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Abstract. Evolution Strategies (ESs) have recently become popular for
training deep neural networks, in particular on reinforcement learning
tasks, a special form of controller design. Compared to classic problems in
continuous direct search, deep networks pose extremely high-dimensional
optimization problems, with many thousands or even millions of vari-
ables. In addition, many control problems give rise to a stochastic fitness
function. Considering the relevance of the application, we study the suit-
ability of evolution strategies for high-dimensional, stochastic problems.
Our results give insights into which algorithmic mechanisms of mod-
ern ES are of value for the class of problems at hand, and they reveal
principled limitations of the approach. They are in line with our the-
oretical understanding of ESs. We show that combining ESs that offer
reduced internal algorithm cost with uncertainty handling techniques
yields promising methods for this class of problems.

1 Introduction

Since the publication of DeepMind’s Deep-Q-Learning system [18] in 2015, the
field of (deep) reinforcement learning (RL) [34] is developing at a rapid pace. In
[18] neural networks learn to play classic Atari 2600 games solely from interac-
tion, based on raw (unprocessed) visual input. The approach had a considerable
impact because it demonstrated the great potential of deep reinforcement learn-
ing. Only one year later AlphaGo [8] demystified the ancient game of Go by
beating multiple human world experts. In this rapidly moving field, Evolution
Strategies (ESs) [4,22,30] have gained considerable attention by the machine
learning community when OpenAI promoted them as a “scalable alternative to
reinforcement learning” [17], which spawned several follow-up works [6,9].

Already long before deep RL, controller design with ESs was studied for many
years within the domain of neuroevolution [16,23,24,29,32,33]. The optimiza-
tion of neural network controllers is frequently cast as an episodic RL problem,
which can be solved with direct policy search, for example with an ES. This
amounts to parameterizing a class of controllers, which are optimized to max-
imize reward or to minimize cost, determined by running the controller on the
task at hand, often in a simulator. The value of the state-of-the-art covariance
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matrix adaptation evolution strategy (CMA-ES) algorithm [22] for this problem
class was emphasized by several authors [16,23]. CMA-ES was even augmented
with an uncertainty handling mechanism, specifically for controller design [14].

The controller design problems considered in the above-discussed papers are
rather low-dimensional, at least compared to deep learning models with up to
millions of weights. CMA-ES is rarely applied to problems with more than 100
variables. This is because learning a full covariance matrix introduces non-trivial
algorithm internal cost and hence prevents the direct application of CMA-ES to
high-dimensional problems. In recent years it turned out that even covariance
matrix adaptation can be scaled up to very large dimensions, as proven by a series
of algorithms [1,11,28,31], either by restricting the covariance matrix to the
diagonal, to a low-rank model, or to a combination of both. Although apparently
promising, none of these approaches was to date applied to the problem of deep
reinforcement learning.

Against this background, we investigate the suitability of evolution strategies
in general and of modern scalable CMA-ES variants in particular for the design of
large-scale neural network controllers. In contrast to most existing studies in this
domain, we approach the problem from an optimization perspective, not from a
(machine) learning perspective. We are primarily interested in how different algo-
rithmic components affect optimization performance in high-dimensional, noisy
optimization problems. Our results provide a deeper understanding of relevant
aspects of algorithm design for deep neuroevolution.

The rest of the paper is organized as follows. After a brief introduction to
controller design we discuss mechanisms of evolution strategies in terms of con-
vergence properties. We carry out experiments on RL problems as well as on
optimization benchmarks, and close with our conclusions.

2 Problems Under Study

General Setting. In this paper, we investigate the utility of evolution strategies
for optimization problems that pose several difficulties at the same time:

– a large number d of variables (high dimension of the search space R
d),

– fitness noise, i.e., the variability of fitness values f(x) when evaluating the
non-deterministic fitness function multiple times in the same point x, and

– multi-modality, i.e., the presence of a large number of local optima.

Additionally, a fundamental requirement of relatively quick problem evaluation
time (typically requiring simulation of real world phenomena) is appropriate.

State-of-the-art algorithms like CMA-ES can handle dimensions of up to
d ≤ 100 with ease. They become painfully slow for d ≥ 1000 due to their time
and memory requirements. In this sense, a high-dimensional problem is charac-
terized by d ≥ 1000. Yet, recent advances led to the successful application of
ESs with a diagonal and/or low-rank model of the covariance matrix to up to
500,000-dimensional (noise-free) problems [28]. Mainly fueled by the reduction of
internal algorithm cost, modern ESs thereby become applicable to new classes of
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problems. Deep reinforcement learning problems present such a new challenge,
characterized by a combination of three aspects, namely high search space dimen-
sion, fitness noise, and multi-modality. While neural networks are known to give
rise to highly multi-modal landscapes, several recent studies suggest that many
if not all local optima are of good or even equal quality [27]. Furthermore, the
problem can be addressed effectively with simple generic methods like restarts.
Therefore we focus on the less well understood interaction of noise and high
dimensions. As several components of modern ESs are impaired by uncertainty
and sparsity in sampling, their merit—especially as with increasing dimension
the relative share of function evaluations becomes prevalent in time—needs to
be assessed. To this end, we draw from previous work on uncertainty handling
[3,14,36] in order to face fundamental challenges like a low signal-to-noise ratio.

