPES—Brazilian Federal Agency for Support
and Evaluation of Graduate Education.

Katia Cavalca
Hans I. Weber
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Numerical Identification of Nonlinear
Hydrodynamic Forces

Diogo Stuani Alves(&) and Katia Lucchesi Cavalca

Department of Integrated Systems, Faculty of Mechanical Engineering,
UNICAMP, Campinas, Brazil

{dsalves,katia}@fem.unicamp.br

Abstract. Bearings are key elements for a detailed dynamical analysis of
rotating machines. In this way, a rotating component sustained by flexible
supports and transmitting power creates typical problems that are found in
several machines, being that small or large turbines, turbo generators, motors,
compressors or pumps. Therefore, representative mathematical models, such as
the use of bearings nonlinear forces modeling, have been developed in order to
simulate specific systems working conditions. The numerical solution of the
equation of motion, when considering nonlinear complete solution of finite
hydrodynamic bearings, is highly expensive in terms of computational pro-
cessing time. A solution to overcome this problem without losing the nonlinear
characteristics of the component is use a high order Taylor series expansion to
characterize the hydrodynamic forces obtained by the Reynolds equation. This
procedure accelerates the nominal behavior predictions, facilitating fault models
insertion and making feasible actions in control systems design. So, this papers
aims to analyze the use of nonlinear coefficients, generated by the high order
Taylor series expansion, to simulate the rotor dynamics under strong nonlinear
bearing behavior. The results obtained were compared with Reynolds and linear
simulations, and demonstrated that the nonlinear coefficients can be successful
to represent bearing behavior even in extreme situations.

Keywords: Hydrodynamic bearing � Nonlinearities � Force identification
Nonlinear coefficients � Numerical methods

1 Introduction

Rotordynamic study became prominent in the second half of 19th century, when the
inclusion of rotation speed in the analysis of the dynamic behavior of rotating machines
was made necessary. Since then, the search for higher power, lower weight, higher
speeds and greater reliability in this kind of machinery has driven the pursuit for
solutions that are economically feasible.

However, for a detailed analysis it is necessary take into account several parame-
ters, i.e., besides the rotor dynamics, other system components, as the bearings, must be
considered. Although these elements are usually linearly approximated by stiffness and
damping coefficients [1, 2] they can have a strong nonlinear behavior. This charac-
teristic is still studied for many researchers [3–6], which emphasize the use of
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hydrodynamic bearing model for the real understanding of rotating machines, espe-
cially when it presents high vibration amplitudes.

The solution of nonlinear rotor-bearing dynamic problems is highly time con-
suming, because the Reynolds equations, that gives the nonlinear hydrodynamic forces,
must be simultaneously solved with the equation of motion for each time step. Thus,
ways to simplify the hydrodynamic forces in order to reduce computational time, with
minimum loss of the nonlinear characteristics, are still subject of research until the
present time.

Initially, some works [7–9] utilized the analytical short bearing model proposed by
Capone [10, 11], since this simplification generates good results for bearings with small
L/D ratio. Nevertheless, due to this limitation new alternatives were evaluated to
improve the solution effectiveness for finite length bearings.

Besides analytical solutions, other alternatives were proposed to model the
hydrodynamic forces and reduce processing time of the nonlinear dynamic solutions.
The Taylor series expansion of the force, trough perturbations in displacement and
velocity around the equilibrium position, is one of the most promising. Unlike linear
model, the truncation happens for high order terms, generating nonlinear coefficients.

Using least square method and experimental time series for the hydrodynamic
forces, Zhao et al. [12] proposed the identification of dynamic coefficients for three
different models (24, 28 and 36 coefficients). For all analyzed cases, the nonlinear
models were able to represent the bearing force, while the linear model presented
discrepancies. In addition, it was observed that the linearized solution presented
hydrodynamic force results comparable to the nonlinear model only for excitations
lower than 2.5% of the radial clearance.

Asgharifard-Sharabiani and Ahmadian [13] used a subset selection technique to
retain the 40 most influent coefficients from a 13th order Taylor series expansion, for a
rigid rotor supported by tilting-pad bearings. The system degrees of freedom do not
consider the angular movement of the pads and the model was valid only for weak
nonlinearities. This made possible the use of the same linear coefficients obtained by
small perturbation method for the linear part of the new expansion. Therefore, the
obtained dynamic results were compared with simulations taking into account the
Reynolds model showing good agreement.

The research found in literature for adjustment of nonlinear forces by Taylor series
expansion, usually employs simplified rotors for the analysis, not considering basics
characteristics found in real situations, as for instance rotor flexibility. Additionally, the
analysis were also restricted for situations of weak nonlinearities. Hence, the present
work aims to analyze the use of nonlinear force approximation by high order Taylor
series expansion, through ridge regression method, in the context of strong nonlin-
earities. The adjusted forces are obtained from the simulation of a flexible rotor
modeled by finite elements and supported by hydrodynamic journal bearings.

2 D. S. Alves and K. L. Cavalca



2 Methodology

Typical elements of rotating systems are rotors, shafts, bearings and foundation, the last
one considered rigid for this paper, being a largely employed configuration the
Laval/Jeffcott rotor, showed in Fig. 1. Modeling the system through the finite element
method [14, 15], with Timoshenko beam, it is possible to represent a continuous
system in a finite number of elements, each node having four degrees of freedom, two
of translation (y and z) and two of rotation (ϴy and ϴz). Therefore, using the Lagrange
formulation it is possible to find the equation of motion [16]:

M½ � €qf gþ C½ � þX G½ �ð Þ _qf gþ K½ � qf g ¼ FUf gþ FWf gþ FHf g ð1Þ

where, [M], [C], [G], [K] are respectively the global mass, damping, gyroscopic and
stiffness matrices, X is the rotor’s rotation speed, {q} is the vector with the degrees of
freedom, {FU} is the unbalance force vector, {FW} is the weight force vector and {FH}
is the hydrodynamic force vector.

The hydrodynamic force is obtained through the pressure distribution generated by
the journal motion inside the bearing, which is calculated by the Reynolds equation.
This equation derives from the equations of momentum conservation and mass con-
servation for a viscous fluid, under certain hypothesis. For the bearing scheme seen in
Fig. 2, the isoviscous Reynolds equation can be mathematically written as [17]:

@

@h
h3

@p
@h

� �
þ @

@x
h3

@p
@x

� �
¼ 6l U

@h
@h

� �
� 12l

@h
@t

ð2Þ

being, p the pressure, ϴ and x the circumferential and axial coordinates, µ the oil film
viscosity, U the tangential journal velocity, t the time and h the lubricant film thickness:

h ¼ CRþ y sin h� z cos h ð3Þ

CR is the bearing radial clearance, and y and z, respectively the horizontal and vertical
coordinates of the journal center.

Fig. 1. Typical rotor model: (a) x-z view; (b) y-z view.
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With the estimated pressure field, it is possible to evaluate the resultant forces in the
oil film. For this, the pressure distribution should be integrated over the bearing area
generating the horizontal and vertical force components:

FHy

FHz

� �
¼

Z L
2

�L
2

Z h2

h1

p
sin h

� cos h

� �
dhdx ð4Þ

Thus, the hydrodynamic forces are dependent on the shaft rotational speed as well
as position and velocity of the journal center inside the bearing:

FH ¼ FH X; y; z; _y; _zð Þ ð5Þ

So, for displacements around the equilibrium position, a Taylor series expansion
[18], depending on the previously described variables, can be performed to create an
analytical expression that represents the force generated by the oil film:

FHi ¼
Xn
j¼o

xf g � af gð Þ j
j !

@ jf xf gð Þ
@ xf g j

�����
af g

ð6Þ

in which, j represents y or z, {x} is the vector with the function variables, {a} is the
vector with the bearing equilibrium position for a given rotation and n is the expansion
order.

For the first order expansion, one have the classical hydrodynamic force lin-
earization proposed by Lund [1, 2]. In this case, the force is described by eight dynamic
coefficients of stiffness (Kmn) and damping (Cmn):

Fig. 2. Radial journal bearing scheme: (a) lateral view; (b) axial view
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Fy ¼ Fy0 þKyy � DyþKyz � DzþCyy � D _yþCyz � D_z
Fz ¼ Fz0 þKzy � DyþKzz � DzþCzy � D _yþCzz � D_z ð7Þ

being the coefficients determined by the partial derivative of the force evaluated in the
journal equilibrium position:

Kyz ¼ @Fy

@z

���
0
; Cyz ¼ @Fy

@ _z

���
0

ð8Þ

However, it is known that the bearing nature can be highly nonlinear and that the
linearization is only valid for small vibrations amplitudes. So, for a more accurate
analysis of rotating machines, the nonlinear model must be adopted. Nevertheless, the
use of nonlinear hydrodynamic forces, by means of simultaneous solution of the
Reynolds equation and the equation of motion, is very time consuming. To minimize
this problem, it is possible to use an analytical expression based on high order Taylor
series expansion as proposed by Zhao et al. [12].

Obtaining y tð Þ, z tð Þ, _y tð Þ, _z tð Þ, �FHy tð Þ and �FHz tð Þ from a time series analysis, the
ridge regression method [19] can be used to minimize the squared difference between
the adjusted force (Fi kð Þ) and the force calculated through the Reynolds equation
solution (�FHi kð Þ). The minimization results in the expansion nonlinear coefficients:

Kf gi¼ argmin
K2<N

XM
k¼1

�FHi kð Þ � Fi kð Þ½ �2 þ k
XN
j¼1

K2
iJ ð9Þ

or in matrix form:

Kf gi¼ argmin
K2<N

FHf gi� X½ �i Kf gi
�� ��2

2 þ k Kf gi
�� ��2

2 ð10Þ

where, {K}i is the nonlinear coefficients vector, N is the coefficient number generated
by the Taylor expansion, M is the number of time steps used to obtain the hydrody-
namic forces, [X] is the predictor matrix and k� 0 is the adjustment parameter.

The optimization problem described in Eq. 10 has analytical solution, since it is
enough to derive the objective function with respect to the coefficients K:

Kf gi ¼ X½ �Ti X½ �i þ k I½ �� 	�1
X½ �Ti FHf gi ð11Þ

Therefore, for each bearing, and for each direction of the hydrodynamic force, there is a
minimization problem, which can generate N coefficients defined by the order of the
Taylor series expansion.

The k parameter defines the amount of penalization applied to the original least
square. When k ! 0 the same solution generated by the least square method is found.
When k ! 1 the solution is null. A shrinkage of the coefficients happens for inter-
mediate values, causing a reduction in variance but an increase in bias. Moreover, the
penalty introduction improves the conditioning of [X]i

T[X]i matrix. To calculate k an
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one-dimensional minimization process (line search) is used to generate the smallest
value for the objective function (Eq. 10).

3 Discussion and Results

The rotor used in the simulations was a Laval/Jeffcott rotor, discretized by finite
elements as previously mentioned. Ten Timoshenko beam elements and a central rigid
disk element, placed at node 6, were used to compose the system. Two identical
hydrodynamic bearings are located at nodes 3 and 9. Figure 3 shows the rotor finite
element model, Table 1 the detailed discretization, and Table 2 shows the bearing
parameters. The excitation force adopted comes from unbalance and was inserted at
disk position. The damping matrix [C] is proportional to the stiffness matrix [K], and
the proportional coefficient is b ¼ 1:5� 10�5. Moreover, shaft and disk are made of
steel with elastic modulus of 200 GPa and density of 7850 kg/m3.

Because Reynolds equation is a second order differential equation, it does not have
a closed solution. Therefore, numerical methods are necessary to find the pressure
distribution inside the bearing. The finite volume method, that transform partial dif-
ferential equations in a set of algebraic equations, was adopted for the simulations [20].
The first critical speed is 22 Hz and, consequently, at 44 Hz the system is subjected to
fluid-induced instability.

Table 1. Finite elements details.

Element n° Type Internal diameter (mm) External diameter (mm) Length (mm)

1 Beam 0 12 40
2 Beam 0 31 10
3 Beam 0 31 10
4 Beam 0 12 266.5
5 Beam 0 23.5 23.5
6 Beam 0 23.5 23.5
7 Beam 0 12 266.5
8 Beam 0 31 10
9 Beam 0 31 10
10 Beam 0 12 40
11 Rigid disk 23.5 95 47

Table 2. Bearings Parameters.

Bearing diameter (D) 31 mm

Bearing length (L) 20 mm
Bearing radial clearance (CR) 90 µm
Oil viscosity (µ) 50 mPa.s
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Furthermore, when considering nonlinearities in a machine simulation, its
dynamical behavior is completely changed, and a robust integration method must be
employed. So, in this work, the nonlinear implicit iterative Newmark integrator is used.
Hence, for each time step, a variable prediction is calculated by Newmark equations
and updated by Newton-Raphson method until the equation of motion is satisfied [21].

Fig. 3. Finite element model

Fig. 4. Simulation results for rotational speed equal to 22 Hz: (a) Horizontal hydrodynamic
force; (b) Vertical hydrodynamic force; (c) Bearing orbit; (d) Disk orbit.
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Fig. 5. Simulation results for rotational speed equal to 44 Hz: (a) Horizontal hydrodynamic
force; (b) Vertical hydrodynamic force; (c) Bearing orbit; (d) Disk orbit; (e) Horizontal bearing
displacement; (f) Vertical bearing displacement.
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The Reynolds equation should be solved for each bearing and at each iteration of the
procedure, resulting in elevated computational time.

To overcome this problem the hydrodynamic force approximation described in
Sect. 2 is utilized. The amount of time needed for a good force adjustment depends on
the machine operation condition. However, the transitory part of the movement is of
great interest, because it is the path followed by the rotor under this situation and
expands the region covered by the adjustment. Despite the initial cost to obtain and
adjust the hydrodynamic force given by the Reynolds equation, the simulation time
drops from hours to minutes. For this work, it was used a Taylor series expansion up to
the fifth order, since this was the lowest order able to fit the case under fluid induced
instability.

The simulation cases analyzed take into account situations with strong nonlinear
bearing behavior. So, critical rotation speeds, as the first natural frequency (22 Hz) and
the fluid induced instability (44 Hz), are selected. Additionally, high unbalance level

Fig. 6. Simulation results for rotational speed equal to 10 Hz and 500 N applied load:
(a) Horizontal hydrodynamic force; (b) Vertical hydrodynamic force; (c) Bearing orbit; (d) Disk
orbit.
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contributes to increase nonlinearities, and for the situations previously mentioned a
8.5 g mass placed at 37 mm from the center of the disk is used (Balance Quality Grade
G12,8 [22]). Because the rotor is symmetrical, the bearings have the same response. So,
only the first bearing is used in the analysis. Notice that results for Reynolds and
Nonlinear coefficients are coincident for most of the cases. Those results are shown in
Figs. 4 and 5.

Figure 4a, b show the hydrodynamic forces for horizontal and vertical direction
obtained by Reynolds equation, high order Taylor expansion and linear coefficients for
22 Hz. As can be seen, in the beginning of the transitory motion, all hydrodynamic
forces are comparable. However, when the displacement amplitude increases, the linear
force can no longer represent the original hydrodynamic forces obtained by Reynolds
equation. On the other hand, the force calculated by nonlinear coefficients is in good
agreement during all period. The same behavior can be seen for the fluid induced
instability in Fig. 5a, b, e, f.

Fig. 7. Simulation results for rotational speed equal to 10 Hz, 500 N applied load and unbalance
at node 1: (a) Horizontal hydrodynamic force; (b) Vertical hydrodynamic force; (c) Bearing orbit;
(d) Disk orbit.
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Furthermore, observing the orbits presented in Fig. 4c, d, it is clear that the non-
linear coefficients can represent the rotor orbits with higher accuracy while the linear
forces violates the bearing clearance and have different shape and size for the disk orbit.

For the fluid induced instability, the nonlinear coefficients can well reproduce the
limit circle described by the journal inside the bearing (Fig. 5c) and the whirling
movement of the disk (Fig. 5d). Moreover, small discrepancies can be observed in the
orbits.

Three special cases, with high eccentricity and extreme unbalance level are also
analyzed. Concentrated vertical forces were applied at both bearing nodes in order to
keep bearing eccentricity ratio value equal to 0.9. The unbalanced mass was changed to
1.7 kg (Balance Quality Grade G1170). Those hypothetical cases should not occur in
reality but are simulated to verify the efficiency of the adjustment under extreme
nonlinear situations. For the results in Fig. 6, the concentrated force was set to 500 N
and the rotation speed to 10 Hz. In order to make the vibration amplitude of bearing 1

Fig. 8. Simulation results for rotational speed equal to 20 Hz and 800 N applied load:
(a) Horizontal hydrodynamic force; (b) Vertical hydrodynamic force; (c) Bearing orbit; (d) Disk
orbit.
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higher, two approaches were followed: (1) the unbalance force was changed from node
6 to node 1 (results in Fig. 7) and (2) preserving unbalance at node 6, at rotational
speed of 20 Hz (Balance Quality Grade G2338) (Fig. 8).

Observing Figs. 6, 7 and 8, it is clear that as the bearing vibration amplitude
increases higher is the difference between linear and nonlinear models. However, in all
cases of linear approximation, the orbits touch or violate the bearing wall, while the
nonlinear coefficients model follows the Reynolds orbits.

The most critical case is the one shown in Fig. 8, where high eccentricity is
combined with a rotational speed close to the first natural frequency. In this situation,
despite a good force adjustment, there are some discrepancies in the journal motion
comparing Reynolds and nonlinear coefficients solution. Nevertheless, nonlinear
coefficients can perform the overall bearing behavior while linear approximation totally
fails.

This difference comes from the amount of penalization used in the adjustment. The
desirable value for the penalization parameter is the one that minimizes the objective

Fig. 9. Objective function behavior: (a) For horizontal force adjustment; (b) Zoom in for
horizontal force adjustment; (c) For vertical force adjustment; (d) Zoom in for vertical force
adjustment.
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function, as can be seen in Fig. 9. However, Fig. 9d shows that all k values give
objective functions higher than the original least square (k = 0). In this situations, the
tradeoff between variance and bias, that traduces the model accuracy, should be ana-
lyzed in order to define a suitable value for k, since for the original least square method
the solution is unbiased but can have high variance. Therefore, for some situations
under extremely high nonlinearities, lower variance can be desirable, but this will cause
loss in accuracy. Observing Fig. 10 it is possible to obtain k.

Nevertheless, for these simulations, it is possible to note that linear and nonlinear
hydrodynamic forces are close, but the bearing orbits associated to them are not. In
high eccentricities, the wedge term associated to the Reynolds equation is dominant for
the pressure generation and consequently for the force calculation. Therefore, shape
and behavior of the movement does not affect considerably the force value. However,
the linear solution cannot reproduce high order harmonics making linear orbits ellip-
tical, while nonlinear coefficients can satisfactorily reproduce the orbits.

4 Conclusions

The paper presented the use of high order Taylor series expansion, by means of
nonlinear coefficients, to approximate bearings’ hydrodynamic forces. The simulations
were accomplished for rotors submitted to high nonlinear bearing behavior, as critical
speeds, fluid induced instability and cases with high eccentricities.

The results showed that nonlinear coefficients model can satisfactorily reproduce
hydrodynamic forces and rotor dynamics, greatly reducing the simulation time.
Moreover, for situations with extremely high nonlinearities the penalty parameter k of
the ridge regression should promote variance reduction to favor convergence of the
dynamic problem. Additionally, when the rotor experiences high eccentricity the linear

Fig. 10. Tradeoff between variance and bias: (a) For the horizontal force adjustment; (b) For the
vertical force adjustment.
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and nonlinear hydrodynamic forces have close behavior. However, the response with
linear force cannot reproduce high order harmonics changing the bearing orbit shape,
what does not happen when nonlinear coefficients are used.
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Abstract. High rotation turbochargers, to automotive applications, are con-
tinually subjected to axial forces due to gas flows in the turbine and the com-
pressor. These axial forces are supported by lubricated thrust bearings, and their
effect is introduced in the dynamic system through its equivalent stiffness and
damping coefficients. These coefficients are estimated utilizing a thermo-
hydrodynamic model of the bearing, which is composed by the Generalized
Reynolds Equation and Energy Equation, to estimate pressure and temperature
distribution in the oil film. This work analyzes the influence of geometric and
operational parameters of the fixed-geometry thrust bearings in pressure and
temperature distributions along the fluid film, solving the governing equations
by Finite Volume Method. Along with the pressure distribution, the supported
axial load is evaluated and, after that, the equivalent coefficients are estimated.
In this work, the Energy equation is solved utilizing 3D model and 2D model
(neglecting the radial heat exchange), to check the difference in these results in a
computationally less expensive model, and other simplifications, disregarding
the conduction heat exchange in the circumferential direction and the convection
heat exchange in the axial direction. The load capacity and the equivalent
coefficients are compared with a purely hydrodynamic model, disregarding the
viscosity variation through the oil film. In lower rotational speeds, the heat
generated by fluid shear is small, so a HD model can be utilized considering a
constant mean temperature of the oil film. This last approach can reduce the cost
to solve the pressure distribution that govern the oil flow in the bearing
clearance.

Keywords: Thrust bearing � Thermo-hydrodynamic lubrication
Generalized reynolds equation � Dynamic coefficients

1 Introduction

When Lord Reynolds [1] firstly introduced the partial differential equation that governs
pressure distribution on thin viscous fluid films, he used a simplified form of Navier-
Stokes equations along with the continuity equation to obtain an equation for the
pressure distribution in the converging gap between bearing surfaces. The Reynolds
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equation, however, considers a constant viscosity and is useful only when the tem-
perature does not change significantly throughout the film. To take into account the
fluid properties variation with the temperature, Dowson [2] introduced the generalized
Reynolds equation, an equation derived with a minimum of restrictive assumptions,
from the fundamental equations of fluid dynamics and, in 1966, Dowson and March [3]
developed a thermo-hydrodynamic analysis, considering both the generalized Reynolds
Equation and the Energy Equation, along with the heat conduction equation, applied to
the fluid and the solids (both the bearing and the shaft), to better design procedures for
journal bearings. The thermo-hydrodynamic analysis has been increasingly important,
mainly due to the high rotational speeds of rotating machines.

Particularly to automotive applications, turbochargers have been used to increase
the internal combustion engine performance since 1905, when Alfred Büchi success-
fully develop the first modern turbocharger, driven by the engine exhausting gases [4].
Nowadays, turbochargers work at high rotational speeds, ranging from 150,000 to
350,000 rpm [5]. These high speeds directly affect the temperature rise in the bearings
lubricant, due to fluid shear, which generates high viscous dissipation, changing the
viscosity of oil film circulating in the bearings, affecting the pressure distribution and,
consequently, the load capacity of the bearing and its dynamic behavior.

Many authors have been studying the thermal effects when calculating the fluid
pressure distribution in bearings. Along with the generalized Reynolds equation and the
Energy equation in the oil film, authors considered other phenomena. For instance, for
journal bearings, Khonsari and Beaman [6] considered cavitation effects and mixing of
recirculating oil and supply oil at the inlet; Ott and Paradissiadis [7] considered cav-
itation and reverse flow at the oil inlet; Han and Paranjpe [8], who did a rigorous THD
analysis on journal bearings, including reverse and recirculating flow, cavitation and
considering a full 3D energy equation, without further simplifications; Gupta et al. [9],
who did a simplified THD analysis to industrial application; and Paranjpe and Han [10]
did a transient THD analysis on dynamically loaded journal bearings.

Specifically for thrust bearings, Huebner [11] considered also heat exchange with
the surfaces; Ettles [12], the elasticity and thermal distortion on the surfaces; Kim et al.
[13], the three-dimensional variation of lubricant viscosity and density; Colynuck and
Medley [14], situations with backflow, comparing different numerical methods; and
Brockett et al. [15], a fully 3D model, with heat transfer and elastic and thermal
deformations in the pads. In the beginning of the 21st century, Almqvist et al. [16]
compared numerical and experimental results in thrust bearings; Glavatskih et al. [17]
empirically observed the influence of the lubricant in thrust bearings; Yuan et al. [18]
did a thermo-elasto-hydrodynamic analysis on pivoted pad thrust bearings; Dobrica and
Fillon [19] compared the results obtained by the Reynolds equation with the Navier-
Stokes equations; and Dadouche et al. [20] empirically observed the operational
parameters influence on thrust bearing performances. More recently, Jiang et al. [21]
did a thermo-elasto-hydrodynamic analysis on tilting pad thrust bearings; Vieira et al.
[22] analyzed the influence of the viscosity variation on the behavior of fixed-geometry
thrust bearings; Chatzisavvas et al. [23] investigated the influence of thrust bearings on
lateral rotor oscillations; Daniel et al. [24] did a sensitivity analysis on a turbocharger
thrust bearing model, comparing simulated and experimental results; and Remy et al.
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[25] introduced a transient model of the Reynolds equation to represent multigrade
engine oils.

In this work, fixed-geometry thrust bearings in turbochargers are studied. The
pressure and temperature field are estimated for different rotational speeds, solving
simultaneously the generalized Reynolds equation and the Energy equation, by the
Finite Volume Method. The numerical solution to the Reynolds equation gives the
pressure distribution throughout the oil film, dependent on the temperature distribution
due to the viscosity-temperature relation. The numerical solution of the Energy
Equation gives the temperature distribution and this equation can be simplified, in some
cases, to reduce the computational cost on solving these partial differential equations.
The influence of these simplifications compared with the complete model are analyzed
in a wide range of rotational speed, concerning the modeling performance, being this
one of the major contributions of the work. It is also estimated the equivalent stiffness
and damping coefficients of the thrust bearing, to account for the bearing dynamic
behavior in the turbocharger axial vibration. Just the first order coefficients are esti-
mated, by perturbation methods (i.e., a perturbation of displacement or velocity around
the static equilibrium position of the system).

2 Methodology

This section presents the governing equations utilized in this work, along with the fixed
geometry thrust bearings considered, the boundary conditions and the numerical
methods developed. The assumptions admitted on this work are laminar flow in
thermo-hydrodynamic steady state operation, with no cavitation and no slip at fluid-
solid interfaces; the inertia and body forces are negligible compared to viscous and
pressure terms in the momentum equations; the lubricant is a Newtonian fluid, with
constant density, thermal conductivity and specific heat and its viscosity is a function
only of temperature; the thermal and elastic distortions are neglected (the surface pads
and runner are rigid); and the velocity gradients across the film are much more
important than all other velocity gradients, because of the film thin thickness.

2.1 Bearing Geometry

The geometry of the bearing considered in the simulations is schematically shown in
Fig. 1. The oil film shape may be specified a priori, since no thermal and elastic
deformations are considered in the model. The film thickness for the pad is shown in
Eq. 1.

h r; hð Þ ¼ h0 þ sh 1� h
hramp

� �
; h� hramp

h0; h[ hramp

(
ð1Þ

wherein h0 is the minimum film thickness, sh is the shoulder height and hramp is the
angular length of the converging gap, schematically shown.
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2.2 Generalized Reynolds Equation

To study the thrust bearings, it is more convenient to write the governing equations in
cylindrical coordinates. It is common practice to neglect the pressure variation along
the film thickness, so the pressure p is only function of the radial and circumferential
coordinates, i.e., p ¼ p r; hð Þ. The generalized Reynolds equation takes into account
three-dimensional viscosity variation in the film and is written as [2, 15]:

1
r
@
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in which X is the rotational speed of the collar, h and r are the cylindrical coordinates, p
is the pressure along the film and the functions F0, F1 and F2 depends on the viscosity
variation through the film thickness h, from the collar to the bearing, defined as:
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The boundary conditions for this equation are atmospheric pressure at all boundaries
(the oil is either entering or leaving the bearing pad at atmospheric pressure).

2.3 Energy Equation

The viscosity changes with the temperature and the temperature distribution can be
estimated solving the Energy equation [2, 15]:
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in which u; vh and vr are the axial, circumferential and radial velocities, respectively, q,
cp and k are the density, specific heat and thermal conductivity, the lubricant properties,
l is the viscosity and T , the temperature. It is assumed a fully 3D Energy equation, i.e.,
the temperature is a function of all coordinates T ¼ T r; h; xð Þ and heat transfer may
occur by convection and conduction on the three directions.

The boundary conditions are still a big uncertainty in thermo-hydrodynamic models
and a lot of research and experimental investigation have been done to find appropriate

(a) (b)

Fig. 1. Thrust bearing (a) variables and (b) oil film thickness profile
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boundary conditions on thermal analysis in lubrication on bearings. Some authors [11,
16, 18, 19, 26] employed a solution considering heat transfer in the surfaces and heat
exchange between the lubricant film and those surfaces. They observed the heat
exchange in the rigid surfaces can usually be neglected and adiabatic boundary con-
dition is good enough to model most of hydrodynamic bearings. On the outlets of the
converging gap between the bearing surfaces, boundary conditions are also adiabatic,
as has been previously noticed by [23]. The inlet temperature of the oil film still has
some debate over it, as many authors [11, 16, 18, 19, 21, 23] consider a constant
temperature through the entire inlet surface. However, works such as [22, 25], consider
a model of mixing the recirculating oil and supply oil at the inlet. This is the approach
in this work. The boundary conditions, then, can be explicit written as:

T r; h; xð Þjh¼0¼
TrepQrep þ T r; h0; xð ÞQ r; h0; xð Þ

Qrep þQ r; h0; xð Þ ð5Þ

T r; h; xð Þjx¼0¼ Tshaft ð6Þ

@T
@x

����
x¼h

¼ @T
@r

����
r¼ri

¼ @T
@r

����
r¼ro

¼ @T
@h

����
h¼h0

¼ 0 ð7Þ

Equation 5 states that the temperature of the oil entering a volume control at the
bearing inlet is considered as an ideal mixture of the replacement oil and the hot oil
carried over from the previous pad [15, 22, 25]. It is calculated as a weighted arithmetic
mean of the temperatures of the replacement oil and the hot oil carried over. The
replacement oil temperature is Trep and its volumetric flow is Qrep, calculated as:

Qrep ¼ AVC

Ainlet
Qlat ð8Þ

wherein AVC is the inlet area of the control volume at the bearing inlet, given as
Aout ¼ DrDxjh¼h0

in the FVM discretization, Ainlet is the total entrance area of the
bearing inlet, and Qlat is the volumetric flow of the recirculating oil, given as
Qlat ¼ Qri þQro ¼

R
A vrdA

��
r¼ri

þ RA vrdA��r¼ro
. The hot oil carried over from the pre-

vious segment has temperature T r; h0; xð Þ and its volumetric flow is

Q r; h0; xð Þ ¼ R
A
vhdA

����
h¼h0

.

Equation 6 considers the bearing runner as an isothermal component, whose
temperature is pretty close to the supply oil temperature [11, 17, 26], Tshaft ¼ Trep.
Equation 7 considers adiabatic boundary conditions on the bearing pad, the inner and
outer radii and at the trailing edge [15, 23].

2.4 Simplifications in the Energy Equation

For very high velocities, as is the case for the circumferential linear velocity, heat
transfer may be modeled only by convection. On the other hand, for very low
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velocities, as is the case for the velocity across the fluid film thickness, heat transfer
may be modeled only by diffusion. This analysis has been done by several authors and
they tend to neglect one or more terms in the Energy equation. For instance, while
works [8, 10, 15, 16, 22, 24] consider heat transfer in all directions, others [3, 6, 7, 14,
19] neglect heat transfer in the radial direction. Also, [6, 19] neglect conduction in the
circumferential direction. Huebner [11] also neglects this term, while several authors
[13, 17, 18, 20, 25] neglect conduction in both the circumferential and radial directions.
Chatzisavvas et al. [23] neglect the circumferential conduction and the axial convec-
tion. Other authors [12, 21] neglect heat transfer in the axial direction. Finally, Gupta
et al. [9] consider only convection in the circumferential direction and conduction in
the axial direction.

This leads to the simplifications in the Energy equation shown in Table 1. Case 1
considers heat transfer in all directions in the Energy equation, while case 2 neglects
heat transfer in the radial direction, it then becomes a 2D Energy equation, and case 3
neglects radial heat exchange, the axial convection and the circumferential conduction,
it is the simplest model for the Energy equation. When radial heat transfer is neglected,
the fluid shear proportional to the radial velocity gradient is also neglected.

2.5 Velocity Field

The circumferential and radial velocities are calculated from the pressure distribution,
similar to Dowson’s Equations [2], given by [11]:

vh ¼ @p
@h

I1 � F1

F0
I0

� �
þ rX 1� I0

F0

� �
ð9Þ

vr ¼ @p
@r

I1 � F1

F0
I0

� �
ð10Þ

in which the integrals I0 and I1 resembles the F0 and F1, but with the limits of
integration changed from 0; hð Þ to 0; xð Þ:

I0 ¼
R x
0
1
l dx; I1 ¼

R x
0

x
l dx; ð11Þ

The axial velocity is calculated from the continuity equation, Eq. 12, integrated in a
volume control, considering no slip condition at the runner, ujx¼0¼ 0, and integrating it
for every control volume, from bottom to top.

Table 1. Simplifications on the energy equation

Case Acronym Terms neglected

1 THD 3D None
2 THD 2D vr @T@r ;

1
r
@
@r r @T

@r

� �
; l @vr

@x

� �2
3 THD Simpl. vr @T@r ;

1
r
@
@r r @T

@r

� �
; u @T

@x ;
1
r2

@2T
@h2

; l @vr
@x

� �2
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1
r
@ rvrð Þ
@r

þ 1
r
@vh
@h

þ @u
@x

¼ 0 ð12Þ

2.6 Solution of Pressure and Temperature Equations by the FVM

The generalized Reynolds equation and Energy equation are partial differential equa-
tions that must be solved simultaneously to obtain pressure and temperature distribu-
tions on the oil film. To solve it, the Finite Volume Method (FVM) is employed. The
solution domain is divided on orthogonal hexahedral control volumes, changing the x
coordinate to non-dimensional form �x ¼ x=h r; hð Þ, and discretized finite difference
equations are obtained for each control volume. Variables at each control volume
boundary are interpolated between adjacent control volume centers and the pressure
equation for an interior control volume can be written as

aPPp ¼ aEPE þ aWPW þ aNPN þ aSPS þ Su ð13Þ

whose coefficients are

aE ¼ F2eheDr
reDh

aN ¼ F2nhnrnDh
Dr

aW ¼ F2whwDr
rwDh

aS ¼ F2shsrsDh
Dr

Su ¼ � X @
@h

F1
F0

� �
þ @h

@t

� �
P

aP ¼ aE þ aW þ aN þ aS

ð14Þ

The temperature equation is analogously discretized, but, since this is a 3D equation,
the temperature equation for a control volume reads

aPTP ¼ aETE þ aWTW þ aNTN þ aSTS þ aTTT þ aBTB þ Su
aP ¼Pnb anb � SP

ð15Þ

Just as before, the central coefficient aP is the sum of the neighbor coefficients with a
�SP term to account for boundary conditions. The equations for the neighbor coeffi-
cients are obtained using the Weighted-Upstream Differencing Scheme (WUDS),
proposed by Raithby and Torrance [27], written as:

aE ¼ beDe � Fe
1
2 � ae
� �

aW ¼ bwDw þFw
1
2 þ aw
� � ð16Þ

Analogous expressions for the other faces are written in the same manner. The coef-
ficients a and b, Eq. 17, are written as a function of the Peclet cell number, defined for
a face f , as the ratio of the convective flux by the diffusion coefficient, Pef ¼ Ff =Df .

a ¼ Pe Pej j
10þ 2Pe2 b ¼ 1þ 0:005Pe2

1þ 0:05Pe2
ð17Þ

The convective flux (F) and the diffusion coefficients (D) are defined as:
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Fe ¼ vheheDrDx Fw ¼ vheheDrDx Fn ¼ vrnrnhnDhDx Fs ¼ vrs rshsDhDx
Ft ¼ utrtDrDh Fb ¼ ubrbDrDh De ¼ k

qcp
heDrDx
Dh Dw ¼ k

qcp
hwDrDx

Dh

Dn ¼ k
qcp

rnhnDhDx
Dr Ds ¼ k

qcp
rshsDhDx

Dr Dt ¼ k
qcp

rtDrDh
htDx

Db ¼ k
qcp

rbDrDh
hbDx

ð18Þ

Equations 13 and 15 are discretized equations of the pressure and temperature equation
and form a linear system, solved by the Gauss-Seidel method until global convergence
is obtained.

2.7 Equivalent Coefficients

To study the dynamic behavior of the bearing, equivalent stiffness and damping
coefficients are estimated. These estimates are approximated calculating the supported
load rate with respect to the oil film thickness and the squeeze velocity [28], i.e.,

Kxx ¼ � @W
@h � � DW

Dh Cxx ¼ � @W
@ _h

¼ � DW
D _h

ð19Þ

The derivatives are estimated by a finite difference. After global convergence is
obtained, the load supported by the pad is calculated integrating the pressure
distribution:

Wpad ¼
Z
A
prdrdh ffi

X
prDrDh ð20Þ

The pressure distribution is then recalculated, with a perturbation around the equilib-
rium position, h0jnew¼ h0 þDh or with a normal squeeze velocity @h=@t ¼ D _h and the
load supported for each case is also recalculated. With these values, the thrust bearing
equivalent coefficients is estimated.

2.8 Axial Thrust in Turbochargers

Peixoto [29] presented a simple model of the axial force in a turbocharger, in steady
state, due to the turbine thrust, as a function of the rotational speed:

F ¼ qA2r2r3
tan a2 tan b3

X2 ð21Þ

wherein q is the density of the gas entering the turbine and the other parameters are
turbine geometric parameters in the turbocharger. A2 is the inlet area, r2 and r3 are,
respectively, the inlet and outlet blade radius and a2 and b3, the velocity triangles inlet
angle and outlet angle.
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3 Results

3.1 Temperature Distribution in the Oil Film

The numerical analyses are performed for a thrust bearing, whose dimensions are
shown in Table 2. This first analysis investigates the temperature distribution in a thrust
bearing. The bearing described in Table 2 is simulated considering the shaft temper-
ature equal to the replacement oil temperature.

It is considered a constant rotational speed, equal to 10,000 rpm and a minimum oil
film thickness of 50 lm. The calculations are performed considering the full 3D
Energy equation, Eq. 3. The pressure distribution is shown in Fig. 2, for both the HD
model and the THD model. The temperature distribution is shown in Fig. 3 for the
inner, medium and outer radius and at the bearing surface.

The pressure distribution shown in Fig. 2 uses the same scale to analyze the dif-
ference in the pressure distribution of both models. As expected, the THD model
predicts a lower maximum pressure, since the temperature rise lowers the fluid vis-
cosity. The maximum pressure for the THD model is about 0.369 MPa, while for the
HD model, it is about 0.517 MPa. The pressure distribution, however, does not change
significantly.

It can be observed from the temperature distributions shown in Fig. 3a to c that the
greater the radius, the greater the temperature. The position of the maximum temper-
ature of 38.9 °C is located at the outer radius, in the minimum oil film thickness, as
expected, since the linear speed of the runner is higher at the outer radius and,
therefore, the fluid shear is greater at this position. Figure 3d shows the temperature

Table 2. Thrust bearing dimensions and operational parameters

ro[mm] ri[mm] h0[°] hramp[°] h0[lm] sh[lm] Treplacement[°C]

15.0 8.5 100 75 50 30 25

Fig. 2. Pressure distribution, 10,000 rpm: (a) HD model, (b) THD model

24 T. F. Peixoto et al.



distribution at the bearing surface, considered as adiabatic. Again, it can be observed
that the maximum temperature occurs at the outer radius position.

It is also observed in Fig. 3a to c sudden changes of temperature near the leading
edge (around h ¼ 0rad). These high sudden temperature gradients are due to the
numerical approximations of the modeling. The equations for the volumes on the
leading edge are different than those on the interior of the domain. The discretized
equations for these volume controls are different to account for the boundary conditions
leading to some discrepancies.

Fig. 3. Temperature distribution, 10,000 rpm, at (a) Inner radius, (b) Medium radius,
(c) Outer Radius, (d) Bearing surface

Table 3. Maximum and mean pressure and temperature, for different rotational speeds

X
[rpm]

Pmean HD
[MPa]

Pmax HD
[MPa]

Pmean THD
[MPa]

Pmax THD
[MPa]

Tmean

[°C]
Tmax

[°C]

5,000 0.105 0.259 0.105 0.258 25.0 25.0
10,000 0.210 0.517 0.155 0.369 31.8 38.9
25,000 0.524 1.293 0.250 0.829 43.9 74.3
50,000 1.048 2.59 0.368 0.951 48.4 130.7
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This same analysis is performed for different rotational speeds and the results for
supported load, maximum and mean pressure and temperature are summarized in
Table 3. Table 3 presents the pressure for the HD model and the THD, considering the
full 3D Energy equation. It is seen that for low rotational speed (5,000 rpm), no
difference is observed from the HD and THD model. However, for higher rotational
speeds, the difference in the models are not negligible. It can be seen that the tem-
perature rise lowers the viscosity and, consequently, the pressure in the oil film. An
important observation, for high rotational speeds, is the necessity in the design to
account for the proper cooling of the lubricant, so operation is not compromised. It is
assumed in the simulations a constant temperature of 25 °C for the replacement oil,
which assumes proper cooling of the oil leaving the bearings.

3.2 Simplifications in Energy Equation

Table 4 summarizes the results for each case shown in Table 1. Case 1 is the result
obtained for the fully 3D equation, called THD 3D. Case 2 neglects radial heat transfer
and is called THD 2D and Case 3 is the simplest model, neglecting radial heat transfer,
axial convection and circumferential conduction, called THD Simpl. The D symbol
denotes the percentage difference of the simpler models in comparison with the full 3D
equation and it is also calculated the supported load, Fpad , of the bearing pad. The
results are shown for the same rotational speeds shown in Table 3.

It is seen from Table 4 that the simplest model can be used for low rotational
speeds. For rotational speeds up to 5,000 rpm, the HD model can be utilized, and for
rotational speeds from 5,000 to 25,000 rpm, the THD 2D model, neglecting radial heat
transfer, can be used, since differences smaller than 1% are observed for the supported
load. The biggest difference is in the maximum temperature, in which the 2D model
overestimates it in about 6%. For the rotational speed of 50,000 rpm, differences of
about 10% are observed in the supported load, and this model may be inadequate for
high rotational speeds.

The simplest model, THD Simpl, neglecting radial heat transfer, axial convection
and circumferential conduction, is adequate only for low rotational speeds. Differences
of about 12% are observed, for the rotational speed of 10,000 rpm. To 25,000 rpm, the
supported load is underestimate in about 40% and, in 50,000 rpm, it underestimates it
in about 52%. The mean temperature of the oil film is also overestimated in about 48%.

In general, since the simpler models of the Energy equation neglect some terms in
the Energy equation, it is expected a higher temperature, which was observed. This
compromises the pressure distribution in the pad, which lowers the supported load. The
oil film temperature is overestimate in high rotational speeds, so care must be taken on
the assumptions admitted for the lubrication analysis of a thrust bearing. This con-
siderations are important because the computational cost can be reduced if the simpler
models are utilized, but these models are valid only for low rotational speeds.
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3.3 Equivalent Coefficients

This section presents the influence of thermal effects on the dynamic behavior of the
thrust bearing in a turbocharger. Equation 21 is first utilized to obtain the axial force in
the thrust bearing, i.e., the supported load of the pad, shown in Fig. 4a, as a function of
the rotational speed. The minimum oil film thickness, h0, is then estimated for each
speed, to find the static equilibrium position of the thrust bearing that supports the load,
shown in Fig. 4b, and small perturbations of displacement and velocity are applied to
estimate the equivalent coefficients.

As previously noticed, the THD model predicts a rise in the film temperature,
which lowers the pressure and, consequently, the supported load. Therefore, the esti-
mated minimum oil film thickness is smaller for the THD models than the HD model. It
is also observed that the simpler models, that overestimate the film temperature,
underestimates the minimum oil film thickness. The calculations for the simpler models
were performed for a limited range of the rotational speeds, since the overestimated
temperature was too high for high rotational speeds, as shown in Fig. 5.

The equivalent stiffness and damping coefficients were calculated and are shown in
Fig. 6, for rotational speeds up to 50,000 rpm, to compare the different THD models
presented in Table 1, and in Fig. 7, to compare the HD and THD models for rotational
speed up to 150,000 rpm. It is observed THD model predicts a stiffer equivalent
coefficient, since the thinner the film, the stiffer the system becomes.

Table 4. Supported load, maximum and mean pressure and temperature percentual difference,
for different simplifications of the energy equation

5,000 rpm 10,000 rpm

THD
3D

THD
2D

D THD
Simpl

D THD
3D

THD
2D

D THD
Simpl

D

Fpad [N] 13.9 13.9 0.00% 13.9 −0.00% 20.5 20.5 −0.09% 17.9 12.9%

Pmean [MPa] 0.105 0.105 0.00% 0.105 0.00% 0.155 0.156 −0.15% 0.136 12.7%
Pmax [MPa] 0.258 0.258 0.00% 0.258 0.00% 0.369 0.371 −0.29% 0.326 11.6%
Tmean [°C] 25.0 25.0 0.00% 25.0 0.00% 31.8 31.8 −0.10% 34.1 −7.46%

Tmax [°C] 25.0 25.0 0.00% 25.0 0.00% 38.9 39.1 −0.40% 43.7 −12.1%

25,000 rpm 50,000 rpm

THD
3D

THD
2D

D THD
Simpl

D THD
3D

THD
2D

D THD
Simpl

D

Fpad [N] 33.1 33.0 −0.04% 20.0 −39.6% 48.4 44.0 −9.03% 23.2 −52.1%

Pmean [MPa] 0.250 0.251 0.17% 0.152 −39.1% 0.368 0.336 −8.71% 0.179 −51.2%
Pmax [MPa] 0.829 0.836 0.85% 0.366 −55.8% 0.951 0.914 −3.91% 0.457 −51.9%
Tmean [°C] 43.9 43.7 −0.40% 57.8 31.7% 48.4 50.0 3.39% 71.5 47.8%

Tmax [°C] 74.3 79.0 6.38% 91.0 22.6% 130.7 136 4.41% 105.7 −19.1%
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It is seen from Fig. 6 that for rotational speeds up to about 10,000 rpm, the three
THD models predicts equivalent stiffness and damping coefficients almost equal, with
differences of the simpler models to the full 3D Energy equation smaller than 10%. The
differences are bigger for higher rotational speeds and, as noticed before, the models are
inadequate to represent thrust bearings in turbochargers in high rotational speeds.

It can be observed from Fig. 7 the difference between the HD and THD models, for
rotational speeds up to 150,000 rpm. It is noticed the behavior of the stiffness coeffi-
cient is the same as the force, quadratic with the rotational speed, while the damping
coefficient grows linearly with the speed. This tendency is observed for both models.
However THD model predicts a stiffer equivalent coefficient and a lower damping
coefficient. Nevertheless, the coefficients remain in the same order of magnitude.
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Fig. 4. (a) Axial thrust in the turbocharger and (b) Minimum oil film thickness
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4 Conclusions

This paper studied the pressure and temperature distribution of a turbocharger thrust
bearing operating in thermo-hydrodynamic regime and the influence of geometric and
operational parameters in these results. The influence of neglecting some terms in the
Energy equation, to ease the computations, was investigated. A 2D model of the
Energy equation, neglecting radial heat transfer, and a simpler model, neglecting also
axial convection and circumferential conduction, were considered. Up to 20,000 rpm,
the 2D model may be employed, with results obtained with a difference no more than
10%. The simplest model may be employed only for low rotational speeds. This is
advantageous for faster simulations, but have a limited range of application.

It was also investigated the HD and THD differences in the bearing dynamic
behavior. The THD model predicts a stiffer coefficient, since the temperature rise
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lowers the pressure and the supported load of a bearing pad, and consequently, a
thinner oil film is necessary to support the axial load. The damping coefficient of the
THD model was a little smaller than the HD model, but both coefficients remain in the
same order of magnitude.

Acknowledgments. The authors would like to thank BorgWarner Brasil Ltda., CAPES and
CNPq for supporting this research.
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Abstract. Nonconforming contact study is fundamental to model the behavior
of mechanical equipment such as bearings and gears. In order to predict lifetime
of rolling element bearings, film thickness and pressure distribution can describe
the lubrication condition, allowing the analysis of the contact response to load,
rotation speed, oil parameters and geometry. The EHD elliptical contact can be
approximate to an equivalent line contact when taken the central line at the
major ellipsis axis, since the maximum Hertzian pressure, lubrication oil, rota-
tion speed and radius of curvature are identical. A comparison between the
stiffness reduced order model of elliptical contact and an equivalent line contact,
based on an explicit load-distribution relation, is accomplished. Moes load and
lubrication dimensionless parameters describe the contacts along with the
elliptical contact ellipticity. The influence of speed and ellipticity were verified
on the oil film and pressure in a range of load conditions, as well as EHD
stiffness reduced order model parameters. The ellipticity range evaluates the
similarity between both kinds of contact and verifies its equivalence.
The present work analyses the contact reduced order model and its main

parameter influence, the EHD stiffness. As the contact properties, film thickness
and pressure distribution, directly affect the lifetime estimation of rolling ele-
ment bearings, the study can bring useful insights during project stage. More-
over, an improved EHD nominal model can promisingly be applied in fault
identification in rotating systems and other mechanisms.

Keywords: Line contact � Elliptical contact � EHD lubrication
Stiffness reduced order model

1 Introduction

Expansion of industry sectors and development of new systems and products demand a
continuous improvement of their elements characteristics and performance. Compo-
nents like rolling bearings and gears are widely applied in this scenery and they are an
example of a particular type of contact between its parts, the nonconforming contact.
The study of the contact and its properties is indispensable to predict the influence of
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the lubrication in the whole system, for example, some researchers applied the contact
properties studies on the modeling of bearings and cams [1–4].

Therefore, the analysis of lubrication condition is applied to verify the contact
response to load variations, speed rotation, oil parameters and contact geometry. This
analysis observes the pressure profile, oil film thickness and, in the present work, the
variation of the nonlinear force parameters, like the stiffness on contact. Herein, an
equivalent line contact was calculated from the elliptical contact and the main equiv-
alence characteristic is a range of similar Hertzian pressure, allowing to observe the
behavior of the force parameters on contact reduced order model, for these two dif-
ferent types of contact geometry. The evaluation of equivalence between the contacts
allows to apply simulations of a line contact, that is simplified with pressure gradient in
only one direction, to predict the behavior of oil film thickness and pressure profile of
the elliptical contact that demands higher computational cost. For example, studies of
fatigue failure and dynamic models of bearings, gears and other components can
improve their results using the contact model [5]. An equivalent line contact can be
used as first approximation for elliptical contact cases leading to reduce time con-
sumption of simulations, and helping with the convergence.

The present study investigates the influence of the contact geometry in the non-
linear force contact parameters, the best approach for line and elliptical geometries and
the range of best approximation between both contacts models.

2 Methodology

The methodology is divided into three main parts: EHD lubrication contact theory,
equations of equivalent line contact from an elliptical contact, and the nonlinear force
reduced order model on the contact.

2.1 EHD Lubrication Contact Theory

Considering non-conforming contacts, between surfaces with a different radius of
curvature, the EHD lubrication theory refers to the study of extreme conditions of a
very thin lubricant film with high shear rates and high pressure. Thus, for this type of
lubrication regime, the elastic deformation is considered as well as the variation of
density and viscosity with pressure.

The pressure equation (Eq. 1) derived by Reynolds [6], as presented in Venner [7],
is applied for elliptical contact in this work. It is possible to note the fluid film thickness
h x; yð Þ dependency and also the density q and viscosity g. The term um is the mean
relative velocity between the surfaces.
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The viscosity/pressure relation (Eq. 2) was empirically proposed by Roelands [8],
where g0 is the atmospheric viscosity, z is the pressure viscosity index and
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p0 ¼ 1:96 � 108 Pa. For the density/pressure, the Dowson and Higginson [9] relation
(Eq. 3) was applied, where q0 is the density at atmospheric pressure.

g pð Þ ¼ g0 � exp ln g0ð Þþ 9:67ð Þ � �1þ 1þ p
p0

� �z� �� �
ð2Þ

q pð Þ ¼ q0
5:9 � 108 þ 1:34p
5:9 � 108 þ p

ð3Þ

In addition, Venner [7] presents the fluid film thickness (Eq. 4), where E0 is the
reduced modulus of elasticity, Rx and Ry are the reduced radius of curvature and h0 is
the mutual approach of the bodies. Figure 1 represents the film thickness h x; yð Þ, the
bodies approach h0 and the global deformation of both bodies in contact.

h x; yð Þ ¼ h0 þ x2
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þ y2
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þ 2
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ZZ
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p x0; y0ð Þdx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q dx0dy0 ð4Þ

Equation 5 gives the forces, which come from the integral of pressure over the film
area (contact force) to be balanced by the external load applied normally to the contact
area.

w ¼
Z þ1

�1

Z þ1

�1
p x0; y0ð Þdx0dy0 ð5Þ

Fig. 1. Representation of fluid film thickness and deformations (Tsuha et al. [3])
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In order to reduce the number of variables and, consequently, simplify the
numerical solution, the equating was made dimensionless using the Hertzian dry
contact parameters and the viscosity/density at ambient pressure. Equation 6 contains
all dimensionless variables as presented in Venner [7]. The variables a and b are the
minor and major axis of the ellipse, respectively, and E and K are the first and second
elliptic integral.

X ¼ x
a
; Y ¼ y

b
; P ¼ p

ph
; H ¼ h

a2
2R � K � E ; g ¼ g

g0
; q ¼ q

q0
ð6Þ

The final step is to characterize each contact applying the Moes parameters derived
in Moes [10], describing the contact in function of load and lubrication characteristics.
Equation 7 contains the Moes load parameter (M) and lubrication parameter (L).

M ¼ f
E0 � R2

x

g0 � um
E0 � Rx

� ��3
4

; L ¼ a � E0 g0 � um
E0 � Rx

� �1
4

ð7Þ

2.2 Equivalent Line Contact Using an Elliptical Contact

From the description of the elliptical contact proposed in the previous section, and
based on the work of Canzi et al. [11] and Nijenbanning et al. [12], a line contact can be
approached in a condition of equal Hertz’s pressure and when half-width l ¼ be
(Fig. 2) and Rl ¼ Rx. The Reynolds Equation for the line contact is similar to Eq. 1.
However, it can be simplified in y direction, since this direction is reasonably larger
than the x direction. The term ae is a minor half-width Hertzian contact and Rx is the
reduced radius of curvature in x direction for elliptical contact. Therefore, the
dimensionless Moes Parameters (Ll and Ml) are calculated for the line contact [12]
applying the Le and elliptical contact parameters:

Ll ¼ Le ð8Þ

Ml ¼ w
E0 � Rl

E0 � Rl

g0 � um

� �
ð9Þ

w ¼ 3 � Fe

4 � be ; k ¼
ae
be

ð10Þ

where Le is the Lubricant Moes Parameter, w is an equivalent load that uses the load on
contact Fe. All these parameters are from the reference elliptical contact.

Figure 2 contains a scheme of elliptical and line contacts due to the contact of the
bearing/raceway and the sphere or roller element. The contact ellipticity (k) is obtained
from the relation presented in Eq. 10 and allows to characterize each elliptical contact
along with the Moes parameters.
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2.3 Nonlinear Force Contact Reduced Order Model

Nonato and Cavalca [13, 14] developed a reduced order model of contact force that
relates forces (F) and displacements (d) on the elastohydrodynamic elliptic contact.
Equation 11 presents the nonlinear relation proposed: K is the stiffness; d is an
exponent that assumes the value of unity for the line contact and varies for the elliptical
contact, and DF is an offset force. For the elliptical contact, the exponent d assumes
higher values in all lubrication conditions when compared to the line contact, and the
maximum value achieved in Hertzian condition, 1.5. In lubricated line contact, the
exponent d tends to the unity [3], differently from Hertzian contact, where it is
approximated to 10/9.

F ¼ K � dd þDF ð11Þ

In the present study, applying data of M, L and the ellipticity k, the system of
equations for the EHD lubricated contact was solved by a multi-level algorithm. The
results of force and displacement for a static simulation on the contact were utilized in
an optimization based on the Levenberg-Marquardt Method [15] to calculate the
nonlinear parameters K, d and DF, as presented in Bizarre et al. [16, 17]. This process
of solution was applied for both type of contacts. The variation of parameter d ranges
from 1 to 1.5 for elliptical contacts. However, according to Tsuha et al. [3], for line
contacts, the parameter d of Eq. 11 assumes the value of unity.

3 Results and Discussion

Section 2 provides the basis for the numerical results of this study. Table 1 contains the
data of Ellipticity (k), Moes parameter of load (M) and of lubricant (L) for the reference
elliptical contact. These contacts were calculated using a 7006 ball bearing geometry.

Fig. 2. Example of elliptical (a) and linear (b) contact with the respective area of contact and
their dimensions.
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Five velocities were evaluated in order to analyze the behavior of force contact reduced
order model parameters in function of different work conditions, leading to different
lubricant Moes parameter L. Moreover, since ellipticity is an important parameter in
approximation between line and elliptical contacts, according to Nijenbanning et al.
[12] and Canzi et al. [11], k was also evaluated to be studied and it ranges from 0.0863
(original 7006 ball bearing ellipticity) to 0.5. For each ellipticity k, all L (velocities) was
tested with all load range f (M).

Figure 3 presents the process of data simulation: for each value of ellipticity was
fixed a velocity and simulated all loads f, as shown by the arrows in the figure. The
process is repeated for all ellipticity.

Applying Eqs. 7 to 10 and the data present in Table 1, the equivalent line contact
can be calculated. Then, the nonlinear parameters were optimized for both cases, line
and elliptical contacts, and the results are shown in Fig. 4.

As expected, for line contact, the results did not show significant sensitivity with
different values of ellipticity for the elliptical contact. However, for elliptical contact,
the ellipticity presented a great influence on the results of all three parameters (Fig. 4).
The EHD reduced stiffness (K) and force offset (DF) show similar behavior tendency
for both types of contact with respect to relative velocity (Fig. 4(a), (b), (d) and (e)).
With increasing of velocity, both contacts tend to decrease the EHD stiffness and to
increase the DF (Fig. 4(a), (c), (d) and (f)). The difference for elliptical contact is the
exponent d decreasing with velocity increasing and, as expected, d also decreases when
ellipticity decreases, which, in this case, tends to the line contact (Fig. 4(b) and (e)). In
case of stiffness, the elliptical contact shows to be more rigid than the line one, while
for the DF parameter, the equivalent line case resulted in higher values of offset force,
agreeing with the lower values of stiffness (Fig. 4(a), (b), (d) and (e)). The range of
EHD stiffness in line contact is less sensitive in comparison with the elliptical contact.

Fig. 3. Ellipticity data, Moes parameters of lubricant (L) and load (M) for the reference elliptical
contact used to calculate the equivalent line contact.
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Nevertheless, the offset force DF is less affected by velocity in elliptical than in line
contact due to its stiffer character.

In elliptical geometry, the EHD stiffness and the force offset DF increase with the
decreasing of ellipticity k (Fig. 4(a), (b), (d) and (e)). For line contact, the d parameter
is assumed unitary during the optimization (Fig. 4(f)).

Therefore, the nonlinear parameters results presented a coherent behavior with the
variation of velocity and ellipticity (the variation of ellipticity for the elliptical contact,
which gives different equivalent line contacts) for both contacts.

From Fig. 4, two main cases can be highlighted in Table 1, representing the
extreme conditions: low speed and high load (1) and high speed and low load (2).

Figure 5 contains the results of fluid film thickness and contact pressure for these
two conditions described in Table 1, comparing the equivalence applied between line
and elliptical contacts.

(a) (d)

(b) (e)

(f)(c)

Fig. 4. Nonlinear parameters results of K, d and DF for elliptical contact ((a), (b), (c)) and line
contact ((d), (e) and (f)) varying with the velocity (Us) and the ellipticity (k).
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The approximation of line and elliptical contact proved valid at low velocities and
high load with low ellipticity. Figure 5 shows great similarity between pressure and
thickness for k ¼ 0:0863. Through k ¼ 0:5 (case 2), although the curves are still close,
small discrepancies can be observed in the oil film thickness.

The difference between the extreme cases is also noted in the approximation of the
contact area width, while for Case 1 the difference between the terms ak and l is
0.4391%, for Case 2 this difference is 8.1633%, which reflects on pressure and oil film
thickness, as shown in Fig. 5. The same behavior presented in Nijenbanning et al. [12]
was found for pressure and oil film thickness, and using these results, forces and
displacements on contact were analyzed.

Table 1. Ellipticity data and Moes parameters for the two extreme cases.

k [−] L [−] M [−]

Case 1 0.0863 11.759 3949.421
Case 2 0.5 15.476 214.469

(a) (b)

Fig. 5. Fluid film Thickness and Pressure distribution profile for Case 1 (a) and Case 2 (b) for
the elliptical contact and its equivalent line contact.

Table 2. Values of width for elliptical (ae) and line contact (bl) for cases in Table 1.

k ¼ 0:0863 k ¼ 0:5

Line bl = 1.0656E−04 bl = 7.0498E−05
Elliptical ae = 1.0609E−04 ae = 7.6764E−05
Relative percentage error 0.4391% 8.1633%
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The displacements and forces on contact used to optimize the nonlinear parameters
(K; d and DF) are given in Fig. 6, for line and elliptical contact, with an ellipticity of
0.0863, 0.2 and 0.5. The results for line contact did not presented a relevant sensitivity
regarding ellipticity, being located on the same curve, whereas the elliptical contacts
present significant influence of ellipticities.

Another observation from Fig. 6 is the difference of load level between line and
elliptical contact. Although the displacements for both models tested have the same
order of magnitude, the forces are much higher in line contact. This behavior indicates
that, although film thickness and pressure distribution are close in both models (Fig. 5),
the same tendency was not observed for displacements and forces (Fig. 6). The same
force magnitude implies in different and higher displacement for elliptical contact and
this difference increases with the ellipticity. Therefore, under lubrication point of view,
the ellipticity that better approaches the line contact is k ¼ 0:0863. The equivalence of
line and elliptical contacts presents a good agreement for the oil film thickness and the
pressure profile on the contact central line in cases of low ellipticity. This similarity,
however, cannot guarantee that the whole profiles of oil film thickness and pressure
outside this central line are similar for both contact geometries, contributing for dif-
ferences on the contact forces and displacements. The EHD lubrication model and the
Hertz contact model can assume similar results for forces and displacements in high
level of loads, indicating the equivalence of both models can be reasonably assumed in
extreme conditions of load and ellipticity.

4 Conclusions

This work contains a discussion about the equivalence between elliptical and line
contact models based on the hypothesis that both contacts have the same Hertz’s
pressure and the contact area widths can be approximately equal. Taken the ellipticity

=0.0863 =0.2 =0.5

EHD line contact 

Hertz line contact 

EHD elliptical contact 

Hertz elliptical contact 

Fig. 6. Comparison of force versus displacement curves for ellipticities of: 0.0863, 0.2 and 0.5,
simulated for line and elliptical contact. Full line is related to EHD lubrication in um =
11.1832 m/s and dashed line to Hertz contact with k = 0.0863.
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data and Moes parameters (Ball bearing 7006), the EHD lubrication regime is
numerically simulated (Multilevel) and the nonlinear parameters are optimized
(Levenberg-Marquardt).

Comparing the results of nonlinear parameters (K; d and DF) for both contacts
type, it is possible to notice that, for the two types of contact, elastohydrodynamic
reduced stiffness and force offset present the same tendency with the variation of
velocity and that the elliptical contact is stiffer than the line equivalent. The increase of
velocity leads to a decreasing of EHD stiffness and an increasing in DF for both
contacts and decreases index d in elliptical case. Furthermore, the elliptical contact has
influence of the ellipticity and the same does not occur with the line contact. Ellipticity
increasing tends to decrease EHD reduced stiffness and DF and to increase exponent d.

As presented in Nijenbanning et al. [12] and Canzi et al. [11] the oil film thickness
and pressure profile presented a good approximation in cases of high load, low rotation
and low ellipticity, because this configuration tends to a Hertzian line contact. Since the
outline of equivalence between both types of contact geometries is based on Hertzian
contact theory, the elliptic contact area approaches the line contact area due to the load
and speed conditions that tend to a behavior of a dry contact. Thus, although these two
contact properties present a good agreement, the results of nonlinear contact force
parameters show discrepancies, revealing that the behavior of the forces and defor-
mations in the contact are different. Consequently, the equivalence can only be used for
restrict conditions in order to avoid misleading in design parameters (for example,
lifetime).

Therefore, when applied in a project phase, the equivalence between line and
elliptical contact must respect the parameters of comparison that follows the same
tendency, as oil film thickness and pressure distribution. The differences observed for
forces and displacements of the models tested lead to variations that can affect the
surface fatigue process, an important factor in the estimation of bearing lifetime.
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Abstract. The increasing of operation speed and demand for precision in
machinery make lubrication conditions a crucial aspect in order to maximize
lifetime of rotor dynamic components. The elastohydrodynamic (EHD) regime
more frequently occurs in nonconforming lubricated contacts with local elastic
deformation due to high pressure in small contact area. The objective of this
work is to analyze the EHD force reduced model applied to line contact based
on restitutive and dissipative terms. In restitutive force term, an EHD stiffness
approach is evaluated considering an explicit force-displacement relation with
two independent parameters - stiffness and a constant surface separation force.
Steady-state EHD contact numerical results allow estimating the restitutive
parameters. The dissipative force term is composed by linear viscous damping.
The damping is characterized by numerical simulation using the principle of
energy conservation in transient elastohydrodynamic lubricated system. The
influence of load and speed variations in damping fluctuations are investigated.
The EHD reduced force model characterizes the lubricated contact in just

three parameters (oil film stiffness, EHD constant surface separation force and
viscous damping), simplifying the lubrication problem in comparison of solving
EHD system of equations at each work condition and time step. This model can
be applied to any nonconforming EHD line contact as cams, gears, needle
element rolling bearings and cylindrical roller bearings in dynamic analysis and
project stage development. Furthermore, an accurate contact model increases
machine reliability, being promising to be used in model-based fault
identification.

Keywords: EHD stiffness � EHD damping � Line contact
Elastohydrodynamic lubrication � Principle of energy conservation

1 Introduction

In the past, contribution of oil film from elastohydrodynamic (EHD) lubrication was
neglected in studies of dynamics of machine elements and other nonconforming
mechanisms as rolling bearings, gears and cams. However, regarding rolling bearings,
the contact between rolling element and raceway significantly impacts its dynamic
equilibrium and, consequently, the rotor response. Recently, the need for more accurate
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modeling of rotating components has been demanded due to its invaluable contribution
in vibration level and dynamic behavior prediction of the whole mechanical system.

Few studies have been done in order to understand and characterize the dynamic
behavior of EHD lubricated contact for both elliptic and line geometries. Wijnant et al.
[1] studied the influence of EHD elliptic contact on ball bearings and proposed an
implicit dimensionless expression for EHD stiffness and viscous damping. Nonato and
Cavalca [2] suggested an explicit polynomial approximation to dimensionless contact
force for EHD point contacts using a least square method. Afterwards, Nonato and
Cavalca [3] proposed an explicit dimensional load-displacement relation based on a
nonlinear spring and viscous damping, making possible to characterize the deep groove
ball bearing. Bizarre et al. [4] applied the model developed by [3] in angular contact
ball element bearings. Further, Tsuha et al. [5, 6] extended the approach of [3] in order
to propose a stiffness reduced model with an explicit load-displacement relation to
EHD line contacts.

Wiegert et al. [7] proposed a simplified model of EHD line contact combining
hydrodynamic and Hertzian models in order to replicate an EHD oscillatory vibration
response. Qin et al. [8] suggested a load-dependent EHD stiffness calculation and
applied the model to cam-follower contacts. Ankouni et al. [9] proposed a dimen-
sionless linear viscous damper expression calculating hysteresis loop from numerical
simulations of harmonic load excitation based on Moes parameters [10]. Zhang et al.
[11] investigated oil film stiffness and damping under EHD lubrication contact-
vibration. Damping was formulated using the principle of energy conservation and oil
stiffness was estimated in function of applied load.

The objective of this work is to analyze the EHD force reduced model in line
contacts based on restitutive and dissipative terms. In restitutive force term, an EHD
stiffness approach is evaluated considering an explicit force-displacement relation
proposed in [6]. The dissipative force term is composed by linear viscous damping,
characterized by numerical simulation using the principle of energy conservation [11]
in transient EHD lubricated system [12].

2 Transient EHD Lubrication

In infinite line contact, where y-direction is reasonable larger than the x-direction
(Fig. 1), a uniform approach of oil film thickness and pressure gradient distribution in
y-direction can give a good approximation to the problem. In this case, isothermal
Reynolds Equation is simplified in y-direction:

@

@x
qh3

6g
@p
@x

� �
� @ usqhð Þ

@x
� @ qhð Þ

@t
¼ 0 ð1Þ

where h is the full lubricant film thickness, p is the pressure, us is the sum of velocities
between both contact surfaces us ¼ u1 þ u2, q is the fluid film density, g is the oil
absolute viscosity and t is the time reference.
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Pressure magnitude in EHD lubricated contacts is high in comparison with hydro-
dynamic lubrication. In this case, the fluid properties changes with pressure should be
taken into account. In this study, the viscosity-pressure relation given by Roelands [13],
in function of viscosity g0 at atmospheric pressure p0, and density-pressure relation by
Dowson and Higginson [14] are assumed. Moreover, due to high pressure in small
contact area, the elastohydrodynamic regime occurs more frequently in nonconforming
lubricated contacts with local elastic deformation. So, the film thickness equation, taking
into account the elastic deformation term in line contact is [15]:

hðx; tÞ ¼ �dðtÞþ x2

2R
� 4
pE0

Z 1

�1
pðx0; tÞln ðx� x0Þ

x0

����
����dx0 ð2Þ

where d is the approximation between the contact bodies, the second term is related to
contact geometry and the third term is the integral which represents the elastic
deformation. E0 is the reduced modulus of elasticity E0 ¼ 2

1�m21ð Þ=E1 þ 1�m22ð Þ=E2
, R is the

reduced radius of curvature R�1 ¼ R�1
1 þR�1

2 and subscript numbers relate to the
contact bodies.

The main difference between transient and steady-state EHD problem is the
equation of motion given by Eq. (3):

me
€d tð Þþ l

Z þ1

�1
p x; tð Þdx ¼ f tð Þ ð3Þ

where €d tð Þ is the acceleration between contact bodies, me ¼ pR2lqc is the modal mass
of reduced contact, l is the effective length of contact surface, qc is the density of
contact bodies and f tð Þ is the contact force.

When the regime is in steady state, €d tð Þ tends to zero and the equation of motion
reduces to force balance equation. When a harmonic excitation of amplitude A and
excitation frequency xe is applied, f tð Þ ¼ f0 1þA sin xetð Þð Þ [12]. However, in

Fig. 1. Infinite line contact.
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free-vibration problems, f tð Þ ¼ f0 where f0 is the force applied on the contact. To
obtain the complete EHD dynamic response for a line contact, dimensionless param-
eters, based on Hertzian contact, are applied (Table 1). In Table 1, ph is the maximum
dry contact pressure, b is the half width of contact area, X is the dimensionless x
direction, P is the dimensionless pressure, H is the dimensionless film thickness and D
is the dimensionless displacement d. F; T ; q; g and Me are respectively the dimen-
sionless force, time, density, viscosity and modal mass. n and k are dimensionless
parameters of Reynold’s Eq. (4).

The dimensional Reynolds Equation, film thickness equation and contact’s motion
equation are given by Eqs. (1), (2) and (3). Their dimensionless versions, Eqs. (4), (5)
and (6), are respectively.

@

@X
n
@P
@X

� �
� @ qHð Þ

@X
� @ qHð Þ

@T
¼ 0 ð4Þ

H X; Tð Þ ¼ �D Tð Þþ X2

2
� 1
p

Z þ1

�1
P X 0; Tð Þln X � X 0j jdX 0 ð5Þ

Me
€�D Tð Þþ 2

p

Z þ1

�1
P X; Tð ÞdX ¼ F Tð Þ ð6Þ

Regarding the numerical solution of EHD system of equations, two multilevel
techniques were evaluated [16]. Finite-difference discretization of Reynolds Equation is
numerically solved by Multigrid, and Multilevel Multi-Integration (MLMI) is applied
to integrate deformation in film thickness equation. In order to solve the system in time
domain of each contact of rolling element, a Newmark-b integrator is used to obtain the
transient response of contact’s motion equation. Newmark’s scheme has the advantage
of solving directly the second order differential equations without using state-space
representation, so this method was adopted over others ODE solvers.

3 Reduced Contact Force Model

EHD oil film equivalent system must take in consideration a restitutive and a dissi-
pative term to describe the complete dynamic response. On the point of view of contact
dynamics, an equivalent single degree of freedom EHD reduced model can be

Table 1. Dimensionless parameters based on dry contact Hertzian model.

Dimensionless parameters

X ¼ x=b P ¼ p=ph H ¼ hR=b2 D ¼ dR=b2

b ¼
ffiffiffiffiffiffiffi
8f0R
pE0l

q
ph ¼ 2f0

pbl k ¼ 6g0usR
2

b3ph

Me ¼ mu2s
4Rf0

n ¼ qH3

gk
F ¼ f

f0

q ¼ q=q0 g ¼ g=g0 T ¼ tus=2b
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represented by an EHD set of stiffness and viscous damping (see Fig. 2) and Eq. (7) is
the contact’s motion equation when the total contact force f tð Þ is a combination of
inertial fI tð Þ, dissipative fC tð Þ and restitutive fK tð Þ terms. Tangential forces in the
contact due to sliding motion are not considered here.

f tð Þ ¼ fI tð Þþ fC tð Þþ fK tð Þ ð7Þ

Extended from elliptic model by Nonato and Cavalca [3], a restitutive reduced
force model for EHD line contact was previously suggested by Tsuha et al. [6]:

f0 ¼ KEHDd0 þDF ð8Þ

where KEHD is the EHD stiffness, DF is an EHD constant surface separation force and
d0 is the steady state equilibrium position for external static load f0.

EHD restitutive force approximation is evaluated considering an explicit dimen-
sional load-displacement relation with two independent parameters – stiffness KEHD

and an EHD constant surface separation force DF. The restitutive force parameters can
be obtained by curve fitting the mutual approach d0 at equilibrium to different external
load levels. Levenberg-Marquardt method [17] was used to adjust the reduced order
model given in Eq. (8) to the points generated by numerical simulations of EHD
lubricated problem. After KEHD and DF are evaluated, these parameters can be applied
in the transient analysis (Eq. 9).

fK tð Þ ¼ KEHDd tð ÞþDF ð9Þ

The dissipative force term is composed by linear viscous damping (CEHD) equiv-
alence from oil film. Thus, the contact equation of motion for free vibration condition
can be presented as:

Fig. 2. Local representation of mutual approach d, velocity _d and acceleration €d in a generic
EHD contact and an equivalent single degree of freedom EHD model represented by a reduced
stiffness and viscous damping (adapted from [6]).
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me
€d tð Þþ cEHD _d tð ÞþKEHDd tð ÞþDF ¼ f0 ð10Þ

Making the same assumption as Zhang et al. [11], Dd ¼ d� d0ð Þ; D _d ¼
_d� _d0

� �
¼ _d; D€d ¼ €d� €d0

� �
¼ €d, Eq. (10) can be rewritten as:

meD€d tð Þþ cEHDD _d tð ÞþKEHDDd tð Þ ¼ 0 ð11Þ

And energy of for inertial, dissipative and restitutive forces, given by Zhang et al. [11],
are respectively EI , EC, EK :

EI tð Þ ¼
Z Dd tð Þ

Dd 0ð Þ
meD€d dDd ¼

Z t

0
meD€dD _ddt ð12Þ

EC tð Þ ¼
Z Dd tð Þ

Dd 0ð Þ
CEHDD _d dDd ¼

Z t

0
CEHD D _d

� �2
dt ð13Þ

EK tð Þ ¼
Z Dd tð Þ

Dd 0ð Þ
KEHDDd dDd ¼

Z t

0
KEHDDdD _ddt ð14Þ

At a first moment, there is only restitutive energy in free-vibration resulted from initial
displacement input Dd 0ð Þ 6¼ 0ð Þ. As time goes on in damped systems, dissipative
energy is non-null at steady-state. Applying the principle of energy conservation in
transient free-vibration EHD lubricated system:

1
2
KEHD Dd 0ð Þ½ �2¼

Z t!1

0
CEHD D _d

� �2
dt ð15Þ

And viscous damping can be calculated as:

CEHD ¼
1
2KEHD Dd 0ð Þ½ �2R t!1
0 D _d

� �2
dt

ð16Þ

The expression in Eq. (16) for viscous damping is the same presented in Zhang et al. [11].
However, as the EHD reduced stiffness is proposed to be calculated differently, KEHD

being a load-independent parameter, viscous damping also distinguishes from [11].

4 Results and Discussion

To better understand the behavior of both restitutive and dissipative parameters – KEHD,
DF and CEHD, the line contact reduced model was applied to needle element bearing
contacts with external radial load. Table 2 shows the geometric data of the bearing.
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Initially, the system of equations containing equilibrium of forces in each rolling
element and force balance in whole bearing was evaluated for rotational speed of
5000 rpm in dry contact case [18]. Two levels of pure radial load were applied: 30 kN
and 50 kN. The load distribution for inner and outer raceways for each roller element, in
function of azimuth angle, is presented in Fig. 3. The element located at azimuth angle
equal to zero is the most loaded one. Outer race contact forces are higher than inner race
contact forces, because of centrifugal forces of the rolling elements included in the
model. However, these loading differences between inner and outer raceways due to
inertial forces have a minor contribution here regarding the external loads magnitude.

Figure 4 shows free-vibration response of EHD lubricated contact for the most
loaded element with 30 kN of radial force. Displacement d oscillates around the steady-
state equilibrium position d0 while relative displacement Dd, velocity D _d and accel-
eration D€d oscillate around zero and finally reaches zero in steady-state. Minimum film
thickness hm also oscillates while the equivalent system did not already reach the
steady-state. Similar behavior of displacement, velocity, acceleration and film thickness
can be observed in a lower load contact (Fig. 5). However, comparing the dynamic
response between both elements, the damping effect is clearly more evident in the
lower load roller. In both cases, the initial condition for displacement disturbance in
free-vibration contact is 20% of the static equilibrium position.

Table 2. NA4908 needle rolling element bearing geometric data.

Pitch diameter [m] 0.053

Rolling element diameter [m] 0.005
Clearance [m] 0.00
Effective contact length [m] 0.122
Number of elements 22

(a) (b)

Fig. 3. (a) Element load at inner and outer raceways in function of azimuth angle for radial load
of 30 kN and 50 kN and rotational speed of 5000 rpm. (b) Scheme of force distribution in rolling
element bearing.

Stiffness and Damping Reduced Model in EHD Line Contacts 49



Fig. 4. Relative displacement Dd, velocity D _d acceleration D€d, central and minimum film
thickness, hc and hm, for the EHD contact between roller and inner raceway located at azimuth
degree 0°. Radial force of 30 kN and rotational speed of 5000 rpm.

Fig. 5. Relative displacement Dd, velocity D _d acceleration D€d, central and minimum film
thickness, hc and hm, for the EHD contact between roller and inner raceway located at azimuth
degree 65.45°. Radial force of 30 kN and rotational speed of 5000 rpm.
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All loaded elements from dynamic analysis of needle rolling bearing were sub-
jected to EHD transient lubrication simulation. However, for lightly loaded elements, d
can be predicted negative, which indicates that the lubrication characteristic contact is
more hydrodynamic than elastohydrodynamic, according to Nonato and Cavalca [3].
The contacts whose displacement d are positive can be seen in Fig. 6 for radial load of
30 kN and 50 kN. Curve fitting was accomplished using Levenberg-Marquardt method
[17]. The EHD stiffness obtained for inner raceway was 1:7346 109 N/m and the EHD
constant surface separation force DF was 541:80 N, while reduced stiffness and DF of
outer raceway were KEHD ¼ 1:7326 109 N/m and DF ¼ 586:98N. As the geometry and
radius of curvature are different between both raceways, the contact parameters must be
too. Inner raceway has a smaller radius of curvature, namely, a smaller contact area,
which means a stiffer contact. The larger radius of curvature of outer raceway allows
more oil film and, consequently, higher EHD constant surface separation force (DF).

Unlike EHD stiffness, damping shows a load-dependent behavior. Along increasing
of load, the model shows a tendency of decreasing viscous damping, Fig. 7, as
expected based on EHD transient responses in Figs. 4 and 5. Further, the damping
behavior in each raceway seems to have similar tendency regardless of externally
applied load. It is noticed the geometric influence of contact in EHD damping. Since
inner raceway has a smaller radius of curvature, film thickness decreases and reduces
viscous damping.

Fig. 6. Restitutive reduced force model for the contacts between roller and inner raceway at
5000 rpm. Blue circles are the points of each rolling element under EHD lubrication in the
condition of radial load of 30 kN and red squares are related to radial load of 50 kN.
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In order to analyze the influence of rotation speed on the contact force, the pre-
viously studied needle rolling bearing under load of 50 kN was analyzed at 6000 rpm.
Increasing of velocity causes an increment in film thickness. As consequence, the
contact stiffness reduces in both raceways (Table 3).

Fig. 7. Viscous damping of EHD contact of a rolling bearing at 5000 rpm and two different load
level conditions: 30 kN and 50 kN.

Table 3. Restitutive EHD parameters of contacts at inner and outer raceways in condition of a
radial load of 50 kN and 5000 rpm and 6000 rpm.

Inner raceway KEHD [N/m] 5000 rpm 1:7346 109

6000 rpm 1:7320 109

DF [N] 5000 rpm 541:80
6000 rpm 612:33

Outer raceway KEHD [N/m] 5000 rpm 1:7326 109

6000 rpm 1:7298 109

DF [N] 5000 rpm 586:98
6000 rpm 662:87
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On the other hand, there is an increasing of surface separation component DF that
can be observed in curve fitting of restitutive force in Fig. 8. This increasing of rotation
speed, however, reduces damping (see Fig. 9). Similar behavior of viscous damping in
EHD line contact was predicted by Ankouni et al. [9] and Zhang et al. [11]. In
hydrodynamic lubrication, an increment in speed stiffs fluid film and, as consequence,
reduces viscous damping, being a similar physical phenomena observed here.

Fig. 8. Restitutive reduced force model for the contacts between roller and inner raceway with
pure radial load of 50 kN. Red squares are the points of each rolling element under EHD
lubrication in work condition of 5000 rpm and purple diamonds are related to rotational speed of
6000 rpm.
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5 Conclusions

The aim of this study is the analysis of EHD contact reduced model in function of a set
of stiffness and viscous damping parameters, that can be calculated from an equivalent
contact under EHD transient lubrication. In order to fulfill the objective, the reduced
force model is applied to a real needle rolling element bearing in different work
conditions.

The EHD reduced stiffness and the constant surface separation force DF are
independents of external load. Though, viscous damping presented is inversely pro-
portional to load in the cases studied here. Regardless geometry, inner raceway contacts
present higher KEHD, lower DF and lower CEHD than outer raceway. Moreover, an
increasing in velocity leads to decreasing of contact stiffness and increment in DF, as
expected based on results of [6]. The viscous damping, on the other way, decreases
with gain in velocity, agreeing with theoretical studies of [9, 11].

Thus, this model can be promisingly applied to nonconforming EHD line contacts.
Once the force parameters of the contact are obtained, a more realistic response of
bearing dynamics can be evaluated and, consequently, a better lifetime estimation.
Furthermore, a more accurate contact model increases machine reliability and also can
be used in control technique and model-based fault identification.

Fig. 9. Comparison between viscous damping of EHD contact of rolling bearing at 5000 rpm
and 6000 rpm under 50 kN.
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Abstract. By placing an elastic ring inside the oil chamber, elastic ring squeeze
film damper (ERSFD) has better performance than classic squeeze film damper
(SFD) in suppressing nonlinear characteristic and good application potential in
aircraft engines and gas turbines. However, it is not easy to combine the
deformation analysis on the elastic ring with the oil film analysis based on
Reynolds equations and dynamic analysis of the ERSFD-supported rotor
accurately. In this paper, based on the Kirchhoff assumption, the finite element
method (FEM) is employed to investigate the deformation of elastic ring. First,
the oil film pressure and force are analyzed by solving the Reynolds equations.
Then the deformation of elastic ring, oil film force and rotor motion are deter-
mined simultaneously to analyze the oil film coefficients of ERSFD and the
response of rotor system. Using the proposed procedure of calculation, dynamic
characteristic of the ERSFD is investigated and we found that the ERSFD is
better than the SFD in preventing bi-stable vibration of rotor by lightening the
nonlinearity level of the oil film. Then influences of the ERSFD parameters,
number of elastic ring boss, ring thickness and oil film thickness respectively, on
the oil film characteristics are discussed. The study reveals that three effects of
elastic ring make better dynamical performance of ERSFD than SFD.

Keywords: Elastic ring squeeze film damper � Rotor system
Dynamical characteristic

1 Introduction

Squeeze film dampers (SFD) are widely used in aero-engines to control the stability
and vibration of rotor systems [1]. However, the SFD has high nonlinear charac-
teristic, which brings bi-stable and non-synchronous responses with large amplitude
for the rotors [2]. The large-amplitude response can result in rotor/state rubs and
fatigue [3]. In ref [4], nonlinear responses such as jump phenomenon, sub-harmonic
and quasi-periodic vibrations are predicted for a range of bearing and mass unbalance
parameters by Zhao [5]. Bonello [6] believes that the SFD-rotor system is prone to a
periodic motion with sub-synchronous frequency components under highly eccentric
around the first critical speed. Bi-stable response of a flexible rotor supported on SFD
with centralizing springs are studied in [7] by synchronous circular centered-orbit
motion solution, numerical integration method and slow acceleration method
respectively. Influences of bearing parameters and mass ratio on bifurcation of
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response of a flexible SFD-rotor are investigated by Inayat-Hussain [8]. Bifurcation
of an unsymmetrical SFD-rotor system is analyzed in [9] by using singularity
methods, to provide suggestions to avoid harmful phenomenon. The dynamical
characteristics of SFD and dual clearance squeeze film damper (DCSFD) are
experimentally investigated in ref. [10–12]

Placing an elastic ring inside the oil chamber results elastic ring SFD or ERSFD, as
shown in Fig. 1(a). ERSFD not only retains the advantages of SFD, but also has better
performance in suppressing nonlinear characteristic. Generally, a number of bosses are
designed uniformly locating on the inside and outside surfaces of the elastic ring, which
contact with the outer race of ball bearing and the housing, respectively. Lubricating oil
film inside the chamber between the ring and outer race of bearing is defined as the
inner oil film, and that between the ring and housing is defined as the outer oil film. The
inner and outer oil chambers are connected with each other through the oil hole on
elastic ring. The ERSFD, used in fanjet successfully, integrates the functions of
damping and frequency modulation as revealed in ref. [13] by analyzing Reynolds
equations of the inner/outer oil films. Hong [14] finds that ERSFD can automatically
adjust the oil film thickness by taking advantage of the transverse deformation of the
elastic ring, which reduces nonlinear characteristics of oil film markedly. In ref. [15],
dynamical response of an ERSFD-rotor under influences of axial force, oil supply,
structural parameters and unbalance are experimentally investigated. Based on Hirs
bulk flow theory and Moody friction factor equation, Kang analyzes oil characteristics
of ERSFD by considering the shearing effect of the outer squeeze film [16]. Zhang [17]
analyzes the oil film characteristics and the bearing capacity with different pedestal
contact status during a whirl period.

Deformation of the elastic ring plays an important role in determining the dynamic
characteristic of the ERSFD. Finite element softwares, such as ANSYS, are often used
to analyze the elastic ring deformation, in which the elastic ring can be modeled by
solid elements [14, 15, 17]. But the computation is time-consuming, especially for a
large amount of elements. To simplify the deformation estimation, the elastic ring can
also be supposed to be composed of several thin plates or beams with simply supports
[18]. Though computation is easier, accuracy of the deformation calculation is not high
enough because the boundary conditions adopted are rather rough. In addition, the
deformation analyses by the both computation procedure are not easy being combined
with the hydrodynamic lubrication analysis of the ERSFD oil film, based on Reynolds
equations, and dynamic analysis of the ERSFD-rotor.

In this paper, based on the Kirchhoff assumption of FEM, the flat shell element is
employed to establish the model of the elastic ring to investigate the deformation of
elastic ring. The coupled Reynolds equations of inner and outer oil film are established
respectively to calculate oil coefficients and pressure. Eccentricity and offset angle are
investigated by rotor equations. Then the equivalent restoring force of ERSFD is
estimated by Reynolds equations. Runge-Kutta and finite difference method (FDM) are
used to solve the above equations, sixteen oil film dynamic coefficients of ERSFD and
the response of rotor system.
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2 Basic Principle and Method

2.1 Elastic Ring Model

Because the size of thickness is much smaller than that of length and width, elastic ring
can be taken as a thin shell structure. According to the theory of plate and shell [19],
four-node rectangular flat shell elements, composed of plane stress elements and
Kirchhoff plane bending elements, can be used to analyze the deformation of elastic
ring fast and accurately in case the grids are dense enough. The parameters of elastic
are listed in Table 1.

Based on the two type elements mentioned above, stiffness matrix of a flat shell
element is expressed as

(a)ERSFD (b) ERSFD-rotor

Elastic Ring

Mouse 

Rotor

Bearing 

Housing 

Housing 

Boss

Outer Race of 
Bearing 

Inner Oil Film

Outer Oil Film

Fig. 1. Schematic model

Table 1. Parameters of the ERSFD

Parameters Value

Elastic ring width (mm) 10
Elastic ring poisson ration 0.3
Oil density (kg/m3) 785
Elasticity modulus of elastic ring (Mpa) 1.96
Fluid viscosity (cp) 18.82
Length of damper (mm) 10
Inner radius of damper (mm) 32.5
Elastic ring boss width (mm) 4
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Kij ¼

KðpÞ
ij 0 0 0 0

0 0 0 0
0 0 0
0 0 KðbÞ

ij 0
0 0 0
0 0 0 0 0 0

2
6666664

3
7777775

ð1Þ

where KðpÞ
ij and KðbÞ

ij are stiffness coefficients of the plane stress element and Kirchhoff
plane bending element respectively. Displacements of nodes in local coordinates are
determined by Eq. (2). Because the rotation of z axis doesn’t exist in the assumption of
Kirchhoff, the relevant position is set to be 0.

ai ¼ ½ui; vi;wi; hxi; hyi; 0�T ð2Þ

where ui, vi and wi are displacements along x, y and z directions, respectively. hxi and
hyi are rotating angles around x and y axes. According to the Fig. 2, displacements in
local coordinate can be transformed to the integral coordinate as

a0i ¼ ½u0i; v0i;w0
i; h

0
xi; h

0
yi; 0�T ð3Þ

The transformation relations between the local and integral coordinates are

a0i ¼ H ai; ai ¼ HTa0i ð4Þ

where the H is transfer matrix given in [19].
Dividing the elastic ring into 48 elements circumferentially and 9 elements axially,

the model of elastic ring consists of 432 flat shell elements. The boundary condition of
model is that the tangential, radial and axial displacements of all bosses are restrained.

(a) Element in Integral System                 (b) Element in Local System

Fig. 2. Flat shell elements
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2.2 Oil Film Pressure

Based on the short p-film assumption, transient Reynolds equations of the inner and
outer oil films of the ERSFD are given by [13]

1
R2

@

@h
h31

@p1
@h

� �
þ @

@x
h31

@p1
@x

� �
¼ �12lX

@h1
@h

� @r
@h

� �
þ 12l

@h1
@t

þ qh2
@2h
@t2

ð5Þ

and

1
R2

@

@h
h32

@p2
@h

� �
þ @

@x
h32

@p2
@x

� �
¼ 12g

@r
@t

ð6Þ

respectively. l is the fluid viscosity,q the lubricating oil density, R the radius and X the
whirling velocity. As shown in Figs. 2(a) and 3(a), h and x are the circumferential and
the axial coordinates. p1 and p2 represent the inner and outer oil film pressures to be
solved. h1 and h2 are the inner and outer oil film thicknesses, while c1 and c2 are initial
inner and outer oil chamber clearances, as shown in Fig. 7(b).

h1 ¼ c1 þ r hð Þþ ecosh
@h1
@h ¼ @r

@h � esinh
@h1
@t ¼ _rþ _ecosh

8<
: and

h2 ¼ c2 � r hð Þ
@h2
@h ¼ � @r

@h
@h2
@t ¼ �_r

8<
: ð7Þ

where r and e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p
are deformation of the elastic ring and whirling eccentricity

of the journal respectively. _r and _e are the first derivatives of r and e. e = e/c1 is defined
as the eccentricity ratio.

To obtain the inner and outer oil film pressures, the finite difference method is used
to solve the Reynolds equations [17].

(a) Inner oil film                 (b) Inner and outer oil film

Fig. 3. Movements of ERSFD
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2.3 Oil Film Force

Integrating the oil film pressure from h1 to h2, the lower and upper boundary angles of
the squeezing oil film, results oil film forces in radial and circumferential directions as

Fr

Fh

� �
¼ �

Z h2

h1

Z L
2

�L
2

P dx

 !
�cosh
sinh

� �
Rdh ð8Þ

which can be transformed to x and y directions

Fz

Fy

� �
¼ Fr � cosu� Fh � sinu

Fr � sinuþFh � cosu ð9Þ

where h is the circumferential coordinate and u is the offset angle of the journal, as
shown in Fig. 3(a).

2.4 Equation of Motion

Supposing the elastic ring always contacts with the housing and outer race of bearing
during the whole period of operation, as shown in Fig. 3(b). The dynamical equations
of motion of a ERSFD supported rigid Jeffcott rotor, shown in Fig. 4, are deduced as

m€zþ kþ keð Þzþ c_z ¼ mx2eu cos xtð ÞþFz

m€yþ kþ keð Þyþ c _y ¼ mx2eu sin xtð ÞþFy � G

�
ð10Þ

where k is stiffness of the mouse cage of bearing (see Fig. 1(b)), ke equivalent stiffness
of the elastic ring, c damping of the system, and m half mass of the disk with unbalance
distance eu, respectively. The fourth-order Runge-Kutta method is used to solve
Eq. (10). Speed ratio is defined by

k ¼ x
pn

ð11Þ
where pn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ keÞ=m
p

is natural frequency of the shaft/disk system.

Fig. 4. Model of a rigid rotor supported on two ERSFDs
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2.5 Solution Procedure

The solution procedure is shown in Fig. 5. First, dynamic responses are obtained by
solving Eq. (10) and the oil film thickness is calculated under the obtained whirling
eccentricity condition, as well the deformation of elastic ring. Then the oil film pressure
and force are calculated by finite difference method (FDM) for oil film thickness
distribution and deformation of elastic ring is determined by FEM under the obtained
inner and outer oil film pressures. Then the inner oil film force is adopted to calculate
the new dynamic response. The simulation procedure will be carried out until steady-
state response is obtained.

3 Pressure and Thickness of the Inner Oil Film

For comparison, the inner pressure and oil film thickness of both the ERSFD and SFD
with oil film thickness cs= 0.2 mm are presented in Fig. 6. One finds that the peak
pressure value of ERSFD is less than that of SFD, and the pressure distribution of SFD
is circumferentially asymmetrical due to the journal whirl. Figure 6(c) presents the
influence of deformation/elasticity of the ring on the inner oil film pressure. The

Next Step

Yes

Yes

No

Convergence Condition

Initial Conditions

Analysis of Motion 

Calculating the Film Thickness

Oil Film Pressure

Oil Film Force

Response of Rotor System, Oil 
Film force coefficients

No

Deformation of 
Elastic Ring

Yes

Steady State

Fig. 5. Procedure of calculation
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red/black lines represent the film thickness of the rigid/elastic ring. The corresponding
inner pressures of the ERSFD are Pr and Pe. One finds that the oil film thickness
increases with the deformation of the elastic ring at the squeezing area. Correspond-
ingly, the oil film pressures are reduced. Contrasting Pr and Pe, the asymmetrical
distribution of pressure is lessened by the elastic ring deformation.

4 Dynamical Coefficients

The oil film damping and inertia force coefficients are defined by Center Circular Orbit
(CCO) method [20, 21]. Noted that there is no direct interaction between the journal
and the outer oil film, thus the outer oil film dynamic coefficients are quite small. When
the static eccentricity ratio e < 0.51 and the amplitude of vibration Dmax/c1 < 0.51, oil
film stiffness has been ignored. Thus the equations of motion of ERSFD are

Mzz Myz

Mzy Myy

� �
€z
€y

� �
þ Czz Cyz

Czy Cyy

� �
_z
_y

� �
¼ Fz

Fy

� �
ð12Þ

The direct flourier transform (DFT) is applied as

Fig. 6. Inner pressure and oil film thickness
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z
y

� �
¼ �z

�y

� �
eixt;

Fz

Fy

� �
¼ �Fz

Fy

� �
eixt ð13Þ

After some algebraic operation, following equations are obtained

�x2Mzz þxCzy þ i x2Mzy þxCzz
� 	 ¼ Fz

�z

�x2Myy þxCyz þ i xCyy � x2Myz
� 	 ¼ Fy

y

ð14Þ

The cross coefficients are negligible as detailed in ref [22], the direct oil film coeffi-
cients are obtained

Mzz ¼ � 1
x2 Re

Fz
�z


 �
Czz ¼ 1

x Im
Fz
�z


 �
Myy ¼ � 1

x2 Re
Fy

y


 �
Cyy ¼ 1

x Im
Fy

y


 � ð15Þ

4.1 Basic Oil Film Characteristics

The original clearances of the inner and outer chambers of ERSFD are chosen as
c1 = 0.4 mm and c2 = 0.15 mm, and the boss number is 4.

From Fig. 7, we find that the nonlinear degree of the coefficients of SFD is higher
than that of ERSFD as the eccentricity increases further. The results mean that the
nonlinearity can be suppressed by using of the elastic ring inside SFD. For example, oil
film damping and inertia of SFD are almost twice larger than that of ERSFD when
e ¼ 0:38.

(a) Damping coefficients                 (b) Inertia coefficients 
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Fig. 7. Oil film characteristics of ERSFD and SFD
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4.2 Influences of Structure Parameters on Oil Film Dynamic Coefficients

Influences of the boss amount, film thickness and ring thickness on oil film inertia and
damping coefficients of ERSFD are analyzed in this section. From Fig. 8, one finds that
oil film coefficients of ERSFD, with elastic ring thickness 0.95 mm and boss amount 4,
6 and 8 respectively, increase nonlinearly with the eccentricity ratio. Besides, increase
of the elastic ring boss amount can also reduce the level of nonlinearity of ERSFD. The
reason is that the un-symmetrical distribution of pressure is decreased by the divided oil
chamber/film and deformation of the elastic ring.

Oil film dynamic coefficients of ERSFD with different oil film thickness and dif-
ferent elastic ring thickness are showed in Figs. 9 and 10 respectively. We find that
both the increase of oil film thickness and decrease of elastic ring thickness can result in
increase of the ability to restrain the nonlinear characteristics for ERSFD.

(a)Damping coefficients of z axis            (b) Damping coefficients of y axis  

      (c) Inertia coefficients 

0.1 0.15 0.2 0.25 0.3 0.35 0.4
ε

0

1000

2000

3000

4000

5000
4Boss Czz
6Boss Czz
8Boss Czz

0.1 0.15 0.2 0.25 0.3 0.35 0.4
ε

0

1000

2000

3000

4000

5000
4Boss Cyy
6Boss Cyy
8Boss Cyy

0.1 0.15 0.2 0.25 0.3 0.35 0.4
ε

0

2

4

6

8
4Boss Mzz
4Boss Myy
6Boss Mzz
6Boss Myy
8Boss Mzz
8Boss Myy

C
 (N

∙s/
m

)

C
 (N

∙s/
m

)

Fig. 8. Influence of boss number on dynamic characteristics of the ERSFD with 0.95 mm elastic
ring thickness
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(a)Damping coefficients of z axis            (b) Damping coefficients of y axis
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  (c) Inertia coefficients 
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Fig. 9. Influence of oil film thickness on dynamic characteristics of the ERSFD with 8-boss
elastic ring

(a) Damping coefficients in z axis            (b)  Damping coefficients in y axis
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Fig. 10. Influence of elastic ring thickness on dynamic characteristics of the ERSFD with 8-boss
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5 Dynamical Response of ERSFD-Rotor System

Select the system parameter values to be

k ¼ 8� 106N/m; c ¼ 80N �m/s; l ¼ 18:82cp;m ¼ 10kg;

eu ¼ 1� 10�6m; c1 ¼ cs ¼ 0:4mm; c2 ¼ 0:15 mm

The displacement of the disk from its static equilibrium position is determined by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þðy� mg

kþ ke
Þ2

r
ð16Þ

Denoting the maximum of D by Dmax, which is also known as amplitude of
vibration of rotor, the amplitude-frequency responses of the rotor systems with different
dampers, operating through the critical speeds, are numerical simulated and presented
in Fig. 11. In the small picture, the resonant amplitudes of the three systems are also
illustrated near the speed ratio k = 1. One finds that both the ERSFD and SFD can
suppress vibration of rotor.

5.1 Influences of ERSFD Parameters on the System Dynamics

Dynamic response of the ERSFD-rotor systems with 8 bosses, 0.5 mm elastic ring
thickness and oil film thickness 0.3, 0.4 and 0.6 mm respectively, are shown in the
Fig. 12(a). It can be found that Dmax decreases with the decrease of oil film thickness,
while the critical speed is hardly affected by the change of oil film thickness. By
contrasting Figs. 9 and 12(a), influence of oil film thickness on reducing vibration and
nonlinearity is different, thus oil film thickness should be chosen according to the actual
demand of the vibration reduction and nonlinearity suppression.

Response of ERSFD-rotor systems with 4 bosses, c1 = 0.4 mm and c2 = 0.15 mm
and different values of elastic ring thickness, 0.5 mm, 0.7 mm and 0.95 mm respec-
tively, are presented in Fig. 12(b). We can find that Dmax of the system with elastic
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Fig. 11. Dynamical responses of the SFD-rotor systems, with/without damper and with ERSFD
(with 4 boss and elastic ring thickness 0.5 mm)
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ring thickness 0.5 mm and 0.7 mms are almost same but smaller than the case the
elastic ring thickness is 0.95 mm.

Figure 12(c) is amplitude-frequency curves of the ERSFD-rotor system with elastic
ring thickness 0.5 mm and 4, 6 and 8 bosses respectively. One finds that Dmax
increases with the increase of amount of elastic ring boss. Moreover, the increase of
support inertia with the increase of boss amount results in the increase of critical speed.
By comparing with Fig. 8, increase of boss number will increase the ability of the
ERSFD to suppress the nonlinearity of oil film but decrease the ability to reduce
vibration. Thus the boss amount should be chosen according to the actual demand of
the vibration reduction and the nonlinearity suppression.

Noted that the difference of vibration amplitudes of different system are mainly
influence by their oil film rather than different elastic ring stiffness which can change
system damping ratio.
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Fig. 12. Dynamical responses of ERSFD-rotor system, (a) inner oil film thickness is 0.3, 0.4 and
0.6 mm (8 bosses and 0.5 mm thickness of elastic ring); (b) elastic ring thickness is 0.5 mm,
0.7 mm and 0.95 mm (4 bosses, c1 = 0.4 mm and c2 = 0.15 mm); (c) elastic ring with 4, 6 and 8
bosses (0.5 mm thickness, c1 = 0.4 mm and c2 = 0.15 mm).
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5.2 Bi-stable Response

Amplitude-frequency responses of ERSFD-rotor with 4 boss and 0.5 mm elastic ring
thickness and SFD-rotor with the centering spring are shown in Fig. 13. There is
obvious jump phenomenon for the SFD-system as the frequency swipes up and down
across the resonant frequency of the system. The jump is a typical vibration behavior
for nonlinear systems and can bring harmful impacts to the system. Whereas such a
nonlinear phenomenon doesn’t appear in ERSFD-system. That is the elastic ring can
light nonlinearity of SFD. We also find that the resonant curve of SFD system behaves
softening stiffness characteristic.

6 Conclusion

In this paper, the flat shell element based on the Kirchhoff assumption is adopted to
establish the elastic ring model. The deformation of the elastic ring, oil film force and
rotor motion were determined simultaneously to analyze the oil film coefficients of the
ERSFD and response of the rotors. Results are summarized in follows.

(1) ERSFD performance better in preventing bi-stable or jump vibration of rotor by
decreasing the nonlinear effects of the oil film.

(2) Elastic ring brings three effects to ERSFD. First, deformation of the elastic ring
adjusts oil film thickness. Second, the bosses of the elastic ring divide the oil
chamber into several sections. As a result, unbalanced distribution of oil film
thickness is lightened and the nonlinear degree of the oil film is decreased. Third,
the elastic ring can modulate the natural frequency of the rotor system by
changing the support stiffness.

(3) Increase of boss number and oil film thickness inside ERSFD can suppress the
nonlinearity of oil film but not vibration of rotor. So the structural parameters of
an ERSFD-rotor system should be carefully selected to acquire a good vibration

(a)SFD-Rotor (cs=0.2mm)              (b) ERSFD-Rotor (c1=0.2mm, c2=0.15mm) 

Fig. 13. Bi-stable resonance of the SFD-rotor is suppressed by ERSFD (k ¼ 1� 106 N/m,
c ¼ 20N �m/s, l ¼ 1cp, m = 3 kg, eu ¼ 2:7� 10�6m)
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reduction performance. However, thin elastic ring thickness is always good for
reducing vibration and suppressing oil film nonlinearity.

Funding. This research is supported by the National Natural Science of China under Grant
No. 51575378.
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Abstract. Unbalance vibration directly affects the operational precision, sta-
bility and life of rotary machinery. Profiting from the active control speciality of
active magnetic bearing (AMB), unbalance vibration of rotor system with
AMBs can be compensated and controlled automatically. This paper considers
unbalance vibration minimum for rotor system with AMBs. Deep learning
theory is utilized to design a compensation controller, which is added to the PID
feedback control. The structure of the compensation controller is established by
a deep neural network with 2 hidden layers, and its operation algorithms are
designed. Model of a 4-DOF rigid rotor with AMBs is established for controller
parameter setting and simulation. The unbalance vibration control of different
controllers at fixed rotational speed is simulated, and the control effects of the
proposed controller are demonstrated via unbalance vibration analysis and
control current analysis. This research provides a new adaptive control approach
for AMB control of unbalance minimum compensation, and it can also be
applied in other multi-dimension vibration control.

Keywords: Active magnetic bearing � Unbalance vibration
Compensation controller design � Deep neural network

1 Introduction

The unwanted vibration caused by mass unbalance and asymmetry, is inevitable in real
system. Unbalance vibration, which directly affects the operational precision, stability
and life of the system, is a common problem in rotor machinery. Active magnetic
bearings (AMBs) have got increasing applications in rotor machinery because of their
several advantages over conventional mechanical bearings such as no-lubrication and
no-wear [1]. Moreover, AMBs have the possibility to change the mechanical properties
of rotor system by active control, meaning that the unbalance vibration can be mini-
mized specifically by real-time compensation control of AMBs.

As automatic balancing control [2], unbalance vibration control is one main kind of
unbalance control of AMB. The control target is to minimize the radial displacement of
rotor caused by unbalance vibration. However, it is not easy to provide suitable control
current for unbalance vibration from the complex rotor dynamics as well as the non-
linear electromagnetic characteristics. Various control methods have been applied in
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this area. Lei et al. did a lot work on AMBs of a high temperature gas-cooled reactor.
They proposed an adaptive unbalance vibration control method based on notch filters to
achieve the “displacement nulling” control or “current nulling” control [3]. They also
designed a frequency-domain iterative learning control (ILC) algorithm and reduced
the vibration significantly [4]. Tung et al. added a model-based unbalance compensator
using fuzzy gain tuning mechanism to PID controller and testified its effect in accuracy
via simulation and experiment [5]. Kuseyri designed an H∞ controller based on system
model with uncertainties to deal with the unbalance and to keep the robust stability of
the whole system [6]. Fang et al. proposed a feedforward controller, with a general
notch filter for unbalance vibration identification and a gain phase modifier (GPM) for
precise control current, to realize the minimum vibration force and torque with smaller
vibration displacement [7]. Okubo et al. studied the unbalance vibration control for
five-axes active magnetic bearing systems and successfully applied the method of
automatic balancing system (ABS) and peak-of-gain control (PGC) [8]. Heindel et al.
derived a model-free controller of Jeffcott rotor with AMBs for unbalance and reso-
nance elimination [9]. Qiao and Hu proposed an optimal influence coefficient control
method using unbalanced vibration of all nodes on the rotor as the control objective
function for multinode unbalanced vibration of flexible rotor [10]. Saito and wakui
designed an unbalance vibration compensator using a tracking filter for the axial
direction of AMBs [11]. Cui et al. proposed a method based on phase-shift notch filter
to control unbalance vibration within the whole frequency range. The phase shift in the
band-pass filter can be adaptive adjusted with respect to rotor speed [12]. Jiang et al.
proposed an unbalance compensation method by recursive seeking the real-time
position of unbalance mass. Their method has good effectiveness with low computa-
tional cost [13].

Neural network is also an attractive approach for compensation control because of
its excellent fitting capability. Paul et al. used a MLP-network to compensate remaining
unbalances at magnetic bearings [14]. With the development of processor performance,
deep learning method and deep network, which dominate image identification [15],
have been employed for identification and compensation of mechanical system [16].

In a word, feature extraction of unbalance vibration from the complex and coupled
rotor dynamic signals is a key for unbalance vibration control. Thus, the identification
ability of algorithm directly affect the control precision. In this study, an unbalance
vibration compensation control method based on deep learning theory is proposed for
AMB-rotor system to enhance operational precision. The model of a 4-DOF AMB-
rotor system is established containing a rigid rotor model and a nonlinear AMB model.
PID feedback controller is adopted to guarantee the stability of the close-loop system.
An adaptive unbalance compensator is designed using a dual-layer neural network
based on deep learning theory. The rotor dynamics at a fixed frequency are simulated.
Vibration and control current of different controllers are analyzed to indicate the effect
of the proposed method.
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2 Model of Rotor with AMBs

The schematic of a horizontal rotor system suspended by 2 AMBs is shown in Fig. 1.
Oc is the center of rotor with the coordinates xc= [xc, xh, yc, yh]

T. x = [xa, xb, ya, yb]
T is

rotor displacement at AMB position detected by sensors. The rotor is assumed to be
rigid and symmetrical, and both static unbalance and dynamic unbalance are consid-
ered. So the dynamic model of this 4-DOF AMB-rotor system is

m€xc ¼ Fxa þFxb þ ermx
2 cosðxtÞ

m€yc ¼ Fya þFyb þ ermx
2 sinðxtÞ � mg

I€xh þ Izx _yh ¼ �laFya þ lbFyb þ eeIx
2 sinðxtÞ

I€yh � Izx _xh ¼ laFxa � lbFxb þ eeIx
2 cosðxtÞ

8>>>><
>>>>:

ð1Þ

x ¼
1 0 0 la
1 0 0 �lb
0 �la 1 0
0 lb 1 0

2
664

3
775 � xc ð2Þ

where m is the mass of rotor, I and Iz are rotary inertia of axis x/y and axis z
respectively, x is the angular speed of rotation around axis z, la/lb is the distance
between AMB a/b and rotor center, er/ee is radial/axial eccentric error, and
FAMB= [Fxa,Fxb,Fya,Fyb]

T is active control force of AMBs.

Commonly the AMBs are differential drived, so the magnetic force on each DOF is
described as [1]:

FAMB ¼ k cos a
i0 � ic
s0 � x

� �2

� i0 þ ic
s0 þ x

� �2
" #

ð3Þ

Fig. 1. Schematic of a rotor system with AMBs.
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where k is the electromagnetic coefficient, a is the angle of pole, i0 is the bias current, ic
is the control current, x is the rotor displacement at AMB position, and s0 is the rated air
gap.

To set parameters of linear controller like PID and robust control, Eq. (3) can be
linearized as

FAMB ¼ k cos a
4i20
s30

x� 4i0
s20

ic

� �
¼ ksx� kiic ð4Þ

The model of power amplifier and sensor are simplified and regarded as one-order
inertial link with pure hysteresis respectively.

3 Design of Compensation Controller

3.1 Structure of the Proposed Controller

The block diagram of the AMB-rotor system is shown in Fig. 2. A PID controller is
used as the main controller, like the most common cases [17]. The compensation
controller based on deep network approach is added parallel to the main controller to
deal with unbalance vibration specifically. Re is the expected position of rotor. The
error of rotor position e is inputted in the main controller and compensation controller
to produce the control signal respectively. The control current ic is obtained by adding
the output of the 2 controllers, and is transformed to magnetic force FAMB acting on the
rotor via the power amplifier. Finally, the rotor displacement at AMB position x is
detected by sensor and used as feedback signal.

The compensation controller is proposed based on deep learning theory. This
controller is established by a deep neural network (DNN) with 2 hidden layers. The
structure of the controller is shown in Fig. 3. The input of the network is the position
error e. In the input layer, a matrix [e] consisting of the last 5 data of e is obtained via
down sampling and memory operation. In the 2 hidden layers, the input of the layer is
processed by function f. Finally in the output layer, the output of the controller uc is
calculated by function fo. At the same tine, e and its derivative are used in back-
propagation algorithm to update the parameters of function f and fo on line.

Main controller
(PID)

Power 
amplifier

Sensor

Re

x x
FAMBUic

Compensation
controller

+
+

AMB
+

-
e

Rotor
xc

uc

Fig. 2. Block diagram of AMB-rotor system.
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3.2 Algorithm of the Compensation Controller

The function f in the hidden layer is

f ðxÞ ¼ uðxxþ bÞ ð5Þ

where u is the activation function, x and b are the weights and biases of neurons
respectively. For each DOF, x is a matrix of size 5 � 5 and b is a vector of size 1 � 5.
x and b are independent for each DOF and each layer.

The activation function f has many common forms. For real time control, the
computational complexity should be considered, so a simple function called ReLU
(Rectified Linear Unit) [18] is used in this study

uðxÞ ¼ maxðx; 0Þ ð6Þ
@u
@x

¼ signðuðxÞÞ ð7Þ

The function fo in the output layer is a linear function

foðxÞ ¼ xoxþ bo ð8Þ

where xo and bo are the weights and bias of the output layer respectively.
The loss function E is set via a factor η imitating the sliding mode control [19]:

g ¼ ec þ _ec ¼ Tðeþ _eÞ ð9Þ

E ¼ gT � _g ð10Þ

where T is the transformation matrix from x to xc.
We can calculate that

@E
@uc

¼ �kiTðeþ _eÞ ð11Þ

Down
sampling Memory f1(x) fo(x)f2(x)e [e] uc

Input layer Output layerHidden 
layer 1

Hidden 
layer 2

Backpropagation
algorithmDerivation e.

Fig. 3. Structure of the compensation controller.
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Then the weights and biases can be updated by backpropagation algorithm [20]
based on the gradient descent method with a constant-value learning rate c.

4 Analysis of Simulation Results

4.1 Parameters of Simulation

The dynamics of system are simulated with 10 kHz sample frequency in the MATLAB-
Simulink environment. The disturbance forces are considered as gaussian white noise.
The parameters of the AMB-rotor system are given in Table 1 and the parameters of
controller are given in Table 2.

Table 1. Parameters of the AMB-rotor system.

Name of parameter Symbol Value

Mass of rotor m 2 kg
Rotor diameter D 40 mm
Rotational speed n 6000 r/min
Distance between bearing a and rotor bgeometric center la 100 mm
Distance between bearing a and rotor bgeometric center lb 100 mm
Rotary inertia of axis x/y I 0.02 kg�m2

Rotary inertia of axis z Iz 0.001 kg�m2

Eccentric error er 5 � 10−6 m
Eccentric angle ee 2 � 10−3 rad
Rated air gap s0 0.8 mm
Available air gap sa 0.4 mm
Constant of magnetic force k 3.14 � 10−6

Angle of pole a p/8 rad
Bias current i0 2 A
Cutoff frequency of Power amplifier fa 500 Hz
Cutoff frequency of sensor fs 3000 Hz

Table 2. Parameters of controller.

Name of parameter Symbol Value

Proportional coefficient KP 1.5 � 104

Integral coefficient KI 1 � 105

Differential coefficient KD 25
Displacement coefficient ks 9.82 � 104

Current coefficient ki 39.3
Number of weights in each hidden layer Nxh 5 � 5�4
Number of biases in each hidden layer Nbh 5 � 4
Number of weights in output layer Nxo 5 � 4
Number of biases in output layer Nbo 4
Learning rate c 1 � 10−6
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4.2 Unbalance Vibration Analysis

The motion orbit of the rotor center without and with the compensation controller is
shown in Fig. 4. It is obvious that the displacement of the rotor is reduced remarkably
by the compensation controller from about 13 lm to within 3 lm. The radial vibration
at direction x in frequency domain by FFT is shown in Fig. 5. The vibration syn-
chronous with the rotational speed (100 Hz) is compensated and well restrained by the
compensation controller.

The effect of the proposed compensation controller is also compared with a com-
mon RBF (Radial Basic Function) network compensation controller. The total vibra-
tion comparison is presented in Table 3. From the table, the proposed compensation
controller by DNN has better compensation effects than that by RBF network in
unbalance vibration control of AMB system.
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Fig. 4. Motion orbit of the rotor center.
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Fig. 5. Radial vibration at direction x in frequency domain.
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4.3 Control Current Analysis

Figures 6, 7 and 8 respectively represent the output of the compensation controller, the
total control current without and with the compensation controller, and their FFT forms
in frequency domain. All the current results are of AMB a at direction x. The waveform
and frequency of the output of the compensation controller are approximate to these of
the unbalance vibration, indicating that the the compensation controller recognizes and
compensates the unbalance vibration well.

Table 3. Vibration comparison of 3 controllers.

Controller Maximum radial vibration

PID 12.5 lm
PID with RBFNN 2.94 lm
PID with DNN 2.37 lm
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Fig. 6. Output of compensation controller.
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Fig. 7. Control current.
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It can also be observed that though the synchronous compensation is enhanced by
adding the compensation controller, the total control current decreases from about 0.2
A to about 0.13 A. Since the unbalance vibration is well controlled, the displacement of
rotor decreases dramatically. So much less output of main controller is needed, leading
to a less total control current.

5 Conclusion

In this study, a compensation controller using deep learning theory is proposed for
unbalance vibration of rotor system with AMBs. The compensation controller is
established by a deep network with 2 hidden layers and the operation algorithms are
designed. The compensation controller is joint with a PID controller to implement the
integrated control scheme. The control effect is evaluated via simulation on a 4-DOF
AMB-rotor system. From the simulation results, the proposed compensation controller
implements well compensation and reduces vibration significantly. Moreover, the total
control current reduces on account of the large decrease of rotor vibration. In con-
clusion, the proposed compensation controller is effective in unbalance vibration
control and in improving the operational precision of the rotor system.

Acknowledgements. This work is supported by the National Natural Science Foundation of
China (Grant No. 11772103).
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Abstract. This paper presents a formulation for unbalance fault detection in
flexible rotors supported by active magnetic bearings, AMB. The model-based
procedure makes use of the correlation equations, through the matrix formula-
tion of Ljapunov for stationary linear systems along with artificial neural net-
works. This procedure only uses measured state variables. Through the
correlation of the output variables, a group of relations involving the physical
parameters of the system together with the matrices of correlations of the
measured variables is generated. Unbalance changes are detected through the
monitoring of variation of physical parameters related to unbalance and com-
parison of theoretical and estimated correlation functions. Artificial neural net-
works are used to map correlations involving states that are not measured. The
proposed method is applied in a flexible rotor model composed of four rigid
disks, a pair of active four pole magnetic bearings with feedback control. The
unbalance change is applied in individual planes and in several planes
simultaneously.

Keywords: Magnetic bearings � Fault diagnosis � Unbalance

1 Introduction

Modern Rotary machines have become increasingly complex and sophisticated. The
development of materials, whether it is new alloys or composite materials, lighter and
more resistant, allow to work at higher and higher rotations, supercritical rotations, high
operating loads and high reliability.

Active magnetic bearings have a number of advantages over conventional bearings
because they work without mechanical contact and do not require lubrication system.
This greatly increases the life of the equipment, reducing wear, energy consumption,
besides enabling active vibration control, ease of maintenance and monitoring. They
are applicable in a series of equipment such as: ultracentrifuges, turbomachinery,
vacuum pumps, sealed pumps, machine tools, flywheels and compressors [1].

A rotating machine whether supported by magnetic bearing, or conventional
bearings, may be subject to electrical failures such as control failures, sensor or
actuators [2, 3] or subjected to mechanical failures, which are associated with the rotor.

© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 60, pp. 82–96, 2019.
https://doi.org/10.1007/978-3-319-99262-4_7

http://orcid.org/0000-0002-8515-9314
http://orcid.org/0000-0003-4069-1590
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_7&amp;domain=pdf


Mechanical failures are characterized by defects that may arise in the rotor of a machine
during its life in operation. These defects may be due to process, maintenance, design
or assembly errors. They can cause localized defects: transverse cracks [4, 5], shaft bow
[6], misalignments [7], bearing faults [8, 9] and unbalance failures. Among the
localized defects, unbalance failure has become the most common fault. Changing the
imbalance is the most common cause of vibration in rotating machines that can raise
vibration levels of the equipment and consequently generate excessive forces in the
bearings resulting in loss of efficiency and shortening the life of the system [10].
Sudhakar et al. [11], presents two approaches to identify unbalance failures. It proposes
a method by minimizing equivalent loads and another by minimizing vibrations. In
order to identify the fault, it uses the measurement of transverse vibrations in only one
point of the system and concludes that the vibration minimization method is more
effective because it presents minor errors. Sanches et al. [6] studies the simultaneous
identification of faults by imbalance and shaft bow of the rotor, as the measured
response number is lower than the total degree of freedom of the rotor, uses an auxiliary
system (filter) and techniques of order reduction of the adjusted model. Chatzisavvas
et al. [12], proposes a robust procedure for the identification of misalignment using the
equivalent load method based on sparse vibration measurements. The procedure is
based on the Least Angle Regression (LAR) technique for fault detection. Castro et al.
[13], proposed the use of optimization techniques based on metaheuristic search
methods (genetic algorithms and simulated annealing) to identify the amplitude and
phase of unbalance present in a hydrodynamic bearing rotor. Aenis et al. [14], apply an
algorithm for fault detection in a centrifugal pump with magnetic bearings based on
transfer functions and measured magnetic forces. Tiwari et al. [15] apply an algorithm
to identify the dynamic parameters, stiffness and damping, and the unbalance in pre-
viously defined planes of a flexible rotor supported by active magnetic bearings. The
algorithm is based simultaneously on the current measurements of the control and in
response to unbalance and concludes that under some conditions the experimental
results differ from the theoretical ones. Eduardo et al. [16], through the matrix equation
of Ljapunov, developed a set of correlation equations related to the physical parameters
of the system together with artificial neural networks to detect mechanical failures in a
rotor and concludes that under some conditions the experimental results differ from the
theoretical ones. Vyas et al. [17] presents the design of artificial neural networks to
identify five mechanical failures in rotary machines among them unbalance faults.
A learning algorithm was applied in backpropagation of a non-linear multilayer net-
work. The static moments of the signals acquired through sensors fixed in the housing
of the bearings that are used to train the neural networks. Li et al. [18] developed an
unbalance failure detection system on rotating machines based on neural networks in
back propagation (BPN). It uses acoustic signals such as input from neural networks
and normalized power spectra. The method is sensitive to rotational changes and has
limitations for detecting faults near natural frequencies.

The problem of failure detection applied to rotational system with magnetic bearing
has a special difficulty because the mechanical system equations are associated to the
system control structure. The measurement of all state variables normally is not pos-
sible in real systems and the knowledge of stiffness and damping values are also
difficult to be identified. In order to avoid this practical characteristic we propose a
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methodology that works with the structure of the model and generate compatibility
equations involving correlations between a reduced numbers of state variables. These
relations are obtained by the matrix equation of Ljapunov.

The use of correlation equations was already studied by Silva et al. [9, 19, 20], but
it was investigated failures associated to physical parameters related to stiffness and
electrical failures of the magnetic bearing control system. The effect of unbalance faults
cannot be detected by simple measurement of vibration amplitudes because the mag-
netic bearing control actuates in order to compensate any increase of vibration caused
by the fault.

In this work the same formulation is applied to identify unbalance faults. We study
a rotating system composed by four discs and by different combinations of unbalance
distribution we can test the efficiency of the proposed method. The failure detection
method is based on knowledge of the mathematical model structure developed for the
mechanical and control system, along with the force laws of the bearings. The system is
excited by unbalance and white noise forces. By the analysis of the matrix equation of
Ljapunov it was chosen a set of equations that describe the behavior of the system
involving the physical parameters, along with the equations of correlation between the
measured states. The terms of the correlation equations related to states that cannot be
measured are mapped through Artificial Neural Networks, ANN. A neural network was
generated for each equation of interest. At the end, the difference between the measured
correlations (with failure) and the expected correlations (without failure) is calculated.
Observing these differences and the equation where they are manifested, we arrive at
the conclusion of the location of the unbalance fault.

2 System Model and State Space Equation

The system under study consists of a rotor composed of flexible shaft on which are
mounted four disks. In the external disks, there is a pair of active magnetic bearings, on
the inner disks the motor and the rotation sensor, shown in Fig. 1.

Fig. 1. System configuration.
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2.1 Rotor Model

For the mathematical rotor model the finite element standard formulation (FEM) was
used. In Fig. 2 the rotor model consists of four nodes, four disks (d1, d2 d3 and d4) and
three length shaft segments (L1, L2 and L3). The fixed coordinate system (X, Y and Z)
is considered and the system rotates with an angular velocity x. Minor axial dis-
placements are not considered. The transverse section of the shaft and the disks have
their movements described by the translations y(t) and z(t) and by the rotations h(t) and
u(t) respectively around the Y and Z axes and the four nodes.

The rotor model can be represented by the following differential equation:

M €n + G _n + K n ¼ f(t) ð1Þ

In Eq. (1): M is the mass and inertia matrix of the disk and shaft elements, G is the
gyroscopic effect matrix of the disks and the shaft elements, K is the stiffness matrix of
the shaft and f(t) is the vector of external forces that includes magnetic force fm(t),
unbalance forces fu(t) and white noise H(t), where:

n(t) ¼ ½ y1 y2 y3 y4 /1 /2 /2 /4 z1 z2 z3 z4 h1 h2 h3 h4 �T
ð2Þ

The vector n(t) represents displacements (y and z) and rotations (u and ϴ) of the
system.

2.2 Unbalance Force

In rotary systems, the imbalance can be caused by eccentric masses located in different
planes and angular positions of the disks. Since the unbalance mass is smaller than the
mass of the disk, the vector of unbalance forces is given by:

fy
fz

� �
¼ mu ru x2 cos(xtþ bÞ

sin(xtþ bÞ
� �

ð3Þ

In Eq. (3): mu represents the unbalance mass, ru is the unbalance radius, x is the
rotor rotation and b stands for the phase angle. The complete vector of unbalance forces
is given by:

Fig. 2. The rotor system model for the numerical simulation.
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fu(t) ¼ fy1 fz1 fy3 fy4 0 0 0 0 fz1 fz2 fz3 fz4 0 0 0 0½ �T ð4Þ

2.3 AMB and Controller Model

The configuration of a 4-pole magnetic bearing is shown in Fig. 3. The electromagnetic
force is inversely proportional to the distance, and when applying an electromagnetic
force to the rotor the tendency is to be attracted to the minimum possible distance
between its surface and the electromagnet.

In order to have magnetic force in both directions, two diametrically opposed coils
are used for each actuation direction (y and z) considering two half-axes, one positive
and one negative. The currents i+ and i− are the currents in the coils of the z-axis
(positive) and z (negative) respectively, with the same value for the y-axis. The total
actuation current for each axis is rectified in such a way that only the positive portion
(positive half-cycle) is sent to the positive half-axis and analogously only the negative
part (negative half-cycle) is sent to the negative half-axis. For the set of coils acting in
the same direction, regardless of the current signal, it will exert a pulling force. In all
the bearings, a DC current of polarization ip is introduced so that there is rigidity
around the point of operation. Therefore, a continuous current is added with the current
signal going to the positive half-axis and subtracting the same direct current that goes to
the negative half-axis. In closed loop, the system operates by reading the sensor that
determines the position of the rotor. In this case as the sensor is not positioned in the
direction of actuation, the sensor reading is added through an equivalent gain that
passes to the controllers reading of the displacements of each direction (y and z). The
controller process the information and send to the power amplifier a signal that is
converted in a proportional signal of current. This signal is sent to the bearing actuator
coil and transformed into magnetic force through the actuator gains, working in closed

Fig. 3. Schematic representation of a radial AMB.
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loop. The force applied to the rotor in a pair of coils can be expressed by the following
expression for the two half-axes [1]:

fmði,z) ¼ �km
ib
z

� �2

ð5Þ

In Eq. (5): z is the distance between the rotor and the stator of the bearing, ib is the
bias current and km is the bearing constant depending on the air permeability, number
of coils and the cross sectional area in the gap, [21]. For a semi-axis linearizing the
magnetic force around the point of operation, we have:

f(i,z) ¼ kmz z(t)� kmi ic ðt) ð6Þ

Where:

kmz¼ 4 km i2b
g3

and kmi¼ 4 km ib
g2

ð7Þ

The first term of Eq. (6) kmz represents the displacement force term. Since it
depends only on the displacement and is directly incorporated into the mechanical
stiffness matrix, its positive value will be added as a negative-spring. The second term
kmi correspond to the gain of the magnetic actuator and the power stage is modelled as
a gain kp for each actuation direction. The controller is a sixth-order SISO (single in –

single out) that has sufficient dynamic characteristics for the system control’s need. For
each control direction according to Fig. 3, the dynamic of the control modelled in the
state space is given by:

_xcðt) ¼ Ac xcðt) + Bc ycðt) and fm ¼ Cc xcðt) ð8Þ

In Eq. (8): Ac is the dynamic matrix of the controllers, Bc is the input matrix of the
controller, yc is the input vector of the mechanical system with the ks gain of the
sensor, Cc is the output matrix of the control and xc is the vector of control states with
the km gain of the magnetic actuator and kp power stage gain. Since the controller is of
the sixth order, there are six control states for each actuation axis.

2.4 The Complete State Space Equation of the Closed Loop System

The equation in the state space of the mechanical system is given by:

_xmðt) ¼ Amxmðt) + Bmfeðt) and ymðt) ¼ Cmxmðt) ð9Þ

Where:

Am ¼ Z I
�M�1K �M�1G

� �
and Bm ¼ Z

�M�1

� �
ð10Þ
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Cm ¼ I Z½ � and xmðt) ¼ n(t)
_nðtÞ

� �
ð11Þ

In Eq. (9): Am is the dynamic matrix, Bm is the input matrix, Cm is the output
matrix, ym is the mechanical state vector that can be measured and xm(t) is the state
vector of the mechanical system. Z is matrix of zeros, I represents the identity matrix
and the points indicate the differentiation with respect to time. From Eqs. (8) and (9)
the final equation in the state space composed by the mechanical and control models is
given by:

xfðt) ¼ Afxfðt) + Bff(t) ð12Þ

where:

Af ¼ Am BmCc

BcCm Ac

� �
; Bf ¼ Bm

0

� �
and xf ¼ xm

xc

� �
ð13Þ

In Eq. (12): Af refers to the dynamic matrix of the complete system, Bf represents
the input matrix, with f(t) being the vector of external forces unbalance, magnetic force
and white noise, xf is the complete vector in state space in closed loop, composed of the
measured mechanical and control states and f(t) represent the magnetic forces,
unbalance forces and white noise. The closed-loop matrices will be used in the
expansion of the Matrix Equation of Ljapunov, which is the basis of the proposed
method.

3 Correlation Functions and Artificial Neural Networks

The invariant system with stationary inputs is considered. Under these conditions the
correlation functions assume values constant in time and depend only on the time
interval [16], given by:

RxfðsiÞ ¼ e xfðt):xTf ðtþ siÞ
� 	 ð14Þ

Where: e is the mathematical expectation.
Replacing the solution of Eq. (12) in Eq. (14), we have:

AfRxf + RxfAT
f + BfRxuxf + RxfxuBT

f ¼ 0 ð15Þ

Equation (15) is called the Ljapunov matrix equation for stationary linear systems,
being the basis for the development of the fault diagnosis method proposed in this
work, where:

Rxf ¼ Rxmxm Rxmxc
Rxcxm Rxcxc

� �
ð16Þ
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Rxuxf ¼ Rxuxm Rxuxc½ � ð17Þ

Rxfxu ¼ Rxmxu
Rxcxu

� �
ð18Þ

In Eq. (16) Rxmxm is the matrix that shows the autocorrelations of the mechanical
states, Rxmxc the correlations between the mechanical and control states, Rxcxm the
correlations between the control and mechanical states, Rxcxc the autocorrelations of
the control states. In Eq. (17) Rxuxm correlations between the unbalances and
mechanical states, Rxuxc the correlations between the unbalances and control states. In
Eq. (18) Rxmxu the correlations between the mechanical states and unbalances, and
Rxcxu the correlations between the control and unbalance states. From the result of the
expansion of Eq. (15) we have selected the equations that contain the correlations with
the proposed failures. In order to select the equations that correlate with mechanical
fault parameters, a three-steps method was used: (a) find, within the dynamic state
matrix Eq. (12), the element that relates to the fault; (b) select the matrix column that
relates to measurable states Eqs. (16), (17) and (18); (c) with help of the search
command of the software, locate the desired equations. The equations selected for the
proposed failures are given by Eqs. (19) to (22):

– Parameters and correlations related to disk d1 in direction z1:

k11Rz1z1 + k12Rz2z1 + k16Rh2z1 þ R _z1 _z1 + b1Rz1uz1 + b1cz11Rz11cz1 + b1cz12Rz12cz1
+ b1cz13Rz13cz1 + b1cz14Rz14cz1 + b1cz15Rz15cz1 + b1cz16Rz16cz1 + c11R _z1z1 ¼ 0

ð19Þ

– Parameters and correlations related to disk d2 in direction z2:

k21Rz1z2 + k22Rz2z2 + k23Rz3z2 + k27R/3z2 + k25R/1z1 þ R _z2 _z2 + b2Rz2uz2 + c22R _z2z2 ¼ 0

ð20Þ

– Parameters and correlations related to disk d3 in direction z3:

k23Rz2z3 + k33Rz3z3 + k34Rz4z3 + k36R/2z3 + k37R/3z3 þR_z3 _z3 + b3Rz3uz3 + c33R _z3z3 ¼ 0

ð21Þ

– Parameters and correlations related to disk d4 in direction z4:

k44Rz4z4 + k43Rz3z4 + k46Rh3z4 þR _z4 _z4 + b4Rz4uz4 + b4cz44Rz41cz4 + b4cz42Rz42cz4
+ b4cz43Rz43cz4 + b4cz44Rz44cz4 + b4cz45Rz45cz4 + b4cz46Rz46cz4 + c44R _z4z4 ¼ 0

ð22Þ

The states measured are the linear displacements and velocities of the 4 disks in the
horizontal direction and the first five control states in the same direction. It is interesting
to note among the selected correlation equations, there are different relationships with
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the physical parameters of the system, whether they are electrical or mechanical. Any
change in given parameter that is related to the equation will cause changes in the
equality of the respective equation. This change is an indication that the equation is
sensitive to the change of this parameter. In Eqs. (19) to (22) there are relations with
the stiffness parameters of the axis elements kij. As nodes 1 and 4 are the actuators of
the bearing, one can also observe the presence of terms of the output matrix of the
electrical system, the parameters czij, which are directly related to the parameters of the
magnetic bearing. Terms b1, b2, b3 and b4 are terms of the input matrix of the
mechanical system and are related to the input forces: unbalance force and white noise.
For the method used, it is enough to know to which correlations are associated each
parameter, not being necessary to know the numerical values of these parameters. The
variation of the relation between the correlations will indicate that there was variation
in the associated parameters, depending on which equation this will occur indicative of
failure or not, and its location in the system. The terms of the compatibility equations,
Eqs. (19) to (22), that correlate unmeasurable variables will be mapped by neural
networks. The autocorrelation Rz1z1 was isolated from the right side of Eq. (19), Rz2z2,
from Eq. (20), Rz3z3 from Eq. (21) and Rz4z4 from Eq. (22). In all cases the other
parameters were divided by the parameter related to each isolated auto correlation.
Terms difficult to measure were excluded and possible measurement correlations were
entered as neural network inputs. The terms isolated at the output of each neural
network corresponding to each selected compatibility equation, are shown in Table 1.

Artificial neural networks are structured by interconnected elements called neurons,
arranged in layers, and each neuron is responsible for the mapping of input and output
data, determined by the activation function. A neuron receives as input a signal mul-
tiplied by a synaptic weight; these inputs are summed and handled by an activation
function, producing an output signal. Figure 4 shows the network configurations for
mapping Eqs. (19) to (22).

The neural networks used have 1 input layer, 1 intermediate layer with 10 neurons
each, using a sigmoidal activation function and an output. For the training of the
networks the Levenberq Marquart algorithm was used. The output autocorrelations of
the A1, A2, A3 and A4 architectures were trained to the system without failure.

The comparison between the faultless and faulted output is done by calculating the
mean square deviation (MSD), given by:

Table 1. Parameters of the Neural Networks

Eq. State Node Inputs Output ANN

(19) z1 1 Rz2z1;R _z1z1;R _z1 _z1;Rz11cz4;Rz12cz4;Rz13cz4;Rz14cz4 Rz1z1 A1

(20) z2 2 Rz1z2;Rz3z2;R _z2 _z2;R_z2z2 Rz2z2 A2

(21) z3 3 Rz2z3;Rz4z3;R _z3 _z3;R_z3z3 Rz3z3 A3

(22) z4 4 Rz3z4;R _z4z4;R _z4 _z4;Rz41cz4;Rz42cz4;Rz43cz4;Rz44cz4 Rz4z4 A4
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MSD =
1
N

XN
i¼1

ðRxf � �RxfÞ2
 !1

2

ð23Þ

In Eq. (23): Rxf is the self-correlation of the network output (faulty), �Rxf is the
expected network output autocorrelation (no fault) and N is the number of training data.

4 Results

The time domain response of the system was obtained through MatLab - Simulink
software. The Simulink model is essentially made of a block consisting of space of
mechanical states equations, Eq. (9), whose output are the displacements y1, z1, y4 and
z4 that pass through the gains of the sensors and feed the four blocks composed by the
equations of Eq. (8); their outputs pass through the bearing gains and power stage that
feedback with the magnetic force in each direction of actuation of the magnetic bearing.
The system is excited by external unbalance force and white noise. The mechanical
states y1, y2, y3, y4, z1 z2, z3 and z4 are obtained simultaneously and the six control
states in the direction Z1c and in the direction Z4c in fixed rotation of 3000 RPM. The
failure-free system parameters are listed in Table 2.

The system was initially considered to have a residual unbalance of 0.1 g at zero
degrees in the unbalance radius of 25 mm on all disks. Correlation functions were
calculated and these results were used to train the neural networks, using the input and
output correlations shown in Fig. 4. The Levenberq Marquart algorithm was used for

Fig. 4. Artificial Neural Networks: (a) Network A1, (b) Network A2, (c) Network A3,
(d) Network A4.
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training the networks, adjusted for the following characteristics: sigmoidal activation
function, admissible global error 10−6 and learning rate 10−4. For the training of the
networks the noise-free system was considered, the correlations were calculated by the
expansion of Eq. (15) and the inputs and outputs for the neural networks shown in
Fig. 4 were obtained. Several magnitudes of white noise were added to the system in
order to test the ability to map the networks in the presence of noise.

The white noise magnitude was added based on the percentage of the RMS value of
the unbalance force (fu). The mean square error MSD, Eq. (23) which relates the
outputs of the fault and faultless networks was used to compare the different levels of
white noise, the results of which are shown in Table 3.

Looking at the results shown in Table 3, we note that through the correct choice of
the equations, avoiding terms involving correlations between excitation forces and
responses, the results are very good.

Even training the neural networks with only unbalance as excitation force, with
addition of white noise forces in different levels, the MSD parameter did not changes
significantly.

Table 2. Physical properties of the rotor and AMB’s.

Parameter Value Unit

Disks
Mass md 8.80 10−2 kg
Moment inertia Id 3.10 10−5 kg.m2

Polar moment of inertia Ip 6.02 10−5 kg.m2

Shaft
Length L1, L2, L3 0.150 m
Cross section Ashaft 1.57 10−5 m2

Moment of inertia of area Ie 5.10 10−11 m4

AMB’s
Gain of the sensor ks 1900 V/m
Gain of the power amplifier kp −0.25 A/V
Gain of the bearing km 8 N/A
Negative spring kz −2450 N/m
Bias current ib 0.307 A
Air gap g 10−3 m

Table 3. Mean square deviation without fault and with white noise

White noise level (%) MSD [%]
A1 A2 A3 A4

10 0.222 0.059 0.017 0.002
20 0.282 0.072 0.032 0.021
30 0.213 0.061 0.067 0.051
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With the configuration of networks defined and in the presence of 30% white noise,
the condition of rotation variation of the system was analyzed. Starting from an initial
rotation of 600 RPM to the nominal rotation of 3000 RPM in 600 RPM intervals, the
results are presented in Table 4.

It is interesting to point out that the neural networks were robust and maintained
their mapping capacity in the presence of white noise and rotation variation. Networks
did not take these variations as potential flaws.

Figure 5 shows the excitation by unbalance (5a) and by white noise (5b). In this
case, the RMS value of the white noise represents 30% of the RMS value of the
unbalance. Figure (5c, d) show some responses in time domain and (5e) and (5f) some
correlation functions.

Table 4. Mean square deviation with variation of the rotation, without fault and with white
noise

Rotation [RPM] 600 1200 1800 2400 3000

MSD [%] A1 0.273 1.172 0.725 0.663 0.213
A2 0.102 2.613 0.301 0.148 0.061
A3 0.391 2.559 0.208 0.074 0.067
A4 0.122 0.139 0.062 0.095 0.051

Fig. 5. (a) Unbalance force, (b) White noise, (c) displacement z1, (d) first state of controller z1c
(e) Autocorrelation Rz1z1 and (f) Correlation Rz1z1c.
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The unbalance faults imposed on the system were divided into 10 cases with
masses always being placed in an unbalance radius of 25 mm, that is, only the mass
value and the phase where they were placed were changed. The simulated cases are
listed below:

– Case # 1 - 1 g was placed on disk d1 only in 0o phase.
– Case # 2 - 1 g was placed on disk d2 only in phase 0o.
– Case # 3 - was placed 1 g only on disk d3 in phase 0o.
– Case # 4 - only 1 g was placed on the d4 disk in the 0o phase.
– Case # 5 - 1 g was placed at 0o on the disks d1, d2, d3 and d4 simultaneously.
– Case # 6 - 1 g was placed on disk d1 in the 0

o phase, 1 g on disk d2 in the 90
o phase,

1 g on disk d3 in the 0o phase and 1 g on disk d4 in the 0o phase, simultaneously.
– Case # 7 - 1 g was placed on disk d3 in the 90o phase and 1 g on disk d4 in the 0o

phase, simultaneously.
– Case # 8 - 1 g was placed on disk d2 in the 0o phase and 1 g on disk d3 in the 90o

phase, simultaneously.
– Case # 9 - 1 g was placed on disk d3 in the 180o phase and 1 g on disk d4 in the 0o

phase, simultaneously.
– Case # 10 - 1 g was placed on the disk d2 in the 0o phase and 1 g on the disk d3 in

the 180o phase, simultaneously.

For the ten simulated cases, the outputs of the respective neural networks were
taken and the mean square error (MSD) for all networks was calculated in relation to
the case with white noise and without failure, the results are show in Table 5.

Considering the results show in Table 5, in the training process the white noise-free
system was considered and for the cases with failure, the level was 30%. We did not
change this level considering the results shown in Table 3 that states the low sensitivity
of the neural networks architectures related to this parameter.

Table 5. Fault unbalance configurations and MSD [%]

Unbalance mass [g]/phase [degree] MSD [%]
Case Disk-d1 Disk-d2 Disk-d3 Disk-d4 A1 A2 A3 A4

Training 0.1 g/0o 0.1 g/0o 0.1 g/0o 0.1 g/0o – – – –

Case #1 1.0 g/0o – – – 27.22 3.15 3.41 2.88
Case #2 – 1.0 g/0o – – 3.88 37.53 1.42 1.32
Case #3 – – 1.0 g/0o – 2.56 2.03 37.09 3.60
Case #4 – – – 1.0 g/0o 1.58 3.47 3.31 26.75
Case #5 1.0 g/0o 1.0 g/0o 1.0 g/0o 1.0 g/0o 25.55 33.70 33.80 24.97
Case #6 1.0 g/0o 1.0 g/90o 1.0 g/0o 1.0 g/90o 27.49 20.75 39.86 19.71
Case #7 1.0 g/0o 1.0 g/90o 2.31 3.71 22.57 28.66
Case #8 1.0 g/90o 1.0 g/0o – 4.31 28.50 56.95 6.74
Case #9 1.0 g/180o 1.0 g/0o 4.44 8.45 56.93 25.02
Case #10 1.0 g/0o 1.0 g/180o 8.64 37.40 20.97 7.41
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The numerical simulations were made considering rotation of 3000 RPM.
In the cases where the failures were imposed, the errors (MSD) appeared in the

neural networks corresponding to the discs of the imposed fault. Although it presented
a small increase in the error of the other networks, the values do not compromise the
detection of the imposed failure.

When they were imposed only on disks d1 - case # 1, d2 - case # 2, d3 - case # 3 or
d4 - case # 4, the errors appeared only in the neural networks corresponding to those
disks.

When the fault was imposed on 4 disks, the error appeared for the 4 neural net-
works, case # 5.

When the fault was imposed on two disks simultaneously the errors appeared only
in the neural networks corresponding to those disks.

It is also interesting to note that even changing the phase angle between the disks,
the neural networks were able to map the errors - cases # 6 to case # 10, showing the
efficiency of the proposed method for the studied cases.

It is important to note that even taking small number of measurements, in order to
detect the disc plane of the fault we need at least one displacement measurement per
disc.

5 Conclusion

In this work the fault detection method based on the Ljapunov matrix equation and
artificial neural networks in a flexible rotor with active magnetic bearings was pre-
sented. Through the method it was possible to detect unbalance faults. For application
of the proposed method it is not necessary to know whether the values of the
parameters of the model are electric or mechanical, only its structure in the model.
Considering that several states are not possible to be measured, they are mapped by the
neural networks. The method is insensitive to the addition of white noise at the
entrance, not taking this factor as possible fault. It is emphasized the need for at least
one displacement sensor in the planes where it is desired to detect the fault. The test
bench is been constructed in order to apply this methodology to a real system.
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Abstract. Gas Foil Bearings (GFBs) have a promising future in high-
speed turbomachinery such as air cycle machines and turbochargers. To
achieve complete oil-free operation of the rotor support structure Gas
Foil Thrust Bearings (GFTBs) can be used in combination with Gas Foil
Journal Bearings (GFJBs). The present study numerically investigates
the influence of GFTBs on the rotordynamic behaviour. In a first step the
perturbation method is used to calculate linearized stiffness and damp-
ing coefficients. The perturbation approach used in this study is widely
used in GFJBs resulting in uncoupled first-order equations to calculate
the stiffness and damping parameters. Previously published approaches
for GFTBs were relying either on coupled first order equations or were
independent of excitation frequency. The calculated bearing parameters
are validated against numerically calculated data published in the avail-
able literature. Linear stability analysis for a rigid rotor supported by
GFTBs is performed and later extended for a rotor supported by both
GFTBs and GFJBs.

Keywords: Foil bearings · Hydrodynamic lubrication
Static and dynamic characteristics

1 Introduction

The higher reliability of Gas foil bearings (GFBs) compared to rolling element
bearings lead to their first industrial application in air cycle machines starting in
the 1970s [1]. Since then the development of GFBs lead to major improvements
in load capacity [2,3], temperature durability [4,5] and number of start stop
cycles [4]. The successful use of GFBs was demonstrated in several applications
like oil-free turbochargers [6–8], cryogenic turboexpanders [9], turbojet engines
[5] and gas turbines [10]. However the difficulty to accurately predict dynamic
performance is still one of the main obstacles in larger scale GFB operation
and therefore a current research topic. Compared to Gas Foil Journal Bear-
ings (GFJBs) the dynamic performance of their Thrust Bearing counterparts
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https://doi.org/10.1007/978-3-319-99262-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_8&domain=pdf


98 T. Pronobis et al.

(GFTBs) has been investigated to a lesser extent. Yet the advantages of GFBs
can only be exploited if the rotor is supported by GFBs in both directions. Thus
the motivation of this work is given.

GFTBs as schematically depicted in Fig. 1 consist of a backing plate to which
two metal foils are attached. The corrugated bump foil is flexible and allows the
bearing wall to deform while the upper top foil serves as a smooth surface to
capture the air and generate the pressure. Because of the rotation of the runner,
air is sucked between top foil and runner and compressed in the converging
ramp geometry build by top and bump foil Fig. 1. The foils deform due to the
generated pressure.

In one of the first numerical investigations of GFTBs Heshmat et al. [11]
conducted parametric studies to obtain optimal geometry for a bearing with
constant and uniformly distributed stiffness. In 1999 Iordanoff et al. [12] devel-
oped a simplified method to calculate GFTB geometric parameters to fit desired
load capacity and speed requirements. In the mentioned study Coulomb friction
was considered when calculating the constant (in time) stiffness of the bump foil
and that stiffness was linearly distributed from free to fixed end. This assump-
tion was based on a previous study [13]. The influence of the elasticity of the
supporting structure was analyzed in a work by Heshmat et al. [14], who used
Finite Element Methods (FEM) to calculate the deformation of the foils and
Finite Difference Methods (FDM) to discretize the gas film. A similar approach
was followed by Park et al. [15] who used coupled FEM/FDM to obtain static
equilibrium conditions. This equilibrium was then perturbed by small amplitude
motions, which allowed to linearize the Reynolds equation and therefore to cal-
culate linear first order stiffness and damping parameters. The tilting condition
of the thrust pad was analyzed and a modified Reynolds equation was used to
account for small Knudsen numbers.

A slightly different perturbation approach than applied by Park et al. was
used by Gad and Kaneko [16] to examine the dynamic parameters of a Genera-
tion II GFTB. In so called Generation II GFTBs the stiffness of the foil structure
is adjustable in one direction. The bearing studied had a slotted bump foil with
varying amount of bumps in radial direction resulting in a radial stiffness dis-
tribution. The structural model used was developed in a previous work [17] and
takes into account bump interaction, friction, the possibility of foil separation of
the flat segment between bumps and a more realistic boundary condition at the
top foil trailing edge (which is modelled as a cantilever beam instead of a rigid
support). In their work Gad and Kaneko were the first to consider the centrifugal
forces due to the inertia of the gas film showing that they have a negligible effect
on the load capacity.

Feng et al. [18] made a similar perturbation approach like Park et al. [15] and
were the first to calculate excitation frequency dependent stiffness and damping
parameters of GFTBs, however these parameters were only calculated in axial
direction. The structural link-spring model used was developed in a previous
work [19] accounting for bump interaction, friction and top foil deformation,
which were calculated using a FEM shell model.
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The presented study also focuses on dynamic stiffness and damping param-
eters of GFTBs but using a slightly different perturbation approach which is
widely used in GFJBs e.g. [20,21,21]. The advantage of this approach compared
to the previously published methods for GFTBs is that by assuming harmonic
perturbation no additional assumptions regarding the time derivatives of the per-
turbations have to be made. The resulting linearized equations are uncoupled
(which was not the case in the works of Feng and Park [15,18]) and allow to cal-
culate excitation frequency dependent stiffness and damping parameters (which
was not the case in the work of Gad and Kaneko [16]). To the author’s knowledge
excitation frequency dependent tilting stiffness and damping of GFTBs will be
presented for the first time in openly accessible literature. This allows to cou-
ple the radial and axial degrees of freedom. The dynamic behavior of a system
supported by both GFJBs and GFTBs can therefore be analyzed. A stability
analysis of a fully GFB supported rotor bearing system is performed in this
work. This is a novelty in gas foil bearing research.

2 Theoretical Model

The relation between pressure p distribution and the thickness of the air film h
is described by the isothermal Reynolds equation for a compressible ideal gas:
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r and θ are the radial and the angular coordinates, μa is the ambient viscosity
and Ω the rotation velocity. By substituting the following equations:

p = ppa, h = hc, r = rro, t = tω (2)
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into the dimensional Reynolds equation (1) the nondimensional form can be
obtained. The nominal film thickness c is the distance between the runner and
the undeformed top foil schematically displayed in Fig. 1. ω is the excitation
frequency all other variables in the above equations are explained in Table 1
which is given in the appendix.
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The dimensionless film thickness is given by:

h(r, θ) =

{
1 + H

(
1 − 1

bβ θ
)

, 0 ≤ θ < bβ

1 + δ(r, θ), bβ ≤ θ ≤ β
(5)

where H = hramp

c is the nondimensional ramp height and δ(r, θ) = δ(r,θ)
c is the

nondimensional foil deformation. The pad angle β and the ramp angle b · β are
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Fig. 1. GFB structure: left: schematic GFTB model, right: film thickness and foil
configuration

shown in Fig. 1. In this work the foil deformation is calculated by the simple
elastic foundation model (SEFM):

δ(r, θ) = S(p − 1) (6)

where S is the nondimensional bump compliance given by Iordanoff [12]. For
GFJBs this method has proven as a quick and in many cases sufficiently accu-
rate method of calculating foil deformation e.g. [20,21,21]. In a recent study
[22] time integration with SEFM and a more elaborate model are compared to
experimental data showing better agreement for SEFM. The conclusion of von
Osmanski et al. is that the role of friction might be overestimated because stick-
ing seems to be the prevailing state. In the validation Sect. 3 it is going to be
shown that the stiffness and damping parameters calculated using this method
are in good agreement with those obtained by Gad and Kaneko who used a more
elaborate structural model.

2.1 Perturbation Method

The perturbation method applied in this work was used by Lund in 1968 [23]
to calculate stiffness and damping parameters as well as stability borders for
rigid gas journal bearings. On the basis of this work similar approaches were
published for GFJBs e.g. [20,21,24,25]). The rotor experiences small harmonic
motions Δ with excitation frequency ω around its static equilibrium position:

Δz = Δ̂ze
iωt, Δ̇z = iωΔ̂ze

iωt (7)
Δϕ = Δ̂ϕeiωt, Δ̇ϕ = iωΔ̂ϕeiωt (8)

Δψ = Δ̂ψeiωt, Δ̇ψ = iωΔ̂ψeiωt (9)

By assuming harmonic perturbations their time derivatives can be easily
expressed. The previously published perturbation approaches for GFTBs [15,16,
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18] did not make the restriction of harmonic motions but had to make additional
assumptions when setting up the time derivatives. On the other hand harmonic
perturbations are a reasonable assumption if the frequency dependency of the
resulting stiffness and damping parameters is of interest.

h = h0 + Δz + Δϕr sin(θ) + Δψr cos(θ) + Δδ (10)

p = p0 + Δz
∂p

∂z
+ Δϕ

∂p

∂ϕ
+ Δψ

∂p

∂ψ
+ O(Δ2)

= p0 + Δ̂zpze
iωt + Δ̂ϕpϕeiωt + Δ̂ψpψeiωt (11)

Δδ = Kf (p0 − pa + Δzpz + Δϕpϕ + Δψpψ) (12)

In the notation above the index ( )0 labels the static equilibrium position
of the associated variable. The reaction of the pressure to the small perturba-
tion can be expressed through a Taylor series where orders higher than one are
neglected.

The nondimensional, perturbed Reynolds equations (13, 14, 24, 25) can
be obtained by inserting the perturbed variables (10-12) into the dimensional
reynolds equation (1), normalizing by using equations (2, 3, 5, 15) and neglecting
all terms with higher perturbation order than Δ1. When inserting pressure p and
film thickness h Eq. (11, 10) into the Reynolds equation (1) their time deriva-
tives can be performed because the time dependency around static equilibrium
p0 and h0 is given by assuming harmonic perturbations Eq. (7-9).

Equation of order Δ0:

∂

∂r

(
rp0h0

3 ∂p0
∂r

)
+

1
r

∂

∂θ

(
p0h0

3 ∂p0
∂θ

)
= Λr

∂

∂θ

(
p0h0

)
. (13)

Equation of order Δz
1
:

∂

∂r

(
rpzh0

3 ∂p0
∂r

+ 3rp0h0
2
(1 + Spz)

∂p0
∂r

+ rp0h0
3 ∂pz

∂r

)

+
1
r

∂

∂θ

(
pzh0

3 ∂p0
∂θ

+ 3p0h0
2
(1 + Spz)

∂p0
∂θ

+ p0h0
3 ∂pz

∂θ

)

= Λr
∂

∂θ

(
h0pz + p0(1 + Spz)

)
+ i2γΛr

(
h0pz + p0(1 + Spz)

)
. (14)

With the following normalizations:

pz =
pzc

pa
, pϕ =

pϕ

pa
, pψ =

pψ

pa
, Δz =

Δz

c
. (15)

The boundary conditions at r = ro, r = ri, θ = 0, θ = β are as follows:

p0 = 1 (16)
pz = pϕ = pψ = 0. (17)

The first equation (13) is a nonlinear differential equation of zeroth order
in perturbation Δ and gives the stationary equilibrium solution of pressure and
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film thickness p0, h0. This equation is discretized by applying Finite Differences
(FD) and solved iteratively by using Newton-Raphson method. The solution has
to be inserted into the first order differential equation of perturbation Δz (14).
For brevity the perturbed equations for Δϕ Eq. (24) and Δψ Eq. (25) are only
given in the appendix. The first order equations are linear and can therefore be
solved by using Matlab’s mldivide algorithm. The resulting perturbed values
pz, pϕ, pψ are complex. They are dependent of running speed Ω, excitation
frequency ω and external load W which is implicitly given by specifying the
nominal film thickness c. Integrating the perturbed values pz, pϕ, pψ multiplied
with the associated perturbations over the pad area Apad results in forces and
moments which are linearly dependent of perturbations (because higher orders
were neglected). This forces and moments can therefore be expressed through
linear stiffness and damping coefficients:

⎡
⎣Kzz Kzϕ Kzψ

Kϕz Kϕϕ Kϕψ

Kψz Kψϕ Kψψ

⎤
⎦ + iγω

⎡
⎣Czz Czϕ Czψ

Cϕz Cϕϕ Cϕψ

Cψz Cψϕ Cψψ

⎤
⎦

=
paro

2

c

∫∫
Apad

⎡
⎣ pz cpϕ cpψ

pzror sin(θ) cpϕror sin(θ) cpψror sin(θ)
pzror cos(θ) cpϕror cos(θ) cpψror cos(θ)

⎤
⎦ rdrdθ. (18)

The first index of stiffness Kαβ or damping Cαβ gives the direction of the
associated force or moment while the second index gives the direction of the
perturbation. Therefore the different parameters Kαβ , Cαβ also have different
units.

3 Validation

To validate the developed numerical routine, calculated results of bearing stiff-
ness and damping parameters are compared to published results by Gad and
Kaneko [16]. This work was chosen because the used perturbation approach is
the closest compared to the approach used in this paper. Additionally the first
order equations (14, 24, 25) can easily be modified to match those of Gad and
Kaneko. The parameters of the investigated bearing are given in [16]. The men-
tioned bearing is a second generation GFTB with 5 bump foil strips. The bump
foil strips have 3, 4, 5, 6 and 5 bumps starting from the radially innermost to
the outermost strip. Although SEFM is used, the varying number of bumps is
accounted for by specifying a different stiffness coefficient for each strip.

To validate the results of the zeroth order equation (13) the obtained results
of load and torque are compared to those published by Gad and Kaneko. As can
be seen in Fig. 2 generally a good agreement is achieved. The largest relative
deviation of load of ≈ 10.5% occurs at the maximum simulated running speed
of 80 krpm. It can be explained by the different structural models used.

In order to verify the results of the first order equations a comparison of the
resulting linearized bearing coefficients is shown in Fig. 3. Note that the bearing
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Fig. 2. Load and torque over running speed: calculation and values of Gad and Kaneko
[16]

parameters were calculated with the ratio γ of excitation frequency to running
speed set to γ = 1 while the bearing parameters calculated by Gad and Kaneko
are independent of γ. The excitation frequency ratio of γ = 1 was chosen as
an arbitrary but representative value. The stiffness and damping values show
significant discrepancies. The reason for the discrepancy lies in the different
perturbation methods.

To confirm that the cause of this discrepancies lies in the different pertur-
bation approaches the derived first order equations (14, 24, 25) are modified to
match those of Gad and Kaneko. A comparison of the first order equations from
both works reveals that the obtained stiffness values should be identical when
excitation frequency γ = 0 and foil compliance S = 0 are set to zero in the
first order Eq. (14, 24, 25) (but not in the zeroth order Eq. 13). The first order
equations also have to be adjusted to match those of Gad and Kaneko. The
terms responsible for damping should be identical when S = 0 and the terms
i2γΛrh0pz/ϕ/ψ in (14, 24, 25) are neglected. After neglecting the mentioned
terms, γ still appears in the first order equations but has no influence on the
damping parameters because it cancels out while normalizing. It is important
to note that foil compliance S is set to zero only in the first order equations.
When calculating equilibrium pressure by solving the zero order Eq. (13) the foil
compliance S still needs to be considered and cannot be set to zero.

The results obtained with these modifications are shown in Fig. 4. An accept-
able accordance with the values published by Gad and Kaneko is achieved by
modifying the first order equations. Although the modifications lead to iden-
tical first order equations there remains a significant discrepancy between the
calculated and the published main stiffness values (Kzz, Kϕϕ, Kψψ). The max-
imum relative deviation is approximately 18%. This deviation is explained by
the different results obtained for the equilibrium pressure due to different struc-
tural models. It is the cause of the discrepancy shown in Fig. 2 which has the
same shape as the discrepancy observed for (Kzz, Kϕϕ, Kψψ). Therefore it is
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Fig. 3. Linearized stiffness and damping parameters Kαβ , Cαβ calculated in this work
with γ = 1 and calculated by Gad and Kaneko [16] Kgαβ , Cgαβ (dashed lines)

concluded that the implemented algorithm to calculate the linearized bearing
parameters delivers valid results.

On the other hand it becomes evident when comparing Figs. 4 and 3 that
excitation frequency γ and foil compliance S do have a relevant influence on the
bearing parameters. Stiffness values of Gad and Kaneko are valid for constant
perturbation (γ = 0) and stiff foil structures (S = 0 when the influence of
pressure perturbation on foil deformation is negligible). Note that Kzϕ, Kzψ,
Kϕz, Kψz and Czϕ, Czψ, Cϕz, Cψz are negligible (in both works) and therefore
not depicted. Conclusively perturbations in ψ and ϕ direction do not cause a
force in z direction. Also perturbations in z direction do not lead to moments in
ψ or ϕ direction.
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Fig. 4. Linearized stiffness and damping parameters Kαβ , Cαβ calculated in this work
with γ = 0, S = 0 and modified first order equations versus calculation by Gad and
Kaneko [16] Kgαβ , Cgαβ (dashed lines)

4 Numerical Results

4.1 Bearing Parameters

In this subsection parametric studies on the linearized bearing parameters intro-
duced in Eq. (18) are conducted. The input data used for the investigated bearing
are given in Table 1 in the appendix. This data is used unless other parameters
are explicitly given in the text. The given bearing geometry was chosen to match
currently manufactured GFTBs at the department of Engineering Design and
Product Reliability at the Technical University Berlin. It is planned to experi-
mentally investigate those bearings in the future. In a first study the excitation
frequency ratio γ is varied from 0.1 to 2, meaning that the excitation frequency
ω varies from 0.1 to 2 times the running speed Ω. Bump height ratio H = hramp

c
is set to 5 for this calculation.

The results of this parametric study are shown in Fig. 5. Again the negligible
parameters Kzϕ, Kzψ, Kϕz, Kψz and Czϕ, Czψ, Cϕz, Cψz are not displayed. The
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Fig. 5. Linearized stiffness and damping parameters in dependence of running speed
and excitation frequency for the bearing specified in Table 1 in the appendix and H = 5.
The legend for all plots is shown in the left bottom subfigure.

differently colored and marked lines in each plot indicate the running speed of
the rotor. The plot reveals that the main stiffness parameters Kzz, Kϕϕ and Kψψ

increase with higher excitation frequency ratio γ. This results are in qualitative
agreement with Feng [18] who calculated the same tendencies for Kzz and Czz

while all the other parameters are published for the first time in dependency of
excitation frequency.

For small values of Ω the relative influence of excitation frequency is the
highest. For example: Kzz at Ω = 10 krpm rises about 74% from γ = 0 to γ = 2
while at 80 krpm the rise is only 22%. The main angle stiffness Kϕϕ and Kψψ

exhibit the same qualitative behavior. The cross coupled angle stiffness Kϕψ
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has the same value but opposite sign as Kψϕ making the stiffness matrix skew
symmetric. This means that a positive perturbation in ψ direction leads to a
negative moment in ϕ direction and vice versa. For brevity reasons the display
of Kψϕ is omitted in Fig. 5. The absolute values of these cross coupled stiffness
are an order of magnitude smaller than the main angle stiffness. Interestingly
the absolute values of these cross coupled stiffness show the opposite behavior
than all other stiffness parameters: they decline at higher values of γ and Ω.
The main stiffness parameters Kzz, Kϕϕ and Kψψ all increase with Ω, while the
absolute values of the cross coupled stiffness parameters decrease.

In the investigated γ- and Ω-range the running speed is the dominating
parameter leading to an approximate 320% rise of Kzz from 10 to 80 krpm at
γ = 1. However the influence of excitation frequency cannot be neglected. The
cross coupled stiffness for example has a greater dependency of γ than of Ω in
the investigated parameter range. The magnitude of increase or decrease is larger
at small Ω and continuously gets smaller for higher Ω. At high rotation speeds
the main stiffness values seem to converge to a maximum value while the cross
coupled values approach zero. A skew symmetric stiffness matrix is generally
considered as negative for the stability behavior [26] indicating that the bearing
stability might benefit from the calculated characteristic of Kϕψ and Kψϕ at
high running speed and excitation frequency.

Unfortunately the damping parameters show the opposite characteristic and
have the smallest values at high Ω and γ therefore enlarging the risk of instabil-
ity in this operational range. Which of these effects will prevail will be analyzed
in the following Subsect. (4.2). The decrease of damping is relatively more pro-
nounced than the increase of their stiffness counterparts: Czz falls to 12% from
10 to 80 krpm running speed at γ = 1. The relative influence of γ on damping
is the highest for high values of Ω: at 80 krpm Czz decreases to 55% at γ = 0.1
compared to its value γ = 2, at 10 krpm Czz only decreases to 78%. The damp-
ing matrix is also skew symmetric Cϕψ = −Cψϕ thus only Cϕψ is presented in
Fig. 5.

4.2 Stability Analysis

To analyze the influence of GFTBs on the vibrational behavior the previously
calculated stiffness and damping parameters are used for an eigenvalue analysis.
The rotor geometry is aimed to mimic a planned test rig and specified in Table 2
shown in the appendix. To emphasize the impact of GFTBs on the stability a
rigid rotor with only one ideally rigid radial bearing is investigated. Only one
radial bearing is used so that the rotor is allowed to tilt in ϕ and ψ direction.
In practice it is desirable to contain axial forces in both directions therefore 2
GFTBs are necessary. It is assumed in this study that both bearings have the
same stiffness and damping coefficients. For this to be the case the bearings need
the same nominal clearance and the rotor is not subjected to any external axial
force. Still both bearings transmit a force to the rotor of the same magnitude
F0 but opposite sign. If an external axial force is now applied to the rotor the
rotor will move in the direction of the force causing an increase of one bearing
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force of the magnitude ΔFI = KzzΔz while the bearing force in the opposite
direction decreases with the same magnitude. Thus the resulting reaction force
of both bearings combined is: ΔF = 2KzzΔz. This bearing combination can be
modeled like preloaded springs and the following equation of motion around the
equilibrium position results:
⎡
⎣m 0 0

0 Jx 0
0 0 Jy

⎤
⎦

⎧⎨
⎩

Δ̈z

Δ̈ϕ

Δ̈ψ

⎫⎬
⎭ + 2

⎡
⎣Czz 0 0

0 Cϕϕ Cϕψ

0 Cψϕ Cψψ

⎤
⎦

⎧⎨
⎩

Δ̇z

Δ̇ϕ

Δ̇ψ

⎫⎬
⎭ + 2

⎡
⎣Kzz 0 0

0 Kϕϕ Kϕψ

0 Kψϕ Kψψ

⎤
⎦

⎧⎨
⎩

Δz
Δϕ
Δψ

⎫⎬
⎭

=

⎧⎨
⎩

Fz

Mϕ

Mψ

⎫⎬
⎭ . (19)

This Eq. (19) uses the findings of the bearing parameter Sect. 4.1: Kzϕ =
Kzψ = Kϕz = Kψz = Czϕ = Czψ = Cϕz = Cψz = 0. The Eq. (19) could
be further simplified because in the previous section it was shown that: Kϕψ =
−Kψϕ, Cϕψ = −Cψϕ. To perform a linear stability analysis only the homogenous
part of the above equation is used and it is transformed so that a generalized
eigenvalue problem will result.

Mq̈ + C(Ω,ω)q̇ + K(Ω,ω)q = 0[
0 I

−M−1K −M−1C

]{
q
q̇

}
=

d

dt

{
q
q̇

}
with q = q̂eλt

[
0 I

−M−1K −M−1C

]{
q
q̇

}
= λ

{
q
q̇

}
(20)

Fig. 6. Stability Maps, left: rigid rotor and rigid radial bearing, right: rigid rotor and
rigid axial support

I is the unit matrix. This eigenvalue problem is solved and instability occurs
when the maximum of the real parts of the eigenvalues is greater than zero
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max(real(λi)) > 0. Therefore Eq. (20) is solved for each calculated parameter
set (Ω, ω). Where running speed Ω is increased in steps of 2.5 krpm and γ in
steps of 0.1. This maximum real value of the eigenvalues λi is shown in the left
top contourplot of Fig. 6. The numbers on the line show the maximum real part
of the eigenvalues. Therefore the line with the zero-label, marked with a blue
line, is the linear stability border for the investigated configuration. It has to be
emphasized that linear instability does not necessarily lead to unlimited growth
of amplitudes and therefore results in possible contact between rotor and stator.
Instead the growth of amplitudes occurring at linear stability border leads to
a change of bearing stiffness and damping. In this case the calculated stiffness
and damping parameters are no longer valid because the assumption of small
perturbation amplitudes no longer holds. This change of stiffness and damping
may lead to a stable limit cycle operation of the bearing which was documented
for GFJBs e.g. [27,28].

The simulated rotor-bearing system has a linear stability border, which starts
at approximately 44 krpm and stretches in the shape of a quarter circle to the
maximum simulated running speed of 80 krpm and γ values slightly above 1.
This means when excitation frequency equals running speed, which is very likely,
at running speeds close to 80 krpm a growth of amplitudes should occur. It can
be said that the instability range appears for small values of excitation frequency
ratio γ and large values of ω. In this parameter range the cross coupled stiffness
still have a significant magnitude (see Fig. 5) while damping values are low. Skew
symmetric cross coupled stiffness parameters in addition with small damping
values could therefore be the cause of this instability.

Fig. 7. Schematic visualization of the investigated rotor bearing system
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To simulate a realistic rotor bearing system two identical GFJBs were added
to the system at length l1 and l2, see Fig. 7. Their linearized stiffness and damp-
ing coefficients were calculated using the perturbation method described in this
work. The degrees of freedom of the perturbation for these bearing are the x and
y-direction shown in Fig. 7. To isolate the influence of these radial bearings the
stability map of the investigated rigid rotor is calculated for rigid axial support.
The equation of motion for the rotor supported by 2 GFJBs and a rigid axial
bearing is as follows:

[
m 0
0 m

] {
Δ̈x

Δ̈y

}
+ 2

[
Cxx Cxy

Cyx Cyy

] {
Δ̇x

Δ̇y

}
+ 2

[
Kxx Kxy

Kyx Kyy

] {
Δx
Δy

}
=

{
Fx

Fy

}
. (21)

The stiffness and damping parameters of the GFJBs were calculated for a
bearing with radius rrad = 13 mm, length lrad = 20 mm, load per bearing
Wrad = 4 N, nominal clearance crad = 60μm and nondimensional foil compli-
ance S = 0.29. The eigenvalue problem Eq. (20) is solved and again the largest
real part of the eigenvalue is critical for the stability behaviour. The result is
visualized in the right diagram of Fig. 6. For this bearing configuration linear
stability border occurs at 35 krpm at γ = 0.1. Then for slightly larger values
of γ ≈ 0.3 the stability border already starts at 32 krpm. From there on linear
instability occurs up to 80 krpm and γ values of about 0.75.

To analyze the influence of both bearing types acting together on a rigid rotor
first the equation of motion has to be derived by applying force and momentum
equilibrium in the center of mass. It is obvious that adding GFJBs will also influ-
ence the tilting motion of the rotor and therefore its tilting stiffness and damping.
Additionally a tilting with ψ or ϕ of the rotor will lead to a displacement of the
rotor inside the GFJBs: x1 = x + sin(ψ)l1s ≈ x + ψl1s and y1 ≈ x − ϕl1s with
l1s = l1 − ls (analogously for the GFJB 2), where ls denotes the distance to
the center of mass. Therefore the resulting stiffness matrix will have a coupling
between tilting and radial motion. Stiffness, mass matrix and state vector are
given in Eq. (22, 23). The damping matrix has the same structure as the stiffness
matrix and is therefore not displayed.

M =

⎡
⎢⎢⎢⎢⎣

m 0 0 0 0

0 m 0 0 0

0 0 m 0 0

0 0 0 J 0

0 0 0 0 J

⎤
⎥⎥⎥⎥⎦

, q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δz

Δy

Δx

Δϕ

Δψ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(22)

K =

⎡
⎢⎢⎢⎢⎣

2Kzz 0 0 0 0

0 2Kyy 2Kyx −Kyy(l1s + l2s) +Kyx(l1s + l2s)

0 2Kxy 2Kxx −Kxy(l1s + l2s) +Kxx(l1s + l2s)

0 −Kyy(l1s + l2s) −Kyx(l1s + l2s) 2Kϕϕ + Kyy(l
2
1s + l22s) 2Kϕψ − Kyx(l

2
1s + l22s)

0 Kxy(l1s + l2s) Kxx(l1s + l2s) 2Kψϕ − Kxy(l
2
1s + l22s) 2Kψψ + Kxx(l

2
1s + l22s)

⎤
⎥⎥⎥⎥⎦

(23)

The stability map of this system is not displayed because it is almost identical
to the stability map of the rotor with rigid axial support and two GFJBs shown
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on the right of Fig. 6. Actually the eigenvalues of the system are not identical
but relatively close to each other so that it is hard to distinguish between the
stability maps with the current resolution of ΔΩ = 2.5 krpm and Δγ = 0.1. The
instability region of the GFTBs is not present anymore in the full system. It can
therefore be concluded that the instability region on the left stability map of
Fig. 6 was caused by a tilting movement of the rotor which is now prevented due
to additional tilting stiffness provided by the GFJBs. The GFJBs influence the
tilting stiffness of the rotor but have no effect on the axial stiffness. This means
that in the investigated parameter region no axial instability exists. It is even
probable that an ideal GFTB will have no axial instability at all because since:
Kzϕ = Kzψ = Czϕ = Czψ = 0 this degree of freedom is completely decoupled
and therefore behaves similar to an one mass oscillator which is always stable
as long as stiffness and damping are positive. However if a thrust bearing has
varying pad stiffness, for example due to manufacturing imperfections this will
lead to Kzϕ �= 0 Kzψ �= 0 and therefore might induce axial instability.

Although the tilting Δϕ, Δψ has an influence on the Δy, Δx degrees of
freedom this effect seems to be negligible at least for the investigated rotor bear-
ing configuration. The presence of GFTBs has little influence on the stability
behavior. This may change when the radial foil bearings are relatively soft com-
pared to the thrust bearings. Also the influence of the coupling of both bearing
types might be more pronounced if tilting stiffness and damping parameters are
calculated for the journal bearings.

5 Conclusion

In this work a novel perturbation approach in the field of GFTBs and the result-
ing linearized bearing parameters are presented. This approach delivers exci-
tation frequency dependent bearing parameters. The novel tilting stiffness and
damping parameters of the GFTBs calculated with the introduced approach
allow for the first time to examine the influence of coupling GFJBs and GFTBs
on the dynamic behavior. The impact of perturbations on foil deformation is
taken into account. The presented parameters are used for a stability analysis of
a rigid rotor supported by both journal and thrust foil bearings. The obtained
numerical results lead to the following conclusions:

1. Stiffness and damping matrices of GFTBs are skew symmetric
2. Main stiffness values increase with excitation frequency while main damping

values decrease. The absolute values of the cross coupled, skew symmetric
stiffness and damping parameters falls with larger excitation frequency

3. The coupling parameters between tilting and axial motion Kzϕ, Kzψ, Czϕ,
Czψ are negligible

4. GFTBs are susceptible to tilting instability at large running speeds and small
excitation frequencies.
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5. However in most cases this instability will be circumvented by radial support.
The overall stability behavior is dominated by the GFJBs at least for the
investigated rotor configuration.

6. Axial instability is not detected and might not occur for the case of a ”perfect”
GFTB, because the coupling bearing parameters are close to zero (see 3.).
Therefore the axial degree of freedom is decoupled and behaves similar to an
one mass oscillator.

To further investigate the coupling between journal and thrust foil bearings more
rotor bearing configurations have to be simulated. The influence of the elasticity
of the rotor including gyroscopic effects has to be studied. The quality of the
results of the linearized stability can be validated numerically by conducting
transient calculations and experimentally. A test rig supported by GFJBs and
GFTBs is currently in planning at the department of Engineering Design and
Product Reliability at the Technical University Berlin to research the effects of
coupling both bearing types on dynamic behavior.

A Appendix

First order equations
Equation of order Δϕ

1 :

∂

∂r̄

(
r̄p̄ϕh̄0

3 ∂p̄0

∂r̄
+ 3r̄

r

c
sin(θ)p̄0h̄0

2
(1 + Sp̄ϕ)

∂p̄0

∂r̄
+ r̄p̄0h̄0

3 ∂p̄ϕ

∂r̄

)

+
1
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∂

∂θ
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p̄ϕh̄0

3 ∂p̄0

∂θ
+ 3

r

c
sin(θ)p̄0h̄0
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∂p̄0
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3 ∂p̄ϕ

∂θ
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∂

∂θ
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r

c
sin(θ)(1 + Sp̄ϕ)

)
+ i2γΛr̄

(
h̄0p̄ϕ + p̄0

r

c
sin(θ)(1 + Sp̄ϕ)

)

(24)

Equation of order Δψ
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∂r̄
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r̄p̄ψh̄0
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Table 1. Parameters of the investigated bearing

Parameter Variable Value Unit

Inner radius ri 15 mm

Outer radius ro 35 mm

Pad angle β 51 ◦

Ramp angle b · β 22.5 ◦

Pad number Npad 6 -

Viscosity μa 1.95 · 10−5 Ns
m2

Ambient pressure pa 101325 N
m2

Young’s Modulus E 2.14 · 1011 N
m2

Foil compliance S 0.242 -

Nominal film thickness c 10 μm

Table 2. Shaft parameters

Parameter Variable Value Unit

Shaft length lges 130 mm

Runner width br 7 mm

Shaft diameter dw 26 mm

Runner diameter drunner 84 mm

Length to GFJB 1 l1 48 mm

Length to GFJB 2 l2 89 mm

Length to center of mass ls 44.3 mm

Young’s modulus shaft E 2.10 · 1011 N
m2

Poisson ratio ν 0.3 -

Moment of inertia y,z Jx,y 308.8 · 10−4 kg·mm2

Rotor mass mr 276 g
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26. Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik. Springer, Heidelberg
(2006)

27. Heshmat, H.: Operation of foil bearings beyond the bending critical mode. J. Tri-
bol. (Trans. ASME)(USA) 122(1), 192–198 (2000)

28. San Andres, L., Kim, T.H.: Forced nonlinear response of gas foil bearing supported
rotors. Tribol. Int. 41(8), 704–715 (2008)



Magnetic Bearings for Non-static
Flywheel Energy Storage Systems (FESS)

Nikolaj Dagnaes-Hansen and Ilmar F. Santos(B)

Technical University of Denmark, Kongens Lyngby, Denmark
ifs@mek.dtu.dk

Abstract. Proper dimensioning of magnetic bearings for non-static
gimballed FESS is currently hindered by the lack of models that can
predict the maximum forces in the bearings. If FESS is to compete
with conventional electro-chemical batteries in terms of energy density,
the magnetic bearings must be dimensioned optimally for weight and
size. Magnetically suspended FESS has been experimentally investigated;
however, the methods for theoretically predicting magnetic bearing loads
are still limited. This paper presents how to determine such magnetic
bearing loads in a gimballed FESS subject to a moving foundation. The
predicted forces are compared with measurements from an experimental
test bench with good agreement. Furthermore, the maximum forces in a
gimballed FESS are compared with maximum forces in a non-gimballed
FESS. It was found that the gyroscopic forces in the non-gimballed case
quickly become critical making the gimbal mount essential for reducing
magnetic bearing loads.

Keywords: Active magnetic bearings · Permanent magnet bearings
Flywheel energy storage system

1 Introduction

Energy storage currently poses a bottleneck in the transition towards a more
efficient and greener energy sector as energy storage improvements are needed
to more effectively buffer a fluctuating energy supply and demand. The same
applies in the transport sector where electric energy still suffers disadvantages
over fossil fuels due to energy density, price, lifetime, chemical and fire hazards,
among others. Modern high-speed FESS can potentially overcome these disad-
vantages if certain engineering challenges regarding FESS design are solved. One
is flywheel suspension, usually comprising magnetic bearings for low-friction vac-
uum operation. Before FESS can be utilized in non-static transport applications
such as cars and ships, the magnetic bearings must be designed specifically for
the accelerations, movements, and gyroscopic couplings of a high inertia fly-
wheel rotor subject to severe outer perturbations. Rotational movements of the
FESS-powered vehicle cause large gyroscopic forces which motivates the use of
a passive gimbal mount to decouple flywheel rotations from vehicle rotations.
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However, such a mount introduces new dynamics which interacts with the mag-
netic suspension. To avoid this, one can use an active gimbal where the gimbal
movements are controlled. This however, is at the expense of increased system
complexity. In summary, three different ways of dealing with gyroscopic forces
can be used: an active gimbal mount, a passive gimbal mount, or simply letting
the bearings deal with the gyroscopic forces (no gimbal mount). The last option
– no gimbal – has been used for non-static application from the gyrobus [2]
in the 1950’s to today’s successful application in the motor sports industry for
kinetic energy recovery systems (KERS) such as in the winning car of the 2012
Le Mans Prototype [3]. Due to the large forces however, active magnetic bearings
(AMBs) are not used, except in some particular spacecraft attitude control sys-
tems [4]. They are on the other hand used in active two-axis gimballed systems
such as [5] where test bench results of a system subject to base rotations are
shown to successfully attenuate gyroscopic forces using gain-scheduled control of
gimbal motors based on rotational speed. In [6] a FESS is used to power a golf
cart. The active gimbal mount is controlled using feed-forward input shaping
and the active magnetic homopolar bearings are operated without any bias. In
between the complex system of an active gimballed FESS and the simple non-
gimballed FESS, we have the passive gimbal mount which has been investigated
by researchers at the Center of Electromechanics, University of Texas. In [7],
they identify the main sources of FESS bearing loads in roadway vehicle appli-
cation. They classify the sources of bearings loads into four: shock, vibration,
manoeuvring, and rotor imbalance. Furthermore, they identify an important
sub-classification of manoeuvring which is gyrodynamics. It is found that vehi-
cle shock and gyrodynamics are the most significant sources that give grounds
for installing the flywheel axis vertical and in a two-axis gimbal mount. In [8],
they present a prototype which they use for experimental testing. The AMBs are
successfully maintaining the rotor levitated during vibration and shock motions
corresponding to 150% of expected motions of a transit bus. Their passive gimbal
mount is found to reduce bearings loads by about 65%, and they use shock isola-
tors to reduce transmitted axial shock by 65%. While the passive gimbal mount
is experimentally demonstrating its use, a mathematical model of the interacting
dynamics of gimbal, flywheel, housing and bearings is needed to further opti-
mise the design. Such a multi-body model is presented in [9]. The motions of the
gimbal, housing, and rotor can be determined based on model parameters and
the input to the model: the base frame accelerations. Active magnetic bearing
(AMB) and permanent magnet bearing (PMB) forces are incorporated in the
model. In addition to the four classifications from [7], the model can also be
used to determine bearing loads coming from gyrocompass effects. A case study
is carried out, where optimal design parameters in regard to minimum displace-
ments and minimum bearing forces are determined. A test bench of the same
system is found in [10]. The test bench design is presented and the bench is used
to validate the mathematical model by comparing simulated and experimentally
obtained motions of rotor and housing. The next step is to utilise the model and
the test bench for the assessment of reactions forces, especially the AMB bearing
loads.
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In this framework, the original contribution of this work consists of demon-
strating how to determine the maximum AMB forces in a magnetically sus-
pended flywheel with and without gimbal when the foundation (the vehicle) is
moving. Given the input vehicle accelerations, the AMB forces will be deter-
mined numerically using the model and experimentally using the test bench.

The article is organised as follows: First, a mathematical multi-body model
of the gimbal, housing, and rotor is presented. Second, an experimentally test
bench of a gimballed FESS on a moving foundation is presented. Finally, the
test bench is used to experimentally investigate the AMB forces when subject to
the critical perturbations. The experimental results are compared with results
obtained using the mathematical model.

2 Mathematical Modelling

A thorough description of the mathematical model is given in [9] and the model
will only briefly be presented here. Its overall framework is a multi-body model.
Global and body-attached frames are defined in Figs. 1 and 2. The rotation of
the earth is included in the model while all other celestial motions are neglected.
All bodies, that is housing, gimbal, and rotor, are assumed rigid. Using the
Newton-Euler method, we find the force and moment equilibria of the three
bodies. Reaction forces f1, f2, . . . , f7 are defined in Fig. 2. The mass of each body
is denoted mg, mh, and mr respectively. Correspondingly, the weight of each
body is denoted wh, wg, and wr and mass moment of inertia Ig, Ih, and Ir. The
force and moment equilibrium equations of gimbal, housing, and rotor become:

B4f1 + B4f2 + B4f3 + B4f4 − B4wg = mg B4a4 (1)

B4 lg1 × B4f1 + B4 lg2 × B4f2 + B4 lh1 × B4f1 + B4 lh2 × B4f2 + B4τ 1 + B4τ 3

= B4Ig B4ω̇4 + B4ω4 × (B4Ig B4ω4)
(2)

− B5f3 − B5f4 + B5f5 − B5f6 − B5f7 − B5wh = mh B5a5 (3)

−B5 lh1 × B5f3 − B5 lh2 × B5f4 − (B5r4−5 + B5r5−7 + B5ra) × B5f5
− (B5r4−5 + B5r5−7 + B5rb) × B5f6 − B7re × B7f7

−B5r4−5 × B5wh − B5τ 3

= B5Ih B5ω̇5 + B5ω5 × (B5Ih B5ω5) + mh B5r4−5 × B5a4.

(4)

If5 + If6 + If7 − Iwr + Ifu = mr Ia7. (5)

B7τ 7 + B7ra × B7f5 + B7rb × B7f6 + B7re × B7f7 + B7ru × B7fu
= B7Ir B7ω̇8 + B7ω7 × (B7Ir B7ω8)

(6)

where the left subscript (I,B1, B2, . . . B7) denotes the reference frame in which
the vector is represented. Absolute accelerations of gimbal, housing, and rotor are
a4, a5, and a7 respectively, while absolute angular velocities are ω4, ω5, and ω8.
Furthermore, rotor absolute angular velocity excluding spinning velocity Ω, is
denoted ω7. We assume the rotor to be axisymmetric in order to be able to evalu-
ate the equilibrium in reference frame B7. The moment arms B4 lh1 = {0 −h 0}T ,
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Fig. 1. Sketch of a FESS (illustrated as a cylinder) located at the surface of the earth.

B4 lh2 = {0 h 0}T , B4 lg1 = {0 −G 0}T , and B4 lg2 = {0 G 0}T are lengths from
gimbal center of mass (CM) to the point of attack of each force. The gimbal CM
is assumed to be located on the gimbal pivot axes. The vector from the gimbal
CM to the housing’s CM is denoted B5r4−5 = {0 0 −l}T , while the relative posi-
tion of the rotor’s CM to the housing’s CM is B5r5−7 = {x(t) y(t) z(t)}T . The
vectors from the rotor’s CM to the point of attack of magnetic forces of top AMB,
bottom AMB, and PMB are B7ra = {0 0 (a − z)}T , B7rb = {0 0 −(b + z)}T ,
and B7re{0 0 −(e + z)}T respectively. Here, it is assumed that the angles η,
and ζ are small. Similarly, the vectors from the rotor’s CM to the sensors are
B7rc = {0 0 c − z}T and B7rd = {0 0 − d − z}T .

The joints connecting the gimbal to the housing and to the base frame
are assumed ideal rotational joints. The friction torques in the joints, B4τ 1 =
{0 τy1 0}T and B4τ 3 = {τx3 0 0}T , are found empirically to be:

τy1 = −μy1 α̇ − νy1

(|α|py1 sign(α̇)|α̇|0.2 − sign(α)|α̇|0.2)

τx3 = μx3 β̇ + νx3

(
|β|px3 sign(β̇)|β̇|0.2 − sign(β)|β̇|0.2

) (7)
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Fig. 2. (a): The moving foundation represented as a boat. (b): Gimbal and housing.
(c): Cross-sectional view of housing and rotor.

where μy1 , νy1 , py1 , μx3 , νx3 , and px3 are empirical constants.
The rotor imbalance force coming from the unbalance u is

B7fu = uΩ2{cos(Ωt) sin(Ωt) 0}T . (8)

The forces in the AMBs, B5f5 = {fx5 fy5 0}T and B5f6 = {fx6 fy6 0}T , are
derived from Ampère’s circuital law, Ohm’s law, and Faraday’s law assuming no
leakage, no fringing, magnetostatic behaviour, insignificant magnetic reluctance
of the steel, and constant flux density. E.g., for fx5 this yields:

fx5 = cos(π/8) (kiixA
+ ksxbA) (9)
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where xbA is the rotor radial displacement at the bearings, ki is the force-current
factor and ks is force-displacement factor [9]:

ki = μ0n
2A

i0
x2
0

, ks = ki
i0
x0

(10)

where μ0 is the permeability in vacuum, i0 is bias current, x0 is nominal air gap,
A is the cross-sectional area of each magnet pole, and n is the number of coil
windings around that pole. The AMB coil current ixA

is governed by:

RixA
+ Li̇xA

+ kuẋbA = −Kc

(
Kp

(
TdẋseA + xseA + KiexseA

)
+ ixA

)
(11)

where R is coil resistance, L is inductance, and ku is the motion induced volt-
age coefficient. The constants Kc, Kp, Td, and Ki dictate the dynamics of the
Proportional-Integral-Derivative (PID) control algorithm. The radial displace-
ment at the sensor is xseA while exseA

is the integrated displacement:

ėxse
= xse. (12)

The force of the PMB B7f7 = {fx7 fy7 fz7}T is found using the Biot-Savart
law [11] by approximating the magnetization as electric currents flowing on the
axial surfaces of the magnet rings that the bearing consists of. The magnetic
flux density coming from a specific current conductor on the stator part of the
PMB is found as:

(13)

where the current conductor is split into infinitesimal vector elements dl′. The
vector from dl′ to the point where B′ is evaluated is denoted and has direction

(unit vector) and length . The electric current is found as

i = M
w

nz
(14)

where w is the height of the magnet ring, nz is the number of current conductors
on each surface, and M is the magnetic moment. The total magnetic field density
coming from the stator is then

B5B =
nr∑ nz∑

B5B
′. (15)

where nr is the number of axial surfaces on the stator. We find the force acting
on each current conductor on the rotor part of the PMB using the Lorentz force
law:

B7f
′ = i

∫
(B7dl

′ × B7B) (16)

and the total force on the rotor as

B7f7 =
nr∑ nz∑

B7f
′. (17)
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Finally, B7f7 is implemented in the multi-body model by first evaluating Eq. (17)
for many different rotor positions and based on this, approximating the force with
the linear relationship:

B7f7 = {kr(x − ηe) kr(y + ηe) kz(z − z0)}T (18)

where kr and kz are constants and z0 is the axial equilibrium position of the
rotor.

The force and moment equations, Eqs. (1)–(6), the four coil current equations
(Eq. (11)), and the four constraints for the displacement integral (Eq. (12)) are
set up in a system of equations

Ax = b (19)

and solved in time for the unknowns

x = {ẍ ÿ z̈ η̈ ζ̈ Ω̇ i̇xA
i̇yA

i̇xB
i̇yB

ėxseA
ėyseA

ėxseB
ėyseB

fx1 fy1 fz1 fx2 fz2 fx3 fy3 fz3 fy4 fz4 α̈ β̈}T .
(20)

3 Experimental Investigation

The experimental test bench can be seen in Fig. 3. Using the pneumatic actua-
tors , the frame is rotated and translated causing the gimbal, housing, and
rotor to move. The acceleration of the frame is measured using an accelerome-
ter and is then used as input to the simulations. The accelerations of housing
and rotor are measured using the accelerometer and the position sensors
. The coil currents are measured using hall effect sensors. The AMB forces are
then calculated from the measured rotor position and coil current using Eq. (9)
and compared to simulated results.

Figure 4 gives two examples of the dynamical behaviour of rotor displace-
ments and AMB forces, when the frame is tilted. The left column shows the
dynamical behaviour when the housing is gimbal-mounted and the right column
shows the response without gimbal mounting, or in other words, when the hous-
ing is tilting with the frame. Figures 4a–d show the rotor displacements while
Figs. 4e–h show the AMB forces in each direction. With gimbal (left column),
the tilting frame perturbs the housing due to friction in the gimbal joints. The
housing then starts to swing which causes the rotor to be displaced as well. This
results in a measured maximum rotor displacement of 42µm (in X5-direction)
and simulated maximum rotor displacement of 43µm i.e. 2% deviation. The
largest absolute force is also occurring in the X5-direction and is experimentally
measured to be 21 N while the simulation results yield 22 N, leading to a 5%
deviation. For the non-gimballed case, the frame and the housing tilt, forcing
the rotor to tilt as well. This creates a gyroscopic effect – the last term in Eq. 6
– causing the rotor to rotate perpendicular to the rotation of the frame. This
can be seen in Fig. 4b and c as displacements both in X5 and Y5 directions. Con-
sequently, the maximum absolute force is 28 N both for the experimental and
numerical case. It can be concluded that the mathematical model predicts the
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Fig. 3. Test bench with rotating frame . gimbal , housing , housing accelerome-
ter , AMB amplifiers , pneumatic actuator position sensor , pneumatic actuator

for rotation , pneumatic actuator for translation , rail , translating frame

, proximity probe conditioners , compressor wheel , backup bearing , prox-

imity probe , AMB stator , rotor steel shaft , magnetic steel sheet hub ,

aluminium hub , and frame accelerometer .

maximum displacements and forces accurately, and that the forces are of equal
magnitude for the non-gimballed and gimballed FESS in this particular case.
However, if the gyroscopic moment is to be increased by either increasing rotor
speed Ω, frame rotation velocity θ̇, or rotor polar mass moment of inertia Irp
the forces will not be of equal magnitude for the non-gimballed and gimballed
FESS. This can be seen in Fig. 5 where the maximum force (the circled locations
in Fig. 4e and f) is plotted for a gimballed and non-gimballed FESS for varying
rotor rotational speed Ω. As seen, the experimental and numerical results are
in good agreement. For the gimballed case, the forces are increasing to 21 N at
31 kRPM. Here, the force is peaking due to a resonance of the swinging housing.
Afterwards, the force is decreasing due to a decrease in housing swing ampli-
tudes. For the non-gimballed case, the force continues to increase dictated by
the last term in Eq. 6. It should be noted that the polar mass moment of inertia
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Fig. 4. Fundation is pitching at an angular acceleration of θ̈1 and rotor is spinning at
31 kRPM. The figures in the left column show the responses for a gimballed system
while the figures in the right column show the responses for a non-gimballed system.
Figures (a), (b), (c), and (d) show the rotor displacement at bottom sensors in X5

and Y5-direction. Figures (e), (f), (g), and (h) show AMB forces at bottom bearing in
X5 and Y5-direction. Figures (i) and (j) show the angular accelerations of the frame
which have been measured experimentally and used for simulating the two systems
(left: gimballed and right: non-gimballed).
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of the test bench rotor is much smaller than the mass moment of inertia for a
real FESS flywheel.