Despite the greater generality of the described problem setting, a central
motivation for studying the above problem class is controller design. In evolu-
tionary controller design, an individual (a candidate controller) is evaluated in
a Monte Carlo manner, by sampling its performance on a (simulated) task, or
a set of tasks and conditions. Stochasticity caused by random state transitions
and randomized controllers is a common issue. Due to complex and stochas-
tic controller-environment interactions, controller design is considered a difficult
problem, and black-box approaches like ESs are well suited for the task, in par-
ticular, if gradients are not available.

Reinforcement Learning. In reinforcement learning, control problems are typi-
cally framed as stochastic, time-discrete, Markov decision processes (S,A, P·,·(·),
R·(·, ·), γ) with the notion of a (software) agent embedded in an environment.
The agent ought to take an action a ∈ A when presented with a state s ∈ S
of the environment in order to receive a reward (s, s′, a) �→ Rs(s′, a) ∈ R for a
resulting state transition to new state s′ ∈ S in the next time step. An indi-
vidual encodes a (possibly randomized) controller or policy πθ : S → A with
parameters θ ∈ Θ, which is followed by the agent. It is assumed that each
policy yields a constant expected cumulative reward over a fixed number of
actions τ taken when acting according to it, as the state transition probability
(s, s′, a) �→ Ps,a(s′) = Pr(s′ = s′|s = s,a = a), to a successor state s′ is sta-
tionary (time-independent) and depends only on the current state and action
(Markov property), for all s, s′ ∈ S, a ∈ A. This cumulative reward acts as a
fitness measure Fπ : Θ → R, while the policy parameters θ (e.g., weights of
neural networks πθ) are the variables of the problem. Thus, we consider the
(reinforcement learning) optimization problem

min
θ∈Θ

Fπ(θ) = −
∑

s0,...,sτ ∈S

(
τ−1∑

k=0

γkRsk
(sk+1, πθ(sk))

)
·
⎛

⎝
τ−1∏

j=0

Psj ,πθ(sj)(sj+1)

⎞

⎠ ,

where γ ∈ (0, 1] is a discount factor.
Developments in RL demonstrated the merit in utilizing “model-free”

approaches to the design of high-dimensional controllers such as neural
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Algorithm 1. Generic Evolution Strategy Template
1: initialize λ, m ∈ R

d, σ > 0, C = I
2: repeat
3: repeat
4: for i ← 1, . . . , λ do
5: sample offspring xi ∼ N (m, σ2C)
6: evaluate fitness f(xi) by testing the controller encoded by xi on the task
7: actual optimization: update m
8: step size control: update σ
9: covariance matrix adaptation: update C

10: uncertainty handling, i.e., adapt λ or the number of tests per fitness evaluation
11: until stopping criterion is met
12: prepare restart, i.e., set new initial m, σ, and λ, and reset C ← I
13: until budget is used up
14: return m

networks for solving a variety of tasks previously inaccessible [8,18], as well
as novel frameworks for scaling evolution strategies to CPU clusters [17].

ESs have advantages and disadvantages compared to alternative approaches
like policy gradient methods. Several mechanisms of ESs add robustness to the
search. Modeling distributions over policy parameters as done explicitly in nat-
ural evolution strategies (NES) [7] and also in CMA-ES serves this purpose [12],
and so do problem-agnostic algorithm design and strong invariance properties.
Direct policy search does not suffer from the temporal credit assignment prob-
lem or from sparse rewards [17]. ESs have demonstrated superior exploration
behavior, which is important to avoid a high bias when sampling the environ-
ment [13]. On the contrary, ESs ignore the information contained in individual
state transitions and rewards. This inefficiency can (partly) be compensated by
better parallelism in ESs [17].

3 Evolution Strategies

In this section, we discuss Evolution Strategies (ESs) from a bird’s eye perspec-
tive, in terms of their central algorithmic components, and without resorting to
the details of their implementation. For actual exemplary algorithm instances
with the properties under consideration, we refer to the literature. Algorithm 1
summarizes commonly found mechanisms without going into any details.