Fig. 5. Forces as function of RPM when foundation is rolling.

Other than the gyroscopic force, Murphy et al. [7] also find that the impact
force can cause critical scenarios for some vehicle FESS applications. In Fig. 6,
two examples of impact testing are seen. In both cases, the frame is translation-
ally accelerating (surging) and the housing is gimbal-mounted. In the left column
case, the translational acceleration is small (peak of −0.88 m/s2) while the right
column shows a case with higher translational acceleration (peak of −3.7 m/s2).
The gray area spans the time in which the frame is surging. The red area spans
the time in which impact is happening. The overall behaviour of the movements
of both rotor and housing as well as the AMB forces are captured accurately.
However, the magnitude of the vibrations obtained from simulation seem to have
some deviation from the experimentally measured. Especially during impact, the
mathematical model has difficulties capturing the maximum rotor displacements
and AMB forces. This is due to higher frequency dynamics which excite non-
modelled flexible modes of frame, gimbal, housing, and gimbal joints. Although
the dynamics during impact are not captured well by the model, the ensuing
free response is in good agreement, thus the model can be used to predict the
forces of the free response after impact.

The final type of bearing load that we will investigate is the one occurring
from the rotation of the earth. When the FESS is mounted in a gimbal mount,
it resembles a gyrocompass too much to ignore the gyroscopic interaction of
flywheel and earth. In the mathematical model, one can choose to include the
rotation of the earth. However, the dynamics of this gyrocompass effect take
place on a time scale much slower than the other dynamics present in the math-
ematical model. Therefore, one can also choose to look at the gyrocompass effect
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Fig. 6. Foundation is surging and rotor is spinning at 26 kRPM. The figures in the
left column show the responses for one case (small frame acceleration) and the right
column show another case (high frame acceleration). In both cases, the housing is
gimbal-mounted. Figures (a), (b), (c), and (d) show the rotor displacement at bottom
sensors in X5 and Y5-direction. Figures (e), (f), (g), and (h) show AMB forces at bottom
bearing in X5 and Y5-direction. Figures (i), (j), (k), and (l) show the accelerations at
the location of the accelerometer in X5 and Y5-direction. Figures (m) and (n) show
the angular accelerations of the frame which have been measured experimentally and
used for simulating the two cases. The gray area spans the time in which the frame is
surging, while the red area spans the time in which impact is occurring.



Magnetic Bearings for FESS 127

Fig. 7. The dynamics and static equilibrium of housing and rotor when taking into
account the rotation of the earth. Flywheel specifications: Rotor mass m = 50 kg, rotor
polar mass moment of inertia Irp = 6 m2kg, location: equator δ = π/2, rotor speed
Ω = 100 kRPM. (a): The response of housing/rotor in time when the distance between
pivot point and rotor CM is l = 0.1 m. (b): The angle at which α is in equilibrium for
varying distance, l, between pivot point and rotor CM.

alone in a more simple model. In the following, we will only look at the reference
frames B0, B0′ , B4, and B5. We will consider gimbal and housing to be massless
such that only inertia of the rotor is present. Furthermore we will neither look at
rotor displacements relative to housing nor movements of the foundation but only
the pitch and roll of the housing/rotor (α and β). In Fig. 7a, the 24-h response
for a large FESS initially positioned in its desired vertically aligned position is
shown. The FESS has a mass of m = 50 kg and a polar mass moment of inertia
of Irp = 6 m2kg. It is located at equator, δ = π/2 and spinning at 100 kRPM.
The rotor center of mass is displaced from the pivot point with l = 0.1 m which
introduces a pendulum spring force giving the FESS a natural home position
of vertical – had it not been for the rotation of the earth. As seen in Fig. 7a,
the gyroscopic moment is forcing the rotor away from the vertical position. This
causes, together with the pendulum spring, the roll and pitch angles, α and β,
to oscillate until the friction in the joints has dampened out all dynamics and
the equilibrium has occurred. The angle of αeq at which equilibrium occurs, can
be approximated from the moment equilibrium equation of the rotor:

αeq = tan−1

(
mlg

ΩΩearthIrp sin(δ)

)
, (21)

where higher order terms are neglected and it is assumed that α and β are small.
From this formula, one can also explain why the gyrocompass effect has not been
experimentally validated in this work: Using the values for the test bench, we
find that (for test bench located at DTU, Kgs. Lyngby, Denmark, δ = 34):

αeq = tan−1

(
3 · 0.018 · 9.82

(40000/60 · 2π) · 7.27 · 10−5 · 0.00075 sin( 34
180π)

)
= 0.014◦, (22)
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which would be hard to detect. Therefore, we go back to the case of the larger
50 kg FESS. In Fig. 7b, the equilibrium angle αeq is plotted for varying displace-
ment of the rotor center of mass l. We see clearly that an undesirably large αeq

will occur for low l. For example, if the distance between pivot point and rotor
CM is l = 0.01 m, the rotor will position itself with an angle of more than 40◦.
This will result in a static load on the AMBs, from the weight of the rotor, which
is in no way desirable. From the previous examples where the foundation/vehicle
was rolling and surging, we saw how the gimballed housing was swinging due
to the distance l between pivot point and rotor CM. This motivates letting l be
small in order to decrease the swinging pendulum motions caused by a moving
foundation. In this section we saw how a small l causes large housing/rotor rota-
tions due to the rotations of earth. This motivates letting l be large in order to
decrease αeq. Therefore, it is important when designing the FESS, that l is cho-
sen correctly so neither αeq nor the swinging motions due to a moving foundation
become too large.

4 Conclusion

A numerical and experimental investigation of the AMB loads in a FESS with
and without gimbal mount has been carried out. The focus has been on three
different kinds of sources of bearings loads: gyrodynamics from a rotating frame,
shock from when the moving frame experiences impact, and gyrocompass effects
from the interaction of the flywheel spin and the rotation of the earth. When
the frame is rotating, it is seen how the gimballed flywheel starts to swing like a
pendulum. It is found that the maximum AMB forces are predicted accurately,
e.g. for a rotor spinning at 31 kRPM, the deviations between the mathematical
model and the experiments in the gimballed case are 2% for displacement and
5% for AMB force. For the non-gimballed case, the maximum force predicted by
the mathematical model is coinciding with the measured value when the rotor is
spinning at 31 kRPM. When looking at the maximum AMB forces for increasing
rotor speed, it is demonstrated how the AMB forces keep on increasing for the
non-gimballed case. In the gimballed case, a peak in AMB force of 21 N occurs
at 31 kRPM. Afterwards, the AMB force decreases with increasing rotor speed.

When exposing the FESS to a shock, it is found that the rotor displace-
ments and AMB forces are not accurately predicted during impact. However,
the ensuing free response of the rotor can be predicted by the model.

Finally, when investigating the effect of the rotation of the earth, it was found
that for a low distance between rotor center of mass and gimbal pivot point, the
rotation of the earth does significantly affect the FESS equilibrium. This means
that the home position of the rotor will not be vertical but instead will be at an
angle with respect to vertical. This results in a non-intentional static load on the
AMBs from the weight of the rotor. Therefore, it is concluded that the distance
between rotor center of mass and gimbal pivot point must be chosen correctly
in order to be large enough for mitigating the effect of the rotation of the earth
while at the same time not be so large that the swinging pendulum motions
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become critical when the foundation is moving. This distance, from rotor center
of mass to gimbal pivot point, is a good example of a system design parameter
that can be profitably chosen by the help of the mathematical model because
different scenarios then can be simulated.

Appendix

Input parameters for the mathematical model:

Unit Description Value

z0 [m] Rotor axial equilibrium 0.0109

z3−4 [m] Distance from vehicle CM to gimbal CM 0.413

l [m] Distance from gimbal pivot point to housing CM 0.0177

lacc [m] Distance from pivot point to accelerometer 0.1802

a [m] Length from rotor CM to AMB A 0.0412

b [m] Length from rotor CM to AMB B 0.0348

c [m] Length from rotor CM to sensor A 0.0852

d [m] Length from rotor CM to sensor B 0.0748

e [m] Length from rotor CM to PMB 0.1384

G [m] Gimbal outer diameter 0.158

h [m] Gimbal inner diameter 0.158

μy1 [m2N/s] Friction coefficient 0.112

μx3 [m2N/s] Friction coefficient 0.056

νy1 [ ] Friction coefficient 0.042

νx3 [ ] Friction coefficient 0.028

py1 [-] Friction parameter 0.02

px3 [-] Friction parameter 0.02

mr [kg] Rotor mass 3

mh [kg] Housing mass 14.8

mg [kg] Gimbal mass 1.634

Irp [m2g] Rotor polar mass moment of inertia 0.75

Ihp [m2g] Housing polar mass moment of inertia 46

Igp [m2g] Gimbal polar mass moment of inertia 34

Irt [m2g] Rotor transversal mass moment of inertia 24.5

Iht [m2kg] Housing transversal mass moment of inertia 167

Igt [m2kg] Gimbal transversal mass moment of inertia 15.7

g [m/s2] Acceleration of gravity 9.82

M [kA/m] Magnetic moment 955

(continued)
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(continued)

Unit Description Value
w [mm] Magnet ring height and width 3
nz [-] Number of current conductors axially 10
nr [-] Number of current conductors radially 3
r [mm] Radius of current conductors 21.3, 24.3, 27.3
kr [kN/m] PMB radial stiffness −17
kz [kN/m] PMB axial stiffness 40
h0 [mm] PMB air gap 2.3
μ0 [H/m] Permeability in free space 4π · 10−7

Kc [V/A] Current control proportional parameter 150
Kp [A/m] Position control proportional parameter 3000
Td [ms] Position control derivative parameter 1.2
Ki [1/s] Position control integral parameter 3.33
ki [N/A] Force/current factor kixA

= 152
kixB

= 177
kiyA = 187
kiyB = 166

ks [N/mm] Force/displacement factor ksxA
= 182

ksxB
= 226

ksyA = 240
ksyB = 216

ku V/(m/s2) Motion induced voltage coefficient 1.17ki
L H Inductance 0.00042ki
ωc [Hz] Low-pass filter cut-off frequency 920
ζ [-] Low-pass filter damping ratio 1
R [Ω] Coil resistance 4.5
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Abstract. The energy losses generated in rolling element bearings rise with
increasing magnitude of the force transmitted between the rotor and the sta-
tionary part. A frequently used technological solution, which makes it possible
to minimize the transmitted force, consists in adding damping devices to the
rotor supports. To achieve their optimum performance in a wide range of
operating speeds, their damping effect must be adaptable to the current angular
velocity. This is offered by magnetorheological squeeze film dampers. Their
main parts are two concentric rings separated by a layer of magnetorheological
oil. Its squeezing produces the damping force. As magnetorheological fluids are
sensitive to magnetic induction, the change of magnetic flux passing through the
lubricating film changes the damping force. The goal of the carried out inves-
tigations was to study the influence of controllable damping in rotor supports on
energy losses and driving moment of the motor in different velocity ranges. The
investigations were performed by computational simulations. The rotor was
rigid, supported by magnetorheological squeeze film dampers, and excited by its
unbalance. The results show that appropriate adaptation of the magnitude of the
damping force to the current operating speed arrives at minimizing the energy
losses generated in the rotor supports. The performed analysis shows a new
possibility of magnetorheological squeeze film dampers, which leads to
improvement of performance of rotating machines and points out at a new field
of their prospective application.

Keywords: Rolling resistances in bearings � Energy losses reduction
Driving moment minimization � Controllable damping
Magnetorheological squeeze film dampers � Mathematical modelling

1 Introduction

The rotor weight, unbalance, ground excitation, and technological loading induce the
forces transmitted between the rotating and the stationary part of rotating machines.
Except the wear of the support elements, they cause resistances against the rotor
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turning, which arrives at a variation of the driving moment, heating of the bearings and
bearing housings, and consequently, at energy losses.

Because of high stiffness and low resistance against rotation the rotors are fre-
quently mounted in rolling element bearings. To reduce the force transmitted to the
rotor stationary part the damping devices are added to the support elements. In the field
of rotor dynamics, the squeeze film dampers working on the principle of squeezing a
thin layer of lubricating film between two concentric rings are often used. A simple
dynamical analysis of a rigid rotor excited by the unbalance [1] shows that the mag-
nitude of the transmitted force depends on the speed of the rotor rotation and amount of
damping in the rotor support elements (Fig. 1).

As evident from Fig. 1, to minimize the force transmitted between the rotor and its
stationary part in a wide range of operating speeds, the damping effect of the damping
devices placed in the rotor supports must be controllable and adaptable to the current
operating conditions.

Several design strategies based on mechanical, hydraulic, or electromagnetic
principles have been developed to control the damping force. New and efficient pos-
sibilities consist in utilizing smart and advanced lubricating materials, the physical
properties of which are reversibly changed by the action of an electric or magnetic
field.

The operation of electrorheological squeeze film dampers requires high voltage to
be used between the damper rings. Their application in the field of rotordynamics and
the development of their mathematical models are discussed in [2, 3].

The magnetorheological dampers are, by contrast, supplied with low voltage and
the electric current of units of amperes. The details on their design, work, and
experimental investigations are reported in many journal articles and conference
papers, e.g. in [4, 5]. The mathematical model of a short squeeze film magnetorheo-
logical damper developed for analysis of both the steady state and transient vibrations
of rotors by Zapomel et al. can be found in [6]. Its application for investigation of
minimizing the energy losses in supports of simple rotor systems is reported in [7]. The
optimum current control in a wide range of operating speeds is presented in [8].

Fig. 1. Dependence of the transmitted force on speed and support damping.
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This paper deals with rigid rotors supported by magnetorheological squeeze film
dampers. The attention is focused on the energy dissipation due to the damping pro-
cess, on the energy losses caused by resistances against the rotor rotation in the rotor
supports, and on the effect of these factors on the variation of the moment driving the
rotor. The study is aimed at the possibilities of minimizing the energy losses and
variation of the driving moment by means of control of the magnitude of the mag-
netorheological damping force in different speed ranges. The results of the carried out
computational simulations show that appropriate adaptation of the damping force to the
operating speed makes it possible to minimize the energy losses and variation of the
moment maintaining a rigid rotor in turning at a constant angular velocity.

2 Modelling of the Magnetorheological Squeeze Film Damper

The principal parts of magnetorheological squeeze film dampers (Fig. 2) are two
concentric rings. The gap between them is filled with a thin layer of magnetorheo-
logical oil. The inner ring is coupled with the shaft by a rolling element bearing and
with the damper housing by flexible elements (often by a cage spring). The outer ring is
fixed to the damper body. Squeezing the lubricating layer due to the rotor lateral
vibration produces the damping force. The electric current generates magnetic flux in
electric coils embedded in the damper body. The flux passes through the lubricant and
because of the sensitivity of magnetorheological oils to magnetic induction (magnetic
flux density) the change of the current can be used to control the damping force.

The developed mathematical model of the magnetorheological squeeze film damper
is based on assumptions of the classical theory of lubrication, except that for the
lubricant. The magnetorheological oil is represented by bilinear material, the yielding
shear stress of which is a function of magnetic induction.

Then the pressure distribution in the full oil film is described by the Reynolds
equation adapted to bilinear material. Its derivation of which can be found in [6]

Fig. 2. A magnetorheological squeeze film damper.
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p is the pressure, p’ stands for the pressure gradient in the axial direction, Z is the axial
coordinate defining the position in the oil film, h is the film thickness, sy is the yielding
shear stress, sc is the shear stress at the core border (the core is the region in the oil
layer where the flow velocity rate is low and the oil behaves almost as solid matter [9,
10]), ηC is the oil dynamic viscosity in the core area, η is the oil dynamic viscosity
outside the core area, ZC defines the axial coordinate of the location where the core
touches the rings surfaces, denotes the pressure gradient in the axial direction at
location ZC, and (.) denotes the first derivative with respect to time.

At locations where the thickness of the oil layer rises with time ( _h[ 0), a cavitation
is assumed. Based on the results of measurements, it is supposed that pressure of the
medium in cavitation areas remains constant and equal to the pressure in the ambient
space [11].

The y and z components of the hydraulic damping force (Fmry, Fmrz, respectively)
are calculated by integration of the pressure distribution pd around the circumference
and along the length LD of the damper taking into account different pressure profiles in
noncavitated and cavitated regions

Fmry ¼ �2RD

ZLD2
0

Z2p

0

pd cosu du dZ; ð5Þ

Fmrz ¼ �2RD

ZLD2
0

Z2p

0

pd sinu du dZ: ð6Þ

RD is the mean radius of the damper clearance and u is the circumferential coordinate
of the position in the oil film.

As evident from (2), the yielding shear stress determines the pressure distribution in
the damper gap and consequently, components of the damping force. Its dependence on
magnetic induction is approximated by a power function
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sy ¼ kyB
ny : ð7Þ

B is the magnetic induction, and ky and ny are the proportional and exponential material
constants of the magnetorheological oil.

The damper body is assumed to be composed of a set of meridian segments and
each segment as a divided core of an electromagnet. This idea enables magnetic
induction to be expressed in the damper gap

B ¼ kBl0lMR
I
h
: ð8Þ

l0 is the vacuum permeability, lMR is the relative permeability of the magnetorheo-
logical oil, I is the applied current, and kB is the damper design parameter [12].

3 Energy Losses in the Support Elements

The rotor is coupled with the stationary part through rolling element bearings mounted
in the inner damper rings, which are connected with the damper housing by a cage
spring. Material damping, friction due to the slip of the rolling elements in the contact
areas, and hydraulic resistance produced by the lubricant are the main causes of dis-
sipation of mechanical energy in rolling element bearings.

The rolling resistance moment MB acting on the rotor journal in the direction
opposite to its rotation is proportional to the equivalent force FBE transmitted through
the bearing [13]

MB ¼ FBEfB
dH
2
: ð9Þ

dH is the diameter of the bearing hole (diameter of the shaft journal) and fB is the rolling
resistance coefficient of the bearing, the magnitude of which depends on the bearing
type.

The equivalent force is defined

FB ¼ X FR þ Y FA: ð10Þ

FR, FA are the radial and axial components of the force transmitted through the bearing
and X, Y are the radial and axial loading coefficients [13].

Consequently, the loss power PB is given by a product of the rolling resistance
moment MB and angular speed of the rotor rotation x

PB ¼ MBx: ð11Þ
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4 The Investigated Rotor System

The investigated rotor (Fig. 3) is rigid. It consists of a shaft and one disc attached to it.
The rotor is coupled with the rigid stationary part by two magnetorheological squeeze
film dampers at both its ends. The rotor is loaded by its weight and by the disc
unbalance. The cage springs are prestressed to eliminate their deflection caused by the
rotor weight. The whole system can be considered as symmetric with respect to the disc
middle plane. The rotor is coupled with the motor by a teeth coupling. The whole
system turns at constant angular speed.

In the computational model, the rotor is considered as absolutely rigid, and the
magnetorheological dampers are represented by springs and force couplings. The
equations of motion were set up by employing the Lagrange equations of the second
kind. After performing the manipulations, they take the form

mR€y ¼ �bP _y� 2kDyþmReT _#2 cos#þ 2Fmry ð12Þ

mR€z ¼ �bP _z� 2kDzþmReT _#2 sin#� mRgþ 2Fmrz þ 2FPS ð13Þ

MM ¼ �mReT€y sin#þmReT€z cos#þmReTg cos#þ 2MB ð14Þ

mR is the rotor mass, kD is the stiffness of one squirrel cage spring, bP is the rotor
damping coefficient (environment), eT is eccentricity of the rotor centre of gravity, g is
the gravity acceleration, t is the time, y, z are displacements of the rotor centre in the
horizontal and vertical directions, FPS is the force prestressing the squirrel cage spring,
# is the rotor angular position, and (.) denotes the second derivative with respect to
time.

As rotation of the motor is assumed to be constant, Eqs. (12) and (13) are
decoupled from Eq. (14). The latter is used to determine the time history of the driving
moment MM, which ensures constant angular velocity of the rotor.

The steady state solution of the motion Eqs. (12) and (13) was obtained by
application of the trigonometric collocation method.

Fig. 3. The investigated rotor system.
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5 Results of the Simulations

The technological parameters of the analysed rotor system are: the rotor mass 430 kg,
the coefficient of the rotor linear damping caused by the environment 100 Ns/m, the
stiffness of one cage spring 3.0 MN/m, the eccentricity of the rotor centre of gravity
50 lm, the magnetorheological squeeze film damper length/diameter 50/150 mm, the
width of the damper gap 0.8 mm, the oil dynamic viscosity outside the core area
0.2 Pas, the oil dynamic viscosity in the core area 300 Pas, the magnetorheological oil
proportional and exponential constants 20000, 1.1, respectively, the oil relative per-
meability 6, the damper design parameter 60, the shaft journal diameter 110 mm, the
bearing rolling resistance coefficient 0.0015, and the bearing radial and axial loading
coefficients 1.0, 0.0, respectively.

The task was to analyse the behaviour of the studied system for two magnitudes of
the operating speed: 130, 500 rad/s.

A simple dynamical analysis provides the approximate value of the critical speed
118 rad/s. It implies the investigated velocities are close to and higher than the critical
one.

The steady state orbits of the rotor centre for angular velocities 130 and 500 rad/s
are drawn in Fig. 4. It is evident that rising damping leads to substantial reduction of
the orbit size for the velocity close to the critical one. On the other hand, increasing
damping has almost no influence on the vibration if the rotor turns at speed sufficiently
higher that the critical one.
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Fig. 4. Steady state orbits of the rotor centre.

The time history of the force transmitted through one bearing in the horizontal
(y) and vertical (z) directions is depicted in Fig. 5. The results are related to the case
when the rotor turns at speed of 130 rad/s. The mean value of the vertical component is
not zero because of the transmission of the rotor weight.

The time histories of the equivalent force, which determines energy losses in rolling
element bearings, are drawn for two velocities of 130 and 500 rad/s and for two
magnitudes of the applied current (0.0, 1.0 A) in Figs. 6 and 7. The results show that
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the rising damping (rising magnitude of the applied current) reduces the maximum
value of the equivalent force and its variation for the velocity close to the critical one
(130 rad/s), while for higher angular speed (500 rad/s) it leads to increase in its
magnitude and variation.
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Fig. 5. Time history of the y and z components of the force transmitted to the stationary part.

0 15 30 45 60 75 90
1.3

1.7

2.1

2.5

2.92.9
130 rad/s

Time   [ ms ]

Eq
ui

va
le

nt
 fo

rc
e 

  [
 k

N
 ]

1.0 A

0.0 A

Fig. 6. Time history of the equivalent force (130 rad/s).
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Fig. 7. Time history of the equivalent force (500 rad/s).
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As evident from Fig. 8, the same holds for the loss power caused by the rolling
resistance in the rotor bearings and fully corresponds to the dependence of the loss
power on the applied current as drawn in Fig. 9. For the velocity close to the critical
speed (130 rad/s), rising current reduces the loss power. When the current reaches
magnitude of about 0.7 A, the vibration of the rotor is almost suppressed and the loss
power takes a constant value. On the other hand, for the velocity sufficiently higher
than the critical one, rising current (damping effect) increases the energy losses gen-
erated in the bearings.

Another source of the energy losses is the oil film, the squeezing of which arrives at
the energy dissipation and thus at the vibration attenuation. For the angular speed of
130 rad/s rising current increases the damping effect, reduces the vibration amplitude
(Fig. 4), and the energy dissipation in oil film (Fig. 10). For angular velocity suffi-
ciently higher than the critical one rising current increases the loss power while
attenuation of the vibration amplitude remains almost unchanged (Fig. 4).
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The time histories of the driving moment (the moment of the motor) for operating
speeds of 130 and 500 rad/s and for two magnitudes of the applied current (0.0, 1.0 A)
are depicted in Fig. 11. The driving moment depends on the rolling resistance moment
in the bearings, the energy dissipated in the lubricating layer, and on the rotor
unbalance. All these factors are time variable, which implies that to achieve a constant
speed of the rotor rotation, the magnitude of the driving moment must be a periodic
function of time.

The dependence of the power of the driving motor on the current feeding the
magnetorheological dampers is evident from Fig. 12. It shows that rising damping
(rising current) leads to reducing the power of the motor for the speed of rotation close
to the resonance one while for higher angular speed rising damping rises the power.
Taking into account the results drawn in Fig. 4 related to higher angular speed,
decrease of damping reduces the energy losses but has almost no influence on the rotor
vibration amplitude. These results clearly demonstrate the efficiency of controlling the
damping effect with the aim of minimizing the energy losses during the operation of
rotating machines.
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6 Conclusions

The investigation of the influence of the damping effect on energy losses in rolling
element bearings and on the moment and loss power of the driving motor operating in
different speed ranges was the subject of the accomplished research. The damping
effect is controlled by the change of magnetic flux passing through the thin layer of
lubricating oil of magnetorheological squeeze film dampers. The results of the per-
formed computational simulations confirm that appropriate adaptation of the damping
force to the speed of the rotor rotation makes it possible to reduce the energy losses and
the driving moment of the motor. The development of the new mathematical model of a
short magnetorheological squeeze film damper, its implementation in the computa-
tional procedures for investigation of energy losses and driving moment of rigid rotors,
and learning more on the influence of the controllable squeeze film dampers on the
behaviour of rotor systems are the principle contributions of the carried out research
work. The possibility of employing the magnetorheological squeeze film dampers to
improve the technological parameters of rotating machines represents new potential of
their application in the field of rotordynamics.
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Abstract. This paper presents a simulation model for the dropdown of a high-
speed electric motor utilizing the active magnetic bearings (AMB). In the cir-
cumstance that there is not a sufficient electromagnetic field or the system
experiences excessive load, the rotor drops instantly on the backup bearings.
The dropdown is accompanied by a considerable friction between the surfaces
of the rotor and backup bearings. This study evaluates the heat generation and
thermal behavior of backup bearing that are essential for the design of AMB
systems. The model enables to calculate the power loss resulted from the friction
between the rotor and backup bearing. The simulation includes the FE-model of
the rotor and the backup bearing model. The one-dimensional thermal network
has been applied to the thermal model of the bearing. The study concentrates on
evaluating the friction heat generated and thermal growth of the deep groove
ball bearing type in the non-drive end of the motor.

Keywords: Backup bearing � Rotor � Dropdown � Friction � Thermal analysis

1 Introduction

Applying the active magnetic bearings (AMB) enables to attain high-speed electric
motors. In case of deficiency of electromagnetic field or overload, the rotor drops at
once and there is a noticeable friction and possible rub between the rotor and backup
bearings. The simulation of a dropdown event of the AMB supported rotor presented in
the study of Kärkkäinen et al. [1] and Ecker [2] demonstrates the contact forces and the
friction force in the dropdown. The presence of the electromagnetic force, specifically
in the beginning of dropdown, can be a reason for the difference between the numerical
simulation results and the recorded data of dropdown [3]. In previous studies the
backup bearing is also known as touchdown bearing. The contact of the rotor and
touchdown bearing, transient temperature as well as various controlling systems for
AMB supported rotors have been discussed in the paper presented by Keogh [4, 5].
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The friction heat generated in the dropdown can increase the temperature of the
backup bearing which can lead to the thermally induced failure of the bearings. The
thermally induced failure has been outlined as a source of failure in the conventional
rotor-bearings [6, 7]. The thermal growth in the backup bearing can be analyzed by
applying the equivalent electric circuit which has been demonstrated in the previous
researches on AMB supported rotors [8–10]. By increasing the number of nodes used
in the thermal model, the results are reported to be closer to the measurement results
[11]. Jin et al. [9] provided a model for the single and double-decker catcher bearing
(SDCB, DDCB). Their study indicated that applying the DDCB results in lower
temperature rise in the bearing. In addition to high speed rotating machines, the thermo-
mechanical analysis of bearing in the high-speed machine tools has been studied in
recent years [12, 13]. Apart from this, the effect of the direction of the oil injection
point on the heat generation [14] and the roller bearing with grease [15] are other
aspects that have been studied in the field of thermal modeling of the bearings.

Current study presents the heat generation, temperature rise and thermal growth of
the backup bearing of an AMB supported rotor. The system under investigation is an
electric motor with the operational speed of 15000 rpm and 350 kW rated power. The
case study comprises a flexible electric motor and two backup bearings, the combined
FE-model of the rotor and the dynamic and thermal model of the backup bearing are
demonstrated. Furthermore, the frictional heat from the contact of the rotor and backup
bearing and the internal friction in the bearings are calculated.

2 Rotor Model

Current study applies the Timoshenko beam element for the FE-model of the case
study shown in Fig. 1. The slitted rotor is made out of steel alloy and includes copper
end rings. During the regular operation of the system, the electric rotor is levitated in
the electromagnetic field produced by AMBs. In case of failure or shortage in the
electromagnetic field, rotor drops on the backup bearings that protect the system for
further damages. In Fig. 1 the locations of the backup bearings are shown by dashed
line. Equation (1) presents the general equation of motion for rotating systems [16]:

M€X þ C þ xGð Þ _X þ KX¼x2F1 þ F2 ð1Þ

where M, C, K, and G present the mass, damping, stiffness and gyroscopic matrix,
respectively. X represents the vector of the generalized coordinate. The vector F1 and
F2 are the vector of nodal unbalance, and the vector of externally applied forces,
respectively. The angular speed of the rotor is denoted as x.
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3 Backup Bearing Model

In the dropdown, the rotor is supported by two different types of backup bearings, a
deep groove ball bearing in one end supporting radial direction only and a pair of
angular contact bearings providing also a hard stop in the axial direction. This study
concentrates on studying the friction heat generated and thermal model of the deep
groove ball bearing (Bearing 1, Fig. 1). The backup bearing is modeled according to
the model presented in a paper by Sopanen and Mikkola [18]. Equation (2) expresses
the relative displacement between races (Fig. 2):

erj ¼ ex cos bj þ ey sin bj

etj ¼ ez � wx sin bj þwy cos bj
� �

Rin þ ein þ rinð Þ ð2Þ

where ex, ey and ez are the relative displacements of the bearing races along the main
direction. The tilting of the inner race in x, y-directions are shown by wx and wy. Angle
bj is the attitude angle of j

th ball. The following equation gives the distance between the
races:

Dj ¼ rout þ rin �
ðRin þ einÞþ rin þ erj � ðRout þ eoutÞþ rout

cosuj
ð3Þ

where the contact angle is denoted as uj:

uj ¼ tan�1 etj
Rin þ ein þ rin þ erj � Rout � eout þ rout

 !
ð4Þ

The inner race radius (Rin) and inner race groove radius (rin) are shown in Fig. 2. In
above equation, the thermal expansion of the inner race and outer race are denoted as
ein and eout, correspondingly.

Bearing 1 
Bearing 2 

Fig. 1. System under investigation [17]
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Thus, the total elastic deformation of the inner ring can be found to be:

dtotj ¼ dj þ eb � Dj ð5Þ

where eb represents the thermal expansion of balls. Then, the Hertzian contact theory
can be used to calculate the contact force between the ball jth and the inner race:

Fj ¼ Ktot
c dtotj

� �3=2
ð6Þ

where Ktot
c is total contact stiffness.

3.1 Contact

The modified Hertzian contact model is used for calculation of the contact force
between the rotor and backup bearing [1]:

Fr ¼ Kd10=9 1þ 3=2ð Þk _d
� �

; er [ cr andFr [ 0
0 ; er � cr andFr � 0

(
ð7Þ

where Fr is the contact force between the rotor and inner race, the contact stiffness
between the rotor and inner race is denoted as K and k, is a contact parameter. The
penetration of the rotor in the backup bearing is given by:

d ¼ er � cr þ ein ð8Þ

where the calculation of the radius of the air gap between the rotor and backup bearing
(cr), the radial displacement of the rotor (er) have been demonstrated in the study of
Kärkkäinen et al. [1]. The friction force Fl

� �
between the rotor and inner race is as

follows [1]:

Fig. 2. Ball bearing model
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Fl ¼ lFr ð9Þ

In the simulation, the coordinate transformation has been used to map the coordinate
system in the FE-model of rotor and bearing model.

3.2 Thermal Model

In the thermal model of a bearing, the heat sources are the friction between the rotor
and the inner race and the friction inside of the bearing. A schematic of the equivalent
electrical circuit of the thermal model of the bearing is depicted in Fig. 3. The details of
the calculation of the thermal resistance can be found in [10].

Each node of the heat transfer model should satisfy the heat transfer equilibrium.

Hi � Ho ¼ MbrgC
dT
dt

ð10Þ

where Hi and Ho are input and outflow power loss, respectively. The lumped mass of
element and the specific heat are denoted as Mbrg and C, respectively and dT=dt
represents the temperature gradient.

3.3 Power Loss

The power loss due to the interaction of the rotor and inner race is given by [10]:

Hr ¼ FlVrel ð11Þ

where the relative velocity between the rotor and inner race is denoted as Vrel and Fl

represents the friction force. The friction torque in the bearing is also known as global
friction torque [9]:

Fig. 3. Thermal resistance model of the bearing
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M ¼ ML þMv ð12Þ

The first term is the load dependent friction torque [10]:

ML ¼ f1Pdm ð13Þ

The second term of Eq. (12) represents the velocity dependent friction torque [10]

MV ¼ 10�7f2 mNð Þ2=3d3m mN[ 2000
MV ¼ 160� 10�7f2d3m mN � 2000

�
ð14Þ

where, the coefficients f1 and f2 are depended on the bearing design and bearing load, P
represents the equivalent load, m is kinematic viscosity and the speed of inner race is
denoted as N and the pitch diameter is shown by dm. The spinning torque due to the
spinning of the ball around its own axis is follows [10]

Msi ¼ 3lFja�f
8

ð15Þ

where l is friction coefficient, Fj is contact force and �f is the elliptical integral of
second type. The heat generation at inner the race and outer is given by [10]:

Hi ¼
X
j

Hij ¼
X
j

xbMij þxsiMsi
� �

Ho ¼
X
j

Hoj ¼
X
j

xbMoj þxsoMso
� � ð16Þ

where, Mij and Moj show the friction torque in inner race and outer race, respectively.
The angular velocity of the ball is denoted as xb. The spinning velocity of the ball in
inner ring and out race are xsi and xso, correspondingly.

3.4 Thermal Expansion

The thermal expansion of the bearing components has been accounted for updating the
bearing force. The thermal expansion of the bearing components can be calculated as
follows:

ein ¼ ai
3

1þ við Þrs
ri þ rs

DTi 2rs þ rið ÞþDTci 2ri þ rsð Þ½ � ð17Þ

eout ¼ a0
3

1þ voð Þrout
rout þ rh

DTout 2rout þ rhð ÞþDTh 2rh þ routð Þ½ � ð18Þ

eb ¼ abrbTb ð19Þ
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where r is the radius, a and v are the thermal expansion coefficient and passion ratio,
respectively. The difference between the temperature of the bearing with the ambient
temperature is denoted as DT . The subscripts in, out, b, s, h and ci show the inner race,
outer race, ball, shaft, housing and the contact of ball/inner race, respectively.

4 Case Studies and Results

The parameters required to analyze the case study of a rotor is shown in Table 1. The
main dimensions of the rotor are depicted in Fig. 4. The backup bearing under
investigation is the deep groove ball bearing type 6014 (Bearing 1).

Table 1. The main data for the simulation of the rotor dropdown.

Initial rotation speed of the rotor 15000 rpm
Modulus of elasticity 2.0�1011 Pa
Material density 7801 kg/m3

Mass of rotor 109.7 kg
Poisson’s ratio 0.3
Effective mass of support, NDE 50 kg
Support stiffness of NDE (Ky, Kz) (1.5, 1.1)�109 N/m
Supports damping ratio 5%
Effective mass of support, DE 85 kg
Support stiffness of DE (Ky, Kz) (2.7, 1.5)�109 N/m
Contact stiffness between rotor and inner race (bearing 1)_Brg1 1.144�109 N/m1.11

Contact stiffness between rotor and inner race (bearing 2)_Brg2 1.73�109 N/m1.11

Air gap (radial) 250 µm
Polar moment of inertia of rotor 0.39 kgm2

Diametric moment of inertia of rotor 4.5535 kgm2

Unbalance mass at AMB disk 1.07�10−6 kg�m @ 180°
Unbalance mass rotor windings part 2.78�10−6 kg�m @ 180°
Static contact friction coefficient between rotor and inner race 0.05
Dynamic contact friction coefficient between rotor and inner race 0.1

Fig. 4. The main dimensions of the rotor
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4.1 Orbital Motion of Rotor

As can be seen in Fig. 5, when the rotor drops and contacts the backup bearing, the
vertical displacement of the rotor is more than the air gap indicating deformations in the
structure. After the initial hit, rotor bounces back, up to the height more than half of the
air gap clearance. Then, the rotor falls for the second time and bounces back. This
behavior is repeated as long as the rotor settles on the bearing lower bottom. In
addition, the vertical displacement of the rotor in the contact with the backup bearing
1and 2 found to be different. This difference can be attributed to the following reasons.
Firstly, due to the unsymmetrical structure of the supports and housings, the stiffness of
the supports are different in both ends. Secondly, the backup bearings on both ends of
the machine have different types and configurations.

4.2 Contact Force

In the model, the contact force between the individual ball and bearing race is obtained.
Then, by considering the attitude angle of the balls, the total contact force in the
bearing is calculated. Figure 6 shows the magnitude of the contact force in the bearing.
In the first hit of the rotor and bearing, the bearing experiences high contact force about
4500 N. Then, the contact force decreases rapidly and for a couple of milliseconds, the
contact force becomes zero. Afterward, the bearing undergoes another high contact
load. After this peak, the contact force becomes zero for the second time. Then, the
several rise and fall in the magnitude of the contact force are observed until the force
stabilizes. The highest contact force in the bearing is due to the high kinetic energy of
the rotor at the start of the dropdown. When the rotor bounces back the contact force is
zero. The reduction in the magnitude of the contact force in the bearing can be
attributed to the dissipation of the kinetic energy in the form of heat. From 0.03 s until
the end of the simulation, the rotor has a continues contact with the bearing and the
contact force tends to stabilize.
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Fig. 5. The orbital motion of rotor at the location of backup bearings
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4.3 Friction Loss

Figure 7 depicts the velocity dependent, load dependent, and global friction torque in
the backup bearing. In the dropdown, the velocity dependent friction torque increases
up to 0.5 Nm. Then, the friction torque heads to the uniform level. The load dependent
friction torque is considerably lower than the velocity dependent on torque. Just after
the dropdown, it has the highest peak of 0.1 Nm and then decreases until it reaches the
uniform level. The velocity dependent friction torque is depended on the angular
velocity of the inner ring. As the inner ring accelerates, this term increases and when
the rotor and inner ring rotates with the same angular velocity, it becomes uniform. The
load dependent friction torque is influenced by the equivalent load carried by the
bearing and the highest friction torque occurs in the first contact of rotor and bearing. It
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is clear from the figure that because of the high rotation speed of the rotor, the global
friction torque is mainly affected by the velocity dependent friction torque.

The heat generated in the contact of the ball and inner ring and the contact of the
rotor and inner ring are depicted in Fig. 8. As a result of the high contact force between
the rotor and backup bearing as well as high relative velocity between the rotor and
inner ring, the heat generated between the rotor and the inner ring is noticeably higher
than the heat generated between the contact of the ball and inner ring.
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Fig. 8. Internal heat generation in the backup bearing (a) heat generation between the ball and
bearing races, (b) heat generation between rotor and inner ring
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4.4 Temperature Rise

The temperature rise in the backup bearing is mainly affected by the material property,
geometry, and the friction heat generation. Figure 9 shows the temperature of the
contact of the ball and inner ring. The temperature in the contact between inner and ball
is increased from the ambient temperature to almost 296 K and then for a long time
tends to be uniform. As shown in Fig. 8, when the inner ring accelerates the heat
generation in the inner ring increases (H-i), and when the inner ring rotates with the
same speed as rotor the heat generation in the inner ring tends to be uniform. This
shows that the temperature rise in the inner ring is highly affected by the acceleration of
the inner ring and the heat generation in the inner ring.

5 Conclusion

Current study presented a simulation model for the dropdown of an electric motor
supported by active magnetic bearing. The simulation is obtained on the base of the
FE-model of the rotor and the dynamic model of the backup bearing. The friction heat
generated in the dropdown and the thermal growth of the bearing component was taken
into account. The rotor orbit, contact force, in the backup bearing, as well as the friction
heat generated in the bearing were presented. The results indicated that in the early
stages of the dropdown, the backup bearing suffers from the high contact force and then
the contact forces either between rotor and backup bearing or the bearing force are
decreased. The simulation results revealed that the acceleration of the inner ring and the
friction force between the rotor and inner ring has a significant effect on the friction
heat generated between the rotor and inner race. In order to develop a more accurate
model for dropdown simulation, it is essential to identify the difference between the
simulation of the rotor drop and a sudden drop of the rotor on the backup bearing. In
addition, because of the complicated geometry of bearing housing assembly, some
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simplification might be required for developing the thermal model of the backup
bearing. This might result in the difference between the numerical solution and mea-
surements. It should be noted that in this simulation, at the beginning of the dropdown,
the rotor is located in the center. However, in the dropdown of the rotor in AMB due to
electromagnetic field, the initial position of the rotor can be different from the center. In
future development, the influence of the AMB force in the initial condition of the rotor
should be considered.
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Abstract. This paper shows some preliminary results of an ongoing
test rig for coefficients identification of annular gas seals. The test rig
is being built in the Laboratory of Vibrations and Acoustics (LAVI) at
the Federal University of Rio de Janeiro. The main objective of the rig
is to determine both the damping and stifness created by annular gas
seals (honeycomb, labyrinth, hole-pattern, etc.) to a flexible rotor. The
paper is divided in three parts. First, the characteristics and components
of the rig are shown. Then, a rotordynamic model is proposed based on
the finite elementh method, in which the rotor is divided into smaller
elements and the seals are represented as punctual stiffness and damping.
Some simulated results of this model is shown and analyzed. Finally,
preliminary experimental results are shown and discussed.

Keywords: Annular gas seals · Rodordynamical flexible model
Inverse problem · Impedance matrix · Seal test rig
Uncertainty quantification

1 Introduction

Annular gas seals are one of the main parts of centrifugal compressors and other
rotating machines. Their main function is to reduce the return of high pressure
gas back to lower pressure stages. As well as bearings, their dynamic character-
istics must be known in order to prevent and predict the machine’s behavior. As
shown by Smith [11], and Cochrane [4], the fluid forces induce by the fluid may
take the system to an unstable state. If an appropriate linear analysis is car-
ried out, that fact can be explained by idealizing the seal as a stiffness-damping
system. The system stability depends on the values those coefficients take.

Different theoretical models have been proposed to determine the seals coef-
ficients. The main variables that are taken into account are pressure drop, fluid
velocity, seal geometry and gas composition. One of the first approaches pro-
posed was the single-control-volume, by Iwatsubo [6] and Childs and Scharrer
[3]. Then, Wyssman [14] presented a modified version, or a two-control volume
c© Springer Nature Switzerland AG 2019
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approach, for labyrinth seals. Dietzen and Nordamnn [5] applied a finite differ-
ence method to solve the Navier-Stokes equations with some assumptions. More
recently, the problem is been investigated using computational fluid dynamics
(CFD), in which more complex problems are addressed, such as seals coefficients
of impellers.

Relevant experimental results have been shown only by few authors [2,12,13].
They are obtained using similar test rigs, but different identification methods.
Childs [2] used a rig composed of a rigid rotor, two hydrostatic bearings and two
labyrinth seals in a back-to-back configuration. A transverse force is applied to
the stator by two shakers, and measurements of position, acceleration and force
are used to determine an impedance matrix, whose entries are related to the seals
coefficients. Vannini et al. [12] determined the coefficients of labyrinth seals using
a rig from General Electrics. The rig is similar to the Childs rig, but instead of
hydrostatic bearings, active magnetic bearings where used both for support and
excitation. Harmonic motions are imposed to the rotor and a linear model is used
to obtain the coefficients. Wagner et al. [13], using a rig from SIEMENS (similar
to the rig from GR), determined the coefficients by measuring tangential and
radial forces, which are directly related to the coefficients. The above mentioned
papers used similar procedures to obtain the parameters. The rotor is set to a
fixed rotational speed and is excited over a frequency band. Also, the pressure
drop and fluid tangential velocity are measured and held constant.

This paper aims to show the preliminary results of an ongoing test rig
designed to determine annular gas seals coefficients acting on a flexible rotor.
The test rig is being built in the Laboratory of Acoustics and Vibrations (LAVI)
at the Federal University of Rio de Janeiro. The rig is composed of a flexible
rotor, two labyrinth seals in a back-to-back configuration, two rolling bearings
and two electromagnetic actuators. Despite the rig is not fully operational, some
relevant analysis, simulations and preliminary results are shown here.

The present paper also has the intention of proposing a computational model
and an identification strategy. The model is based on the finite element method,
in which the rotor is divided into smaller regions and considered 8-dof Euler-
Bernoulli beams. For simplicity, bearings, seals and electromagnetic forces are
considered acting on a single node, respectively. The identification procedure,
based on the paper of San Andrés [9], is tested computationally. First, harmonic
forces are applied at the actuators location and the displacements values at
the sensors location are obtained. With this measurements, a impedance matrix
is determined, and consequently, the seals coefficients. Moreover, the impact
of uncertainties is addressed by adding noise to the displacement and current
values.

This article is organized as follows. In Sect. 2, the main characteristics of the
test rig, the instrumentation scheme and the electromagnetic actuators model
are presented. In Sect. 3, the rotordynamical model is shown. The identification
methodology is described in in Sect. 4. In Sect. 5, some numerical results are
presented. In Sect. 6, some experimental results are discussed. Finally, in Sect. 7,
the work conclusions are stated.
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2 Test Rig Characteristics

The main purpose of the test rig is to investigate the characteristics of annular
gas seals. Specifically, to identify their dynamic coefficients: stiffness and damp-
ing. As few literature on similar rigs where found, this work is relevant to the
field. Nevertheless, the rig is still under development and some final adjustments
are being done. Currently, the rig is able to rotate over a speed range and to
excite the rotor to the desired at a single frequency, but the pressure drop has
not been controlled yet. The following subsections will describe the mechanical
characteristics, the instrumentation scheme and the actuators model.

2.1 Mechanical Characteristics

The rig is divided in three parts. The high pressure chamber, where the inlet
high pressure is connected. The low pressure chamber, where the gas exits to the
atmosphere. And the test section, between the high and low pressure chambers,
where the seals are located. The cross section and the main parts of the rig are
shown in Fig. 1 and Tables 1 and 2.

The inlet pressure is connected to the high pressure chamber and an inlet
ring (red part) distributes the pressure radially. Then, the gas passes through a
pre-swirl ring (yellow part) to set a certain circumferential speed. The clearance
between the seals (orange parts) and rotor forces the gas to leak to the low pres-
sure chamber, through a regulator valve. The effects of the pressure and velocity
fields, created in the clearance, are considered to be stiffness and damping forces.
The coefficients associated to those forces are obtained by applying radial forces
using 2 magnetic actuators (part 9). Due to the small seal-to-rotor clearance,
two touchdowns are located near the seals to avoid contact. The clearance is
measured by two set of displacement sensors (part 5). Unbalance disks (blue
parts) are located on the rotor to apply synchronous forces. Finally, a brushless
DC motor is used to drive the rotor (part 12).

Table 1. Main characteristics of the
test rig.

Characteristic Value

Maximum test pressure 40 bar

Maximum counter-pressure 25 bar

Maximum rotor speed 8000 RPM

Rotor length 800mm

Test section diameter 40mm

Test section length 120mm

Seal radial gap 0.4mm

Safety touchdown radial gap 0.25mm

Approximate test rig weight 65 kg

Table 2. Main parts of the test rig.

NumberDescription Qty.

1 Rotor 1

2 Bearing flange 2

3 Balancing disk 2

4 Center assembly 1

5 Sensor bushing 4

6 Low pressure chamber 2

7 Cover 2

8 O-ring 6

9 Electromagnetic actuator stator2

10 Electromagnetic actuator rotor 2

11 Bearing 2

12 Motor 1
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Fig. 1. Test rig cross section; see Table 2.

Materials. Most parts are made of carbon steel, including the rotor. The
two touchdown systems in place are low friction Teflon stators, as it is easier to
assemble and less prone to damage the rotor when compared to rigid bearings.
The seals are aluminum, because it is softer than the steel and will take the
damage if the touchdown comes to fail.

Pressure. The initial input was a test pressure of 40 bar. The pressure target
was partially achieved, because the maximum pressure for the high pressure
chamber is 40 bar, but a pressure of 40 bar in the low pressure chamber would
lead to an overly heavy and bulky rig, so it was limited to 25 bar to stay below
the allowable stress.

Operation speed. The target rotation speed was 20000 RPM. In order to avoid
noise and complexity a direct drive was mandatory, but finding an electric motor
powerful enough at a compatible size and rated for this speed proved to be a
hard task. The solution was to use small brushless motors, which limited the
speed to 8000 RPM for the most common models. As will be shown further, the
nominal motor speed lays between the first and second natural frequencies.

Rotor Flexibility. The usual configuration layout for this type of test rig is
a rigid rotor supported by active electromagnetic bearings. This type of bear-
ing can simultaneously levitate and excite the rotor, without the need of an
additional actuator. When the rig project started, the laboratory staff was still
acquiring experience with active electromagnetic bearings. Therefore, it was
decided to use regular ball bearings to support the rotor and electromagnetic
actuators to excite the flexible rotor. This fact implied two challenges: the mod-
eling of the rotor deflections and the adequate rigidity of the rotor. The modeling
of flexible rotors was obtained by the rotordynamic software LAVIRot, devel-
oped by the laboratory staff. The rigidity had to be enough so that the rotor
would not touch the touchdown safety system just by the influence of gravity,
but also flexible enough to respond to the seal forces in the rig test pressure and
the electromagnetic actuator.

Seal and Swirl Generator. The first seal fabricated is a labyrinth seal, mainly
due to its simple geometry, but also due to the wider availability of bibliography
describing their geometry and behavior. The swirl generator imposes tangential



Annular Gas Seals Test Rig 161

speed to the gas and it is a closer approach to the operation of typical turbo-
machinery. Tests with and without swirl generator can be carried out to analyze
the behavior of gas tangential speed.

Balancing. Besides the electromagnetic actuators, the rig has two symmetri-
cally positioned disks that can be used to add an unbalanced mass to the rotor.
This was dimensioned in a way that the maximum unbalance allowed would not
make the rotor touch the seal.

2.2 Instrumentation

The rig is set up with sensors, actuators, power systems and processing units to
apply forces and acquire signals. The gas is supplied by a 10-bar air compressor
and regulated by a valve. The pressure is measured by two manometers, for
inlet and output, respectively. The rotor speed is measured by an encoder. Two
electromagnetic actuators are located symmetrically along the rotor and are used
to apply transverse excitations. A set of current sensors are used to measure
the current from each of actuators coils. The rotor-to-seal displacements are
measured by two sets of inductive proximity sensors, located near the seal in an
orthogonal configuration. The actuator forces are determined indirectly by the
current and displacement measurements, according to a linearized equation. The
excitation signal is created in a computer running Labview and is amplified by a
set of power devices connected to the coils. The rig and some of its components
are shown in Fig. 2.

Fig. 2. Test rig instrumentation and control scheme.
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2.3 Electromagnetic Actuators Model

For identification purposes, literature presents several types of excitation as
impulsive excitation, using instrumented hammers, or pseudorandom excitation,
performed by hydraulic actuators. A detailed background of those methods are
described by Nordmann [8] and Lee [7]. In the last 25 years, excitation using
electromagnetic devices became an interesting area of research and development
due to frictionless operation. Practically, any input signal can be used as excita-
tion on this kind of devices. A typical electromagnet configuration used in many
test rigs is the horseshoe differential, since its control can be easily implemented
(e.g. decoupled PID) [10]. One modification of the latter is the 8-pole circular
stator magnet, shown in Fig. 4a, which can be set as a horizontal and a vertical

Fig. 3. Test-rig
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differential configuration separately, if one assume that the magnetic flux cou-
pling between those axes is negligible. If the rotor displacements are small with
respect to the air gap, a linearized current model can be proposed by establishing
a base current operation i0. In this way, the current in the pole pair of each side
depends both on the base current i0 and the excitation current ix, as shown in
Fig. 4b. Since the test rig is equipped with ball bearings, no control current is
necessary to maintain the concentricity between rotor and stator.

Fig. 4. (a) Eight poles circular electromagnet with horseshoe configuration (modified)
[1]. (b) Electromagnet with horseshoe differential configuration (modified) [10].

According to Chiba [1], the net force, along the vertical or horizontal axis,
applied to the rotor is directly proportional to the square of the current in the
coil, and inversely proportional to the square of the distance between each pole
and the rotor surface. Mathematically, it can be expressed as follows (Disregard-
ing the losses due to temperature, hysteresis and Eddy currents):

fk =
ξkβμoN

2Ag

2

(
(i0 + ik)

2

(g0 − k)2
− (i0 − ik)

2

(g0 + k)2

)
, k = {x, y} (1)

where Ag, go and μo are the pole cross section area, the nominal air gap and
the permeability of free space respectively. β is the configuration factor (in this
case β = 0.9232), ξk is an experimental calibration factor and N is the number
of turns in the coil. As the operation ranges of the rotor are smaller than the
nominal air gap, a linearization of Eq. 1 is possible and the electromagnetic forces
are described by:

fk =
ξkβμoN

2Ag

2

(
i0
g20

ik +
i20
g30

k

)
= ciik + csk , k = {x, y} (2)

3 Rotordynamic Model

The rig is represented as a flexible rotor with two ball bearings, 2 seals in the mid-
dle, two sensors and two actuators. For simplicity, a finite-element representation
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is used, and the rotor is divided into smaller regions. Each region is considered
as a 8-dof Euler-Bernoulli beam with two displacements x, y and two rotations
φ, θ. The system matrices are obtained using the software LAVIRot, developed
in LAVI. The bearings and seals parameters are modeled as stiffness and damp-
ing acting on a single node. Similarly, the actuators forces and sensors readings
are modeled as forces and variables acting or measuring a single node. The final
system equations are defined as follows (Fig. 5):

Mü(t) + (C + G) u̇(t) + Ku(t) = fm(t) + fu(t) (3a)

Electromagnetic forces: fm(t) = ciiKi + csKs

⎡
⎢⎢⎣

xa1

ya1
xa2

ya2

⎤
⎥⎥⎦ (3b)

Unbalance forces: fu(t) = mdruΩ2Ku

[
cos(Ωt)
sin(Ωt)

]
(3c)

where Ω is the nominal rotational speed of the machine, ω is the actuators force
frequency, M is the mass matrix, G(Ω) is the gyroscopic matrix and u(t) is the
generalized displacement vector (rotations and displacements). The stiffness and
damping matrices, K(ω,Ω) and C(ω,Ω), depend on ω and Ω because the seal
coefficients vary with the rotor speed and actuator force frequency. The external
force vector is comprised of the actuators electromagnetic force, which depends
on the actuators position [xa1, ya1, xa2, ya2]

T , and the residual unbalance force.
Matrices Ki, Ks and Ku are transformations from local to global coordinates.
Note that matrices M, C, G, and K have dimension n × n, while Ki is n × 1,
Ks is n × 4, and Ku is n × 2.

Fig. 5. Representation of the test-rig

The bearings behavior are modeled as constant stiffness and damping, i.e.,
they are frequency-independent and not sensible to other variables. As the rotor-
to-seal displacements are small (≤100 microns), the following seal linear model
is adopted: [−fxs

−fys

]
=

[
K(ω) k(ω)
−k(ω) K(ω)

] [
uxs

uys

]
+

[
C(ω) c(ω)
−c(ω) C(ω)

] [
u̇xs

u̇ys

]
(4)
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where, K, C are the direct stiffness and damping, and k, c are the cross-coupled
stiffness and damping. These parameters depend on the seal geometry, gas prop-
erties, and operational parameters such as rotor speed and actuators excitation
frequency. This model considers a concentric configuration and the effects of
non-concentric configurations are out of the scope of this article.

4 Identification Methodology

Seals parameters can be obtained by exciting the rotor, measuring the displace-
ments of some points and then applying an identification method, as shown in
the block diagram of Fig. 6. The excitation signals v are set from a computer
or signal generator and taken to a magnetic actuator system, which creates the
excitation forces fa. These forces are applied to the rig and measurements ûs

are taken close to the seals location using displacement sensors. Also, current
sensors are used to obtain the electromagnetic actuator coils currents ı̂a. Those
measurements are the inputs for the identification method, which outputs the
estimated parameter vector p̂ = [K, k,C, c].

Fig. 6. Block diagram of system excitation and parameters identification.

Seals forces are contained in the measurements as a response to the excitation.
Those forces are considered as a linear decomposition in the seals displacements-
velocity space, as shown in Eq. 4. The identification strategy applied in the
present work uses impedance matrices [2]. The procedure is similar to the one
proposed by San Andrés and De Santiago [9], in the context of bearing coeffi-
cients identification.

4.1 Identification Method

The method is based on the previous hypothesis of linearity described by Eq. 3a.
If periodic forces are applied to the system, the frequency behavior for both the
forces and displacement can be determined using the Fourier Transform:

u(t) F−→ U(ω) (5a)

f(t) F−→ F(ω) (5b)
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Using Eq. 5a and 5b in Eq. 3a yields the frequency-dependent system of Eq. 6,
which takes into account the rotor, bearings and seals model.(−ω2M + iω (C(ω) + G(Ω)) + K(ω)

)
U(ω) = F(ω) (6a)

Z(ω)u(ω) = F(ω) (6b)

This equation is expanded to separate the rotor-bearing forces from the seals
forces, as shown in Eq. 7, where the overbar stands for a reordered matrix or vec-
tor, Z̄R is the rotor-bearing impedance, us1 and us2 are the seals measurements,
uR are the rotor-bearing displacements, Z1 and Z2 are the seals impedance and
f are the external forces.

Z̄Ū = Z̄R

⎡
⎣Us1

Us2

UR

⎤
⎦ +

⎡
⎣Zs1 0 0

0 Zs2 0
0 0 0

⎤
⎦

⎡
⎣Us1

Us2

UR

⎤
⎦ =

⎡
⎣0
0
F

⎤
⎦ (7)

From Eq. 7, it is possible to obtain the rotor-bearings uR displacements and
seals forces fs1 and fs2 as shown in Eqs. 8 and 9.

UR = Z−1
R33 {F − ZR31Us1 − ZR32Us2} (8)

fs1 = Zs1Us1 = − (ZR11Us1 + ZR12Us2 + ZR13UR)
fs2 = Zs2Us2 = − (ZR21Us1 + ZR22Us2 + ZR23UR)

(9)

As Eq. 9 has more unknowns parameters than algebraic equations, two indepen-
dent excitations are applied as follows:

Zs1

[
Us11 Us12

]
=

[
Fs11 Fs12

]
Zs2

[
Us21 Us22

]
=

[
Fs21 Fs22

] (10)

Thus, the coefficients of each seal are readily obtained by taking the real and
imaginary part of Zsk matrices of Eq. 11.

Zsk =
[
Fk1 Fk2

] [
Uk1 Uk2

]−1 =
[
Ksk + iωCsk ksk + iωcsk
−ksk + iωcsk Ksk + iωCsk

]
k = 1, 2 (11)

The process of exciting and measuring determines the seal response along
with other undesired responses, such as imbalance force and bearing forces. A
way to isolate the seal response is to obtain a measurements baseline with no
inlet pressure which determines the undesired forces responses. Then, the rig
is pressurized and a new set of measurements is acquired. Finally, the seals
coefficients are obtained using Eq. 12.

Zs = Zexp − Zbase (12)

Thus, the identification of parameters from other components, such as bear-
ings or rotor unbalance, are not necessary.
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5 Numerical Results

5.1 Campbell Diagram

Considering the system with no seals, the rotor resonance frequencies can be
analyzed by using a Campbell Diagram, which shows the frequency of the mode
shapes at different rotor speed. First, the following no forcing state-space repre-
sentation is used: [

u̇
ü

]
=

[
0 I

−M−1K −M−1 (C + G)

] [
u
u̇

]
(13)

Equation 13 yields the following eigenvalue problem:

Aνk = ωkνk (14)

where ωk is the natural frequency corresponding to theof the k-th mode shape.
The results of a Campbell Diagram simulation is shown in Fig. 7. This diagram
shows the frequency of each mode shape (ω) as the speed of rotation (Ω) increases
from 0 to 50000 RPM. At Ω = 0, the three first natural frequencies can be seen
in the vertical axis. When increasing Ω, each frequency splits into 2 lines: the
forward and backward whirl. The dotted line shows the line ω = Ω, which
intercept with the whirls correspond to the critical speeds. As the rotor is not
provided of inertia disks, the effect of inertia cross-coupling does not considerably
changes the mode shapes.

5.2 Frequency Response Function

The effect of the excitation frequency on the rotor behavior can be assessed by
plotting the Frequency Response Function of the rotor, defined as follows:

H =
(−Mω2 + (C + G) jω + K

)−1
(15)

In Fig. 8 is shown a simulation of a FRF calculated at the seal location
(middle of the rotor). It shows the amplitude of the oscillations as actuators
frequency increase. Each peak correspond to the natural frequencies, and they
are the same as shown in the Campbell diagram.

5.3 Mode Shapes

The mode shapes are useful to visualize the rotor behavior at different resonance
frequencies. For small damping systems, the mode shapes can be obtained by
taking the imaginary part of the FRF at each resonance frequency. The first two
modes of the rotor are shown in Fig. 9.
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Fig. 7. Campbell diagram of the rotor with the first 5 natural frequencies.

Fig. 8. Frequency Response Functions. x and y are the displacements FRF. Rx and
Ry are the rotations FRF.
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Fig. 9. Mode shapes of the rotor: (a) rotor first mode at 2322 RPM and (b) rotor
second mode at 10400 RPM

5.4 Orbits

Figure 10 shows the Orbits from left sensors (left chart) and right sensors (right
chart) for an excitation of 100 Hz. It is noted that the orbits are not symmetric.

5.5 Identification Method

Since the constructed test rig is still not fully operational, the identification
method is tested in a computer simulation with the synthetic experimental data
of Eq. 16. Variables ûs and ı̂ are the seal displacement and coil current sensor
measurements, u and i are the exact seal displacement and coils current values,
and nu and ni are independent and identically distributed (iid) noises with zero
mean and standard deviation σu and σi. For simulation purposes, an arbitrary
representative noise values are used. The exact values of variables are obtained
by solving Eq. 3a and considering a single-frequency harmonic signals at 100 Hz
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Fig. 10. Orbits from left sensors (Left figure) and right sensors (Right figure) for an
excitation of 100 Hz.

Table 3. Parameters of numerical simulations.

Parameter Value Units

Rotor
Bearings Stiffness 108 N/m2

Rotor damping 0.08 -
Rotor FEA elements 41 -

Rotor speed 80 RPM
Actuators

ξ 1 -
β 0.924 -
μ0 4π × 10−7 H/m
N 180 -
Ag 235 mm2

i0 2 A
g0 1 mm
L 10−3 H
R 1 Ω

mu 1 g
ru 1 mm

Parameter Value Units

Noise
Disp. sensor noise σu = 5 × 10−8 m

Current sensor noise σi = 5 × 10−2 A
FFT

Simulation time 5 s
Sampling freq. 1 KHz
FFT window Hanning -
Excitation

Excitation frequency 1 100 Hz
Excitation frequency 2 200 Hz

Seal parameters@100 Hz K = 5 × 104 N/m2

k = 2 × 103 N/m2

C = 5 × 102 Ns/m2

c = 1 × 102 Ns/m2

Seal parameters@200 Hz K = 7 × 105 N/m2

k = 4 × 104 N/m2

C = 9 × 102 Ns/m2

c = 4 × 102 Ns/m2

and 200 Hz, with the parameters shown in Table 3. First, the system response
is obtained for a set of seal parameters, simulating the rig behavior at 100 Hz.
Then, the seal parameters are changed to simulate the rig behavior at 200 Hz.
Each excitation signal is applied to two orthogonal directions, as detailed in
Sect. 4. The simulations are carried out considering a single rotor speed of 80
RPM because its effect on the parameters will not be discussed.
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ûs = us + nu , nu ∼ N
(
E {nu} = 0, var {nu} = σ2

u

)
ı̂a = i + ni , ni ∼ N

(
E {ni} = 0, var {ni} = σ2

i

) (16)

Figure 11 shows the numerical results for an excitation in the x-direction.
Figures 11a and b show the current and seal displacements measurements in the
x (green signal) and y (blue signal) directions. Figures 11c and d show their
respective frequency-domain response. Despite the excitation was applied in a
single direction, the cross-coupled terms acts in an orthogonal direction to the
excitation. The noise applied to the system creates a distortion both in time and
frequency domain. In the latter, the system behavior is better analyzed. The
system responds with a harmonic content of 100 Hz and a white noise equally
distributed over a frequency band. The rotation speed does not appear in the
displacement FFT since a very low unbalance force is applied.

Fig. 11. Simulated results for an excitation in the x-direction at 100 Hz. The dis-
placements correspond to the actuator 1. The green curve is the displacement in the
x-direction and the blue curve is the displacement in the y-direction. The current cor-
respond to the excitation current of actuator 1.

The stochastic model of measurements causes an uncertain output of the
identification method, which means that every time the method is run it will
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Table 4. Statistics of the identification method output for 2 cases.

Exc. freq. Coef. Mean Std. Dev. CV Error (%)

100 Hz K [N/m2] 5.0 × 104 5.5 × 103 1.1 × 10−1 1.4 × 10−1

k [N/m2] 2.0 × 103 4.9 × 102 2.5 × 10−1 1.1

C [Ns/m2] 5.0 × 102 7.8 1.6 × 10−2 5.2 × 10−2

c [Ns/m2] 9.9 × 101 9.1 × 10−1 9.1 × 10−3 1.9 × 10−2

200 Hz K [N/m2] 7.0 × 105 7.6 × 104 1.1 × 10−1 5.0 × 10−1

k [N/m2] 4.1 × 104 1.6 × 104 4.1 × 10−1 1.4

C [Ns/m2] 8.9 × 102 5.8 × 101 6.4 × 10−2 2.5 × 10−2

c [Ns/m2] 3.99 × 102 1.3 × 101 3.3 × 10−2 2.7 × 10−1

produce different set of parameters. In order to assess the identification method
estimates, a Matlab code is implemented to run the method 100 times and statis-
tics about the parameters are computed. In both cases, the method estimated
the parameters’ value within an error of less that 5.0% (except for K with an
error of 32.07% at 200 Hz), with a coefficient of variation of less than 0.82, as
shown in Table 4.

Fig. 12. Experimental results of the sweep excitation in the x-direction. The excitation
signal is the output voltage from the NI boards. The current is measured in the top
coil of actuator 1.
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6 Preliminary Experimental Results

As of today, the test rig can operate with no pressure drop, i.e., only the baseline
is fully operational. Also, variables such as pre-swirl or flow rate are not yet
available. Those variables and the results for different pressure drops, rotor speed
and excitation frequency will be presented in future works.

In the previous section, a pure harmonic signal was considered. For the exper-
imental results, a sweep signal was used to excite the system from 50 Hz to
200 Hz. This was done to reduce the experiments duration. Also, the experiment
was done with no rotor speed.

The experiment results are shown in Figs. 12, 13 and 14. They show the
results of the baseline excitation in the x-direction. For better visualization
purpose, only the initial and final parts of the time-domain data are shown.
Figure 12a shows the displacement of actuator 1 in the x-direction. Its frequency-
domain representation is shown in Fig. 12c, where the flat amplitude represents
an equally distributed signal over the excitation band. Figure 13a shows the force
in time-domain of actuator 1 in the x-direction. Its frequency-domain representa-

Fig. 13. Experimental results of the sweep excitation in the x-direction. The force
is measured at the actuator 1 in the x-direction. The seal displacement is the mean
displacement between actuator 1 and 2.
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Fig. 14. Direct and crfigoss-coupled impedance for the rotor during the baseline
operation.

tion is shown in Fig. 13c. The force does not show a constant amplitude because
of the actuator and rotor dynamics over the excitation band. The actuator force
decreases over the frequency for a constant excitation. The baseline impedances
are shown in Fig. 14. Figures 14a and d show the direct impedances in the x and
y directions. Figures 14b and c show the cross-couple impedances.

The results for high frequencies are affected considerably by the measurement
noise. This occurred because the force and displacement amplitudes decrease
with the frequency, which decreases the signal-to-noise value. Thus, only the
impedances from 50 Hz to 100 Hz are shown. In order to overcome the problem,
a estimator (such as H1, H2, H3, etc.) can be used to reduce the effect of the noise
on the results. Also, a excitation signal can be designed to increase its amplitude
with the frequency. Nevertheless, as the seal-to-rotor clearance is small, rubbing
phenomenon may occur.

7 Conclusions

The construction of a test rig for annular gas seals brings important benefits
to the area of oil & gas as they use rotating machines in several processes.
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Centrifugal compressors are one of those machines, and their correct operation
depends on different components. This paper focused on the annular gas seals,
which can destabilize rotating machines during operation. In order to estimate
the seals parameters, the design of a test rig was shown. Two labyrinth seals are
placed inside the rig and they are excited using two electromagnetic actuators.

An identification methodology to estimate annular gas seals was proposed.
As the rotor is flexible, two ball bearings were placed on both ends, and two
electromagnetic actuators were placed symmetrically closed to the seals. The
identification method is based on computing a impedance matrix by exciting
the rotor in two orthogonal directions.

Numerical results were shown to test the identification method before using
experimental data. The deterministic model of the rotor was created using a
finite-element model with Euler-Bernoulli beams. The response was computed
considering a small unbalance force and electromagnetic forces. The seal dis-
placement measurements were computed using the exact solution with an addi-
tive gaussian noise. That data was used in the identification method to estimate
the direct and crossed-couple stiffness, and the direct and cross-couple damp-
ing of the seal. As the measurement were considered as random variables, the
method was tested using 100 samples for two different excitation frequencies.
Finally, statistics for each parameters were computed, showing that the variance
and error between the mean value and the exact value are small.

Preliminary results of the identification method were shown. Experimen-
tal force, current, displacement and voltage signals were shown to explain the
behavior of the machine during the baseline operation. The sweep signal excita-
tion reduced the experiments time by varying the frequency of a harmonic wave
between a frequency band. Finally, the impedances of the rotor were computed
to show the behavior for different excitation frequencies. Because of the rotor
and actuator dynamics, the excitation amplitude near 200 Hz is too slow com-
pared to the noise, and thus, the impedances are not reliable. As a future work,
the impedances will be computed using different estimators as H1, H2 or H3,
in order to enhance the results on noisy measurements. Also, the impedances
will be computed with different rotor speed, excitation frequencies and pressure
drops.

Acknowledgements. The authors would like to thank the support of the Brazilian
agencies CNPq, CAPES and FAPERJ.

References

1. Chiba, A., Fukao, T., Ichikawa, O., Oshima, M., Takemoto, M., Dorrell, D.G.:
Magnetic Bearings and Bearingless Drives. Elsevier, New York City (2005)

2. Childs, D., Hale, K.: A test apparatus and facility to identify the rotordynamic
coefficients of high-speed hydrostatic bearings. J. Tribol. 116(2), 337–343 (1994)

3. Childs, D.W., Scharrer, J.K.: An Iwatsubo-based solution for labyrinth seals: com-
parison to experimental results. J. Eng. Gas Turbines Power 108(2), 325 (1986)

4. Cochrane, W.W.: New-generation compressors injecting gas at Ekofisk, pp. 63–70



176 D. Maldonado et al.

5. Dietzen, F.J., Nordmann, R.: Calculating rotordynamic coefficients of seals by
finite-difference techniques. J. Tribol. 109(3), 388–394 (1987)

6. Iwatsubo, T., Takahara, K., Kawai, R.: A new model of labyrinth seal for prediction
of the dynamic force. In: Rotordynamic Instability Problems in High-Performance
Turbomachinery, College Station, TX, May, pp. 28–30 (1984)

7. Lee, C.W.: Mechatronics in Rotating Machinery. Vienna, Austria (2006)
8. Nordmann, R.: Identification techniques in rotordynamics. Diagnostics of Rotating

Machines in Power Plants. International Centre for Mechanical Sciences, vol. 352,
pp. 1–24. Springer, Vienna (1994)

9. San Andrés, L., De Santiago, O.C.: Identification of bearing force coefficients
from measurements of imbalance response of a flexible rotor. In: ASME Turbo
Expo 2004: Power for Land, Sea, and Air, pp. 843–850. American Society of
Mechanical Engineers (2004). http://proceedings.asmedigitalcollection.asme.org/
proceeding.aspx?articleid=1637661

10. Schweitzer, G., Maslen, E.H.: Magnetic Bearings: Theory, Design, and Application
to Rotating Machinery. Springer, Heidelberg (2009)

11. Smith, K.: An operational history of fractional frequency whirl. In: Proceedings,
4th Turbomachinery Symposium, pp. 115–125 (1974)

12. Vannini, G., Cioncolini, S., Calicchio, V., Tedone, F.: Development of a high pres-
sure rotordynamic test rig for centrifugal compressors internal seals characteriza-
tion. In: Proceedings of the Fortieth Turbomachinery Symposium, Houston, TX,
September, pp. 12–15 (2011)

13. Wagner, N.G., Steff, K., Gausmann, R., Schmidt, M.: Investigations on the
dynamic coefficients of impeller eye labyrinth seals. In: Proceedings of the Thirty-
Eighth Turbomachinery Symposium, Houston, TX, September, pp. 14–17 (2009)

14. Wyssmann, H.R., Pham, T.C., Jenny, R.J.: Prediction of stiffness and damping
coefficients for centrifugal compressor labyrinth seals. J. Eng. Gas Turbines Power
106(4), 920 (1984)

http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1637661
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1637661


The Classical Linearization Technique’s
Validity for Compliant Bearings

Sebastian von Osmanski1, Jon S. Larsen2, and Ilmar F. Santos1(B)

1 Technical University of Denmark, Kongens Lyngby, Denmark
ifs@mek.dtu.dk

2 GEA Process Engineering A/S, Søborg, Denmark

Abstract. The Gas Foil Bearing (GFB) is a promising and environ-
mentally friendly technology allowing support of high-speed rotating
machinery with low power loss and without oil or electronics. Unfor-
tunately, GFBs provide limited damping, making an accurate predic-
tion of the Onset Speed of Instability (OSI) critical. This has tradi-
tionally been assessed using linearised coefficients derived from the per-
turbed Reynolds Equation with compliance included implicitly. Recent
work has, however, revealed significant discrepancies between OSIs pre-
dicted using these techniques and those observed from nonlinear analysis.
In the present work, the perturbation method’s underlying assumption
on the pressure field is investigated by including the hitherto neglected
pressure–compliance dependency directly. This leads to an extended per-
turbation akin to that commonly applied to tilting pad bearings and is
shown to predict OSIs with much better agreement to time integration
results. The extended perturbation method is cumbersome, but serves to
highlight the error introduced when applying the classical perturbation
method—as developed for rigid bearings by J. W. Lund—to GFBs.

Keywords: Gas Foil Bearings · Pertubation · Stability

1 Introduction

Due to the limited damping provided by GFBs, an accurate prediction of the
Onset Speed of Instability (OSI) remains critical to their application. In order
to predict the lateral vibration response of GFB-supported rotors, and hence
their stability, it is possible to apply linear [6,8–11,13,16,19,24] as well as non-
linear [1–3,7,12,20] approaches. In the linear approach, the gas film forces are
fundamentally represented by equivalent springs and dampers with coefficients
derived from a linearisation of the Reynolds Equation (RE) around one or
several states of equilibrium. The calculation of such gas film coefficients can
be achieved by a numerical perturbation or analytically as proposed by Lund
[17]. Peng and Carpino [19] were among the first to apply Lund’s perturbation
technique to GFBs and such analyses have since been performed by numerous
authors [6,10,24]. Some of these have furthermore compared their results to
c© Springer Nature Switzerland AG 2019
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nonlinear analyses showing varying levels of agreement. In recent work by the
authors [14], this has been investigated by comparing the OSI of an industrial
GFB-supported rotor predicted from the classical frequency domain technique to
the stability limits observed from nonlinear time integration. Here, using equiva-
lent numerical implementations for the two approaches, a significant discrepancy
was demonstrated and shown to be increasing with the level of compliance.

A possible root cause of the observed disagreement can be found in a primary
assumption of the classical perturbation approach, namely that the pressure field
depends exclusively on the rotor position and velocity. Assuming subsequently
the rotor to perform small harmonic oscillations, a Taylor series expansion can be
inserted into RE to solve for the eight bearing stiffness and damping coefficients.

In the present work, the importance of the—thus far neglected—pressure–
compliance dependency is investigated. The pressure field is thus assumed to
depend not only on the rotor position and velocity, but also on the degrees of
freedom (DOFs) representing the foil deflection. This additionally requires the
solution of a dynamic pressure field for each of the foil DOFs and hence pro-
vides a coefficient matrix with contributions from each of these, analogous to the
coefficient matrices often used for tilting pad journal bearings. Using a simple
and widely studied GFB configuration [21] supporting a point mass as starting
point, OSI predictions from the extended perturbation method are compared to
results from both a classical perturbation method and a simultaneous nonlinear
time integration. These two reference models are identical to those previously
presented by the authors [11,12,14] and have been experimentally validated.
It should be emphasized that the vibrations occurring at the investigated OSI
stems from a self-excited instability and thus are related exclusively to the homo-
geneous part of the equation system. This should not be confused with the onset
of forced subsynchronous vibrations caused by the unbalance excitation in con-
junction with the nonlinear GFB characteristics. The appearance of the latter
is influenced by the level of unbalance, while the former is not.

The additional terms included in the extended perturbation multiplies the
effort needed to attain the bearing coefficients and complicates their subsequent
interpretation, but the extension is demonstrated to provide results in much
better agreement to those obtainable from nonlinear time integration. The chal-
lenges of the extension are discussed and the significance of the foil–compliance
terms is treated to illuminate the error introduced when neglecting them. In
this sense, the novel contribution of the present work is to identify the limits of
validity for the classical perturbation method with respect to compliance.

2 The Extended Perturbation Method

In addition to the eccentricities, the pressure field p is assumed to depend on N
DOFs. These dependencies can be collected in the vector q as

q =
{
ex ey w1 · · · wN

}T ∈ R
2+N , (1)
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where ex and ey are the rotor eccentricity components and wj denotes the j-th
foil compliance DOF. Using Eq. (1), a first order Taylor series expansion of the
pressure field around a state (q0, q̇0) can be written as

p = p (q, q̇) ≈ p (q0, q̇0) +
∂p

∂q

∣
∣
∣
q0,q̇0

(q − q0) +
∂p

∂q̇

∣
∣
∣
q0,q̇0

(q̇ − q̇0) . (2)

Defining q0 as the stationary point where q̇ = 0, and assuming all DOFs to
exhibit small harmonic oscillations around this point with frequency ωs as

eγ = eγ0 + Δeγeiωst, γ = x, y and wj = wj0 + Δwje
iωst, j = 1, . . . , N, (3)

the pressure field expansion from Eq. (2) becomes

p = p0 + pxΛx + pyΛy +
N∑

j=1

pwj
Λj , (4)

where

p0 = p (q0) , (5)

pγ =
(

∂p

∂eγ

∣
∣
∣
q0

+ iωs
∂p

∂ėγ

∣
∣
∣
q0

)
, γ = x, y, (6)

pwj
=

(
∂p

∂wj

∣
∣
∣
q0

+ iωs
∂p

∂ẇj

∣
∣
∣
q0

)
, j = 1, . . . , N, (7)

Λγ = Δeγeiωst, γ = x, y, (8)

Λj = Δwje
iωst, j = 1, . . . , N, (9)

so that p0 ∈ R and pγ , pwj
, Λγ , Λj ∈ C.

2.1 The Film Height Function

For the present purpose of investigating the pressure–compliance dependency,
the rotor is assumed to be perfectly aligned and the foil is assumed to deform
uniformly in the axial direction. Axial film height variations are hence neglected
and the film height function becomes one-dimensional. This has previously been
shown to be reasonable [23], but the proposed perturbation method is not
restricted to such assumptions.

Referring to Fig. 1b, the film height is composed of a rigid contribution,

hr = C + ex cos θ + ey sin θ, (10)

and a compliant contribution hc stemming from the deformation of the foil
structure. It is hence necessary to establish a relation between the foil DOFs
wj and the deformed shape of the top foil. The foil DOFs could be representing
Fourier series amplitudes or polynomial coefficients, but for now they will repre-
sent discrete point deformations directly such that wj = hc (θj). To simplify the
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Ω

Fig. 1. (a) Weight function associated with the j-th foil compliance DOF; (b) Schemat-
ics of the GFB and illustration of the perturbed DOFs.

numerical implementation, the points θj are furthermore chosen to be coincident
with the circumferential discretization of the fluid film.

In order to evaluate the deformed shape between the discrete points, a simple
linear interpolation is applied that is consistent with the linear shape functions
applied for the finite element (FE) discretization of RE. A weight function is
hence defined for each foil DOF as illustrated in Fig. 1a and given as

Wj (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

θ−θj−1
θj−θj−1

if θj−1 < θ < θj

θj+1−θ
θj+1−θj

if θj ≤ θ < θj+1

0 otherwise,

(11)

such that the continuous compliant film height contribution can be written as

hc =
N∑

j=1

wjWj (θ) . (12)

This finally allows, when introducing the perturbations from Eq. (3), the per-
turbed film height to be written as

h = hr + hc = h0 + Λx cos θ + Λy sin θ +
N∑

j=1

ΛjWj (θ) (13)

where the static film height h0 is given from

h0 = C + ex0 cos θ + ey0 sin θ +
N∑

j=1

wj0Wj (θ) . (14)
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2.2 Perturbation of Reynolds Equation

Defining the circumferential and axial coordinates Θ = θR and z in a bearing
with radius R, the isothermal, compressible and transient RE can be written as

∂

∂Θ

(
ph3

12μ

∂p

∂Θ

)
+

∂

∂z

(
ph3

12μ

∂p

∂z

)
=

∂

∂Θ
(phU) +

∂

∂t
(ph) , (15)

where μ is the gas viscosity and U = RΩ/2 is the circumferential gas film
velocity. Substituting Eqs. (4) and (13) into Eq. (15) while neglecting higher order
terms, the zeroth and first order equations can be separated. The zeroth order
equation obtains the familiar form

∂

∂Θ

(
p0h

3
0

12μ

∂p0

∂Θ

)
+

∂

∂z

(
p0h

3
0

12μ

∂p0

∂z

)
=

∂

∂Θ
(p0h0U) , (16)

while the two first order equations for px and py can be written as

∂

∂Θ

(
p0h

3
0

12μ

∂pγ

∂Θ

)
+

∂

∂z

(
p0h

3
0

12μ

∂pγ

∂z

)
+

∂

∂Θ

(
pγh3

0

12μ

∂p0

∂Θ

)
+

∂

∂z

(
pγh3

0

12μ

∂p0

∂z

)
− ∂

∂Θ
(pγh0U) − iωspγh0 = − ∂

∂Θ

(
p0h

2
0fγ

4μ

∂p0

∂Θ

)

− ∂

∂z

(
p0h

2
0fγ

4μ

∂p0

∂z

)
+

∂

∂Θ
(p0Ufγ) + iωsp0fγ , γ = x, y,

(17)

where fx = cos θ and fy = sin θ, and, finally, the N first order equations for pwj

related to the foil DOFs become

∂

∂Θ

(
p0h

3
0

12μ

∂pwj

∂Θ

)
+

∂

∂z

(
p0h

3
0

12μ

∂pwj

∂z

)
+

∂

∂Θ

(
pwj

h3
0

12μ

∂p0

∂Θ

)
+

∂

∂z

(
pwj

h3
0

12μ

∂p0

∂z

)
− ∂

∂Θ

(
pwj

h0U
) − iωspwj

h0 = − ∂

∂Θ

(
p0h

2
0Wj

4μ

∂p0

∂Θ

)

− ∂

∂z

(
p0h

2
0Wj

4μ

∂p0

∂z

)
+

∂

∂Θ
(p0UWj) + iωsp0Wj , j = 1, . . . , N.

(18)

2.3 The Coefficient Matrix

Having obtained p0, pγ and pwj
by a suitable numerical solution scheme, these

can be integrated to obtain the fluid film forces f . Using Eq. (4), these can be
written as

f =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ L

0

∫ 2π

0
(p − pa)

{
cos θ
sin θ

}
Rdθdz

∫ L

0

∫ θ1+
1
2Δθ1

θ1− 1
2Δθ1

(p − pa) Rdθdz

...
∫ L

0

∫ θN+ 1
2ΔθN

θN− 1
2ΔθN

(p − pa) Rdθdz

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= f0 +
[
Zee Zew

Zwe Zww

]
q̃eiωst, (19)
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where the static force is given as the vector

f0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ L

0

∫ 2π

0
(p0 − pa)

{
cos θ
sin θ

}
Rdθdz

∫ L

0

∫ θ1+
1
2Δθ1

θ1− 1
2Δθ1

(p0 − pa) Rdθdz

...
∫ L

0

∫ θN+ 1
2ΔθN

θN− 1
2ΔθN

(p0 − pa) Rdθdz

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

∈ R
2+N , (20)

and the dynamic forces are expressed in terms of the perturbation vector

q̃ =
{
Δex Δey Δw1 · · · ΔwN

}T ∈ R
2+N , (21)

along with the matrix Z with blocks given as

Zee =
∫ L

0

∫ 2π

0

[
px cos θ py cos θ
px sin θ py sin θ

]
Rdθdz ∈ C

2×2, (22)

Zew =
∫ L

0

∫ 2π

0

[
pw1 cos θ · · · pwN

cos θ
pw1 sin θ · · · pwN

sin θ

]
Rdθdz ∈ C

2×N , (23)

Zwe =

⎡

⎢
⎢
⎢
⎣

∫ L

0

∫ θ1+
1
2Δθ1

θ1− 1
2Δθ1

[
px py

]
Rdθdz

...
∫ L

0

∫ θN+ 1
2ΔθN

θN− 1
2ΔθN

[
px py

]
Rdθdz

⎤

⎥
⎥
⎥
⎦

∈ C
N×2, (24)

Zww =

⎡

⎢
⎢
⎢
⎣

∫ L

0

∫ θ1+
1
2Δθ1

θ1− 1
2Δθ1

[
pw1 · · · pwN

]
Rdθdz

...
∫ L

0

∫ θN+ 1
2ΔθN

θN− 1
2ΔθN

[
pw1 · · · pwN

]
Rdθdz

⎤

⎥
⎥
⎥
⎦

∈ C
N×N . (25)

Finally, Z is related to the dynamic stiffness and damping coefficients as

Kfluid = Re (Z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

kxx kxy kxw1 · · · kxwN

kyx kyy kyw1 · · · kywN

kw1x kw1y kw1w1 · · · kw1wN

...
...

...
. . .

...
kwNx kwNy kwNw1 · · · kwNwN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(2+N)×(2+N), (26)

Dfluid =
1
ωs

Im (Z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

dxx dxy dxw1 · · · dxwN

dyx dyy dyw1 · · · dywN

dw1x dw1y dw1w1 · · · dw1wN

...
...

...
. . .

...
dwNx dwNy dwNw1 · · · dwNwN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(2+N)×(2+N). (27)

2.4 Including the Foil Stiffness and Damping

The bearing coefficients in Eqs. (26) and (27) are derived from the dynamic
pressure fields and thus contain merely the contributions from the fluid film.
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When evaluating the displacement of the j-th foil DOF from its equilibrium wj0,
the stiffness and damping of the foil itself should furthermore be considered.

Various elaborate foil structure models are available in the literature [4,15,
18,22], but the added complexity of these would not benefit the present com-
parison. Instead, the Simple Elastic Foundation Model (SEFM), as introduced
by Heshmat et al. [5], is employed with a uniform baseline stiffness derived from
the widely applied expression by Walowit and Anno [25]

k =
Eb

2Sb

(
tb
l0

)3 (
1 − ν2

b

)−1
, (28)

where Eb, Sb, tb, l0 and νb are the bump foil’s Young’s modulus, pitch, thick-
ness, half bump length and Poisson’s ratio, respectively. The damping is assumed
viscous and expressed simply as d = kη/ωs where η is a loss factor. A fundamen-
tal assumption of the SEFM is that all points in the foil behave independently,
meaning that the foil structure is assumed not to contribute any cross couplings.
Furthermore, the foil is not directly affecting the ex, ey DOFs, meaning that the
stiffness and damping matrices stemming from the bump foil can be written as

Kfoil = LRk diag
[
0 0 Δθ1 · · · ΔθN

] ∈ R
(2+N)×(2+N),

Dfoil = ηω−1
s Kfoil ∈ R

(2+N)×(2+N),
(29)

where L is the axial length of the bearing and Δθj is the angular segment
ascribed to the j-th foil DOF as illustrated in Fig. 1b.

2.5 The Mass Matrix

The rotor is modelled as a point mass, implying that neither polar nor transverse
inertia is considered. Combining the rotor mass with a rough estimate of the foil
mass ascribed to each foil DOF, the system mass matrix is constructed as

M = diag
[
mx my m′

foilRΔθ1 · · · m′
foilRΔθN

] ∈ R
(2+N)×(2+N), (30)

where mx = my is the rotor mass and m′
foil is the average mass of the foil

structure per unit circumferential length.

2.6 System Assembly

Combining Eqs. (26), (27), (29) and (30), the linearised 2 + N equations of
motion for the rotor–bearing system can be written as

M¨̃q + (Dfoil + Dfluid)
︸ ︷︷ ︸

≡D(ωs,Ω)

˙̃q + (Kfoil + Kfluid)
︸ ︷︷ ︸

≡K(ωs,Ω)

q̃ = 0, (31)

which can be recast into first order form using the state vector z =
{
q̃ ˙̃q

}T
as

ż =
[

0 I
M−1K (ωs, Ω) M−1D (ωs, Ω)

]

︸ ︷︷ ︸
≡A(ωs,Ω)

z, (32)

where 0 and I denote (2 + N)×(2 + N) zero and identity matrices, respectively.
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3 Review of the Classical Two-DOF Perturbation

To emphasize the novel aspects of the proposed extended perturbation, a brief
review of the traditional two-DOF approach employed with variations by e.g.
[6,8–11,13,16,19,24] is included. As originally introduced in the appendix of
[17], a fundamental assumption is for the pressure field to be given as a function
of rotor position and velocity only. This means that a Taylor expansion leads to
a perturbed pressure field given as

p = p0 + pxΛx + pyΛy, (33)

which should be compared to Eq. (4) of the extended perturbation. The foil
compliance is then introduced implicitly through the film height function as

h = C + ex cos θ + ey sin θ + fhc
(p) , (34)

where fhc
(p) is some function supplying the compliant film height as a function

of pressure. For the SEFM incorporating a loss factor, this would be

fhc
(p) = k−1

c (p − pa) where kc = k (1 + iη) . (35)

Inserting the film height Eq. (34) and perturbed pressure Eq. (33) into RE
from Eq. (15), equations for p0 and pγ can be separated. The zeroth order equa-
tion is identical to the one obtained for the extended perturbation in Eq. (16),
while the first order equations for pγ become

∂

∂Θ

(
p0h

3
0

12μ

∂pγ

∂Θ

)
+

∂

∂z

(
p0h

3
0

12μ

∂pγ

∂z

)
+

∂

∂Θ

(
pγh2

0

(
h0 +

[
3p0k

−1
c

])

12μ

∂p0

∂Θ

)

+
∂

∂z

(
pγh2

0

(
h0 +

[
3p0k

−1
c

])

12μ

∂p0

∂z

)

− ∂

∂Θ

(
pγ

(
h0 +

[
p0k

−1
c

]))
U

−iωspγ

(
h0 +

[
p0k

−1
c

])
= − ∂

∂Θ

(
p0h

2
0fγ

4μ

∂p0

∂Θ

)

− ∂

∂z

(
p0h

2
0fγ

4μ

∂p0

∂z

)
+

∂

∂Θ
(p0Ufγ) + iωsp0fγ , γ = x, y

(36)

where
h0 = C + ex0 cos θ + ey0 sin θ + k−1

c (p0 − pa) . (37)

which should be compared to Eq. (17) of the extended perturbation (the differ-
ences are framed in square brackets). The classical technique hence requires the
solution of a nonlinear equation for p0 and two linear complex equations for pγ

from which the bearing coefficients can be extracted as
[
kxx kxy

kyx kyy

]
+ iωs

[
dxx dxy

dyx dyy

]
=

∫ L

0

∫ 2π

0

[
px cos θ py cos θ
px sin θ py sin θ

]
Rdθdz ∈ C

2×2, (38)

involving only the two rotor DOFs (per bearing).
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4 Solution Strategy

The zeroth order Eq. (16) is a nonlinear real equation in p0 where h0 is given
from Eq. (14). The assumption of an axially uniform deformation combined with
the SEFM means that when solving for p0, the discrete foil compliance wj is
calculated in each iteration from the local mean axial static pressure as

wj =
1
k

(
1
L

∫ L

0

p0(θj)dz − pa

)

. (39)

The zeroth order equation is identical to that presented by the authors in [11] and
the same solution strategy based on an FE discretization and Newton-Raphson
iteration is employed. Notice that sub-ambient pressures are discarded when
integrating the pressure fields (the Gümbel condition). As described in [11], this
is meant to represent the effect of the top foil separation from the bump foil [5].

The 2 + N first order Eqs. (17) and (18) for pγ and pwj are linear com-
plex equations which are solved using the FE discretization documented in [11].
Notice that while [11] treats the solution to the pγ equations produced by an
implicit treatment of the foil compliance as in Eq. (36), this collapses into Eq. (17)
for k−1

c = 0 and the same solution method can be applied.
A converged mesh of 17 axial (over half the bearing length, as symmetry is

exploited) and 114 circumferential elements is used giving 2070 nodes. The num-
ber of circumferential locations, and hence the number of pwj

equation systems
to be solved, is thus N = 115.

5 Results and Discussion

The proposed method is evaluated by predicting the OSI for the simplest pos-
sible case of a point mass supported by a single-pad GFB in the widely studied
configuration [21] listed in Table 1. The OSI is calculated using: (a) a simulta-
neous nonlinear time integration; (b) a classical two-DOF perturbation; and (c)
the proposed extended perturbation. For the present bearing, Eq. (28) predicts a
foil stiffness of 4.6417 GN/m3 (case 2) which is evaluated along with a practically
rigid (case 1: 4641.7 GN/m3) and a more flexible (case 3: 2.3209GN/m3) variant.
To put these stiffness levels into perspective, the maximum static foil deflection
in the three cases at 20 kRPM are 0.00, 0.21 and 0.40 times C respectively.

5.1 Stability Analysis: Frequency Domain

To assess the linear stability limit of the rotor system described by Eq. (32), a
solution on the standard form z̃ = z̃0e

λt is substituted to produce the standard
eigenvalue problem A (ωs, Ω) z̃ = λz̃. Having solved this, an eigenvalue λi with
positive real part then indicates the corresponding eigenmode z̃i to be unstable.

Applying the classical two-DOF perturbation to a single bearing with coef-
ficients given from Eq. (38), four eigenvalues in complex conjugated pairs are
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Table 1. Properties of the GFB configuration, mainly from [21].

Journal

Load, Wx = mxg 30 N Mass, m = mx = my 3.059 kg

Bearing configuration

Bearing radius, R 19.05 mm Pad leading edge, θl 0◦

Bearing length, L 38.10 mm Pad trailing edge, θt 360◦

Radial clearance, C 31.80µm

Fluid properties

Ambient pressure, pa 101.3 kPa Viscosity, μ 1.950 × 105 Pa s

Foil structure properties

Foil thickness, tb 0.1016 mm Bump pitch, Sb 4.572 mm

Bump half length, l0 1.778 mm Bump height, hb 0.5080 mm

Young’s modulus Eb 207.0 GPa Poisson’s ratio, νb 0.3

Density, ρb 8280 kg/m3 Loss factor, η 0.2

obtained. By contrast, the extended perturbation in its current implementa-
tion and with the applied mesh results in 2 (2 + 115) = 234 eigenvalues. As the
eigenvalues of both methods depend on the oscillation frequency and the angular
velocity, the stability limit, i.e. the OSI, is characterised by the condition

Re (λi (ωs, Ω = ΩOSI)) = 0 ∧ Im (λi (ωs, Ω = ΩOSI)) = ωs, (40)

requiring the eigenvalue problem to be solved over a range of excitation frequen-
cies and angular velocities. Here it should be highlighted that one should keep
track of the eigenvalue order in between the (ωs, Ω) evaluation points. This is
a trivial task for the two complex conjugated pairs arising from the two-DOF
approach, but becomes a significant challenge for the 117 pairs obtained from
the extended perturbation. At present, this has been handled by comparing the
structure of the corresponding eigenvectors.

The result is shown in Fig. 2, where the contours of the logarithmic decrement
(LD) δ = −2πRe (λ) /Im (λ) is plotted along with a single contour showing the
concurrence of the excitation frequency ωs and the damped natural frequency
ωd = Im (λ). The crossing of the δ = 0 contour is exactly where Eq. (40) is
fulfilled and thus marks the OSI. The shown plot is for one of the two eigenmodes
dominated by the rotor and is the one first becoming unstable. The mass of the
foil from Eq. (30) used in the eigenvalue solution is a rough estimate, but it has
been verified that this has a vanishing influence on the OSI.

A similar plot is shown in Fig. 3, but obtained using the traditional two-DOF
perturbation method. The maps are similar, but the OSI is shifted more than
4kRPM and it is worth emphasizing the difference in computational cost. While
both stability maps are based on solutions to 2805 eigenvalue problems, the
extended perturbation requires solving 117 2070× 2070 complex linear equation
systems to obtain the coefficients forming each of the 234×234 eigenvalue prob-



The Classical Linearization Technique’s Validity for Compliant Bearings 187

100 200 300 400
ωs (Hz)

10000

15000

20000

25000

30000

35000

Ω
(R

P
M

)

Syn
chr

ono
us

-0.0
5

0.00

0.05

ω
s

=
ω
d

−0.338

−0.050

0.000

0.050

1.516

δ
(–
)

Fig. 2. Case 3 stability map based on the extended perturbation and eigenvalue solu-
tions over a 51 × 55 (ωs, Ω) grid. The OSI is marked at (92.8 Hz, 27 424 RPM).

lems to be solved. In the traditional perturbation, each eigenvalue problem is
merely 4 × 4 and the coefficients can be extracted from just two complex linear
equation system solutions. The effort related to solving the zeroth order equa-
tion for each value of Ω is, however, the same for both methods. For the current
implementation, the two-DOF perturbation calculations for Fig. 3 take around
45 s while the extended perturbation calculations for Fig. 2 take 10 times longer.

5.2 Stability Analysis: Time Domain

In the nonlinear sense, the stability limit is characterised by a breakdown of
structural stability due to a small change in the angular velocity. At this point,
the system Jacobian evaluated at the singular point representing the static equi-
librium obtains an eigenvalue with zero real part. After this point, the behaviour
will be governed by the system’s nonlinear characteristics and should not be
compared to the linear solutions.

To assess the stability limit, Eq. (15) is FE discretized and simultaneously
integrated in time with zero unbalance as described in [14]. The implementation
has been carefully aligned to that used when solving the perturbed equations.
A time integration can hence be started from the static equilibrium found from
Eq. (16) and the development of the oscillation amplitude can be observed. Such
analysis is, however, subject to several challenges. First, even for an asymptoti-
cally stable state, the vibration amplitude of a numerical integration will never
reach zero. Instead, it converges towards a noise floor specific to the numerical
implementation. Initiating a time integration from a static equilibrium will hence
always imply some oscillation. Second, even before the true structural stability
limit is reached at Ω = ΩOSI, the static equilibrium state’s basin of attraction
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Fig. 3. Case 3 stability map based on the two-DOF perturbation and eigenvalue solu-
tions over a 51 × 55 (ωs, Ω) grid. The OSI is marked at (95.7 Hz, 31 769 RPM).

will gradually narrow, increasing the possibility that an incidental numerical
perturbation will push the system away from the stable equilibrium.

To demonstrate the uncertainty related to the OSI using time integration, 1 s
simulations have been initialized from their static equilibria for every 10 RPM in
the range 23–25 kRPM. For each response it is easy to judge whether the oscilla-
tion remains within the numerical noise level or grows exponentially. In Fig. 4a,
it is shown that some responses grow exponentially from around 23 kRPM, but
that this is not persistent until 25.5 kRPM. This is, however, highly dependent
on the tolerances applied in both the steady state solver and the subsequent
time integration. More consistent results were found to be achievable when per-
turbing the static eccentricity just enough to leave the numerical noise floor. An
initial perturbation of 10−10 on the eccentricity ratio (= 31.8 × 10−16 m) thus
results in tiny, but very clean oscillations from which the decay or growth can
be identified. Plotting the LD obtained from curve fitting to each time series
shows a monotonically decreasing curve with a distinct zero-crossing as shown
in Fig. 4b. The OSI identified using this method is denoted Ω̃OSI to distinguish it
from the more firmly defined OSI resulting from the frequency domain analysis.

5.3 Comparison of OSIs

The OSIs obtained using the perturbation methods and time integration are
listed in Table 2 for all three cases of foil stiffness. The excitation frequencies at
the OSI are likewise listed for comparison. For the time integration, the latter
has been extracted from frequency spectra based on 5 s simulations at angular
frequencies slightly above Ω̃OSI. The relative OSI discrepancies are plotted in
Fig. 5 as a function of foil flexibility, and the extended perturbation is seen to
provide results better in agreement with the nonlinear time integration results.
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Fig. 4. (a) Stability of static equilibria judged from 1 s simulations for every 10 RPM
(case 2); (b) LDs obtained by curve fitting to 0.25 s simulation after a rotor perturbation
of C × 10−10 = 31.8 × 10−16 m for every 10 RPM (case 2).

Table 2. Comparison of obtained OSIs

Case Foil stiffness Time integration Two-DOF perturb. Extended perturb.

k
(
GN/m3

)
Ω̃OSI (RPM) ω̃s (Hz) ΩOSI (RPM) ωs (Hz) ΩOSI (RPM) ωs (Hz)

1 4641.7 20 868 112.8 21 731 107.5 21 731 107.5

2 4.6417 24 015 101.8 27 868 103.4 24 987 101.0

3 2.3209 25 118 91.7 31 769 95.6 27 424 92.8

0.0 0.1 0.2 0.3 0.4

Flexibility k−1 (m3/GN)

1.1

1.2 16%
26%

4.1% 4%
9.2%

Two-DOF

Extended

Fig. 5. Foil structure flexibility versus the discrepancy in the predicted OSI relative to
the time integration result for both perturbation methods.

6 Conclusion

Discrepancies in OSI between the traditional perturbation approach and time
integration results were pointed out in [14], and this was postulated to be caused
by a deficiency in the pressure expansion. This has been investigated in the
present work by carrying through the perturbation method while including the
additional pressure–compliance terms in the Taylor expansion. In the presented
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form, these terms are treated straightforwardly using a high number of discrete
foil deflections leading to a rather comprehensive model. This approach is debat-
able, as are the concrete choices of GFB properties and numerical schemes. The
extended perturbation method has, however, been demonstrated to predict OSIs
in much better agreement to time integration results, indicating the pressure–
compliance terms to be significant.

Irrespective of the physical interpretation of the foil DOFs and their sub-
sequent implementation, the fluid film coefficients affecting each foil DOF are
eventually added to the contribution from the foil structure itself. The signifi-
cance of the pressure–compliance terms will hence decrease for an increasingly
stiff foil structure, matching the expectation for the two–DOF perturbation to
be adequate for rigid bearings. This has also been demonstrated to be the case
using the present implementation, as the methods converge for a very stiff foil.

When lowering the foil stiffness, the significance increases as the discrepancy
of the two-DOF method grows and the two perturbation methods diverge. The
baseline discrepancy of around 4% is ascribed to the determination of the time
integration OSI, while the increased inconsistency of 9.2% for case 3 should be
further investigated. The agreement is, however, still significantly better than
the 26% discrepancy of the classical two-DOF method.

In conclusion, caution should be exercised if the classical perturbation
method is applied to compliant bearings and the OSI of these should rather
be assessed using either nonlinear methods or an extended perturbation as pre-
sented here.
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Abstract. Gas seals are important components in turbomachines to
guarantee high internal efficiency by restricting undesired leakage flows.
Moreover, it is important to identify their rotordynamic force coefficients
for the use in rotordynamic analyses of turbomachinery. Experimental
methods to determine the full set of rotordynamic coefficients require
a relative motion between rotor and stator, e.g. using Active Magnetic
Bearing (AMB) technology. A unique approach is used in the present
test rig, where a single AMB is used as an exciter on a flexible rotor sup-
ported by two fluid film bearings. Following an AMB upgrade, a new mea-
surement principle was introduced based on the mechanical impedance
method. The present paper describes the upgrade measures on the test
rig, the measurement procedure and the parameter identification method
along with a calculation scheme for the combined measurement uncer-
tainty. First measurements on a fully partitioned pocket damper seal are
performed to validate the new hardware and parameter identification
procedure.

Keywords: Gas seals · Rotordynamic force coefficients
Active magnetic bearing

1 Introduction

Gas seals are important components in various types of turbomachines to restrict
undesired leakage flows between adjacent regions of different pressures while
accommodating high relative surface speeds. This guarantees high internal effi-
ciency by a more effective use of working fluid and the suppression of secondary
flows. However, turbomachinery seals can significantly influence the vibration of
a rotordynamic system due to the aerodynamic forces arising from the gas flow
within the sealing cavities and gaps.

Aerodynamic seal forces might be small compared to the forces in bear-
ings, but their circumferential components can have a pronounced destabilizing
effect. The impact of seals on rotordynamics is supported by the fact that they
are possibly close to the maximum amplitude spot of different rotordynamic
c© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 60, pp. 192–207, 2019.
https://doi.org/10.1007/978-3-319-99262-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_14&domain=pdf


Force Coefficients of Gas Seals 193

mode shapes. The potential for self-excited vibrations provoked by conventional
labyrinth seals were discovered decades ago [1–3]. Since then many experimental
and theoretical works were performed to analyze the effect of seals on system
stability.

The consideration of seal forces in rotordynamic analyses of turbomachines
is made possible when knowing the rotordynamic force coefficients of the respec-
tive seal configuration. These have to be determined on component level by
theoretical analysis and experiments.

1.1 Rotordynamic Force Coefficients of Gas Seals

Just as in oil bearings and liquid seals, the rotordynamic behavior of gas seals
depends on its inertial, stiffness and damping characteristics. These are quanti-
fied by introducing rotordynamic coefficients after linearizing aerodynamic reac-
tion forces which arise due to the gas flow in the seal cavities:
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with the rotor position x and y, the seal reaction force vector f and the
rotordynamic coefficient matrices M , C and K for added mass, damping and
stiffness.

The rotordynamic coefficients in Eq. (1) are first-order derivatives of aerody-
namic reaction components with respect to position, velocity, and acceleration
of the shaft center:
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The inertial (added-mass) coefficient matrix M might play an important role
in rotordynamic analysis, especially for liquid seals. For gas seals, the added-mass
coefficients are very small and are therefore usually neglected.

The cross-coupled damping Cxy is often not taken into account during the
dynamic analysis due to its small levels in annular gas seals and negligible effect
on the system’s rotordynamics.

For a direction-independent presentation of coefficients averaged values are
used:
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(3)

1.2 Impedance Method

Due to the harmonic relative motion of rotor and stator it is convenient to
identify the rotordynamic coefficients in the frequency domain by determining



194 C. Griebel

the transfer function of seal reaction forces and displacements. This approach is
often denominated as impedance method and will be described in the following.

For the experimental identification of rotordynamic force coefficients using
the impedance method, the seal forces and rotor displacements measured in the
time domain are Fourier transformed:

x(t) �Dx(ω) ẋ(t) � iω · Dx(ω) fx(t) �Fx(ω)

y(t) �Dy(ω) ẏ(t) � iω · Dy(ω) fy(t) �Fy(ω) (4)

This way the equation of motion (Eq. 1) is transferred into the frequency
domain:
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with the rotordynamic stiffness Kmn and damping Cmn coefficients intro-
duced above. As outlined above for the application in gas seals the mass terms
are neglected. This equation can be rearranged to yield the impedance matrix
H(ω):

[
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As there are only two equations for four unknowns in H(ω) ∈ C
(2×2), two

linear independent solutions are needed to solve Eq. (6). The resulting four equa-
tions are rearranged such that all components of H(ω) can be directly calculated
from two sets (1)/(2) of displacement and force data:
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Knowing all four impedances Hmn the rotordynamic force coefficients Kmn,
Cmn can be evaluated as their real and imaginary parts, respectively:[
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1.3 Experimental Methods

Different experimental approaches and parameter calculation methods for the
experimental determination of force coefficients in gas seals are documented in
the literature. The identification of both the stiffness and damping coefficients
in Eq. (1) requires a dynamic experiment with a relative motion between rotor
and stator, i.e. the seal. This can be reached by either exciting the rotor or the
stator to a harmonic motion.
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Stator Excitation. Few experimental approaches based on stator excitation
are reported for the investigation of gas seals.

Ransom et al. use piezoelectric load guns to excite the test seal housing in
two orthogonal directions. The test seal is located at the free end of a vertical
shaft supported by ball bearings. An iterative parameter identification method
in the frequency domain is used to calculate the direct stiffness and damping
coefficients [4].

Dawson, Childs et al. presented a test rig where a rigid rotor supported by
hydrodynamic bearings is surrounded by a housing containing two test seals in
a back-to-back arrangement. Two hydraulic shakers allow the excitation of the
test stator in two orthogonal directions. The reaction forces are measured with
load cells and combined with displacement and acceleration data to obtain the
impedance matrix [5].

The same test rig was also used for the identification of force coefficients
using pressure transducers which were directly integrated in the seal cavities.
One advantage of this method is that due to the direct identification of seal
reaction forces there is no need for a separate baseline test to correct for the
stator’s inertial forces [6].

Mechanical Rotor Excitation. Experimental methods which rely on rotor
excitation provide a closer modeling of the real application case and are described
in the following.

Decades ago, Wright reported on an approach based on measuring dynamic
rotor displacement. A vertical rotor is supported by ball bearings in a way that
it allows a whirl motion of its top disc adjacent to the test labyrinth seal. The
whirl motion is controlled by tuning springs, adjustable dampers and pneumatic
bellows to initiate forward or backward whirl motions. Vibration frequency and
logarithmic decrement is observed to quantify radial stiffness and direct damping
[7].

Childs et al. presented a test rig where the test rotor allows a horizontal
translational motion using a single hydraulic shaker. The seal coefficients are
evaluated in the time domain applying a dedicated synchronous sampling rou-
tine. The whole set of eight coefficients is identified using two data sets both
with x-excitation but with initial eccentricity either in x- or y-direction [8].

Millsaps and Sanchez used a test rig with a vertical shaft in shaft arrangement
to create a circular rotor whirl motion. The dynamic cavity pressure is measured
by means of differential pressure transducers in the seal land and evaluated in
the time domain to obtain the tangential seal reaction force. This way, direct
damping is calculated [9].

A relatively reduced approach was presented by Laos et al. using a single
electromagnetic shaker to excite a vertical shaft in a non-rotating test assembly.
The test seal journal force and acceleration data is processed in the frequency
domain to identify direct damping [10].
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AMB Rotor Excitation. An attractive way to create a relative rotor-stator-
motion is using Active Magnetic Bearing (AMB) technology. Primarily developed
for the stabilization of rotor systems, it offers great flexibility in an test rig
environment by its ability to impose different motion patterns to a shaft when
used as an exciter mechanism.

To the author’s knowledge the first test rig deploying AMB technology in
the context of experimental investigation of gas seals was presented by Wag-
ner and Pietruszka. The rigid test rotor is supported by two magnetic bearings
within a high pressure containment while two test seals are mounted in the rotor
center forming a back-to-back arrangement. AMB forces are calculated using a
linear relationship from coil currents and rotor position [11]. First experimental
results on labyrinth seals were presented by Wagner and Steff. They calculated
seal coefficients for different excitation frequencies by applying linear regression
over whirl frequency in the frequency domain [12]. After an upgrade with new
magnetic bearings for an increased operational parameter range, seal parame-
ters are calculated from the measured impedance matrix. Improvements in AMB
force calculation are included like subtraction of gas forces in the AMB air gap
identified from baseline tests [13].

Vannini et al. presented a test rig where the test cell with two magnetic
bearings similar to Wagner et al.’s setup is integrated in a full-scale high pres-
sure turbocompressor housing. AMB forces are calculated from coil currents
and rotor-stator air gaps. The seal reaction forces are identified in the frequency
domain by including a force mismatch identified from baseline tests into the
rotor equation of motion [14].

Zutavern’s experimental approach also deploys two magnetic bearings at each
end of a test rotor with two test seals in the center but it is different from
the previous concepts in two ways. Firstly, AMB forces are measured at the
magnet coils with fibre-optic strain gauges. Secondly, the rotor is not assumed
as rigid and has two discs to provide gyroscopic coupling. The seal coefficients
are identified in the frequency domain and result from an error minimization
routine compared to a theoretical transfer function predicted by a FEM model
[15].

A completely different approach had been developed by Kwanka for the test
rig which sets the basis for this paper. A single magnetic bearing is used as a
contactless exciter mechanism for a very flexible rotor system supported by two
hydrodynamic journal bearings. The test seals are located in the rotor center
and pressurized by preswirled air flow (see Fig. 1). AMB forces act in the form
of calibrated direct and cross-coupled stiffnesses and are adjusted such that
the rotor system is excited to its stability limit at the first natural frequency
of approximately 30 Hz. When pressurizing the test seal, any direct and cross-
coupled forces generated by the flow through the seal have to be compensated by
adjusting the AMB radial and tangential stiffnesses. Hence, the seal parameters
are identified from the difference in AMB parameters for repeated unpressurized
and pressurized tests. This eliminates any other influence of the test rotor system,
e.g. the journal bearings. A force conversion routine was developed and validated
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Fig. 1. Side view of main components in test rig developed by Kwanka [16]

to account for the different axial positions of AMB and seal force. By performing
tests for forward and backward whirl the four stiffness and damping coefficients
were obtained under the symmetry assumption. The variation of journal bearing
distance allowed the variation of test frequency in a small range (approx. ±5 Hz)
[16].

That test rig has been used for the experimental determination of force coef-
ficients for many labyrinth and brush seal configurations [17–20]. However, the
existing magnetic exciter proved to have insufficient force capabilities especially
when testing contacting seals such as brush seals. Moreover, the tests could be
performed in a small frequency range only. Therefore, it was decided to upgrade
the magnetic exciter system and introduce the impedance method as a new
measurement principle.

2 Test Rig

The following section describes the test rig located at TUM Institute for Energy
Systems and recent upgrade measures.

2.1 General Setup and Upgrade

The upgraded dynamic test rig is shown in Fig. 2. Key feature is a flexible rotor
system provided by a slender central shaft of 25 mm diameter. This shaft is
supported by oil-lubricated journal bearings with an adjustable span distance
in the range 770...860 mm. A 6 mm diameter torsional damper shaft couples
the frequency-controlled electric motor with a maximum rotational speed of
1500 rpm to the rotor system.

The aluminum rotor of 179.64 mm diameter is located in the middle of the
bearing distance and mounted on the shaft by two collets. Steel linings adjacent
to the test seals provide increased abrasion resistance when testing contacting
seals. On both sides of the test rotor adjustable safety bearings allow for a
limitation of rotor whirl amplitudes in the event of unstable test rig operation.
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Fig. 2. Side view of the test rig with motor, journal bearings, test seal casing and
magnetic exciter

The test seals are mounted on the test seal casing in a back-to-back arrange-
ment, compensating for axial forces caused by the pressure drop over the seals
and facilitating force measurement due to the duplication of seal forces. Main
features of the seal casing are the inflow chamber with swirl generator rings dis-
charging to the seal inlets plus a central bypass chamber allowing for a variable
adjustment of preswirl velocity independently from pressure level and leakage
mass flow. Air at ambient temperature is the working medium provided by the
facility compressed air grid and a 130 kW screw compressor serving as a recir-
culation device. The seal leakage mass flow discharges to the atmosphere and is
measured by a Coriolis mass flow meter. The leakage flow measurement accu-
racy was determined as ±0.05% FSO by an in-situ calibration for the relevant
measurement range using a critical nozzle. The operating conditions of the air
supply system can be found in Table 1.

Table 1. Operational range of air supply system

Prechamber pressure 0. . . 1300 kPa

Preswirl velocity 80. . . 200 m/s

Mass flow 0. . . 0.8 kg/s

The newly upgraded magnetic exciter system is located in closest possible
distance to the test seal casing. Key components replaced are the commercial
AMB system and a custom mounting bracket for test rig integration. The actu-
ator is a radial magnetic bearing with 8 poles and a nominal air gap of 450µm.
The magnetic forces are exerted on a laminated rotor sleeve of 144.1 mm diam-
eter which is mounted on the shaft by a clamping bush. The maximum design
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force is 3.2 kN but maximum forces up to 4 kN at coil currents of approximately
12.5 A were observed using force sensors attached to the test rig shaft. The force
was targeted to enable rotor excitation at orbits of 100µm amplitude up to fre-
quencies of 200 Hz. A sensor ring comprising two capacitive proximity sensors is
mounted adjacent to the AMB stator and provides rotor position data for the
controller. The actuator is driven by a commercial magnetic bearing control unit
with 300 VDC bus voltage which is accessible via a MATLAB interface.

Core component of the mounting solution is a cassette accommodating the
AMB stator by means of an interference fit. The sensor ring has a tight clearance
fit and was machined within close concentricity tolerance compared to the stator.
The complete AMB cassette sits within a mounting bracket in a way that allows
precise horizontal and vertical position adjustment. The final centering to the
test rig shaft was reached using two precisely machined centering discs. Prior to
fabrication, the whole assembly was analyzed by means of FEM simulation. In
static structural analyses the maximum deformation was predicted to be 6 µm for
a 4.2 kN static force in horizontal direction while the peak von Mises stresses were
much lower than the material’s tensile strength. A modal analysis computed the
first eigenfrequency at 346 Hz which represents a considerable safety margin to
the targeted excitation frequencies.

Following the significantly increased load capability of the new actor system,
the journal bearing pedestals were replaced by a stiffer design based on FEM
calculations.

All components are placed on a planar steel table which is bolted to a massive
cast iron and concrete machine bed.

2.2 Sensors and Data Acquisition

Precise and coherent measurement of the dynamic rotor motion within the sta-
tor, in this case the gas seal, and the resulting reactive forces is key for the
experimental investigation of rotordynamic force coefficients.

In the present test rig, the rotor position is measured at both test seals by
four eddy current sensors each. Their resolution is 1µm and the sensitivity curve
was determined in situ using high-precision mechanical gauges.

For force measurement, an attempt was made to evaluate the AMB force
from the coil currents and rotor position but did not yield the desired force mea-
surement accuracy. Therefore, it was decided to measure forces directly at the
seals by integrating force sensors in the test seal casing support structure. Due
to their high mechanical stiffness, piezoelectric force sensors were selected for
force measurement. Two 3-axis force sensors are used based on available models
and for design reasons. The calculated resonance frequency of the test seal cas-
ing supported by the force sensors is approximately 900 Hz. Three single channel
charge amplifiers are used for data acquisition. Due to their purely analog circuit,
no time delays have to be expected. When using piezoelectric force sensors, the
charge amplifiers’ time constant has to be considered. In this case, the “Long”
setting guarantees that charge drift will not affect measurement for the needed
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acquisition times of a few seconds. The measurement accuracy of a force mea-
surement chain is composed of different contributions from the force sensors and
the charge amplifiers. Therefore, the force measurement accuracy was checked
for the complete measurement chain using specified weights which were deter-
mined using a laboratory scale with 0.5 g resolution. Measurements were taken
including both increasing and decreasing load, thus including hysteresis error
and repeated ten times for x- and y-axis each. Considering absolute values of
measured relative deviations, the average deviation was 0.9% while the maxi-
mum deviation found in each measurement was 1.93% in average. As the check
was done separately for the two directions corresponding to the test rig’s x- and
y-direction and no combined calibration load was applied, cross-talk was taken
into account based on the manufacturer’s calibration certificate (see Table 2).
By summing up all contributions (worst-case scenario) the total measurement
uncertainty of the force measurement can be specified as ±1.5% of reading.

Table 2. Measurement uncertainty of force measurement (all values defined as of
reading)

Source Relative uncertainty

Sensors & DAQ (Avg.) ± 0.9%

Cross talk Fx→Fy ± 0.2%

Cross talk Fy→Fx ± 0.4%

Total force measurement uncertainty ± 1.5%

All data channels are acquired in parallel at 10 kHz sampling rate via one
multi-channel data acquisition module, thus guaranteeing data coherence. A
Queue Structure available in LabVIEW for data transfer within the data acqui-
sition program excludes data loss even in case of software lags by means of its
buffering functionality. All data is stored to a txt-file for further data processing
and parameter evaluation.

3 Parameter Identification

As outlined in the introduction, the established impedance method was intro-
duced as a new measurement principle along with the test rig upgrade. To the
author’s knowledge it was not applied in the context of gas seals combining AMB
rotor excitation and force measurement at the stator so far. Its implementation
is presented in the following along with a concept to capture corresponding mea-
surement uncertainty.

3.1 Data Processing

The basis for the identification of seal force coefficients are the equations
described in Sect. 1.2.



Force Coefficients of Gas Seals 201

Due to the two-flow design of the test rig, the measured force data fx/y, M is
divided by two in the time domain and the sign is inverted to relate the measured
stator forces to the rotor:[

fx (t)
fy (t)

]
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= − 1
2

·
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Despite the stiff design of the test rig’s base plate, there is a force reading at
the stator when performing rotor excitation. Considering the force sensor stiff-
nesses, the corresponding displacement of the seal housing is smaller than 1 µm,
thus having negligible effect on the measurement of rotor displacement. However,
force measurement is adjusted by performing a baseline test with unpressurized
test seals and subtracting baseline from the measurements with pressurized seal
following the force superposition assumption. Due to the linearity of the Fourier
transform, the adjustment is performed in the frequency domain at the respec-
tive whirl frequency ω used in that measurement:
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To guarantee coherence of the two data sets with and without pressurization,
each data set is phase shift prior to subtraction assuming the displacement data
in x-direction as a reference. The latter is phase shift such that its phase is 0◦

and the same shift is applied to all other data within the same data set, i.e.
y-displacement and forces in x- and y-direction.

3.2 Measurement Uncertainties

The identification of rotordynamic force coefficients using the impedance method
requires several repeated measurements which are all affected by the measure-
ment uncertainty of the sensors involved. Therefore, the combined measurement
uncertainty u (y) has to be determined applying error propagation [21]:

u(y) =

√√√√ m∑
i=1

(
∂f

∂xi

)2

u2 (xi) (11)

where f is the functional relation between the wanted parameter y and the
measurements xi with their corresponding uncertainties u (xi).

For the present application, the functional relation between measurement
and seal coefficients is given by Eqs. (7), (10) and (8). The error propagation
is calculated in the frequency domain which is valid due to the linearity of the
Fourier transform. The input parameters for these equations xi are summarized
in Table 4 and their uncertainties u (xi) can be found in Table 3.
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Table 3. Summary of measurement uncertainties u (xi)

Source Uncertainty

Force sensors urel (F ) ± 1.5%

Position sensors u (D) ± 1µm

When applied to Eq. (7) combined with the force difference in Eq. (10),
the error propagation consists of the following contributions as shown for the
impedance Hxx as an example:
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All partial derivatives in Eq. 12 can be calculated analytically from the respec-
tive impedance equation in Eq. 7.

Finally the complete result for the rotordynamic force coefficients together
with their corresponding measurement uncertainty can be given as follows:

Kmn = �{Hmn} ± �{u (Hmn)} ; m,n = x, y

Cmn =
�{Hmn}

ω
± �{u (Hmn)}

ω
(13)

Table 4. Summary of measurements xi required for parameter identification

Baseline Pressurized

Excitation (1) Excitation (2) Excitation (1) Excitation (2)

Forces F
(1)

x, B , F
(1)

y, B F
(2)

x, B , F
(2)

y, B F
(1)

x, T , F
(1)

y, T F
(2)

x, T , F
(2)

y, T

Displacements D
(1)

x , D
(1)

y D
(2)

x , D
(2)

y

4 Validation

To prove the function of the new approach and validate its results, first test
measurements on a damper seal are performed.
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Table 5. FPDS design parameters

Parameter Value

Number of blades 4
Number of pockets 8
Seal length [mm] 40
Clearance [mm] 0.38
Clearance ratio [-] 1:1.4

Partition 
wall
Notch

Primary 
cavities

Secondary 
cavity

Fig. 3. Inner view of FPDS design

4.1 Test Measurements

The seal design used for test measurements is a fully partitioned pocket damper
seal with four blades and eight partition walls (see Fig. 3 and Table 5). Notches in
the outlet blade of each primary cavity create a diverging clearance. Its specialty
is that it is a very short design with a length to diameter ratio as low as 0.22
which facilitate an application at blade shrouds and as an interstage seal.

For the experiments, the following procedure was followed for each measure-
ment:

1. Start pressurization (not applicable for baseline)
2. Reset force measurement
3. Start excitation
4. Start data logging for 2–3 s.

Two excitation patterns were tested to obtain the two data sets needed for
the evaluation of all eight force coefficients. The first was forward/backward exci-
tation, i.e. an excitation with circular rotor orbits in same (forward) and opposed
(backward) direction of rotor rotation. The second scheme was linear excitation
in two orthogonal directions, i.e. along the x- and y-axes of the magnetic actua-
tor which are rotated by 45◦ compared to the test rig’s global coordinate system.
The test results for both excitation patterns showed good agreement, however,
the calculated measurement uncertainties resulted in lower levels for excitation
in x- and y-direction. Moreover, test rig operation was more stable when using
linear excitation, which is why this excitation pattern was used for all following
measurements. All tests were performed with 100m/s preswirl velocity at the
seal inlet. The span distance between the journal bearings was 830 mm for tests
without rotor rotation and 800 mm for the rotating tests (Fig. 4). In conformity
with previous operation of the test rig before the upgrade, the rotor speed was
set to 720 rpm [20].

4.2 Results

The test results for 2 and 4 bar inlet pressure are shown in Figs. (5) and (6). While
all eight coefficients along with their respective measurement uncertainties were
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evaluated as described above, the stiffness and damping coefficients are presented
in the form of direction-independent (average) coefficients according to Eq. (3).

Direct stiffness is moderately positive for 2 bar inlet pressure and shows
a slightly decreasing trend for increasing whirl frequency while rotor rotation
has negligible effect. At 4 bar, direct stiffness is negative showing an increasing
(less negative) trend over whirl frequency with a maximum at 60 Hz excitation
frequency. Negative direct stiffness with increasing trend was also observed in a
previous CFD study at similar operating conditions [22].

Cross-coupled (CC) stiffness is positive throughout the parameter range and
more than doubles its magnitude when increasing inlet pressure from 2 bar to
4 bar. At 2 bar the influence of rotor rotation is very small, however, at 4 bar an
increase in cross-coupled stiffness can be observed when adding rotor rotation.
The value at 60 Hz shows a pronounced deviation towards lower CC stiffness
which is even lower than in the case without rotor rotation.

Direct damping is significantly positive, confirming functioning of the damper
seal. At low pressure (2 bar) both the frequency dependence and the influence of
rotor rotation is negligible. At 4 bar, direct damping is significantly higher and
a moderately decreasing trend can be observed for higher excitation frequencies
while at 60 Hz there is a global minimum. Similar to CC stiffness, rotor rotation
causes an increase in direct damping and intensifies the deviation at 60 Hz whirl
frequency. This deviation was repeatable in all tests with varying excitation
amplitudes and excitation patterns and might be explained by e.g. a resonance
like effect in the dynamic pressure distribution within the pockets of the tested
seal at this excitation frequency, possibly also arising from the specific test rig

Fig. 4. Test rig setup for test measurements
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Fig. 5. Results of FPDS test measurements: direct and cross-coupled stiffness.

arrangement with double flow. This assumption is supported by the fact that the
phenomenon is more visible with rotor rotation whose fifth harmonic coincides
with the whirl frequency at 60 Hz. It confirms the importance of the dynamic
pocket pressure distribution, often denominated as pressure modulation, for the
rotordynamic performance of pocket damper seals [10].
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Fig. 6. Results of FPDS test measurements: direct and cross-coupled damping.

Cross-coupled damping is at low negative levels and independent from whirl
frequency except at 4 bar with rotor rotation where CC damping is increasing
(less negative) for higher excitation frequency.

5 Conclusions

The present paper describes the upgrade, calibration and commissioning of an
existing dynamic rotor test rig with a more powerful AMB system. The con-
figuration of the test rig is unique in that it only uses a single AMB as an
exciter mechanism in a very flexible rotor system. Along with the upgrade, a



206 C. Griebel

new measurement principle was introduced based on the established impedance
method.

First test measurements on a damper seal for different excitation frequen-
cies and inlet pressures with and without rotor rotation prove the operability
of the upgraded test rig. Measurement results for the tested short fully parti-
tioned pocket damper seal reveal negative direct stiffness except at low pressure
and positive cross-coupled stiffness as well as positive direct damping throughout
the parameter range. Both signs and magnitudes of the presented coefficients are
in line with a previous CFD study at similar operating conditions. The calcula-
tion scheme proposed to derive the combined measurement uncertainty resulting
from all four measurements required for the identification of rotordynamic force
coefficients yields reasonable uncertainty levels.
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Abstract. This article discusses a new method for modelling elastic deforma-
tions of a foil bearing’s structure, taking into account key phenomena influencing
its characteristics. Special attention was paid to the assembly preload, which has
an impact on the stiffness of the supporting system and thus also on the static and
dynamic properties of the rotor. There has been proposed the method which
allows for the inclusion of a selected preload into the bearing model. A new FEM
model of the foil bearing’s structure has been described. This model was coupled
with an in-house developed flow model of the bearing and the entire rotating
system. Computations were made for several assembly preload values, taking
into account changes in the bearing structure stiffness as the load increases. The
changes in stiffness associated with the load changes were due to the nonlinear
geometry of the foils, and also due to the contact phenomena, including friction
between components. The applied calculation algorithm allowed to take into
account all these phenomena. The results obtained using the developed model
confirm the very high influence of the foil bearing’s pre-clamp and the pro-
gressive stiffness on the properties of the rotating system. Numerical models of
this type can pave the way for a further development of foil bearings and for their
wider use in modern high-speed fluid-flow machines.

Keywords: Foil bearings � High-speed bearings � Assembly preload

1 Introduction

Gas foil bearings are the next generation of aerodynamic bearings in which special
elastic-damping elements are introduced between the journal and the bush in order to
improve their dynamic properties and reduce wear during start-ups. In practice, these
elements usually take the form of thin metal foils of suitable shapes and sizes [1], and
their surfaces are covered with appropriately selected functional materials [2]. Gas foil
bearings are usually designed to withstand extreme operating conditions covering very
high rotational speeds (over 100,000 rpm) and high temperatures (above 200°C). Such
bearings have many advantages that make them a preferred option for high-speed
machines such as gas and vapor microturbines, compressors or turbo-expanders [1, 3].
Because foil bearings do not require an oil lubricating system, they are good candidates
as components of oil-free fluid-flow machinery [4, 5].
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Over recent years a great deal of attention has been paid to modelling phenomena
occurring in foil bearings [6–8], and yet there is a lack of universal models that would
enable a reliable assessment of their properties over the wide speed and load range.
Such models are very useful in order to make design process of a new foil bearing
shorter and reduce the experimental studies required to the preliminary assessment of
bearing properties and carrying out the structure optimization analyses [9, 10]. By
prediction of static and dynamic characteristics of the bearing, such models allow
engineers to assess the operation of a rotating system under certain conditions [6]. The
operation of a foil bearing is characterized by a number of physical phenomena, a
theoretical description of which is in fact very complex. This implies that in order to
characterize the bearing operation efficiently, one must apply advanced numerical
models. The most important phenomena which should be included in the model are the
following: interactions between the flow layer and the structural layer, contact phe-
nomena and nonlinear behavior of the flexible foil assembly. At low rotational speeds,
the dry or mixed friction between the bearing journal and the top foil is observed.
A theoretical approach to analyze the way a foil bearing operates under conditions in
which the gaseous lubricating film starts to form itself is very challenging. The increase
in speed causes that a desirable fluid friction appears. Only such conditions ensure a
stable operation of the rotor and low friction losses at the bearing node. Modelling
problems are also caused by a preliminary clamp, which almost always occurs in foil
bearings. This is due to the assembly preload which is necessary to obtain proper
properties at high rotational speeds and operational loads.

Many research and development centers from all over the world are involved in the
progress of the foil bearing technology. The works cover both theoretical and exper-
imental issues [1, 2]. A lot of attention is devoted to the optimization of bearing
construction and its tribological properties, including a selection of appropriate con-
struction and functional materials. Depending on operating conditions, sliding coatings
are made of selected materials, i.e. metals, metal-ceramic composites or plastics [2, 11].
When a foil bearing operates at low temperatures (i.e. up to 200 °C), the best durability
and friction properties are achieved by using soft sliding coatings made of plastics. At
high temperatures, metal-ceramic composites are rather preferred [12]. A fabrication of
foil bearings is also challenging due to the dependence on sheet metal forming to
produce the compliant structure [13]. Due to elastic deformations of thin foils,
achieving high accuracy is difficult. It also complicates getting a precise radial clear-
ance or preload in such bearings.

In terms of its construction, a foil bearing is a very complex system, the theoretical
description of which is extremely difficult. It is necessary to consider several physical
phenomena that occur simultaneously, and in addition, they interact with one another
[9, 14]. Therefore, in that case, too much simplified numerical models have a very
limited application—they may be applied only at a very preliminary design stage.
Computing performances of today’s computer workstations are not a barrier to per-
forming numerical analyses of complex mechanical systems such as foil bearings.
Numerical models can consist of up to several millions of degrees of freedom. In the
latest publications, you can find examples of advanced numerical models of such
bearings that allow predicting not only the properties of the bearings but also of the
rotors that they support [14–18]. But the available literature is missing examples of
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numerical analyses in which the assembly preload was directly considered. The results
of experimental tests have shown that the bearing clearance and its preliminary preload
are decisive for the properties of the foil bearing [19–21], therefore, if they occur, they
should be taken into account.

In the authors’ opinion, there is insufficient attention paid to the impact of the
preliminary preload on the characteristics of a foil bearing. It is obvious that this is a
very important issue for it has a crucial impact on the rotor dynamics, the starting
torque as well as wear and durability of the bearing. The further part of the article
describes the research aimed at the development of a numerical model of the foil
bearing, which would allow simulations of the assembly preload and other specific
properties of such a mechanical system.

2 Numerical Model

Computer programs for analyzing bearings and rotating systems have been developing
by the authors of this article at the Institute of Fluid Flow Machinery of the Polish
Academy of Sciences (IMP PAN) for many years now. So far, models of both
hydrodynamic and aerodynamic foil bearings have been developed, which take into
account phenomena occurring both in the structural and flow support layer. Structural
analyzes are conducted using the ABAQUS commercial software, and flow analyzes
concerning bearings are carried out using in-house programs from the MESWIR series
[22]. In last years a new software package called MESLOF [14], which is based on the
MESWIR software, has been elaborated by the authors. The gas bearing model is based
on the Reynolds equation for compressible fluids. This is an isothermal model, which
means that it does not take into account the impact of temperature on the gas viscosity.
As part of the static analysis, the model allows determining the pressure distribution
and reaction of the gaseous lubrication film due to rotational motion of the journal. The
dynamic analysis enables determining stiffness and damping coefficients at the actually
considered moment of a gas bearing’s operation, considering the rotational speed,
bearing load and irregular geometry of the lubrication gap. More details on the gas
bearing model used can be found in monograph [4]. Currently, through the combi-
nation of the in-house computer programs and the all-purpose FEM software ABA-
QUS, it is possible to conduct analyses that take into account the complex geometry of
foils and contact phenomena occurring in foil bearings. The developed algorithm also
includes the fluid-structure interactions that occur in such a bearing as well as changes
in its geometry during analysis. The created numerical model takes into account the
assembly preload, what is discussed in detail in this chapter.

2.1 FEM Model of the Supporting Structure

Previously Used Method for Determining Deformations
So far, during analyzing foil bearings, elastic deformations of the structural support
layer used to be determined in a simplified manner—bypassing the assembly clamp of
the top foil. Such a bearing model (thanks to its capability of analyzing contact

210 G. Żywica et al.



phenomena and considering interactions between the flow and structure) was still a
very advanced tool. Its main drawback was the sensitivity to large deformations due to
the irregular shape of the lubrication gap, resulting from hydrodynamic or aerodynamic
pressure. These deformations have hitherto been determined without taking into
account a preload of the compliant foils assembly, which meant that with respect to the
radial clearance of the bearing, they were relatively large. It is due to the fact that the
dominating component of the displacement of individual FEM mesh nodes was the
displacements resulting from the clearance—the initial distances between bearing
elements. The previously used method for determining foil assembly deformations
consisted of the following stages:

• determination of hydrodynamic/aerodynamic pressure in the bearing’s lubrication
gap – without deformations (MESWIR),

• loading the bearing’s top foil by forces corresponding to determined
hydrodynamic/aerodynamic pressure (ABAQUS),

• determination of elastic deformations of the foil assembly, i.e. displacements of the
top foil nodes (ABAQUS),

• modification of the lubrication gap’s geometry based on the determined deforma-
tions of the top foil (MESWIR),

• determination of a new hydrodynamic/aerodynamic pressure distribution for the
modified geometry of the lubrication gap (MESWIR).

The calculation cycle described above was run iteratively until the desired convergence
criteria in subsequent iterations were achieved. The achievement of convergence
depended on the percentage difference of displacements in subsequent iterations. The
calculation process was considered terminated once changes in the lubrication gap’s
geometry were small enough in subsequent iterations.

New Method for Determining Deformations
In the proposed new method for determining deformations of the compliant foil
assembly, an additional step of analysis was introduced, consisting of preloading the
foils, which is realized in a real bearing using a preliminary clamp—the nominal
diameter of the journal is larger than the inner diameter of the foils assembly mounted
inside the bush. During numerical analyses, the clamp is taken into account in the
additional calculation step (performed first) by increasing the journal diameter of to the
desired value. In the numerical model this is accomplished by dividing the journal into
4 equal parts – quadrants (Fig. 1) and then moving them apart in appropriate directions
by the assumed displacement value. In order to accurately map the geometry of the
journal with the target diameter, the radius of the quadrants being moved apart has to
correspond to this diameter. The subsequent stages of the analysis, carried out
according to the new method, are as follows:

• obtaining an initial clamp in the bearing by loading the foils assembly with the
journal of the assumed diameter (ABAQUS),

• determination of the hydrodynamic pressure distribution on the cylindrical bear-
ing’s lubrication gap – without deformations (MESWIR),

• loading the top foil (already pre-loaded by the journal) with forces corresponding to
the pressure determined in the lubrication gap (ABAQUS),
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• determination of elastic deformations of the pre-clamped foil assembly, i.e. dis-
placements of the top foil nodes (ABAQUS),

• modification of the lubrication gap based on the deformations of the top foil,
bypassing the deformations caused by pre-clamping the journal (MESWIR),

• determination of a new hydrodynamic pressure distribution for the modified
geometry of the lubrication gap (MESWIR).

The above calculation process is repeated until the assumed convergence conditions are
met. Graphic illustrations that bring us closer to the used method are shown in Figs. 2
and 3. In this method, the displacement of a part of the journal to the right position
causes initial loading of the foils assembly, as it takes place during assembly of the
actual bearing. In this way, foil bearings with a pre-clamp can be modeled.

Fig. 1. FEM model of the foil bearing’s structure used in deformation analyses (division of the
journal into 4 parts is indicated by colors).

Fig. 2. Fragment of the FEM model of the foil bearing structure before (a) and after
(b) increasing the journal diameter.
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2.2 Implementation of the Proposed Method in the Calculation Program

In order to be able to start using the new method for analyzing deformations of the foils
assembly, it was necessary to introduce some changes to the computational algorithms
used so far. Therefore, the MESLOF program code has been modified. This program
automatically collects selected results obtained from various applications and transfers
them between the MESWIR and ABAQUS software (Fig. 4). The algorithm imple-
mented in the MESLOF program is presented in Fig. 5. According to the new concept
of modelling a foil bearing, deformations of its foils are obtained in two calculation
steps. In the first step, displacements of the FEM mesh nodes resulting from the pre-
clamp of the journal between the foils are determined. In the second step, displace-
ments of the nodes caused by the pressure acting in the lubrication gap are additionally
determined. The obtained shape of the lubrication gap is subsequently used to deter-
mine the characteristics of each bearing, and then, of the entire rotor.

Fig. 3. Displacements of the foils and the journal parts in the foil bearing model, presented
using displacement vectors of individual nodes.

Fig. 4. General scheme for data exchange between CFD (MESWIR) and FEM (ABAQUS)
models in the numerical analysis of foil bearings.
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In the modified MESLOF program, computations are carried out as follows:

1. A set of data files is prepared for the MESWIR program, and also for the FEM
model created in the ABAQUS software. The FEM model implemented in ABA-
QUS considers the foils’ geometry and has a defined set of nodes at which forces
acting on the top foil’s surface are defined—corresponding to acting pressure. The
bearing model in the MESWIR program was prepared in such a way that it is
possible to fit the FEM mesh of the top foil to it.

2. The MESWIR program performs static analysis of the rotating system and yields
pressure distributions in lubrication gaps corresponding to the static positions of
bearing journals.

3. In the MESLOF program, forces—corresponding to the determined pressure dis-
tribution—are computed at individual nodes.

4. Data files, containing forces assigned to nodes and acting on the inner surface of the
top foil, are created for the ABAQUS model.

5. The ABAQUS program computes a distribution of the displacements of the top
foil’s nodes in two calculation steps: (1) as a result of the pre-clamp and (2) as a
result of pressure acting in the lubrication wedge.

6. Taking into account the difference between displacements obtained in the first and
second calculation step, the MESLOF program creates a data file for the MESWIR
program, into which it saves new shapes of both lubrication gaps.

Fig. 5. Block diagram of the algorithm for analyzing rotors supported by foil bearings.
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7. The MESWIR program performs calculations of pressure distributions for modified
shapes of lubrication gaps.

Steps 2–7 are repeated until the convergence conditions are met.

8. The MESWIR program conducts a dynamic analysis of the rotating system by
adopting stiffness and damping coefficients of the lubricating film that were com-
puted for modified shapes of the lubrication gaps (i.e. the ones obtained in the last
step of the iterative algorithm).

The stiffness and damping coefficients of gas bearings are determined iteratively,
separately for each analysed rotational speed of the rotor. Because various loads act on
each of bearings, each bearing has to be analyzed separately. That is why stiffness and
damping coefficients of both bearings can take different values. This obviously has an
effect on dynamic characteristics of the rotor.

3 Verification of Results

3.1 Characteristics of the Analyzed System

The tested rotor consists of a steel shaft with two disks and is supported on two first-
generation foil bearings (Fig. 6). The nominal diameter of the shaft and of the bearings
is 50.8 mm. The length of the rotor, together with discs mounted on its both ends, is
364 mm. The weight of the entire rotating system is 6.9 kg. The model also includes
residual unbalance, which is 4.2 g�mm (46°) and 7.5 g�mm (87°) for the first and
second disk, respectively. The rotor model was developed on the basis of data provided
in publication [23].

The FEM model of the rotor comprises 18 Timoshenko-type beam elements, with
six degrees of freedom in each node. The rotor has a symmetrical arrangement of disks
—meaning that they are situated at both ends of the hollow shaft, and, what is more, are
geometrically uniform and of the same mass. The bearings are situated symmetrically
as well. In all simulations, each bearing carried a static load of 33.8 N plus an addi-
tional dynamic load originating from the residual unbalance. Analyzes were carried out
for aerodynamic bearings, with air (having a dynamic viscosity of 1.85�10−5 Pa�s) as a
lubricant. Dimensions of the bearings are equal to those specified in article [23], and are
as follows: bearing width 40.6 mm, journal diameter 50.8 mm, L/D � 0.8. The

Fig. 6. FEM model of the analyzed rotor.
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nominal radial clearance, whose value was necessary to start the flow analysis of the
bearings, was 20 lm. This is the optimal value that allows analyzing bearings opera-
tion over a wide range of rotational speeds. This value was only used during analyzes
of bearings carried out in the MESWIR program and had nothing to do with the initial
clamp values being inserted into the ABAQUS model—thus the ones needed to
determine the shape of the lubrication gap.

The foil bearing’s structure and the shape of the lubrication gap were mapped using
a two-dimensional FEM model, which, as mentioned before, was developed in the
ABAQUS software. The geometry of the top and bump foils is depicted in Fig. 1. The
model consists of 2,898 finite elements (of the CPE4RH type), with 10,824 degrees of
freedom. In finding a solution, the developed model takes into account, among other
things, the following issues: contact phenomena between the mating bearing compo-
nents (i.e. between the top and bump foils as well as between the journal and the bush),
friction between these components (coefficient of friction was 0.2), load due to the
aerodynamic pressure.

3.2 Analysis of the Foil Bearings with Assembly Preloads

The research described herein cover several computational series. All computations
were made for the same rotor model, and changes were introduced only to the bearing
model itself and they consisted in altering the journal diameter and thereby altering the
assembly preload. All computation variants are listed in Table 1. In addition to
assembly preload values, the structural stiffness of the bearing structure (both in the
vertical and horizontal direction) is given, the value of which was computationally
determined taking into account the initial assembly preload. Since in all the analyzed
cases the stiffness in the horizontal direction was almost twice lower than the stiffness
in the vertical direction, the obtained values have been rounded. For each bearing
variant analyzed, the assumed initial value of the damping coefficient of the foils
assembly in both directions was equal to 1,000 N�s/m.

Already the results obtained during several first computational series showed that
the assumed value of clearance/clamp in the bearing has a decisive influence on local
and global deformations of the foils assembly. With a low clearance or a very small
assembly preload (0.5 lm) one could observe very large deformations of the foils

Table 1. Basic parameters of the analyzed variants of foil bearings.

No. Assembly
preload [µm]

Structural stiffness in vertical
direction [N/m]

Structural stiffness in horizontal
direction [N/m]

1 0 10.6 � 106 5.3 � 106
2 5 52.4 � 106 26.2 � 106
3 7.5 700 � 106 350 � 106
4 10 1,020 � 106 510 � 106
5 15 1,160 � 106 580 � 106
6 30 1,430 � 106 715 � 106
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assembly caused by the pressure of the lubricating wedge. In some places, displace-
ments of the nodes situated on the top foil’s surface were greater than the nominal
radial clearance necessary for the formation of a lubricating wedge. Thus, very irregular
deformations occurred at the perimeter of the bush, hindering the formation of a stable
lubricating film that could have provided a sufficient bearing capacity. After applying
the assembly preload values from the range of 7.5–30 lm (which caused the top foil to
be pressed against each bulge of the bump foil), completely different characteristics of
the bearing structure began to appear. The top foil became very stiff around the entire
circumference, and the maximum displacement of the nodes did not exceed several
micrometers.

Due to the above-mentioned abrupt change in the properties of the foils assembly,
the full results from the analysis of the bearings and of the rotor are presented only for
three selected computation variants: 5, 7.5 and 10 lm. The results for the “no assembly
preload” case were very similar to the ones from the variant with an assembly preload
of 5 lm. The variants with an assembly preload of 15 lm and 30 lm yielded almost
identical results as in the 10 lm variant. A sudden change in the characteristics of the
foils assembly can also be seen based on the stiffness values given in Table 1.

Assembly preload 5 µm
For the case of the rotor with bearings in which the assembly preload was only 5 lm, it
was possible to achieve convergence only for several rotational speeds from the range
of 10,000–14,000 rpm. After analyzing the results, it turned out that an assembly
preload of 5 lm was too small to allow the journal to press the top foil against the
bump foil. In addition, the mesh used in the model had a negative effect on the
reduction of the actual value of the assembly preload and prevented a precise mapping
of the circular geometry (due to the distance between nodes and linear shape functions
used). As a result of the low stiffness of the underloaded foils assembly, and under the
influence of pressure, significant deformations occurred that caused an irregular shape
of the lubrication gap (Fig. 7). Such a shape of the lubrication gap did not allow to
achieve convergence of the iterative process in a wider range of rotational speeds.

Fig. 7. Bush deformations and vibration trajectories of the journals of two foil bearings with an
assembly preload of 5 µm at a speed of 10,000 rpm, presented in relation to the radial clearance
(a—bearing No. 1, b—bearing No. 2).

Analysis of the Rotor Supported by Gas Foil Bearings 217



The obtained results showed that vibration trajectories of the rotor increased as
rotational speeds increased. Due to convergence problems, no solutions could be
obtained for speeds higher than 14,000 rpm. This indicated that there were no good
conditions for the formation of a stable gaseous lubricating wedge.

Assembly preload 7.5 µm
Increasing the initial assembly preload to 7.5 lm caused the top foil to be pressed
against the bump foil and, consequently, the stiffness of the foils assembly rose. Under
these conditions, the bearing operated stably over a wide range of speeds. A stable
operation of the system and very small deformations of the lubrication gap can be seen
in Fig. 8. The vibration amplitudes (in two directions) of one bearing journal are shown
in Fig. 9, as a function of the rotational speed. Only vibrations of bearing No. 2 are
presented in this article. Due to the greater unbalance on one side of the rotor, vibration
amplitudes of the journal No. 2 are higher than amplitudes of the journal No. 1. The
presented graph shows that there is no clear resonance in the range of speeds up to
40,000 rpm. The vibration amplitudes gradually increased to a speed of approximately
35,000 rpm, but even in this range, the maximum vibration amplitude of both bearings
did not exceed several micrometers. This is due to the fact that, having regard to a very
high stiffness of the foils assembly, the stiffness of the gaseous lubrication film and of
the shaft was of great importance. Since the stiffness of the thin lubrication film is high,
there were quite low vibration amplitudes over the entire rotational speed range.

Assembly preload 10 µm
After re-increasing the assembly preload, this time up to 10 lm, the rotating system
had very similar static and dynamic properties to the system with an assembly preload
of 7.5 lm. After a series of calculations, it turned out that the obtained vibration
trajectories of the journals (Fig. 10) and vibration amplitude curves (Fig. 11) are almost
identical to the results described in the previous case (Figs. 8 and 9). The vibration
amplitude curves from two cases are not very different from each other—both the
horizontal and vertical curves. As previously, the aerodynamic pressure in the bearings
did not cause large deformations of the foils assembly. The foils were tightly com-
pressed between the journal and the bush.

Fig. 8. Bush deformations and vibration trajectories of the journals of two foil bearings with an
assembly preload of 7.5 µm at a speed of 10,000 rpm, presented in relation to the radial clearance
(a—bearing No. 1, b—bearing No. 2).
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What is more, the vibration trajectories of the rotor itself and its shape bear evi-
dence of the stable operation of the entire rotating system. Figure 12 shows the zoomed
in vibration trajectories of the rotor at the highest speed analyzed. Even at such a high
rotational speed, only a slight deflection of the shaft was observed, and vibration

Fig. 9. Vibration amplitudes of the journal of bearing No. 2 vs. rotational speed. (assembly
preload is 7.5 µm).

Fig. 10. Bush deformations and vibration trajectories of the journals of two foil bearings with an
assembly preload of 10 µm at a speed of 10,000 rpm, presented in relation to the radial clearance
(a—bearing No. 1, b—bearing No. 2).

Fig. 11. Vibration amplitudes of the journal of bearing No. 2 vs. rotational speed. (assembly
preload is 10 µm).
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amplitudes did not exceed several micrometers. Probably the analyzed rotor could
operate properly also at higher speeds.

4 Conclusions

The article describes a new method for modeling elastic deformations of a compliant
foils assembly in foil bearings. The method allows taking into account the assembly
preload in a bearing. The foil bearing model and the calculation algorithm were dis-
cussed. After this, there is a presentation of results of the analysis, the aim of which was
to check the proposed method in practice, using a selected example of a rotating
system. The conducted calculations made it possible to assess the impact of the
assembly preload in foil bearings on dynamic properties of the entire rotating system.
Based on the simulations conducted so far, the following conclusions can be drawn:

• As the assembly preload increased, some operational characteristics of the foil
bearing changed dramatically. This was related to a clamping of the top foil
between the journal and the bump foil. Pressing the top foil against bulges of the
bump foil around its entire circumference caused that the assembly of two inter-
acting foils became more and more rigid. However, further increase of the assembly
preload no longer caused any significant changes in the stiffness characteristics of
the system.

• In the analyzed system, very small assembly preloads (e.g. 5 lm) did not cause the
journal to be pressed against the top foil. It resulted from the method of modeling a
circular surface using finite elements with edges defined by straight lines (i.e. first-
order curves). Elements of this type are significantly better in solving contact
problems than elements whose edges are defined by higher-order curves. Com-
pacting the mesh, in turn, increased the number of degrees of freedom and made the

Fig. 12. Shape of the rotating shaft supported by two foil bearings with an assembly preload of
10 lm, at a speed of 40,000 rpm.
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computation time longer. It should, therefore, be borne in mind that low assembly
preload values in the model could be equated with the clearance in a bearing.

• The conducted analyzes show that after considering the assembly preload in the
model, the geometry and thickness of the foils started to play a less important role in
the bearing’s operation. The stiffness of the foils assembly pressed by the journal is
relatively high, so altering the geometry of these foils in such a bearing would have
very little or no impact on bearing characteristics. The situation was different in
previous research when at that time it was assumed that there had been too big
radial clearance in tested bearings.

• It should be emphasized that the results described herein were obtained using
computer simulations, and they have not yet been verified experimentally. During
the production of foil bearings, a high level of accuracy in the manufacture of thin
metal foils is hard to achieve due to elastic deformation effect. Given the above fact,
it is difficult to obtain a uniform pressing of the foils around the whole perimeter of
the journal. It is also difficult to obtain an appropriate nominal radial clearance or
assembly preload with an accuracy of a few micrometers. That is why some dis-
crepancies can be expected between the results of the computer simulation
described in this article and an experiment that is still to be conducted.

The results obtained using the developed model confirm a strong influence of the
pre-clamp on the foil bearing’s stiffness and thus on the operating properties of the
rotating system. The numerical research carried out initially proved the proper opera-
tion of the developed model and its usefulness. After an experimental verification, it
could be used for a trustworthy assessment (and an optimization) of the properties of
rotors supported by gas foil bearings. In the authors’ opinion, the developed method is
able to reflect processes occurring in foil bearings, in which there is usually an
assembly preload. Models of this type can pave the way for a further development of
foil bearings and for their wider use in modern high-speed turbomachinery.
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Abstract. The article describes an analysis of various bearing systems for the
rotor of an ORC turbine with an electric power of 1 kW. The nominal rotational
speed of the newly designed single-stage axial-flow turbine is 100,000 rpm. The
turbine is supplied with a low-boiling medium’s vapor and this medium is not
compatible with all typical materials used for constructing power turbines.
Additionally, the turbine must be an oil-free machine. In one of the design
variants, the turbine rotor disk is to be made of plastic and the temperature of the
working medium directed to the vanes will be approx. 150°C (at a pressure of
10 bar). Three different bearing systems were considered: 1. bearings lubricated
with a low-boiling medium’s liquid; 2. gas bearings lubricated with a low-
boiling medium’s vapor; 3. rolling bearings. After initial analysis, it was found
that hydrodynamic bearings lubricated with a low-boiling medium did not work
properly in this case and it was decided to conduct a detailed analysis of the
second and third type of bearings. The two bearing systems are associated with
changes in the geometry of the rotor, which in turn strongly affect the dynamic
performance of the entire rotating system. The dynamic analysis of the rotor is
the subject of the conducted research and constitutes part of the bearing selec-
tion process. This article presents the process of selecting and optimizing the
bearing system for the rotor of a 1 kW turbine.

Keywords: High-speed bearings � Microturbine � ORC system

1 Introduction

Over recent years, systems based on renewable energy sources have played an
increasingly important role in international markets [1]. ORC (Organic Rankine Cycle)
systems—combined with, for example, a biomass boiler—can be used in single-family
houses, thus allowing independence from a national energy grid [2]. The use of such
energy systems contributes to the consumption of smaller quantities of fossil fuels and
smaller emissions of harmful greenhouse gases into the atmosphere, and what is more,
it increases energy security and the comfort of residents [3].

Scientific literature is rich in publications regarding microturbines. Paper [4] shows
an example of one of the smallest microturbines. This microturbine, whose rotor
diameter is 10 mm, is capable of generating maximally 28 watts of mechanical power
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at a rotational speed of approximately 100,000 rpm. The rotor is supported by rolling
bearings. New types of microturbines often require the use of new materials [5].

An example of a microturbine with floating ring journal bearings is presented in
article [6]. The prototype system ran safely at speeds up to 100,000 rpm under no-load.
An experimental characterization of a gas microturbine converted to full humid air
operation is presented in paper [7].

In the process of designing micro-power energy turbines (with an electric power of
a few kilowatts), it is necessary to ensure stable operating conditions with the maxi-
mum reduction of noise and vibration levels [8].

In addition, the key aspect is to design an appropriate bearing system. The opti-
mization process of the bearing system for a 700 kW turbine, operating in an ORC
system, is discussed in article [9].

This article presents results of the analysis conducted for the bearing system of an
ORC turbine with an electric power of 1 kW. Other operating conditions (such as
rotational speed, shaft mass, and temperature) result in the need to apply another
bearing system, and thus the use of new tools for its analysis. The properties of
bearings can be analyzed using experimental methods (if prototypes are available [10,
11]) or numerical computations. For the purposes of the research described in this
article, computer programs for analyzing complex rotating systems, developed at the
IMP PAN [12], were used. The article discusses the works related to the selection of the
bearing system for the rotor of a 1 kW turbogenerator. The turbogenerator’s rotor will
operate under unusual conditions that result from a very high nominal rotational speed,
elevated temperatures and the presence of a low-boiling medium. Only after flow
computations of the turbine, it turned out that the nominal rotational speed is
100,000 rpm. However, given this fact, it is necessary to ensure failure-free operation
of the rotor at speeds up to 120,000 rpm. The ambient temperature of the bearings is
expected to be approx. 120 °C. It is also to be expected that due to the turbogenerator’s
structure, a low-boiling medium in the form of a two-phase mixture will be present in
the places where the bearings are to be mounted.

2 Structural Analysis of the Turbogenerator’s Rotor

The initial design of the rotor has been developed based on the computation results to
date and the IMP PAN team’s experience gained when designing turbine expanders
used in micro-power ORC cogeneration systems. Only after the preliminary compu-
tations of the thermodynamic cycle were carried out and the external dimensions of the
rotor’s disk were estimated, a structural design of the rotor was developed. An electric
generator was selected as well. Two diagrams of the turbogenerator’s rotor with
aerodynamic (upper diagram) and super-precise rolling (lower diagram) bearings are
presented in Fig. 1.

It was assumed that the turbogenerator has to be of the oil-free type. This means
that during operation neither bearings nor its other parts will require oil lubrication. It is
a very modern solution with many advantages. The most important of them are the
following: there will be no contamination of the ORC system’s working medium with a
bearing lubricant, a hermetically-sealed casing of the microturbine, no need to use
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hermetic seals within the casing (between the turbine and bearing parts), no external
power supply system for the bearings. All these features are very important in systems
with working mediums of the low-boiling type—which tend to have a high penetra-
bility. Such a solution also has some drawbacks. Rolling bearings designed for very
high speeds work better with oil lubrication. Grease lubrication in rolling bearings does
not allow very high rotational speeds to be achieved. There are specialized designs of
rolling bearings lubricated with grease that enable stable operation with high speeds,
but these are solutions “on the verge of technical possibilities”. It follows that there is
an absolute necessity to thoroughly investigate each and every newly designed bearing
system.

The first tested ORC turbogenerator is equipped with rolling bearings with a
diameter of 8 mm. The second turbogenerator’s rotor is supported by aerodynamic
bearings that have a diameter of 20 mm (after optimization). Thanks to small dimen-
sions of the generator and of the rotor disk, the developed rotor is characterized by very
small external dimensions. The following parts of the article discuss results of the
analyzes carried out for two bearing systems with gas bearings and high-speed rolling
bearings. It was initially estimated that each of these bearing systems can be used in the
target solution. Testing of the systems was aimed at determining the key parameters of
the bearings and checking them for correct operation.

Fig. 1. Diagram of the 1 kW ORC turbogenerator’s rotor supported by: (a) aerodynamic
bearings, (b) rolling bearings.
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3 Gas Bearings

Gas bearings are one of the two bearing variants considered. The research covered
aerodynamic bearings with different diameters. Only after the optimization process was
completed, the bearings with diameters D1 = D2 = 20 mm and the width respectively
L1 = 16 mm and L2 = 18 mm were selected for further analysis. The bearing No. 1 is
situated on the left-hand side of Fig. 2 (in other words, further away from the rotor disk
than bearing No. 2).

3.1 Analysis of the Rotor with Gas Bearings

There was conducted a kinetostatic and dynamic analysis of the turbogenerator’s rotor
supported by aerodynamic bearings. For this purpose, computations were performed
using the KINWIR-G and LDW-G computer programs, which belong to the MESWIR
environment used for carrying out simulations on rotor – bearings systems. The FEM
(Finit- Element Method) model of the rotor, used in those simulations, is presented in
Fig. 2.

This model comprises 20 Timoshenko-type beam elements, with six degrees of
freedom in each node. The keep plate is modeled as a disk placed at shaft node No. 3,
and the generator as three disks situated at shaft nodes with numbers 8, 10 and 12. The
rotor disk is modeled as a disk located at shaft node No. 20. The rotor is supported by
two aerodynamic bearings, the shaft nodes of which have numbers 5 and 15.

Stiffness and damping coefficients of the lubricating film were computed using the
MESWIR environment. In the subsequent stages of the analysis, the static equilibrium
point was determined, and afterward, a series of calculations for neighboring points
were made (altering the position of the journal). At each position of the journal, the
Reynolds equation was solved using the Alternating Direction Implicit (ADI) method
[13]. On this basis, values of pressure and forces acting on the bearing journal were

Fig. 2. FEM model of the 1 kW turbogenerator’s rotor with aerodynamic bearings.
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found, what in turn was the starting point for estimating the values of stiffness and
damping coefficients. These coefficients changed with the rotational speed change and
their values at the nominal speed are listed in Table 1.

The dimensions of the bearings are as follows: diameter – D1 = D2 = 20 mm,
width—L1 = 16 mm and L2 = 18 mm, absolute radial clearance—15 lm. It was
assumed that the rotor and the first four disks (counting from the left) are made of steel
with a density of 7,860 kg/m3, and the disk that models the keep plate is made of
aluminum with a density of 2,700 kg/m3. The total mass of the rotor is 0.361 kg. The
kinetostatic load is 1.5071 N and 2.0316 N, respectively for the first and second
bearing. The residual unbalance was 0.361 gmm, according to the requirements of ISO
1940-1 standard [14]. The dynamic viscosity of the working medium was
0.101 � 10−4 Ns/m2 at a temperature of 130 °C. Computations were carried out for the
speed range of 5,000–150,000 rpm.

Figure 3 shows the relative vibrations of the nodes corresponding to the bearing
journals and the vibrations of the nodes in which the disks were modeled. Lubricating
wedges, enabling the correct operation of aerodynamic bearings, formed themselves
already at a speed of 7,000 rpm. The highest vibration amplitudes of the journals
occurred at a rotational speed of 70,000 rpm, and were, respectively, approx. 1.8 lm
and approx. 1.1 lm for the first and second bearing. The maximum amplitude of
vibration of disk No. 1 was about 1.95 lm and was registered at a speed of
85,000 rpm. Vibrations of disks No. 2, 3 and 4 increased up to a speed of approx.
65,000 rpm and their maximum vibration amplitudes were respectively about 1.62 lm,
1.52 lm and 1.37 lm. Then, vibration levels of these three discs decreased slightly,
and in the speed range of 90,000 rpm–100,000 rpm began to increase again, reaching
the highest vibration amplitudes at the end of the analysed speed range (1.64 lm,
1.87 lm and 1,66 lm, for the first, second and third disk, respectively). The vibration
level of the fifth disk rose across the whole analyzed speed range, reaching the max-
imum vibration amplitude of 1.48 lm.

Vibration trajectories of the shaft nodes are shown in Fig. 4, for the following
rotational speeds: 10,000 rpm (i.e. immediately after the lubricating wedge has formed
itself), 70,000 rpm (at highest displacements of bearing journals), 85,000 rpm (that is
the speed at which the highest vibration amplitude of disk No. 1 occurred),
120,000 rpm (i.e. at the highest tested speed). Figure 5 presents vibration trajectories of
the bearing journals obtained at the same four rotational speeds.

Table 1. Stiffness and damping coefficients of aerodynamic bearings for the nominal speed
(100,000 rpm).

Parameter Stiffness [N/m] Damping [Ns/m]

Bearing 1 xx 3.14�106 471
Bearing 1 yy 1.66�106 249
Bearing 2 xx 3.55�106 533
Bearing 2 yy 2.94�106 441
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The results of analyzes conducted for the rotor of the 1 kW ORC microturbine,
supported on aerodynamic bearings show that the vibration amplitudes of the rotating
system are small and did not exceed 2 lm in the entire tested speed range of 5,000–
150,000 rpm. Both bearings started to operate properly already at a speed of
7,000 rpm.

Fig. 3. Vibration amplitudes of the gas bearings’ journals vs. rotational speed.

Fig. 4. Vibration trajectories of the rotor’s shaft nodes of the 1 kW ORC microturbine with
aerodynamic bearings at four rotational speeds: (a) 10,000 rpm, (b) 70,000 rpm, (c) 85,000 rpm,
(d) 120,000 rpm.
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4 Rolling Bearings

Rolling bearings are the second variant of bearings that perhaps will be used as
components of the turbogenerator with an electric power of 1 kW. This chapter dis-
cusses the features of the selected super-precise rolling bearings and the dynamic
performance of the rotor supported by such bearings.

4.1 Analysis of the Rotor with Rolling Bearings

Bearings marked with the 719/8 CE/HCP4A symbol [15], produced by the SKF
company, were chosen based on the given operating parameters. A three-dimensional
model of such a bearing is presented in Fig. 6. Selected bearings do not have seals. The
‘719’ digits in the bearing symbol inform about the compliance of its dimensions with
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Fig. 5. Vibration trajectories of the aerodynamic bearings’ journals of the 1 kW ORC
microturbine at four rotational speeds: (a) 10,000 rpm, (b) 70,000 rpm, (c) 85,000 rpm,
(d) 120,000 rpm.
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the relevant ISO standard. The symbol ‘/8’ means that the bearing is designed for
supporting shafts with a diameter of 8 mm. The letters “CE” indicate that it is an
angular bearing with a contact angle of 15°, in ‘high-speed’ version. The ‘HC’ des-
ignation informs that the bearing balls are made of silicon nitride (Si3N4), hence it is
a hybrid bearing. The symbol ‘P4A’ means that the bearing dimensions are in accor-
dance with the ISO standard with tolerance class 4. Moreover, the running accuracy is
better than ISO tolerance class 4.

The stiffness of the microturbine’s rolling bearings was determined based on the
relationships given in paper [16]. These are dependencies determined on the basis of
the Hertz theory, and they were verified experimentally. Based on the results of the
numerical analyzes carried out, the axial stiffness of both bearings was assumed as
0 N/m, the damping was assumed as 0 Ns/m and the lateral stiffness coefficients are
listed in Table 2.

4.2 Operating Characteristics of the Rotor with Rolling Bearings

The change of aerodynamic bearings to rolling bearings causes changes in the
geometry of the turbogenerator’s rotor (Fig. 7). The parts related to the generator and
rotor disk remained unchanged. The changes related to the bearings’ placement include
reducing the diameter of the journals from 20 mm to 8 mm. In the case of aerodynamic
bearings, it is necessary to use additional keep plates, while the use of rolling bearings
requires considering additional elements of their fixing.

Fig. 6. Bearing marked with the 719/8 CE/HCP4A symbol.

Table 2. Stiffness and damping coefficients of ball bearings.

Parameter Stiffness [N/m] Damping [Ns/m]

Bearing 1 xx 3.3�106 0
Bearing 1 yy 3.3�106 0
Bearing 2 xx 3.3�106 0
Bearing 2 yy 3.3�106 0
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The FEM model of the turbogenerator’s rotor supported by rolling bearings is
shown in Fig. 7. It differs slightly from the above-described model with aerodynamic
bearings. The differences result from the necessity of changing the journal diameters.
The model does not include elements needed for fixing the bearings. The unbalance
value has been changed because the mass of the turbogenerator’s shaft is now different.

The model of the rotor shaft consists of 17 Timoshenko-type beam elements, with
six degrees of freedom in each node. The generator was modeled using three disks
located in the sixth, eighth and tenth shaft node. It was assumed that these discs—as
well as the entire shaft—are made of steel with a density of 7,860 kg/m3. The rotor
disk was made of steel. Given the listed values, the shaft mass is 0.069 kg and the
weight of the discs is 0.103 kg, which gives a total of 0.172 kg. The value of the
residual unbalance is 0.172 g�mm and was set in accordance with the ISO 1940-1
standard. The shaft is supported by two bearings, placed at nodes with numbers 3 and
14. Both bearings have a diameter of 8 mm and a width of 6 mm.

Figure 8 presents vibration amplitudes of six shaft nodes as a function of the
rotational speed. Two resonant speeds, namely 57,000 rpm and 85,000 rpm, can be
observed in this figure. The maximum vibration amplitudes of the first and second
journal are approx. 37 lm and were registered at the first resonant speed. What is more,
they were the largest vibration amplitudes of the entire rotating system. The maximum
displacements of the first and second bearing journal were less than 10 lm at the
second resonant speed. The figure also shows displacements of all disks. The maximum
values of these displacements are almost identical to the maximum displacement values
of the bearing journals.

Fig. 7. FEM model of the 1 kW turbogenerator’s rotor with rolling bearings.
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Figures 9 and 10 depict vibration trajectories of the bearing nodes for the following
speeds: 40,000 rpm, 57,000 rpm, 75,000 rpm and 85,000 rpm. These are the speeds
corresponding respectively to:

• operation at a low rotational speed,
• first resonant speed,
• anti-resonant speed,
• second resonant speed.

At a speed of 40,000 rpm, small spherical vibrations, the amplitudes of which do
not exceed a value of 2 lm, can be observed. The largest vibration amplitudes occurred
in the central part of the rotor. The right-hand side of Fig. 9 presents vibration tra-
jectories obtained at a speed of 57,000 rpm, namely, at the first resonant speed. When

Fig. 8. Vibration amplitudes of the rolling bearings’ journals vs. rotational speed.

Fig. 9. Vibration trajectories of the rotor shaft’s nodes at two rotational speeds: (a) 40,000 rpm,
(b) 57,000 rpm.
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the rotor rotates at this speed, the highest vibrations out of all performed analyzes
occur. The highest registered peak to peak vibration amplitude is 74 µm. The operation
of the rotor under such conditions could be very dangerous and fast crossing through
the resonant speed is required.

The left-hand side of Fig. 10 presents vibration trajectories obtained at the anti-
resonant speed. This is the speed that occurred between two resonant speeds. The
maximum vibration amplitude (approx. 10 lm) is the highest in the place where the
rotor disk is. The right side of Fig. 10 depicts vibration trajectories of individual shaft
nodes obtained at a speed of 85,000 rpm. The vibrations of the shaft are of the same
shape as classic vibrations of a rigid body. Two ends of the shaft oscillate most (up to
20 lm), while its center oscillates least.

5 Summary and Conclusions

The article presents the results of works related to the selection of the bearing system
for the rotor of a 1 kW turbogenerator. Two bearing systems—based on two different
types of bearings, namely, on aerodynamic and rolling bearings—has been selected.
Due to very demanding operating conditions, among other things, the nominal speed of
the rotor is 100,000 rpm (moreover, a failure-free operation up to a speed as high as
120,000 rpm had been assumed) and temperatures can be as high as 130 °C, the
bearing system has to be analyzed very thoroughly.

As part of works to select a bearing system, CAD models have been created that
take into account different types of bearings used. Created numerical models were used
to perform computations (based on the FEM) using in-house developed computer
programs from the MESWIR series. These models consist of beam elements with
appropriately modeled disks. The unbalance was placed between the bearings with
a value adequate to the various analyzed cases. In each analyzed case, the rotor was
supported by two bearings with carefully selected geometrical parameters and stiffness

Fig. 10. Vibration trajectories of the individual rotor shaft’s nodes at two rotational speeds:
(a) 75,000 rpm, (b) 85,000 rpm.
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and damping values. The bearings were placed within the turbogenerator’s casing,
which was modeled as a rigid support.

Due to the non-uniform load of the aerodynamic bearings, the operational per-
formance of the rotor supported on bearings with a diameter of 20 mm, radial clearance
of 15 lm and different widths was investigated. In the ultimate variant of the bearing
system, a width of 16 mm was assumed for the first bearing (located further away from
the rotor disk), and the second bearing had a width of 18 mm. For this system, a lu-
brication wedge has formed itself already at a speed of 7,000 rpm. It turned out that the
maximum values of vibration amplitudes, occurring at speeds in the range of
85,000 rpm–95,000 rpm, did not exceed 2 lm. The results of the conducted analysis
bear evidence of a stable operation of the bearings in the whole range of rotational
speeds.

The second analyzed variant of the bearing system uses rolling bearings. Based on
the design requirements, bearings with the “719/8 CE/HCP4” symbol were selected.
These are super-precise angular ceramic bearings, the balls of which are made of
silicon nitride, hence hybrid bearings. The stiffness of the bearings was computed and
the dynamic properties of the generator’s rotor supported by such bearings were
analyzed. In the range of the investigated rotational speeds, there are two resonant
speeds. The first and second resonant speed is 57,000 rpm and 85,000 rpm, respec-
tively. The maximum vibration amplitude for one of the bearing journals was 74 lm (at
a speed of 87,000 rpm). The operation of the rotor supported by rolling bearings seems
to be stable and the vibration trajectories of the journals are small. For the time being, it
can be said that the nominal speed does not coincide with the resonant speed.

The conducted analyzes show that both aerodynamic gas bearings and rolling
bearings are viable solutions for a bearing system. Each of these bearing systems has its
advantages and disadvantages. Typically, gas bearings have a longer service life and
generate less noise compared to rolling bearings, but they require higher manufacturing
accuracy and an additional supply system. In addition to different design features, they
have different dynamic properties. Changing the bearing system for a rotor entails a
change in its geometry. Different bearings have different stiffness and damping coef-
ficients, which results in a completely different dynamic response of the rotor –

bearings system. The investigated rotor with rolling bearings is supercritical (as many
rotors found in the literature), which means that the nominal speed is higher than the
critical speed and during the run-up of the rotor it is necessary to pass through resonant
speeds. The rotor supported by gas bearings is subcritical, which means that resonant
speed is higher than the nominal speed. Gas bearings have much better damping
properties than rolling bearings. The results of dynamic calculations of the 1 kW ORC
turbine show that both investigated bearing systems could be used. Within the
framework of the project, two turbines will be manufactured – one with a rotor sup-
ported by rolling bearings and the other with a rotor supported by aerodynamic gas
bearings.
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Abstract. The papers focuses on the modelling and experimental vali-
dation the vibro-impact dynamic behaviour of rotors interacting with two
types of backup bearings, i.e. one pinned backup bearing with polymeric
pins (original contribution to the problem) and another common ball
bearing (conventional). The impact forces are modelled using Hunt and
Crossley approach. The parameters of the constitutive equation respon-
sible for describing the contact forces are a priori identified in auxiliary
tests. The vibro-impact model is built by coupling the nonlinear con-
tact forces with the rotor-bearing system dynamics and the theoretical
results are obtained by integrating the coupled equations in time. A
fully-instrumented test bench is designed, built and used to validate the
experimental results. The effectiveness of the pinned bearing is evaluated
in terms of orbits and maximum vibration.

Keywords: Backup bearings · Nonlinear dynamics · Impacts

1 Introduction

The backup bearings have been a relevant topic of research because they are
an essential element in the rotating machines with magnetic bearings, which
have been in use for many industrial applications. Nowadays these machines are
used mainly as turbines, compressors, pumps, and flywheels. The purpose of the
backup bearings is to protect the integrity of the machine, on the occasion of a
power loss or any kind of failure, which could lead to harmful impacts on the
structure.

The design and study of magnetic bearings can be found in the book of
Schweitzer and Maslen [1]. The rotor is levitated either by passive or active
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magnets and the shaft is set to spin within a gap in vacuum or low-pressurized
air. Before active magnetic bearings became a novelty, earlier investigations in
the 1950s already explored the relationship between a rotor and bearing with a
clearance. Black [2] was one of the first to deal with the subject of rotors with
a clearance. In his modelling the friction force was neglected and it would be
treated later in the work of Choy and Padovan [3]. In the work of Jin and Ulbrich
[4] the dry friction whip movement of the unbalanced rotor was observed when
it collided on the stator and was explained through the multiple-scale method.

The worst-case scenario for a magnetic bearing is a power loss, which makes
the rotor to loose the support completely and falls. Therefore rotor drop tests
are of immense value. One of the most cited works is from Pradetto [5], in which
a one-ton rotor was left to fall and the orbit and forces were sampled. In the
work of Ishii and Kirk [6] the transient response of a rotor drop was assessed.
Fumagalli [7] replaced the circular clearance wall by a ball bearing and tested
for several rotor drops, where the rotor interacts with the inner ring so the rotor
slides and tumbles.

The inner shape of the backup bearing plays also an important role on its
efficiency and in the dynamics after each impact. Polygonal shapes have been
tested by Simon [8] in his doctoral thesis. He compared the geometries with a the-
oretical approach and mounted a test rig to observe their dynamical responses.
Later, a more complex geometry for the backup bearing was considered which
contained pins inside the circular wall. One of the first to deal with this problem
was Lahriri et al. [9]. They described the mathematical model impacting on a
housing in order to extract the forces and validated the model with a test rig.
The goal was to set the rotor to perform the backward whirl on a common cir-
cular wall and compared with the pinned solution. From the work of Fonseca
[18], the bearing with pins has been tested when the rotor is crossing its critical
speed. Later in [19], chaotic behaviours of the impacts were analysed observing
the impact forces on the pins the different orbit that emerge. Other examples
of backup bearings can be found in the work of Ginzinger and Ulbrich [10] with
linear actuators and Zülow and Liebich [11], who added small ball bearings to
the stator. Its design can be found in the patent [12]. Ma et al. [13] also inves-
tigated theoretically the dynamical response of a pinned backup bearing using
the finite-element method to characterize the impact phenomenon. The authors
also showed the difference between three to four pins in the orbit patterns and
performed a frequency analysis, where multiple frequencies were excited.

In this work one is interest in the validation the vibro-impact dynamical
model with the observed behaviour performed by a rotor on the test bench at
the Technical University of Denmark (DTU), [14]. The tests consist of a slow
acceleration of the angular velocity in a sequence of steps until it reaches the
rotor’s resonance developing high magnitude orbits thus leading to impacts to
the backup bearings. Then rotor accelerates until the lateral rotor-stator impacts
stop after resonance passage. Two types of backup bearings are proposed to
be tested: one with polymeric pins and the other a common ball bearing. A
mathematical model is proposed to describe the dynamic interaction between
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(a) the rigid rotor and the compliant surface of POM pin and (b) the rigid rotor
and the compliant surface of the ball bearing inner ring. Some key parameter of
the contact force model are extracted with help of auxiliary tests, as pin on disc
friction tests. The contact force model is coupled to the dynamic equations of
motion of the rigid rotor and then the equations are integrated numerically in
time and compared with the experimental data. Finally, the effectiveness of the
pinned bearing is approached regarding the orbits, maximum vibration and the
contact forces.

2 Modeling the Rotor-Housing Kinematics

Figure 1 exhibits the test rig, where the rotor and its whole structure is assem-
bled. It is a horizontal rotor with a steel disc (b) coupled to a motor (e), which
is controlled externally by an embedded control hardware in order to ensure a
constant driven velocity. The value of the desired angular velocity is provided
either by a remote control (g) or by an acquisition board (h). A passive magnetic
bearing (a) is positioned at end of the rotor and provides levitation forces. Close
to the coupling, there is a spherical bearing (d) that supports the rotor but lets
it to pivot in this position. Then between the disc and the spherical bearing, one
finds the casing (f) where the backup bearing is (c). Depending on how loose
the gap at this backup bearing is, impacts between the bodies occur at a specific
angular velocity as it approaches the resonance frequency. Thanks to the design

Fig. 1. The test rig containing the rotor and the backup bearing.
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of the magnetic bearing, it works as a linear spring, creating a single resonance
frequency around 10 Hz.

Figures 2a and b show the two types of bearings that are analyzed in the
present work. The ball bearing is a SKF 62/28 and the pinned bearing is custom
made for the test rig. Each one is tested individually and mounted in the same
position.

Fig. 2. (a) From the point-of-view of the magnetic bearing to the backup bearings. (a)
Ball bearing; (b) Pinned bearing.

2.1 The Shaft

In Fig. 3, a schematic description of the rotor is presented to reproduce the
dynamics of the assembled test rig shown in Fig. 1. The fixed reference frame is
positioned where the rotor is supported by one spherical bearing at point O. The
moving reference frames B1 and B2 are also positioned at the supporting point
of the rotor and correspond to a rotation at the xI and y1-axes, respectively.
Then the rotor turns around the z-axis which forms the last reference frame B3.
However, to develop the dynamics of the rotor, it is enough to describe the system
from the reference frame B2. Thus, the rotor is only allowed to rotate according
to the following three angular degrees of freedom: Γ (t), β(t), θ(t), around the
coordinate axes xI , y1, z2, respectively, whose angular velocities are defined as

I Γ̇ =
[
Γ̇ (t) 0 0

]T
, B1β̇ =

[
0 β̇(t) 0

]T
and B2θ̇ =

[
0 0 θ̇(t)

]T
. (1)

The backup bearing is mounted at point B and the passive magnetic bearing is
at point C. The rotor is modelled as a rigid body and external forces from the
magnets, gravity, imbalance and coupling are applied at points C, A, E and D
respectively.
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Fig. 3. Representation of the reference systems of the shaft in (a) and a schematic of
the forces acting on the rotor in (b).

Then the rotational matrices ITΓ , B1Tβ and B2Tθ are defined as

ITΓ =

⎡

⎣
1 0 0
0 cos Γ (t) sin Γ (t)
0 − sin Γ (t) cos Γ (t)

⎤

⎦ , B1Tβ =

⎡

⎣
cos β(t) 0 − sin β(t)

0 1 0
sin β(t) 0 cos β(t)

⎤

⎦ ,

B2Tθ =

⎡

⎣
cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0
0 0 1

⎤

⎦ . (2)

The inertia tensor referred to the supporting point is

B2IO =

⎡

⎣
Ixx 0 0
0 Iyy 0
0 0 Izz

⎤

⎦ . (3)

The absolute angular velocity represented in the coordinates of the moving ref-
erence frame B2 is given by

B2Ω = B2Γ̇ + B2β̇ =

⎡

⎣
Γ̇ cos β

β̇

Γ̇ sin β

⎤

⎦ , (4)

whereas the absolute reference frame velocity is

B2ω = B2Ω + B2θ̇ =

⎡

⎣
Γ̇ cos β

β̇

Γ̇ sinβ + θ̇

⎤

⎦ . (5)

The absolute acceleration in ref. frame B2 is written as:

B2ω̇ =

⎡

⎣
Γ̈ cos β − Γ̇ β̇ sin β

β̈

Γ̈ sinβ + Γ̇ β̇ cos β + θ̈

⎤

⎦ . (6)
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In the present case, the angular acceleration with respect to the z-axis, θ̈ is zero.
Any change in velocity is considered instantaneous.

The determination of the equations of motion comes from the Euler formu-
lation. ∑

B2Moments0 = B2IO ·B2ω̇ + B2Ω × (B2IO ·B2 ω̇) . (7)

The equations are:

∑
B2M0 =

⎡

⎢
⎢
⎣

Ixx

(
Γ̈ cos β − β̇Γ̇ sin β

)
+ (Izz − Iyy) Γ̇ β̇ sin β + Izzβ̇θ̇

Iyyβ̈ + (Ixx − Izz) Γ̇ 2 sinβ cos β − IzzΓ̇ θ̇ cos β

Izz

(
β̇Γ̇ cos β + Γ̈ sinβ

)
+ (Iyy − Ixx) Γ̇ β̇ cos β

⎤

⎥
⎥
⎦ . (8)

The forces applied to the rotor are the magnetic FM ag , the damping force
FD , the unbalance force Fu and the contact forces FN , Ffric, the shaft’s weight
P , and finally a vertical coupling force, Fcoupl, which necessary for the equilib-
rium position and written as:

B2Fu =

⎡
⎢⎢⎣

muεθ̇2 cos
(
θ̇t + φ

)

muεθ̇2 sin
(
θ̇t + φ

)

0

⎤
⎥⎥⎦ , I P =

⎡
⎣

0
−mg

0

⎤
⎦ , IFN =

⎡
⎣

N cos α
N sin α

0

⎤
⎦ , (9)

IFfric =

⎡
⎣

μN sin α
−μN cos α

0

⎤
⎦ ,I FMag =

⎡
⎣

K cos ξ
K sin ξ

0

⎤
⎦ , IFD =

⎡
⎣

c cos ρ
c sin ρ

0

⎤
⎦ , IFcoupl =

⎡
⎣

0
−Fcoupl

0

⎤
⎦ ,

(10)

where the two angles ξ and ρ are defined as such; ξ is the angle of the displace-
ment of the rotor to the origin in the fixed reference frame and ρ is the angle of
the velocity of the rotor to the origin in the fixed reference frame. At the contact
on the backup bearing the angle of contact is designated as α. A diagram in
Fig. 4 illustrates the role of each mentioned angles. Each force is applied at the
points, whose vectors are as follows:

B2rO A =

⎡
⎣

0

0

lA

⎤
⎦ , B2rO B =

⎡
⎣

0

0

lQ

⎤
⎦ , B2rO C =

⎡
⎣

xB

yB

lS

⎤
⎦ , B2rO D =

⎡
⎣

0

0

−lD

⎤
⎦ , B2rO E =

⎡
⎣

0

0

lE

⎤
⎦ .

(11)

Finally, a torque from the motor is given as T =
[
0 0 T

]T . But the value of T
is unimportant in the present analysis, because it is supposed that the torque is
ideally supplied by the motor to keep the angular velocity θ̇ constant. Therefore
the expression of the sum of the moments is

∑
B2M0 = B2

(
rOA × P + rOC × FMag + rOC × FD + rOB × FN +

+ rOB × Ffric + rOE × Fu + rOD × Fcoupl + T
)
. (12)
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Fig. 4. Diagram of the rotor displaced from the origin and impacting on a pin.

2.2 Contact Criteria and Housing Dynamics

The contact on the backup bearing is responsible for a so strong interaction
between the bodies in a way that it is not possible to be represented by linear
models. Moreover, the impact force influences the dynamics of the structure that
holds the backup bearing. This means its equations of motion have to be included
in the mechanical system. Two housings holding the backup bearing are built
in a manner that each one moves in a different direction, i.e. the inner house
moves vertically and the outer house horizontally. Between them there are force
transducers that are modelled as spring elements. A sketch of the inner and outer
houses and the four force transducers is shown in Fig. 5. Sliding beams provide
the damping effect and the restriction of coupled movements. The equations of
motion are written as:

mihÿih = −2kftyih − 2cvyih − mihg + N sinα + μN cos α (13)
(Moh + mih) ẍoh = −2kftxoh − 2chxoh + N cos α − μN sinα. (14)

For the impact to happen, the shaft centre has to cross a boundary surface,
otherwise the normal force is nonexistent, N = 0. The two types of backup
bearings have different geometries implying two rules for the threshold surface.
The ball bearing is the easiest to define since it is a round surface too and yet
it is a moving wall. So, whenever the shaft centre, r, at the plane S of backup
bearing is at a distance greater than the nominal gap, r0, an impact state is in
place.

rir − rs = r0, or the gap (15)
r > r0,→ in contact, (16)
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Fig. 5. Inner housings (blue), the outer housing (red) and the four force transducers
(yellow).

where rir is the inner radius of the inner ring and rs the radius of the shaft.
The tangential velocity at the contact point is also relevant, because the friction
force is exerted against the relative velocity between the edge of the shaft and
the inner ring of the ball bearing.

Therefore we should include another degree of freedom to the mechanical
system, namely, the acceleration of the bearing’s inner ring:

Ieqθ̈ir = |B2rs ×B2 Ffric| − cir θ̇ir, (17)

where cir is a damping coefficient exclusive for the bearing that comes from
the friction with the spheres. The other elements of the ball bearing, namely
the spheres and the outer ring, and their interactions have not been included
in the model, since the bearing mounted in the current test rig is thought to
have few influence of them upon the overall dynamics of the test rig. Besides, by
including the dynamics of each sphere and its interactions would consume too
much computational time for the desired numerical result. However, the polar
inertia parameter of Eq. 17 includes the inertia from the ring and the equivalent
of the spheres.

The model of the contact is the one proposed by Hunt and Crossley [15].
This expression has been applied to model the impact between rotors and the
inner ring in the works of references [16,17]:

N = kimpδ
n

(
1 + 1.5ηδ̇

)
. (18)

The term η represents the damping contribution of the impact. This damping
depends not only on the velocity of the deformation but also on the deformation
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itself, so with it one avoids the hysteresis effects or numerical errors. The value
of this parameter was determined experimentally and will be commented later
in this work. The term η is also correlated to the coefficient of restitution ce and
the initial velocity of contact as follows:

ce = 1 − ηδ̇−. (19)

The pinned backup bearing simplifies the mechanical system, because the
walls are not rotating, yet it makes the geometry of contact more complicated.

The formulae for the aperture δ necessary for Eq. (18) are written as:

δ =
√

(X − xoh)2 + (Y − yih)2 − r0, (20)

for the ball bearing and for the pinned one, from the center of shaft to the tip
of the Pin i

δ ∼= | (X − xoh, Y − yih) − Pini|. (21)

Figure 6 demonstrates geometrically the meaning of the penetration for the
pinned case, where rpin is the position of the tip of a pin in relation to the
moving housing.

Fig. 6. Deformation δ shown for the pinned case. The Pini is represented by the shaded
area.

Here X and Y are the displacement of the centre of the shaft at the contact
plane S, given by ⎡

⎣
X
Y
Z

⎤

⎦ = ITT
Γ B1TT

β

⎡

⎣
0
0
ls

⎤

⎦ . (22)
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3 Parameters of the Test Rig

The parameters of the test rig are detailed in the Table 1 and having them
correctly measured will ensure that the numerical integration gives appropriate
results when compared to the experiments. Another important point is to find an
adequate length of the pin so the gaps can be comparable with the ball bearing.
This length has been determined to match the point that the rotor will not touch
the structure between two consecutive pins, observe the dashed line creating the
astroid function in Fig. 8, see [18]. However, some key parameters require have to
be determined in a separate manner. It is necessary to estimate the coefficients
from the compliance model in Eq. 18 as precise as possible, because this is the
main source of nonlinearity of the current problem. Most important are the elas-
tic coefficient kimp and the coefficient of restitution ce. Those parameters could
be determined by letting the rotor drop on the surface of the inner ring of the
ball bearing. The sampled data during the fall of the rotor is used by a Nonlinear
Least Squares algorithm to find the averaged values of these parameters as well
as their uncertainty levels.

For the pinned bearing, the elastic coefficient was considered as a cylinder-
on-sphere contact type. Moreover, in Fonseca et. al [20] the value of the friction
coefficient between the polymer and the aluminium has been estimated by a
series of test runs where a sample of POM was positioned on a gyratory platform.
The relationship between the applied force and the counter torque given by the
platform defines the value of the friction.

With the correct estimation of the geometric and material parameters of
the test rig and the ones belonging to the compliance model of the impact one
can integrate numerically the equations of motion in time. The complete model
is integrated using the function ode45 supplied by the Matlab programming
environment with an event function to ensure that the nonlinearity of impacts
is correctly reproduced.

Table 1. Specifications of the parts of the test rig.

Shaft Inner and outer house

Mass without unbalance 1.28 kg Mass from inner house 1.70 kg

Length to magnetic bearing 384mm Mass from outer housing 8.87 kg

Length to rolling bearing 211mm Force sensor

Shaft diameter 25mm Force transducer stiffness 83 MPa

Rolling bearing Pins

Inner diameter 28mm Total length of the pins 1.0 mm

Inner race outer diameter 32mm Radius of the pins 4.0 mm

Sphere radius 5.0 mm Radius of the circular wall 38mm
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4 Crossing the Natural Frequency. Experiments
and Theoretical Results

As mentioned before a dedicated control guarantees the desired angular speed
and gives sufficient power to the motor in order to maintain a constant speed
regardless of any disturbance or impacts. Nevertheless, an encoder behind the
motor gives the true angular velocity and its signal is captured and so the steadi-
ness of the angular velocity is observed on time. The angular velocity increased
step-wise from 0–20 Hz. Every step lasts 10 seconds and added 0.5 Hz to the
previous one. The simulation program had the same velocity profile, but now it
is given as an input function.

In Fig. 7, the maximal radial displacement of the centre of the shaft is plotted
after the transient phase for both types of backup bearings. After the resonance
is crossed around 10.0 Hz the shaft remains in contact with the backup bearing.
In a linear model without impacts, the orbits’ magnitude should decrease and
the shaft should be away from the contact area. The mechanical barrier of the
safety bearing creates a stiffening effect and the rotor is able to return to a
safer orbit only at a much higher angular velocity than predicted by the simple
linear case. Both types of backup bearing presented a similar behaviour, when
the radial position drops sharply after 16.0 Hz for the ball bearing and 14.0 Hz
for the pinned case. The results from the numerical integration reproduced the
same experimental pattern qualitatively.

2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

Exp. result ball bearing Sim. result ball bearing Exp. result pinned bearing Sim. result pinned bearing

Fig. 7. Maximum displacement of the center of the shaft for ball bearing and the
pinned one.

To reinforce the validity of the model, some orbits were selected for compari-
son. They are shown in Fig. 8. All velocities are above the resonance. On the top
one sees the experimental data and numerical results for the ball bearing. One
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observes that the patterns are similar. The rotor hits the lower half of the inner
ring of the bearing in one point and changes for a clear two point orbit. Later,
at 14.5 Hz, the orbit changes again and assumes an almost vertical trajectory.
These results are equally reproduced by the simulation.

In the same Fig. 8, but below, the same comparison is done for the pinned
bearing. Now, instead of a circular gap, the region defined by the pins is plotted
as an astroid function. Initially the rotor does an erratic trajectory impacting
on multiple pins, but later it performs a diagonal movement hitting on a single
pin. This change explains the sudden fall in Fig. 7 at 12 Hz before the definitive
one at 14.5 Hz. The diagonal orbit appears only at one case at 14 Hz. The last
value velocity to show impacts remains the same, yet.

It is important to highlight that there are some discrepancies between the
numerical solution with the observed data. The nonlinear parameters of the
compliance model were determined by the signals of force transducers mounted
between the housings and the proximity sensors close to the shaft, but slightly
away of the backup bearing. Besides, the rotor should bend and vibrate during
and after the impact, but it is modelled as a rigid body and these phenomena
are not reproduced by the simulation. Therefore some deviations of the overall
dynamical behaviour are expected to occur and, for both types of backup bear-
ing, the magnitude of the orbits are lower than the ones observed experimentally.

Fig. 8. Comparison between orbits, experimental in blue and theoretical in red. On
the top for the ball bearing and below for the pinned bearing case.
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4.1 Unbalance Influence on the Ball Bearing Case

When the unbalance becomes high it starts to influence not only on the mag-
nitude of the orbit, but also on the nature of the nonlinear dynamics created
by the impact on the backup bearing. The change can be so intense that the
rotor no longer removes itself from the impacting orbit, at least between 0–20 Hz.
Therefore, in order to address this issue, another set of experiments is executed.
The rotor is kept spinning at a constant speed of 10 Hz and the magnetic forces
are removed, so a full failure of a magnetic bearing is replicated by the test
rig. Consequently, the rotor is initially in contact with its backup bearing. Now,
there is only one type of backup bearing, namely the ball bearing and only the
unbalance changes in this set-up.

Doing so, the dynamical analysis to be conducted is different than before.
When the rotor crosses the vertical axis of round gap, the state space of the
variables are sampled and saved. This is done for different levels of unbalance.
The result can be seen in Fig. 9, where the blue dots represent the numerical
outcome for several values of unbalance and the red ones represent the observed
experimental results. The unbalance was included to the rotor by adding an
extra piece to the disk of the rotor.

Fig. 9. Bifurcation diagrams where the unbalance is the control parameter. Top: Y
position; below left: velocity horizontal component; below right; velocity vertical com-
ponent.

The bifurcation diagrams show that there are three distinct dynamical
behaviours. The first one (I) means that the rotor is always in contact at the bot-
tom of the backup bearing and is executing an oscillatory movement. It remains
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doing so until a certain threshold, around (60 g mm), from now on the rotor
crosses the vertical axis through a different point each time. This second stage
(II) is a clear representation of chaotic characteristics performed by the rotor.
The reason is that the unbalance is strong enough to remove the rotor from the
contact with the inner ring of the backup bearing and the shaft making colliding
again on the other side. It means that the rotor will experience high impact
forces. Experimentally, the rotor has achieved the second dynamical stage ear-
lier than the numerical model and this can explained due to the imprecision on
determining the correct values of the nonlinear contact parameters. However, by
given an even further increasing on the value of the unbalance, the rotor reaches
a third behaviour (III). Now the rotor executes a full forward whirl throughout
the surface of the bearing. It is seen on the bifurcation diagram on the top that
the shaft is crossing the vertical axis in two points only, below and above. Since
the rotor is always in contact the magnitude of the forces of interaction between
the two bodies is relatively low. To better illustrate these three patterns, Fig. 10
exhibits the different trajectories for the three levels of unbalance performed by
the rotor.

Fig. 10. Experimental orbits for the different dynamics. In black oscillatory behaviour
(I), in blue the chaotic one (II), and the forward whirl one (III) with high unbalance
in red.

5 Conclusion

This paper brings results for the behaviour of a rotor system supported by a
magnetic bearing when a safety bearing is present to avoid critical behaviour.
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Experiments validate the numerical model that now can be used for other con-
ditions and parameters. Two particular situations that can become critical are
chosen: in the first, the rotor spins up crossing the critical speed and due to
some reason amplitudes exceed the limit, making the backup system to work.
This situation was used to compare two types of backup bearings, namely the
ball bearing and the pinned bearing. In the second, the influence of the increase
in the unbalance on the dynamic behaviour of the rotor system when a backup
bearing consists in a ball bearing is investigated.

Results for the first case: The ball bearing and the pinned bearing showed
that although the critical speed was surpassed, the rotor remained impacting
on the inner surface of the backup bearings. The pinned bearing had a better
performance since it could return to a safer orbit about 2 Hz before.

Results for the second case show that the unbalance can change how the
rotor interacts with the ball bearing as backup bearing if a full failure of the
magnetic bearing happens. Three different dynamical patterns were identified:
an oscillatory one for low unbalance, a chaotic one for intermediary unbalance,
and a forward whirl always in contact for higher unbalances.

To attest even more the efficiency of the presence of pins for backup bearings
one can further investigate different materials to manufacture them and later
compare. Also, a better test rig to observe the deformation of the pin when
in contact may improve the reliability of the parameters that constitute the
compliance models.

A bearing that contains pins instead of a common ball bearing has an easier
maintenance, because any damage on them can be solved by a simple replace-
ment procedure. Thus the rotating machine does not have to be unmounted to
perform a replacement of the whole backup bearing and the idle time of the
machine is reduced.
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samen Fakultät für Maschinenbau und Elektrotechnik der Technischen Universität
Carolo Wilhelmina zu Braunschweig (2001)

9. Lahriri, S., Santos, I.F., Weber, H.I., Hartmann, H.: On the nonlinear dynamics
of two types of backup bearings theoretical and experimental aspects. J. Eng. Gas
Turbines Power 134(11), 805–818 (2012)

10. Ginzinger, L., Heckmann, B., Ulbrich, H.: Feedback control to prevent damage by
rotor rubbing after an impact load, Proceedings of the ASME Turbo Expo, vol. 6,
pp. 1003-1012 (2009)
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Abstract. Tilting-pad journal bearings (TPJBs) are symmetric from
design. However, the machining and assembling tolerances of a TPJB can
result in asymmetries of the pad position that strongly affect the final
dynamic characteristics of the system. In this work, a numerical study is
devised to analyze the stiffness and damping coefficients of an asymmet-
ric TPJB with load-on-pad (LOP), evaluated by a thermo-hydrodynamic
(THD) model for a wide range of Sommerfeld numbers. The uncertainty
in the TPJB geometry is included in the model by varying the nominal
bearing gap (assembled clearance) according to a distribution ruled by
the Monte Carlo Method. The results show that, in most of the cases,
the asymmetry represents a detrimental effect on the bearing characteris-
tics. However, there are some cases where the asymmetry of the TPJB is
beneficial, resulting in higher stiffness and damping than expected from
designing a symmetric bearing.

Keywords: Lubricated bearing · Tilting-pad bearing · Uncertainty
Thermo-hydrodynamic model · Monte Carlo simulation

1 Introduction

Tilting-pad journal bearings have been thoroughly investigated in the last
50 years and, consequently, their industrial application is established and mature
[1]. Hence, much effort has been done to find the optimum geometry of such
bearings aiming at achieving higher stiffness and damping levels for the rotating
machine. However, it was only in the last few years that uncertainties called the
attention of Engineers and Researchers. In this case, the tolerances adopted dur-
ing bearing machining and those adopted during bearing assembling could result
in a tilting-pad journal bearing with a geometry different from that originally
designed. Consequently, the final bearing would present dynamic characteristics
(stiffness and damping) significantly different from those nominally expected.

According to [2], the machining tolerances of the bearing pads can be of the
same order of the clearance between the shaft and the bearing. In this case,
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Fig. 1. Tilting-pad journal bearing with symmetric and asymmetric geometries (load-
on-pad configuration).

important parameters of the bearing can be affected, such as the bearing clear-
ance and the bearing pre-load, leading to an asymmetric configuration of the
bearing (Fig. 1) where each pad is in a radial position different from that of the
other pads. The observed consequences of such asymmetry of the bearing are:
higher cross-coupling stiffness due to changes in the unloaded pads [3]; varia-
tion of direct stiffness and damping coefficients due to variations of the loaded
pad geometry [3]; increase of standard deviation of the stiffness and damping
coefficients, however keeping the average value near the nominal value [4].

This last observation explains why tilting-pad journal bearings have been
applied successfully for such a long time without further investigation into their
asymmetry (the production batch keeps the dynamic characteristics of the bear-
ing at the average). However, individually, the variation can be high. For this
reason, literature started to study the effects of such geometry asymmetry by
stochastic analyses, focusing on the effects of dimensional variability. Despite
the recent progress in such investigation, there are still design issues to be
addressed, such as: what kind of asymmetry worsens the dynamic character-
istics of a tilting-pad bearing? And, more importantly, are there asymmetric
geometries that improve the dynamic characteristics of the tilting-pad bearings?
Such questions motivate the present work. Here, we focus on the specific case of
tilting-pad bearings with four pads under load-on-pad configuration (Fig. 1).

2 Mathematical Model

In this work, a numerical study is devised to analyze the stiffness and damping
coefficients of an asymmetric tilting-pad journal bearing (TPJB) with load-on-
pad (LOP) configuration, evaluated by a thermo-hydrodynamic (THD) model
of the bearing. The uncertainty in the TPJB geometry is included in the model
by varying the nominal bearing gap (assembled clearance) according to a distri-
bution ruled by the Monte Carlo Method.

The THD model used to calculate the equivalente stiffness and damping
coefficients of the rotor-bearing system is depicted schematically in the block
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Fig. 2. Block diagram of the simulation algorithm of the TPJB.

diagram shown in Fig. 2. Initially, we set the geometric parameters of the bear-
ing (rotor radius, pad inner radius, pad width, pad angle, pad thickness), the
operating conditions (rotating speed, external loading, oil thermal conductivity,
oil specific heat, oil density), the inicial oil viscosity distribution over the pads
(μi) and, the initial position of the rotor (XR, YR) and of the pads (αi). After
that, the Reynolds equation is solved numerically for each pad [5]:

∂

∂y

(
h3
i

μi

∂pi
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)
+

∂
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(
h3
i

μi

∂pi
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+ 12

∂hi
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where pi = pi(y, z) is the oil pressure distribution in the bearing clearance
between the rotor and the i-th pad, hi = hi(y) is the clearance between the
rotor and the i-th pad, μi = μi(y, z, Ti) is the oil dynamic viscosity over the i-th
pad, and U is the linear velocity of the rotor surface. This equation is written
for a coordinate system (y, z) fixed on the surface of the i-th pad, with y in
tangential direction (direction of shaft rotation) and z in axial direction. The
boundary condition adopted to solve the Reynolds (1) is ambient pressure at the
edges of the pads (case of flooded bearing). The cavitation zones of the pads are
treated by the Gumbel hypothesis (ambient pressure at cavitation zones).

By solving the Reynolds equation for each pad of the bearing, we find the oil
pressure distribution over the pads. Such pressure distributions are numerically



Stochastic Analysis of Asymmetric T-PJBs 255

Fig. 3. Hydrodynamic forces acting on the pads and on the shaft in the TPJB.

integrated over the surface area of the pads, thus resulting in the hydrodynamic
forces acting perpendicularly (Fp) and tangentially (Ft) to the pads (Fig. 3). Such
hydrodynamic forces are summed up to calculate the resultant hydrodynamic
forces acting on the shaft (FhdX

, FhdY
), in the form:

FhdX
= −

np∑
i=1

Fpi
cos (ϕi + αi) − Fti sin (ϕi + αi) (2)

FhdY
= −

np∑
i=1

Fpi
sin (ϕi + αi) + Fti cos (ϕi + αi) (3)

where np is the number of pads in the TPJB, and ϕi is the positioning angle of
the i-th pad in the bearing casing in relation to the coordinate system (Fig. 3).

The equilibrium position of the shaft (XR, YR) and of the pads (αi) is
obtained by achieving the equilibrium of forces in the bearing: when the hydro-
dynamic forces on the shaft are equal to the external forces acting on the shaft.
That is accomplished by using the Newton-Raphson algorithm, which will find
the positions XR, YR, and αi that zero the equilibrium equation:

∑
fhd(XR, YR, αi) − fext = 0 (4)

where fhd is the vector of hydrodynamic forces (function of the rotor and pad
positions), and fext is the vector of external forces applied to the shaft.

After finding the equilibrium position of the TPJB, we solve numerically the
Energy equation:
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where Ti = Ti(y, z) is the oil temperature distribution over the i-th pad, k is
the oil thermal conductivity, C is the oil specific heat, and ρ is the oil density
(the variations of k, C, and ρ as a function of the temperature are considered
negligible). Again, these equations are written for a coordinate system (y, z)
fixed on the surface of the i-th pad, with y in tangential direction (direction of
shaft rotation) and z in axial direction. To solve the Energy Eq. (5), adiabatic
temperature boundary condition is assumed in the pads, rotor, and in the bearing
housing. The inlet temperature distribution at the leading edge of the pads is
obtained from an energy balance applied to the mixing zone (area between pads),
by considering the temperature distribution of the oil that exits the preceding
pad.

By solving the Energy equation for each pad of the bearing, we find the oil
temperature distributions over the pads. These temperature distributions are
used to update the oil viscosity distributions over the pads (μi). In the present
case, we adopt the following relationship between the oil viscosity and the oil
temperature:

μ = 0.0603 e(2.16−0.087T+0.0005T 2) (6)

which is equivalent to the viscosity of an ISO VG 32 oil.
If the new oil viscosity distribution differs from the initial oil viscosity dis-

tribution by a certain tolerance value, this new oil viscosity distribution is used
to recalculate the rotor-bearing equilibrium positions (Fig. 2). Such procedure is
repeated until we achieve the convergence of the oil viscosity distributions (the
difference between two successive iterations is smaller than the tolerance value).

2.1 Calculation of the Dynamic Coefficients

After achieving the convergence of the oil viscosity in the TPJB, we finally
find the equilibrium position of the rotor in the bearing, and the equilibrium
angular position of the pads, for the given operating and loading conditions.
Hence, the equivalent dynamic coefficients of the rotor-bearing system can be
estimated. For that, small perturbations are imposed to the degrees-of-freedom
of the system (displacement/velocity of the rotor in horizontal and vertical direc-
tions, and angular displacement/velocity of the pads) [6]. The algorithm is run
once again, and the resultant hydrodynamic forces and moments are calculated
for the perturbed system. With these information (perturbations and resultant
forces/moments), we find the stiffness and damping matrices of the system:

Δf = KΔx + DΔẋ (7)

where Δf = {ΔFx ΔFy ΔM1 ΔM2 ΔM3 ΔM4}T is the vector of forces and
moments variation, x = {Δx Δy Δα1 Δα2 Δα3 Δα4}T is the vector of displace-
ment perturbations, ẋ = {Δẋ Δẏ Δα̇1 Δα̇2 Δα̇3 Δα̇4}T is the vector of velocity
perturbations, and K and D are the stiffness and damping matrices of the system
(6 × 6 matrices).
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Fig. 4. Histogram of the random values adopted for the bearing assembled clearance
of the i-th pad.

The global stiffness and damping matrices (4×4 matrices) are calculated
using the condensation method described in [1], to eliminate the angular degrees-
of-freedom of the pads and stay with the lateral displacements of the rotor only.
That gives:

ΔfR = KGxR + DGΔẋR (8)

where ΔfR = {ΔFx ΔFy}T , xR = {Δx Δy}T , ẋR = {Δẋ Δẏ}T , and the global
stiffness and damping matrices are:

KG =
[

kxx kxy
kyx kyy

]
(9)

DG =
[

dxx dxy
dyx dyy

]
(10)

where subscripts xx and yy denote direct coefficients and subscripts xy and yx
denote cross-coupling coefficients.

2.2 Assembled Clearance Variation

The asymmetry of the bearing is introduced in the model by adopting differ-
ent bearing assembled clearances (hi) for each pad. The process of choosing the
combination of values is based on the Monte Carlo method using uniform distri-
bution [7]. Random values are created in the range of minimum and maximum
bearing clearances, thus resulting in the histogram shown in Fig. 4. Such set of
random values is created for each pad of the bearing, thus resulting in a set
of four random variables {h1 h2 h3 h4}N×4, where N is the number of random
samples.

Given a combination of radial clearances for the bearing (h1, h2, h3, h4), the
dynamic characteristics of the bearing are recalculated and compared to those
of the nominal case (symmetric bearing). This step is repeated extensively for
all N random combinations of clearances.
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3 Numerical Results

In the numerical results, a total of 5,000 sets (N = 5,000) are randomly cre-
ated by the MATLAB function rand, which gives uniformly distributed random
numbers between 0 and 1. Such numbers are then proportionally shifted to the
range of 50×10−6 (minimum) to 90×10−6 (maximum) to represent the possible
clearance values in each pad (in meters). That represents an average clearance
of 70µm (nominal clearance) with 20µm of random variation.

The mathematical model is used to calculate the thermal equilibrium, the
equilibrium position, and the dynamic coefficients of the bearing under the oper-
ating conditions listed in Table 1. The case of nominal bearing clearance of 70µm
represents the symmetric bearing with nominal geometry (all pads have the same
clearance). All other 5,000 simulations, using the randomly created combinations
of bearing-pad clearances, represent the cases of bearing asymmetry with equal
probability of occurrence (uniform probability distribution - Fig. 4). The calcu-
lated dynamic coefficients are presented in adimensional form:

Kij =
Cp

W
kij (11)

Dij =
CpΩ

W
dij (12)

where Cp is the machined clearance (difference between the pad inner radius
and the rotor radius), Ω is the rotating speed (in rad/s), and W is the external
load applied to the rotor. The obtained results are shown in Figs. 5 and 6, as a
function of the Sommerfeld number (So = μΩLR(R/Cp)2/πW , where μ is the
average oil viscosity, L is the pad width, and R is the rotor radius). The external
loading W is applied to the vertical direction (Y direction) towards pad #4. The
total computational time of the 5,000 simulation was approximately 12 h in an
Intel Core i7 computer with 8 cores, processing capacity of 2.2 MHz, and 6 GB
of RAM memory.

The red lines in Figs. 5 and 6 refer to the nominal (symmetric) bearing case,
whereas the shaded areas represent the scattering area of the results when the
5,000 random clearances are used (in the range of 50 to 90µm). From the point
of view of rotor stability, there are cases where the dynamic coefficients improve
(i.e. higher direct coefficients or lower cross-coupling coefficients), and there are
also cases where the dynamic coefficients worsen (i.e. lower direct coefficients
and higher cross-coupling coefficients). Anyways, it is interesting to note that,
for low Sommerfeld numbers (So < 0.1), the scattering decreases and all the
results for asymmetric bearings (shaded area) tend to the values of the sym-
metric bearing (red line), both for stiffness and damping. That is an indication
that, for high external loading and/or low rotating speeds (low Sommerfeld num-
bers), the bearing behaves dynamically as a symmetric bearing, irrespective of
its asymmetry.

Another important information obtained from Figs. 5 and 6 is that the cross-
coupling coefficients do not increase significantly due to the random variations
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Table 1. Bearing parameters.

parameter value unit

Rotor radius (R) 40.0 mm

Pad inner radius (Rp) 40.14 mm

Pad width (L) 80.0 mm

Pad angle 80.0 Degree

Pad thickness (Δs) 12.0 mm

Nominal radial clearance (hN ) 70.0 µm

Pivot position Pad center

Pad configuration Load-on-pad

Oil thermal conductivity (k) 0.14 W m−1 K−1

Oil specific heat (C) 1800.0 J kg−1 K−1

Oil density (ρ) 840.0 kg m−3
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Fig. 5. Adimensional stiffness of the symmetric bearing with nominal clearance (red
line) and asymmetric bearings (shaded area) as a function of the Sommerfeld number.

of the bearing clearances and asymmetry. The values of the cross-coupling coef-
ficients still remain two orders of magnitude smaller than those of the direct
coefficients, which is also good from the point of view of rotor stability. In fact,
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Fig. 6. Adimensional damping of the symmetric bearing with nominal clearance (red
line) and asymmetric bearings (shaded area) as a function of the Sommerfeld number.

the biggest variation in the cross-coupling coefficients occur in the direction of
lower values.

Among the 5,000 different asymmetric bearings tested, it would be interesting
to find those that raised the direct coefficients and decreased the cross-coupling
coefficients in comparison to the nominal (symmetric) case. That would represent
an optimum case. On the other hand, the opposite situation would represent
the worst scenario for an asymmetric bearing. Trying to answer the questions
put in the end of the Introduction (which are the worst scenarios?, are there
good design solutions?), we looked for asymmetric designs that presented bad
or good compromise solutions among the obtained results. Some of the best
and worst bearing designs found are listed in Table 2 and their respective direct
dynamic coefficients are presented in Figs. 7 and 8 as a percentage variation to
the dynamic coefficients of the symmetric bearing. As previously mentioned, the
cross-coupling coefficients do not vary significantly towards higher values and,
therefore, their variation is not presented here for brevity.

As one can see in Fig. 7 (best solutions), it is possible to find bearing geome-
tries that significantly increase the stiffness in the unloaded direction X (bearing
B), in the loaded direction Y (bearing A), and in both directions (bearings C and
D). Regarding the damping, bearings A, C, and D presented the best results.
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Table 2. Best and worst compromise solutions to the asymmetric design of the TPJB.

Best Worst

Bearing clearance (µm) Bearing clearance (µm)

h1 h2 h3 h4 h1 h2 h3 h4

A 79.14 51.06 50.20 50.10 E 88.09 88.54 89.93 69.13

B 52.74 66.63 50.19 50.14 F 80.13 85.04 88.74 87.83

C 55.47 58.37 53.95 50.57 G 76.88 86.52 88.51 87.26

D 63.91 60.06 53.23 51.16 H 87.95 89.37 86.50 78.51
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Fig. 7. Percentage variation of the direct dynamic coefficients for different asymmetric
bearings and Sommerfeld numbers (best results).
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On the other hand (Fig. 8 - worst solutions), bearings E, F, G, and H presented
significant decrease in both stiffness and damping, in both directions.

Looking at the geometry of these asymmetric bearings in Table 2, in general
the best results are obtained with bearings with minimum clearance in the pad
#3 (h3) and in the loaded pad #4 (h4) – see Fig. 1 for reference. The bearing
clearance in the pads #1 and #2 (h1 and h2) remain in the range of ±15µm
from the nominal clearance of 70µm. In the case of the worst bearings, at least
three of the pads have clearances near the maximum possible value (around
90µm). Therefore, a combination of clearances that pushes the pads away from
the rotor is detrimental to the dynamic performance of the tilting-pad bearing.

4 Conclusion

The THD analysis of load-on-pad TPJBs with asymmetric geometry showed
that the resultant stiffness and damping coefficients scatter around the results
of the symmetric bearing. In addition, for low Sommerfend numbers (So < 0.1),
the scattering of the results decreases and converge to those of the symmetric
bearing with nominal clearance. This is an indication that asymmetric bearings
tend to behave dynamically as symmetric bearings with nominal clearance under
high loading and/or low rotating speed conditions.

The results of the analysis also showed that there are specific asymmetric
geometries that improve stiffness and damping, in both X and Y directions.
There are also geometries that decreases stiffness and damping in both directions.
Among the analyzed bearings, the best results were obtained with bearings with
minimum clearance in the pad #3 and in the loaded pad #4. On the other
hand, a combination of clearances that pushes the pads away from the rotor
is detrimental to the dynamic performance of the tilting-pad bearing (worst
results). It is important to point out that these results depend on the direction
of the rotating speed of the rotor.
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Abstract. Gas foil Bearing (GFB) are oil-free, high-speed and light
bearings, which work according to the principle of fluid film lubrication.
Thanks to their elastic structure, GFBs are able to compensate for minor
pressure changes in the lubrication films. This paper presents the exper-
imental structural analysis of first-generation gas foil bearings. The aim
of the experimental investigation is to determine the behaviour of GFBs
at static and dynamic loads. The tests are carried out with rotor speeds
close to 0 rpm. In the course of the static investigation, the GFB was
mounted on shafts with different diameters and loaded with a force of
−150 N to 150N. Results from the static measurement show that not
only the shaft diameter plays a role in determining the bearing clear-
ance but also the number of activated bumps. It also shows that with a
small bearing clearance (≤10µm), the GFB has an almost linear static
stiffness. In the dynamic study, the GFB was mounted on a non rotat-
ing shaft and was excited by the shaker with a mono-frequency load.
The goal of the dynamic investigation was to determine the dynamic
stiffness behaviour and damping behaviour of GFBs at different ampli-
tudes (2µm, 6µm and 10µm) and over the frequency range of 30 Hz to
1000Hz. In addition, this study aimed to find out whether the formation
of subharmonic vibrations observed in the rotordynamic investigation
can be attributed to the GFB structure. These subharmonic vibrations,
as previous studies show, occur at speeds starting at about 20 000 rpm
(333Hz). For this reason, the dynamic measurement was performed up to
1000Hz. The results show that the damping decreases with increasing
frequency up to 490 Hz before rising again. This behaviour is amplitude
independent. The stiffness of the bearings increases with increasing fre-
quency. To verify the formation of subharmonic vibrations through the
structure of GFBs, a Fourier transformation of the measurement signal
was performed. However, no subharmonic vibration can be detected.

Keywords: Gas foil bearings · Bearing clearance · Stiffness
Damping · Nonlinear vibrations

1 Introduction

Gas Foil Bearings (GFBs) are environmentally friendly, low-loss and cost-
effective machine components used to support lighter and high-speed rotors.
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They were already employed in 1982 in the heart of the environmental control
system called ACM (Air Cycle Machine) [1]. GFBs often consist of one or more
top foils and bump foils fixed to a housing (Fig. 1). The top foil is considered as
bearing surface for the rotor. The bump foil gives the bearing its elasticity and
the frictional contacts between top foil and bump foil as well as bump foil and
housing provide damping for the system. GFB generations can be differentiated
by the number and design of their bump foil. Figure 1 shows a first generation
GFB, which has been investigated in the course of this paper. The reason for the
consideration of the first generation lies in the much larger amount of available
experimental and numerical data in the literature that can be used for valida-
tion. Guidance on creating first and second generation bearings was published
by DellaCorte in 2008 [2]. GFBs of all generations are based on a fluid dynamic
lubrication principle and mostly use air as a lubricant but may also use other
gases. The low viscosity of air gives GFBs a higher efficiency than roller bear-
ings, but results in lower damping of the bearing. Due to this lower damping,
subharmonic vibrations, which often occur in GFBs mounted systems, cannot
be sufficiently damped. A classification of these nonlinear vibrations was done
by Hoffmann et. al [3]. San Andrés et al. [4] identified this behaviour in their
2007 publication as Forced Nonlinearity Oszillations, which are influenced by
unbalance. These nonlinear vibrations can cause the system to become unstable
and so current efforts are necessary to predict and subdue their occurrence. The
occurrence of nonlinear vibrations depends on several parameters such as the
structural stiffness and damping of the GFBs.

In 1994, Heshmat and Ku [5] investigated the dynamic behaviour of GFBs.
In their test stand, the bearing was mounted on a non rotating shaft and excited
by two shakers with amplitudes of 2.5µm and 5.1µm. The aim of this study
was to validate their analytical investigations. For this purpose, the bearing was
excited at the frequencies of 142 Hz, 225 Hz und 350 Hz. The results show that
stiffness and damping decrease with the increasing dynamic amplitude.

Salehi et al. [6] performed a dynamic study of GFBs in 2003 to determine the
coefficient of friction. In this experiment, GFBs were excited over a frequency
range of 50 Hz to 1400 Hz. The investigations show that the damping decreases
exponentially with increasing frequency up to approximately 200 Hz.

Two years later, Kim et al. [7] presented experiments conducted to estimate
the structural stiffness of a second generation bump-type gas bearing for increas-
ing shaft temperatures. The test GFB was mounted on a shaft and excited over
a frequency range of 40 Hz to 200 Hz. In the test, the shaft was heated to 77 ◦C,
123 ◦C and 188 ◦C. The dynamic stiffness increases with increasing excitation
frequency. However, the GFB’s viscous damping decreases with the increasing
excitation frequency.

The aim of this experimental investigation is to determine the behaviour
of GFBs at static and dynamic loads. The goal of the dynamic investigation
was to determine the dynamic stiffness behaviour and damping behaviour of
GFB at different amplitudes (2µm, 6µm and 10µm) and over the frequency
range of 30 Hz to 1000 Hz. In addition, this study aimed to find out whether the
formation of subharmonic vibrations observed in the rotordynamic investigation
can be attributed to the GFB structure.
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(1) Top foil
(2) Bump foil
(3) Shaft
(4) Housing
(5) Foil fixation
(6) Cartridge

Fig. 1. Cross section of a test GFB

2 Static Load Investigation

The test GFBs were made from a 100µm Inconel X750 sheet. The bearings are
heat treated at 640 ◦C for 4 h after pressing. This increases the stiffness of the
bump foil [2]. After the manufacture, it was checked if the GFB corresponded
to the geometrical data from Table 1. In order to facilitate the mounting of the
bearings in the test stand, the GFBs were mounted on a cartridge (Fig. 1). This
allows the GFBs to be measured with an increment of 45◦ in their circumference
(Fig. 2).

Table 1. Geometrical data of test GFBs

Parameter Value

Bearing radius R 19.05 mm

Bearing length l 38.1 mm

Bump height hB 0.51 mm

Bump thickness tB 0.102 mm

Bump pitch s0 3.17 mm

Bump arc angle αB 87.52◦

Bump number NB 38

Half bump length l0 1.27 mm

Foil thickness tF 0.102 mm

Young-modulus E 2.07 × 1011 N/mm2

Poisson’s ratio ν 0.29
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(1) Top foil
(2) Bump foil
(3) Housing

Fig. 2. GFB

2.1 Test Setup for Static Load

The experimental test rig for static load measurement is shown in Fig. 3 and
consists of a load cell (3), a displacement sensor (4) and a shaft (2) clamped in a
lathe chuck. The shaft consists of 42CrMo4 (1.7225) and has a ground surface.
It was used in the investigation of three different rotors (see Table 3). After the
load cell is mounted on the GFB, it is mounted on the shaft. Perpendicular to
the bearing axis, the test GFB is loaded with a static force F0. The resulting dis-
placement is recorded on the opposite side with an eddy current sensor (4). The
eddy current sensor has an accuracy of 0.35µm (see Table 2). The measurement

(1) GFB
(2) Shaft
(3) Load cell
(4) Displacement
sensor

Fig. 3. Section view of the test setup for static load
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Table 2. Test setup for static load

Sensor Measurement range Measurement accuracy Manufacturer

Load cell −500 . . . 500 N 2.5 N Burster

Displacement sensor 0 . . . 0.5 mm 0.35µm Eddylab

Table 3. Test setup for static load

Shaft diameter D1 = 37.95 mm

D2 = 38.08 mm

D3 = 38.10 mm

Angular position 0◦–180◦

45◦–225◦

90◦–270◦

135◦–315◦

Load −150 . . . 150 N

Sampling frequency 6000Hz

data from the load cell and the displacement sensor are recorded with a frequency
of 6000 Hz.

In order to investigate the influence of the radial clearances on the static
stiffness of the bearing, the static measurements were carried out with different
shaft diameters.

Settings and parameters for the measurement are recorded in Table 3. Dur-
ing one measurement process, two angles are measured. Figure 4 illustrates the
measurement of the angles 270◦ and 90◦. At a compressive force, the bearing is
pushed at angle 270◦ on the shaft and the resulting displacement is recorded on
the opposite side (at 90◦) and then the static load is measured. In the case of
tensile force, it is pushed at angle 90◦ of the bearing and thus 90◦ is measured.
The angular orientation is shown in Fig. 1.

2.2 Results of Static Load Test

Figure 5(a) shows the typical curve of a static load measurement. The lower half
of the curve corresponds to the measurement of angle α + 180◦ and the upper
half of angle α. An explanation of the measuring principle was given in Sect. 2.1.
The linear stiffness of the bearing at this angular position is defined as follows:

Klinear =
ΔF

Δx
(1)

ΔF = Fmax − Fmin Δx = xmax − xmin. (2)
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Fig. 4. Measuring principle for static load, 90◦-270◦ bearing orientation, (a) measure-
ment of the angles 270◦, (b) measurement of the angles 90◦

Fig. 5. Measured static loads at angular position 135◦–315◦, (a) hysteresis of static
loading, (b) static stiffness vs. displacement

ΔF corresponds to the amplitude of the load applied to the bearing and Δx is
the resulting displacement. By static measurement, the bearing clearance of the
GFBs C0 can be determined (Fig. 5(b)). This length cannot be measured with
a calliper. It corresponds to the deformation a bearing should experience until
the bumps become active. A bump is active when the adhesive force at both its
ends is so high that the bump cannot move. The activation of the bumps can be
recognized on the hysteresis (Fig. 5(a)) by the sudden increase of the load. This
effect is even more pronounced when looking at the stiffness curve (Fig. 5(b)).
The following equation was used to plot this stiffness curve.

K0 =
∂F

∂x
=

Fi+1 − Fi

xi+1 − xi
(3)

where Fi and Fi+1 are the loads measured at time t and t + dt, respectively. xi

und xi+1 are the displacement at each time. The algorithm for calculating the
bearing clearance can be seen in Fig. 6. In the Calculating the bearing clearance,
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Fig. 6. Algorithm for calculating the bearing clearance

it is important to know where the bumps start and stop being active. These
positions (xmin,C , xmax,C) are detected by a sudden rise of stiffness (ΔKi).
The tolerance (Tol) for the increase in stiffness was set at 150 N/mm in the
investigation. To calculate xmin,C , ΔKi is calculated differently.

ΔKi = Ki − Ki+1 (4)

If xmin,C0 and xmax,C0 are identified, the clearance can be calculated

C0 =
xmax,C − xmin,C

2
. (5)

Table 4 lists the stiffness and the bearing clearance for each angular position
and each shaft diameter with each shaft. It can be observed here that the bearing
clearance decreases with the size of the shaft diameter. However, the decrease
∂C = C0,2 − C0,1 of the bearing clearance is not equal to the difference of
the shaft diameter ∂D = D2−D1

2 . This is most likely due to the fact that the
bearing clearance is unevenly distributed over the circumference. As a result, the
bumps are activated unevenly. In addition, an active bump affects the adjacent
bumps and increases the stiffness. Therefore the clearance of GFBs has less to
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do with physical distance but much more with the bumps getting activated.
Another influence is the measurement accuracy of the displacement sensor. For
this reason, a dirt-resistant eddy current sensor was used for the measurement.
The eddy current sensor has a resolution of 0.35µm and was sampled at a
frequency of 6000 Hz.

Table 4. GFB linear stiffness and radial clearances for different positions

Shaft diameter Angular position Clearances C0[µm] Klinear [N/mm]

D1 = 37.95 mm 0◦–180◦ 32.5 5919.5

45◦–225◦ 56.5 3760.6

90◦–270◦ 55 3844.9

135◦–315◦ 39.5 4553.9

D2 = 38.08 mm 0◦–180◦ 11.5 11 314

45◦–225◦ 24.5 6367

90◦–270◦ 28.5 5749

135◦–315◦ 34.5 5896

D3 = 38.10 mm 0◦–180◦ 0 27 728

45◦–225◦ 10 16 712

90◦–270◦ 5 20 919

135◦–315◦ 1 21 786

The figures in Fig. 7 show the measured static load and stiffness of a GFB.
It can be seen that the stiffness of the GFB decreases with increasing angular
position. This is due to the fact that bumps with a fixed end have a higher
rigidity than those with a free end. In 1999, Iordanoff [8] presented the formula
for calculating the rigidity of bumps with fixed (KW ) and free end (KF ). The
investigation of Kim [7] confirmed that KW is greater than KF .

The measurement of the GFB with the lowest clearance (shaft D3) shows
a nearly linear curve (Fig. 7e). This is likely because a large number of bumps
are now active. In this case, the friction is low and the structure hardly shows
nonlinearity.

3 Dynamic Load Investigation

3.1 Test Setup for Dynamic Load

Figure 8 shows the test bench that was used for the dynamic measurement. It
consists of a rigid shaft (2) mounted in two rigid bearing blocks. The test bench is
fixed on a vibration-isolated machine bed. The test GFB (1) is mounted between
the two bearing blocks on the shaft.
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(a) D1 =37.95mm (b) D1 =37.95mm

(c) D2 =38.08mm (d) D2 =38.08mm

(e) D3 =38.10mm (f) D3 =38.10mm

Fig. 7. Left side (a, c, e) GFB deflection versus static load, right side (b, d, f) GFB
stiffness versus deflection
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(1) GFB
(2) Shaft
(3) Force sensor
(4) Accelerometer
(5) Load cell
(6) Displacement
sensor
(7) Shaker

Fig. 8. Section view of experimental setup for dynamic Load

The measuring principle is illustrated in Fig. 9. To ensure constant contact
between shaft and bearing, the GFB is loaded with a static force F0. Its ampli-
tude is detected by a load cell (5). By preloading the bearing, it is ensured that
during the investigation only the elastic structure is excited and not the air film
between bearing and shaft. Furthermore, the static force F0 should simulate the
weight of the rotor. With the help of a shaker (7) the bearing is excited with
a monofrequent harmonic force F (t). To accommodate the deformation of the
elastic structure, a metal block is screwed on the bearing housing, on which two
eddy current sensors (6) are placed. The metal block increases the measuring
accuracy thanks to its flat surface. Two eddy current sensors are used, to deter-
mine possible tilting of the GFB. Also fixed to the housing is an acceleration
sensor (4). All sensors are connected to the corresponding card via a shielded
cable. This should reduce the signal noise. Further information on the measuring
instruments can be found in Table 5.

Fig. 9. Schematic view of the experimental setup for dynamic load
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Table 5. Test setup for dynamic load

Sensor Measurement range Manufacturer

Force sensor ±444.8 N PCB Piezotronics

Accelerometer ±490 m/s2 PCB Piezotronics

Load cell ±500 N Burster

Displacement sensor 0 . . . 0.5 mm Eddylab

Table 6. Measurement configurations for dynamic load

Displacement amplitude 2µm 6µm 10µm

Frequency range 30 to 1000 Hz 30 to 600 Hz 30 to 570Hz

Sensor position 90◦ to 270◦ 90◦ to 270◦ 90◦ to 270◦

Static load 27; 37 N 27; 37 N 27; 37N

Measurement time 8 s 8 s 8 s

Sampling frequency 12 000 Hz 12 000Hz 12 000 Hz

The dynamic investigation consists of determining the frequency dependence
of the elastic structure at different vibration amplitudes and static load. There-
fore, a different measuring campaign was carried out (see Table 6). The goal at
the beginning of the experiment was to measure the behaviour of the bearing at
the oscillation amplitude of 2µm, 6µm and 10µm at the frequency of 30 Hz to
1000 Hz. However, at amplitudes of 6µm and 10µm, the exciting forces above
570 Hz were too high, so the measurements had to be interrupted to protect the
bearing from destruction. But the measurement campaign with 2µm, 6µm and
10µm should give sufficient information about the nonlinear behaviour of the
stiffness as well as about damping. In Table 6 the measuring instruments that
were used in the context of this experiment are shown.

To evaluate the impact of the test rig on the measurement, a modal analysis
was carried out on the test rig. This was used to find out if the resonance
frequency of the test bench is in the measuring range. The system response
shows a first resonance frequency at 8260 Hz and a second at 10 160 Hz which
are outside of the measurement range (Table 6).

3.2 Results of Dynamic Load Test

In order to determine the stiffness and damping of the elastic structure, the
measuring system from Fig. 9 is modeled using the following equation:

M ¨̃x(t) + Kx̃(t) + Fdry · sgn( ˙̃x(t)) = −F0 + F cos(ωt) (6)

M is the mass of the system. K represents the GFB stiffness. Frictional forces
in the bearing are modeled with force Fdry · sgn( ˙̃x). A weight is attached to the
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bearing. This exerts a force F0 on the bearing. At the same time, the shaker
excites the elastic structure with force F cos(ωt). The consideration of Eq. (6) in
the static case yields the following:

Kx̃0 = −F0 ⇒ x̃0 =
−F0

K
(7)

Let x̃ = x̃0 + x, it follows from Eq. (6).

Mẍ(t) + Kx(t) + Fdry · sgn(ẋ(t)) = F cos(ωt) (8)

This model was developed by Kim et al. [7] and Salehi et al. [6] for calculating
stiffness and damping of GFBs. The force Fdry · sgn( ˙̃x) is a dissipative force and
can be modeled as damping force Fd with viscous damping C. The system was
modeled with a single degree of freedom model consisting of a spring and a
damper.

Mẍ(t) + Cẋ(t) + Kx(t) = F cos(ωt) (9)

By performing Fourier transformation of Eq. (9), the following equation is
obtained:

− ω2MX(ω) − ωiCX(ω) + KX(ω) = F (ω) (10)

(K − ω2M) − iωC =
F (ω)
X(ω)

(11)

K = Re

(
F (ω)
X(ω)

)
+ ω2M (12)

C = − 1
ω

Im

(
F (ω)
X(ω)

)
. (13)

Figure 10 shows the damping of the tested GFB in the frequency range from
30 Hz to 600 Hz and 30 Hz to 1000 Hz for different amplitudes. Figure 10 displays
the 180◦ position as an example since the other angular positions provide similar
damping behaviour. Between 30 Hz to 450 Hz the damping drops before it rises
again between 450 Hz to 1000 Hz. This behaviour is qualitatively independant
from the angular position. The same can be observed in the work of Kim et al.
[7]. However, the measurement of Kim only goes up to 200 Hz and thus it is
not possible to know if the damping would rise again. The sudden decrease
of the attenuation between 190 Hz and 210 Hz as well as between 300 Hz and
400 Hz indicate resonance frequencies. Numerical investigations show that the
housing and the cartridge have their first resonance frequencies at 6878 Hz and
5128 Hz. Therefore, we can assume that the observed sudden decreases are the
resonance frequencies of the GFBs. To refute this assumption, a modal analysis
of the GFB was carried out. Figure 12 shows the results of the modal analysis.
The amplitude response as well as the phase response indicate a first resonance
frequency between 190 Hz and 210 Hz and a second resonance frequency between
320 Hz and 350 Hz. The first resonance is clearly visible at each angular position.
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Fig. 10. GFB damping (C) versus frequency at 180◦ position

Fig. 11. GFB stiffness (K) versus frequency at 180◦ position
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(a) 90◦ (b) 90◦

(c) 180◦ (d) 180◦

(e) 270◦ (f) 270◦

Fig. 12. Frequency responses of GFB

So, it can be assumed that the drop-and-rise effect in the damping behaviour
is independent from the angular position. It is probably due to the resonant
frequency of the bump foil. The second resonance gradually disappears near the
free end of the bump foil (see Fig. 12(f)). The second resonance can not be easily
attributed to the drop-and-rise effect because, as can be seen in the phase plots
of Fig. 12, it changes in frequency depending on the amplitude and the angular
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Fig. 13. Waterfall plot GFB at x = 2µm

Fig. 14. Waterfall plot GFB at x = 10µm

position. But you can see in the amplitude curves that even in the area of the
second drop-and-rise effect significant amplitude peaks exist that could explain
the effect. Therefore, it is not possible to make a statement about the damping
and the stiffness in the ranges from 190 Hz to 210 Hz and 320 Hz to 350 Hz,
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because the influence of the resonance could not be determined. The dynamic
damping shows a great similarity to the Stribeck effect [9].

The plot of the structural stiffness versus frequency is shown in Fig. 11. The
stiffness of the GFB increases with increasing frequency. The first and second
resonance frequencies can also be seen here at 190 Hz–210 Hz and 319 Hz–350 Hz.
The increase in stiffness with frequency could have the following causes: For each
measurement, the vibration displacements were always kept constant amplitude.
This causes the excitation force to increase with the increasing frequency. This
increases the contact forces and the number of active bumps.

Numerous studies [10–12] have shown that GFBs are often subject to subhar-
monic vibrations. Subharmonic vibrations are vibrations whose period is many
times the period of the main vibration. These can lead to instability, because they
often have a higher amplitude. To find out if their cause is directly attributable
to the bearing structure, waterfall diagrams (see Figs. 13 and 14) were generated
from the measurement signal. However, no subharmonic vibrations can be iden-
tified for displacement of 2µm, 6µm and 10µm. In previous investigations [3],
subharmonic vibrations were seen already at 20 000 rpm. This speed corresponds
to a frequency of 333 Hz. It can therefore be assumed that the subharmonic
vibrations will be induced by the gas film.

4 Conclusions

This paper deals with the static and dynamic experimental structural investi-
gation of first generation GFBs. In the course of the static investigation, the
GFB was mounted on shafts with different diameters and loaded with a force of
−150 N to 150 N. Results from the static measurement show that not only the
shaft diameter plays a role in determining the bearing clearance but also the
number of activated bumps. It was found that the static stiffness of GFBs has a
nearly linear behaviour at smaller bearing clearance (≤10µm).

In the dynamic study, the GFB was excited by a shaker with the amplitude
of 2µm, 6µm and 10µm. The investigation was carried out over a frequency
range of 30 Hz to 1000 Hz. This investigation revealed that the test GFB has a
first resonant frequency at approximately 200 Hz and a second at 350 Hz. The
structural damping decreases with increasing frequency to 450 Hz before rising
again. This behaviour is similar to the Stribeck effect. Due to the resonance, a
sudden drop in the structure damping is observed at 200 Hz and 350 Hz.The stiff-
ness of the GFB increases with increasing frequency as has been noted by Kim
[7]. At the resonant frequencies, a sudden increase in stiffness can be detected.
Further investigation was conducted to find out if the formation of subharmonic
vibrations is caused by the structure. However, no subharmonic vibrations could
be detected in the presented frequency analysis.
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Abstract. The present work tackles the impact of manufacturing errors on the
unbalance response of a Jeffcott rotor supported on aerodynamic foil bearings.
The peculiarity of the model is the use of the Abaqus software for describing the
dynamic response of the foil structure, for calculating the thin film pressures and
for integrating the equations of motion of the rotor-bearing model. The
numerical results show that the foil bearing without manufacturing errors and
with a radial clearance of 31.8 µm is unstable for the tested operating conditions
(30 krpm rotation speed, 10 N static load and G1 unbalance class). However,
taking into account manufacturing errors may lead to a different result. Bump
height manufacturing errors were added to the model. Five cases with random
manufacturing errors but all with 10 µm standard deviation of the bump height
were analyzed. In four cases, the unbalance response was a limit cycle domi-
nated by the 0.5 X subsynchronous frequency. This result may explain the
discrepancies between theoretical and experimental results reported up to now in
the literature.

Keywords: Foil bearing � Unbalance response � Manufacturing errors

1 Introduction

Aerodynamic foil journal bearings are extensively tested since almost two decades
because they represent an interesting design solution for small, high speed, “green”
rotating machinery. In most cases, they operate with the working fluid of the com-
pressor or of the turbine and therefore the design of the rotating machine is simpler,
without lubrication systems and seals. Their drawback is a low static load capacity but
in high speed rotating machines, this is of no importance because the dynamic load
(usually due to imbalance) is much larger than the static one.

Experimental studies of rotors supported by foil bearings showed a multitude of
rotordynamic responses. Most often, rotors supported on foil bearings operate with
synchronous, 1 X and subsynchronous, 0.5 X, vibrations. The former vibration com-
ponents are due to unbalance while the latter are known to be the signature of self-
sustained vibrations. No other bearing could operate safely when self-sustained
vibrations are present. However, the damping of the foil bearing comes from the

© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 60, pp. 281–291, 2019.
https://doi.org/10.1007/978-3-319-99262-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_20&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_20&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_20&amp;domain=pdf


deformation of its foil structure: large deformations induce a large damping. Therefore,
most often, a rotor on foil bearings operates with a limit cycle with two dominant
frequencies, the 1 X and the 0.5 X [1]. The subsynchronous vibrations may even
disappear with increasing rotation speed if the foil bearing can generate enough
damping under the influence of the unbalance or if the foil bearing is provided with
shims. In this latter case, the radial clearance is similar to the one in a lobed bearing.

This typical behavior of foil bearings is reproduced by calculations with the price of
triggering parameters of the theoretical model. Depending on the model, this parameter
can be the friction coefficient, the structural damping or the radial clearance. All these
parameters have an impact on the stability of the foil bearing. The friction coefficient
and the structural damping are most often obtained from experimental information.
However, triggering the values of the radial clearance is more awkward to justify.
A radial clearance is selected during the foil bearing design but its value is almost
impossible to be measured. Foil bearings are obtained following a complex manu-
facturing process involving successive heat treatments and plastic deformations.
Manufacturing errors are then expected. The designers of the rotating machinery that
integrates the foil bearing often discards these manufacturing errors due to the objective
impossibility of accurately measuring the radial clearance. The result is that during
experiments, foil bearings of similar design may sometimes have quite different
dynamic characteristics. The designer trying to reproduce theoretically the vibration
signature of the rotor-bearing system might then trigger the radial clearance in order to
obtain a result close to experiments. For example, the first generation foil bearing of
38 mm diameter and length and with 26 bumps was extensively used in the scientific
literature a decade ago. It served for developing theoretical models and for experi-
mental validations and its radial clearance was a parameter that was most often trig-
gered. Values comprised between 25 µm and 38 µm can be found in the literature
despite the fact that the manufacturer indicated a 31.8 µm radial clearance.

The present work is a continuation of a previous paper dealing with the impact of
manufacturing errors on the characteristics of foil bearings. Reference [2] presented the
impact of bump height, bump length and bump foil outer radius manufacturing errors
on the stiffness of the foil structure. In order to simulate static load-deflection tests, a
displacement was incrementally applied to the rotor and the reaction force was cal-
culated. The stiffness of the foil structure was subsequently calculated. The results
showed that only the bump height had a significant impact. The manufacturing errors of
the bump height lead systematically to a lower stiffness of the foil structure.

The foil structure was modeled by using the full capacities of the commercial code
Abaqus [3]. Using a commercial code for modeling the foil structure of foil bearings
was unusual but not completely new. Starting with 2009, Zywica [4, 5] used the same
commercial code for investigating the static stiffness of the foil bearing structure. The
analysis was carried out by imposing incremental rotor displacements against the foil
structure. The work was continued in [6] with a dynamic analysis of the foil structure.
The rotor was given a dynamic displacement with a 40 Hz frequency and the results
underlined the energy dissipated by the structure. The air film was not considered and
the work was focused on the foil structure. A review of the techniques employed by
Zywica and co-workers can be found in [7].
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A model combining Abaqus for the foil structure and a solver for the Reynolds
equation governing the gas film was presented in [8] for static analysis of foil bearings.
Temis and co-workers [9, 10] also used contact mechanics and finite-element codes for
predicting the characteristics of the foil structure.

However, the use of contact mechanics models for bump foil bearings remain
limited compared to the numerous simplifying approaches traditional employed. This
can be appreciated from the review paper [11].

In the present work, the structure continues to be modeled with Abaqus but the
rotor is considered to have a 30 krpm rotation speed. The pressures in the air film are
obtained from the 2D unsteady Reynolds equation fully solved for a compressible fluid.
Its numerical solution is obtained with the aid of a user-defined subroutine added to
Abaqus.

A 2DOF Jeffcott model is used for describing the rotor-foil bearing system. Its
equations of motion are added to the model that is integrated into Abaqus. The time
transient calculations are performed with an explicit solver. For a given unbalance and
rotation speed, the trajectory of the rotor is calculated over many cycles until obtaining
a dynamic stable or a divergent (unstable) solution. Calculations are performed for the
design values of the geometry of the foil bearing and by taking into account manu-
facturing errors. Net differences between the vibration signature of the ideal bearing
and of the real one (i.e. with errors) are then enlightened.

2 The Non-linear Model of the Foil Bearing

The analyzed bearing is depicted in Fig. 1 and belongs to the 1st generation of foil
bearings. Its geometric and mechanical characteristics are given in Table 1 and detailed
in Fig. 2.

Both top and bump foils are assumed to be flexible structures with inertia. They are
discretized in Abaqus with conventional shell elements (S4R of the Abaqus library).

Fig. 1. Cut view of a generation 1 foil bearing modeled with Abaqus software
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The sleeve is considered as an analytical rigid element. The interactions between the
bumps and the sleeve and between the bumps and the top foil are taken into count by
using a penalty contact algorithm. Friction is taken into account by using Coulomb’s
law.

New element formulations that are not available in the standard functionality of
Abaqus can be defined via “User Subroutine” capabilities. Therefore, a new Reynolds
User Element (RUE) is developed and implemented to model the fluid/structure
interaction. The coupling between the RUE and the top foil is realized via a “tie
contact” that gives the possibility of using non-conforming meshes for the two
domains.

The pressure distribution in the air film is calculated with the compressible form of
the Reynolds equation for perfect gas. The discretization of the Reynolds equation is
made using four node linear elements and a finite elements Petrov-Galerkin procedure
(the weighting functions are polynomial functions, which are upwind decentered).

A Newton-Raphson procedure is used for solving the resulting non-linear system of
discretized equations. Ambient pressure boundary conditions were imposed at the
bearing ends and in the vicinity of the welding line (the top of the bearing in Fig. 1).

In order to reduce the computational time, it is considered that the foil bearing
elastic behavior can be considered constant through the bearing width. This assumption
gives the possibility to reduce considerably the structure mesh: only two elements are
used to mesh the bearing axial direction for the top and bump foils, with appropriated
symmetry boundary conditions. Consequently, the 2D pressure distribution obtained
from Reynolds equation is averaged along the bearing width before being applied to the
top foil.

Table 1. Geometric and mechanical characteristics of the foil bearing
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At each time step Abaqus provides to the RUE the values of the nodal coordinates
and of solution-dependent variables (displacements and velocities). The RUE contri-
bution to the model must be provided in terms of nodal forces, depending on the known
displacements and velocities. Therefore, a standard 2 � 2 Gauss integration scheme is
used to transform the hydrodynamic pressure in nodal forces.

3 Steady State Results

The coupling between the air film and the foil structure is first verified for a given static
eccentricity: a positive 15.9 µm displacement is applied to the rotor in X direction,
which correspond to an eccentricity ratio value of 0.5.

Figure 3 shows the air film pressure and film thickness profiles obtained for the
reference (without manufacturing errors) geometry and 30 krpm rotation speed. The
pressure builds-up classically in the convergent zone with a maximum value just before
the minimum film thickness. It is interesting to note the influence of the top foil radial
deformation that is higher between two consecutive bumps and generates a circum-
ferential variation of the pressure and film thickness fields. The sub-ambient pressure
noted just before the fixed end generates an inwards deflection of the top foil.

Manufacturing errors of the bump height were added following the model used in
reference [2]. As already explained in [2], the height of the bumps varies following a
normal distribution with a controlled standard deviation. The average height of the
bumps is the same to the theoretical value defined when the bearing was designed (see
Table 1). As the top foil is tangent to the highest bump, the radial clearance is directly
affected and, in the initial position, only one bump is in contact with the top foil.
Thereafter, a standard deviation of 10µm will be used which represents 2% of its design
value but 30% of the radial clearance.

Figure 4 shows the air film pressure and film thickness profiles obtained for the
same operating conditions presented above but with a foil structure perturbed by bump
height manufacturing errors. It can be noted that both pressure and film thickness
variations are quite different from the results presented in Fig. 3. The predicted X rotor
forces are very closed: −12.8 N for the ideal case and −12.85 N for the case presented
in Fig. 4. However, the Y rotor forces are quite different: 7.38 N for the ideal case and
only 4.68 N for the foil bearing affected by manufacturing errors.

a. b.

Fig. 2. Geometric characteristics of the bump (a - schematic, b - scaled representation)
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a)

b)

Fig. 3. Air film pressure (a) and film thickness (b) profiles for an imposed eccentricity without
manufacturing errors

a)

b)

Fig. 4. Air film pressure (a) and film thickness (b) profiles for an imposed eccentricity and bump
height manufacturing errors
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In the reference case, the top foil is in contact with all the bumps and therefore the
bump foil essentially generates the bearing stiffness. For the second geometry only a
limited number of bumps are in contact with the top foil but, due to the positive
displacement imposed on the rotor, these bumps are mainly located at 180° from the
fixed end. Therefore, the bearing response in X direction is not very different from the
reference case. However, in the Y direction, the loss of contact between the top foil and
the bumps results in lower stiffness and, consequently, lower rotor force. This indicates
that the hydrodynamic behavior of the foil bearing can be influenced by the investi-
gated manufacturing errors, which anticipate the results presented in Sect. 4.2.

4 Unbalance Responses

4.1 The Original Foil Bearing

The dynamic response of a Jeffcott rotor supported by air foil bearings free of any
manufacturing errors is depicted in Fig. 5.

The rotor mass imparted to one bearing was 1 kg and the static load was 10 N. An
unbalance of 0.3183 g mm corresponding to the G1 IS0 1940-1 balancing class was
considered. In Fig. 5, the dotted line represents the contour of the top foil before
starting the computations. The trajectory is clearly unstable. Calculations were per-
formed for approximatively 40 rotation cycles (periods) and were stopped due to
contact between the top foil and the rotor.
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Fig. 5. Unbalance response of the rotor supported by the reference (without manufacturing
errors) foil bearing
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An explicit solver is used, so the unsteady problem is integrated by using small
time increments. However, the explicit solver is not unconditionally stable and the size
of the smallest foil finite element affects the maximum stable time increment. In
addition, to correctly simulate the bumps/top foil contact, the foil mesh must contain
relative small size finite elements: the maximum circumferential length of an element is
about 0.5 mm that leads to a step time of 5.6e−8 s. As the same mesh size is used for
all the results presented in this work, the step time is also keep constant.

4.2 The Foil Bearing with Bump Height Manufacturing Errors

Figure 6 depicts the unbalance response of five foil bearings affected by manufacturing
errors of the bump height of 10 µm standard deviation. X and Y are relative eccen-
tricities computed by dividing the rotor displacements by the radial clearance of the
ideal bearing (31.8 µm). At t = 0 the rotor was at center of the bearing. The compu-
tations are made for 80 rotational periods that correspond to approximatively 0.16 s.
Four of the five trajectories depicted in Fig. 6 converge to stable limit cycles. The fifth
case shows an unstable trajectory with strong contacts between the rotor and the top
foil as for the reference case depicted in Fig. 5.

The trajectories corresponding to the last 10 rotation periods of the stable cases h1–
h4 are depicted in Fig. 7. It is interesting to observe that, even if the manufacturing
errors are identical from a statistical point of view, the limit cycles are different.

The frequency content depicted in Fig. 8 shows a dominant component, lower but
close to 0.5 X. This is a common subsynchronous instability signature induced by
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Fig. 6. Unbalance response of the rotor supported by the foil bearing with manufacturing errors
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Fig. 8. Frequency content of the stabilized trajectory of the rotor
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Fig. 7. The last 10 rotation periods of the unbalance response of the rotor supported by the foil
bearing with manufacturing errors
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aerodynamic bearings and generated by the fact that the overall circumferential velocity
of the air inside the bearing is close to 0.5 X when the axil flow is greatly reduced by
the thin film thickness. The amplitudes have also different values from case to case,
thus reinforcing the observation made from Fig. 7 that the limit cycles are not identical.
Figure 8 also shows that the frequency spectrum is continuous. However, it is difficult
to appreciate if the limit cycle is a periodic, quasi-periodic or a chaotic trajectory
because only a limited number of time steps was calculated. A much larger number of
time steps would have been necessary for characterizing the limit cycle.

Subsynchronous 0.5 X vibrations have been also enlightened by the experimental
investigations of aerodynamic foil bearings presented in reference [1]. It has been
shown that 0.5 X instabilities were triggered by the unbalanced and then eliminated, at
higher frequencies. The disappearance of the subsynchronous 0.5 X vibrations is
explained by the Coulomb damping brought by large dynamic displacements. The
current model is a step forward in understanding this behavior but the work must be
continued by simulating different operating conditions in terms of rotational speeds and
rotor unbalanced. More information is expected on the interactions between the
manufacturing errors, the foil frictional behavior and the vibrational signature.

5 Conclusions

The presented model of foil journal bearings takes advantage of the standard func-
tionality of Abaqus software to model the complex behavior of the elastic structure of
the bearing and to couple it with a user-defined subroutine for the air film pressure. By
exploiting the Abaqus capabilities, manufacturing geometrical errors can be integrated
into the model and their effects on the static and dynamic response of the foil journal
bearing can be investigated.

It has been shown that the bump height manufacturing errors can modify not only
the steady state characteristics but, most important, the dynamic stability of the rotor-
bearing system. The presented results show that theoretically identical foil journal
bearings but affected by bump height manufacturing errors, can have different unbal-
ance responses in terms of orbit and stability. This may explain the discrepancies
between theoretical and experimental results reported up to now in the literature.
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Abstract. This paper presents a parametric sensitivity analysis based on Design
of Experiments (DoE) applied to tilting pad bearings. The main objective is to
explore a set of design parameters and its influence on the dynamic response of a
rotor system. In this way, the computational analysis was based on the inte-
gration of the commercial design software HEEDS® and a numerical code that
was implemented in MATLAB® to simulate the rotordynamics phenomena.
The rotor system was modelled as Timoshenko beam and the computational
model was implemented using Finite Element Method (FEM). The Finite
Volume Method (FVM) was applied to the tilting pad bearings in order to
determine the synchronously reduced equivalent stiffness and damping coeffi-
cients. The results indicate that the fluid film bearing has a strong effect on
dynamic behavior of the rotating system and that a correct choice for its main
geometric parameters can result in a safer operation condition by increasing the
values of the second critical speed components. Since small variations in the
design parameters can significantly change the rotating machine behavior is
necessary to rigidly control their values during both processes of manufacturing
and assembly.

Keywords: Tilting-pad � Rotordynamics � Design of experiments

1 Introduction

The use of rotary machines, such as pumps, turbines, and compressors, has become
increasingly recurrent for the most diverse industrial applications. The search for rotors
able to work with low vibration level and safely in severe operational conditions is
recurrent in this area of engineering. For this, the optimization of machines’ compo-
nents, improvements in configurations and control have been objective of study for
several researchers [1].

One of the components that have a great impact on the dynamic behavior of the
rotary machine is the bearing, which supports the rotor and establishes the connection
between the rotating elements and the supporting structure. Due to the high stability
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condition, tilting pad journal bearings have presented large applicability in industrial
machines.

As discussed in [2], studies related to the onset of instability are common in the
literature, however, the prediction of critical bearing speeds, as well as the response to
unbalance, are less common. Thus, this work focuses in the prediction of critical
velocities in the rotor, aiming to evaluate the influence of tilting pad bearing geometry
at these critical velocities and to understand how relevant these bearing’s parameters
are to the rotor’s dynamic behavior.

In order to understand the influence of the geometry of the tilting pad bearing on the
dynamic behavior of the rotary system, the use of a DoE methodology was proposed in
which it is capable of evaluate the influence of each of the studied parameters and
evidence possible couplings between them on a specific response of interest. In this
study, the first and second critical speeds components of the rotating system are the
responses of interest and the analyses allow to design the studied rotating system for a
safer operating condition. The following sections describe the applied methods to
execute this research work as well as the results found.

2 Methodology

In this section are explained the main topics concerning the research work: the mod-
elling of both tilting pad journal bearings and the rotor system as well as the design of
experiments methodology to explore the design space for the bearings.

2.1 Tilting Pad Journal Bearing

Geometric Characteristics. Figure 1 shows the component’s main geometric char-
acteristics. In Fig. 1(a) is shown a single pad with the respective pivot element where
can be defined two Cartesian coordinates systems: xy as an inertial one and x0y0 as a
non-inertial one, which allows to measure the angle a that corresponds to the pad’s
rotational degree of freedom relative to its pivot. In Fig. 1(b) are showed a single pad’s
width LS and angle bS.

In Fig. 1(c) a shaft-single pad subsystem is explored where OE, OS and OP are the
origins of the coordinates systems located at the shaft, tilting pad journal bearing and
pad’s pivot, respectively, h0 is the radial clearance, hS and Rs are the pad’s thickness
and curvature radius, respectively, R is the shaft radius. The angles b and u are the
angular positions inside the pad and the pivot’s position in the pad. Thus, it’s possible
to define the pivot position relative to pad through the non-dimensional variable
c ¼ u=bS, where the value 0.5 means that the pivot is positioned on the central portion
of the respective pad.

As in elliptic and multi-lobe bearings, which have a fixed geometry, tilting pad
journal bearings can have a pre-load represented by m ¼ 1� h0=ðRS � RÞ, which
enhances the load capacity and whose values are usually between 0.2 and 0.6. At last,
can be defined two operating conditions for the tilting pad bearings namely LOP (load
on pivot) and LBP (load between pivots) as schematically showed in Fig. 2.
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Hydrodynamic Lubrication Modelling. Tilting pad journal bearings are considered
operating under hydrodynamic lubrication condition and, thus, it can be modelled by
the Classical Reynolds equation as follows

@

@x
h3

@p
@x

� �
þ @

@z
h3

@p
@z

� �
¼ 6lU

@h
@x

þ 12l
@h
@t

ð1Þ

Fig. 1. Tilting pad journal bearing’s main geometric characteristics. (a) Pad’s frontal view;
(b) pad’s perspective view; (c) subsystem shaft-single pad. Source: adapted from [3].

Fig. 2. Operating characteristics of a tilting pad journal bearing. Source: [3].
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where p is the pressure field, h is the film thickness distribution, l is the dynamic
viscosity and U is the relative velocity between the shaft and the bearing. The Finite
Volume Method (FVM) is applied to numerically solve the Eq. (1), transforming the
differential equation in a system of linear equations that is then solved through the
Gauss-Seidel method. Finally, the shaft’s equilibrium position inside the bearing can be
obtained coupling the algorithm that solves the pressure field with the Newton-
Raphson algorithm, in which the shaft’s eccentricity and the pads angular position are
obtained for each rotational speed and load.

Dynamic Coefficients. Once the shaft’s equilibrium position inside the tilting pad
journal bearing is obtained the stiffness and damping equivalent coefficients can be
determined in a linear form applying perturbations (displacement and velocity) around
the respective equilibrium position. For each subsystem shaft-single pad, which are
denoted by the sub index j ¼ 1; 2; . . .;N with N being the number of pads, is possible
to establish local stiffness and damping matrices according to a first order Taylor series
approximation as follows [2]
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where DFx0 , DFy0 and DM are the forces and moment that arise on the respective
directions of the x0y0 single pad local coordinate system due to the perturbations in
displacement (Dx0, Dy0 and Da0) and velocity (D _x0, D _y0 and D _a0) imposed on the
respective directions. As result can be calculated in the respective local coordinate
system the stiffness K

0
j and damping C

0
j matrices for the studied subsystem shaft-single

pad.
After an adequate coordinates transformation from the respective local coordinate

system x0y0 to the inertial coordinate system XY , the resulting Kj and Cj matrices
relative to each pad can be composed in order to obtain the global stiffness Kglobal and
damping Cglobal matrices of order N þ 2.

However, according to [2] these tilting pad journal bearing’s global stiffness and
damping matrices can have their order reduced to the number of shaft’s degrees of
freedom eX and eY which refer to the shaft’s displacements in both X and Y directions,
respectively, in order to obtain equivalent stiffness and damping matrices for the
component. This reduction applied to the coefficients can be considered synchronous or
non-synchronous, depending on the frequency assumed. In this work, the synchronous
reduction is assumed and the following equation is obtained as described [2, 4]

SðcÞ½ �2x2¼ ðcCuu þKuuÞ � Guu½ � ð3Þ

with
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Guu ¼ ðcCua þKuaÞðc2JP þ cCaa þKaaÞ�1ðcCau þKauÞ ð4Þ

where SðcÞ is an impedance matrix, c is the natural damped frequency, JP is the inertia
moment matrix for the pads, Cuu and Kuu are damping and stiffness matrices, respec-
tively, relative to the shaft’s degrees of freedom, Caa and Kaa are damping and stiffness
matrices, respectively, relative to the pad’s rotational degree of freedom and Cua, Cau,
Kua and Kau are damping and stiffness matrices, respectively, relative to the cross-
coupled terms. Finally, the stiffness and damping coefficients matrices for the tilting
pad journal bearing are obtained from the impedance matrix SðcÞ as follows

KðcÞ½ �2x2 ¼ Re SðcÞ½ �2x2
� �

CðcÞ½ �2x2 ¼ Im
1
c
SðcÞ½ �2x2

� � ð5Þ

2.2 Rotordynamics

A rotating system can be composed of different types of components, each one
responsible for a function or effect in its operation. For this work, it was proposed the
use of a rotor composed of shaft element, disc element and bearings in the simulations,
since they are already consolidated modeling elements in the literature and can
approach well the dynamic behavior of the rotor. Figure 3 presents a scheme of a
rotational system used as example.

The main method used in the literature to model the components of a rotor is the
Finite Element Method (FEM) which consists in the discretization of the global domain
of the system in a finite number of elements with their respective characteristic
matrices. The matrices used in this work to characterize the dynamic behavior of the
rotor were the mass, stiffness, damping and gyroscopic matrices of each element. These
matrices are responsible for indicating how the properties are distributed along the
degrees of freedom of each element.

The degrees of freedom that characterize each node refers to the translation in the
directions y and z, and bending rotation in the y and z-axes, as indicated in Eq. (6).

Fig. 3. Scheme of a general rotating system.
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fqg ¼ fey ez hy hzgT ð6Þ

In the present work, the matrices proposed in [5] are used for the characterization of
the shaft and disc elements. In [5], the authors show the methodology used for the
deduction and construction of each of the matrices for these elements, and it has been
used in the literature for discretization of the rotors by FEM.

The effects of the bearings are included in the system by both stiffness and damping
matrices in the respective degrees of freedom in which they are located. The
methodology used for the construction of these matrices was discussed in Sect. 2.1.

The assembly of the elements of shaft, disc and bearing for the construction of the
model that represents the rotating system is done by associating the matrices of each
element. This association is done by adding the matrices in their respective degrees of
freedom, as shown in Fig. 4, allowing to obtain the global matrices of the system, being
[M] the mass matrix, [K] the stiffness matrix, [C] the damping matrix and [G] the
gyroscopic matrix.

The determination of the global matrices is fundamental for the analysis of the
dynamic behavior of the rotor, since its characterization allows to obtain the system’s
equation of motion, as showed in Eq. (7)

½M�f€qgþ ð½C� þX½G�Þf _qgþ ½K�fqg ¼ fFg ð7Þ

where fFg indicates the vector of forces acting on the system. Writing this equation
into state space, the dynamic matrix ½A� of the system given by Eq. (8) can be obtained,

Fig. 4. Scheme indicating the construction of the global matrix. Source: adapted from [3].
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and this matrix leads to the determination of the Campbell’s diagram from its eigen-
values and the vibration modes from its eigenvectors.

½A� ¼ ½0� ½I�
�½M��1½K� �½M��1ð½C� þX½G�Þ

	 

ð8Þ

In this work was chosen to analyze the Campbell’s diagram, since it allows to
determine the backward and forward modes of the system and the respective critical
velocities. The gyroscopic effects of the rotating system and effects due to hydrody-
namic lubrication are dependent on the rotational speed of the system, so for each speed
of rotation, the dynamic matrix of the system takes a different form, and with that, it has
different eigenvalues for each case. By analyzing the variation of each of these
eigenvalues with the speed of rotation, it is possible to obtain the Campbell’s diagram,
as schematized in Fig. 5.

The detail shown in 1 in Fig. 5 shows the first crossing, which indicates the first
critical speed of the rotor, backward and forward components. The detail indicated by 2
shows the second critical speed, in backward component. A computational code was
implemented in MATLAB® in order to simulate the dynamic behavior of the rotating
system.

2.3 Design of Experiments (DoE)

Any system, regardless the main physical principles that drive its behavior, may be
studied through the statistical methodology named Design of Experiments in which
more information is gathered during the experiment (or simulations), i.e., factors being

Fig. 5. Scheme of a Campbell’s diagram indicating some of the points of interest.
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studied have their values changed not only separately but also simultaneously allowing
the analysis for factors’ interactions [6].

In the case of a full factorial design where three factors (A, B and C) each one
varying between two levels or values (low (−) and high (+)) are studied, the possible
combinations of the factors’ levels also known as treatments may be written in a design
matrix as shown in Fig. 6. In this case, the number of tested combinations is 23 ¼ 8.

The main effects, interaction effects and Pareto plots can be obtained from the
collected values of the system’s responses of interest for each run. The following
analysis of the main effects and interaction plots allow to determine whether the fac-
tors’ interactions are relevant instead of the respective main effects for the analyzed
response. The Pareto plot analysis indicates the contribution of each studied factor on
the observed variability of the respective response.

The software HEEDS® was used in order to obtain an automated execution of the
DoE runs and also for post-processing of the results. Thus, the computational codes
that emulate the rotordynamics behavior and tilting pad journal bearings dynamic
coefficients characterization were integrated to the mentioned proprietary software.

3 Results and Discussions

Computational simulations are performed in order to verify the influence of the bear-
ing’s parameters on the dynamic behavior of the rotor through the DoE methodology.
For this, the model of a steam turbine is built by FEM, as presented in Fig. 7. Table 1
shows the discretization details adopted in this steam turbine model, while the Table 2
shows the tilting pad bearing’s parameters. Finally, it is important to mention that the
steam turbine represented in the model has a nominal operating speed of 7500 rpm.

Run
Factor

A B C
1 - - -

2 + - -

3 - + -

4 + + -

5 - - + 

6 + - + 

7 - + + 

8 + + + 

Fig. 6. Design matrix for the 23 factorial design.
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It is possible to notice that the bearings are located at the nodes numbered as 6 and
21 and each one of them possess 4 pads operating under LBP. A mesh with number of
volumes equal to Nx ¼ Nz ¼ 47 was established for each pad, after a grid density and

Fig. 7. Rotating system finite element model.

Table 1. Finite element model from the rotating system given in Fig. 6.

Element Diameter [mm] Length [mm] Element Diameter [mm] Length [mm]

1 62 31 13 389 249
2 109 62 14 420 218
3 233 31 15 420 218
4 109 47 16 233 218
5 140 47 17 327 31
6 140 47 18 171 62
7 280 124 19 140 31
8 233 140 20 140 31
9 467 171 21 140 31
10 467 202 22 140 31
11 638 47 23 218 93
12 389 249

Table 2. Tilting pad journal bearing parameters.

Parameter Value

Viscosity SAE 10 20 °C [mPa s] 94.22
Diameter [mm] 140
Length [mm] 79.94
Radial Clearance [µm] 210
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convergence study. The discs positioned at the nodes numbered as 13 and 15 have
equal dimensions with outer diameter Do ¼ 933mm and length L ¼ 40mm and
unbalance momentum gn ¼ 178:5 � 10�6 kgm.

The dynamic behavior of the rotating system, i.e. its critical speeds, is studied
through the DoE methodology in order to evaluate the tilting pad bearing’s geometric
parameters sensitivity regarding the aforementioned dynamic responses from the rotor
system. The chosen factors for the study are pad’s width LS, bearing’s radial clearance
h0 and pivot offset c. The bearings’ pre-load m was not considered as a DoE factor due
to its dependence relative to the radial clearance h0. The analyzed responses are the
critical speeds on the range of rotational velocities varying from 3000 rpm to
15720 rpm, which was chosen according to the maximum value of the second critical
speed encountered in the study. Once the evaluated problem is related to the rotor
resonance condition, only the critical speeds evaluation was performed, i.e. stability
analysis taking into account the damping factor was not performed. Moreover, the
approach used in the present study considers the reduced coefficients for tilting pad
bearings according to proposed in API, although some research studies indicate that
critical speed analysis could be made more precisely through a full coefficients
approach [7, 8].

In Table 3 is given the simulated design matrix which shows the adopted levels’
values for each factor and their simulated treatments as well as the respective results.

A Campbell’s diagram of the rotating system is showed in Fig. 8 for the Run 1 in
which the first and second critical speeds can be achieved. The critical speeds showed
as responses for the respective DoE treatments are obtained from the intersection points
between the natural frequencies curves and the 1x line in Campbell’s diagram.

The aim is to explore which are the best and worst combinations of factors’ levels
in order to allow the rotating machine’s operational condition to stay safely far from
both the second backward and forward modes.

Table 3. Design matrix and respective simulation results.

Run LS ½mm� Cr ½lm� c ½ � 1st Mode 2nd Mode
Backward Forward Backward Forward

1 79.92 210 0.55 55.8393 55.9921 124.7157 167.2218
2 87.91 210 0.55 57.3105 57.4922 137.8574 190.6576
3 79.92 221 0.55 54.0170 54.1580 115.2117 151.3305
4 87.91 221 0.55 54.9010 55.0631 124.9907 169.6614
5 79.92 210 0.60 58.7217 58.8767 146.5648 200.2400
6 87.91 210 0.60 61.5322 61.7270 166.8474 231.9998
7 79.92 221 0.60 56.1782 56.3148 132.5656 178.4441
8 87.91 221 0.60 58.1498 58.3135 148.8890 205.1168
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Figure 9 shows the resulting Pareto plot in order to verify the percent contribution
of each factor on the observed full variability of the respective responses.

According to the analyzed response, the factors’ contributions are different and the
pivot position c (pivot offset) has the greater contributions on system’s response
variability in all cases. As can be seen in Fig. 9 the first backward and forward modes
are more influenced by the radial clearance ho and pivot on pad c with approximately
32% and 48% of the total contribution, respectively. However, the pad’s width LS

Fig. 8. Campbell’s diagram for Run 1.

Fig. 9. Pareto plot.
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becomes an expressive contributor to the observed variability on the second backward
and forward modes with 23% and 27%, respectively. Thus, all the three studied factors
have great influence on the values of the second critical speed.

Table 3 shows that the first backward and forward modes have their values varying
in a low range, but the opposite occurs with the variation seen in the second backward
and forward modes. Figures 10(a) and (b) show the main effects graphs for both second
backward and forward modes, respectively. It’s noteworthy that radial clearance ho
tends to reduce the respective response value when varying from its low to high levels.
However, pad’s width LS and pivot offset c have the opposite behavior when varying
from their respective low to high levels.

Once increasing the radial clearance turns the gap between shaft and bearing sur-
faces greater, thus the load capacity is reduced and the stiffness equivalent coefficients
for the tilting pad bearings become lower. In this sense, both backward and forward

Fig. 10. Main effects graphs for the second: (a) backward mode; (b) forward mode.
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modes have their respective values reduced. The pad’s width increases the bearings
surfaces generating greater values of load capacity as well for the stiffness equivalent
coefficients and thus elevates both backward and forward modes.

Therefore, becomes clear in which way each studied factor can influence on the
critical speeds, especially for the second one. Once the rotating system operates at the
speed x ¼ 7500 rpm is necessary to design the equipment to not achieve the second
backward and forward modes and an adequate choice for the tilting pad geometric

Fig. 11. Campbell’s diagram for (a) Run 3; (b) Run 6.
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parameters should be sufficient for that, since their respective influences on that
response are well known through the DoE methodology and for the proposed factors’
levels ranges.

Figures 11(a) and (b) show Campbell’s diagram for both Runs 3 and 6 whose
results are shown in Table 3. It can be seen that an inadequate choice for the tilting pad
bearings geometric parameters, as occurred for the Run 3 where radial clearance
assumes its highest value, makes the machine to operate close to the second critical
speed. In this case, the percentage differences between the steam turbine’s operating
speed x ¼ 125Hz and the second backward and forward modes are −7.83% and
+21.06%, respectively, considering x as the reference value for percentage deviations
calculation.

On the other hand the choice for high values of pad’s width LS ¼ 87:91mm and
pivot offset c ¼ 0:60 results in both second backward and forward modes sufficiently
greater than the operational speed. So, the rotating machine doesn’t pass through those
vibration modes and can achieve more safely the steady state condition. In this case, the
percentage differences between the steam turbine’s operating speed x ¼ 125Hz and
the second backward and forward modes are +33.47% and +85.60%, respectively,
considering x as the reference value for percentage deviations calculation.

Therefore, it’s highly recommended that the chosen tilting pad bearings geometric
parameters values are LS ¼ 87:91mm, Cr ¼ 210 lm and c ¼ 0:60 whose values were
obtained by a DoE analysis in order to achieve a safer operation of the rotating system.
Notice that the manufacturing and assembly of tilting pad bearings should have special
attention on the values of the studied factors since that low deviations from the baseline
design values for those parameters can compromise the rotary system’s performance.

4 Conclusions

The parametric sensitivity analysis can be an important design tool to explore the
design space, in sense, first to identify design parameters with direct effect on the
response studied, and its interaction in the set of parameters.

In this work, the results indicated that geometric parameters or factors contributions
are different and that the pivot offset given by the ratio c has the greater contributions
on system’s response variability in all cases. The results for first backward and forward
modes are more influenced by the radial clearance ho and pivot offset on pad c with
approximately 32% and 48% of contribution, respectively. However, for the second
backward and forward modes the pad’s width LS becomes an expressive contributor to
the observed variability on such responses with 23% and 27% of contribution,
respectively. Thus, all the three studied factors have great influence on the second
critical speed.

In this way, through a correct choice of the tilting pad journal bearings geometric
parameters is possible to change the rotating system’s critical speeds values in order to
ensure a safer operating condition. Moreover, it’s possible to establish manufacturing
limits and assembly tolerances for the component’s geometric parameters that have
greater parametric sensitivities regarding the response of interest.
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Abstract. Reciprocating compressors are one of the most common
machines, as they are usually found in household refrigerators and air
conditioners. The reciprocating compressor is a rotor-crankshaft-piston
machine supported by lubricated bearings. They are sealed to retain and
store the refrigerating gas, therefore, the maintenance of the compres-
sor is difficult and expensive. Thus reciprocating compressors should be
designed to last the life span of the appliance. Most models of recipro-
cating compressors considers rigid bearings, which completely neglects
the influence of the hydrodynamic bearings on the dynamic behavior of
the compressor. This work shows the modeling and analysis of a recipro-
cating compressor with flexible bearings. The rotor which is part of the
motor is supported by a pair of hydrodynamic bearings that are mod-
eled using three different analytical models: Capone, Vance and Buten-
schön. Analytical models of bearing are much faster than numerical ones,
such as the ones that use the finite difference (FDM) or finite element
method (FEM). The three models have different approaches to solve the
Reynolds equation and, therefore, distinct results were found using each
one of them. The model was developed in the OpenModelica software
using the elements of the Mechanics.Multibody library. The Butenschön
model was implemented in C and Fortran 95 and integrated to Open-
Modelica as an external library.

Keywords: Hydrodynamic bearing · Analytical models
Reciprocating compressor

1 Introduction

Reciprocating compressors are one of the most common machines, and they are
usually found in household refrigerators and air-conditioners. They are usually
rotor-crankshaft-piston machines supported by lubricated bearings. They are
sealed to retain and store the refrigerating gas, therefore, their maintenance is
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difficult and expensive. Thus reciprocating compressors must be designed to last
the life span of the appliance.

Most models of the reciprocating compressor consider rigid bearings, which
completely neglects the influence of the hydrodynamic bearings on the dynamic
behavior of the compressor.

This work shows the modeling and analysis of a reciprocating compressor
with flexible bearings. The rotor which is part of the motor is supported by a
pair of hydrodynamic bearings that are modeled using three different analytical
models: Capone, Vance and Butenschön.

Hydrodynamic bearings are modeled using the Reynolds equation for a
thin film lubrication. There are several approaches to solve this equation. For
instance, Kim [10] used the Reynolds equation along with the finite bearing
approach to model the lubrication between piston and cylinder of a reciprocat-
ing mechanism. This formulation was also applied to the journal bearings. The
author concluded that smaller piston clearances yield a stable trajectory, and the
increase of the viscosity or inertia of the crankshaft improved its stability. Kim
and Han [11] compared finite and short bearing models. Although the dimen-
sions of the main (primary) bearing were not in the range of a short bearing
model, the results were similar and they concluded that the finite model yielded
a lower pressure with greater power consumption.

Campbell et al. [3] reviewed the research on lubricated bearings of recip-
rocating machinery. They compared analytical and numerical bearing models
to experimental data acquired from the eccentric bearing; this bearing links
the connecting rod to the crank. The finite bearing models presented a better
approximation, but the orbits obtained by the short and finite bearing were quite
similar to each other.

Bukovnik et al. [1] compared several bearing models in the simulation of
crankshaft and connecting rod bearings of a combustion engine. The result
showed that Butenschön model can be applied when a medium accuracy and
short simulation times are needed. It also provided a good approximation for
the oil flow in the crankshaft bearings.

Estupiñan and Santos [7] presented a detailed model of a hermetic com-
pressor using multibody dynamics and hydrodynamic bearings. They analyzed
the dynamic behavior of the compressor using short and long bearing models,
and the maximum pressure estimated by the long bearing was significant lower
than the short one, which can be explained by the fact that the simulated bear-
ing dimensions were closer to the short model, which they further adopted. In
another work [6], they compared both models (short and long) to the finite
bearing solved with finite differences. Their results show that the orbits and
maximum pressure calculated using the short bearing model were pretty similar
to the finite bearing.

Kurka et al. [12] modeled a reciprocating compressor with viscoelastic bear-
ings and analyzed their influence on the dynamic behavior of the compressor.
The authors compared the loads using rigid and flexible bearings; the RMS load
values were pretty close to each other although the forces were very different
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values during the cycle. They concluded that a hydrodynamic bearing model
could provide a more realistic result.

Yang et al. [17] used a modified Reynolds equation to model the friction
loss at the interface piston-cylinder of reciprocating compressor. They employed
a regression method to determine the friction loss in the crankshaft bearings.
They concluded that the friction loss in these bearings decreases as the stroke-
to-bore ratio increases, due to the smaller diameter of the cylinder which results
in a smaller force exerted on the piston.

Analytical bearing formulations are still used in the modeling of rotating
machinery. Although these models are less accurate, they are much faster to cal-
culate. Okabe and Masarati [14] employed the formulation developed by Capone
et al. [4] in the model of wind turbine gearbox. Cavalini et al. [5] used the same
model to determine dynamic response of a rotor with stochastic parameters.
Okabe [13] include the fluid film inertia on an analytical model of a tilting pad
bearing and simulated it under several conditions. The results were similar to a
numerical finite bearing model.

Fig. 1. Side view of the reciprocating compressor (adapted from [12]).

2 Methodology

A reciprocating compressor can be modeled as a mechanism composed by three
parts: piston, connecting rod and rotor. These parts can be represented as rigid
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bodies in a multibody system. The OpenModelica [8] is an open source software
based on the Modelica language, and it has the Mechanics.Multibody library
[15], which is capable of modeling of multibody systems with basic components
such as rigid bodies, joints and forces.

Due to the the open source nature of OpenModelica it is possible to create
new elements and libraries, that can be written in C++, Fortran or Modelica.
This feature allows the use of a model that is fully functional and tested, to be
introduced into the framework of OpenModelica and integrate it to multiphysics
systems.

OpenModelica is based on the solution of Differential Algebraic Equation
(DAE) systems. These systems can be overdetermined, which means that they
have more equations than variables.

They can be described as [15]:

f(ẋ,x,y, t) = 0 (1)

where x is the vector of the variables that are differentiated, y is the vector of the
algebraic variables, t is the time and the dot (·) represents the time derivative.
The connection between elements in the multibody library are performed by an
entity denominated Frame.

The Frame defines a reference system attached to a component, that can be
either a body or a joint. Inside of its structure it has the relative position from
the world/absolute reference, the orientation matrix, the angular velocity, and
forces and moments applied to the Frame. It is the connection of the two or
more Frames that creates the overdetermined system of equations.

The equations associated to the rigid body (Part) are:

mbody(a + ω̇a × rCM + ωa × (ωa × rCM )) = fa (2)
Ibody ω̇a + ωa × Ibody ωa + rCM × fa = τ a

where mbody is the body mass, a is the body acceleration, ωa is the angular
velocity of the Frame a, rCM is the the offset from Frame a to center of mass
of the body, fa is the force applied to Frame a, Ibody is the moment of inertia
matrix, and τ a is the moment applied to Frame a.

Joints are defined by a set of algebraic equations that constrains the motion
between two Frames. For instance, the revolute joint is defined by the following
equations:

rb = ra

Rrel = n ⊗ n + (I − n ⊗ n) cos φ − [n×] sin φ (3)
Rb = RrelRa

where ra and rb are respectively the positions of Frame a and Frame b, Rrel

is the relative rotation matrix between the Frames, which is defined by unit
direction vector n and the angle φ, Ra and Rb are respectively the orientation
matrices of Frame a and Frame b, and I is the identity matrix.
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In order to implement the hydrodynamic bearing into the reciprocating com-
pressor model, it is necessary to get the relative motion between the bearing and
the journal, calculate the hydrodynamic forces using the analytical expressions,
and apply the forces to the bearing elements. The relative motion is calculated
in the element Sensor, which encloses the following equations:

rrel = RT
a (rb − ra) (4)

ωrel = RT
a (ωb − ωa)

where rrel is the relative displacement between Frame a and Frame b, and ωrel

is the relative angular velocity. The linear velocity ṙrel is calculated through
the time derivative of rrel. The hydrodynamics forces are calculated in the local
coordinates (bearing frame) and applied to both frames:

fa = f(rrel, ṙrel,ωrel) (5)
fb = −RT

b Raf(rrel, ṙrel,ωrel)

Fig. 2. Local coordinate system of the rotor bearings.

2.1 Bearing Models

Three analytical hydrodynamic models were tested in the compressor model:
Capone, Vance and Butenschön. They have been adapted to consider the system
of local coordinates shown on Fig. 2. The system is fixed at the center of the
bearing, and the relative motion of the journal is used in the calculation of the
hydrodynamic forces:
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eY = rrel2

eZ = rrel3

ω = ωrel1

The first model to be analyzed, the Capone model [4], is a development of the
Ocvirk model (short bearing), and it includes the effect of the journal radial
velocity (eccentricity speed) on the hydrodynamic forces:

{
Fy

Fz

}
= −So r L

√
(y − 2vz)

2 + (z + 2vy)2

1 − y2 − z2
·

{
3y vh − gh sin θ − 2fh cos θ
3z vh + gh cos θ − 2fh sin θ

}
(6)

fh =
y cos θ − z sin θ

1 − (y cos θ − z sin θ)2

vh =
2 + (z cos θ − y sin θ)gh(θ, y, z)

1 − y2 − z2

gh =
2√

1 − y2 − z2

(
π

2
+ tan−1 z cos θ − y sin θ√

1 − y2 − z2

)

where So = ηωL2

4c2 is the Sommerfeld number, η is the lubricant absolute
(dynamic) viscosity, ω is the angular speed of shaft, L is the bearing length,
c = D−d

2 is the bearing radial clearance, D and d are respectively the bearing and
the journal diameter, r is the bearing radius, y = eY

c and z = eZ

c are the dimen-
sionless displacements of the journal on the y and z-axis, vy = ėY

cω and vz = ėZ

cω
are the dimensionless velocities of the journal, θ = atan2 (−z − 2vy,−y + 2vz)
is the attitude angle.

The hydrodynamic forces of Capone bearing can be included in the compres-
sor model using the following equation:

f(rrel, ṙrel,ωrel) =
{

0 Fy Fz

}T (7)

where f is the vector of the forces in the bearing reference, and c is the vector
of the couples in the bearing reference.

The model proposed by Vance [16] is the cavitated (π-film) short bearing,
which the radial and tangential forces can be calculated by:

Fr = −ηrL

(
L

c

)2 [
(ω − 2φ̇)

ε2

(1 − ε2)2
+

π(1 + 2ε2)ε̇
2(1 − ε2)

5
2

]
(8)

Ft = ηrL

(
L

c

)2 [
(ω − 2φ̇)

πε

4(1 − ε2)
3
2

+
2εε̇

(1 − ε2)2

]
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where the attitude angle φ and its velocity φ̇ are calculated by:

φ = tan−1

(
eZ

eY

)
(9)

φ̇ =
−ėY sin φ + ėZ cos φ√

e2Y + e2Z
and the dimensionless journal eccentricity ε and its velocity ε̇:

ε =

√
e2Y + e2Z

c

ε̇ =
ėY cos φ + ėZ sin φ

c
The forces of the Vance model can be calculated in the bearing local coordi-

nates by:

f(rrel, ṙrel,ωrel) =

⎧⎨
⎩

0
Fr cos φ − Ft sin φ
Fr sin φ + Ft cos φ

⎫⎬
⎭ (10)

Butenschön [2] based his solution of the Reynolds equation on a correction
factor to account the finite width. Two Sommerfeld numbers are calculated rel-
ative to hydraulic wedge (SoW) and fluid squeeze (SoS):

SoW = a1

(
L

D

)2 |ε| − 1
a2 + |ε| · |ε| √π2 (1 − ε2) + 16ε2

2 (1 − ε2)2
(11)

SoS = 4a8

(
1 − ε2

)− 5
2

(
L

D

)2
ε − 1
a9 + ε

[(
π

2
− 1

2
arccos ε

) (
1 + 2ε2

)

+
3
2
ε
√

1 − ε2
]

(12)

β = arctan
π
√

1 − ε2

2 |ε|
(
a3 + a4 |ε| + a5ε

2 + a6 |ε|3 + a7ε
4
)

(13)

where D is the bearing diameter, ε is the dimensionless journal eccentricity, β is
the angle of the fluid squeeze. The sign of ε in Eqs. 11 and 12 is defined positive
if ε̇ is positive and negative otherwise.

The coefficients ai are:

a1 = 1.1642 − 1.9456λ + 7.1161λ2 − 10.1073λ3 + 5.0141λ4

a2 = −1.000026 − 0.023634λ − 0.4215λ2 − 0.038817λ3 − 0.090551λ4

a3 = 1.152624 − 0.104565λ

a4 = −2.5905 + 0.798745λ

a5 = 8.73393 − 2.3291λ (14)
a6 = −13.3414 + 3.424337λ

a7 = 6.6294 − 1.591732λ

a8 = 0.70038 + 3.2415λ − 12.2486λ2 + 18.895λ3 − 9.3561λ4

a9 = −0.999935 + 0.0157434λ − 0.74224λ2 + 0.42278λ3 − 0.368928λ4
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where λ = L
D . The amplitude of the forces due to fluid squeeze and the hydraulic

wedge are:

FW = SoW
Ldη |ωr|

Ψ2
(15)

FS = SoS
Ldηε̇

Ψ2
(16)

where η is the dynamic viscosity, Ψ = 2 c
D is the relative bearing clearance and

the relative rotation speed ωr = ω − 2φ̇.
The forces of the bearing can be calculated through:

f(rrel, ṙrel,ωrel) =

⎧⎨
⎩

0
FW cos α + FS cos φ
FW sin α + FS sin φ

⎫⎬
⎭ (17)

The angle α determines the direction of the supporting force and it is the
result of the rotational movement:

α = φ − sign(ωr)β (18)

where φ is attitude angle (Eq. 9) and β is the angle of the fluid squeeze (Eq. 13).

Fig. 3. Model of the compressor in the OpenModelica editor.
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3 Compressor Modeling

The reciprocating compressor was modeled using the Mechanics.Multibody
library of OpenModelica, which can be seen on Fig. 3. Its dimensions are based
on the model presented by Kurka and Izuka [12].

The main parts of the model are:

– The piston, the connecting rod and the rotor (which includes the crank) were
modeled as rigid bodies. There are several options to model rigid bodies in
the multibody library, but the option that was most fitted to model these
parts was the BodyShape, which has two frames;

– The rotor is supported by a pair of hydrodynamic bearings that were repre-
sented by the three analytical models presented in the previous section.

– Eccentric and piston bearing were represented by elements created in this
work that were denominated AnisotropicBearing. This element gets the rela-
tive position, velocity, and angular velocity between two frames and applies
a force calculated with stiffness and damping matrices. This force is applied
in both frames.

– The electric motor was modeled as a torque, that is applied between the
World frame and the rotor. The torque is calculated with a proportional
control based on the rotor angular velocity.

– The piston force is interpolated from experimental data [12] through a Com-
biTable1D, which loads the data from a Matlab file into the compressor model.

– The bearing that connects the connecting rod to the piston is rigid and mod-
eled as a revolute joint.

There are other two joints that complete the model: a joint that restricts the
displacement of the rotor in the Z direction, and a planar joint that connects
the rotor to the connecting rod. The parameters of the compressor model are
presented in Table 1, and they follow the orientation presented on Fig. 1.

Fig. 4. Trajectory of the journal inside of the rotor primary bearing.
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Table 1. Compressor model parameters.

Part Parameter Value

Rotor bearing Radial clearance 12.5µm

Length 7.5 mm

Diameter 15 mm

Oil viscosity 28.5 mPa · s
Eccentric bearing Kyy, Kyz, Kzy, Kzz {0.8, 4.8, -3.1, 1.6}·108 N/m

Cyy, Cyz, Czy, Czz {4.0, 0.4, 0.4, 3.0}·106 Ns/m

Piston bearing Kxx, Kxy, Kyx, Kyy {1.0, 0.0, 0.0, 1.0}·107 N/m

Cxx, Cxy, Cyx, Cyy {6.0, 0.0, 0.0, 6.0}·103 Ns/m

Rotor mass 0.945 kg

Ixx, Ixy/Iyx, Iyy, Izz {0.39, -0.01, 0.99, 0.99}·10−3 kg m2

Connecting rod Mass 0.029 kg

Ixx, Iyy, Izz {0.8, 0.85, 0.1}·10−5 kg m2

Piston Mass 0.045 kg

Ixx, Iyy, Izz {0.39, 0.33, 0.46}·10−5 kg m2

4 Results

The simulation is performed by accelerating the rotor to 315 rad/s (approxi-
mately 3000 rpm), and a proportional controller keeps the motor at this speed.
The simulated time is two seconds with a time step of 1 × 10−4 s using the inte-
gration method DASSL. The rotor takes few tenths of a second to accelerate to
its nominal speed, therefore, it does not take long to reach a regular motion. The
computational time to simulate the compressor was pretty similar for all models.
It was around 30 s on computer with a Core i7-2670 from which approximately
10 s were used to build and compile the model.

Figure 4 shows the trajectory of the journal inside of the primary bearing of
the rotor, which is the one next to the connecting rod. The part of the trajectory
which is close to the bearing clearance is related to the compression stroke, when
the suction stroke starts the journal goes toward the center of the bearing, which
is clearly demonstrated by Capone and Butenschön models and, in a lower scale,
by the Vance model.

Another point to observe is the position of the orbits that are in the negative
direction of both axes, due to the Z positive offset of the cylinder in relation to
the center of the rotor. In the secondary bearing the journal’s trajectories are in
the opposite direction to the primary bearing’s trajectories, which can be seen
on Fig. 5. The position of the orbits can be associated to the rotor inclination,
which was also found by Kurka et al. [12]. The primary bearing serve as a pivot
to the rotor. The connecting rod is closer (25.4 mm) to the primary bearing
than the secondary one (58.2 mm), and this means less force applied to the
secondary bearing. This yields a motion of the journal further from the bearing
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wall, however, the same patterns of the primary bearing during compression and
suction strokes can be observed in the secondary bearing, where the tip of the
orbit happens during the transition from compression to the suction.

Fig. 5. Trajectory of the journal inside of the rotor secondary bearing.

The results presented in Figs. 4 and 5 are quite similar to the ones presented
by Kim et al. [10,11], in which the primary bearing has a small orbit closer to
the bearing wall and the secondary bearing has larger orbits closer to the center
of the bearing.

Fig. 6. Forces applied to the journal of the primary bearing (Y axis - left, Z axis -
right).

Although the trajectories are quite different between Vance and other models,
the hydrodynamic forces presented in Fig. 6 of the primary bearing are similar to
each other, with the exception of one small segment approximately at 45◦. The
forces generated by the bearings counteract the pressure exerted on the piston,
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and that is the main reason the force in the Y direction becomes negative during
suction and positive during compression.

Fig. 7. Forces applied to the journal of the secondary bearing (Y axis - left, Z axis -
right).

Figure 7 shows the hydrodynamic forces applied in the secondary bearing.
The magnitude is lower than the primary bearing, which was previously observed
in Fig. 5. Nevertheless, the differences between Vance and the other model are
much bigger in the same region of the discrepancy in the primary bearing (Fig. 6).

Fig. 8. Trajectory of the journal inside the eccentric bearing (left) and trajectory of
the piston in relation to the cylinder (right).

The trajectory of the journal in the eccentric bearing is not influenced by the
bearing model of the rotor which can be observed on Fig. 8. The eccentric bearing
joins the rotor and the connecting rod. This bearing was modeled with linear
anisotropic stiffness and damping coefficients that were quite high compared to
the rotor bearings, which yielded a much smaller orbit of the journal inside of the
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bearing. Figure 8 (right) presents the trajectory of the piston inside the cylinder
and the Z motion is much smaller than the X motion. Both piston bearings
were modeled with linear anisotropic coefficients and presented similar results,
therefore, only the lower bearing trajectory is presented. The influence of the
different rotor bearing models is almost negligible (less than 1 µm).

5 Conclusions

A reciprocating compressor model was built in the open source software Open-
Modelica to compare different analytical bearing models. The OpenModelica has
a basic library of multibody elements that can be integrated with components
of other domains (eg. thermal, fluid, electrical). Nevertheless the compressor
modeling demanded the developing of new elements such as the hydrodynamic
and the anisotropic bearings. The integration of libraries that were developed
in other languages is not straightforward, because of the way of variables are
exchanged between the library and OpenModelica; arrays are especially diffi-
cult to configure. But it is possible to perform the integration and there is no
perceptible loss of performance in the simulation.

Analyzing the results of the three different bearing models, Capone and
Butenschön models presented very similar results in the simulation of the recip-
rocating compressor although the Capone model is much simpler. This is not
completely unexpected since Kim et al. [11] obtained close results between a
short bearing and finite element model.

Vance model presented the most distinct behavior, even though the forces
in the primary bearing were close to the ones reported by the other models.
The lower damping of the Vance model compared to the Butenschön model,
as reported by Hannukainen [9], could indicate that under a fast variation of
the eccentricity the Butenschön would present a higher damping and, therefore,
smaller orbits.

Further developments of the reciprocating compressor should include numer-
ical models (finite elements and finite volumes) to determine the influence of
simplifying Reynolds equation. Other area that can be studied is the flexibility
of the support system of the compressor which is a set of spring that connects
the compressor mechanism to the gas reservoir.
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1. Bukovnik, S., Dörr, N., Čaika, V., Bartz, W.J., Loibnegger, B.: Analysis of diverse
simulation models for combustion engine journal bearings and the influence of oil
condition. Tribol. Int. 39(8), 820–826 (2006). https://doi.org/10.1016/j.triboint.
2005.07.023

2. Butenschön, H.J.: Das hydrodynamische, zylindrische gleitlager endlicher breite
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Abstract. This paper presents a design optimization approach to min-
imize the volume of a radial Active Magnetic Bearing (AMB) by com-
paring Genetic Algorithm (GA) and Pattern Search (PS) methods. The
flexible rotor dynamic analysis is performed to determine AMBs dynamic
load under different unbalance cases. Preliminary design parameters are
generated and results are compared with optimization results, showing
around 35% reduction in volume. The PS method resulted a bigger diam-
eter but shorter bearing length compared with GA. Nevertheless, GA
generated a thicker AMB with reduced external diameter. All designs
(PD, PS and GA) satisfied design constraints as determined by rotor
bearing dynamics while keeping the same bearing load capacity, also val-
idating the PD methodology as a prototyping alternative to optimization
strategies.

Keywords: Radial active magnetic bearing · Flexible rotor
Optimization · Genetic Algorithm · Pattern Search

1 Introduction

An Active Magnetic Bearing is a mechatronic device, where magnetic forces are
used to levitate a rotor without any contact [1]. Magnetic Bearings (MB) can
be classified as Active Magnetic Bearings (AMBs), Passive Magnetic Bearings
(PMBs) and permanent-magnet-biased Hybrid Bearings (HMBs). Rotor levita-
tion is achieved passively when using PMBs and HMBs. However, unlike AMBs,
magnetic forces are always present. AMBs are widely used on flexible rotor sys-
tems due to their controllability and high stiffness compared to PMBs and HMBs
[8]. The main advantages of MBs are that they are oil-free and frictionless, so
higher rotational speeds can be achieved with minimum maintenance require-
ments, and they can be used in harsh environments.

In AMBs, the rotor displacement is measured from its reference position with
a position sensor. Measurements are processed by a micro-controller to generate
a control signal before being sent to the amplifiers. The control signal is turned
into a control current that generates a magnetic field in the actuating magnets.
c© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 60, pp. 321–334, 2019.
https://doi.org/10.1007/978-3-319-99262-4_23
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Resulting magnetic forces will produce the rotor levitation [13] and dynamic
forces to suppress the rotor vibration.

AMBs can also be classified as [1] (i) radial bearings, which offer a magnetic
stabilization in 2 Degrees of Freedom [DOF] and (ii) axial/thrust bearing with
1 DOF. Classical configuration comprehends two radial bearings and one thrust
bearing separately. [12] suggested a combined radial-thrust bearing solution, also
known as hybrid magnetic bearing. In this case, only two bearing components
are required to fully stabilize the rotor position. Compact design and the reduced
number of components are the main advantages of the system.

Based on structural configurations, radial MB can be homopolar (HOMB)
and heteropolar (HEMB). In HOMB all poles have the same polarity in the same
rotation plane whilst in HEMB magnetic poles change polarity perpendicular to
the rotor axis. Heteropolar configuration for radial bearings is more common due
to its simplicity and cost-effectiveness [12,17]. In addition, [14] concluded that
by increasing the number of poles on a radial AMB, power loses can be reduced.

Design steps implicated in the process can be very specific depending on the
application, involving iterative and time-consuming processes, where the out-
comes cannot normally be extrapolated to other applications. Therefore, com-
putational tools are needed to optimize the design for a specific application.
In general, optimization algorithms require the specification of a cost function,
design variables, constraints associated with the design variables, and an opti-
mization strategy.

1.1 Cost Function

Based on the literature, a widely used optimization objective is to minimize
the bearing volume, mass or to maximize the load capacity [3,5,8–11,16,21,22].
[3,8] also optimized the AMB dynamics for heteropolar configurations and [21]
for a homopolar radial AMB. [8] stated that the AMB’s volume is determined
by the rotor dynamics when flexible rotor is used. Thus, rotor dynamics should
be included in the optimization as a constraint rather than a cost function.

1.2 Constraints

A vast majority of the literature uses the AMB current as a key factor when
choosing the amplifiers and this depends on the material current density; geom-
etry constraints involving space available for coils, contact in between windings,
wire diameter, inner and outer bearing diameter and AMB pole area. Magnetic
flux saturation of the material, air gap and the number of coil turns are also
considered.

Power losses comprehend a key design factor as cost functions or constraints.
Optimizations including losses due to current flowing through coils (copper
losses) were carried out by [5,9,11,14,21]. Additionally, power losses due to
hysteresis and Eddy currents effect (iron losses) were included as optimization
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parameters by [7,9,21]. However, only [9,20] included power dissipation capabil-
ity of the AMB in the form of heat due to convection and heat due to conduction.
This will assure that the AMB is able to dissipate more heat than it generates.

AMB load capacity is also considered as a constraint by [5,7]. It is possible
to determine the maximum load required under different unbalance cases on the
rotor design stage by using simulation.

The air-gap clearance between the rotor and the stator is also a relevant
design parameter. Smaller air-gap requires a lower control current and therefore
power losses are reduced. However, it requires a robust control strategy and a
higher manufacturing accuracy. [5,7] selected an air-gap clearance of 0.4 mm for
their designs whilst [1,3,8–11,15,22] chose 0.5 mm. [14] used an air-gap of 1 mm
and [21] set this parameter as a design variable obtaining final values of 0.3 mm
and 0.33 mm.

1.3 Design Variables

In most cases an initial design is needed to begin the optimization process.
Upper and lower bounds for parameters are also required depending on the
algorithm used. However, [3] defined a self-normalizing method that removes
the requirement of an initial design.

Usual design variables found in the literature are: number of turns per pole,
bearing width, pole leg width and design current [3,7–9,16,22]. Other authors
[3,21,22] also included proportional and derivative gain ranges, amplifier param-
eters [8], coil thickness [7] and the static load of the bearing [22].

1.4 Optimization Strategies

There are many possible satisfactory solutions when optimizing the radial AMB
design. Some algorithms are suitable to find optimum parameters in the whole
design space by generating a set of points at each iteration, like Genetic Algo-
rithms (GA). On the other hand, some methodologies are more convenient to
find solutions in the local design space, like Sequential Quadratic Programming
(SQP), Interior-point, Trust-region and Pattern Search (PS) strategies.

GAs are adaptive heuristic search algorithms based on the evolutionary
ideas of natural selection and genetics. GAs can be divided into Single Objec-
tive Genetic Algorithms (SOGAs) and Multi-Objective Genetic Algorithms
(MOGAs). These two variations of GAs have been widely applied in the lit-
erature. SOGAs have been used by [2,3] to minimize stack volume, weight, load
capacity and power consumption as single objectives. MOGAs have been com-
pared to SOGAs [10,11,14,15,21,22]. Some examples of MOGAs include Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) and Neighborhood Cultiva-
tion Genetic Algorithms (NCGA).

[19] remarked on the efficiency of GA and SQP. These two methods were
tested individually and as a combined strategy to optimize a rotor sub-assembly
of a magnetically suspended motor. Other alternatives include Differential Evo-
lution Algorithms (DEA) [16] and artificial immune system [4].
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In this paper, a preliminary design of a radial MB is presented. Generated
design parameters are optimized by selecting the MB stack volume as the cost
function, where the aim is to keep the MB dynamic capacity while reducing
its size. PS and GA optimization strategies are selected and compared due to
multiple local minima solutions of the cost function. Optimization nonlinear con-
straints applied involve geometrical constraints and maximum bearing dynamic
load capacity. Optimisation parameters are the number of coil turns, maximum
coil current, pole length and pole width. PS outcome showed an increased diam-
eter but thinner MB compared with PD. GA global solution revealed a reduced
but thicker stack MB volume compared to PS, making it as a suitable optimiza-
tion method for the proposed design.

2 Methodology

A preliminary design of the radial AMB is first developed to have a general
idea of the system. Subsequently, the design is optimized by using MATLAB
optimization tools.

2.1 Preliminary Design

The AMB should provide the necessary static and dynamic force to lift the rotor
and counteract vibrations caused by unbalance forces and external loads. Each
AMB has two orthogonal force axes, which are set at 45◦ to the vertical axis.
Flexible rotor dynamics is simulated using FEA techniques in order to determine
a reasonable maximum load capacity. The rotor data is shown in Table 1.

Table 1. Rotor data

Description Value Unit

Length 0.8 m

Uniform shaft diameter 15 mm

Density 7850 kg/m3

Young’s modulus 210 GPa

Poisson’s ratio 0.283

Total weight 5.3 kg

Polar MOI 2.24e-3 kg · m2

Maximum speed 10,000 rpm

There are 11 discs in total as shown in Fig. 1. No sensor discs are needed
since the position will be measured directly from the shaft. Only two MBs are
required to control the system, hence a third one has been added to introduce
disturbance forces. One of the thrust bearings can be used to introduce axial
loads.
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Fig. 1. Finite element modelling of the shaft and discs. Active magnetic bearing discs
are denoted as AMB-i; touchdown bearing discs are denoted as TD-i; thrust discs are
denoted as TB-i; sensor location points are denoted as si,j.

The designed rotor will ensure that the first two free-free bending modes are
within 10,000 rpm. Approximate bearing stiffness coefficient of (Kb = 1·105N/m)
is chosen after evaluating eigen frequencies as a function of the bearing stiffness
for zero rotational speed as shown in Fig. 2. The same bearing stiffness is assumed
for both AMBs in two orthogonal directions.
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Fig. 2. Stiffness map at zero rotor speed showing the change of eigen frequencies as a
function of bearing stiffness.

Using the aforementioned coefficients, it is possible to get the mode shapes
at zero speed (Fig. 3). The first and second modes (Modes 1 and 2) refers to rigid
body modes, while the other two (Modes 3 and 4) are the flexural modes. The
effect of sensor non-collocation on the stability is also examined and established
that the sensors should be positioned inboard of each MB.

The maximum load capacity (Fmax) per axis of the radial bearings is calcu-
lated by multiplying the static load (rotor weight) by a dynamic factor (Df ).

Fmax = Df
mg

2
√

2
(1)
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AMB-1 AMB-2 AMB-3

Total mass = 5.306876 kg 

Total Inertia (polar) = 0.002431 kgm2

Total length = 0.80 m 
Shaft diameter = 15 mm

Mode 1 (22.86 Hz =   1371 RPM)
Mode 2 (28.68 Hz =   1721 RPM)
Mode 3 (48.10 Hz =   2886 RPM)
Mode 4 (146.46 Hz =   8787 RPM)

Fig. 3. Mode shapes for Kb = 1 × 105N/m at Ω = 0.

A TD bearing clearance of 0.25 mm has been selected as a design requirement.
Therefore, rotor static sag and unbalance cases need to be studied to ensure that
there is no contact when the shaft is levitated and the designed MB is capable
of providing the required force.

Three unbalance cases were considered. Figure 4 shows the most demanding
case in terms of vibration levels and AMB force requirements. The unbalance
mass considered is 4 times the unbalance recommended in the API 617 standard.

Results are displayed in two different graphs. The first one represents the
orbit size, which relates the major axis of the elliptic rotor orbit. The second
graph shows the amplitude of the dynamic forces exerted by AMB1 and AMB3.
The largest of the forces in the two orthogonal planes is plotted.As it can be seen,
AMB-3 load is around 9.5 N at 9,476 rpm with an orbit size less than 0.1 mm.

After verifying the AMB air gap and force capacity through rotor dynamics
simulations, the sizing of the AMBs can nor commence. The cross-sectional pole
area (Aa), shown in Fig. 5, can be calculated from the maximum force:

Aa =
Fmaxμ0

Bmax
2ε cos(α)

(2)

where the maximum flux density, the fringing and leakage reduction factor, pole
angle and permeability of free space are denoted by Bmax, ε, α, and μ0, respec-
tively. A value of 0.8 is selected for the fringing and leakage factor [18].

Heteropolar design is chosen with eight poles which are equally spaced. The
inner diameter of the stator (Di) should be greater than the outer diameter of
rotor laminations. The pole width (c) is calculated assuming that a 50% of the
circumference is used:

Di =
8(Dsh + 2cg)

8 − π
(3)
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Fig. 4. Unbalance response and control forces for case 1.

Fig. 5. Rotor and stator partial views.

where the shaft diameter and the radial clearance are denoted as Dsh and cg,
respectively. Figure 5 shows a partial view of the considered shaft diameter and
a section of one pole leg with one layer of turns. Dsh is comprehended by the
shaft diameter, the coupling element diameter and also the stator lamination
retainer inner diameter considering thickness. (Di) takes into account Dsh, cg
and c. Based on above calculations, the bearing width (b) is calculated as it
follows:

b =
Aa

c
(4)
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Fig. 6. Radial bearing design sketch. Wire area and wire diameter are denoted by wA
and wD, respectively.

By using flux density and magnetomotive force [MMF] expressions, it is pos-
sible to calculate the number of turns needed (N) per pole pair. The number
of turns will also determine the maximum current (Imax) required per magnetic
pole:

N =
2Bmaxcg
μ0Imax

(5)

The inductance per AMB pole pair (L), the maximum voltage needed (Vmax)
and the maximum power requirement (Pmax) are as follows:

L =
μ0N

2Aa

2cg
(6)

Vmax ≈
[
dI

dt

]
max

≈ L
Imax

2
Ωmax (7)

Pmax = VmaxImax (8)

The minimum wire diameter (φwire
min ) that could be selected is calculated

based on the current density for Cu (JCu) and is adapted according to the AWG
standardized diameter:

φwire
min =

√
4Imax

πJCu
(9)

The stator diameter (Dst) is calculated as (Fig. 6):

Dst = Di + 2(c + 1.15hw) (10)

where the winding length is denoted by hw; 15% has been added to the winding
length as a safety consideration. The total pole length (h) is

h = hw + 0.15hw (11)
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The total pole leg thickness (w) including the pole width is assumed to be
constant. Coil thickness (t) is constrained to be less than half of the pole leg
width and is calculated as a function of the number of layers (nL). More details
are given in Figs. 5 and 6. Initial design parameters are given in Table 2.

w = nLφwire
min (12)

t = 2w + c (13)

Table 2. AMB preliminary design parameters

Description Symbol Value Unit

Dynamic factor Df 6.1

Stator inner diameter Di 56 mm

Rotor mass mr 5.54 kg

Gravity constant g 9.81 m/s2

Permeability of free space μ0 4π · 10−7 N/A2

Max. flux density Bmax 1.3 Tesla

Fringing and leakage factor ε 0.8

Pole angle α 22.5 deg

Shaft diameter Dsh 33 mm

Radial air gap cg 0.5 mm

Current density (Cu) JCu 6 · 106 A/m2

Max. rotational speed Ωmax 10,000 rpm

Amplifier current limit Iamp
max 18 A

Amplifier voltage limit V amp
max 90 V

Amplifier output resistance Ramp
out 0.075 Ω

2.2 Design Optimization

As a part of the design process, SOGA and PS optimization strategies are applied
by using MATLAB to find the optimum bearing dimensions for the required
application. GA optimization method requires at least two input arguments, a
fitness function and the number of parameters to be optimized. The PS function
requires an objective function and a starting point. Lower and upper bounds
are defined to provide a constrained range to the optimization. Both methods
require the use of constraints which are depicted as follows:



330 J. Betancor et al.

First Constraint takes into account the maximum current intensity (Imax) as
a function of the maximum current density (JCu) and therefore, the minimum
wire diameter (φwire

min ).

Imax ≤ 1
4
JCuπ(φwire

min )2 (14)

Second Constraint restrains the maximum MMF as a function of the maxi-
mum flux density (Bmax), radial air gap (cg) and permeability of free space (μ0).
It is also worth mentioning that the magnetic reluctance considered involves the
iron path, rotor iron path and air gap [18].

NImax ≤ 2Bmaxcg
μ0

(15)

Third Constraint will restrict the maximum winding space available for coils
(Fig. 5) assuming a bulking factor of 80% [6]:

N
π(φwire

min )2

8
≤ 0.8

(
α

2

(
Di

2
+ h

)2

− α

2

(
Di

2

)2

− ch

2
− α

2
(hw)2

)
(16)

Fourth Constraint will avoid contact between windings assuming that the coil
width (w) is less than the equivalent arc chord with radius Di +0.15hw (Fig. 5):

N
π(φwire

min )2

8hw
≤

(
2
(

Di

2
+ 0.15hw

)
sin

(α

2

)
− c

2

)
(17)

Fifth Constraint takes into account the maximum force (Fmax) generated by
the AMB pole pair:

Fmax ≤ εμ0N
2I2maxAa cos α

4c2g
(18)

where the cross-sectional pole area and the fringing and leakage reduction factor
are denoted by Aa and ε, respectively.

Cost Function to be minimized is the total stack volume (V ) of the AMB
considering it as a cylinder [3].

min(V ) = min

(
πD2

stAa

4c

)
(19)

Design variables for GA and PS, and their upper and lower boundaries are
based on the initial design values and given in Table 3.
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Table 3. Design variables and boundaries used during the optimization

Description Symbol Lower bound Upper bound

Turns per pole pair N [turns] 0.1N 2N

Max. current req Imax [A] 0.1Imax 2Imax

Pole width c [m] 0.1c 2c

Coil length hw [m] 0.1hw 2hw

3 Results and Discussion

Optimizations were carried out by using the MATLAB optimization toolbox.
The GA was set to a maximum population size of 50 and a maximum stall gen-
erations of 50. Initial Population range was set from −1 to 100, as the algorithm
was giving different results with the values set by default. PS was executed using
a constraint tolerance, function tolerance and a step tolerance of 10−6.

Optimization variables are shown in Table 5. Boundaries were set at 10%
and 200% of the preliminary design parameters, as optimized results out of the
defined boundaries are not suitable for the system design. It is theoretically
possible to design a very thick MB but reduced external diameter by setting
boundaries to 10%. The same principle can be applied to a solution close to
200% of the upper limit boundary. However, constraints take into consideration
the design variables, showing satisfactory solutions within the predefined limit
range. The selected optimization variables were selected due to their key role on
the dynamics and geometry of the resulting AMB.

Both methods were computationally fast with average computation times of
1.02 and 1.63 s for PS and GA, respectively. Table 4 shows design parameters
obtained by the preliminary design, GA and PS optimizations.

As it can be seen, the volume reduction is 35.48% for GA method and
34.35% when applying PS optimization method compared with the preliminary
design. PS solution gives a greater external diameter, a smaller bearing width
and around a 6% difference on the bearing stiffness constant, compared with
GA results. This proves that there are many possible local solutions with slight
variations on the design parameters, therefore the usage of GA compared to PS
for this specific purpose is recommended.

Optimization parameter boundaries and the optimized parameters are com-
pared in Table 5.

Figure 7 offers a visual representation of the optimization, where pole leg
length (h) and pole width (c) are displayed for PD, GA and PS. The background
is the resulting stack volume for all possible values of (h) and (c) within a
predefined range. A point located close to the yellow area would result in a great
stack volume, whilst a point situated around the dark blue area would result in
a reduced stack volume.



332 J. Betancor et al.

Table 4. Optimization results. Note that term ‘par.’ stands for ‘parameters’

Description Symbol Design par. GA PS

Inner diameter Di [mm] 55.99 58.82 69.96

Pole width c [mm] 10.99 12.41 17.98

Pole length h [mm] 30.5 17.48 19.04

AMB width b [mm] 10.73 9.5 6.56

Wire diameter Φwire
min [mm] 1.024 1.024 1.024

No. of turns N [turns] 259 210 209

Max. current Imax [A] 4 4.93 4.94

Stator diameter Dst [mm] 138.97 118.59 144.01

Max. force Fmax [N/pole] 117.21 117.21 117.21

Bearing stiffness Kx [N/m] 3.0155e5 2.9582e5 3.1187e5

Volume V [mm3] 1.63e5 1.05e5 1.07e5

Stack Volume (mm 3)
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Fig. 7. Optimization parameters. PD, GA and SP stands for preliminary design,
Genetic Algorithms and Pattern Search, respectively

Table 5. Optimum parameter values and corresponding boundaries

Design variable LB UB GA PS

Nturns 25.9 518 308.1 308.64

Imax[A] 0.49 9.88 4.95 4.94

c[mm] 1.10 21.99 9.6 4.01

hw[mm] 2.65 53.04 37.8 36.48
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4 Conclusion and Future Work

In this paper, a rotor dynamics informed optimization of AMB preliminary
design is described. An optimization is carried out with design constraints based
on the coil current, MMF, number of coil turns, winding interference and the
bearing force capacity. Optimization strategies applied are Genetic Algorithms
(GA) and Pattern Search (PS). Although the optimized designs are different,
both optimization methods show about 35% volume reduction compared with
the preliminary design with negligible computational cost. However, it is also
shown that GA is more adequate for this specific application because of its
global solutions.

Future work will involve an accurate representation of power losses and heat
dissipation, integration of the rotor and bearing dynamics in the optimization
process. Experimental validation will be performed in order to validate PD and
optimized designs.
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Abstract. The present paper presents experimental measurements of
rotordynamic force coefficients for a multistage arrangement of four iden-
tical brush seals. The bristles are metallic, with a lay angle of 50◦ from
radial centerline and have an initial radial interference with the shaft
of 0.12 mm. According to a radial feeding groove, two pairs of two seals
are tested face to face. The supply pressures are 0.54, 0.82, 1.1, 1.75
and 2.4 MPa, with a discharge pressure of 0.4 MPa. The working fluid is
water. The rotor is centered and the operating spinning speeds are 50,
3000 and 6000 rpm. For given working conditions (supply pressure and
rotor speed), a set of dynamic excitations (two directions and 8 frequen-
cies), imposed to the rotor, provide complex impedances that are used for
identifying rotordynamic force coefficients. Results are discussed in order
to highlight the respective impact of rotor speed and supply pressure on
brush seals performances.

Keywords: Brush seals · Rotordynamic force coefficients · Water

1 Introduction

Designing rotating shaft sealing device for turbomachinery purpose requires to
optimize leakage control but also rotordynamic performances. In many cases,
the straightforward solution is the use of a labyrinth seal, according to the vast
amount of data and successful applications associated to this kind of seals. Con-
sidering permanent increase of rotational speeds, working pressures and temper-
atures, brush seals have arised as an alternative solution for gas turbine engines,
turbopumps, gas compressors and steam generators [1–3]. As indicated in [4],
brush seals provide, compared to labyrinth seals, several advantages: leakage
can be lowered up to 50% (in addition to stable leakage characteristics over long
operating periods), permanent clearance is smaller or even zero (through bristles
flexibility that accommodate transient shaft excursions) and less axial space is
required. This space-saving property allows designers to arrange brush seals in a
c© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 60, pp. 335–346, 2019.
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row to obtain a multistage configuration [1,5,6]. Aslan-zada et al. [7] emphasis,
through a literature review, the obvious rotordynamic benefits from implement-
ing brush seals instead of conventional labyrinth seals in turbomachinery. In [9],
the authors state that the operating conditions to be considered in brush seal
design are: differential pressure, radial seal interference, inlet flow temperature,
type of fluid. They add that in the case of rotor excursions, cant angle (around
45◦) helps reduce the contact loads, allowing bristles to bend rather than buckle.
A coating on the rotor is also required in case of large radial excursions or ini-
tial preload of the bristles (negative clearance). For turbomachines of split-case
design, the segmentation of the seals is neeeded. This segmentation can affect
sealing performances but direct damping coefficients are increased [10]. Finally,
as indicated in [8], two methods are common to manufacture brush seals, con-
sisting in clamping vs welding the bristle pack. In this experimental work, the
rotordynamic force coefficients are identified for a multistage arrangement of
four identical brush seals. The results are presented for various inlet pressures
and shaft rotational speeds.

2 Test Facility

The test rig BALAFRE (BAnc LAmes Fluides à haut nombre de REynolds)
is dedicated to the identification of dynamic force coefficients of thin fluid film
components of high speed rotating machines. These components often use a
low viscosity process fluid as lubricant (in cryogenic applications for example).
Therefore, the flow in the thin fluid film exhibits high Reynolds numbers. In order
to reproduce experimentally these high Reynolds numbers regimes, the test rig
uses hot water as lubricant (temperatures limited to 50◦C), inlet pressure as
high as 4.5 MPa and tested components can have a nominal diameters up to
350 mm. These conditions lead to axial and circumferential Reynolds numbers
up to 105. The test rig is mainly composed of a test cell, an electric motor, a
hydraulic system (with pumps, tanks, filters and valves) and a Programmable
Logic Controller associated with DAQ device. A cross section view of the test cell
is shown in Fig. 1, where the tested component (an annular seal in the present
configuration) is overhung mounted at the left end of a rotating shaft 7 . The
rotor and the stator of the annular seal are respectively indicated as 1 and
2 . This design gives a great modularity to the test cell, where various kinds of

components have been mounted : seals, hydrostatic bearings and impellers.
The whole test rig is pressurized at 0.5 MPa. This means that an annular seal

can have a maximum pressure difference of 4 MPa between the upstream and the
downstream (discharge) chambers. The necessary flow rate (up to 120 m3/h) is
delivered by two centrifugal pumps driven by electrical motors whose total power
is 330 kW. The maximum shaft speed (6000 rpm) is obtained with a three-phase
asynchronous motor of 180 kW. A double conical hydrostatic thrust bearing is
located close to the test component. It has many roles: first it must guide the
rotation of the shaft and support the static axial load (which can reach as much
as 200 kN) generated by the 4 MPa pressure difference between the two faces of
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Fig. 1. Cross sectional view of the test cell - annular seal configuration

the annular seal. Its second role is to transmit the excitations imposed by the
8 piezoelectric actuators mounted four by four along two planes. The housing
of the bearing is linked to the frame via a hollow tube 6 designed to be very
stiff axially and flexible in the radial direction. The first natural frequency of
the bending mode of the shaft is 460 Hz; the two first natural frequencies of the
torsional modes are 14 Hz and 269 Hz. The double conical hydrostatic thrust
bearing is provided with 2× 6 recesses and orifice restrictors [11] and is fed with
water at 15 MPa. The average fluid film thickness in the two parts of the bearing
is about 40µm and the axial and radial stiffnesses1 are larger than 109 N/m. The
outlet flow from both the tested component and the double conical hydrostatic
thrust bearing is discharged in the test rig and then returns to a water tank of
5 m3 via several hoses and pipes. Dynamic displacements are applied to the rotor
by 8 piezoelectric shakers, mounted 4 by 4 in the forward and in the rear plane
of the double conical hybrid bearing. The maximum dynamic displacements are
±100µm with a frequency range from 20 to 200 Hz, corresponding to dynamic
loads of 20 kN per axis2. The housing 2 of the tested component is fixed on a
rigid part 3 which is mounted on the test rig’s frame 5 via three piezoelectric

1 The stiffnesses of the double conical hydrostatic thrust bearing are high contrary to
those of the tested component in order to lower the power of the shakers.

2 The power of the shakers is set to a percentage of their total power. Therefore, the
obtained amplitudes of displacements of the rotor depend on the direct stiffnesses
of the tested component.
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force transducers (Kistler 9167) 4 each one being able to measure three compo-
nents, in a range [−20 kN; 20 kN]. Their stiffnesses are respectively 4.6×109 N/m
and 1.67 × 109 N/m in directions Z and X, Y. For each axis, the proportional
error is ≤±1% and the hysteresis is ≤ 2%, both for the full scale output. The
three sensors constitute a force balance. The first natural frequency of the axial
mode of the stator assembly (housing and force sensors) is 280 Hz. The two first
natural frequencies of the bending mode are 370 Hz and 520 Hz. The housing is
equipped with 6 eddy current proximity probes (Bently Nevada 3300 XL 8 mm),
positioned three by three in the front and rear plane (for an annular seal or a
hydrostatic bearing). Their linearity error is ≤ 5%. These sensors measure the
relative displacements between the rotor and the housing. Therefore, the posi-
tion of the rotor center in the two planes as well as the radial clearance can be
deduced. Before each test, a dedicated part, having an outside diameter that
fits exactly the housing’s inside diameter, is used to calibrate simultaneously the
response (gain and offset) of the 6 displacement sensors. Misalignment of the
rotor can also be obtained knowing that the two measuring planes are equidis-
tant from the housing midplane. Three accelerometers are also mounted on the
housing enabling the measurement of its absolute movements.

3 Dynamic Coefficients Identification

The dynamic displacements of the rotor imposed by the shakers generate fluid
forces that the housing transmits to the piezoelectric force transducers (acting
like high stiffness springs). For lateral displacements of the rotor along X and Y
axes of the coordinate system defined in Fig. 1, the equations of the fundamental
principle of dynamics applied to the housing with respect to the center of the
component O are:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mẍ = −fx +
3∑

k=1

fbk
x

mÿ = −fy +
3∑

k=1

fbk
y

(1)

where f and fbk are respectively the fluid film forces and the forces mea-
sured by the kth sensor of the force balance while the subscript x and y denote
their directions. In order to evaluate the contribution of inertial forces in Eq. 1,
the assembly stator/force balance can be likened to a single degree of free-
dom spring (of stiffness K) - mass (M) system subjected to a harmonic force
f(t)) = f0sin(ωt). The equation of motion of this system is Mẍ + Kx = f(t)

and the solution is x(t) = f0
K

ω2
0

ω2
0−ω2 sin(ωt), where ω0 =

√
K
M is the natural fre-

quency of the system. According to the ratio Mẍ
Kx = Mω2

K , with M = 250 kg and
K = 3 ∗ 1.67 × 109 N/m, the contribution of inertial forces can be calculated in
respect of excitation frequency ω. As shown in Fig. 2, inertial forces represent
1.7% of the total measured forces at ω = 90 Hz and 3% at ω = 120 Hz.
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Fig. 2. Inertial forces contribution in the total measured forces in respect of excitation
frequency at ω

For an excitation frequency in the range 20 to 120 Hz, the accelerations of
the housing can be neglected [12], and Eq. 1 can be simplified as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fx =
3∑

k=1

fbk
x

fy =
3∑

k=1

fbk
y

(2)

Introducing the small perturbation hypothesis, fluid film forces can be
described by linear dynamic coefficients (stiffness K, damping C and added
mass M) or impedances Z. In the frequency domain (after applying the Fourier
transform), the fluid film forces and the displacements of the rotor are written
as follows: {

Fx = ZxxX + ZxyY

Fy = ZyxX + ZyyY
(3)

The unknown impedances Zxx, Zxy, Zyx and Zyy are found by using two
linearly independent excitations (denoted by the superscripts 1 and 2) consisting
in lateral vibrations obtained by successively exciting the piezoelectric shakers in
two orthogonal directions and with the same phase for the front and rear planes.
The impedances are computed by inverting the displacement matrix as follows:
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[
Zxx Zxy

Zyx Zyy

]

=
[
F 1

x F 2
x

F 1
y F 2

y

] [
X1 X2

Y 1 Y 2

]−1

(4)

The stiffness, damping and added mass matrices of coefficients are calculated
from the real and imaginary part of the corresponding impedances as follows:

{
Kij − Mijω

2 = � [Zij (ω)]
jωCij = � [Zij(ω)]

(5)

with [ij] = [xx;xy; yx; yy]. Equation 5 shows that in order to enable the
identification of constant dynamic coefficients3, the real part of the impedance
must describe a parabola and its imaginary part must describe a straight line. In
order to perform a curve fitting by the least square procedure, the impedances
are calculated for a significant number of excitation frequencies ω. Examples of
real and imaginary parts of the impedances used during the identification are
respectively shown in Figs. 3 and 4.

The uncertainties in Kij and Cij are respectively estimated to ±15% and
±30%.

Fig. 3. Curve fitting of impedance’s real parts for identification as a function of ω(Hz)
in abscissa - Ps = 1.1 MPa ; Ω = 50Hz

3 As the fluid is considered as incompressible, rotordynamic coefficients are indepen-
dent from the exciting frequency.
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Fig. 4. Curve fitting of impedance’s imaginary parts for identification as a function of
ω(Hz) in abscissa - Ps = 1.1 MPa ; Ω = 50 Hz

4 Tested Brush Seals

Figure 5 shows the stator assembly equipped with the four brush seals (two
arrangements of two identical brush seals). The fluid is introduced radially (no
preswirl [5,13]), in the middle of the four seals. The process fluid is water, having
an inlet temperature in the range 35 to 40.5◦C and an inlet pressure up to
2.4 MPa. The seals are in one part (not segmented) with a welded design. The
rotor is coated with a layer of chromium carbide. The mains seals properties are
listed above4:

– Manufacturing design: Welded
– Plates material: 304 L Stainless Steel
– Clearance at back plate: 0.53 mm
– Front plate diameter = Back plate diameter
– Bristle diameter: 0.07 mm
– Bristle material: HAY NES 25
– Radial shaft interference: c0 = 0.12 mm
– Bristle angle: 50◦ lg 5◦

– Bristle contact width: 2 mm
– Back plate width: 2.4 mm

4 For confidentiality purposes, the authors are not allowed to communicate the diam-
eter of the shaft.
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Fig. 5. Cross sectional view of the brush seals arrangement

5 Tests Conditions

All the tests have been operated with a centered position of the rotor. For each
rotor speed Ω, experimental data (displacements, forces, pressures, flowrates,
temperatures, torque) are recorded for steady-state static case and dynamic
excitations. The tests have been performed according to the following conditions:

– Rotor speed Ω: 50, 3000 and 6000 rpm,
– Excitations frequencies ω: 20, 30, 40, 50, 60, 70, 80 and 90 Hz,
– Water supply pressure Ps: 0.54, 0.82, 1.1, 1.75 and 2.4 MPa,
– No fluid preswirl.

Figure 6 shows the unwrapped form of the inlet diameter of the stator5, along
with the four seals and the instrumentation distribution:

– 6 displacement sensors (C11 to C23),
– 15 pressure taps (Pstat1 to Pstat15),
– 5 PT100 sensors (T1 to T5) 6,
– 3 in situ pressure sensors (Pdyn1 to Pdyn3).

5 Ω is the rotating direction and Θ is the circumferential coordinate according to X.
6 TB corresponds to plugged PT100 positions.
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Fig. 6. Unwrapped form of the instrumented stator

6 Results and Discussion

The present experimental dynamic coefficients are made nondimensional as fol-
lows [10]:

⎧
⎪⎪⎨

⎪⎪⎩

Dimensionless stiffness coefficients K∗
ij =

Kijc0
ΔPmaxLsD

Dimensionless damping coefficients C∗
ij =

Cijc0Ωmax

ΔPmaxLsD

(6)

where ΔPmax = 2.4 MPa is the maximum pressure differential between the
supply pressure and the discharge pressure, Ls is the sealing axial length, D is
the shaft diameter, Ωmax = 100 Hz is the maximum shaft speed.

Figure 7 illustrates the evolution of the direct (top) and cross-coupled (bot-
tom) stiffness coefficients versus ΔP , for various running speed. Direct stiffness
coefficients are always positive except for one case i.e. at maximum running
speed and minimum pressure differential, as for an annular seals [12]. Further-
more, direct stiffness coefficients are not sensitive to Ω but increase with δP ,
due to the phenomenon of pressure-stiffness coupling [9]. Cross-coupled stiffness
coefficients are theoretically higher at maximum shaft speed but, contrary to
conventional annular seals, their values decrease with increasing ΔP , indicat-
ing the bristle packs can contribute to reduce the tangential velocity. Figure 8
illustrates the evolution of the direct (top) and cross-coupled (bottom) damping
coefficients versus ΔP , for various running speed. It is interesting to note that
direct damping coefficients are always positive. As for annular seals, the direct-
damping coefficients are higher than the cross-coupled damping coefficient. Fur-
thermore, damping coefficients are generally not sensitive to rotor speed, except
cross-coupled damping coefficients for low differential pressure. As a final obser-
vation, present experimental stiffness and damping coefficients often satisfy
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theory: for small motion about a centered position, the matrices K, C and M
are skew-symmetric with equal entries on the main diagonal, i.e. Kxx = Kyy and
Kxy = −Kyx, etc.)

Fig. 7. Identified stiffness coefficients
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Fig. 8. Identified damping coefficients

7 Conclusion

Experimental results are presented for the direct and cross-coupled stiffness and
damping coefficients for a multistage arrangement of four identical brush seals.
Variable test parameters include pressure differential and shaft speed. Direct
stiffness is shown to have positive value, to increase with pressure differential and
to be almost the same at 3000 and 6000 rpm. Cross-coupled stiffness is generally
lower than direct stiffness and is quasi-unchanged by increasing the pressure
differential. Direct damping coefficients are always positive, softly dependent on
shaft speed and begin to decrease after a pressure differential of 0.7 MPa.
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Abstract. In this contribution, a kriging surrogate model was used to represent
a tilting-pad hydrodynamic bearing of a Francis hydropower unit. The rotating
machine is composed by a vertical shaft and three hydrodynamic bearings,
namely (i) a combined tilting-pad radial/thrust bearing, which is located close to
the generator; (ii) an intermediate radial tilting-pad bearing; (iii) and a cylin-
drical bearing located close to the Francis turbine. During the solution of the
equations of motion, it was verified that the bearings are critical regarding the
associated computational cost. Thus, the bearings were represented in the
hydropower unit model by using surrogate models. The kriging model dedicated
to the intermediate radial bearing is presented in this paper, in which the
equilibrium position of the shaft and the inlet oil temperature were used as input
values. The bearing supporting forces, maximum oil film pressure, and maxi-
mum oil film temperature were considered as output values. A thermohydrody-
namic model of the bearing was used to determine the output variables from the
input ones. Consequently, the kriging surrogate model was determined. The
obtained results demonstrate the effectiveness of the proposed approach.

Keywords: Kriging surrogate models � Rotordynamics
Hydrodynamic bearings � Francis hydropower unit

1 Introduction

Bearings are mechanical elements responsible for supporting rotating shafts, which can
be classified as axial or radial (thrust or guide bearings, respectively), depending on the
applied load direction. Regarding its geometry, they can have fixed or variable
geometries (cylindrical or tilting-pad bearings, respectively). According to the origin of
the supporting forces, they can be further classified as roller bearings, hydrodynamic,
or magnetic bearings. In hydropower units, hydrodynamic bearings are widely used
due to their load capabilities [1].

It is worth mentioning that the present work was developed under the R&D project
Robust Modeling for the Diagnosis of Defects in Generating Units (02476-3108/2016)
conducted by ANEEL (Brazilian Electric Energy Agency) with the financial support of
the companies CERAN, BAESA, ENERCAN, and Foz do Chapecó. In this case, a
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model-based approach was proposed aiming to detect incipient faults in a Francis
hydropower unit.

Monitoring techniques are commonly used to increase efficiency in detecting
hydraulic, electrical, and mechanical faults in hydropower units. Monitoring con-
tributes to reducing maintenance costs and provides safety operating conditions to
hydropower generation. However, widely used monitoring systems are not able to
detect damages that are not included in their knowledge basis. Consequently, model-
based approaches can be used to assist in fault detection for the cases in which con-
ventional monitoring systems cannot work satisfactorily. The mathematical simulation
of hydropower units is an indispensable resource for engineers, allowing a compre-
hensive understanding of the dynamic behavior of the system and the prediction of
undesired operating conditions. Thus, faults can be detected by solving a typical
inverse problem associated with the hydropower unit representative model. The
numerical results are compared with experimental vibration measurements. Faults are
detected when the model responses are similar to the experimental ones.

The considered Francis hydropower unit is composed by a vertical shaft, a gen-
erator unit, a Francis turbine, and three bearings, namely (i) a combined tilting-pad
radial/thrust bearing, which is located close to the generator; (ii) an intermediate radial
tilting-pad bearing; (iii) and a cylindrical bearing located close to the Francis turbine. In
this case, the shaft is modeled by using the finite element method. The generator is
represented by considering simplified mechanic and electric theories. Similarly, the
Francis turbine is mechanically modeled by a rigid disc and the applied hydraulic
forces were obtained from a CFD analysis. The bearings supporting forces are deter-
mined by using associated thermohydrodynamic models (THD models), in which the
Reynolds and energy equations are solved simultaneously by using the finite volume
approach.

The bearings THD models [2] combine the Reynolds and energy equations to
obtain the oil film pressure and temperature fields. Coupled differential equations must
be solved simultaneously, in which numerical procedures are required. An initial
temperature distribution is estimated, leading to a corresponding pressure field. The
obtained pressure is used to calculate a new temperature distribution, which is used to
update the oil viscosity and pressure. This procedure must be repeated until
convergence.

The proposed model-based fault detection methodology monitors the vibration
responses of the Francis hydropower unit in the time domain, by comparing numerical
and experimental data. Consequently, the bearings THD models should be solved at
each integration time step of the system finite element model. Additionally, possible
faults are detected through an optimization procedure. The resulting numerical pro-
cedure presents high computational cost, in which, approximately, 90% is associated
with the THD models. Thus, it is interesting to replace the bearing models by a faster
estimation procedure.

In this contribution, the response surface approach based on the kriging formalism
[3] was used to obtain a surrogate model dedicated to the intermediate tilting-pad
bearing of the Francis hydropower unit. The equilibrium position of the shaft and the
inlet oil temperature were used as input values. The bearing supporting forces, maxi-
mum oil film pressure, and maximum oil film temperature were considered as output
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values. Thus, the present work aims to demonstrate the efficiency of the obtained
kriging surrogate model to predict the behavior of a complex bearing.

Besides the focus of the present work is dedicated to the intermediate radial tilting-
pad bearing of a large-scale machinery, the proposed methodology can be applied in
other class of bearings and rotor sizes.

2 THD Bearing Model

In this section, the THD model of the intermediate tilting-pad bearing of the Francis
hydropower unit will be presented.

Mathematical models of hydrodynamic bearings are used to determine the pressure
distribution generated in the oil film, according to their geometric characteristics and
operational conditions. This is obtained by solving the so-called Reynolds equation,
derived from simplifications on the Navier-Stokes equation. Commonly, the oil film
temperature is considered constant. However, fractions of kinetic energy are dissipated
as heat due to the motion between the bearing parts. The oil temperature increases and,
consequently, the oil viscosity decreases. Aiming to develop more accurate hydrody-
namic bearing models [2], THD models were proposed. The thermal effects are con-
sidered by associating the energy equation to the Reynolds equation.

Figure 1 presents the schematic representation of a radial tilting-pad bearing, in
which Ω is the shaft rotational speed, R is the shaft radius, RS is pad radius, OP, OE, and
OS are the pivot rotational center, the shaft center, and the pad center, respectively, hS,
bS, and L is the thickness, the coverage angle, and the length of the pad, respectively, h0
is the bearing radial clearance, u is the angular position of the pivot, b is the pad
angular position, and a is the pad rotational angle relative to the pivot.

The THD model is formulated based on four reference frames (see Fig. 1). The first
one is placed at the center of the bearing; I (X, Y, Z) – the inertial system. The second

Fig. 1. Radial tilting-pad bearing physical model. (Adapted from [4])
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frame indicates the position of the j-th pad in the bearing; B (x, y, z) – auxiliary system.
Each pad has its own auxiliary mobile system; B′ (x′, y′, z′) – mobile system. The last
system follows the inner surface of the pad; B″ (x″, y″, z″) – curvilinear mobile system.

For tilting-pad bearings, the Reynolds equation is applied to each pad following the
procedure presented by [5]. Equation 1 presents the oil thickness as presented by [6].

hh bð Þ ¼ RS � R� sin bð Þ zr þ a RS þ hSð Þ½ � þ cos bð Þ xr þRS � R� h0ð Þf g ð1Þ

in which xr and zr are the center position in the inertial system frame I (X, Y, Z) at X and
Z directions, respectively.

Considering l0 as the reference oil viscosity at the oil inlet temperature T0, the
Reynolds equation for each pad of the tilting-pad bearing in its dimensionless form is
given by Eq. (2). This is a partial differential equation with no analytical solution, that
is numerically solved by using the finite volume approach [7–9]. Equation 3 illustrates
the dimensionless parameters of the Reynolds equation.
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where ph is the hydrodynamic pressure.
In order to determine the oil film temperature, the energy equation is applied by

considering that variations of the oil specific mass (q), thermal conductivity (kt), and
specific heat (cp) with respect to the temperature can be disregarded. It is assumed that
only the oil viscosity (l) is treated as a function of the temperature. Additionally, the
variation of the oil temperature along the y direction can be disregarded. Equation (4)
presents the energy equation and how the oil viscosity is expressed as a function of the
temperature.

350 A. De P. Dourado et al.



qcp u
@T
@x

þw
@T
@z

� �
¼ kt

@2T
@x2

þ @2T
@z2

� �
þ

2l
@u
@x

� �2

þ @w
@z

� �2
" #

� 2
3

@u
@x

þ @w
@z

� �2

þ @u
@z

þ @w
@x

� �2

þ @v
@z

� �2

þ @v
@x

� �2

l ¼ a exp
b

T þ 273; 15þ c

� �

ð4Þ

where u, v and w are the fluid velocities along the bearing x, y e z directions,
respectively, T is the oil film temperature and a, b, and c are constant coefficients
related to the oil type (considering for instance oil ISO VG 68, a = 7.582 � 10−8,
b = 3991, and c = 0.09499).

From the temperature field, the oil viscosity can be determined and, subsequently,
the pressure field is obtained. The temperature is recalculated and this iterative pro-
cedure continues until convergence. Finally, the supporting hydrodynamic forces
generated in each pad can be determined as shown in Eq. (5) (reference frame B″). In
tilting-pad bearings, the resulting moment in each pad must be null to achieve the
equilibrium position of the shaft. Equation (6) shows how the moment in each pad is
calculated.

Fxmj ¼
ZbS
0

ZL

0

phj x; yð Þ � cos bj
� � � dy � dx

Fzmj ¼
ZbS
0

ZL

0

phj x; yð Þ � sin bj
� � � dy � dx

ð5Þ

MRj ¼ Fxmj � RS þ hSð Þ ð6Þ

whereas Fxmj and Fzmj are the resulting supporting forces along the x″ e z″ directions of
the j-th pad, respectively.

After determining the supporting forces in each pad that satisfy the equilibrium
condition, the resulting bearing supporting forces, FX and FZ, along with the X and
Z directions, respectively, are calculated. These resulting supporting hydrodynamic
forces are calculated as shown in Eq. (7). Figure 2 brings a simplified flowchart of the
tilting-pad supporting forces estimation procedure. In this case, the Newton-Raphson
approach was used to determine the equilibrium position of the shaft.
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FX ¼
XN
j¼1

Fxmj � cos uj þ aj
� �� 	

FZ ¼
XN
j¼1

Fxmj � sin uj þ aj
� �� 	 ð7Þ

3 Kriging Meta-Modeling

In this section the mathematical concepts of the kriging formalism are presented fol-
lowing the procedures presented in [10, 11]. The general idea of meta-modeling is to
construct simple functions capable of estimating required values by means of sets of
input/output data previously generated in an experimental design. The main difference
between kriging formalism and other meta-modeling approaches relies on the
exploitation of spatial correlations between the function values to correct the average
behavior of the regression model. Next, the key aspects related to kriging formalism are
addressed focusing on the developed bearing meta-model.

The computer analysis codes are deterministic and, consequently, not subject to
measurement error since they get the same output for the same input. Hence, the usual

Fig. 2. Tilting-pad THD model flowchart
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measures of uncertainty derived from least-squares residuals have no obvious meaning
and some statisticians [12, 13] have argued to use it for a deterministic analysis [10].
Thus, [13] suggested modeling the deterministic computer response as given by
Eq. (8).

y xð Þ ¼ f xð ÞþZ xð Þ ð8Þ

where y(x) is the unknown function of interest, f(x) is a known polynomial function of
x, Z(x) is the realization of a normally distributed Gaussian random process with mean
zero, variance r2, and non-zero covariance [11].

The f(x) term in Eq. (8) is similar to the polynomial model in a response surface
and provides a global model of the design space, while, Z(x) creates localized devia-
tions so that the kriging model interpolates the sampled data points. The covariance
matrix of Z(x) is given as in Eq. (9).

Cov Z xi
� �

;Z xj
� �� 	 ¼ r2Rð½R(xi; xjÞ� ð9Þ

in which R is the correlation matrix, and R(xi,xj) is the correlation function between
any two of the ns sampled data points xi and xj. R is a symmetric matrix with ones
along the diagonal.

The correlation function R(xi,xj) is specified by the user. Table 1 illustrates some
commonly used correlation functions, whereas hk is the unknown correlation param-
eters used to fit the model, and the xik and x

j
k are the k-th components of sample points xi

and xj. In the present contribution, the linear correlation function was used in the
construction of the THD kriging meta-models. Predicted estimates, ŷ(x), at untried
values of x can be obtained as shown in Eq. (10).

ŷ ¼ b̂þ rTðxÞR� 1ðy� fb̂Þ ð10Þ

rT xð Þ ¼ R x; x1
� �

;R x; x2
� �

; . . .;R x; xnsð Þ� 	T ð11Þ

b̂ ¼ fTR�1f
� ��1

fTR�1y ð12Þ

in which y is the column vector of length ns containing the values of the response at
each sample point, f is a column vector of length ns, r

T(x) is the correlation vector of
length ns between an untried x and the sampled data points {x1, x2,…, xns} (given by
Eq. (11)), and b̂ is estimated by using Eq. (12).

It is worth mentioning that depending on the choice of the correlation function,
kriging meta-models can either provide an exact or inexact interpolation of the data.
Also, the second part of Eq. (8) (i.e. Z(x)) is used to model the deviation from f(x) so
that the whole model interpolates the experimental points of the design.

In order to validate the generated kriging meta-models, precision metrics were used
in this contribution, mainly a metric known as RMSE (Root Mean Square Error), and
the maximum absolute error (MAX) metric. RMSE is a metric of general precision of
the meta-model, while MAX provides a local precision metric. The lower the values of
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RMSE and MAX, the more accurate and representative the meta-models are. Equa-
tions (13) and (14) define the RMSE and MAX metrics, respectively.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPns
k¼1

yk � ŷkð Þ2

ns

vuuut ð13Þ

MAX ¼ max yk � ŷkj j k ¼ 1; . . .; ns ð14Þ

4 Numerical Results

In this section, the numerical results associated with the meta-model of the intermediate
tilting-pad bearing of the Francis hydropower unit will be discussed. All models used in
the present contribution were developed in Matlab® platform.

The construction of a kriging predictor (i.e. kriging meta-model) requires prelim-
inary choices of the regression order, the spatial correlation function, and the size and
type the experiment design. As mentioned, in the present contribution the linear cor-
relation model was adopted along with a rectangular grid design considering 313
samples. Additional 312 samples were also generated following a rectangular grid
design for the validation of the generated meta-models. Polynomials regressions of
order zero (i.e. f(x) = [1, …, 1]), first order (i.e. f(x) = [1, x1, …, xns]), and second
order (i.e. f(x) = [1, x1, …, xns, x1

2, …, x1xns, …, xnsx1, …, xns
2 ]) were evaluated.

The output variables of the bearing meta-model were the supporting forces (FX, see
Eq. (9)), the maximum temperature and maximum pressure in the oil film (Max. T and
Max. P in Tables 3 and 4, respectively), and the minimum oil film thickness (Min. h in
Tables 3 and 4). The considered input variables were the shaft position xr and yr (see
Fig. 1), the bearing radial clearance (h0), and the oil film restitution temperature (TR).
Table 2 presents the lower and upper bounds considered for rectangular grid design. It
is important to mention that the validation samples were also generated within the
bounds presented in Table 2.

It is worth mentioning that the intermediate tilting-pad bearing of the Francis
hydropower unit presents 6 pads, in which Ω = 300 RPM, R = 0.465 m, RS = 0.467
m, hS = 0.070 m, bS = 25°, L = 0.197 m, h0 = 200 lm, and u = 15°. Due to the

Table 1. Commonly used correlation models.

Correlation Model R(xi,xj)

Linear max 0; 1� hk xik � x jk
�� ��� 

Gaussian
exp �Pns

k¼1
hk xik � x jk
�� ��2� �

Exponential
exp �Pns

k¼1
hk xik � x jk
�� ��� �

Cubic 1� 3n2k þ 2n3k ; nk ¼ min 1; hk xik � x jk
�� ��� 
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associated computational cost of the THD model, only one pad of the bearing was
simulated (b = 0). However, this simulation was performed at the reference frame B (x,
y, z). Consequently, the obtained results can be addressed to the remaining pads by
applying a simple geometric transformation (the shaft position was imposed) and the
supporting forces represented in the inertial reference frame were obtained. This is
possible since the distance between the pads of the considered bearing is large enough
to guarantee the inlet oil in each pad presents the same temperature of the reservoir.

Tables 3 and 4 presents the RMSE and MAX metrics for the fitting procedure
samples, and for the validation analysis (i.e. considering the 312 additional samples),
respectively. Figure 3, 4, 5 and 6 illustrate the validation analysis results for each
output variable. It can be noticed that the generated meta-model obtained an exact
interpolation of the numerical data (i.e. RMSE and MAX practically null) in all con-
sidered regression orders. The best results were found for the second order regression
model, indicating that the most accurate kriging predictor in the scenarios considered in
this contribution is the second order with linear correlation kriging meta-model
(maximum RMSE value of 0.605 and a maximum error of 2.8, see Table 4).

Table 2. Considered intervals for the input variables.

Parameter Interval

xr (−270,218) [µm]
yr (−257,257) [µm]
h0 (200,300) [µm]
TR (30,45) [°C]

Table 3. Metric values for the fitting procedure.

Output RMSE MAX

Zero-order
FX [kN] 3.4 � 10−13 1.6 � 10−13

Max. T [°C] 3.6 � 10−13 1.6 � 10−13

Max. P [MPa] 3.5 � 10−14 1.6 � 10−14

Min. h [µm] 4.6 � 10−12 2 � 10−12

First order
FX [kN] 2.4 � 10−13 1.1 � 10−12

Max. T [°C] 1.7 � 10−13 8.5 � 10−13

Max. P [MPa] 2.4 � 10−14 1.1 � 10−13

Min. h [µm] 5.8 � 10−14 2.7 � 10−13

Second order
FX [kN] 1.4 � 10−13 5.6 � 10−13

Max. T [°C] 9.7 � 10−14 4.8 � 10−13

Max. P [MPa] 1.4 � 10−14 5.7 � 10−14

Min. h [µm] 5.3 � 10−14 2.2 � 10−14
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Table 4. Metric values for the validation analysis (considering the additional samples).

Output RMSE MAX

Zero-order
FX [kN] 1.44 7.83
Max. T [°C] 1.44 6.82
Max. P [MPa] 0.14 0.76
Min. h [µm] 15.7 67.2
First order
FX [kN] 1.00 5.16
Max. T [°C] 0.77 3.74
Max. P [MPa] 0.10 0.50
Min. h [µm] 0.21 0.77
Second order
FX [kN] 0.60 2.63
Max. T [°C] 0.50 2.80
Max. P [MPa] 0.06 0.26
Min. h [µm] 0.20 0.73

Fig. 3. Radial supporting force validation response.

Fig. 4. Maximum oil film temperature validation response.
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It is worth mentioning that despite been possible to observe relative high values of
maximum error in the validation analysis (7.83 kN and 6.82 °C; see Figs. 3, 4, and
Table 4) these errors are majorly observed for extreme values of force, temperature,
and pressure, whereas along the nominal operating condition of the hydropower unit
(i.e. around the median samples) no significant errors can be noticed, illustrating the
accuracy of the generated kriging meta-model.

5 Final Remarks

In this contribution, a surrogate model approach was evaluated for reducing compu-
tational cost associated with a mathematical model of a Francis hydropower unit. The
rotor is composed of a vertical rotor and three hydrodynamic bearings. However, only
the kriging meta-model of the intermediate tilting-pad bearing was presented in the
present contribution.

The intermediate guide bearing meta-model was capable of estimating the bearing
radial supporting forces and the oil film properties (i.e. maximum temperature and
pressure, and minimum thickness) by means of direct matrix operations without any
convergence procedure.

Fig. 5. Maximum oil film pressure validation response.

Fig. 6. Minimum oil film thickness validation response.

Kriging Surrogate Model Dedicated to a Tilting-Pad Journal Bearing 357



This is an important feature since the goal of the proposed approach was to reduce
the associated computational effort of the bearing model. It is worth mentioning that the
THD model of the mentioned bearing takes around 10 s to estimates the supporting
forces and corresponding pressure and temperature fields of the oil film. The same
results were obtained in 0.1 s by using the formulated kriging model. This demon-
strates the capability and significance of kriging meta-modeling for dynamic analysis of
generating units. Further contributions will encompass the effects of the correlation
models on the kriging estimator accuracy.
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Effect of Lubricant Supply Pressure on SFD
Performance: Ends Sealed with O-rings

and Piston Rings
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Abstract. A well-designed SFD must deliver enough damping to aid in
decreasing rotor amplitudes of motion. Piston rings (PRs) and O-rings (ORs) are
commonly used as end seals in dampers for commercial and military gas turbine
engines, respectively. The paper details dynamic load tests conducted on a short
length SFD (L/D = 0.2) sealed with either (a) PRs or (b) ORs and the experi-
mentally estimated damping and inertia force coefficients. Lubricant (ISO VG2)
flows thru one feedhole at the land middle plane with supply pressure increasing
from 0.7 bar(g) to 6.2 bar(g). In the PR-SFD, oil leaves the film land through
the rings’ abutted ends making a slit. The OR-SFD effectively seals any leakage;
hence, lubricant flows out through a discharge hole at a location halfway of the
film (upper) land length. Multiple sets of single frequency (10 Hz–100 Hz)
dynamic loads produced circular centered orbits with amplitude (r) equal to 30%
of the radial clearance. For both PR-SFD and OR-SFD, the viscous damping
coefficient diminishes quickly as the lubricant supply pressure drops below
3 bar(g). The added mass coefficient, on the other hand, remains nearly constant
for the PR-SFD and slightly increases for the OR-SFD. The OR-SFD delivers
*10% more viscous damping than the PR-SFD albeit it demands of a larger
flow rate. Analysis of the recorded film dynamic pressures shows their peak-
peak magnitude increases with whirl frequency. However, operation at the
lowest oil supply pressure, 0.7 bar(g), generates film peak pressures not
increasing as the excitation frequency rises, thus evidencing the presence of air
ingestion and entrapment, as vividly shown by recorded film dynamic pressure
waves, in particular for the PR-SFD.

Keywords: Squeeze film damper � Dynamic performance

Nomenclature
aa(t), (a=X,Y) Acceleration of bearing cartridge [m/s2]
c Nominal radial clearance [lm]
Cab, (a,b=X,Y) SFD damping coefficients [N�s/m]
D Journal diameter [m]
Fa(t), (a=X,Y) External applied dynamic load [N]
Hab, (a,b=X,Y) System complex dynamic stiffness [MN/m]
i

ffiffiffiffiffiffiffi�1
p

. Imaginary unit
Kab, (a,b=X,Y) SFD stiffness coefficients [N/m]
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KS Structural support stiffness [N/m]
L Film land length [m]
Mab, (a,b=X,Y) SFD added mass coefficients [kg]
MBC Bearing cartridge mass [kg]
P Dynamic pressure in film land [Pa]
Ps Static oil pressure at supply orifice [Pa(g)]
Res =(q/l)xc2. Squeeze film Reynolds number [-]
r Orbit amplitude [m]
t Time [s]
vs = rx. Squeeze film velocity [m/s]
X,Y Coordinate system
x(t), y(t) Displacement of BC respect to journal along X and Y axes [m]
q, l Oil density [kg/m3] and viscosity [Pa�s]
h Circumferential coordinate [rad]
x Excitation frequency [rad/s]

Vectors and Matrices
a(x) Vector of accelerations {aX(x), aY(x)}

T in frequency domain [m/s2]
K, C, M Matrices of stiffness, damping and added mass coefficients
F(x) Vector of dynamic loads {FX(x), FY(x)}

T in frequency domain [N]
H(x) K − x2M + ixC. Matrix of complex stiffnesss [N/m]
Z(x) Vector of bearing displacements {x(x), y(x)}

T relative to a journal [m]

Subscripts
BC Bearing cartridge
L Lubricated system
SFD Squeeze film damper
S Structure

Acronyms
OR O-ring
PR Piston ring
SFD Squeeze film damper

1 Introduction

Modern high performance turbomachinery demands high power density with proven
efficiency. Squeeze film dampers (SFDs) aid to reduce excessive rotor synchronous
vibration, to suppress non-synchronous instabilities, and to isolate a rotor from the
stator or housing. Thus, rotating machinery often implements SFDs to traverse safely
thru critical speeds and to reduce transmitted forces to the casing [1].

Figure 1 depicts a schematic view of a sealed ends SFD in series with a ball bearing
supported rotor. The annular gap between the bearing cartridge and the outer race of a
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ball bearing makes the lubricant film. An anti-rotation pin (dowel pin) or a centering
spring (squirrel cage) prevents rotation of the outer race. Rotor displacements squeeze
the lubricant film to generate a hydrodynamic pressure that produces a reaction
dynamic force [1].

The damping effect depends on the damper geometry, lubricant physical properties,
and operating conditions. Zeidan et al. [2] identify SFD operation with two distinct
types of fluid cavitation and a regime due to air ingestion and entrapment. Vapor
cavitation appears in tightly sealed ends SFDs when the film pressure reaches vapor
pressure. Air ingestion occurs in vented or not tightly sealed ends SFDs operating with
a high squeeze velocity and not supplied with sufficient lubricant to fill the clearance.

2 An Appraisal of Prior Work

Della Pietra and Adiletta [3] critically review the major findings in SFD research and
applications over a 40 year period, from 1960 to 2000. The paper, though offering
comprehensive information, applies mainly to academic research.

San Andrés [1] notes that dampers with end seals are preferred in aircraft engine
applications and centrifugal compressors as they provide substantial more damping
than with an open ends damper while requiring of little through flow. Thus dampers
with ends seals save both space and weight and reduce lubricant storage requirements,
for example. End seals differ in type, some being more effective than others are. Piston
rings and end plate seals apply to high temperature commercial aircraft engines,
whereas O-rings (with segmented beams) are more adequate for lightweight com-
pressors [4] and military air breathing engines. A piston ring is prone to distort the
squeeze film pressure field due to profuse leakage through its abutted ends (slit) and
also can cock and even lock preventing the damper to work effectively. O-rings pro-
duce very tight end seals but age quickly, are limited in their temperature capability,
often creep and eventually harden after long periods of operation.

Prior experiments producing a vis-à-vis comparison of performance for either a
SFD sealed with piston rings (PRs) or one with O-rings (ORs) is rather limited.
Miyachi et al. [5] find that as the oil supply pressure increases, the damping capability
for a PR-SFD nearly doubles when compared to that of an OR-SFD. The difference is

Fig. 1. Photograph and top view of SFD test rig with electromagnetic shakers and static loader.
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ascribed to additional (dry) frictional dissipation effects from the PR sidewalls.
Levesley and Holmes [6] report a PR-SFD has larger damping than a damper with
thigh end plate seals, likely due to the difference in flow conductance from the two
sealing arrangements.

Other work, summarized in Ref. [7] at the authors’ laboratory, produces a vast
amount of experimental data for a number of SFD configurations applicable to aircraft
engines, and aiming to verify predictive models and to optimize SFD design and
performance with stringent performance requirements. The test damper elements vary
in slenderness ratio (L/D), with distinct clearances (from small to large, c/D = 0.001 to
0.002), constructed with either a deep groove for oil delivery or with (one to three)
orifices for direct supply of oil into the film land. Other configurations include PR seals,
whose proper installation is crucial to ensure little leakage and large damping [8]. For
example, Jeung and San Andrés [9] find that a short length PR-SFD (L/D = 0.2)
produces damping (C) and inertia (M) coefficients that are one order of magnitude
larger than an open ends SFD of the same dimensions. The ratio of force coefficients,
sealed over open ends, is approximately *½ (D/L)2, 50% of a theoretical prediction.

More recently, San Andrés et al. [10] report comprehensive experimental results,
namely force coefficients and film dynamic pressure measurements, comparing the
performance of a PR-SFD to that of an OR-SFD, and advance a predictive SFD flow
model that departs from customary practice. This paper complements the early work
and presents more experimental results towards assessing the effect of lubricant supply
pressure (and flowrate) on the forced response of a SFD with two types of end seals,
piston rings and O-rings.

3 Description of Test Rig Facility, SFD Damper and Seals

Figure 2 depicts a photograph and a schematic top view of the SFD test rig consisting
of a bearing test stand, two orthogonally placed electromagnetic shakers (max.
2,450 N), and a hydraulic static loader located 45° away from the shakers. The shakers
connect to the bearing cartridge via slender stingers. The static loader pulls the bearing
cartridge to various static eccentric positions with respect to the journal fixed center.
Note the disposition of the coordinates (X, Y) and the angular coordinate (h) with origin
along the X axis.

The SFD test bearing consists of a rigid pedestal, journal base, support rods,
journal, and bearing cartridge (BC). The journal base bolts onto the pedestal that is
mounted to the table. Four elastic steel rods provide a structural stiffness KS = 1.6
MN/m and the BC has effective mass MBC = 15 kg.

The short length SFD (L/D = 0.2) has a film land length L = 25.4 mm, diameter
D = 127 mm, and a radial clearance c = 0.373 mm. Note the damper has a large
clearance (½D/c) * 170 as requested by the sponsor. Two end grooves, each with
width 2.5 mm and depth 3.8 mm, host either piston rings (PRs) or O-rings. The journal
end lips have a width equal to 3.3 mm. The journal has one feedhole (h = 45°) at the
film mid-plane (z = 0) with diameter /in of 2.5 mm. A hydraulic pump supplies a
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mineral oil to the journal film land thru the feedhole. The lubricant ISO VG2 has
density q = 820 kg/m3 and kinematic viscosity l = 2.57 cPoise at 23 °C. Both
physical properties are similar to those of a lubricant used in aircraft engines operating
at a high temperature (T * 200 °C).

Figure 3 shows photographs of (a) a PR and (b) an O-ring as well as schematic
views of the SFD with (c) PR sealed ends, and with (d) O-ring sealed ends. When
closed, the PR outer diameter contacts the ID of the BC. For the tests with PRs, each
piston ring slit (abutted ends) locates at h = 135°. Upon installation, the lubricant fluid
flows through the piston ring slit. The other sealed SFD uses multipurpose Buna-N O-
ring with an outer diameter of 120 mm and a thickness of 2.6 mm. Note that the
lubricant in the O-ring sealed ends SFD does not leak thru the axial sealed ends, but
discharges through an orifice hole of diameter 2.0 mm at h = 240º and z = ¼ L.

Figure 4 shows the recorded flow rate through the dampers versus supply pressure.
For an inlet pressure, *689 kPa, the flowrate thru the OR-SFD (19 cm3/s) is larger
than that for the PR-SFD (13 cm3/s). Note the OR-SFD demands more flow as the
lubricant is routed to a discharge orifice and return line. On the other hand, the PR-SFD
leaks mainly thru the PR-slit ends. See the insets for a depiction of both dampers.

Fig. 2. Photograph and top view of SFD test rig with electromagnetic shakers and static loader.
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Diameter: 120 mm
Thickness: 2.6 mm

Outer diameter: 127 mm
Thickness: 3.3 mm

(a) (b)

φ

φ O-rings

Lubricant

No leakage

Film

Discharge 
hole Orifice      
( =2 mm)

Journal

Steel spacer

Oil leakage 
(discharge)

Piston rings 
(OD: 133 mm 
W: 3.35 mm 
t: 2.3 mm)

Film

Bearing
cartridge (BC)

Journal

Lubricant

Leakage

Orifice 
( orifice=2.5 mm)

(d)(c)

7.9 mm
7.9 mm

Fig. 3. Photographs of end seals and schematic views of their installation: (a, c) piston rings,
and (b, d) O-rings.

Fig. 4. Lubricant flowrate (Qs) vs. oil supply pressure (Ps) for damper sealed with piston rings
or with O-ring seals. Lubricant supplies thru a feedhole at h = 45° at mid-plane (z = 0). For PR-
SFD, PR slits locate at h = 135°. For the OR-SFD, lubricant discharges thru a hole with diameter
2.0 mm at h = 225° and z = ¼L.
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4 Description of Tests with Periodic Loads and Identification
of Force Coefficients

For whirl circular orbit motions, the experiments include single-frequency dynamic load
excitations with amplitude F and frequency x over the frequency range 10–120 Hz, in
steps of 10 Hz. The test rig is modeled as a two degree of freedom mechanical system
and governed by the following equation of motion in the frequency domain

KL � x2ML þ ixCL
� �

ZðxÞ ¼ HLðxÞZðxÞ ¼ FðxÞ �MBCaðxÞ ð1Þ

where F(x), Z(x) = {x, y}T, are a(x) are vectors, with components along the X and
Y directions, of the discrete Fourier transforms of the recorded dynamic load, bearing
cartridge (BC) displacement relative to the journal, and BC acceleration, respectively.
Above H is the system complex dynamic stiffness; its real part, Re(HL) !
(KL − x2ML), yields the lubricated system stiffness (KL) and added mass (ML)
coefficients, whereas the imaginary part Im(HL) ! (xCL) yields the lubricated system
damping coefficients (CL).

Separate tests (without lubricant) produce the dry system structural force coeffi-
cients KS = 1.6 MN/m, MS = 1.9 kg, and CS = 0.65 kN.s/m. The dry system natural
frequency is xn = 51 Hz and the damping ratio (n) equals 0.06 and 0.08 along the
X and Y directions, respectively.

The SFD complex stiffness matrix HSFD follows by subtracting the dry system
complex stiffness (HS = KS − x2MS + ixCS) from the lubricated system complex
stiffness. That is HSFD = HL − HS.

Note that test SFD cross-coupled complex stiffness coefficients (HXY, HYX) are at
least one order of magnitude smaller than the direct coefficients (HXX, HYY). Due to
their smallness cross-coupled coefficients are not reported.

5 Experimental Results

5.1 Comparison of Identified Force Coefficients for PR-SFD and OR-SFD

This section presents the experimental results obtained from circular centered whirl
motions conducted with the sealed ends SFDs. The shakers exert single frequency
dynamic forces to produce circular orbit motions with amplitude r = 0.1c and
0.3c. During the tests, the lubricant supply pressure Ps ranges from 0.7 bar(g) to
6.2 bar(g). A decrease in supply pressure corresponds to a decrease in lubricant flow
rate, see Fig. 4. At the highest whirl frequency, the squeeze film Reynolds number
Res= (q/l)xc2 * 26.

For both dampers, with PRs or with OR, Fig. 5 shows the real and imaginary parts
of the lubricated system complex stiffnesses (HXX, HYY) for whirl orbits with r/c = 0.3
and operation at increasing oil supply pressure, 1.4 bar to 6.2 bar. The graphs include
the curve fit models with an excellent correlation to the test data. That is Re(H) ! K
−x2M and Ima(H) ! Cx are physically accurate. Test data for r = 0.1c are not shown
for brevity.
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For the PR sealed ends SFD, the intersection of Re(H)L at x = 0 delivers the
structure stiffness KS, whereas the OR-SFD produces a larger static stiffness, as noted in
the graph, due to the compliance of the O-rings. Both test SFDs produce a significant
added mass coefficient (M)SFD which lowers the lubricated system natural frequency to
24 Hz and 35 Hz for the PR-SFD and OR-SFD, respectively. Note that the oil supply
pressure (Ps) has little effect on both the lubricated system stiffness (KL) and inertia
coefficients (ML). Not so for the Ima(HL) which shows an increasing slope as Ps

increases.

(a)    Piston Ring sealed SFD  (b) O-ring sealed SFD

Fig. 5. Lubricated PR-SFD and OR-SFD: System real and imaginary parts of complex
stiffnesses (HXX, HYY)L vs. excitation frequency. Circular centered orbits with radius r/c = 0.3.
Lubricant supplies thru a feedhole at h = 45° with supply pressure Ps= 1.4, 3.5, and 6.2 bar(g).
PR slits locate at h = 135°.
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For centered whirl orbits with amplitude r/c = −0.3, Fig. 6 presents the identified
SFD direct damping (C) and added mass (M) coefficients for both test dampers as the
oil supply pressure (Ps) increases. The parameters shown are simple arithmetic aver-
ages of those coefficients along the X and Y directions. In the graphs, the bars denote
the experimental uncertainty.

For the PR-SFD, C increases 30% as Ps grows from 2.1 bar to 6.2 bar whereas
M remains nearly constant at *30 kg. For the OR-SFD, C increases *11% as Ps

increases whereas M decreases *13%. The added mass (M) for the OR-SFD is 16%
higher than that of the PR-SFD. In short, for Ps > 2 bar the OR-SFD produces slightly
more damping (11% more) than the PR-SFD since the O-rings provide a perfect seal
(no leakage). The PRs allow for leakage through its slits (abutted ends). Incidentally
(not shown), note the OR-SFD shows dissimilar damping coefficients, CXX 6¼ CYY,
likely due to the oil discharge hole locating at h = 240º (30º away from the Y-axis)
which produce a local pressure sink.

Note that the damping discussed above is only viscous; the OR-SFD would actually
produce *10% more damping with the addition of the damping coming from the
viscoelasticity of the O-rings; see [10] for more details.

Fig. 6. PR-SFD and OR-SFD: Direct damping (C) and added mass (M) coefficients vs. lubricant
supply pressure (gauge). Circular centered orbits with radius r/c = 0.3 and whirl frequency to
100 Hz. Lubricant supplies thru a feedhole at h = 45°. PR slits locate at h = 135°.
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5.2 Comparison of Recorded Film Pressures for PR-SFD and OR-SFD

In the experiments, two sets of three piezoelectric pressure sensors spaced apart by 90º,
record the dynamic pressure at the top, bottom, and mid sections of the damper film
land. Note that the pressure sensor tips are flushed with the inner surface of the bearing.

For operation with orbit radius r/c = 0.3, Fig. 7 displays the peak-to-peak dynamic
film pressure recorded at the land mid-plane (z = 0) and h = 225° versus whirl fre-
quency. In each graph, the data shows conditions with oil supply pressure increasing.
The measurements reveal that operation with a low supply pressure (0.7 bar) does not
produce a film peak pressure that increases with whirl frequency, as theory would
otherwise indicate. The results likely evidence air ingestion in the fluid film land for the
PR-SFD. Most notably, the OR-SFD does not produce as large peak pressures as the
PR-SFD does because its oil flow is routed through a discharge orifice close to the
location of pressure measurement. Nonetheless, recall the OR-SFD generates slightly
more damping than the PR-SFD. For both dampers, operation with Ps> 2.1 bar pro-
duces no changes in the film peak pressure as the excitation frequency increases.

For both dampers supplied with pressure Ps increasing from 0.7 bar to 6.2 bar,
Fig. 8 shows the dynamic pressure waves and film thickness for operation with a whirl
orbit of radius r/c = 0.3 and frequency x = 90 Hz. The squeeze film velocity vs =
rx = 63 mm/s. Each graph display three periods of whirl motion (T = 11 ms) recorded
at the land mid-plane and h = 225°. In the graphs, a horizontal dash line represents a
zero absolute pressure. Note that the position of the zero pressure is different for each
graph since the vertical-axis scale on the right side represents the dynamic pressure,
Pdynamic = P−Pstatic.

For both dampers, the film pressure waves recorded for oil delivered at a large
supply pressure, Ps = 3.5 bar and 6.2 bar, are almost the same, whereas the pressure

(a) Piston Ring sealed SFD                                           (b) O-ring sealed SFD

Fig. 7. Recorded peak-to-peak film dynamic pressures vs. whirl frequency for (a) PR-SFD and
(b) OR-SFD. Circular centered orbits with radius r = 0.3c. Operation with lubricant supplied at
pressure Ps= 0.7, 2.1, and 6.2 bar(g) thru one feed hole.
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profiles with a small supply pressure (Ps = 0.7 bar and 2.1 bar) generate a lesser peak-
to-peak pressure magnitude.

For operation with a low supply pressure (Ps = 2.5 bar), the PR-SFD shows the
generation of pressure waves with high frequency content throughout a whole period of
motion, the profiles are typical of air ingestion with bubble entrapment and collapsing.
Note that for Ps = 3.5 bar and 6.2 bar, the PR-SFD pressure profiles show a distinct
spike when the film thickness is decreasing. This sudden spike may be due to the large
leakage flowing as a jet thru the PR slits. Incidentally, this sudden spike in pressure
explains the overly large peak-peak film pressures recorded for the PR-SFD, see Fig. 7
(a). On the other hand, the OR-SFD pressures do not show evidence of either air
ingestion; the pressures recorded are cleaner than those measured in the PR-SFD.

Please refer to San Andrés et al. [10] for a comprehensive assessment of the
measurements conducted with both dampers, including a physically sound model for
the leakage flow thru the PR slits and comparisons to predictions which reproduce with
confidence the identified force coefficients. The work also correlates force coefficients
determined directly from force/displacement frequency domain functions (as in the
current paper) and estimations assuming the dynamic pressure field is invariant in a
rotating coordinate system. This last approach, long held as a typical behavior for
idealized SFDs, proves to be largely incorrect.

(a) Piston Ring sealed SFD  (b) O-ring sealed SFD

Fig. 8. Dynamic film pressures and film thickness recorded at mid-plane (z = 0 and h = 225°)
vs. time/T. PR and OR sealed ends dampers supplied with oil at Ps= (a) 0.7 (b) 2.1 (c) 3.5 and
(d) 6.2 bar. Circular orbit with frequency x = 90 Hz and r = 0.3c (vs= rx = 63 mm/s).
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6 Conclusions

The paper consolidates measurements of the dynamic forced response of a short length
SFD (L/D = 0.2) sealed with either piston rings (PRs) or with O-rings (ORs). In the
tests with ISO VG 2 lubricant, the supply pressure through one feed hole varies from
Ps = 0.7 bar(g) to 6.2 bar(g). Exerted single frequency loads produce circular centered
orbits with radius r = 0.3c. The parameter identification delivers force coefficients valid
over a frequency range (10–100 Hz). The maximum squeeze film velocity equals
vs = r = 90 mm/s. The major conclusions drawn are:

a. The damping coefficient C increases as the oil supply (Ps) increases from 2.1 bar(g)
to 6.2 bar(g). The added mass coefficient (M) is nearly constant at *30 kg.

b. For a large supply pressure (Ps > 2 bar(g)), the OR-SFD produces 11% more
viscous damping than the PR-SFD since the O-rings seal lubricant better than the
PR seals. Furthermore, the OR-SFD actually produces *10% more damping with
the addition of the elastomeric damping from the ORs.

c. For low oil supply pressure Ps * 0.7 bar(g) and operation with orbit radius
r = 0.3c, the film peak-to-peak pressure does not increase with whirl frequency. The
PR-SFD shows strong air ingestion thru the slit made by the piston rings abutted
ends. Analysis of the dynamic pressure profiles reveals the PR-SFD shows unique
features that include air ingestion and entrapment, and including sudden bursts of
pressure at particular instances of the whirl motion.

San Andrés et al. [10] present more detailed measurements and predictions for
comparison of SFDs operating with two distinctive end seal types, PRs and ORs.
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Abstract. The experimental development of the Smart Electro-Magnetic Actu-
ator Journal Integrated Bearing (SEMAJIB) is presented in this paper.
The SEMAJIB is a smart high performance integrated bearing that combines a
fluid film bearing (FFB) with an electro-magnetic actuator (EMA) in one inte-
grated device. In all cases, the fluid film bearing shall carry the load, whereas the
electro-magnetic actuator can be used as a pure controller or both as a controller
and a load carrying element. In the latter case the electro-magnetic actuator can be
considered as an active magnetic bearing (AMB). This paper summarizes the
development of the SEMAJIB as a compact integrated bearing. It is shown that the
SEMAJIB can easily transgress the multiple critical speeds of the 2-inch labora-
tory rotor, as well as suppress not only the first mode oil whip, but also the second
mode oil whip, and additionally can control the rotor unbalance. The use of PD,
H∞ and Fuzzy Logic control to control the SEMAJIB is presented and compared.
It is shown that the SEMAJIB is a high performance bearing that is versatile and
can replace tilting-pad bearings in high performance rotating machinery.

1 Introduction

Fluid Film Bearings (FFBs) and Active Magnetic Bearings (AMBs) are competing
devices in the marketplace. FFBs, in particular Journal Bearings (JBs), are superior
load carrying elements due to their larger load carrying capacity and their ability to
introduce passive damping to the rotor system. However, JBs exhibit an unstable
vibration at high speed, called oil whip, which is excited when the rotor speed reaches
about twice the first critical speed. This instability limits the possibility of increasing
the rotor speed of rotation.

AMBs, on the other hand, provide contactless rotor support, at high speeds and are
free from whip instabilities. They have an added feature which is their capabilities as
controlling elements. AMBs can provide variable and controllable stiffness and
damping and additionally can provide unbalance control and many other control fea-
tures. However, AMBs suffer from certain shortcomings. In particular reliability issues
are always a concern for AMB designers. In fact, AMBs are always designed with a
redundant bearing system, called a “backup bearing”, such that the backup bearing
carries the rotor in case of AMB failure.

This paper presents the SEMAJIB [1, 2], a smart high performance integrated
bearing that combines a fluid film bearing (FFB) with an electro-magnetic actuator
(EMA) in one integrated device. In all cases, the fluid film bearing shall carry the load,
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whereas the electro-magnetic actuator can be used as a pure controller or both as a
controller and a load carrying element. In the latter case the electro-magnetic actuator
can be considered as an active magnetic bearing (AMB).

The integration of AMBs and JBs in one device has clear advantages.
The SEMAJIB has all of the advantages of JBs and AMBs, and avoids all of the
shortcomings of AMBs and JBs. The SEMAJIB is a superior load carrying element due
to its larger load carrying capacity and its ability to introduce passive damping to the
rotor system. Moreover, it is free from whip instabilities and has capabilities as a
controller. A SEMAJIB can provide variable and controllable stiffness and damping
and additionally can provide unbalance control and many other control features. Most
importantly, there is no need for a backup bearing as the rotor is carried on the JB in all
cases.

The author and his students have developed and published many papers describing
the development of the SEMAJIB. In [3] controlling oil whip using the SEMAJIB
through multiple algorithms is discussed. It is shown that damping control is an
effective method for controlling the SEMAJIB [3]. Instability control and unbalance
control using the SEMAJIB are introduced in [4]. An important contribution which
shows that oil does not adversely affect the performance of AMBs is presented in [5].
In fact it is shown that oil in an AMB actually provides some minor improvements in
AMB performance. The testing of a rotor on one SEMAJIB and one rolling element
bearing using PID control is introduced in [6], while fuzzy logic control to the
SEMAJIB is introduced in [7], and H∞ control to the SEMAJIB is introduced in [8]
and includes discussion of load sharing between the AMB and the JB. Testing of a
rotor on two SEMAJIB bearings and the ability to transgress the oil whip instability for
the first mode and the second mode by applying PD control is discussed in [9]. In fact
this work [9] is a clear indication of the success of the SEMAJIB. It shows that the
SEMAJIB can carry a high load rotor at high speeds and with ability to control multiple
instabilities.

In all of the above experiments an off-the-shelf programmable controller is used.
The control algorithms discussed in the previous paragraph were all implemented
experimentally, and were quite successful. The choice of the control algorithm is a
matter of choice for each application. In many cases, it is important to instruct the
magnetic bearing not to interfere with the load carrying by the JB. In fact the H∞
controller [8] actually tends to carry some of the load on the AMB, while the PD
controller tends to act as a controller only. The problem is that the AMB likes to center
the rotor, while the JB tends to move the rotor center downwards and sideways. These
two competing devices need a controller designed to carry the load on the JB and keep
all the AMB power for control. Only in special circumstances (like relocating reso-
nances) should the AMB be allowed to carry the load.

In this paper, the author summarizes the development of the SEMAJIB, and pre-
sents new data on unbalance control. In the design of the SEMAJIB, the AMB is
designed to be able to carry the static load. However, the load is carried by the JB, so
actually the AMB is quite a sizable controller. It thus can sustain large unbalance forces
(even at resonance). Moreover, the concept of a smart bearing is emphasized, where the
bearing can correct malfunctions in a machine, thus increasing availability and relia-
bility of machines.
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2 Effect of Oil on Magnetic Bearing

The first issue that the author had to address while developing the SEMAJIB is the effect
of oil on the AMB. The SEMAJIB is designed to have oil flood the AMB, contrary to
current technology of oil free AMBs. The author and his students [5] developed a Finite
Element Method (FEM) program that describes the AMBwithin the SEMAJIB and have
replaced air in the gap by oil. The basic FEM model is shown in Fig. 1.

A test rig was devised to examine the effect of oil on the AMB. The details of the
test rig can be found in [5]; however the most important result is shown in Fig. 2. The
magnetic forces generated by an input current are plotted for various gaps. Figure 2
shows that for a gap of 0.6 mm there is an excellent match between the performance of
the AMB with an air gap and an oil gap, both experimentally and by the FEM model.
There is a minor deviation at high currents that was seen experimentally (probably due

Fig. 1. FEM model of the AMB within the SEMAJIB [5]

Fig. 2. Magnetic forces at 0.6 mm gap [5]
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to thermal effects), however this is a positive deviation, meaning with oil; the AMB
produces more force for a given current.

3 Initial Simulations

The initial simulations of applying the SEMAJIB on a Jeffcott rotor were developed in
[3]. The results illustrated using three different controllers to control the oil whip
instability generated by the JB. Three controllers were developed: Cross displacement,
force and damping control [3]. The results are shown in Fig. 3 and summarized in
Table 1.

The results clearly indicate the success of the AMB in controlling the oil whip
instability. Moreover, it was concluded the introducing damping by the AMB is quite
effective, thus a PD controller would be appropriate for this application.

Fig. 3. Orbits at center of jeffcott rotor [3]

Table 1. Reduction in orbit sizes [3]

Feedback Journal amplitude % reduction Center disc amplitude % reduction

Uncontrolled 0.62 - 2.67 -
Cross-displacement 0.11 82 0.33 88
Force 0.05 92 0.29 89
Damping 0.002 99 0.26 90
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4 Experimental Results: Instability Control

A test rig was developed at Cairo University to test the SEMAJIB. It consisted of
50 mm diameter, 1.7 m long shaft, with 4 discs and mounted on a SEMAJIB [6] (see
Figs. 4 and 5).

Fig. 4. Test rig used in testing the SEMAJIB [6]

Fig. 5. SEMAJIB used in testing [6]

376 A. El-Shafei



An elaborate testing scheme is described in [6] for the test brig and for the
SEMAJIB. The main purpose of the testing was to determine the capability of the
AMB to control the JB instability. Figure 6 shows the waterfall diagram showing the
run-up of the test rig. The 1x component increases at the critical speed and decreases
thereafter, while the oil whip component appears when the oil whirl component reaches
the critical speed and locks at the whip frequency. A PD controller was then used with
the AMB within the SEMAJIB, and the results are shown in the waterfall of Fig. 7,
where the oil whip instability was eliminated. Figure 8 shows the spectrum at the

Fig. 6. Waterfall diagram showing oil whip instability [6]

Fig. 7. Waterfall diagram with SEMAJIB showing the elimination of the oil whip instability [6]
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operating speed with and without control. It is clear that the PD controller was able to
control the oil whip instability and provide a stable bearing.

It is thus concluded that the SEMAJIB is a stable bearing that can transgress critical
speeds and is an instability free bearing, due to the controller capabilities of the AMB.

It was suggested that actually high speed rotating machinery may actually
encounter higher mode instabilities. Three controllers were developed PD control,
Fuzzy Logic (FL) control and H∞ control. All three controllers were applied experi-
mentally [7–9] and were quite successful. Figure 9 shows the application of the 3
controllers on the test rig in eliminating the first mode instability, while Fig. 10 shows
the application of the 3 controllers to eliminate second mode instability [9].

Fig. 8. Spectrum showing the elimination of oil whip instability [6]

Fig. 9. Comparison of controllers for first mode oil whip control [9]
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Table 2 shows the average reduction by the 3 controllers. It is clear that the H∞
controller [8] is the lesser of the three in controlling the instability, since it tends to
provide stiffness. This is evident in Fig. 10 where the H∞ controller was able to move
the critical speed by about 600 rpm.

5 Unbalance Control

In order to realize the full potential of the SEMAJIB, as a smart bearing that can
actually fix the machine, further experiments on the application of unbalance control on
the test rig. Both single-plane and two-plane balancing were performed. The results
were quite impressive, see Fig. 11.

Even though this test rig was severely unbalanced yet the unbalance control was
quite impressive reaching between 70% to 95% 1x amplitude reduction. This is
attainable because the AMB has extra capacity and is not carrying any static load, thus
freeing the AMB to provide the necessary control actions.

Similar results were obtained for 2-plane unbalance control.

Fig. 10. Comparison of controllers for second mode oil whip control [9]

Table 2. Average reduction by SEMAJIB controller

% reduction PD FL H∞

First mode instability 94 93 82
Second mode instability 90 86 56
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6 Application to an Industrial Compressor

The SEMAJIB is implemented to an industrial compressor in order to investigate its
effectiveness in eliminating the JB instability and considerably increasing the speed
range of operation. The industrial compressor illustrated in Fig. 11 is modeled using
finite element as shown in Fig. 12. The rotor which is operating at a speed of 3500 rpm
has an axial length is 1.7 m and a total mass of 471 kg. The rotor finite element model

Fig. 11. Unbalance control with a SEMAJIB

Fig. 12. Industrial compressor configuration
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consists of 28 key points, where the bearings are located at key points 6, and 16. The
impeller mass and inertia are added to the shaft at key point 26 (see Fig. 13).

The industrial rotor stability is investigated when supported on JB only. Two JBs are
designed depending on the bearing load and shaft diameter. The designed JB parameters
having a coefficient of viscosity ‘l’ of 0.014 Ns/m2 are listed in Tables 3 [4].

By solving the rotor eigen value problem and observing Figs. 14 and 15, the rotor
critical speeds are found to be 3538, 21714, 46400 rpm. While, the rotor stability limit
is 6300 rpm [4].

Fig. 13. Finite element model

Table 3. Rotor JB parameters [4]

Parameters B1 B2

Shaft diameter D (mm) 50 89
Bearing load W (N) 340 4280
Bearing clearance c (lm) 100 175
Bearing axial length L (mm) 30 53

Fig. 14. Rotor supported on JB campbell diagram

SEMAJIB: A Versatile High Performance Smart Bearing 381



It is required to investigate whether a SEMAJIB can increase the stability limit to
operate the compressor at 10,000 rpm. In order to stabilize the rotor over the desired
speed range two SEMAJIB have been designed [4].

By the solving the rotor eigen value problem and observing Figs. 16 and 17, it is
clear that the SEMAJIB is capable of increasing the range of stable operation above the
plotted range of 50,000 rpm. The rotor critical speeds are 3350, 20255, and 40700 rpm.

Clearly the SEMAJIB is successful in stabilizing this compressor in the 10,000 rpm
speed range.

Fig. 15. Rotor supported on JB stability map

Fig. 16. Campbell diagram with SEMAJIB
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7 Smart Bearing Concept

Figure 18 shows a block diagram of the SEMAJIB system. The rotor is subjected to
external forces Fext, however the rotor states x and x′ affect the JB which in turn
provide a bearing force Fb that is added to the magnetic bearing force Fm. The feedback
states x and x′ are electronically directed to a programmable controller that provides a
current through a power amplifier to the AMB thus producing the magnetic force Fm.

This is inherent in an AMB system, however in an AMB there is limited control
action, since most of the AMB work is to carry the static load. For a SEMAJIB, the
static load is carried by the JB, leaving the AMB to act as an EMA. This allows the
SEMAJIB to really act as a smart bearing.

Fig. 17. Stability map with SEMAJIB

Fig. 18. SEMAJIB feedback system
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In fact, if Fext in Fig. 18 is considered as an unbalance, then the SEMAJIB acts to
control the unbalance, which has been shown earlier in this paper. If however Fext is a
misalignment then the SEMAJIB acts to control misalignment, if it is looseness then
the SEMAJIB acts to control looseness. This is possible because of the unique spectral
maps of each of these faults, and the AMB within the SEMAJIB that acts as an EMA
with abundant capacity. In fact, it is envisioned that the smart bearing concept can be
used to extend the current condition-based maintenance (CBM) strategy to include
smart condition based corrective maintenance (SCBCM).

8 Conclusions

The SEMAJIB is introduced as a high performance versatile smart bearing. Clearly the
experimentation presented herein illustrate the following points:

• The SEMAJIB is free from instabilities
• The SEMAJIB has a high unbalance control capacity

It is also shown here that the SEMAJIB is capable to aid machines that have a
stability limit, to perform beyond the stability limit. The industrial compressor that had
a stability limit of 6300 rpm was shown to be stable to 50,000 rpm on SEMAJIB
bearings.

Conceptually the SEMAJIB can provide much more, since with the use of feedback
control, it is possible to act as a smart bearing identifying the problems, and providing
control actions. This means that if an anomaly is identified in a machine supported by
the SEMAJIB, it is possible to provide a control action through feedback that would fix
the machine. This is possible because the AMB is free from load carrying, and acts
only as an EMA. Thus it is possible to correct not only unbalance, but also
misalignment and looseness which are common machine faults.

The net result is the improved availability and reliability of machines.
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Abstract. Rotor shaft position measurement is an important part of the
algorithm performance in the active magnetic bearing control. The shaft
centerline is estimated based on the measurement of the shaft surface dis-
tance to the sensor position. When the shaft surface has a large curvature,
the measurement needs to be corrected in order to eliminate geometric
correlations between measurements in the two axes. Such correlations
have an impact on the control algorithm performance. The objective of
this work is to propose a geometric model to estimate a more accurate
position of the shaft centerline, considering also possible deviations of the
sensor alignment. Corrections were applied to a control algorithm in an
experimental active magnetic bearing workbench, showing an improve-
ment of the control performance based on average distance to operation
center criterion.

Keywords: Active magnetic bearing · Measurement correction
Inductive sensor

1 Introduction

Control algorithms used in Active Magnetic Bearings (AMB) are often imple-
mented based on the shaft position behavior regarding its center of mass and
centerline. The information needed to execute the control loop is acquired
through displacement sensors. Since the performance of AMB systems are
directly affected by the quality of sensor signals, some setups may require addi-
tional algorithms to compensate for unwanted signal contents, such as roundness,
unbalance or misalignment [1].

Distance measurements of round spinning objects are also a problem since
the angular velocity may impact in radial and axial error motion of the spindle
as stated in [2]. The angular position is also a problem as showed in [3]. Several
methods has been proposed to deal with those problem like the Reversal Method
introduced in [3] and an approach proposed in [4] resulting in the so called
Improved Reversal Method.
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Since the sensors readings are used in AMB control algorithms to determine
the rotor shaft position and the shaft is a round object, they have a large impact
on those control algorithms.

In addition, the shaft curvature may induce a correlation between both shaft
position coordinates. Note that a pure vertical movement in the shaft will pro-
duce a variation in the horizontal distante to the sensor due to the shaft curvature
and vice-versa.

Corrections for cylindrical objects have already been successfully imple-
mented using capacitive displacement sensors [5]. Such approach require the
choice of a proper calibration factor based on the problem requirements, but non-
linearity become an issue when the cylindrical artifact is eccentric with respect
to an axis of rotation.

Inductive linear displacement sensors are commonly used as the default choice
for AMB systems [6,7]. Due to its flexibility, robustness, and compact construc-
tion, the inductive linear displacement sensors are ideal for numerous industrial
applications [8].

The purpose of this work intends to propose an algorithm that is able to
correct the distorted sensors readings inside the control loop. Our main concern
is the impact of the correlation between the systems coordinates in the system
performance. Other corrections based on the shaft angular velocity and angular
position will be addressed in future works.

Since the AMB control algorithm will run in a simple computational plat-
form there are complexities constraints to be addressed. In addition, one more
correction will be added to account for setups with non-centered sensors. Such
characteristic will allow to modify the desired rotor shaft center position without
changing the sensor position.

The paper is organized as follow. In Sect. 2 a geometric model to deal which
measures corrections is presented. The impact in the AMB control performance
is studied using an experimental active magnetic bearing workbench described in
Sect. 3. The proposed method was implemented on that workbench and compar-
ative results are presented in Sect. 4. In Sect. 5 the computational performance
of the proposed algorithm is discussed and Sect. 6 summarized the conclusions.

2 The Proposed Geometric Model

The geometric model here proposed is based on the following assumptions:

– The rotor shaft is a cylindrical object with ratio R;
– The sensors measures the distance from the axis surface in relation to the

center of its measurement area;
– The center position of the rotor shaft coincides with the center of the stator;
– The sensors misalignment distances are known since there are part of the

system design.

Figure 1 graphically represents a transversal cut of the rotor shaft in the
position in which the sensors were installed. The dash circle represent the rotor
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Fig. 1. Geometric model for coordinate corrections.

shaft in its desired position (center of the AMB) while the normal circle represent
an arbitrary rotor shaft position while functioning.

Variables X ′
0 and Y ′

0 represent the respective sensor readings when rotor shaft
is at the desired position, while variables X ′ and Y ′ represent sensor’s readings
for an arbitrary rotor shaft position. Variable e describes the sensor’s location
with respect to the desired rotor shat position O which is identified through
sensor’s readings X0 and Y0.

Let P(i) represent the two-dimensional position vector of point i. Thus define

P0 =
(

X0

Y0

)
= PA + e;

e =
(

ex

ey

)
;

εerr =
(

Xerr

Yerr

)
;

PC =
(

X ′

Y0 − ey

)

PD =
(

X0 − ex

Y ′

)

As it can be seen, PB = P0 + εerr and X ′ and Y ′ are sensor distance
measurements for the actual cylinder (centered at PB). Next, we would like to
write an expression for εerr in terms of known data. For that, define the point Pm
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as the mid-point between PC and PD, and n as the counter-clockwise normal
to the segment CD. Therefore, there exists a real number sB such that

PB = Pm + sBn,

and

‖PB − PC‖2 = R2.

After some algebraic manipulation it is possible to obtain

sB = ±1
2

√
4R2 − (μ2 + ν2)

where
ν = X ′ − X0 + ex

and
μ = Y ′ − Y0 + ey;

The sign of sB can be taken as positive provided the sum εerr+e is sufficiently
small. For instance, it is enough to require

‖εerr + e‖ < R.

Recalling that εerr = PB − P0, one can get

εerr =
1
2

⎛
⎝X ′ − X0 − ex − ν

√
4R2−(ν2+μ2)

ν2+μ2

Y ′ − Y0 − ey − μ
√

4R2−(ν2+μ2)
ν2+μ2

⎞
⎠ (1)

Equation 1 allow us to determine a correction in the real coordinates from
the respective sensor readings in any moment. When the rotor shaft is perfectly
aligned at the desired center position no other corrections will be necessary since
the sensors alignment errors are already considered at that position.

If such alignment can not be achieved the corrections will vary based on the
shaft angular position. Since the algorithm setup is determined for a specific fixed
shaft angular position the corrections impact could not be as good as expected.

The desired shaft position is set to (X0, Y0) coordinates, which are the respec-
tive setpoints of each control loop.

3 Workbench Description

The impact of the correction algorithm in the system performance was evaluated
experimentally. A workbench was constructed in the LAboratory of Robotics and
Control (LARC) in order to teach tuning technics for PID controller devices.
The workbench schematic is shown in Fig. 2.

A three-phase motor with nominal speed of 1800 rpm controlled by a fre-
quency inverter provides the rotational torque to the shaft. The shaft is made of
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Fig. 2. Workbench schematic consisting in two Active Magnetic Bearings

steel with a 18 mm diameter. It is sustained for safety reasons by a touch-down
bearing with a 0.5 mm gap. Two AMBs with a 1 mm air gap will balance the
rotor shaft once the system is energized.

The inductive displacement sensors with a sensing range of 0 mm to 4 mm
were placed 145 mm from the second AMB. A configurable mass disk was placed
at the shaft end.

Hardware controller consists of a Printed Circuit Board (PCB) designed to
interface the control system inputs and outputs and an Arduino UNO platform.
The PCB was designed as an expansion shield for the Arduino UNO board. The
electric schematic of that PCB is shown in Fig. 3.

Fig. 3. Electric schematic of the custom PCB.

The coils control part is driven by a PWM signal produced by the Arduino
UNO and feeds each of the 4 coils, 2 for each magnetic bearing. The inductive
sensors output signal ranges proportionally from 0 V to 10 V and, since the
Arduino UNO inputs maximum voltage is about 5 V, only the first half of the
scale was actually used. Then the sensor interface protects the Arduino UNO
pins from any voltage greater than 5 V.

The inductive sensors were placed mechanically for a useful range from 0 mm
to 2 mm which is enough to cover the shaft displacement in every direction. Note
that the AMB gap is 0.5 mm.
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As an educational workbench for tuning PID controllers a serial interface was
designed based on Simulink from MATLAB. Even when the control algorithm is
running entirely in the Arduino UNO, data exchange is necessary to implement
the desired functionality. Using the MATLAB Real-Time Windows Target kernel
to interface with the operating system allows a “simulated real-time” execution.
The Simulink Desktop Real-Time kernel assigns the highest priority of execution
to our real-time executable, which allows it to run without interference at the
selected sample rate [9].

Setpoints and PID controller parameters are send to the Arduino UNO while
sensors readings are received from it. The sample rate for the sensors readings
was 500 Hz, which corresponds to the control loop execution time in the Arduino
UNO. Setpoints and PID parameters were sent every 10 s since there is no need
to change those parameters at higher rates. It also contributes to satisfy control
algorithm execution time, which must be less than the selected sample time. A
flow chart of the control algorithm is shown in Fig. 4.

Fig. 4. Flow chart of the control algorithm.

A NI DAQ USB-6009 connected to the sensors interface in the PCB was also
used for data validation purposes. The entire workbench is shown in Fig. 5.

4 Experimental Results

The control algorithm was implemented on the Arduino UNO platform. The
chosen sample rate was 500 Hz which correspond to a sample period of 2 ms. The
PWM base frequency was set at 3900 Hz. A bias was also established in order
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Fig. 5. Picture of the workbench used for testing the correction algorithm.

to pre-magnetize the AMBs. The value initially chosen for that bias was 50 %
of the voltage scale and there is a 5 ms of delay for the pre-magnet stabilization.
All other constants like shaft misalignment with respect to sensors installation
(vector e).

Following the initialization of all those parameters, the algorithm will wait
for a message containing setpoints and PIDs parameters. Once it received all
information, it will start running at the specified sample rate.

The sensors readings are filtered and then used to estimate the center position
of the rotor shaft. With those coordinates, the setpoints errors for both axis are
determined. A PID with derivative filter was implemented for both axis. For
simplicity, and since we have only one measuring point, the same control actions
were applied to the AMBs.

In order to establish a comparison, two experiments were conducted: one
without any correction, which means that the rotor shaft center position was
directly estimated for the filtered sensors readings (experiment 1), and the other
applying the corrections defined by Eq. 1 (experiment 2).

Both experiments were conducted for a rotor angular velocity of 169 rpm and
data were collected once the steady state regime was achieved. Figure 6 shows the
diagram representing the coordinates Xerror and Yerror for both experiments.

The black circle in Fig. 6 represents the mechanical limit imposed by the
mechanical bearing. Blue trajectories represent the rotor shaft center position
in the first experiment, where no correction were applied. The yellow trajectory
represents the rotor shaft center position from the second experiment with PID
control actions computed after corrections according to Eq. 1.

Red trajectories (calculated center) were obtained by applying corrections
due to the curvature on blue trajectories (experiment 1) showing the actual
shaft center position.



Measurement Corrections for Active Magnetic Bearing Control 393

Fig. 6. Path diagram of Xerror and Yerror for experiment 1 and 2.

Three parameters were used to evaluate the impact of the application of the
correction on the control performance: The standard deviations of Xerror and
Yerror, represented by σx and σy, and the average distance to the operation
center, r. The results of the performance criteria can be seen in Table 1. In the
correction algorithm, the following values were used: R = 9 mm, ex = 0.52 mm
and ey = 0.40 mm and setpoints X0 = 1.09 mm, Y0 = 0.94 mm.

Table 1. Performance evaluation criteria in experiments 1 and 2, in μm.

Experiment 1 Experiment 2

Criterion No correction Calculated position Corrected algorithm

σx 111.82 110.23 102.87

σy 55.87 53.59 45.47

r 108.11 106.69 91.99

The diagram in Fig. 6 shows that the positions read by the sensors do not
describe a circular trajectory. This distortion may happen due to several reasons,
ranging from imperfections in construction to sub-optimal choices for correction
parameters, as well as control behavior.

The experiment were repeated three times each at different rotor angular
velocities. Table 2 shows the average distance to the operation center (r) and
the corresponding improvement due to the corrections.

Experimental results show that at lower angular velocity the improvements
were consistent and considerable, achieving a reduction in the mean distance
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Table 2. Experimental results with setup ex = 0.52 mm, ey = 0.40 mm, X0 = 1.09
mm and Y0 = 0.94 mm

Experiment Angular velocity Correction r Improvement

(rpm) (μm) (%)

1 169 No 108.11 -

2 169 Yes 91.99 14.9

3 169 No 91.48 -

4 169 Yes 91.19 0.3

5 169 No 85.70 -

6 169 Yes 93.57 −9.2

7 84.5 No 63.98 -

8 84.5 Yes 34.32 46.3

9 84.5 No 57.70 -

10 84.5 Yes 37.30 35.3

11 84.5 No 81.93 -

12 84.5 Yes 36.37 55.6

from the desired center position. Such improvements achieved at least 35%. At
higher angular velocity the results show no consistency due to misalignment
problems.

Then other experiments were conducted with a different setup. A new setup
was implemented for an arbitrary (different) rotor angular position. The algo-
rithm setup was implemented while the motor is off and the rotor shaft was
secured at its desired position by a mechanical support. Table 3 shows experi-
mental results with the new algorithm setup.

Table 3. Experimental results with setup ex = 0.51 mm, ey = 0.41 mm, X0 = 1.10
mm and Y0 = 0.93 mm

Experiment Angular velocity Correction r Improvement

(rpm) (μm) (%)

13 169 No 116.95 -

14 169 Yes 105.00 10.2

15 169 No 117.97 -

16 169 Yes 101.12 14.3

17 169 No 117.37 -

18 169 Yes 100.89 14.1

Experimental results shows a consistent improvement at 169 rpm only due to
the new setup since the PID parameters remains the same. Figure 7 shows the
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Fig. 7. Path diagram of Xerror and Yerror for experiment 13 and 14.

trajectories of the rotor shaft center of mass for experiment 13 (No correction)
and 14 (Corrected algorithm).

Even when the rotor shaft center of mass trajectory became more irregular
due to the new setup, there was an improvement in the control behavior of the
AMB.

5 Computational Performance

The implementation of the correction algorithm has a low impact in the control
loop execution time. The Arduino UNO program was modified to communicate
its overall control loop execution time and no significant execution time increas-
ing was detected due to the correction algorithm. The control loop execution
time was affected only by the function which obtain the parameters sent by the
computer through the serial device. Even in those cases the 2 ms deadline was
not missed.

6 Conclusion

The geometric model proposed here allowed us to improve AMB’s control per-
formance applying a simple correction algorithm without relevant impact in the
control algorithm computational performance. Such achievement was possible by
reducing the impact of rotor shaft curvature in the determination of the center
of mass based on inductive linear sensors readings.

Even when the control performance improvement was not confirmed at higher
speeds, it was still possible to obtain improvements by choosing an adequate
setup for the algorithm. Such setup depend on the inductive sensor positioning
and the type of system misalignment.
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The workbench developed to test the algorithm was based on an old equip-
ment that presented all kind of mechanic imperfections. Despite of that, the PID
control algorithm was able to ensure the AMB correct behavior. Figures 6 and
7 shows that the rotor shaft center of mass stayed away of the mechanical limit
imposed by the mechanical bearing.

We could not show conclusive improvements for higher angular velocities.
Nevertheless, it was possible to observe that by using different setups some
improvements were obtained. This opens up the perspective of obtaining opti-
mal setup parameters in order to optimize the control performance and increase
the high speed limit allowed for the AMB secure operation. Another approach
could be to use more adequate tuning for the PID controller, for example, using
a specific PID tuning according to angular velocity ranges.

As future work we planed to put an encoder attached to the rotor shaft to read
the angular velocity and angular position in order to develop a more sophisticated
algorithm that take into account the roundness issue and an adequate setup
depended on angular position.

It’s clear that the impact of the correction algorithm here proposed depends
on parameters like shaft ratio and bearing gap. We also planed to conduct sen-
sibility analysis in order to determine when correction measurements may have
impact in system performance. In order to do that some improvements in our
workbench are already be executed.
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Abstract. This article presents a simulation methodology for calcu-
lating rotordynamic coefficients of liquid annular seals using the open
source software OpenFOAM. Therefore, stationary fluid solutions for
several boundary conditions are generated to represent the rotational
shaft speed, the eccentricity and the whirling motion. Analyzing the act-
ing forces in a whirling coordinate frame leads to a simple curve fit to
determine the rotordynamic seal coefficients. The CFD approach is val-
idated with an analytical solution and the coefficients of characteristic
states are compared to literature results. Finally, the methodology is
applied to our test rig’s geometry to calculate its dynamic behavior. The
comparison between the simulated and measured behavior shows good
agreement.

Keywords: Rotordynamic · Seal coefficient · Dynamic analysis

1 Introduction

Seals in compressors or pumps mostly separate different fluids or gases and
pressure levels. In high rotational speed turbomachinery, contactless seals in
various layouts like labyrinth, brush, floating ring, or simply gap seals are used.
However, the presence of a leakage flow through the clearance in the contactless
seal causes forces on the rotor system. They are generated by an unsymmetrical
fluid velocity distribution in the seal gap for the vibrating or eccentered rotor.

Usually, the vibrational behavior of the rotating machinery is strongly
affected by the seals. In unfavorable design configurations, they can excite the
rotor to large vibrations and lead to an instability, like the ‘oil-whip’ phenomenon
in journal bearings, see [1].

The forces in the seals are described using linearized rotordynamic seal coeffi-
cients like stiffness, damping, and inertia for specific operating points as pressure
drop, preswirl, and rotational speeds. A lot of work has been done over recent
c© Springer Nature Switzerland AG 2019
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years in order to determine these coefficients by means of simulation or experi-
ments.

This article presents a simulation methodology for calculating rotordynamic
coefficients of liquid annular seals using the open source software OpenFOAM.
Then, the calculated coefficients are used to simulate our seals test rig dynamic
behavior by means of a secondary structural simulation. The comparison to
measured data confirms the approach of the methodology.

Since rotational speeds and pressures are increased in technical applications,
investigations in industry and academia are applied to model and identify the
dynamics of rotor seal systems. Among the first in modeling the rotordynamic
seal behavior using linearized coefficients were Black [2] and Childs [3], who
developed and solved the bulk-flow equations to create analytical solutions for
short seals. Muszynska [1,4] improves these seal models by adding eccentricity
effects.

Dietzen [5] and Nordmann [6] solved the fluid equations by means of finite
difference techniques. Using a rotating coordinate system leads to a stationary
formulation of the whirling seal rotor.

Others, such as Kwanka [7,8] and Deckner [9,10], use CFD calculations to
determine the rotordynamic seal coefficients. They also include experimental
investigations using Active Magnetic Bearings (AMB) in flexible rotor-seal sys-
tems/test rigs similar to [11–14], or [15]. Examples of the use of levitating rotor
test rigs to analyze seals are given by [16,17].

The fundamentals of rotordynamics, modeling, and simulation are well
described in [18–20].

2 Dynamics of Rotor Seal Systems

For the sake of clarity, we write the formulation and the analysis of the rotor
seal system here again, which is already presented in [21]. In the following, the
Jeffcott/Laval rotor model is used to described the dynamic behavior of the
system. Like the investigations of Black [2], Childs [20], and Muszynska [19], the
seals are modeled using rotordynamic seal coefficients.

Fig. 1. Rotor seal model
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2.1 Rotor Seal Model

The simplified rotor seal model, see Fig. 1, consists of a linear elastic, massless
shaft with a mass disk supported by two rigid bearings. The seals, represented
by their rotordynamic coefficients (mass, stiffness, and damping) are directly
connected to the shaft. Using the rotor displacement [x y]T and projecting all
forces on the disk, the equation of motion is as follows:[

mr + mxx 0
0 mr + myy

] [
ẍ
ÿ

]
+

[
cxx cxy

cyx cyy

] [
ẋ
ẏ

]

+
[
kr + kxx kxy

kyx kr + kyy

] [
x
y

]
= h (1)

where mxx, cxx, and kxx are the seal coefficients of direct mass, damping, and
stiffness of the seals. cxy and kxy are the cross coupled damping and stiffness,
same for the y direction, respectively. mr = 9.5 kg is the rotor’s mass and
kr = 0.436 MN/m is the shaft stiffness. The equivalent forces h = hu + he,
representing the unbalance force, external forces, and so forth, are used to cou-
ple different models (bearings etc.) and excitations. Therefore the rotor’s first

(sealless) natural frequency is denoted by ω1 =
√

kr

mr
.

The seal coefficients can be determined using measurements, numeric sim-
ulations, or simplified analytical solutions. In this research, the coefficients are
numerically calculated using CFD simulations carried out by OpenFOAM.

2.2 Dynamic Behavior

The dynamic behavior of the rotor seal system is analyzed by its eigenvalues.
Therefore, for the coupled symmetric (∗xx = ∗yy, ∗xy = −∗yx) system (rotor +
seals), according to [18,21], we write:

[
M 0
0 M

] [
ẍ
ÿ

]
+

[
C c
−c C

] [
ẋ
ẏ

]
+

[
K k
−k K

] [
x
y

]
= h (2)

For improved readability, the summarized coefficients are:

M = mr + mxx

C = cxx = cyy; c = cxy = −cyx

K = kr + kxx; k = kxy = −kyx

The cross-coupled terms k and c lead to tangential forces, which are destabiliz-
ing the system by transmitting energy from the rotor’s rotation to the bending
motion. Assuming a symmetrical rotor system, we substitute x and y with com-
plex coordinates z = x + jy and Fz = hx + jhy, where j2 = −1. To determine
the system’s stability and its natural frequencies, the eigenvalues are calculated
by Fz = 0 and z = ẑeλt:

Mλ2 + Cλ + K − j(cλ + k) = 0 (3)
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with λ = −δ + jω. When the decay constant δ becomes negative, driven by the
tangential forces above the system’s stability limit, instability occurs. Note in
particular that the coefficients are nonlinear functions of the rotational speed,
the fluid properties, and the eccentricity (almost linear for ε < 0.5).

3 Seal Simulation

In this research, the seals are analyzed by CFD. The objective is to calculate the
forces acting on the rotor and to deduct rotordynamic coefficients of the seal.
Knowledge of the rotordynamic coefficients allows us to investigate the behavior
of the entire rotor system in an additional simulation. In order to calculate
the rotordynamic coefficients, the time-dependent problem of a vibrating rotor
inside a seal gap is transformed into a stationary formulation. The fluid flow and
pressure distribution are calculated from the geometry and boundary conditions.
Integrating the pressure distribution on the surface leads to the seal forces and,
therefore, to the rotordynamic coefficients.

3.1 CFD Approach

The fluid flow inside the seal gap is a pressure and shear-driven problem. The
fluid flow’s motion is described exactly by the Navier-Stokes equations. For the
assumed incompressible fluid (temperature and density are constant and Mach-
number is less than 0.3) the momentum equation reads, according to [22]:

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p + μΔv + f (4)

The conservation of mass leads to the continuity equation:

∇v = 0 (5)

If the expected Reynolds number exceeds 2,300 within the simulation, turbulent
flows need to be considered. There are multiple opportunities to solve the equa-
tions for turbulent flows. In this research, we applied the Reynolds-Averaged
Navier-Stokes equations (RANS). The RANS equations are obtained by replac-
ing every term of the Navier-Stokes equation with a constant and a fluctional
expression. Finally, the equations are averaged by time. The governing equation
can be treated as laminar flow, with exception of the Reynolds stress tensor:

−∂u∗
i u

∗
j

∂xj

The Reynolds stress tensor must be modeled using averaged quantities only. In
this research, we used the model of eddy viscosity, which states that the influence
of turbulence is analogue to molecular viscosity. The basic k−ε-model is applied
to specify the eddy viscosity as a functional expression of the turbulent energy
and the turbulent dissipation.
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In case of the eccentric shaft, no geometric symmetries can be found. Hence,
the simulation is bound to be three dimensional. The smooth seal is described by
its diameter, clearance, and length. A structured mesh of hexahedral elements
was designed, because of the seal’s simple geometry, see Fig. 2. For sure, more
complex geometries can be investigated as well. The spatial discretization scheme
is the finite-volume-method.

Fig. 2. Discretization of the seal: number of cells in axial direction na, in radial direction
nr and in circumferential direction nc

3.2 Coordinate Transformation: Calculate Rotordynamic
Coefficients

The rotordynamic coefficients link the acting forces on a rotor to the shaft’s dis-
placement, velocity, and acceleration, respectively. The quantities that describe
the shaft’s movement are defined within the initial coordinate frame I at the
bearing center line A − B, as stated before. In the seal CFD analysis, a moving
coordinate system with origin C in the geometric center of the rotor is used
to describe the forces and movement. The movement is assumed to be a circle
with radius ε = |rC | around center O. The coordinate system rotates with the
angular whirl frequency ω = ψ̇C = const., see Fig. 3. This leads to expressions
for displacements, velocities, and accelerations, respectively:

(
x
y

)
=

(
ε cos(ωt)
ε sin(ωt)

)

This results in different quantities of the wall velocities v (rotor and stator surface
in the rotating coordinate frame) with the shaft speed Ω = ψ̇R = const.:

vrotor = (Ω − ω)
D

2

vstator = −ω (
D

2
+ cr)
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Fig. 3. Coordinate transformation and forces

with the rotor diameter D and the radial seal clearance cr. The forces are rep-
resented in the rotating coordinate frame as well:

(
Fx

Fy

)
=

(
Fr cos(ωt) − Ft sin(ωt)
Fr sin(ωt) + Ft cos(ωt)

)

with the acting tangential and radial force, Ft and Fr. Thus, equation (1), which
defines the rotordynamic coefficients, is no longer time dependent, but dependent
on the whirl frequency ω and the eccentricity ε = |rC |:

(−Fr

ε

−Ft

ε

)
=

(−mxxω2 + cxyω + kxx

cxxω − kxy

)
(6)

The spatial movement of the shaft within the CFD simulation is described with
boundary conditions only.

Now, it is possible to calculate the rotordynamic coefficients if there are
simulated forces on hand for several whirl frequencies. There have to be at least
three different simulations at different whirl frequencies, since the radial part of
the force is a polynomial of second order with respect to the whirl frequency. The
velocity at inlet and outlet surfaces has a zero gradient. Besides the boundary
condition describing the velocity, there are boundary conditions for the pressure:
At the inlet, the presetting of the total pressure (p0 = p + 1

2ρu2) is given. At
the outlet, the dynamic pressure is set to zero. In this work, we employed the
algorithm SIMPLE (Semi-Implicit Method for Pressure Linked Equations) to
solve the RANS-equations. This algorithm iteratively calculates the pressure
distribution and the velocity distribution alternately. The solution from one field
serves as the initial value for the other. Finally, Eq. (6) was fitted to the simulated
values of the forces to calculate the rotordynamic coefficients.
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4 Experimental Setup

This section describes the experimental setup for analyzing rotor seal systems
at the Chair of Applied Mechanics at the Technical University of Munich, as in
[21]. First, the seals test rig is presented, then the dynamic behavior is analyzed
and compared to the simulation results.

The experimental analysis is examined on the seals test rig (see Fig. 4). The
main components are a flexible shaft and a mass disk (1) with two symmetrically-
arranged liquid annular seals (2) in the middle (see details in Fig. 5). Eddy
current sensors for measuring the displacement (6) and a piezo force platform
(7) are arranged in the seals stator housing (8). The fluid is injected between the
two seals with a maximum pressure of 100 bar. The rotor runs at over-critical
speed above the first (sealless) natural frequency ω1 up to 12,000 rpm. An active
magnetic bearing (3) is used as an exciter (2D shaker) at the shaft. The rotor
shaft is supported by two ball bearings (4) and driven by a servo motor (5). The
typical test procedure is the stationary rotor run-up (discrete rotational speeds)
with or without AMB excitation. Therefore, the test rig is controlled and the
signals are measured using a dSpace 1103 system (10 kHz sampling rate), see
[12,21].

Fig. 4. Seals test rig

5 Validation and Dynamic Analysis

In this section, the CFD simulation methodology is validated. Therefore, an
analytical solution is derived from the Navier-Stokes equations to define the
numerical errors with respect to simple geometries. Additionally, the calculated
rotordynamic coefficients are compared with those published by Dietzen and
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Fig. 5. Seals housing detail

Nordmann [5]. Afterwards, the geometry of the presented seals test rig configu-
ration is simulated so that its vibrational behavior can be compared to experi-
mental results.

5.1 Validation by an Analytical Solution

The numerical convergence of both the discretization scheme and the solving
process has to be proved by applying the boundary conditions and the fluid prop-
erties for different grid resolutions. Thus, an analytical expression of the pressure
and velocity distribution is generated. The analytical solution is only available
if the Navier-Stokes equations are simplified by some assumptions. Hence, the
configuration is stated to be time independent, to be a plain annular seal, to
assume a centric rotor, to have no circumferential velocity, and to be laminar
flow. These assumptions lead to a linear equation of the pressure distribution in
axial direction:

p(z) =
po − pi

l
z + pi

with the pressure at inlet and outlet, pi and po. A quadratic equation of the
velocity distribution in radial direction follows as:

uz(r) =
po − pi

4μl

⎛
⎝(

r2 − r2i
)

+
(
r2o − r2i

) ln
(

ri

r

)
ln

(
ro

ri

)
⎞
⎠

where ri and ro denote the inner (i.e. the rotor) and outer radial wall coordinate.
The axial velocity uz is integrated over the cross section of the gap to gain an
expression of the volume flow through the seal. A second-order Taylor-series
approximation of the integrated expression yields a term for the leakage V̇ , also
found in [18]:
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V̇ =
Δpdmπh3

0

12νl
(7)

The difference between a simulated value of the volume flow and Eq. (7) rep-
resents a quantity of the numerical error. The criteria for proving convergence
of a scheme is that the numerical error decreases for an increasing number of
cells. This was demonstrated (length: 20 mm, diameter: 1,000 mm, clearance:
0.17 mm):

– 3D case 1: 4,000 cells (in axial direction na = 10, in radial direction nr = 4,
and in circumferential direction nc = 100), deviation of 20%

– 3D case 2: 63,000 cells (na = 25, nr = 10, nc = 252), deviation of 8%

In this special case, the rotor is assumed to be placed centrically as mentioned
before. This symmetry can be exploited to handle the configuration as a two-
dimensional one. Thus, a sector of the circumference is simulated only. Namely,

1
1,000 of the geometry is discretized using one cell in circumferential direction, so
nc = 1. The volume flow calculated is subsequently multiplied by 1,000. Again,
two different cases are analyzed to prove the convergence:

– 2D case 1: 2,000 cells (nr = 20, na = 100), deviation of 0.5%
– 2D case 2: 8,000 cells (nr = 40, na = 200), deviation of 0.03%

5.2 Validation by Published Rotordynamic Coefficients

An example of validating the CFD approach with published rotordynamic seal
coefficients is given in [5]. Water flows through a plain annular seal. The resulting
flow is going to be turbulent, since the pressure boundary conditions lead to a
Reynolds number of more than 2,300. Hence, the RANS equations are solved
numerically. The eddy viscosity is modelled using the k−ε model. The simulation
is characterized by the following parameters:

– Dimensions: length: 23.5 mm, diameter: 57 mm, and clearance: 0.2 mm
– Fluid: density: 996 kg/m3, dynamic viscosity: 7 · 10−4 kg/ms
– Boundary conditions: total pressure drop: 4.5 bar, inlet loss ratio: 0.5,

preswirl ratio: 0.5
– Simulation case: 27,264 cells (na = 12, nr = 8, and nc = 284), expected

numerical deviation is 8–20%

Unfortunately, in [5] there is no boundary condition for the turbulence intensity
given at the inlet. The assumption for the turbulence intensity within this study
is 5%. It was brought to light that the scale of turbulence intensity at the inlet
influences the results to a not-insignificant degree. The results show a mean
difference of about 20% between the simulation and the published values, see
Fig. 6.
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Fig. 6. Coefficients calculated by [5], comparison with CFD analysis approach

Table 1. Test rig and fluid parameters

Name Value

Rotor Shaft 15 × 600 mm

Mass 9.5 kg

1st seal-less natural freq. 34.1 Hz

Seal Diameter 100 mm

Length 20 mm

Clearance 0.17 mm

Pressure 200 kPa

Dyn. viscosity 40.48 ·10−3 N·s/m2

Density 880 kg/m3
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5.3 Dynamic Analysis of the Test Rig

At the presented test rig, a run-up is performed with the parameters in Table 1.
The waterfall plot in Fig. 7 shows the two side spectra of the rotor’s displace-

ment signal at several rotational speeds. The ‘dry’ (without seal) 1st natural
frequency is at 34.1 Hz and cannot be seen anymore. At this time, for safety
reasons, the measurements were only up to 7,000 rpm, due to the large vibration
amplitudes of the rotor at its natural frequency ω1f (the forward whirl’), which
is significantly higher than the unbalance response Ω.

Fig. 7. Full spectrum waterfall plot of the measured test rig run-up

The whirl-frequency ratio is almost ω1f/Ω ≈ 0.4888 for higher rotational
speeds. The backward whirl natural frequency ω1b cannot be seen here because
of its low excitation and the high damping.

The CFD analysis procedure described is applied to the seals geometry of
the test rig to calculate its rotational speed-dependent rotordynamic coefficients.
Therefore, one seal is discretized with 4,000 cells (na = 10, nr = 4, and nc =
100), the expected numerical deviation is 20%. The seal coefficients are then
coupled to the ‘dry’ rotor parameters to analyze the system’s rotational speed-
dependent eigenvalues. The Campbell diagram in Fig. 8 shows the simulated
1st natural frequency in forward whirl direction ω1f compared to the frequency
measured. The whirl frequency ratio of the simulated system is ω1/Ω ≈ 0.4909,
which yields a difference of 0.42%.
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Fig. 8. Campbell diagram of the simulated and measured test rig

5.4 Comparison and Analysis of the Results

The outlined CFD approach was confirmed by the validation. The analytical
solution can be used for simple cases to determine the expected numerical simu-
lation errors of the grid used. Thus, the rotordynamic seal coefficients calculated
are within the numerical deviation compared to literature values. The calcula-
tion of the test rig’s natural frequencies using the simulated coefficients shows a
very good agreement with those of the experiment.

6 Conclusion: Summary and Outlook

In this research, a methodology for determining the rotordynamic coefficients
of seals by CFD simulation is presented. To show the numerical errors of the
discretization and the solving process, an analytical and, thus, exact solution is
used for a simple case. The error rate of the 3D discretization is approximately
8% of the exact solution, the refined 2D case has a deviation of 0.003%. This
confirms the discretization, the setup of the boundary conditions, and the solving
process. The rotordynamic seal coefficients are calculated using stationary CFD
simulations in a whirling coordinate frame. For various values of the rotational
speed, different whirl frequencies are applied to simulate the forces acting on the
rotor. A least squares fit of the tangential and the radial forces, depending on the
whirl frequency, leads to the coefficients. The coordinate transformation, post
processing, and finally the calculated rotordynamic coefficients, are validated by
a literature example (Dietzen and Nordmann). Finally, the presented method-
ology is used to simulate the dynamic behavior of our seals test rig. The natural
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frequency calculated (whirl frequency ratio) shows a good agreement with the
measured test rig data. Future work will be made up of detailed experimental
determination of coefficients and investigations in eccentricity/tilting effects.
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Abstract. Oil whirl and whip phenomena are fundamental to rotor sys-
tems supported by journal bearings. Published studies opt for a reduced
formulation of the Reynolds equation of lubrication in order to aid the
computations. In the current study, the complete Reynolds equation
is solved using Pseudo Spectral Methods (PSM) and results compared
with reduced solutions. The possibility of certain trends being missed in
reduced model simulations is also brought out using a simple example.
Rotor shaft and journal bearing systems are numerically modelled and
coupled simulations have been carried out for test rotors inspired from lit-
erature. A semi analytical derivative estimation method is demonstrated
to be superior to conventional finite difference methods in terms of pro-
cessor load. This will be a useful addition for iterative solvers applied
on rotors with more complicated geometry. Time transient analysis is
carried out for two test rotors in order to bring out the oil whirl and
whip phenomena, where the second one, with an added nonlinear node,
shows a whirl along a branch which went undetected in the published
reference. In the light of the above trends, the importance of full model
numerical simulation is further emphasized.

Keywords: Pseudo Spectral Methods · Chebyshev polynomial
Fluid film bearings

Nomenclature

{
F

}
Forcing vector{

U
}

Displacement Vector
G Gyroscopic stiffness matrix
K Element stiffness matrix

MR Rotational Inertia Matrix
MT Translational Inertia Matrix

ε Journal eccentricity magnitude
μ Kinematic viscosity
Ω Whirl frequency
ω Spin frequency

c© Springer Nature Switzerland AG 2019
K. L. Cavalca and H. I. Weber (Eds.): IFToMM 2018, MMS 60, pp. 411–421, 2019.
https://doi.org/10.1007/978-3-319-99262-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99262-4_30&domain=pdf


412 N. N. Balaji and I. R. P. Krishna

φ Journal eccentricity angle
θ Bearing angular coordinate

c, h0 Nominal journal-bearing clearance
ex, ey Orthogonal journal eccentricities

FX , FY Bearing forces
h(θ, t) Bearing clearance

P Hydrostatic pressure
R Mean bearing radius

Tk(x) Chebyshev polynomial of first kind, degree k
U = ωR Wall speed

z Bearing axial coordinate
FDM Finite Difference Method
FEM Finite Element Method
PSM Pseudo-Spectral Method

1 Introduction

Journal bearings provide a cheap and effective support alternative for high speed
rotor applications. They are preferred mainly due to the absence of surfaces in
contact (leading to wear) and the high fluid film forces [1]. A practical issue that
accompanies the use of journal bearings is what is known as oil whip insta-
bility [2,3] which occurs at rotor spin frequencies far above the linearized first
critical. Being a classical problem, extensive literature is available in studying
the bearing modelling [1,4,5], bifurcations [6,7], instability [2,3,8,9], etc.

Mathematically, the bearings are modelled using the Reynolds equation of
lubrication [10]. The equation is arrived at as an integral form of the continuum
and the momentum equation after making necessary assumptions. The same equa-
tion is used for modelling squeeze film dampers too (refer [1] for more details). The
Reynolds equation of lubrication is a second order partial differential equation
with a single unknown: the fluid static pressure. The fluid film forces are obtained
as area integrals of the fluid pressure on the journal surface. Popular numeri-
cal techniques employed to solve the same include the Finite Element Method
(FEM) [11], Pseudo Spectral Method (PSM) [5], etc. In [5] it has been demon-
strated that PSM is computationally less intensive as compared to FEM. This is
mainly due to the fact that a finite element formulation will involve matrix stitch-
ing, a process that constructs matrices of global support using locally supported
matrices. Since PSM is formulated as a method with global support, this step is
avoided, leading to a speed up in the calculations (element formulation/assembly
time). However, matrix sparsity, which is one of the most appealing features of
any FEM formulation, is absent in the case of PSM.

For a general rotor dynamic simulation, in addition to the bearings, it is
also necessary to model the rotor shaft. Various transfer matrix and lumped
matrix approaches are available in the literature apart from the Finite Element
Method (see [1]). The rotor shaft is modelled using finite Euler Bernoulli beam
elements in the current study, following the formulation in [12]. Timoshenko
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beam models have been formulated [13] but the current study focuses on slender
rotors for Euler Bernoulli beams are reasonably accurate.

In studying rotor-bearing problems involving fluid film bearings, few studies
make use of complete formulations of both the rotor shaft as well as the bearing.
Common practice is to reduce the rotor to a linear stiffness element and reduce
the rotor dynamic system into a set of coupled ordinary differential equations.
Another reduction that may be seen in the literature is in the Reynolds equation
-short bearing and long bearing approximations reduce one of the two coordinate
dependencies of the bearing fluid pressure. Classically, these were made in order
to reduce computational load. In the current study, the validity of the reduction
of the Reynolds equation is questioned, positing that the advent of modern
computers have effectively removed the necessity for such reductions and fully
coupled solvers reveal certain details which may not be perceptible with the
reductions incorporated.

2 Theory

Euler Bernoulli beam model used for the FEM formulation for the rotor shaft
model. The equations of motion for each element takes the form as in Eq. (1).

(MT + MR )
{
Ü

} − ωG
{
U̇

}
+ K

{
U

}
=

{
F

}
(1)

with MT and MR denoting translational and rotational inertia matrices respec-
tively, and the matrices G and K denoting the gyroscopic and the element stiff-
ness matrices respectively. The gyroscopic effects, as expected, are modelled as
being proportional to the spin frequency ω. See [12] for further details on the
formulation.

Figure 1 is a schematic illustration of a simple journal bearing. The central
circle is the shaft-journal surrounded by the bearing. The Reynolds equation of
lubrication written for the hydrodynamic journal bearing may be expressed as
in Eq. (2).

1
R2

∂

∂θ

(
h3

μ

∂P

∂θ

)
+

∂

∂z

(
h3

μ

∂P

∂z

)
= 6

(
1
R

∂(hU)
∂θ

+ 2
dh

dt

)
(2)

where R is the mean bearing radius, θ & z are the angular and axial coordinates,
μ is the kinematic viscosity, U is the wall speed (ωR), and h(θ, t) is the bearing
clearance (assumed independent of the axial coordinate). The hydrostatic fluid
pressure P is the only unknown in the equation. In terms of the orthogonal
eccentricities ex & ey, the bearing clearance and its time derivative may be
expressed as in Eq. (3).

h(θ, t) = c − ex cos θ − ey sin θ

dh(θ, t)
dt

= −ėx cos θ − ėy sin θ
(3)

with c being the nominal clearance between the journal and the bearing.
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Fig. 1. Journal bearing (schematic)

Spectral methods work by expressing the solution in terms of a series of
orthogonal basis functions. Each set of polynomials comes with a set of proper-
ties and advantages. For example, the Fourier basis functions naturally extend
themselves for the solution over periodic domains. The Chebyshev polynomi-
als [14] are found to be well suited to most problems in practice without any
restrictions on the boundary conditions. The notation for spectral series repre-
sentation is,

û(x) =
N∑

k=0

ukφk(x)

where,
φk(x) = eιkx, (Fourier spectral method)
φk(x) = Tk(x), (Chebyshev spectral method)
with Tk(x) = cos(k cos−1 x) denoting the Chebyshev polynomial of first kind,
degree k [5].
For modelling the journal bearing, the fluid is modelled as a 2D surface meshed
uniformly in the circumferential direction and with Gauss-Lobatto grid points
in the axial direction. Following collocation at the grid points, the equation
becomes a matrix equation. The unknown pressure is obtained as a set of grid
values P , which has to be further integrated (numerically) with cos θ and sin θ
in order to obtain the bearing forces FX and FY (see Eq. (4)).

{
FX

FY

}
= −2

L/2∫

0

π∫

−π

P (θ, z)
{

cos θ
sin θ

}
Rdθ dz (4)
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A recurring problem while using semi analytical techniques (for eq, shooting
methods, Harmonic Balancing, Time Variational Formulation, etc.) for rotor
dynamics is the calculation of bearing force derivatives. Using a finite difference
scheme for this would involve four additional sets of linear equations that have
to be solved separately followed by the evaluations of the corresponding area
integrals. A semi analytical approach may be derived by direct differentiation of
the Reynolds equation, with respect to the independent variables ex and ey and
integrating the pressure derivative fields for the force derivative calculation as
given (Eq. 5).
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An efficient formulation, on account of the left hand side operators being iden-
tical, enable one to solve the equations together. The force derivatives may be
obtained by numerical integration.

Solution of the Reynolds equation will give rise to negative pressure values
too. Since this does not represent the physical situation, cavitation conditions
are applied. One of the simplest of these is the Gumbel or the Half-Sommerfeld
condition which “chops off” the pressures to the cavitation pressure value and
the derivatives to zero when the solved pressure value is below the cavitation
pressure level at the operating temperature. Book by Szeri [4] and other such
textbooks may be referred for more detailed models.

3 Test Case Results

3.1 Fluid Force Derivative Calculation

In order to demonstrate the fluid film force derivative calculation developed
above, a journal bearing with the following specifications (as in [5]) is considered.
Table 1 summarizes the specifications of the bearing used for the calculations.

The fluid film forces themselves, when calculated on a 24×11 grid, are verified
with the published values for different journal eccentricities in Table 2.



416 N. N. Balaji and I. R. P. Krishna

Table 1. Bearing specifications as in [5]

Parameter Value

Diameter 50.8 × 10−3 m

Length 12.7 × 10−3 m

Radial clearance 50.8 × 10−6 m

Oil viscosity 0.00689 Pa s

Journal speed 10, 000 rpm

Table 2. Comparison of fluid film forces calculated using PSM with the published
values in [5]

Journal position Published values Calculated values

Eccentricity (ε) Attitude angle (φ) FX (N) FY (N) FX (N) FY (N)

0.3 45o −47 11 −46.58 11.04

0.5 45o −136 0 −134.09 −0.34

0.7 45o −469 −119 −462.77 −115.97

0.8 45o −1139 −459 −1121.33 −445

0.9 45o −4729 −2853 −4666.14 −2792.99

Since the L/D ratio for the current bearing is lesser than 0.5, the bearing
is conventionally termed as a short bearing, for which [15] provides an analyti-
cal expression of the forces after making a π-field cavitation assumption in the
rotating reference frame (as in Eq. (6)).

Fr = −μRL

(
L

c

)2
[

(ω − 2φ̇)
ε2

(1 − ε2)2
+

π

2
(1 + 2ε2)ε̇

(1 − ε2)5/2

]

Ft = μRL

(
L

c

)2
[

(ω − 2φ̇)
π

4
ε

(1 − ε2)3/2
+

2εε̇

(1 − ε2)2

] (6)

Table 3 provides the comparison of fluid film force derivatives calculated
through the above analytical expression, finite difference on the complete for-
mulation, and the derivative estimation described in Sect. 2. The derivatives are
computed for an operating condition corresponding to row 1 of Table 2. In terms
of the actual values of the derivatives, the FDM results are taken as the most
accurate. Looking at the results, it may readily be observed that the analyti-
cal calculations are completely off. A slight computational advantage was also
observed for the pressure derivative formulation (time calculations conducted on
a 4 GB RAM machine with a quad core i3 processor clocked at 2.63 GHz). For
a coupled iterative solver, this will be a very significant advantage.

Since all linearizations of bearing forces over particular solution branches
are done through mean derivative estimates over one cycle, the inaccuracy of
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Vance’s [15] solution must be kept in mind. These arise mainly due to the π-field
cavitation assumption that is used in the derivation of the analytical equation.

Table 3. Comparison of derivative estimates (all quantities in SI units)

Derivative Force
component

Analytic
estimate

FDM
estimate

Current
approach

∂/∂ex FX 4.23e6 2.37e6 2.37e6

FY 1.78e6 −2.18e6 2.18e6

∂/∂ey FX 2.43e6 3.89e6 3.89e6

FY −2.41e6 1.56e6 1.56e6

∂/∂ėx FX 734 7660 7660

FY 3700 1030 1030

∂/∂ėy FX 7663 1171 1171

FY 734 3991 3991

Average computation time (s) 0.575 0.365

3.2 Coupled Rotor Bearing Systems

The rotor bearing model in Fig. 2a (Case 1 rotor), consists of a rotor shaft (with
the depicted properties) with two unbalances supported by a rigid pin at one
end and a fluid film bearing at another. A five element formulation as shown is
used for the following analysis. The properties of the journal bearing and the
mass offsets are given in Table 4.

Table 4. Specifications of nonlinear rotor model for Case 1 rotor

Journal bearings

L 28.5 × 10−3 m

D 57.2 × 10−3 m

μ 0.0069 Pa s

h0 51.0 × 10−6 m

Fs 395 N

Mass offsets

M 4.83 kg

e 6.21 × 10−6 m

Transient simulation of the above model involves solving the corresponding
equations of motion with suitable initial conditions for a considerable number
of time steps until transients are completely removed. The above is conducted
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(a) Rotor

(b) Waterfall plot

Fig. 2. Case 1 nonlinear rotor

for a range of spin frequencies ω and a waterfall plot is generated. The waterfall
plot consists of the frequency content of the time series of an expedient degree of
freedom in the model (taken here as the x deflection of node 2) plotted against
the spin frequency. Figure 2b depicts the time transient analysis result for this
rotor.

Both the synchronous branch, occurring at Ω = ω and the sub-synchronous
branch corresponding to oil whirl and oil whip can be observed in the Fig. 2b.
Lines are drawn corresponding to the first and second backward and forward
whirl modes of the linearized rotor model. Oil whirl happens until the spin
frequency reaches approximately twice the first normal mode frequency wherein
the oil film precession accounts for a distinct whirl at 0.5ω. For higher spin
rates, the system gets “locked on” to the first normal, leading to the oil whip
phenomenon. The oil whipping becomes unstable at larger spin speeds than a
critical speed (not depicted in the figure).
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Fig. 3. Case 2 nonlinear rotor (from [16])

Figure 3a depicts the Case 2 rotor [16]. Only difference with Case 1 rotor is
that the pin in Case 1 is replaced with an identical fluid bearing. The properties
are all as in Table 4. The formulation in [16] makes use of the short bearing
approximation for the bearings in order to reduce the Reynolds equation. The
authors use a shooting technique to obtain periodic solutions. Since solutions
with an oil whip are quasi-periodic (and hence aperiodic), the whip phenomena
may not be observed in the paper. The waterfall plot for this rotor is depicted
in Fig. 3b. Due to the presence of two journal bearings, the instability is apparent
at lower spin rates itself. The peak at zero frequency is due to the side force
applied at each bearing which offsets the whole rotor by a finite distance. An
interesting feature of the plot in Fig. 3 is that apart from the synchronous whirl
and the oil whip, there is a distinct peak at 0.75ω. This is posited to be due
to an effect of the coupling of the two journal bearings in the presence of mean
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load. Further study must be conducted for the same, but the trend is brought
out here to emphasize the importance of full model simulations.

4 Conclusion

Rotor shaft and journal bearing systems are numerically modelled and coupled
simulations have been carried out for test rotors inspired from literature. A
semi analytical derivative estimation method is demonstrated to be superior to
conventional finite difference methods in terms of processor capability. This will
be a useful addition for iterative solvers applied on rotors with more complicated
geometry.

Time transient analysis is carried out for two test rotors in order to bring out
the oil whirl and whip phenomena, where the second one, with an added bearing,
shows another branch which went undetected in the published reference. In the
light of the above trends, the importance of full model numerical simulation is
further emphasized.
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Abstract. The effect of the texturing region on the static and dynamic char-
acteristics of partially textured bearings, of which the texturing area is limited on
the bearing surface in the circumferential direction, were investigate theoreti-
cally. The load carrying capacity and stiffness and damping coefficients of some
partially textured journal bearings with the different textured region were cal-
culated by using a numerical model considering the effects of both fluid inertia
and energy loss at the edges of the dimples. The results showed that when the
surface texturing was formed in the unloaded region of the journal bearing
surface, the load carrying capacity maintains as much as the smooth bearing for
a wide range of Sommerfeld number. The linear stability threshold speeds of a
symmetrical rigid rotor supported in two identical textured bearings was also
calculated with the dynamic coefficients of the oil film. The results obtained
showed that when the texture region starts from 270° from the top of the bearing
in the rotating direction, the stability threshold speeds are higher than those of
the fully textured bearing at relatively high Sommerfeld number. From these
results, it was concluded that an appropriate partial texturing formed on the
bearing surface can improve both the load carrying capacity and the stability
characteristics simultaneously.

Keywords: Journal bearing � Surface texture � Load carrying capacity
Stability

Nomenclature

C Mean radial clearance
D Bearing diameter (=2R)
L Bearing length
N Journal rotational speed
Ob, Oj Origin of bearing or journal
R Bearing inner radius
S Sommerfeld number
W Static load
X, Y Vertical and horizontal axes
e Eccentricity
fX, fY Oil-film-force components in the vertical and horizontal directions
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H Dimensionless oil-film-thickness
ht Depth of square dimple
ltz, lth Width of square dimples in the axial and circumferential directions
lpz, lph Pitch of square dimples in the axial and circumferential directions
m Half of mass of a model rotor
P Oil film pressure (above ambient)
x, z Coordinates in the circumferential and axial directions
d Ratio of dimple depth to mean radial clearance (=ht/Cr)
ɛ Eccentricity ratio (=e/C)
η Viscosity of fluid
h Angular coordinate (=x/R)
ht Start angle of texture region
hts Circumferential angle of texture region
/ Attitude angle, deg
x Journal angular velocity, rad/s

1 Introduction

Surface texturing has been applied to various mechanical elements with the mating
surfaces for the improvement of lubrication performance. This technique has also
attracted attention in a field of the journal bearings, and many researchers have
investigated the effect of surface texturing on the static characteristics of journal
bearings [1–10]. The present authors [11, 12] have also analyzed numerically and
experimentally the load carrying capacity and dynamic coefficients of textured journal
bearings with square dimples. They proposed a numerical model considering both
effects of the fluid inertia and the energy loss at the edge of dimples, and the results
agreed qualitatively and quantitatively with the experimental ones, confirming the
validity of the numerical model. They also demonstrated that the fully textured bearings
improve the stability of a rotor supported in the bearings, but decrease the load carrying
capacity. As for the load carrying capacity, Tala-Ighil et al. [1] and Brizmer [5] also
revealed that the load carrying capacity was increased by manufacturing an appropriate
texturing area on the bearing surface, but they have not investigated the dynamic
characteristic of the bearings.

In the study, we focus on the partially textured bearings, of which the texturing area
is limited on the bearing surface in the circumferential direction, and numerically
investigate the effect of the texturing region on the static and dynamic characteristics of
the bearings.
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2 Numerical Analysis

2.1 Analytical Model

Figure 1 shows a partially textured journal bearing used in this analysis. The journal
rotates with a rotational speed x about its axis, which locates at the static equilibrium
position with eccentricity e and attitude angle /. The static load W is applied to the
journal vertically downward. A Cartesian coordinate system is also shown in Fig. 1.
The x-axis is along the vertical direction, the z-axis is in the direction of the journal
length, and the Y axis is perpendicular to the x- and z-axes. The circumferential
coordinate h is measured from the positive X axis in the rotating direction. An axial oil
groove is set on the top of the bearing and lubricating oil is supplied from it. The
texture region is formed from hts to hts+ hs on the bearing surface in the circumferential
direction, and to the whole in the axial direction.

Figure 2 shows a schematic of the dimples on the bearing surface. We chose the
square dimples according to our previous study [11, 12]. As shown in Fig. 1, the square
dimples are formed at an equal interval in the texture region. Three parameters char-
acterize the square dimples; the depth hd, the length and the pitch. Considering the
direction, the length are represented ldh, ldz in the circumferential and axial direction
respectively, and the pitch lph, lpz in the circumferential and axial direction respectively.

Fig. 1. Analytical model of the partially textured journal bearing with a coordinate system
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2.2 Governing Equation for the Pressure Distribution

As the calculation procedure used in the study were almost similar to the reference [11,
12], we described it briefly here.

In the study, the pressure distribution of the oil film is determined based on the
Reynolds equation, considering the inertia effect and the energy loss due to the film
discontinuity at the edge of dimples. In this study, the pressure jump due to the inertial
effect is evaluated by using Bernoulli’s equation and the energy loss is calculated using
expressions that depend upon film expansion or contraction.

As the governing equation for the pressure distribution, we used the incompressible
and iso-viscous Reynolds equation written in dimensionless form as follows:

@

@h
H3 @P

@h

� �
þ 1

4
D
L

� �2
@

@Z
H3 @P

@Z

� �
¼ 6

@H
@h

þ 12
@H
@s

ð1Þ

The dimensionless forms of the variables in Eq. (1) are defined in Eq. (2):

h ¼ x
R
; Z ¼ z

L
;H ¼ h

C
;P ¼ p

gx
C
R

� �2

; s ¼ xt ð2Þ

The dimensionless film thickness in the land is given by

H ¼ 1þ e cos h� /ð Þ ð3Þ

and in the dimple

H ¼ 1þ e cos h� /ð Þþ d ð4Þ

where e (=e/C) is the eccentricity ratio and d (=ht/C) is the dimple-depth ratio.
The inertia effect and energy loss of the fluid in the discontinuous clearance at the

edge of the dimples are evaluated by using a combination of Bernoulli’s equation and

Fig. 2. Schematic view of the square dimples [11]
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some loss formula. At a film-expansion point, the loss formula of a sudden expansion
pipe is applied to estimate the pressure variation:

p� � pþ ¼ q
2

u�þð Þ2� u��ð Þ2
� �

þ nloss �
q
2

u��ð Þ2 ð5Þ

Where, u* denotes the average fluid velocity in the film-thickness direction, and the
superscripts + and − indicate quantities in the dimple section just after flowing out of
the smooth section and quantities in the smooth section just before entering a dimple,
respectively. The coefficient of loss, n, is defined as

nloss ¼ f 1� h�

hþ

� �2

ð6Þ

where f is 1.0 in the study [11]. At an abrupt reduction point, the empirical formula
[13] of step bearings is used.

p� � pþ ¼ b
q
2

u�þð Þ2� u��ð Þ2
� �

þ n1
q
2

u�þð Þ2� u��ð Þ2
� �

� n2qU
2 ln

h�

hþ ð7Þ

In the laminar regime, coefficient b takes a value of 1.2 and coefficients n1 and n2
each take values of 0.133 [13].

As the boundary conditions for pressure, Reynolds boundary condition is applied.
The pressures at both bearing ends and in the oil-feeding groove were set to zero
(ambient pressure).

After the pressure distribution was obtained, the vertical and horizontal components
of the oil-film reaction force can, respectively, be calculated by the following integrals:

fX ¼ �gx
R
C

� �2

RL
Z1

0

Z2p

0

P cos hdhdZ ð8Þ

fY ¼ �gx
R
C

� �2

RL
Z1

0

Z2p

0

P sin hdhdZ ð9Þ

The above two force components under the steady state condition, fX0 and fY0, are
as follows:

fX0 ¼ W ð10Þ

fY ¼ 0 ð11Þ

where W is the static load applied vertically downward on the journal.
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2.3 Numerical Calculation of the Pressure Distribution

To obtain the pressure distribution numerically, the Reynolds Eq. (1) was discretized
by using a cell method, which is proposed by Arghir [14]. The calculation region is
divided into an orthogonal grid with 180 in the circumferential direction by 60 across
the bearing width, and the edges of the square dimple are placed on the cell boundary
as shown in Fig. 3. The pressures at the cell’s centers are calculated with a difference
equation derived from Eq. (1) using a successive over-relaxation scheme, whereas the
pressures at the cell boundaries on the step between the dimple and the smooth region
are also calculated considering the inertia effect and the energy loss. If any negative
pressures obtained during the iteration, the pressure are set to zero to maintain the
Reynolds boundary conditions.

2.4 Calculation of the Dynamic Coefficients of the Oil Film

When the rotor is applied small displacements, DX and DY , and small velocities, D _X
and D _Y , in vertical and horizontal directions around its equilibrium position, the
dynamic reacting forces, fX and fY, are described with eight dynamic coefficients based
on the assumption of linearization as follows:

fX ¼ fX0 þ kXXDXþ kXYDY þ cXXD _Xþ cXYD _Y
fY ¼ fY0 þ kYXDXþ kYYDY þ cYXD _Xþ cYYD _Y

�
ð12Þ

where kij and cij (i; j ¼ X; Y ) are the stiffness and damping coefficients, respectively.
Stiffness and damping coefficients are defined as follows:

dimpleControl volume

Fig. 3. Discretization of the bearing surface
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where the subscript “0” denotes the quantities in an equilibrium position.
In the present analysis, the dynamic coefficients were numerically calculated using

a perturbation method. For a given small displacement or velocity of the journal at an
equilibrium position, the dynamic pressure distribution was calculated and the film
force components were obtained. The dynamic coefficients were determined from the
difference between the force components just obtained, fX and fY , and the corre-
sponding ones in the equilibrium position, fX0 and fY0, divided by the relevant dis-
placement or velocity. For example, in the case of kXX and kYX , a small displacement
DX is only applied while the other infinitesimals are set to zero. With the resulting
difference of the oil-film reaction forces due to DX , kXX and kYX are calculated as
follows:

kXX ¼ fX � fX0
DX

; kYX ¼ fY � fY0
DX

ð15Þ

In the study, we used 0.001 as the values of the small displacement or velocity.

2.5 Calculation of the Linear Stability Threshold Speed

Figure 4 illustrates a model rotor used for the stability analysis. The rotor is composed
of a massless rigid shaft and a disk with a concentrated mass of 2 m located in the
middle, and it is supported by two identical journal bearings at each end.

Considering small vibrations of the rotor at the equilibrium position, the equations
of motion of the rotor in the X and Y directions can be written with the dynamic
coefficients obtained above as follows:

m€Xþ cXX _Xþ cXY _Y þ kXXXþ kXYY ¼ 0
m€Y þ cYX _X þ cYY _Y þ kYXX þ kYYY ¼ 0

�
ð16Þ

Applying the Routh–Hurwitz stability criterion to the characteristic equation
obtained from Eq. (12), the linear stability-threshold shaft speed xc for the rigid rotor is
obtained in dimensionless form mc [15],

mc ¼ mcffiffiffiffiffiffiffiffiffi
g=C

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1a3a5
a21 þ a2a25 � a1a4a5

r
ð17Þ

where g is the acceleration of gravity, and the coefficients a1 to a5 are expressed by the
following dimensionless dynamic coefficients:
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a1 ¼ KXXCXX � KXYCYX � KYXCXY þKYY

a3 ¼ CXXCYY � CXYCYX
a3 ¼ CXXCYY � CXYCYX

a4 ¼ KXX þKYY
a5 ¼ CXX þCYY

8>>><
>>>:

ð18Þ

In Eq. (14), Kij and Cij (i; j ¼ x; y) are the dimensionless stiffness and damping coef-
ficients, respectively, and are defined as follows:

Kij ¼ C
W

kij;Cij ¼ Cx
W

cij ð19Þ

2.6 Analytical Conditions

The analytical conditions are listed in Table 1. In the analysis, we changed the texture
start angle hts from 0° to 270° to investigate the position of the textured area under the
constant texture angle ht = 90°. A fully textured bearing and a smooth bearing were
also calculated for comparison. Schematics of the bearing shape used in the study are
shown in Fig. 5.

The data obtained in the study was summarized by using the Sommerfeld number
S, which is defined by

Fig. 4. A model rotor

Table 1. Analytical conditions

L/D 1.0
ht 90°
hts 0°, 90°, 180°, 270°
lph/(2pR) 1/60
lpz/L 1/10
lth/lph = ltz/lpz 0.5
ht/C 1.0
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S ¼ gNDL
W

R
C

� �2

ð20Þ

where N is the rotational speed of shaft.

3 Results and Discussion

Figure 6 illustrates the eccentricity ratio e for various Sommerfeld number S. In the
figure, the blue and red lines denote the numerical results obtained for partially textured
bearings, whereas the black lines for the smooth (PLN) or fully textured ones (FULL).
The eccentricity of the partially textured bearings is smaller than that of fully textured
one, but larger than that of smooth one for a wide range of S. This means that the
reduction of the texture region is effective for improvement of the load carting capacity
for the fully textured bearings. In addition, it is difficult to use the surface texturing for
the increase of the load carrying capacity. As for the position of the texture region, the
eccentricity of hts = 0° and 270° are smaller than those of hts = 90° and 180°. This
trend becomes prominent when S is low. The dimples on the loaded region
(90�\h\270� 0) on the bearing surface has substantial impact on the load carrying
capacity than unloaded region (h\90�, h[ 270�).

From the above results, in order to suppress the reduction of the load carrying
capacity the texture region should be formed in the unloaded region. This results
qualitatively agree with the results of Tala-Ighil et al. [1] and Brizmer [5].

Figure 7 shows the variations of the attitude angle /. When S is lower, the results
of partially textured bearings except 90° are close to that of PLN. As S increases, the
influence of hts increases. In particular, in the case of hts = 0°, / becomes larger than
that of PLN.

Fig. 5. Schematic diagram of bearing shape used in the analysis
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Figure 8 shows a stability chart for the model rotor shown in Fig. 4. It is found that
the stability shaft speed of hts = 270° is significantly higher than those of others
including FULL and PLN at high Sommerfeld numbers. As the load carrying capacity

Fig. 6. Variations of eccentricity ratio with Sommerfeld number.

Fig. 7. Variations of attitude angle with Sommerfeld number.
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of 270° is higher than that for FULL, an appropriate partial texturing can improve both
the load carrying capacity and the stability simultaneously. However, the increase of
the stability threshold speed in 270° is smaller than the improvement in two lobe
bearings with preload factor 0.5, which was calculated on the basis of the stiffness and
damping coefficients of the Journal-bearing Databook [16]. On the other hand, the
stability shaft speeds for 0°, 90°, 180° do not exceed that of FULL. Even on the same
unloaded region, stability characteristics of 0° and 270° are entirely different.

Figures 9 and 10 show the stiffness and damping coefficients respectively. These
values are used to create the stability chart shown in Fig. 8. Focusing on the results of
270° which have high stability threshold speeds, two specific features seem to exist at
high Sommerfeld number. One is that the magnitude of the cross-coupling stiffness
coefficient KYX is relatively smaller than those of the other partially textured bearings at
higher Sommerfeld numbers The other is the direct damping coefficients CXX and CYY

are larger than those of FULL at higher Sommerfeld numbers. The decrease of the
cross-coupling stiffness coefficients and the increase of the direct damping coefficients
is known to improve the stability characteristics of the rotor system. Hence the stability
of 270° is relatively higher than the others.

In the case of 180°, some stiffness and the damping coefficients change discon-
tinuously at high Sommerfeld number. This is due to the large step of the Sommerfeld
number.

Fig. 8. Stability chart of a rigid rotor supported in the two identical partially textured bearings

432 H. Taura



Fig. 9. Stiffness coefficients for partially textured bearings
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Fig. 10. Damping coefficients for partially textured bearings

434 H. Taura



4 Conclusions

In the study, we investigated the effect of the texturing region on the static and dynamic
characteristics of partially textured bearings theoretically. We performed numerical
calculations to obtain the load carrying capacity and the stiffness and damping coef-
ficients of the oil film and the linear stability-threshold shaft speed of the rigid rotor
supported by textured bearings by changing the start angle of the texture region.

1. An appropriate partial texturing formed on the bearing surface can improve both the
load carrying capacity and the stability characteristics simultaneously.

2. The start angle of the texture region should be set at 270 from the top of the bearing
in the rotating direction to improve the bearing characteristics.
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Abstract. The aim of the paper is to optimize the tribological characteristics of
lubricating oils that are used in the process industry during machining. In several
cases, the machines employed are organized in several “stands” forming “lines”
and are equipped by several spindles supported by journal bearings, fed by the
same oil. Typically, the spindles supported by the bearings rotate at increasing
speeds from the feeding of the blank material to the outlet of the machined one.
The power loss on the single spindle is different from the others, not only for the
different rotational speed, but also because the oil with which the single bearing
is fed has different temperature and, thus, different viscosity. At present, stan-
dard mineral oils for typical use are employed. Owing to the large power loss in
these kinds of plants, an attractive idea for power saving is, therefore, to for-
mulate a lubricating oil which, globally, along the entire line, has the best
rheological characteristics depending on the actual rotational speed of all
spindles. In this paper, the modelling of the line is presented, by using a TEHD
(thermo-elasto-hydro-dynamic) model for the calculation of the power dissi-
pated in each journal bearing and the lubricating oil characteristics are defined
by means of a multivariate optimization on the parameters of viscosity, tem-
perature and thickness of the oil film. Finally, the optimized dynamic viscosity
curve is obtained and can be used for the formulation of an oil, not necessary of
mineral origin, with suitable additives.

Keywords: Power loss � Power saving � Lubricants � Viscosity
Journal bearings � Tribology

1 Introduction

Oil-film journal bearings in industrial field are still widely employed for their simplicity
in high-load or high-speed applications [1–6]. Typical applications are represented by
machines with medium/large diameter shafts, operating at low Sommerfeld numbers
[7] and characterized by both low tangential speeds and high loads. Conversely other
applications can be characterized by high speeds and low loads.

In the paper the case of a steel roll forming machine equipped with several bearings
[8, 9] operating in different operating conditions has been considered.
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The steel roll forming process is a multi-stage industrial process used to reduce the
thickness of metal sheets or metal profile [9]. Typically, two counter-rotating rollers are
used to generate the necessary force. The aim is to obtain the desired cross section
shape. At each stage the cross-section surface decreases and so the length of the whole
workpiece will change (see Fig. 1). The first stages have lower speeds, whereas the last
ones have high rotational speeds. In this paper, the modelling of the line is presented,
by using a TEHD model for the calculation of the power dissipated in each journal
bearing [10–13]. Finally, the optimized dynamic viscosity curve that reduce the overall
power loss, is obtained and can be used for the formulation of the oil.

2 Typical System Description

The steel roll forming machine considered in the paper is composed by 10 equal stands
with increasing rolling speed. Each stand is composed by 2 spindles in parallel con-
figuration, rotating at the same speed as shown in Fig. 2.

Fig. 1. Example of steel roll forming process.

GEARSREAR BRG. FRONT BRG.
FORMING

ROLLER

METAL
PRODUCT

Fig. 2. Example of stand of steel roll forming machine.
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Each spindle is supported by two oil-film plain journal bearings, namely the front
and the rear ones. The front bearings of all the stands have the same geometry as well
as the rear bearings but they have smaller dimensions with respect to the front ones.

For confidential reasons the rotational speed in each stand has been normalized
with respect to the maximum rotational speed of the last stand and the estimated load
on the bearings with respect to the maximum load obtained in the front bearing of the
first stand. The normalized rotational speed and load are shown in Fig. 3. For instance,
the speed in the last stand is about 7.5 times the speed in the first one and the load in the
rear bearing of the last stand is about 26 times lower than the front bearing of the first
stand.

3 Oil Properties

The investigation for the reduction of power loss in the oil-film bearing is based on the
simulation of the behaviour of all the bearings installed in the machine for different oil
characteristics. The dependence of kinematic viscosity kv on temperature T is given by
Walther’s viscosity equation [6]:

kv Tð Þ ¼ exp exp A� B ln Tð Þ½ �½ � � 0:7 ð1Þ

Constants A and B can be evaluated by the kinematic viscosity of the oil at 40 °C
(kv40�C) and 100 °C (kv100�C) as:
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Fig. 3. Operating speed and load of the bearings.
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B ¼
ln ln kv100�C þ 0:7ð Þ

ln kv40�C þ 0:7ð Þ
� �
ln T100�C

T40�C

� �
A ¼ ln ln kv40�C þ 0:7ð Þð Þ � B � ln T40�Cð Þ

ð2Þ

Mass density q and specific heat capacity cp are given as follow:

q Tð Þ ¼ C � D � T
cp Tð Þ ¼ EþF � T ð3Þ

where C;D;E;F are all positive constants.
Therefore, the temperature behaviour of the oil is wholly defined by the two values

of the kinematic viscosity at 40 °C and 100 °C that are kv40�C and kv100�C. The
reduction of power loss for the new oils will be evaluated in comparison to the actual
oil used in the steel roll forming machine, named in the following as reference
condition.

4 Bearing Model

The TEHD model of the bearing includes the laws of hydrodynamic lubrication, the
thermal effect due to shear stresses in the oil-film and the deformation of the bearing
due to mechanical and thermal stresses [14].

The hydrodynamic model is based on the well-known Reynolds equation, see for
instance [3, 4, 6]:
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where x is the tangential direction, z the axial direction, h the oil-film thickness, p the
pressure, l the dynamic viscosity and U; V represent the velocity terms in the tan-
gential and radial directions of the shaft.

Cavitation and turbulence effects are not negligible for plain journal bearings
operating at high speed as the last stage in the steel roll forming machine. The cavi-
tation problem has been solved on the basis of the algorithm presented in [15], which is
an extension of the Elrod’s algorithm [16], that uses the complementarity concept and
also ensures the mass conservation. Turbulence has been considered by means of
Constantinescu’s model [17].

Therefore, the following complementary problem must be solved:
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In the active (non cavitated) region the fluid density is constant and equal to q0. In
the cavitated (non-active) region the density becomes lower due to the presence of
vapor and gas bubbles. The pressure, instead, has a complementary behaviour. It
assumes zero as value in the cavitated region, whereas it has a greater value in the other
part of oil bearing. The solution of Eq. (5) can be obtained through a linear comple-
mentarity problem (LCP) solver.

The turbulence has been considered using the Prandtl’s mixing length hypothesis
[17], by means of coefficients kx and kz:

kx ¼ 12þ 0:53 � k2 � Rh
� �0:725

kz ¼ 12þ 0:296 � k2 � Rh
� �0:65

k ¼ 0:125 � Re0:07h

Reh ¼ Uh=m

ð6Þ

where Reh is the global Reynolds number, Rh the local Reynolds number, h the oil-film
thickness and m the kinematic viscosity.

The distribution of the temperature in the bearing is obtained by means of a three-
dimensional thermal model that include a portion of the shaft, the oil-film and the
bearing. The energy equation for the oil-film is as follows:
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where cp and kOIL are the heat capacity of the thermal conductivity of the oil respec-
tively. The use of a two-dimensional thermal model based on the assumption of adi-
abatic conditions at shaft and bearing surfaces and constant oil temperature in the oil-
film thickness leads to the overestimation of the temperature in the oil-film especially in
the case of bearings operating at high speeds where shear stresses can be very high.
Therefore, a more accurate three-dimensional model must be adopted [13].

The temperature distributions in the bearing and shaft at the steady state are gov-
erned by the following equations:

�r kBRGrTð Þ ¼ 0

�r kSHAFTrTð Þ ¼ 0
ð8Þ

where kBRG and kSHAFT are the thermal conductivity of the bearing and shaft
respectively.

Equations (7) and (8) have been solved by means of the finite element approach
using a structured mesh for the oil-film and unstructured meshes for the bearing and
shaft as shown in Fig. 4 for the lower front bearing in the first stand. In Fig. 4 the load
acts in the upward direction.
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Convective boundary conditions with convection coefficients q ¼ 50 W/m2 are
applied on all the non-active surfaces of the bearing and shaft.

An example of temperature distribution in the system is shown in Fig. 5 for the
lower front bearing in the first stage of the machine in reference condition. In Fig. 5, a
fixed temperature of 40 °C is assumed as boundary condition for the inlet surface of the
oil.

Fig. 4. Meshes used for the solution of the thermal problem.

Fig. 5. Example of temperature distribution in the cross section (middle plane) of the bearing
obtained with a three-dimensional thermal model.
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The effect of the deformation of the bearing because of the pressure distribution and
bearing thermal expansion has been considered and evaluated by means of a finite
element analysis. The resultant deformation of the bearing surface has been trans-
formed in the change in oil-film thickness.

By considering an isotropic material, the deformation of the bearing (displacement
u) due to thermal and mechanical stresses is governed by the elasticity equation:

�r C �ruð Þ ¼ E
1� 2m

atrT ð9Þ

where C is the tensor of mechanical properties, at the thermal expansion coefficient, E
the Young’s modulus, and m the Poisson’s ratio of the material.

Additional boundary conditions are applied on all surfaces of the pad to consider
the traction stresses for the evaluation of the thermal deformation.

An example of bearing deformation is shown in Fig. 6 for the lower front bearing
in the first stand of the machine in reference condition.

In conclusion, for a given static load, the following conditions must be satisfied:

– convergence of the pressure distribution in the oil-film;
– convergence of the temperature distribution in the system;
– convergence of bearing deformation;
– equilibrium of the forces on the shaft.

Nominal
Deformed (500X)

Fig. 6. Example of bearing deformation in the cross section (middle plane) of the bearing.
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The results of the numerical simulations have been obtained by using the code
developed by the authors and based on Matlab®. The optimization toolbox has been
used for solving the equilibrium position of the system, the partial differential equation
toolbox for solving the three-dimensional thermal model for the temperature distri-
bution and the three-dimensional structural-mechanics model for the bearing
deformation.

4.1 Results for the Reference Oil

The bearings of the machine operate in a wide range of conditions in terms of load and
rotational speed. The bearings in the first stage run at low speed and high load whereas
the bearing in the last stand operate at high speed and low load (see Fig. 3).

Considering the results of the simulations, the maximum power loss for the ref-
erence oil is obtained in the last stands that runs at high speed as shown in Fig. 7 where
all the values have been normalized with respect to the maximum value. Conversely the
minimum oil-film thickness is obtained in the first stage of the machine as shown in
Fig. 8.

The minimum oil-film thickness has been normalized with respect to the maximum
value obtained in the last stand in Fig. 8.
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Therefore, the design of the new oil will be a trade-off between the reduction of
power loss that can be easily obtained by reducing the viscosity of the oil in the last
stage and the limit of the minimum oil-film thickness reached in the first stages of the
line.

5 Characteristics of the New Oil

The behaviour of all the 40 bearings in the steel roll forming machine has been
simulated for different oil properties given by the two kinematic viscosities at 40 °C
and 100 °C. The aim of the analysis is the reduction of the power loss. The percentage
variation of the power loss with respect to the reference oil, that is the actual oil used in
the system is shown in Fig. 9 where the black dot represents the reference condition. In
Fig. 9 it is possible to note that the highest power loss reduction can be obtained by
reducing the viscosity of the oil. However, the two viscosity parameters are not
independent themselves. Real oils show a behaviour represented by a limited range of
the viscosity index that relates the kinematic viscosities. The two black lines in Fig. 9
represent the boundaries of the new energy saving oil. Conversely, the reduction of the
oil viscosity leads to a reduction of the minimum oil-film thickness as shown in
Fig. 10.

The value of the minimum oil-film thickness is critical for the bearings in the first
stand that operate at high load and low speed.
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Fig. 9. Variation of power loss with respect to the reference oil.

Fig. 10. Variation of minimum oil-film thickness with respect to the reference oil.
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6 Conclusions

The reduction of the total power loss due to shear stresses in the oil of the bearings of a
steel roll forming machine has been investigated in this paper.

The analysis has been performed by simulating the behavior of all the bearings by
means of an accurate TEHD model. The reduction of the power loss can be obtained by
the reduction of the oil viscosity. The following conclusions can be drawn:

– the maximum power loss is obtained in the bearings operating at high rotation
speed;

– the bearings operating at low rotational speed are critical because they show the
minimum oil-film thickness;

– the minimum oil-film thickness is mainly a function of the kinematic viscosity at
40 °C;

– the overall power loss of the machine can be reduced of 30% by using an oil with
kinematic viscosities at 40 °C and 100 °C that are about half the values of the
reference oil.
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Abstract. Clearance is of paramount importance for turbomachinery manu-
facturers to meet today’s aggressive power output, efficiency, and operational
life goals. To minimize leakages, there are various seal types used, and new
sealing concepts are in development. Because of their inherent flexibility and
compliance, brush seals are capable of significantly reducing the leakage, and
allow sufficient geometrical margins to accommodate design and operational
variations of turbomachines. Brush seals can be assembled at very tight or zero
radial clearance or even with interference on the rotor to minimize the leakage.
This means that the risk of contact between the rotor and the seal bristles exists,
especially in case of zero clearance or interference. If the contact occurs, a hot-
spot develops on the rotor and this may cause the vibration to diverge, resulting
in a synchronous instability, the so-called Newkirk effect. The objective of this
paper is the development of a numerical model to analyze the dynamic behavior
of real turbomachines subject to thermally-induced vibration caused by light-rub
of the rotor against brush seals. The model developed in the paper is based on
the work of Bachschmid et al. [1]: the dynamics is analyzed in the frequency
domain using the standard rotordynamic model, whereas the heat transfer
analysis, to calculate the temperature distribution and the associated thermal
bow, is studied in the time domain. The contact analysis has been deeply
revised, aiming at estimating suitable normal and tangential force and the fric-
tion heating generated by the contact.

Keywords: Rotordynamics � Brush seal � Spiral vibration
Acronyms
1X Synchronous vibration
KP Key-Phasor
PCS Point of the orbit Closest to the Stator
FD Finite difference

Nomenclature
Cp Specific heat capacity of the rotor
d tð Þ Distance of the centre of the rotor w.r.t. to centre of the seal as a function

of time
E Young modulus
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�F External force in the complex notation
F tð Þ External forces applied in the rotordynamic model as a function of time
feq;pi Equivalent force per unit of circumferential length of the point pi
fn;pi Normal force per unit of circumferential length of the point pi
ft;pi Tangential force per unit of circumferential length of the point pi
FxKP;pi Contact force generated correspondent to the point pi along the xKP axes
FyKP;pi Contact force generated correspondent to the point pi along the yKP axes
FxKP Contact force along the xKP axes
FyKP Contact force along the yKP axes
Feq Equivalent contact force
G Gyroscopic matrix of the rotordynamic model
Hpi Interference between the point pi and the stator
htc Heat transfer convection coefficient
I Geometrical moment of inertia of the brush bristle
j Imaginary unit
K Stiffness matrix of the rotordynamic model
kbristle Stiffness of a single brush seal bristle
kT Thermal conductivity
ku Brush seal stiffness per unit of circumferential length
L Characteristic length to define the heat transfer convection coefficient
Lbristle Free length of the brush seal bristle
M Mass matrix of the rotordynamic model
Mx zð ÞMy zð Þ Equivalent bending moments along the x and y direction as a function of

the axial coordinate
np Number of point pi on the rotor surface
Nu Nusselt number
Opi Distance between the point O and the point pi
Pr Prandlt number
qrub Heat flux generated by the rotor/brush rub
qpi Heat flux generated by the point pi in contact with the rotor surface
r Radial coordinate of the reference system used in the heat transfer model
R Damping matrix of the rotordynamic model
R Rotor radius
Re Reynolds number
s Rotor/brush seal radial clearance
t Time
T Temperature
Tsteady Steady-state rotor temperature field
Tsteam Temperature of the steam at the boundary
ur Radial deformation
wseal Width of the brush seal
�x Displacement of the rotor in the complex notation
x tð Þ; y tð Þ Displacements of the rotor as a function of time
_x tð Þ; _y tð Þ Velocities of the rotor as a function of time
€x tð Þ;€y tð Þ Accelerations of the rotor as a function of time
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X; Y Magnitude of the rotor displacements
xpi; ypi Coordinates of the pi point of the rotor surface
x0; y0 Eccentricity of the rotor
xKP; yKP Coordinates of the KP point
xPCS; yPCS Coordinates of the PCS point
z Axial coordinate of the reference system used in the heat transfer model

a Angle between the x’ axis and the KP point
aT Linear thermal expansion coefficient
b Angle between the KP and PCS
n Angle between the x’ axis and the PCS point
er; e#; ez Mechanical strains along the radial, angular and axial direction
cpi Angle between the KP point and the point pi on the rotor surface
ci Angle between the KP point and the point pi on the rotor surface after

discretization adjustment
cpi;min Minimum angle of the cpi angles
x Whirling speed of the rotor
X Rotational speed of the rotor
/ Angle between feq;pi and fn;pi
/x;/y Phase of the rotor displacements
k Angle between Feq and FyKP

k’ Angle between Feq and xKP axes
q Material density of the rotor
qbristle Density of the bristle along the circumferential direction
rz Mechanical stress along the axial direction
# Angular coordinate
#bristle Angle of inclination of the brush bristle
#pi Angle between the xR axis and the point pi on the rotor surface
#i Angle between the xR axis and the point pi on the rotor surface after

discretization adjustment
m Poisson modulus

1 Introduction

Similar to the oil and gas market, the technology trend in the power-generation field is
to increase the power and efficiency of turbomachines. The need of high efficiency
leads, among other things, to the introduction of new sealing technologies such as
brush seals. Brush seals can be assembled at very tight or zero radial clearance or even
with interference on the rotor. This means that the contact between the rotor and the
seal bristles exists, especially in case of zero clearance or interference. If a contact
occurs, a hot-spot develops on the rotor and this may cause the vibration to diverge,
resulting in a synchronous instability (spiral vibration). The development of numerical
models to analyze this phenomenon is therefore important to assess the rotordynamic
stability during the design phase and avoid excessive vibrations, which may have
severe impact on the operability and on the mechanical integrity of the turbomachinery.
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This phenomenon is often caused by light-rubs, between rotating and stationary
parts, that occurs at a constant rotational speed. The friction forces caused by the rotor-
to-stator contacts give rise to a hot-spot and a consequent shaft thermal bow. The
thermal effect derives from the generation of the heat due to the contact. This leads to a
non-uniform temperature distribution of the shaft. Thermal stresses arise in the rotor,
causing its deflection, which is well known in the literature as rotor thermal bow [1].
The overall heat introduced in the rotor is the difference between the friction heating
generated by the rub and the dissipated heating thanks to the heat convection
phenomena.

In case of rather light-rubs, the heat-removal capacity of the rotor can be sufficient
to ensure that the shaft vibration reaches a limit cycle. In this case, amplitude and phase
of the 1X vector are affected by cyclical changes and the maximum vibration level
might not exceed a limit value. The evolution over time of the shaft thermal bow is
commonly so slow that the cyclicality of the oscillations of the vibration amplitude can
range from a few minutes to some hours. Therefore, the machine dynamic behaviour
can be assumed to be quasi static.

Many studies have been carried out on the response of rotating machines that are
affected by rubbing phenomena and friction-induced thermal bow. The earliest
investigation on the effects of the temperature difference between opposite diametrical
sides of a shaft, caused by rotor-to-stator contacts, was by Newkirk [2], who observed
and described qualitatively the physical phenomenon. From this reason, this phe-
nomenon is well-known in the literature also as Newkirk effect [1].

In 1939, Kroon and Williams [3] investigated experimentally in which conditions
this phenomenon is stable or unstable and they called this phenomenon spiral vibration.

Further important contributions to the analysis of this phenomenon have been
provided by Kellenberger [4], who is the first that investigate this phenomenon from
the thermal view point. He developed a thermo-elasto model of a simple rotor. The seal
was considered isotropic and modeled with inertial, damping and stiffness properties.
The model is described by two partial differential equations. The first one is a second-
order partial derivative equation related to the dynamics. The other is a first-order
equation that described the thermal bow caused by the friction heating. Kellenberger
assumed that the bow was proportional to the difference of temperature between the
hot-spot and the external temperature. The two equations were coupled: the thermal
deflection depends on the stiffness of the stator, while, the heat depends on the dynamic
deflection of the rotor. In case of constant angular velocity, these equations brought to
the description of the spiral vibration phenomenon of Kroon and Williams [3]. Kel-
lenberger’s model defined the period of rotation of the spiral and the conditions that
cause an increasing spiral (unstable) or a decreasing one (stable). These conditions
mainly depended on the thermal parameters, rotor material and geometry.

In recent years, most of the studies about rubbing phenomena in rotating machines
are based on the stability analysis of spiral vibrations, evaluating the eigenvalues of
mathematical models that integrate computation of the machine dynamic response with
that of the thermal response.

Schmied [5] coupled the standard rotordynamic beam model with the Kellenberger
thermal model. The coupling between the equations derives from the fact that the
friction heat depends on the shaft displacements. The eigenvalues associated to the
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thermal part give information about the direction of the spiral vibrations (outward or
inward) and about the amplification factor of the spiral. The limit cycle is not expected
in this model. In [6], the authors investigated three different approaches: the heat
dependent from the shaft displacements, from the shaft velocity and shaft acceleration.
From the comparison with experimental data, the friction heat dependent from the shaft
velocity has been confirmed as the most accurate.

The evolution over time of the friction-induced thermal bow and the consequent
dynamic response of the rotating machine can be also studied with further methods that
combine a thermal model of the shaft, whose response is evaluated in the time domain,
with the motion equations of the rotor-system that are solved in the frequency domain,
under the assumption that the vibration is dominated by the synchronous harmonic
component.

Bachschmid et al. [1] proposed a rather complex model. Beam finite elements
method is employed to solve the dynamics of a real machine while a heat transfer
model, based on the finite difference method, is employed to calculate the rotor tem-
perature distribution. The thermal bow was reproduced in the rotordynamic model by
equivalent bending moments.

In this paper, the model proposed by Bachschmid et al. [1] has been revised to
consider light-rub against brush seals. Dynamics of brush seal has been described in the
literature by only few scholars, among which Deckner [7], Fay et al. [8], Kreuzner et al.
[9] and Demiroglu et al. [10]. The contact analysis and the definition of the hot-spot
points has been improved, as well as the heat transfer model, with respect to [1].

2 Model Architecture

The model is based on the one developed by Bachschmid et al. in [1]. They started
from the consideration that often rotor-to-stator contacts are not severe impact, but
large partial arc rubs or full annular rubs. In these cases, the contact forces gradually
rise and decrease during the rub. When the rubs show this characteristic, the machine
dynamic behavior is rarely affected by chaotic motion [11]. Conversely, the syn-
chronous (1X) component often gives the most important contribution to the harmonic
content of the shaft vibrations. When these conditions are satisfied, 1X spiral vibrations
induced by the thermal effects due to friction forces can occur.

The evolution of the 1X vibration vector due to thermal-induced vibration takes
place in a rather long time. The thermal time transient is much higher than the time
transient of the system dynamics. Therefore, the dynamics response of the system,
under this assumption, can be evaluated in the frequency domain, whereas, the heat
transfer analysis in the time domain.

The rotordynamic finite beam element model of the fully-assembled machine is
used to evaluate the synchronous vibrations in the frequency domain. Linear analysis
can be employed when rub occurs in partial-annular or full-annular rub and no impacts
occur. In accordance to the previous assumption, Fig. 1 shows the flowchart of the
domain swap method proposed by Bachschmid et al. [1] and used in the model
developed in this paper.

Numerical Modeling of Spiral Vibrations 453



The model has been improved and modified to consider the occurrence of light-rub
of the rotor against brush and labyrinth seals.

The standard finite beam element model [12, 13], with gyroscopic, shear and
secondary inertia effects, is used to evaluate the dynamic frequency response. The
contact analysis is then performed. If the rotor interferes with the seals, the interaction
causes contact forces on the rotor and, due to the friction, heat is introduced in a small
arc of the rotor surface. This determines a temperature gradients in radial, axial and
circumferential directions of the rotor region which is close to the rubbing section. To
calculate the thermal strain distribution, the rotor region is discretized and the thermal
analysis is computed. The thermal strain distribution can cause a thermal bow of the
rotor, that can be reproduced by equivalent bending moments as shown in [14–17] in
the rotordynamic beam model.

Consequently, considering the initial unbalance, equivalent bending moments due
to the thermal bow and the forces generated by the contact, the dynamic response of the
rotating machine is computed again and the contact analysis is one more time per-
formed. The temperature distribution that causes the thermal bow is calculated by the
heat transfer model and, after that, the equivalent bending moments that reproduce the
thermal bow are considered in the dynamic model. The analysis continues to iterate till
the vibration vector converges or the spiral vibration can be detected. If the rotor does
not come in contact with the seals, contact forces are equal to zero and no heat is
introduced.

Fig. 1. Flowchart of the model.
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The procedure is valid as long as the thermal transient time constant is much higher
than the dynamic transient time constant, as is also observed in [15]. This condition is
usually satisfied in large rotating machines that have considerable thermal inertia.

The model developed in [1] considered only a single point of contact with an
average interference with the stationary part because the authors considered that the
stator is not flexible. In the present work, instead, the calculation of punctual deflection
has been performed.

Moreover, the calculation of the forces generated by the contact is more realistic.
This is effective on both the mechanical and thermal parts of the study, because:

• the resultant equivalent force will not be the one relative to an average deflection,
but rather the result of several points in contact; this is particularly effective when
the rotor touches the stator in an arc of the brush seal;

• the heat will no longer enter (always) through only one point, but instead different
points will be present, making the thermal gradient distribution rather different from
the original model; therefore, the bow will not derive from only one heat point, but
from the heating of one (or more) entire arc of points.

Furthermore, the heat transfer model has been revised to consider a domain more
similar to rotor regions of real machines. In the original model [1], the rotor region
where the contact occurs was simplified with a single cylinder, whereas in the mode
proposed in this paper, the model can handle more complex geometries.

The following assumptions are used in the entire model proposed in this paper:

• the rotor is supposed to be in the position of the orbit with the minimum clearance,
even with interference. This assumption derives from the observation that, because
of the high rotational speed, the heat entering in this position is much higher than
the one dissipated along the remaining orbit;

• light-rub does not affect the shape of the rotor orbit;
• the torque generated by the friction force due to the rub does not affect the lateral

dynamics of the rotor. It is assumed that the lateral and the torsional dynamics are
uncoupled;

the rotor and stator radial growth due to the steady-state temperature is supposed to be
equal in the radial direction. Therefore, the nominal clearance does not change due to
the steady-state temperature.

3 Dynamic Frequency Response

The equations of motion in the time domain can be stated as,

M€x tð Þþ RþG Xð Þð Þ _x tð ÞþKx tð Þ ¼ F tð Þ ð1Þ

where M is the mass matrix, R is the damping matrix, G is the gyroscopic matrix as a
function of the rotational speed and K is the stiffness matrix of the machine model
considering also the rotating equipment such as bearings, coupling, seals etc.
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The solution of this second-order differential equation is determined summing the
general integral of the associated homogeneous to the particular integral. Because of
the damping of the system, the general integral is decreasing in time. After a long
enough time, its contribution can be neglected and the steady state is reached: at that
moment, the system motion only depends on the particular integral.

The vector F tð Þ of the external forces can be expressed in the complex form as:

F tð Þ ¼ �F � ejxt ð2Þ

Because the system is linear, the solution of the particular integral is:

x tð Þ ¼ �x � ejxt ð3Þ

By substituting Eq. (3), Eq. (2) and its derivatives into Eq. (1) and eliminating the
term ejXt that is always different from zero, Eq. (1) results in:

X2Mþ jx RþG Xð Þð ÞþK
� �

�x ¼ �F ð4Þ

The solution of the particular integral can be obtained by defining the inverse
matrix of the mechanical impedance that depends on the whirling speed X and rota-
tional speed x.

�x ¼ X2Mþ jx RþG Xð Þð ÞþK
� ��1�F ð5Þ

4 Dynamic Frequency Response

During the rotational and precessional motion of the shaft the available clearance
between the rotating and stationary parts reaches a minimum value. Rubs happen when
the radial clearance nullifies or a geometrical interference between rotor and obstacle
occurs. The point on the external surface of the rotor that is located at the maximum
interference with the stationary part is the so called high-spot.

Whereas, the diametrical plane in which the rotor thermal bow is generated by the
friction-induced heat input is highly determined by the hot-spot position. In case of
light-rubs, the friction-induced thermal bow causes a slow precession of the vibration
phase because the shaft high-spot and hot-spot do not coincide, due to the way with
which the contacts occur and the rotor thermal bow evolves.

The friction-induced thermal bow of the rotor depends on the intensity of the rubs
and the way with which they occur. In many cases, the stationary part is circular-
shaped, as for seals, brushes and oil-deflectors. The center of the 1X elliptical orbit is
commonly affected by a not null eccentricity.
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The shaft rotates about its longitudinal axis while its center is subjected to a
precessional motion as a consequence of not null vibrations. In this study the shaft
rotational speed has been assumed equal to the angular speed of the precessional
motion (whirling speed). This is in good accordance with the assumption of very light-
rubs, like those that commonly cause spiral vibrations.

For a given set of geometrical characteristics of rotating and stationary parts, as
well as for given 1X vibrations of the rotor, the available radial clearance between the
shaft and the circular obstacle can be evaluated for any position of the shaft center over
the orbit, during a complete precessional motion. In this model, the rotor is supposed to
be in the position of the orbit with the minimum clearance, even with interference. This
assumption derives from the observation that, because of the high rotational speed, the
heat entering in this position is much higher than the one dissipated along the
remaining orbit.

At any time rubs may occur if the minimum radial clearance nullifies or it becomes
negative. In case of light-rubs, a linear relationship can be assumed between the normal
contact force and the interference between shaft and obstacle.

The length of the arc of the external surface of the shaft that is involved in the
contacts with the stationary part depends on various factors like, such as the radial
interference and the orbit shape along with the eccentricity of the orbit center.

Therefore, the curve of the interference is not symmetric with respect to its peak
(high-spot). The asymmetry of this curve is commonly very small and even
infinitesimal, but it is rarely null. Owing to this, the resultant vector of the normal
contact forces may be shifted, backward or forward, with respect to the angular position
of the peak of the curve of the cumulative normal contact forces. At a given time, the
angular position of the hot-spot depends on the angular position of the resultant vector
of the normal contact forces evaluated over the orbit as well as on the current thermal
state of the rotor.

The contact analysis aims to identify the interference between the rotor and the seal
and to evaluate the normal, tangential forces and the heat generated by the contact. Two
reference systems have been defined.

The S x;O; yð Þ reference system is rigidly connected to the seal and its origin O
corresponds to the center of the sealing ring. The S0 x0;O0; y0ð Þ reference system has the
axes parallel to those of S x;O; yð Þ, the center is located in the center of the orbit of the
rotor: O0 � Oð Þ is the eccentricity between the center of the seal and of the rotor orbit.

The amplitude and phase of the vibrations, along the x and y directions, are cal-
culated by the rotordynamic model in the frequency domain, therefore, the orbit can be
defined.

Considering that the starting point of the orbit corresponds to the position of the
rotor when the key-phasor is along the vertical direction and that the whirling speed is
synchronous with the rotational one, the angle between the starting point of the orbit
(KP) and the instant position of the rotor is the same between the vertical direction and
the rotor key-phasor, as shown in Fig. 2.
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The orbit can be expressed in the S0 x0;O0; y0ð Þ reference system. The orbit can be
eccentric with respect to the center of the seal, and x0 and y0 represent the Cartesian
coordinates of the orbit center referred to the S x;O; yð Þ reference system. Therefore, the
orbit in the S x;O; yð Þ reference system can be defined as:

x tð Þ ¼ x0 þXej xtþ/xð Þ

y tð Þ ¼ y0 þ Yej xtþ/yð Þ
(

ð6Þ

The angle a (see Fig. 2) between the point KP of the orbit and the horizontal axis of
the S0 x0;O0; y0ð Þ reference system can be defined as:

a ¼ atan
yKP � y0
xKP � x0

� �
ð7Þ

It follows the determination of the point closer to the seal, where the rotor is
supposed to be. To define the point with the maximum interference or the point closest
to the stator named PCS point, the distances between the point O and the positions
assumed by the rotor along the orbit are calculated as:

d tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 tð Þþ y2 tð Þ

p
ð8Þ

The PCS point corresponds to the position of the rotor in correspondence od the
maximum value of d tð Þ. The position of the point PCS is defined by the angle n,
starting from the axis x0, as shown in Fig. 2. It is defined as:

Fig. 2. Definition of angles used in the contact analysis and of the KP and PCS points.
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n ¼ atan
yPCS � y0
xPCS � x0

� �
ð9Þ

The angle b between the KP point of the orbit and the point PCS is a function of the
angles a and n:

b ¼ n� a if n� a
2p� n� að Þ n\a

�
ð10Þ

At the same time, because of the whirling speed is synchronous with the rotational
speed, b is also the angle between the vertical axis and the key-phasor position of the
rotor when this is in the point PCS.

Because the rotor is assumed to rotate in the counter-clockwise direction, if the
orbit is clockwise, the actual value of b is calculated by subtracting b from 2p. The
clockwise b is the explementary angle of the counter-clockwise b.

To calculate the interference between the rotor and the seal, a new reference system
xR;OR; yRð Þ centered in the rotor and with the axes parallel to the ones of S x;O; yð Þ is
defined. The rotor surface is discretized with n points pi, starting from the horizontal
axis xR. The angle between two consecutive points is Dh (see Fig. 3). Consequently,
each point will be at angle hpi with respect to xR. The angle between the key-phasor and
the i-th point on the rotor surface can be calculated as:

cpi ¼ #pi � bþ p
2

ð11Þ

represented in Fig. 3. The points pi are then aligned with the position of the key-phasor,
as:

Fig. 3. Discretization of the rotor external surface.
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#i ¼ #pi � cpi;min ð12Þ

ci ¼ cpi � cpi;min ð13Þ

where cpi;min is the angle between the key-phasor and the closest point pi of the
discretization to the key-phasor (see Fig. 3). Consequently, the points are those defined
in the Fig. 4.

The position of the points on the rotor surface can be defined in the S x;O; yð Þ
reference system by:

xpi ¼ xSTR þRcos #ið Þ
ypi ¼ ySTR þRsin #ið Þ

�
ð14Þ

Once the Cartesian coordinates of the points are calculated, the distance Opi is
calculated as:

Opi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2pi þ y2pi

q
ð15Þ

Overall, given rotor radius, clearance and rotor surface discretization, it is possible
to calculate the interference between the points and the seal as:

Hpi ¼ Rþ s� Opi ð16Þ

where negative values denote interference. All the positive values are imposed as zero,
denoting the absence of contact.

Fig. 4. Discretization after adjustment.
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Once the interference values are calculated, it is possible to estimate the normal and
tangential forces and the friction heating (see Fig. 5).

The brush seal stiffness per unit of circumferential length depends on the material
properties, geometry and circumferential bristle density. The stiffness of the single
bristle is given by [10]:

kbristle ¼ 3
EI

L3bristlesin
2 #bristleð Þ ð17Þ

where #bristle is the designed angle of the bristle and Lbristle is the free length of the
bristle.

In working conditions, the bristles work together, therefore the brush seal stiffness
per unit of circumferential length is:

ku ¼ kbristle � qbristle ð18Þ

where qbristle is the density of the bristle per unit of circumferential length that takes
into account the axial width.

The machine manufacturers consider also the seal boundary pressure in the cal-
culation of the stiffness by using empirical correlation.

The normal force per unit of circumferential length, for each point pi of the rotor
surface is:

fn;pi ¼ ku � Hpi

�� �� ð19Þ

Fig. 5. Heat and contact forces.
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Once the normal force fn;pi is calculated, the tangential force per unit of circum-
ferential length can be obtained by multiplying the normal force for the friction
coefficient l, as follows:

ft;pi ¼ l � fn;pi ð20Þ

The heat flux, due to the friction, is the product between the tangential force and the
rotor peripheral speed divided by the width of the seal, as:

qpi ¼
ft;pi � R � X

wseal
ð21Þ

Normal, tangential forces and the heat fluxes have been defined for each point of
the rotor surface in contact with the seal (see Fig. 5).

The heat flux, due to the friction, generated a non-axisymmetric temperature dis-
tribution of the rotor and consequently a rotor thermal bow, changing the dynamic
response of the machine by the equivalent bending moments. Additionally, also the
normal and tangential forces due to the contact are considered as external forces in the
rotordynamic model.

In order to correctly consider these forces in the rotordynamic model, it is necessary
to calculate the equivalent resultant force and its direction.

The tangential forces of the points pi produce a torque that is not considered in the
dynamics of the machine. The torsional dynamics is assumed to be uncoupled from the
lateral one, therefore the torque generated by the tangential force has been neglected.

The normal and tangential forces, in each point pi, are summed to obtain the
resultant force. The magnitude of the equivalent force for each point in contact can be
calculated as,

feq;pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2n;pi þ f 2t;pi

q
ð22Þ

whereas, the angle with respect to the normal force fn;pi is:

/ ¼ arctan
ft;pi
fn;pi

� �
ð23Þ

In Fig. 6, the normal and tangential force per unit of circumferential length of the
point p1 are shifted in the center of the rotor (the torque generated by the friction force
is not considered). By summing the forces, the equivalent force per unit of circum-
ferential length feq;pi is obtained.

The equivalent forces per unit of circumferential length, of the points in contact
with the seal, are summed to obtain the resultant equivalent force feq;pi .

The equivalent force feq;pi is divided into its components along the xKP and yKP axes
(see Fig. 6). The reference system SKP xKP;OKP; yKPð Þ is centered in the center of the
rotor with the xKP axis correspondent to the key-phasor position.
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The equivalent forces per unit of circumferential length are projected along the xKP
and yKP axes and multiplied by the portion of the rotor surface correspondent to each
point in contact. The resultant forces expressed in Newton, are:

FxKP;pi ¼ �feq;pi � sin ci þ/� pð Þ � 2pR
np

ð24Þ

FyKP;pi ¼ feq;pi � cos ci þ/� pð Þ � 2pR
np

ð25Þ

where np is the number of the nodes along the angular direction. The contact forces are
summed:

FxKP ¼
Xnp
i¼1

FxKP;pi ð26Þ

FyKP ¼
Xnp
i¼1

FyKP;pi ð27Þ

Consequently, the resulting equivalent force is calculated as:

Feq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
xKP þF2

yKP

q
ð28Þ

The angle k between the yKP direction and the equivalent force Feq (see Fig. 7) can
be calculated as:

Fig. 6. Brush seal force projections.
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k ¼ arctan
FyKP

FxKP

� �
ð29Þ

Finally, the angle between Feq and the x axes is calculated as:

k0 ¼ kþ bþ p
2

ð30Þ

5 Dynamic Frequency Response

The objective of this analysis is to determine the temperature distribution in a region of
the rotor as a function of time T ¼ f r; h; z; tð Þð Þ. The heat equation is stated in a
compact form as,

qCp
@T
@t

¼ r � kTrTð Þ ð31Þ

The solutions must satisfy suitable initial and boundary conditions. Because of the
axisymmetric geometry of the rotor, the cylindrical coordinates are more suitable with
respect to the Cartesian ones. Equation (31) can be written as:

qCp
@T
@t

¼ kT
@2T
@z2

þ 1
r2
@2T
@#2 þ @2T

@r2
þ 1

r
@T
@r

� �
ð32Þ

The Robin boundary condition [18] is used to impose the heat convection with the
fluid at the boundaries:

Fig. 7. Equivalent contact force.
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kT
@T
@n

þ htcT ¼ htcTsteam þ qrub ð33Þ

where htc is the heat transfer convection coefficient, Tsteam is the temperature of the
steam at the boundary, qrub is the heat flux generated by the contact of the rotor against
the seal. The heat transfer convection coefficients can be estimated using Eq. (34) The
Nusselt number (Nu) is calculated using empirical correlations (see Eq. (35)). The
values reported in [19, 20, 25–27] can be used to calculate the heat transfer convection
coefficients.

htc ¼ Nu � kT
L

ð34Þ

Nu ¼ 0:023 � Re4=5 � Pr0:3 ð35Þ

where L is the is characteristics length, Re is the Reynolds number and Pr is the Prandlt
number (Pr).

The heat transfer model analyzes a rotor region that must be reasonably long to
reproduce the thermal bow caused by the rub between the rotor and brush seals.

Finite difference (FD) method is used to numerically solve the heat transfer
problem. The treatment of the geometrical singularity in cylindrical coordinates has for
many years been a difficulty in the development of accurate finite difference schemes.
Generally, methods discussed in the literature use pole equations, which are akin to
boundary conditions to be applied at the singular point. The treatment of the pole as a
computational boundary can lead to numerical difficulties. These include the necessity
of special boundary closures for FD schemes [21], undesirable clustering of grid points
[22], and, in FD schemes, the generation of spurious waves which oscillate from grid
point to grid point [23].

The method proposed by Mohseni and Colonius in [24] has been used in this paper.
In their approach, the authors avoid the grid point directly at the pole. This eliminates
the need of any pole equation. The approach is a very simple technique and it is an
effective and systematic way to treat many scalar and vector equations in cylindrical
coordinates. The mesh grid is re-arranged as shown in Fig. 8.

Fig. 8. FD grid scheme used in the heat transfer model.

Numerical Modeling of Spiral Vibrations 465



6 Dynamic Frequency Response

The region close to the seal has been discretized with a number of longitudinal nodes
equal to the ones of the axial section of the thermal mesh, consequently the bending
moments simulating the bow are placed only in these nodes (see Fig. 9). In the nodes
external to this zone no bending moments are applied because the bow is not present.

Once the temperature distribution is evaluated, thanks to the isotropy of the rotor,
standard thermomechanical relations are used to get the thermal strains along the main
directions as

er ¼ e# ¼ ez ¼ aT T � Tsteady
	 
 ð36Þ

where aT is the thermal expansion coefficient. The axial stress distribution is equal to

rz ¼ E
1� 2m

ez ð37Þ

It allows calculation of equivalent bending moments, which should generate similar
strains and a similar overall deformation.

The local radial deformation ur due to rotor-to-stator rub is calculated starting with
its finite difference derivative definition:

@ur
@r

¼ ur r � Dr; #; z; tð Þþ erdr ð38Þ

The local radial deformation ur is much less than the overall thermal bow and could
be neglected. It contributes however to the seal deflection and it is considered in the
calculation.

The bow caused by the thermal stress can be reproduced by mechanical stress.
Because of the linear relation between r and e, the distribution of the stresses is the
same considering a proportionality factor.

To reproduce properly the thermal bow, the moments Mx and My are calculated
using the stress distribution as:

Mx zð Þ ¼ ZR

0

Z2p

0

rz r; #ð Þ � r2sin #ð Þdrd# ð39Þ

My zð Þ ¼ ZR

0

Z2p

0

rz r; #ð Þ � r2cos #ð Þdrd# ð40Þ

The equivalent bending moments are applied in the nodes of the rotordynamic
model correspondent to the rotor region where the heat transfer analysis has been
conducted.
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7 Simulation Results

The proposed model has been used to simulate the behavior of several steam turbines.
For confidential reasons, it is not possible to publish all the data of the following
example, nor to show the machine layout and the brush seal position and character-
istics. Anyhow, the turbine is equipped by five brush seals on the balancing drum.

Figures 10, 11 and 12 show some results which are obtained by using the proposed
model. In particular, Fig. 10 shows the polar plot of the vibration vector in one of the
bearings of the considered unit. It is possible to observe that the vibration vector tends
to a limit cycle and the spiral vibration is not asymptotically diverging. This is also
evident considering the corresponding time history of the vibration amplitude, shown
in Fig. 11.

Fig. 9. Equivalent bending moments applied in the rotordynamic model.

Fig. 10. Polar plot of the vibration vectors in a bearing of the turbine. The dot is the first
simulation step.
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Finally, Fig. 12 shows the maximum temperature reached in the cross sections
corresponding to the five brush seals, as the function of the simulation time. Note that
the starting temperature is close to 500 °C, being the balancing drum the considered
section of the steam turbine.

Fig. 11. Amplitude and phase of the vibration vectors of Fig. 10.

Fig. 12. Time history of the maximum temperature of each cross-section in correspondence of
the brush seals.
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8 Conclusion

In this paper, a model for the analysis of thermally-induced vibrations caused by light-
rub of the rotor against brush seals has been developed. The model is based on the one
developed by Bachschmid et al. The model has been deeply improved, especially
regarding the contact analysis and heat transfer model to extend its versatility to a wide
class of rotor geometry and contact types.

The model developed by Bachschmid et al. has been validated experimentally, a
further validation could be necessary to extend the validity of the model developed in
this paper to the case of brush seals. In the near future, the model will investigate the
dynamic behavior a real gas turbine equipped with brush seals that shows spiral
vibrations in the polar diagram.
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Model for Staggered Labyrinth Seals
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Abstract. As well known, the stability assessment of turbomachines is strongly
related to internal sealing components. For instance, labyrinth seals are widely
used in compressors, steam and gas turbines and pumps to control the clearance
leakage between rotating and stationary parts, owing to their simplicity, relia-
bility and tolerance to large thermal and pressure variations. Labyrinth seals
working principle consists in reducing the leakage by imposing tortuous pas-
sages to the fluid that are effective on dissipating the kinetic energy of the fluid
from high-pressure regions to low-pressure regions. Conversely, labyrinth seals
could lead to dynamics issues. Therefore, an accurate estimation of their
dynamic behavior is very important. In this paper, the experimental results of a
long-staggered labyrinth seal will be presented. The results in terms of rotor-
dynamic coefficients and leakage will be discussed as well as the critical
assessment of the experimental measurements.
Eventually, the experimental data are compared to numerical results obtained

with the new bulk-flow model (BFM) introduced in this paper.

Keywords: Rotordynamics � Staggered labyrinth seal � Bulk-flow
Nomenclature
ari; asi Length of the rotor and stator of the i-th cavity
Ai;A0i Unsteady and steady cross-sectional area of the i-th cavity
B Step height
Ceff Effective damping of the seal
cxx; cyy Direct damping of the seal in the x and y-directions
cxy; cyx Cross-coupled damping of the seal in the x and y-directions
C Average direct damping of the seal
Dhi;Dh0i Unsteady and steady hydraulic diameter of the i-th cavity
e Absolute roughness of the rotor and stator surface
Fx tð Þ;Fy tð Þ Lateral forces acting on the rotor
hi; h0i Unsteady and steady enthalpy of the i-th cavity
Hi Perturbed clearance of the i-th cavity
kxx; kyy Direct stiffness of the seal in the x and y-directions
kxy; kyx Cross-coupled stiffness of the seal in the x and y-directions
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k Average cross-coupled stiffness of the seal
_mi; _m0i Unsteady and steady mass flow rate in the i-th cavity
NJ Number of teeth
Pi;P0i Unsteady and steady pressure in the i-th cavity
r0 Radius of the circular orbit of the rotor
R Rotor radius
Ri Rotor radius in the tooth location
si Clearance of the i-th cavity
t time
Vi;V0i Unsteady and steady tangential velocity in the i-th cavity
W Tooth width at the tip of the i-th cavity
x tð Þ; y tð Þ Rotor displacement in the lateral directions
_x tð Þ; _y tð Þ Velocity of the rotor displacement in the lateral directions
e Perturbation parameter
# Angular coordinate
µ Kinematic viscosity of the fluid
qi; q0i Unsteady and steady density in the i-th cavity
1i Speed of sound of the fluid in the i-th cavity
ssi; ss0i Unsteady and steady stator shear stress in the i-th cavity
x Whirling speed of the orbit of the rotor
X Rotational speed of the rotor

Abbreviations
BC Boundary condition
BFM Bulk-flow model
CFD Computational fluid dynamics
HPSTR High-pressure seal test-rig

1 Introduction

The current trend in the field of power generation is the reduction of rotor-to-seal
clearances to match the requirements of power output, efficiency and operational life.
Conversely, this design approach leads to stability issues [1]. Therefore, the prediction
of labyrinth seals dynamics needs much more attention.

Labyrinth seal is a non-contact seal, composed of two or more teeth arranged in a
manner able to impose a tortuous passage to the fluid. The working principle is based
on reducing the fluid leakage by dissipating the kinetic energy of the fluid via
sequential cavities that are defined by position of the teeth. The teeth can be located on
the rotor, stator or both. Depending on the teeth location, various configurations can be
defined: straight-through, staggered, slanted and stepped labyrinth seals. Straight-
through configuration is the most common labyrinth seal used in real applications
because it is the easiest to be manufactured. However, staggered seals are becoming
popular because they can reduce the leakage on equal radial clearance with respect to
the straight-through ones. Generally, staggered seals are widely used in steam turbines
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whereas straight-through seals are used in high-pressure compressors that historically
show instability issues and this is the reason why academic research are mainly focused
on this configuration. For staggered seals, there are few analytical models and exper-
imental data for the prediction of their stability or instability contribution [2, 3].

The fluid-dynamics within the cavities of labyrinth seals is definitively influenced
by the teeth location. Furthermore, the angle at which the flow approaches each tooth is
correlated to the coefficients of discharge and to the kinetic energy carry-over coeffi-
cient, which strongly influence the leakage.

The dynamic force, produced by the non-uniform pressure distribution within the
seal, in the direction of the rotor displacement (direct force) can change the natural
frequencies of the machine, whereas the force in the orthogonal direction of the rotor
displacement (cross-coupled force) can influence the stability.

The influence of labyrinth seals on the machine stability is typically investigated by
using the standard finite beam-element rotordynamic model [16]. The dynamic
behavior of labyrinth seals is modeled by the linearized coefficients [4], the so-called
rotordynamic coefficients, using stiffness and damping matrices as,

� Fx tð Þ
Fy tð Þ

� �
¼ kxx xð Þ kxy xð Þ

kyx xð Þ kyy xð Þ
� �

x tð Þ
y tð Þ

� �
þ cxx xð Þ cxy xð Þ

cyx xð Þ cyy xð Þ
� �

_x tð Þ
_y tð Þ

� �
ð1Þ

The inertia contribution in gas labyrinth seals is negligible; hence, the mass matrix
is generally not considered. Due to the axisymmetric geometry of labyrinth seals, the
eight linearized rotordynamics coefficients can be reduced to four. The stiffness and
damping matrices are re-arranged as,

� Fx tð Þ
Fy tð Þ

� �
¼ K xð Þ k xð Þ

�k xð Þ K xð Þ
� �

x tð Þ
y tð Þ

� �
þ C xð Þ c xð Þ

�c xð Þ C xð Þ
� �

_x tð Þ
_y tð Þ

� �
ð2Þ

In the following, the dependence of stiffness and damping coefficients from the
whirling speed x will be omitted for simplicity. The cross coupled stiffness coefficient
k and direct damping coefficient C are responsible of destabilizing forces. The resulting
cross-coupled force is given by,

Ft ¼ Cx� kð Þr0 ð3Þ

where r0 is the radius of the orbit. The effective damping can be defined as,

Ceff ¼ C � k
x

ð4Þ

Labyrinth seals contribute with destabilizing effects on the machine dynamics when
the effective damping is negative. The effective stiffness is defined as:

Keff ¼ Kþ cx ð5Þ
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and it is related to the machine natural frequency. Usually, the effective stiffness of
labyrinth seals is not considered for the dynamic behavior for the machine because its
value is one order of magnitude lower than that of journal bearings [5, 6].

The first analytical model of labyrinth seals, containing the fundamental physical
elements for a dynamic characterization was given by Iwatsubo [7]. The model, well
known as the bulk-flow model, is based on one-control volume (1CV) for each cavity
of the labyrinth seal. Bulk-flow quantities can be defined in each CV. The continuity
and circumferential momentum equations are solved for each cavity. The leakage mass-
flow rate can be estimated via empirical correlations. The turbulence is considered by
estimating the friction factor between the fluid and wall boundaries. The governing
equations are solved using the perturbation method. Initially, the steady-state problem
(rotor centered with the seal) must be solved. Then, the solution of the perturbed
problem (by imposing an orbit to the rotor) that is also truncated at the first order, can
be estimated by imposing an analytical form solution. Finally, the dynamic forces can
be estimated by integrating the pressure along the circumferential direction. The
rotordynamic coefficients are calculated by knowing the radius of the rotor orbit.

The bulk-flow model (BFM) represents the most used calculation method applied
for industrial design to calculate the seal rotordynamic coefficients because it is time
efficient compared to Computational Fluid Dynamics (CFD) approaches. Moreover, the
accuracy of CFD predictions is comparable to BFM predictions [8].

A new BFM has been introduced starting from the considerations made from the
authors in [9] and the results shown by Moore in [10]. New boundary conditions
(BCs) can be defined in the BFM. The authors’ assumption has been also validated by
dedicated CFD analysis.

In this paper, the authors present the experimental results for a staggered labyrinth
seal tested using the high-pressure seal test-rig (HPSTR) owned by the authors’
company. The test rig allows the characterization of labyrinth seals in high-pressure
conditions. The main capabilities and the identification procedures of the test-rig are
described in a previous paper of the same authors [11]. The results of an experimental
campaign on a 14 tooth-on-stator straight-through labyrinth seal have been reported in
[9, 12]. The comparison with the experimental data shows improvement in the pre-
diction of the rotordynamic coefficients.

2 Bulk-Flow Model

The baseline structure of the BFM developed by the authors for staggered labyrinth
seals is here described. The model is based on the 1CV BFM developed by the same
authors in [9, 13, 14]. The substantial differences with respect to the BFM for straight-
through labyrinth seals are given by the geometry of the CVs, the leakage correlation
used to estimate the axial velocity and by the impact of the inlet and outlet regions on
the calculation of the rotordynamic coefficients.

The most innovative contribution, with respect to the models available in the
literature, is the perturbation of the pressure and circumferential velocity in the inlet and
outlet regions, where, usually, they are considered equal to zero in common BFMs [4,
9].
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Moore observed in [10] that the contribution of the upstream and downstream
sections on the calculation of the rotordynamic coefficients is not negligible. He pro-
posed a 3D-CFD model to predict the flow conditions and rotordynamic coefficients.
By considering the inlet and outlet regions for the estimation of the fluid forces on the
rotor, the predictions become more accurate compared to experimental results. Because
the seal force is generated by the perturbation of the pressure, the assumption of null
perturbation of the pressure in the inlet and outlet regions is not correct.

In the model proposed in this paper, two additional CVs have been added at the
inlet and outlet regions with a proper mathematical treatment of the governing
equations.

2.1 Governing Equations

The governing equations are represented by the continuity, circumferential momentum
and energy equations. The energy equation is evaluated only in the zeroth-order
problem as described in [13]. 1CV for each cavity has been considered as shown in
Fig. 1.

Because long teeth alternate with the rotor steps, two different CVs can be defined.
The control volume labelled as CVa in Fig. 1, presents the long tooth on the upstream
side and the short tooth combined with the rotor step on the downstream side. The
control volume labelled as CVb in Fig. 1, presents the short tooth combined with the
rotor step on the upstream side and the long tooth on the downstream side. Because the
enthalpy is assumed to be independent on the orbit motion of the rotor as explained in
[9], the derivatives of the enthalpy with respect to the time and to the angular coor-
dinate are null. The governing equations can be stated as,

Fig. 1. CVs and bulk-flow quantities.
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• Continuity equation:

@

@t
qiAið Þþ @

@#

qiAiVi

R

� �
þ _miþ 1 � _mi ¼ 0 ð6Þ

• Circumferential momentum equation:

@

@t
qiAiVið Þþ @

@#

qiAiV2
i

R

� �
þ _miþ 1Vi � _miVi�1 ¼ �Ai

R
@Pi

@#
þ sriari � ssiasi ð7Þ

• Energy equation:

_mi hi þ V2
i

2

� �
� _miþ 1 hi�1 þ V2

i�1

2

� �
¼ sriariRX ð8Þ

where Pi, Vi, qi and hi are the bulk-flow pressure, the circumferential velocity, the
density and the enthalpy in the i-th cavity of the seal respectively.

The geometrical quantities Ai, ari and asi represent the tangential area and the
dimensional lengths where the shear stresses are applied. The tangential area has
different expressions depending on the type of CV considered.

Using the nomenclature given in Fig. 2, the tangential area for CVa and CVb, is
defined, respectively, as

Ai ¼ T
2
�W

� �
BþGð Þ � T

2
�W � C

� �
B ð9Þ

and

Ai ¼ T
2
�W

� �
BþGð Þ � CþF � T

2

� �
B ð10Þ

whereas, ari and asi are defined for both the CVs as,

Fig. 2. Scheme and nomenclature used to describe staggered labyrinth seals.
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ari ¼ T
2
�W þB ð11Þ

asi ¼ T
2
�W þ 2 G� sð ÞþB ð12Þ

The leakage correlation replaces the axial momentum equation in defining the axial
velocity and pressure distributions along the seal cavities. The leakage correlation
employed in the model is the generalized Neumann correlation for real gases [15]:

_mi ¼ Ri

R
CfiHi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi�1qi�1 � Piqi

p ð13Þ

where Cfi is the discharge coefficients and Hi is the dynamic radial clearance. The
leakage is per unit circumferential length because the governing equations are divided
by 2pR. The axial cross-sectional area for the leakage (annulus area) is equal, for the
CVa, to p RþHið Þ2�pR2 that can be approximated to 2pRHi. Thus, dividing the
leakage by 2pR, only the term Hi remains in the leakage equation. Thus, for the CVa
control volume, Ri

R ¼ 1 and Ri
R ¼ 1þ Hi

R for the CVb control volume.
In staggered labyrinth seals, the kinetic energy carry-over coefficient is equal to the

unity for all the teeth as suggested by Childs [5]. The discharge coefficient has been
estimated by the Chaplygin correlation as,

Cfi ¼ p
pþ 2� 5s0i þ 2s20i

s0i ¼ Pi�1

Pi

� �c�1
c

�1

ð14Þ

If the flow sonic condition is reached under the last tooth (choked flow), the leakage
mass flow-rate becomes independent by the downstream pressure. To check if the flow
is subsonic or choked, the axial velocity is compared with the speed of sound ð1Þ of the
fluid. The speed of sound is evaluated using the fluid properties database and it is a
function of the pressure and density of the previous cavity (1i ¼ f Pi�1; qi�1ð Þ).

The axial velocity is estimated using the definition of the leakage mass flow-rate,
which is:

Ui ¼ _mi

CfiHiqi�1
ð15Þ

If the axial velocity is equal or larger than the speed of sound, the leakage mass-
flow rate equation becomes:

_mi ¼ CfiHiqi�11i ð16Þ

Development and Validation of a BFM for Staggered Labyrinth Seals 477



For the calculations of the circumferential shear stresses (ssi on the stator and sri on
the rotor), it is necessary to use a correlation explicit formula to estimate the Darcy
friction factor (fsi and fri). The shear stresses are defined as:

ssi ¼ qi
2
fsiViVSi ð17Þ

sri ¼ qi
2
fri RX� Við ÞVRi ð18Þ

where VSi and VRi are the modulus of the fluid velocity, on the stator and rotor surfaces
respectively, considering the axial and circumferential components of the velocity.
They can be defined as:

VSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

i þV2
i

q
ð19Þ

VRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

i þ RX� Við Þ2
q

ð20Þ

For the calculation of the circumferential shear stresses, the Swamee-Jain corre-
lation is used to estimate the friction factor between the fluid and the rotor/stator wall,
as described in [13].

2.2 Perturbation Analysis

The perturbation analysis is used to solve the continuity and circumferential momen-
tum equations. The rotor position is perturbed with respect to the centred position, and
a circular orbit is assumed.

Pi ¼ P0i þ eP1i t; #ð Þ ð21Þ

qi ¼ q0i þ eq1i t; #ð Þ ð22Þ

hi ¼ h0i ð23Þ

Vi ¼ V0i þ eV1i t; #ð Þ ð24Þ

Hi ¼ si þ eH1 t; #ð Þ ð25Þ

The perturbation theory comprises mathematical methods for finding an approxi-
mate solution of the problem, by starting from the steady-state solution (centred rotor
within the seal). The solutions of the problem are expanded and truncated at the first-
order, hence the thermodynamic and kinematic variables of the model (generally
indicated with the symbol h) are separated in the steady-state terms h0i and in the
perturbed terms h1i t; #ð Þ.
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2.3 Zeroth-Order Problem

The continuity, circumferential momentum and energy zeroth-order equations, for each
CV in the seal cavities, are iteratively solved using the multi-variate Newton-Raphson
algorithm to find the solution in terms of pressure, density, enthalpy and circumfer-
ential velocity in each cavity. The boundary conditions (BCs) used in the zeroth-order
problem are the Dirichlet BCs in the inlet and outlet sides. The inlet pressure, cir-
cumferential velocity and enthalpy are imposed at the inlet, whereas the outlet pressure,
circumferential velocity and enthalpy are imposed at the outlet side. These quantities
are calculated by using the seal operating conditions: inlet/static pressure, inlet tem-
perature, pre-swirl and rotor rotational speed. The solution of the zeroth-order problem
must satisfy the following equations:

_m01 � � � � � _m0i � � � � � _m0NT � _m0 ð26Þ

_m0V0i � _m0V0i�1 ¼ s0riari � s0siari ð27Þ

_m0 h0i þ V2
0i

2

� �
� _m0 h0i�1 þ V2

0i�1

2

� �
¼ s0riariRX ð28Þ

The main contribution of the energy equation is the coupling of the continuity
equation with the circumferential momentum equation in the zeroth-order problem.
Considering an isenthalpic process, these equations are independent one from each
other, and the estimation of the mass flow-rate and thermodynamic properties of the
fluid (steady pressure and density) does not depend on the circumferential velocity. In
the model developed in this paper, the equations are linked because the density depends
on the enthalpy that is calculated (in the energy equation) based on the circumferential
velocity and rotor shear stress.

2.4 First-Order Problem

The first-order problem is governed by the continuity and circumferential momentum
equations. By imposing a circular orbit to the rotor and linearizing the governing
equations, the only solutions admitted for the perturbed pressure and circumferential
velocity have the same mathematical expression of the perturbed clearance.

By imposing them, the first-order equations result as,

• Continuity first-order equation:

A0i
@qi
@P1i

V0i

R
@P1i
@# þA0i

@qi
@P1i

@P1i
@t þ A0iqi

R
@V1i
@#

þ @ _miþ 1
@P1i

� @ _mi
@P1i

� �
P1i � @ _mi

@P1i�1
P1i�1

þ @ _miþ 1
@P1iþ 1

P1iþ 1 ¼ �
T
2�Wð ÞqiV0i

R
@H1
@#

� T
2 �W
	 


qi
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• Circumferential momentum first-order equation:
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Generally, the perturbation of the pressure and circumferential velocity at the inlet
and outlet regions are assumed to be equal to zero.

As already said, a novelty has been introduced in the model proposed in this paper
by considering the perturbation of the pressure and circumferential velocity in the inlet
and outlet regions. Two additional CVs, one in the inlet and one in the outlet region,
have been introduced in the seal model. Consequently, the first-order continuity and
circumferential momentum equations are solved also in the additional CVs. Never-
theless, the zeroth-order solution for these CVs is required, as well as the BCs for the
zeroth-order problem. It is reasonable to assume that the zeroth-order upstream pressure
with respect to the inlet region (P0ui) is the same of the inlet (P0in).

The same assumption is made for the zeroth-order downstream pressure with
respect to the outlet region (P0do) that is equal to the outlet pressure (Pout). The zeroth-
order circumferential velocities (V0ui, V0do) and enthalpies (h0ui, h0do) can be calculated
using the zeroth-order circumferential momentum and energy equations.

Regarding the BCs for the first-order problem, it can be reasonably assumed that
the perturbed pressures (P1ui, P1do) and circumferential velocities (V1ui, V1do) at the seal
CVs boundaries can be considered null sufficiently far from the seal cavities. The
scheme of the BCs is reported in Fig. 3. Because the perturbed pressure in the upstream
inlet region is null and the steady-state pressure is equal to that of the inlet region
(Pui ¼ P0in), the mass-flow rate between these two CVs cannot be expressed using the
Neumann correlation (see Eq. (13)). However, a leakage exists, and it is assumed to be
equal to the steady-state mass-flow ( _m0) and independent on the perturbation of the

Fig. 3. Control volumes used in the BFM proposed by the authors.
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inlet region. Therefore, by considering the continuity and circumferential momentum
equations for the Inlet CV, the derivatives of the incoming mass-flow with respect to
the perturbed pressures P1in and P1ui are equal to zero. Consequently, the following
terms are null in the first-order equations:

@ _min

@P1in
¼ 0 ð31Þ

@ _mi

@P1ui
¼ 0 ð32Þ

For the same reasons, by considering the continuity and circumferential momentum
equations in the Outlet CV, the derivatives of the outgoing mass-flow with respect to
the perturbed pressure are equal to zero. Consequently, the following the terms are null
in the first-order equations:

@ _moutþ 1

@P1out
¼ 0 ð33Þ

@ _moutþ 1

@P1do
¼ 0 ð34Þ

As previously stated, Moore in [10] demonstrated that the upstream and down-
stream sections contribute to the rotordynamic coefficients. By comparing the CFD
results with experimental measurements, the introduction of inlet and outlet regions,
improved the CFD predictions [17]. In this paper, the authors performed a CFD
analysis based on the Integral Perturbation Method (IPM) aimed at estimating the
perturbation of the pressure in the inlet region and to prove the assumptions made in the
BFM. The IPM considers the full unsteady simulation with the mesh motion to directly
consider rotor oscillatory movements. The CFD analysis clearly shows that the con-
tribution of the inlet and outlet regions to the dynamic forces, generated by the sur-
rounding fluid, is not negligible. This fact conflicts with the assumption in the original
BFM in which the perturbation of the pressure is considered null at the inlet and outlet
regions.

2.5 Calculation of the Rotordynamic Coefficients

The dynamic force acting on the rotor [9] surrounded by the labyrinth seal is given by:

F ¼ Fx þ jFy ¼ �eRs

XN�1

i¼1

Li

Z2p

0

P1iej# � jarisr1iP1iej#
	 
2

4
3
5 ð35Þ

The solution of the two equations obtained by considering the real and imaginary
parts of Eq. (35) allows the rotordynamic coefficients to be defined as:
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K ¼ 1
2 Re Z þ þ Z�ð Þ k ¼ � 1

2 Im Z þ þ Z�ð Þ ð36Þ
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where,
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Each cavity contributes to the overall rotordynamic coefficients. The sum of the
rotordynamic coefficient of each cavity allows the coefficients of the seal to be
obtained.

3 Experimental Campaign

The main features of the HPSTR are [11]:

• inlet pressure up to 500 bar;
• pressure ratio up to 2.5;
• rotational speed up to 15000 rpm;
• control of the rotor orbit by active magnetic bearings (AMBs) with an excitation

frequency up to 250 Hz;
• multiple excitation frequencies;
• interchangeable swirler device to set the desired pre-swirl ratio (also negative pre-

swirl ratio by inverting the rotational speed);
• possibility to test off-center rotor position.

Figure 4 shows the external casing of the HPSTR that is very similar to an actual
industrial plant because it is equipped with a high-pressure compressor, a gearbox and
an electric motor connected to a complex high-pressure gas loop. All these details are
not provided here because already illustrated in [11].

The HPSTR working principle consists of injecting the nitrogen into the casing at
controlled pressure. The gas flows through the swirler device which sets the circum-
ferential velocity of the fluid and the pre-swirl at the seal entrance. Then, the nitrogen
flows into the two test seals that are the object of the test. Their back-to-back con-
figuration is used to balance the axial load. The orbit motion of the rotor is controlled
by AMBs, which apply the needed dynamic forces to shake the rotor. These forces are
measured through current measurements and dedicated calibrations, see [11].

The rotordynamic coefficients associated to the labyrinth seals are finally computed
applying an identification algorithm which is based on simple rotor equations of
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motion. All relevant forces and displacements are measured and equations are inverted
solving for the unknown coefficients. With respect to the experimental activity
described in [12], the instrumentation has been improved by introducing a specific
probe to measure more precisely the pre-swirl at the seal entrance. An accurate mea-
surement of process parameters is critical to compare the experimental tests data to
predictions.

The staggered labyrinth seal tested in the HPSTR is representative of a balancing
drum seal mounted in a medium steam turbine (see Fig. 5). The final layout of the
staggered labyrinth seals is shown in Fig. 6. The geometrical parameters of the
labyrinth seal and operating conditions are listed in Table 1.

The radial clearance listed in Table 1 is the nominal one, therefore it doesn’t
consider the radial growth caused by the centrifugal force. For confidential reasons,
only two experiments are shown in the paper.

Fig. 4. High-pressure seal test-rig.

Fig. 5. Scheme of the staggered labyrinth seal used in the experimental tests.
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The experimental data in terms of rotordynamic coefficients and leakage mass-flow
are shown, compared to the numerical predictions, in the body of the paper and in the
Appendix A.

Fig. 6. Final layout of the staggered labyrinth seal installed in the HPSTR.

Table 1. Seal geometry and operating conditions.
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4 Comparison with Experimental Data and Numerical
Results

The numerical results, in terms of rotordynamic coefficients and leakage mass-flow,
have been compared with the experimental measurements.

The direct damping and cross-coupled stiffness are shown in Figs. 7 and 8, where
the numerical results of the original BFM and those considering also the inlet and outlet
regions are also plotted. The BFM with the inlet and outlet regions takes into account
for the rotordynamic coefficients generated in the two “new” CVs. By considering only
the CVs in the cavities of the seal, and taking into account the perturbation of the
pressure and circumferential velocity at the seal boundaries, a new BFM can be
introduced. The new BFM considers different BCs with respect to the original one.
Thus, three different models are shown in the following paper.

It can be noticed in Figs. 7 and 8 that both the BFM with the inlet and outlet
regions and the BFM with new BCs are more accurate in the estimation of the
rotordynamic coefficients than the original BFM. Slight differences can be observed
between the two new BFMs. It can be deduced that the assumption of considering the
perturbation of the pressure and circumferential velocity at the seal boundaries equal to
zero is not correct if compared to CFD result as already noticed by Moore. Moreover,
the predictions of the rotordynamic coefficients is strongly improved.

The uncertainty range for each measured point is also reported. The uncertainties
are larger with the increase in the whirling speed. The trends of the two experiments are
very similar. As expected, the coefficients are frequency dependent as already shown
for a teeth-on-stator straight-through labyrinth seal in [12]. The experimental coeffi-
cients of the experiment B are higher than those of the experiment A because of the
higher pressure drop condition.

Generally, the trend of the coefficients as a function of the whirling speed is well
reproduced by the three BFMs. The direct damping is slightly underestimated with
respect to the experimental one. Thus, BFMs result to be conservative in the rotor-
dynamic design phase.

The comparison of the mass-flow measured during the experiments with those
predicted by the bulk-flow model for both experiments is shown in Fig. 9. The
uncertainty range is almost 10% of the average value. The predictions are very accurate
compared to the experimental measurements. The mass-flow is the same for the BFMs
considered in the paper.

The contribution of each cavity of the seal to the rotordynamic coefficients is shown
in Fig. 10. The solid lines are the results of the original BFM, whereas the dotted lines
are the results of the model by considering the perturbation in the inlet and outlet
regions. Five lines for each model are represented in the Fig. 10, consistently with the
five whirling frequencies.
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It can be observed that the new BFMs show a different trend of the coefficients. In
the original BFM seems that the coefficients in the first and last cavities are constrained
to be close to zero by the fact that the perturbations are null at the boundaries.

Despite the perturbations are considered both in the inlet and outlet in the new
BFM, the coefficients at the seal end are equal to the coefficients calculated with the
original BFM. Trying to figure out a correlation between the coefficients and the
zeroth-order quantities, the trend of the coefficients of the new BFM is similar to that of
the zeroth-order pressure and density along the seal cavity. Whereas, the coefficients
calculated with the original BFM are uncorrelated with all the zeroth-order quantities.

By considering the results in Figs. 7 and 8 for the experiment B, the BFM with the
inlet and outlet regions consider the coefficients contribution of the inlet and outlet
cavities as shown in Fig. 10.
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Fig. 7. Comparison of predictions and measurements of direct damping and cross-coupled
stiffness coefficients as a function of the whirling speed for the experiment A.
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The BFM with new BCs considers the coefficients of the model with the inlet and
outlet regions but the overall seal coefficients do not take into account the coefficient
contributions of the inlet and outlet regions, but only those corresponding to the
cavities from 1 to 19 (see Fig. 10), such as for the original BFM.

This approach is finally making the BFM physically more consistent and improves
the match with experimental data by an average factor 2 which is not negligible at all.

5 Conclusion

In the paper, the experimental results obtained from an experimental campaign on a
staggered labyrinth seal have been presented and a new BFM has been introduced by
considering the perturbation of the pressure and circumferential velocity in the inlet and
outlet regions.

Actual BFMs consider the perturbations null despite perturbations are captured by
Moore comparing CFD analysis with experimental measurements. The new BFMs
improve the predictions of the rotordynamic coefficients compared to experiments by
an average factor 2. The predicted mass-flow are very accurate for both the tests. he
baseline structure of the BFM developed by the authors for staggered labyrinth seals is
here described. The model is based on the 1CV BFM developed by the same authors in
[9, 13, 14]. The substantial differences with respect to the BFM for straight-through
labyrinth.

Appendix A

The experimental measurements and numerical predictions of the direct stiffness and
cross-coupled damping coefficients are reported here for both the experiments. Addi-
tionally, the effective stiffness coefficients is shown (Figs. 11, 12 and 13).
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Abstract. Journal bearings are often employed in rotating machines and sev-
eral papers deal with their modelling and design. On the contrary, experimental
tests are seldom presented, in particular when the bearings are used in severe
operating conditions, i.e. with very high values of specific pressure and very low
rotational speeds. This paper presents an experimental investigation about the
influence of the applied static load on the behavior of a cylindrical journal
bearing with two axial grooves. The profiles of the pressure and the oil-film
thickness during the shaft rotation have been measured by one pressure probe
and one proximity probe installed in the rotating shaft. Measurements of the
shaft center position, dynamic coefficients, hydrodynamic pressure, temperature
distributions on the bearing, oil-film thickness, and bearing profile deformation
under several operating conditions are presented and discussed.

Keywords: Sleeve bearings � Two-axial groove journal bearing
Bearing experimental testing � Bearing profile deformation
Severe operating conditions � Tribology

1 Introduction

The use of sleeve oil-film journal bearings is still suitable in industrial machines owing
to the simpler design and the lower cost than rolling element bearings or oil-film tilting-
pad journal bearings. However, some conditions may become critical, like in the case
of machines equipped by shafts of medium/large diameter, which operate at very low
Sommerfeld’s number and have both high bearing loads (with the specific pressure
higher than 10 MPa) and low peripheral speeds (less than 1 m/s). Typically, high-
viscosity lubricants are used in these cases.

These critical conditions determine the occurrence of the so-called mixed or partial
lubrication regime. The use of simple models, like the hydrodynamic (HD) or the
thermo-hydrodynamic (THD) ones, in the design phase may cause bearing oversizing,
principally owing to the over-estimation of the maximum pressure value in the oil-film.
In these cases, the use of thermo-elasto-hydrodynamic models (TEHD) usually
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improve the accuracy of the calculation of pressure distribution, because also bearing
deformation, under the effect of large loads, is taken into account.

The thermal effects in a cylindrical sleeve bearing have been extensively studied in
the literature. The results of both THD/TEHD models and experimental tests have been
published by several scholars, aiming at fully understanding the comportment of oil-
film journal bearings [1–10].

Lu et al. [11, 12] have investigated the mixed lubrication regime in a small bearing
operating at very low rotational speed, ranging from 2 to 500 rpm, in different thermal
and applied load conditions. Sommerfeld’s number was less than 0.002 and large
friction coefficient were corresponding to high oil temperatures.

The study of the differences caused by local temperature variations in journal
bearings was presented by Allmaier et al. [13, 14], with a TEHD derived from pre-
viously developed EHD model. By imposing suitable boundary conditions, the TEHD
model can forecast, with very high accuracy, the temperature distribution in the
bearing. A quite wide range of operating conditions, including different oils (SAE10,
SAE20, SAE30 and SAE40), operational speeds, hydrodynamic or mixed lubrication
regime, with even dry friction, have been presented in [15, 16].

This paper introduces a wide experimental campaign, aimed at studying static and
dynamic characteristics of a plain journal bearing, in different static load conditions.
Some data have been concealed and some results have been normalized to the maxi-
mum value for confidential reasons.

2 Test-Rig Description

Figure 1a shows the test-rig used during the tests. The 15.0 kW electric motor drives
the rigid shaft by a flexible, double steel lamina coupling up to 1465 rpm. The lamina
that are extremely rigid in sense of rotation enable a compensation for high radial
displacements with low restoring forces, neglecting the influence of wrong alignment
between the motor and the shaft.

An additional gearbox, with a gear ratio of 1:9, can also be installed to reduce the
rotational speed.

Two hydraulic actuators, installed in the vertical direction and working in parallel,
with the maximum force of 400 kN, apply the vertical static load on the top of the
bearing case. Thanks to this load, the very high specific pressure of approximately
17 MPa can be reached, considering that the values of about 2–3 MPa are normally
employed in the industrial field.

The vertical static load acts in the downward direction on the housing support.
Thus, the load applied on the shaft is in the upward direction. The third hydraulic
actuator (maximum force of 20 kN) is installed in the orthogonal direction to the two
vertical actuators. During the static tests, described in the paper, the horizontal force
has been set equal to zero. Conversely, dynamics load along general directions have
been applied by means of all the actuators, to estimate the dynamic coefficients of the
bearing. However, all the actuators can apply both static and dynamic loads
simultaneously.
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Figure 1b shows a sketch of the bearing, which is centered on the rotating shaft and
has the nominal diameter of 160 mm and the length of 145 mm. Bushing thickness is
about 5 mm and is mainly made of steel. The average surface roughness Ra of the inner
surface of the bearing is 0.8 µm. Shaft rotation is counter-clockwise from non-driven
end (NDE) view.

Two axial grooves are situated in the lower part (unloaded part) of the bearing.
A further groove in the circumferential direction is located in the middle of the bearing
and connects the two axial grooves. The oil is supplied by the inlet hole and flows in
the grooves during the shaft rotation. The angular span of the loaded part (upper part) is
about 205° (see Fig. 1b).

The bushing is fit by interference in the bearing ring as shown in Fig. 1b. Bearing
bushing rotation is inhibited by an anti-rotation pin (see lower part of Fig. 2a). The
differences of the actual bearing profile to the nominal one has been measured by using
a ZEISS PRISMO bridge-type CMMs scanning machine, after the installation in the
bearing ring. The profile shown in Fig. 1c is that on the NDE edge, in correspondence
of which also the rotating proximity probe, shown in Fig. 4, is installed. Figure 1c
shows a small deformation of the actual profile, which is generally wider than the
nominal one.

(b)

(a) (c)

20°

205°

20
°

Oil Inlet

LOAD

Axial
Groove

Circumferen al
Groove

Axial
Groove

X

Y

Ω

Fig. 1. View of the test-rig from the NDE side (a), bearing sketch from the NDE view (b) and
bearing measured profile compared to nominal one in correspondence of the NDE edge (c).
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A housing support, horizontally split, directly connected to the actuators, hosts the
bearing ring, see Fig. 2b. A fixed pressure probe, in the central diameter, at 15° from
the vertical direction (see Fig. 2a) is placed in the bearing ring. The loaded part only of
the sleeve is equipped by nine temperature probes (see Fig. 3), spaced by 22.5° and
located at a distance of L/4 from the center of the bearing on the NDE side (T1 and T9
probes correspond to the horizontal direction).

(a) (b)

YCXC

OIL
IN

LOAD

Ω

Fixed pressure

X NDE Y NDE

X DE Y DE

YCXC

Fig. 2. Sensors on the bearing: (a) a couple of proximity probes and some pressure probes
installed in the central diameter of the bearing and (b) four proximity probes placed in the bearing
housing on both DE and NDE sides.

(a) (b)

T1

T3

T2

T5T6
T7

T8

T9
LOAD

Ω

Fixed pressure

Fig. 3. Layout of the temperature probes installed on the bearing loaded part.
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Two proximity probes, XC and YC in Fig. 2a, are installed at 45° apart in the
vertical direction, in correspondence of the bearing grooves. Four additional proximity
probes are installed at 45° apart in the vertical direction on both the driven end
(DE) and the NDE side (see Fig. 2b) of the housing.

These four probes measure the shaft center position and can detect the angular
misalignment between the shaft and the housing. The same shaft center position should
be measured by the three couples of proximity probes, in absence of angular
misalignment and deformations.

A further proximity probe acts as key phasor. Finally, a couple of accelerometers
(in horizontal and vertical directions) are mounted on the housing and are used to
compensate inertial forces in the calculation of the dynamic coefficients.

Rotor shaft is made of 17NiCrMo6-4 steel, with surface roughness Ra = 0.2 µm.
A pressure probe and a proximity probe are installed inside the shaft, to measure the
pressure and the oil-film thickness during the rotation. The pressure probe is in the
center of the bearing. The proximity probe is next to the bearing edge (see Fig. 4) on
the NDE side. A slip-ring device is used to transmit the signal these two sensors. Main
bearing dimensions, lubricant properties and operating parameters are listed in Table 1.

3 Results of the Experimental Tests

During the test campaign, several tests have been performed to analyse the performance
of the sleeve bearing corresponding to different rotational speeds and static loads. In
this paper, only the results at 66 rpm are shown. A closed-loop PI temperature control
allowed keeping the oil inlet temperature at 40 °C during the tests. Results are nor-
malized for confidential reasons.

Proximity

Pressure

Slip ring

Fig. 4. Layout of proximity probe, pressure probe, and slip ring device on the instrumented
hollow shaft.

Effects of Severe Operating Conditions 495



3.1 Estimation of the Dynamic Coefficients

To estimate the linearized dynamic coefficients, dynamic and stating loads have been
applied along several directions, as described in [17–19].

Considering the k-th direction of the loading and the frequency domain, the cor-
responding oil-film forces, DFoil

x xð Þ − DFoil
y xð Þ can be estimated by means of:

DFoil
x xð Þ

DFoil
y xð Þ

" #
k

¼ hxx xð Þ hxy xð Þ
hyx xð Þ hyy xð Þ

� �
k

DX xð Þ
DY xð Þ

" #
k

ð1Þ

in which DX xð Þ − DY xð Þ are the displacements, hij xð Þ ¼ kij xð Þþ ixcij xð Þ is the
general dynamic coefficient, composed by the stiffness and damping coefficient, and x
is the frequency of the dynamic force. Considering all the N directions of the excitation,
Eq. (1) can be rewritten in the form:

Table 1. Technical specifications of the test-rig.

Parameter Value

Bearing diameter, D 160 mm
Bearing length, L 145 mm
Applied load, W 0–350 kN
Journal speed, X 1 Hz
Lubricant type ISO VG150
Pressure probe
Model MEAS XPM6 – 1KBS
Range 1000 bars
Accuracy ±0.25% F.S
Temperature probe
Model PT 100
Range −40–120 °C
Accuracy ±1% measured temperature
Fixed proximity probe
Model CEMB T-NC/8-API
Range ±1 mm
Accuracy ±1% measured value
Rotating proximity system
Sensor KAMAN 5U/KD-2446
Resolution <0.008% of the measured range
Thermal drift <0.22% per °C of full scale for the sensor
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DF ¼
DF1 xð Þ½ �
DF2 xð Þ½ �

..

.

DFN xð Þ½ �

2
6664

3
7775 ¼

R1 xð Þ½ �
R2 xð Þ½ �

..

.

RN xð Þ½ �

2
6664

3
7775

hxx xð Þ
hxy xð Þ
hyx xð Þ
hyy xð Þ

2
664

3
775 ¼ R½ �h ð2Þ

in which

Rk xð Þ½ � ¼ DX xð Þ DY xð Þ 0 0
0 0 DX xð Þ DY xð Þ

� �
k

ð3Þ

A robust M-estimator technique, described in [20–22] has been used to estimate the
dynamic coefficients vector h from Eq. (2). Finally, the stiffness and damping coeffi-
cients, ignoring the “virtual” mass in the stiffness terms, can be calculated as:

kij ¼ Re hij
� �

; cij ¼
Im hij

� �
x

ð4Þ

in which i; j ¼ x; y.
The results in the case of rotational speed equal to 66 rpm, excitation frequency to

1.5 Hz and dynamic load to 3 kN are shown in Fig. 5, after normalization. The
experimental values correspond to the markers.

The direct stiffness coefficients are influenced by the static load, particularly in the
loading direction (coefficient kyy). This last shows a remarkable monotonic trend in the
static load range from 20 kN to 350 kN. Vertical stiffness coefficients kyy are greater

Fig. 5. Stiffness (left) and damping coefficients as a function of the applied static load,
corresponding to the rotational speed of 66 rpm.
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than those in the unloaded, i.e. horizontal, direction (kxx). Cross coupling stiffness
coefficients (kxy and kxy) are practically insensitive to the static load and smaller than the
direct ones.

The trend is opposite for the direct damping coefficients in vertical direction since
they decrease with loading increase. One of the cross-coupling damping coefficient
(cyx) is practically insensible to the static load, while the other one (cxy) is strongly
dependent on the applied load, changing also its sign.

3.2 Shaft Centreline

Journal centreline has been evaluated by the average of the measurements of the four
proximity probes of the bearing housing as Xshaft ¼ XNDE þXDEð Þ=2 and
Yshaft ¼ YNDE þYDEð Þ=2. The comparison with the measurements of the two prox-
imity probes in the central diameter of the bearing ring (XC and YC) is shown in Figs. 6
and 7, for two different loading conditions (respectively 50 kN and 350 kN). Besides,
the average of six probes Xavg ¼ Xshaft þXC

� ��
2 and Yavg ¼ Yshaft þYC

� ��
2 are

plotted as well.
Under a theoretical point of view, the differences of the centreline curves should be

determined only by bearing housing and shaft deformations, since the only the probes
on NDE and DE housing sides can be affected by backlashes or deformations. Con-
sidering Fig. 6, the three centreline are practically coincident, while, when the load is
high (see Fig. 7) some differences may be appreciated, likely owing to the shaft
bending or the bearing housing deformation.

3.3 Distribution of Bearing Surface Temperature

Figure 8 shows the distributions of the temperature, measured by the sensors shown in
Fig. 3, for the rotational speed of 66 rpm and increasing loads, starting from 0 to
350 kN. In general, it is possible to observe that the temperature in the loaded part of

Fig. 6. Centreline as function of static load
up to 50 kN at 66 rpm.

Fig. 7. Centreline as function of static load up
to 350 kN at 66 rpm
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the bearing tends to increase with the increasing of the loads. This can be explained by
the increment of shear stresses and the corresponding heat generation, in the bearing
region where the oil-film thickness is reduced. Independently from the bearing load,
considering a counter clockwise rotation, the minimum temperature is in correspon-
dence of sensor T1 at 0°, then the temperatures reach their maxima in correspondence
of sensor T6 at 112.5°.

3.4 Distribution of Oil-Film Pressure

The distribution of the oil-film pressure, measured by the sensor in the hollow shaft and
after synchronous averaging, is shown in Fig. 9, for increasing loads from 0 kN to
350 kN and for the rotational speed equal to 66 rpm. As expected, the pressure in the
lower part of the bearing is equal to the oil feeding pressure (equal to about 3–4 bar),
owing to the circumferential groove. The maximum of the pressure is in correspon-
dence of about 105°, while the pressure decreases suddenly from 150° to 180° for
cavitation in the oil-film. The hole of the fixed pressure probe causes the deformation in
the pressure distribution that can be easily observed in Fig. 9. The fixed probe has been
used as a cross-check of the pressure measured by the rotating pressure probe.

The two tests performed at the highest loading (namely 300 kN and 350 kN),
produces very similar pressure distributions, likely for the thermal drift of the pressure
probe.

Fig. 8. Bearing surface temperature distribution as function of increasing loads, at 66 rpm.
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3.5 Distribution of Oil-Film Thickness and Bearing Deformations

Figure 10 shows the distribution of the oil-film thickness as the function of the different
applied loads, for the rotational speed of 66 rpm. The thickness has been measured by
means of the proximity probe of Fig. 4, which points out clearly the presence of the
axial grooves.

The increasing of the applied static load has a shifting effect towards down and left
on the oil-film thickness distribution, as the consequence of the different centreline
position. The profiles of the oil-film thickness distribution are deformed with respect to
the circular one, likely because of the bushing deformation during its installation in the
bearing ring (as shown in Fig. 1c), of the deformation caused by the static loads and of
the uneven thermal distribution along the bearing radial profile.

The relative deformation of the bearing, as the function of the static load, can be
calculated by considering the differences between the profile at 0 kN loading and the
other loading cases. For brevity, only three cases are considered, namely those at
49.0 kN, 148.3 kN, and 248.4 kN. The results are shown, in normalized form, in
Fig. 11.

To obtain the results of Fig. 11, it is necessary to consider that:

• shaft centreline position is different, depending on the static load;
• at high loading, the measurements of the fixed proximity probes (centre, NDE and

DE sides) are different (see Fig. 7).

Fig. 9. Distribution of the pressure in the bearing for static load from 0 to about 350 kN, at
66 rpm.
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Then, a fitting procedure has been applied only in the lower part of the bearing (from
210° to 315°), where no deformations are probable due to the low-pressure values. The
bearing profile can be expressed in the shaft reference system as:

Rs þ hð Þ cos h ¼ xb þRb cos b

Rs þ hð Þ sin h ¼ yb þRb sin b

(
ð5Þ

in which:

– Rs is the journal radius;
– Rb is the bearing radius;
– h is the angular co-ordinate;
– b is the angular position of the bearing profile;
– xb, yb are the co-ordinates of the centre of the bearing profile;
– h is the oil-film thickness.

Fig. 10. Distribution of the oil-film thickness for static load from 0 to about 350 kN, at 66 rpm.
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The fitting procedure for bearing static load equal to 248.4 kN is shown in Fig. 12. The
position of the bearing centre xb, yb is estimated by minimizing the objective function:

# ¼
X

Rb;profile � Rb;ref
� �2 ð6Þ

in which Rb,ref is the co-ordinate of the reference bearing at 0 kN loading, and Rb,profile

is the co-ordinate of the fitted bearing profile.

Fig. 11. Relative oil-film thickness as the function of the load, at 66 rpm.

Fig. 12. Evaluation of the bearing deforma-
tion: actual, reference and fitted profile for
248.4 kN static load.

Fig. 13. Bearing estimated deformations at
66 rpm.
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Once the co-ordinates xb,yb have been obtained, then the bearing profile can be plot
in the same reference system, and the deformation can be calculated by the difference
of this profile with that corresponding to 0 kN. The results are shown in Fig. 13, in
which the original measurements have been acquired in short time to mitigate and to
neglect unwanted thermal effects. Two effects can be observed: the first is the
increasing bearing deformation with the increasing of the applied static load, mainly in
vertical direction. The second is the “necking” in the horizontal direction.

4 Conclusions

The results of testing a two axial-groove journal bearing have, under severe operating
conditions (i.e. high static loads and low rotational speed), have been presented in this
paper.

Shaft centerline position was remarkably affected by the static loading and the
effects of bearing housing deformation and shaft bending have been highlighted.
Similarly, static loading influences the dynamic stiffness coefficients, but in different
manners: direct stiffness in the load direction increases with load increment, while
direct damping coefficients show an opposite trend.

Considering the temperature distribution in the bearing loaded part, static load
increasing causes temperature increment. Similar effects happen for the pressure dis-
tribution. The maximum value of the temperature is reached close to the radial position
of the maximum pressure.

Finally, a method to estimate the bearing deformation from the oil-film thickness
measurements is also presented.
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Abstract. Several rotating machines are nowadays equipped with both thrust
and journal tilting-pad bearings. The maximum temperature in the pads is
critical for applications running at high speeds and loads, where significant
temperatures can originate, due to shear stresses in the oil-film or by the sur-
roundings. In these cases, the minimum oil-film thickness and the pad thermal
crowning must be considered. Leading edge groove bearings can partially solve
the problem by controlling the oil inlet temperature in the shoes. Other attempts
to reduce the bearing temperature can be found in several industrial bearings and
are mainly focused on the nozzles of the oil inlet. Another approach for the
reduction of the heat generated in the lubricant fluid, is based on the use of
suitable cooling circuits inside the pads, where the pads are cooled by an
external cooling fluid. This method can be applied both to the pads of tilting-pad
thrust bearings (axial load) and tilting-pad journal bearings (radial load). The
cooling circuit among consecutive pads of the bearing can be also optimized
considering for the temperature distribution in the bearing. Furthermore, the
same oil used for the lubrication process can be used as cooling fluid. Because
rotating machines are already equipped with an external cooling system for the
lubricant fluid, negligible modifications in the machine layout can be required
for the installation of this kind of pads, if the same lubricating oil is used as
cooling fluid. Conversely, a more suitable and efficient cooling fluid can be
adopted. The manufacturing issues of the cooling channels inside the pad, can
be solved with the additive manufacturing technology. In the paper, the results
of numerical simulations for a cooled pad bearing will be described. Several
paths and cross sections of the cooling circuit will be investigated by means of
computational fluid dynamics (CFD) simulation allowing the maximum tem-
perature reduction to be obtained.

Keywords: Hydrodynamic lubrication � Cooled pads � CFD analysis
Thermal deformation � Tribology

Nomenclature

l dynamic viscosity;
q mass density;
c specific heat capacity;
kL thermal conductivity;
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LTOT total length of the path;
pIN inlet pressure of the fluid;
_QOUT total heat exchange between the pad and the cooling fluid;
T temperature;
TMAX maximum temperature on the active surface of the pad;
TMEAN mean temperature on the active surface of the pad.

1 Introduction

The behavior of hydrodynamic bearings used in heavy duty systems is strongly
influenced by the temperature distribution in the bearing, i.e. given by the heat gen-
erated by shear stresses in the oil-film. The high dependence of the oil viscosity on the
temperature affects the pressure distribution in the oil-film. Secondarily the temperature
distribution can produce large thermal deformation in the bearing leading to modifi-
cation in the actual oil-film thicknesses. Eventually, the anti-friction materials, such as
Babbit metals, that cover the active surface of the pads usually have a limited maxi-
mum operating temperature [1]. Therefore, prediction of temperature distribution in the
bearing or at least of the maximum oil-film temperature is mandatory during the design
phase of bearings in such applications.

Hydrodynamic bearings are mainly cooled by the inlet lubricating oil and large oil-
inlet flow rates are usually adopted and carefully selected to overcome those
temperature-related issues. Prediction of operating temperature have been widely
investigated in the literature. Early studies of conventional thrust or journal bearings
has been reported in [2] as well as the fundamental work on thermo-hydrodynamic
lubricating (THD) with temperature-viscosity variation through the thickness of
lubricating film was developed in [3], where both conduction and convection through
lubricating film have been also provided. A more recent TEHD model for tilting-pad
journal bearings (TPJB) that include the pad deformation due to the temperature, has
been introduced in [4].

In THD models, the pressure distribution in the oil-film can be obtained by inte-
grating the generalized Reynolds equation with common assumptions: laminar flow,
invariant pressure in the film thickness direction, a negligible shaft curvature effect,
negligible fluid inertia, constant fluid density, and temperature-affected viscosity [5].
The relationship between viscosity and temperature of the fluid can be expressed as:

l ¼ l0
T
T0

� �n

ð1Þ

The governing equation of the fluid film temperature is the three-dimensional
energy equation, where fluid pressure distribution, fluid velocity profile, viscosity and
thermal boundary conditions are required. The relationship between fluid film and
viscosity couples the generalized Reynolds equation and the energy equation. If a
laminar flow, incompressible and Newtonian fluid are assumed, the energy equation
can be expressed as:
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Heat exchange also occurs between the oil and the runner leading to a reduction of
the oil-film temperature. The shaft, for journal bearings, or the runner, for thrust
bearings, are generally assumed to be isothermal components, although the interactions
between the local film and these components are very complex. It is of interest to note
that for tilting-pad bearings, the lubricant film is colder than the rotor/runner at the
leading edge of the pad, while reverse condition occurs at the trailing edge. Further-
more, the heat transfer in the grooves between pads occurs in turbulent regime and it is
a 3D phenomenon [6].

2 Cooled Bearings

As already stated in the introduction, the reduction of the maximum temperature in the
oil-film can be also obtained by suitable cooling circuits or devices inside the pads of
the bearing. Cooled pads for thrust bearings have been investigated in [7, 8], where a
simple numerical and thermal analysis has been performed for studying the effect of a
water cooling circuit within the thrust pads of hydrogenator bearings. Different circuits
that reduce the surface temperature and modifies the entire temperature profile of the
bearing or pad are described in several patents (see some examples in Fig. 1).

Fig. 1. Examples of cooling systems in patents no.: (a) EP1002965 [9]; (b) US 20140270607
[10]; (c) US 20020141670 [11]; (d) JP4930290 [12].
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In these patents, the cold lubricating oil can naturally flow within channels, pipes or
holes of the bearing or is externally feed using a suitable nozzle system.

In the paper, the results of the numerical simulations of a cooled pad of a tiling-pad
bearing will be described. Several paths and cross-sections of the cooling circuit will be
investigated by means of CFD simulation, allowing the temperature reduction to be
obtained. All the results have been compared to the reference solid pad without internal
cooling circuits.

3 Manufacturing and Application

Cooled pads can be installed both in tilting-pad thrust and journal bearings as shown in
Fig. 2a. The overall serial-connection scheme of the cooling circuit of the bearing is
shown in Fig. 2b, where the output of one pad is connected to the input of the fol-
lowing pad. Similar parallel-connection schemes can be also adopted.

The cooling circuit among consecutive pads of the bearing can be further optimized
by considering the temperature distribution along the tangential direction of the bear-
ing. For instance, for TPJB, only the loaded pad, where high shear stresses arise, can be
equipped with the internal circuit. Conversely, for high preloaded TPJB, the overall
reduction of the bearing temperature can be obtained by equipping all the bearing with
cooled pads. Due to the limited value of the pressure in the cooling circuit, flexible
rubber hoses can be used, avoiding any restriction in the tilting motion of the pads.

The same oil used for the lubrication process can be adopted as cooling fluid.
Rotating machines are usually equipped with an external cooling system for the
lubricant fluid, able to reduce the outlet temperature of the oil from about 80 °C to the
inlet temperature of about 40 °C. Negligible modifications in the machine layout can be
required for the installation of this kind of bearings if the same oil is used. Conversely,
a more suitable cooling fluid can be adopted.

a) b)

Input of 
cold refrigerant fluid

Output of
refrigerant fluid

Increase of bearing
temperature

JOURNAL BEARING
THRUST BEARING

Input of 
cold refrigerant fluid

Output of
refrigerant fluid

Increase of bearing
temperature

Input of 
cold refrigerant fluid

Output of
refrigerant fluid

Fig. 2. (a) Application of cooled pads in tilting-pad journal and thrust bearings. (b) Serial-
connection of the cooling circuit for tilting-pad journal bearings.
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The presence of holes and channels of the cooling circuit inside the pad can be
critical from a mechanical point of view and difficult to be obtained by common
machining processes. The manufacturing issues of such internal circuits can be over-
come by means of the additive manufacturing (AM) technology and an authors’ patent
is pending [13].

In this way, it will be also possible to maximize the heat transfer from the hot pads
to the cooling fluid and to reduce the mechanical strains-stresses by optimizing the
shape of the cross-section, the path (snake path, spiral path, etc.) and the number of
channels of the internal cooling circuit. The turbulent flow condition that maximize the
heat exchange can be also reached. AM can be used only for obtaining the base part of
the pad with the internal circuit, not for obtaining the final desired pad. For instance, the
bonding of Babbit metal on the sliding surface of the pad must be likely performed with
standard technology, using heating and centrifugal machines. A typical superficial
roughness of Ra ¼ 12� 20 lm can be obtained by AM process. Therefore, additional
processes will be necessary to improve the superficial finishing of the component.

4 Pad Model

In this study, all the simulations have been performed using Ansys Fluent for CFD
analysis. For simplicity and to highlight the effect of the proposed cooled pad, a simple
square pad is considered in the analysis. Therefore, the analysis is representative of a
tilting-pad thrust bearing with very large pitch diameter. The average specific load on
the pad is equal to 2 MPa, whereas the tangential speed of the runner is equal to
26.1 m/s.

The simplified shape of the pad is shown in Fig. 3, where the net active area for the
lubricating process is 0:01m2. The pressure and the oil-film thickness distributions are
shown in Fig. 4.

Fig. 3. Shape of simplified pad.
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A structured orthogonal mesh and a free tetrahedral mesh have been used for the
fluid and the pad respectively, as shown for example in Fig. 5 for a circular cross-
section internal circuit with a M-path. In Fig. 5, the fluid had 15498 nodes and the pad
43617 nodes. About 3–4 elements can be detected from the wall to the center of the
fluid.

The shear stresses in the lubricant are responsible for the pad heating. This effect
has been modelled by considering a fixed heat flux applied on the active (upper) surface
of the pad for all the simulations. The total heat input is 100 W with a heat flux density
given by the triangular distribution as shown in Fig. 6. This distribution represents the
typical (simplified) heat flux density of a real application and has been assumed the
same for all the analyses. With this simplification, the interaction between the cooled
pad and the lubricating fluid in the active surface has been neglected. Besides, the
reduction of the temperature in the pad does not affect the pressure or the oil-film
thickness shown in Fig. 4.

Convection condition with ISO-VG46 oil at 40 °C has been assumed for all other
surfaces of the pad.

Fig. 5. Fluid and pad meshes for a circular cross-section internal circuit.

Fig. 4. Pressure and oil-film thickness distributions.
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The effectiveness of the cooling system has been evaluated by analyzing the heat
exchange between the pad and the cooling fluid. By considering the reference solid
pad, without cooling circuit, and the previous heat flux density distribution, the max-
imum temperature of about 87.4 °C is reached on the active surface of the pad close to
the trailing edge and a mean temperature of 72.1 °C on the same surface. These values
correspond to the typical temperatures of high-loaded bearings in real applications. The
temperature distribution for the reference solid pad can be find later in Fig. 12a.

5 Simulation Results

All the simulations have been performed by assuming the same following conditions:

• cross-sectional area of the cooling circuit: 60 mm2;
• inlet temperature of the cooling fluid: 40 °C;
• countercurrent exchange condition.

The following investigations have been performed:

– effect of cooling path;
– effect of inlet flow rates;
– effect of fluid type (oil ISO VG 46 or water);
– effect of cross-section.

For each investigation, the total heat exchange between the pad and the cooling fluid
_QOUT , the inlet pressure of the fluid pIN and the maximum TMAX and mean TMEAN

temperature on the active surface of the pad will be reported.
For the optimal circuit geometry, the pad deformation due to the pressure load and

the temperature distribution will be also analyzed.

5.1 Effect of Cooling Path

In this analysis, a circular cross section having a diameter of 8.7 mm has been assumed
as well as an inlet flow rate of 3.5 L/min for a ISO-VG46 oil at 40 °C. The temperature
distributions on a cutting plane in the middle of the pad thickness for “M”, “U” and “S”
paths of the cooling circuit are shown Fig. 7 and the results summarized in Table 1,
where the total length LTOT of each path is also reported.

Leading edge

Fig. 6. Heat flux density distribution.
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The best result in terms of highest heat exchange and highest reduction of the
maximum temperature in the pad, has been obtained by the S-shape path due to its
highest path length.

Anyway, the M-shape profile will be considered in the following analyses because
(i) it is very difficult to adopt a S-shape path in thrust bearings due to the presence of
the rotating shaft and (ii) it allows a lower complexity for the connecting pipelines.

5.2 Effect of Inlet Flow Rate

Obviously, by increasing the inlet flow rate of the fluid, the maximum temperature in
the pad decreases as reported in Table 2 for the ISO-VG46 oil at 40 °C.

Table 1. Effect of cooling path on temperature distribution.

Circuit shape LTOT ½mm] _QOUT ½W] pIN ½bar] TMAX ½�C� TMEAN ½�C�
M 267 46.0 1.11 71.0 58.1
U 194 32.0 1.07 72.8 61.1
S 247 46.4 1.10 69.7 57.6

M shape U Shape

S shape

Fig. 7. Effect of path shape on temperature distribution.

Table 2. Effect of inlet flow rate on temperature distribution.

Inlet flow rate [L/min] _QOUT ½W] pIN ½bar] TMAX ½�C� TMEAN ½�C�
3.5 46.0 1.11 71.0 58.1
7 54.5 1.23 68.3 55.9
10.5 59.1 1.37 66.9 54.7
14 62.3 1.52 65.8 53.8
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5.3 Effect of Fluid Type

In this analysis the same flow rate of 3.5 L/min for oil ISO-VG46 and water has been
considered. The temperature-viscosity Vogel’s equation has been assumed for the case
of oil as cooling fluid and a constant value of viscosity has been assumed for water. Oil
ISO-VG 46 has been considered in the analysis, because it is the oil used in typical oil-
film bearing applications for turbomachinery. Two different values of temperature have
been investigated for water fluid, namely 25 °C and 40 °C. With the same inlet tem-
perature condition of 40 °C for the oil, better results (lower pad temperature) are
obtained if water is used as cooling fluid (see results in Table 3).

Conversely, more care must be taken for the connecting circuit to avoid the con-
tamination of the lubricant.

Table 3. Effect of fluid type on temperature distribution.

Fluid type Temperature distribution OUTQ
.

[W]
INp

[bar]
MAXT

[°C]
MEANT

[°C]

ISO-VG46
Oil

@ 40°C
46.0 1.11 71.0 58.1

Water
@ 40°C 83.9 1.03 58.6 47.7

Water
@ 25°C 138.5 1.03 50.5 35.1
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5.4 Effect of Cross Section

In this section, different cross-sections of the cooling circuit have been investigated, as
listed in Table 4. Single and multi-channels profiles have been investigated. The cir-
cular section profile is the most commonly used in the design of various heat
exchanger. However, non-circular profiles allow the increase of the heat exchange due
to the turbulence and heat exchange surface area with respect to the circular one to be
obtained. These kinds of profiles can be obtained by AM.

All the simulations have been performed with the same cross-sectional area
(60 mm2), path length, inlet temperature of the cooling fluid of 40 °C, inlet flow rate of
14.4 L/min and only for ISO-VG46 oil.

Table 4. Cross-sections.

A Circular 

B Rectangular 

C Square 

D Star E1
4 Triangular 

Radial 
Features

E2
6 Triangular

Radial 
Features

E3
8 Triangular

Radial 
Features

F 4 Rectangular 
Radial Features F1 B/A = 1:1

F2 B/A = 1:1.5 F3 B/A = 1:2

G1 4 Multi Chan-
nels Square G2 6 Multi Chan-

nels Square

G3 8 Multi Chan-
nels Square G4 5 Multi Chan-

nels Square

H1 3 Multi Chan-
nels Rectangular H2 2 Multi Chan-

nels Rectangular

H3 2 Multi Chan-
nels Rectangular H4 3 Multi Chan-

nels Rectangular
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The temperature distributions are shown for several single and multi-channels
profiles in Figs. 8 and 9 respectively. All the results are then summarized in Table 5.

B C 

D E1

E3 F1

Fig. 8. Temperature distribution for different cross-sections (single channel).

G1 G4

H3 H4

Fig. 9. Temperature distribution for different cross-sections (multi-channels).
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In general, higher heat exchanges can be obtained by multi-channel cross-sections
than single channel ones.

The maximum reduction of the temperature on the active surface of the pad can be
obtained by the 8 square channels profile (G3 highlighted in Table 5). Conversely this
profile requires higher inlet pressure than single channel profiles.

Table 5. Results of cross-section analysis.

Case OUTQ
[W]

INp
[bar]

MAXT
[°C]

MEANT
[°C] Case OUTQ

[W]
INp

[bar]
MAXT

[°C]
MEANT

[°C]

0 Solid - - 87.4 72.1 A Circular 62.3 1.52 65.8 53.8

B 72.0 1.58 69.4 56.1 C 59.3 1.46 66.7 54.6

D 71.8 1.83 63.8 51.8 E1 64.5 1.64 65.2 53.1

E2 67.6 1.70 64.7 52.6 E3 71.7 1.88 63.1 51.5

F1 69.6 1.79 64.0 52.1 F2 70.9 1.90 63.4 51.7

F3 74.5 2.12 62.6 51.1 G1 76.8 13.60 60.0 49.1

G2 78.0 8.43 59.7 48.7 G3 79.1 6.21 59.5 48.7

G4 78.0 10.54 59.8 48.4 H1 74.8 3.20 61.4 50.3

H2 70.7 4.73 62.2 50.7 H3 70.2 2.09 62.9 51.5

H4 78.7 4.90 60.0 49.0
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6 Static Deformation

In this last analysis, the static deformation of the pad, due to the pressure load and the
thermal stresses given by the temperature distribution, has been investigated. The
pressure distribution of the oil-film assumed in this analysis has a maximum value
equal to about 4 MPa and is applied on the active surface of the pad as shown in
Fig. 10a. A fixed constraint is also assumed as boundary condition of the pivot
(Fig. 10b).

Pressure distribution Fixed constraint

a) b)

Fig. 10. (a) Pressure distribution, (b) Fixed constraint for the static deformation analysis.

a) b)

c)

Fig. 11. Static deformation of the pad (a) solid pad (b) circular cooled pad and (c) 8-channels
cooled pad.
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In particular, the mechanical deformations for the circular cross-section and 8-
channels cross-section have been compared to the solid pad configuration, as shown in
Fig. 11; whereas the corresponding temperature distributions obtained by the thermal
analysis are shown in Fig. 12 for the solid and 8-channels cross-section only. A max-
imum total deformation of about 23 µm is obtained for the 8-channels cooled pad vs.
the total deformation of 43 µm for the solid pad. Conversely a total deformation of
about 26 µm has been obtained by the simple circular cross-section.

These results highlight that the deformation of the pad is mainly given by the
thermal stresses. For the solid pad, high temperature can be detected on the active
surface of the pad (about 87 °C in Fig. 12) with respect to the cooled pad (about 56 °C
in Fig. 12). This corresponds to significant temperature gradients in the pad thickness
resulting in a thermal bending of the pad due to thermal stresses. Conversely, the
presence of the internal channels seems to not influence the deformation of the pad.

7 Conclusions

In the paper, the reduction of the temperature in the pads of tilting-pad bearings has
been investigated, by means of cooled pads having suitable internal cooling circuits.
Different geometries of the cooling circuit within the pad have been considered in the
analysis.

The best results are represented by the highest heat exchange and reduction of the
maximum temperature on the active surface of the pad. The reduction of the pad
temperature allows the reduction of pad deformation due to thermal expansion to be
obtained.

In general, the temperature reduction can be achieved by:

• using a S-shape path. However, the M-shape path can be preferred because it allows
a better piping connection and installation;

• increasing the inlet flow rate of the fluid;

a) b)

Fig. 12. Temperature distribution from the thermal analysis: (a) solid pad, (b) 8-channels cooled
pad.
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• using water as cooling fluid. However, water can contaminate the lubricant and
requires a dedicated circuit;

• using a suitable cross-section that increases the turbulence of the cooling fluid;
• using a multi-channels cross-section. The main drawback of multi-channel profiles

is given by the higher feeding pressure than single-channel profile.

These special cross-sections of the cooling circuit can be obtained by means of AM.
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Abstract. It is well known that many lateral vibration problems occur in
rotating machinery systems, for which nowadays in most cases passive measures
are used to mitigate these vibrations. With the requirements for more powerful,
efficient and secure rotating machinery with high availability the demand for
more efficient vibration reduction measures increases. Active magnetic bearings
(AMB) can be used as a possible solution, since it generates magnetic fields and
forces to control the rotor vibrations, without rotor-bearing contact. AMBs are
often used in special applications, for example in high-speed/high-performance
turbomachinery like turbo-compressors for the oil and gas industry or in
machine tool applications. The main problems of implementing active vibration
control by means of AMBs are the energy transfer towards the rotating system,
best suited concepts to control the lateral vibrations and the design of reliable
backup bearings for special applications. One of the most common causes of
high vibration amplitudes is the unbalance of a rotor, which leads to 1xN
vibrations. In this work it will be shown, how these unbalance vibrations can be
best controlled by an AMB. This paper consists of a purely numerical analysis
for a combined cycle turbine, in which two separated cases are studied: 1. the
complete analysis of the operational setup, where the turbine is supported with
radial oil-film bearings (RFBs) only, and 2. The oil-film bearing in the gas
turbine side, where the vibration amplitudes are higher due to the unbalance
generated by the fluid flow, is replaced by one AMB.

Keywords: Turbines � Active magnetic bearings � Active vibration control

1 Introduction

Rotating machines have a prominent presence in several areas, like large turbines in
hydroelectric and thermoelectric plants, propulsion engines in ships, automobiles and
aircrafts, as well as compressor and pumps in the oil and gas industry. These appli-
cations are usually associated with high rotational speeds and long operational
(sometimes continuous) cycles. Therefore, the dynamic behavior of these machines
must be well known for a project to be robust since an accident can cause serious
damage to the whole system and therefore long repairing periods with very high costs.

With the emergence of new, and more complex, engineering problems, the
development of new technologies becomes mandatory [1]. The many knowledge fields
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of engineering, once independent nowadays are interrelated in order to develop new
solutions and suitable methods to new patterns of testing and analysis.

Mechanical systems are always subjected to vibrations and therefore exposed to the
temporal effects of fatigue and wear which can, in a short period of time, cause sudden
losses in the properties and efficiency of these systems. The most important operating
condition for rotor machinery is the maintenance of the clearance gaps between rotating
and non-rotating parts. This is necessary in order to allow a safe transition throughout
the resonance stage, where the amplitudes of vibration are the highest, during run-
up/run-down without damaging any components. In this scenario it is often necessary
to employ auxiliary components (passive and/or active) to work in parallel to the main
system, with the purpose of maintain the performance of the system as intended and
extend its operational life.

On the passive side, there are the well-known radial oil-film bearings; the most used
support in turbomachinery, as they allow the rotor system to sustain high loads at high
speeds. The availability and the reliability of this type of bearing is very high, since
there is only fluid contact between parts with relative motion, ensuring long operational
lifetime, but they are far from perfect due to the occurrence of rotor-bearing hydro-
dynamic instabilities, such as sub synchronous vibrations with high amplitudes (oil-
whip). Besides that, these instability problems due to self-excitation in fluid bearings
can also be controlled and avoided if the operation conditions are taken into account
during its project and design.

The use of active vibration control to reduce these clearances can contribute to the
reduction of undesirably high lateral vibrations, mainly bending oscillations of the
rotors, and therefore an increase of the efficiency of the machine will be possible due to
a designed clearance reduction. Active magnetic bearings (AMBs) can be applied to
these vibration control problems, usually used as contactless suspension for rotating
machinery parts; it also enables the application of compensating magnetic forces in the
system (usually to counter unbalance loads), which have no mechanical interaction
with the structure in analysis [2]. It is also important to find the needed space for the
positioning of the AMB, considering the low specific pressure that AMBs have
compared to other bearings.

The combined cycle turbine consists of a system with a gas turbine and a steam
turbine. The gas turbine compresses the air and mixes it with hot fuel, the air-fuel
mixture moves through the turbine blades, making them spin and driving a generator
that converts some of that energy into electricity. A HRSG (heat recovery steam
generator) captures exhaust heat from the gas turbine, and creates steam, delivering to
the Steam turbine, which generates additional energy for the system, thus resulting in
the system having a higher efficiency than the standalone turbines.

This paper is a case study of an existing shaft train, where the complete combined
cycle turbine is composed by 7 flexible shafts and supported by 9 oil-film bearings but
this paper describes the numerical results of the gas turbine-generator system only. Two
cases are studied: 1. The system with only oil-film bearings as supports (RFB). 2. The
replacement of the bearing at the gas turbine side by an AMB. The comparison
between these two cases is done using both harmonic (unbalance response) and tran-
sient analysis (run-up).
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2 Methodology and Theory

2.1 Turbine Model and FEM

The complete model of the combined cycle turbine system is composed of seven
different shafts which are all connected via rigid couplings, except from the connection
between the generator and the right part of the dual turbine, which works as a sepa-
ration between both gas and steam partitions (decoupling). In this work, only the gas
turbine and the generator are considered for analysis. This part system has to be
considered when the unit is started.

The model was built using FEM (finite elements method) using the software
MADYN 2000 and all the geometrical data of the turbine and bearings coefficients
were supplied by the manufacturer. The complete turbine system can be seen in Fig. 1.
The turbine system has a length of 44 m and weight of 268 tons. The gas turbine-
generator system has a length of 25.8 m and 183 tons of weight.

The system is supported using radial oil-film bearings and each bearing (numbered
in Fig. 1) has an added lumped-mass system that simulates the foundation and sus-
pension in which the turbine is assembled (Fig. 2). Since this work only corresponds to
the gas turbine-generator system; only the first 4 marked locations are used in this
work. The range of mass (foundation), stiffness and damping (suspension) coefficients
[3] are shown in Table 1.

Fig. 1. Complete combined cycle turbine FEM model with the bearings and foundation
locations numbered.

Rotor

Bearings

Foundation

Fig. 2. Rotor-bearing-lumped-mass foundation scheme.
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Using the assumption of a linear system behavior, the equation of the FEM model
(without the foundations) can be described as it follows (Eq. 1).

M½ � €qf gþ C½ � þX G½ �ð Þ _qf gþ K½ � qf g ¼ Ff g ¼ X2 Fuf gþ Fambf gþ Qbf g ð1Þ

Where [M] corresponds to the global mass matrix, [G] to the gyroscopic effect
matrix, [K] the stiffness matrix, [C] is the structural damping matrix and Ω is the
rotational speed of the shaft [4, 5]. The Damping matrix is assumed to be proportional
to [K] by a factor of 2 � 10−4 [6]. The external forces vector is given by {F}, and
contains the unbalance {Fu}, the AMB force {Famb} and the interaction between the
bearings and foundation {Qb}.

The complete system, with the inclusion of foundation can be seen when the Eq. (1)
is separated into submatrices, as it follows:

Maa½ � Mba½ �
Mab½ � Mbb½ �

� �
€qaf g
€qbf g

� �
þ Daa½ � Dba½ �

Dab½ � Dbb½ �

� �
þX

G½ � 0

0 0

� �� �
_qaf g
_qbf g

� �

þ Kaa½ � Kba½ �
Kab½ � Kbb½ �

� �
qaf g
qbf g

� �
¼ Famb þX2Fu

� 	
Qbf g

( ) ð2Þ

Where the subscript a refers to all interior and free-end d.o.f. (degrees of freedom)
of the rotor-bearing system, while subscript b denotes the common d.o.f. of the bearing
and foundation [3]. In this scenario, we can observe that the combined subscript aa
correspond to the rotor-bearing system, ab and ba correspond to the coupling between
the bearings and foundation and bb correspond solely to the foundation. Also, {qa} is
the generalized coordinate vector, and {qb} is the associated generalized coordinate
vector for the foundation of the system, each with two translations and two rotations for
each node of the FEM model. This can be more easily visualized on Fig. 3.

In order to improve computational time and to help with the optimization of the
controller, a Guyan reduction [7] was used on the 1212 d.o.f. model which was reduced
to 100 d.o.f.

There are two unbalances on the system, both located on the gas turbine and with a
difference of 180 degrees in phase angle, with magnitudes of 7.15 � 10−2 kg m (U1)
and 4.25 � 10−2 kg m (U2). The locations can be seen on Fig. 4.

Table 1. Range of foundation and suspension coefficients.

Location Mass (kg) Stiffness (N/m) Damping (Ns/m)

1 x: *10e+4;
y: *10e+4

x: *7e+9;
y:*5e+9

x: *5e+5;
y: *7e+5

2 x: *10e+4;
y: *10e+4

x: *7e+9;
y: *5e+9

x: *6e+5;
y: *8e+5

3 x: *10e+4;
y: *10e+4

x: *7e+9;
y: *5e+9

x: *5e+5;
y: *8e+5

4 x: *10e+4;
y: *10e+4

x: *7e+9;
y: *5e+9

x: *5e+5;
y: *7e+5
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2.2 Active Magnetic Bearings (AMBs)

Considering a typical 8-pole radial magnetic bearing, the eight poles are divided into
four electromagnets (Fig. 4). Magnet 1 generates radial force in the x-axis direction
whereas magnet 3 generates radial force in the opposite (−x-axis) direction. Therefore
magnets 1 and 3 are working in differential mode; the same is true for magnets 2 and 4
(Fig. 5).

Considering only the x-axis for the mathematical deduction since the same
assumptions are valid for the y-direction, first, we have the self-inductance of the
magnets [2]:

L0 ¼ N2l0S
2g

ð3Þ

Where N is the sum of the number of winding turns of two short-pitched coils, µ0 is
the permeability factor of the mean (i.e. environment) where the AMB is immersed (air),
S is the area of one stator pole, g is the airgap between the pole and the turbine shaft.

1 2 3 4 5 6 7 8 9

Fig. 3. Rotor-bearing-foundation matrix interaction.

Fig. 4. Studied system model, with unbalance locations
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Using the Eq. (3), we have the forces in each magnet, since we are working with an
8-pole AMB, we have a geometrical factor of cos(p/8) included in the factors:

F1 ¼ kii1 þ kqx1; F3 ¼ kii3 þ kqx3 ð4Þ

ki ¼
2L0 cos p

8


 �
Ib

g
; kq ¼

2Lo cos p
8


 �
I2b

g2
ð5Þ

i1 ¼ Ib þ ix; i3 ¼ Ib � ix ð6Þ

x1 ¼ g� x; x3 ¼ gþ x ð7Þ

Ib is the bias (permanent) current and ix is the regulating current (control) current
and x is the instant separation between rotor and the AMB at any given time as seem in
[2]. It can be seen that kq has a negative sign since the greater the distance x the smaller
the resulting force on the bearing [8]. Since i1> i3, x1< x3, as the greater the current,
greater the attraction force and therefore smaller the distance between rotor and bearing
is. Therefore, for the resulting force in the x-axis and similarly for the y axis, we have:

FAMBx ¼ F1 � F3 ¼ kiix þ kqx ð8Þ

FAMBy ¼ F4 � F2 ¼ kiiy þ kqy ð9Þ

Where ki is known as the force-current factor and kx is the force-displacement
factor. Equations (8) and (9) shows that the force of the magnetic bearings in the x-axis
and y-axis are exclusively dependant of the regulating current ix and the distance
x between rotor and bearing: The data regarding the components of the AMB system
can be found on Table 2.
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Fig. 5. Radial magnetic bearing model. (Adapted [2])
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The values of these two factors may seem a bit elevated, but the AMB has to exert a
force of 595000 N just to counter the weight (levitate) of the shaft at the inlet location.
Since kq has a positive value for radial AMBs, the AMB-Rotor system is inherently
unstable. Therefore, for a optimized controller, the collocation, alongside with the
observability and controllability of the system must be carefully considered [2] and also
there is a requirement to provide enough negative position feedback to cancel the effect
of this coefficient [8].

2.3 PID Controller

As mentioned on the previous section, the rotor-AMB system is unstable in nature, so
the controller must, first and foremost, stabilize the system. A PID controller was
chosen for its simplicity and ease of tuning and optimization. The modelling of the
controller was made using the Ziegler-Nichols Method [9] and manual tuning. The
aforementioned method is not applicable to an system with an AMB, since the system
is unstable due to the force-displacement factor (kq) of the AMB being negative in
magnitude, so the method is applied on the system without the AMB as to use the
obtained values of Kp, Ki and Kd as a 1

st iteration of the controller. The Kp (Stiffness)
and Kd (damping) values are manually tuned based on this iteration. The derivative
term has a drawback once it amplifies high frequency measurements, which compro-
mise the controller performance. This limitation can be overcome by adding a filter
coefficient (Nf) that acts as a filter in order to remove high-frequency noise components
from the measurements. The controller with the added filter is given by Eq. (10).

PID sð Þ ¼ Kp þ Ki

s
þ KdNf s

sþNf
¼ Kp þKdNf


 �
s2 þ KpNf þKi


 �
sþKiNf

s2 þNf s
ð10Þ

The Fig. 6 shows the PID model with the filter in the derivative part:

Table 2. AMB system data.

Force-current factor (ki) 2.54 � 106 N/A
Force-displacement factor (kq) 8.71 � 109 N/m

Proportional part (Kp)

Derivative part (Kd)

Integral part (Ki)

error
e=Vref-V

KTds

K

K/sTi

1/s

Controlled 
output
Vctrl

Nf

PWM +AMBSensor

Fig. 6. PID with added derivative filter
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Considering that for the Rotor-AMB system, the most important criteria for a
controller is to minimize the amplitude of vibration during the passing of the critical
speeds, it is important to take into consideration the use of other filters to reduce the
control forces after the passing of the critical speed (low-pass), otherwise the controller
can become another source of excitation to the system.

2.4 Complete System

The flowchart seen in Fig. 7 shows all the previously mentioned components working
in tandem. The AMB is located at the bearing placement no1. The displacements (in
both directions x and y) resulting of the unbalances (U1 and U2) are measured by the
displacement sensors whose signal is compared to the reference signal, the error signal
is sent to the controller, the output voltage of the controller is transformed into electric
current by a power amplifier and then sent to the coils of the magnetic bearing,
generating the magnetic actuator force FAMB that is applied to the mechanical system.

3 Results

The replacement of the RFB for an AMB at the gas turbine side has the objective to
minimize the vibration amplitudes as good as possible for the complete shaft line. The
analysis of the system consists of two separate analyses, on the harmonic spectrum
(unbalance response) and on the transient spectrum (run-up). For both cases, 4 (four)
points of interests were considered, namely, the place where the four bearings are

Controller

Displacement 
Sensor

Actuator Forces

Amplifier

Fig. 7. Turbine-generator-system-AMB interactions.
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located. This is done to verify that the vibration throughout the whole system is not
increased after the AMB is placed, i.e. the AMB is not exciting some modes while
controlling others.

3.1 Harmonic Analysis (Unbalance Response)

The unbalances U1 and U2 are located on the gas turbine, its locations are shown in
Figs. 4 and 7. This harmonic analysis is made in order to check the peak amplitudes
and differences in natural frequencies of the system with and without the AMB. Since
the system is built upon a foundation in each bearing location, the results are shown as
relative shaft displacements instead of absolute values. The results for each bearing
location can be seen on the following figures, where the red curves represent the system
on RFBs only, and de blue curves represent the system harmonic response with the
AMB on the gas turbine side (Figs. 8, 9, 10, 11).

Fig. 8. Unbalance response (relative shaft displacement) on the 1st bearing location.

Fig. 9. Unbalance response (relative shaft displacement) on the 2nd bearing location.
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The amplitudes of the harmonic response are all reduced, when using an AMB at
the gas turbine side instead of the RFB. This is particular the case at the 1st bearing,
where the AMB can reduce the amplitude at the turbine side by upwards of 75% (in X
direction) and 80% (in Y direction). The analysis of the other bearing locations shows,
that the AMB doesn’t excite the other locations of the turbine-generator system. Instead
the amplitudes are also reduced, although in more discrete amounts in the range of
50%, the reduction effect is even remarkable at the outer generator bearings.

3.2 Transient Analysis (Run-Up)

For the Transient analysis, the simulated run-up covers from 10 Hz to 60 Hz in 7 s, and
them there is a 3 s settling time, resulting in a 10 s analysis. This settling time is used to
assure that the system is not near its instability threshold, since a mere straight run-up
analysis can be deceiving, especially on systems that use fluid bearing support, on the
account of fluid induced instabilities.

Fig. 10. Unbalance response (relative shaft displacement) on the 3rd bearing location

Fig. 11. Unbalance response (relative shaft displacement) on the 4th bearing location.
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The amplitudes of vibration were particularly compared when crossing the critical
speeds. The results of these simulations regarding the displacement of the node where
the unbalances are located (highest vibration amplitudes) can be seen on Figs. 12, 13,
14 and 15.

All that was said in the previous section can be confirmed here, where we can see
again a great reduction of the vibration amplitudes on the gas turbine bearings (Figs. 12
and 13). The displacement of the generator shaft bearings is several times smaller than
that of the turbine since there are no unbalances in its neighborhood and therefore no
extra sources of vibration.

Both analysis results – harmonic as well as transient - have shown, that the
amplitudes of the relative shaft vibrations can remarkably be reduced (50% and more),

Fig. 12. Run-up analysis for the 1st bearing location

Fig. 13. Run-up analysis for the 2nd bearing location
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when using an AMB instead of a fluid film bearing at the gas turbine side. This offers
from a practical point of view the possibility for the machine designer of reducing also
the clearances in the gas turbine with an effect of reduced clearance losses and a higher
thermodynamic efficiency.

4 Conclusion and Future Works

Theory and design of AMBs in rotating machinery has been presented in several
publications in the past years. This paper is about a practical application and presents
the possibility of the replacement of a regular Radial oil Film Bearing (RFB) by an
Active Magnetic Bearing (AMB) on the turbine side of a gas turbine-generator system.
The numerical results of harmonic and transient vibrations due to unbalance excitation

Fig. 14. Run-up analysis for the 3rd bearing location

Fig. 15. Run-up analysis for the 4th bearing location

Vibration Control of a Gas Turbine-Generator Rotor 531



show, that the amplitudes of the relative shaft vibrations can remarkably be reduced
(50% and more), when an AMB is used instead of the regular RFB. The vibration
control is not only possible at the AMB location, but also across the whole rotor
system, especially when crossing critical speeds, where the system is at its most unsafe
state. As a practical consequence of the vibration reduction the machine design can be
improved by decreasing the clearances in the gas turbine with the effect of a reduction
of clearance losses and an increase of the machine efficiency. This is not only an
advantage during normal operation, but also when at machine run ups thermal effects
with thermal shaft bows may lead to higher unbalance vibrations. Due to the possibility
of the vibration control self-excited vibrations due to fluid film bearings and seals can
also be avoided by means of the AMB. Furthermore an AMB with its sensor and
actuator characteristics can be used as a powerful tool to identify the dynamic behavior
of a rotor system during operation. By measuring input and output-quantities (forces
and displacements) it is possible to determine frequency response functions at normal
operation with valuable information about the rotor dynamic behavior. This is an
important step into the direction of practical Model Based Monitoring.

Despite that, there are still a lot of potential to this system that could not be included
in this work; such as: the analysis of the other “half” of the combined cycle, since the
inlet of the Steam turbine is also subjected to high vibration amplitudes, and extending
the analysis to the complete system (including the Steam turbine), this would bring
another level of complexity to the AMB-controller system, since the combined cycle
turbine model has 31 critical speeds up to 90 Hz, and so the controller must be more
robust to make it worthwhile, one such optimization option is the LPV (Linear
Parameter varying) technique [10] to transform the AMB-Controller system into an
adaptive controller with optimized parameters for several critical speeds of a complex
system, such as this one.
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