ESs enjoy many invariance properties. This is generally considered a sign
of good algorithm design: due to their rank-based processing of fitness values,
they are invariant to strictly monotonically increasing transformations of fitness;
furthermore, they are invariant to translation, rotation, and scaling provided that
the initial distribution is transformed accordingly, and with CMA (see below)
they are even asymptotically invariant under arbitrary affine transformations.
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Step Size Control. The algorithms applied to RL problems in [6,9,17] are
designed in the style of non-adaptive algorithms, i.e., applying a mutation dis-
tribution with fixed parameters σ and C, adapting only the center m. This
method is known to converge as slowly as pure random search [21]. Therefore
it is in general imperative to add step size adaptation, which has always been
an integral mechanism since the inception of the method [4,30]. Cumulative
step size adaptation (CSA) is a state-of-the-art method [22]. Step size control
enables linear convergence on scale invariant (e.g., convex quadratic) functions,
and hence locally linear convergence into twice continuously differentiable local
optima [21], which puts ESs into the same class as many gradient-based meth-
ods. It was shown in [35] that convergence of rank-based algorithms cannot be
faster than linear. However, the convergence rate of a step size adaptive ESs is
of the form O(1/(kd)), where d is the dimensionality of the search space and k
is the condition number of the Hessian in the optimum. In contrast, the con-
vergence rate of gradient descent suffers from large k, but is independent of the
dimension d.

Metric Learning. Metric adaptation methods like CMA-ES [5,7,22] improve
the convergence rate to O(1/d) by adapting not only the global step size σ
but also the full covariance matrix C of the mutation distribution. However,
estimating a suitable covariance matrix requires a large number of samples, so
that fast progress is made only after O(d2) fitness evaluations, which is in itself
prohibitive for large d. Also, the algorithm internal cost for storing and updating
a full covariance matrix and even for drawing a sample from the distribution is at
least of order O(d2), which means that modeling the covariance matrix quickly
becomes the computational bottleneck, in particular if the fitness function scales
linear with d, as it is the case for neural networks.

Several ESs for large-scale optimization have been proposed as a remedy
[1,11,20,28,31]. They model only the diagonal of the covariance matrix and/or
interactions in an O(1) to O(log(d)) dimensional subspace, achieving a time and
memory complexity of O(d) to O(d log(d)) per sample. The aim is to offer a rea-
sonable compromise between ES-internal and external (fitness) complexity while
retaining most of the benefits of full covariance matrix adaptation. The LM-
MA-ES algorithm [11] offers the special benefit of adapting the fastest evolving
subspace of the covariance matrix with only O(d) samples, which is a significant
speed-up over the O(d2) sample cost of full covariance matrix learning.

Noise Handling. Evolution strategies can be severely impaired by noise, in par-
ticular when it interferes with step size adaptation. Being randomized algo-
rithms, ESs are capable of tolerating some level of noise with ease. In the easy-
to-analyze multiplicative noise model [26], the noise level decays as we approach
the optimum and hence, on the sphere function f(x) = ‖x‖2, the signal-to-noise
ratio (defined as the systematic variance of f due to sampling divided by the
variance of random noise) oscillates around a positive constant (provided that
step size adaptation works as desired [25], keeping σ roughly proportional to
‖m‖/d). For strong noise, this ratio is small. Then the ES essentially performs



416 N. Müller and T. Glasmachers

a random walk, and a non-elitist algorithm may even diverge. Then CSA is
endangered to converge prematurely [2]. For more realistic additive noise, the
noise variance is (lower bounded by) a positive constant. When converging to
the optimum, σ and hence the signal-no-noise-ratio decays to zero. Therefore
progress stalls at some distance to the optimum. Thus there exists a principled
limitation on the precision to which an optimum can be located. Explicit noise
handling mechanisms like [3,14,36] can be employed to increase the precision,
and even enable convergence, e.g., by adaptively increasing the population size
or the number of independent controller test runs per fitness evaluation. They
adaptively increase the population size or the number of simulation runs per
fitness evaluation, effectively improving the signal-to-noise ratio. The algorithm
parameters can be tuned to avoid premature convergence of CSA. However, the
convergence speed is so slow that in practice additive noise imposes a limit on the
attainable solution precision, even if the optimal convergence rate is attained [3].

Noise in High Dimensions. There are multiple ways in which optimization with
noise and in high dimensions interact. In the best case, adaptation slows down
due to reduced information content per sample, which is the case for metric
learning. The situation is even worse for step size adaptation: for the noise-free
sphere problem, the optimal step size σ is known to be proportional to ‖m‖/d.
Therefore, in the same distance to the optimum and for the same noise strength,
noise handling becomes harder in high dimensions. Then the step size can become
too small, and CSA can converge prematurely [2].

4 Experiments

Most of the theoretical arguments brought forward in the previous section are of
asymptotic nature, while sometimes practice is dominated by constant factors
and transient effects. Also, it remains unclear which of the different effects like
slow convergence, slow adaptation, and the difficulty of handling noise is a critical
factor. In this section, we provide empirical answers to these questions.

Well-established benchmark collections exist in the evolutionary computation
domain, in particular for continuous search spaces [15,19]. Typical questions are
whether an algorithm can handle non-separable, ill-conditioned, multi-modal, or
noisy test functions. However, it is not a priori clear which of these properties
are found in typical controller design problems. For example, the optimization
landscapes of neural networks are not yet well understood. Closing this gap is
far beyond the scope of this paper. Here we pursue a simpler goal, namely to
identify the most relevant factors. More concretely, we aim to understand in
which situation (dimensionality and noise strength) which algorithm component
(as discussed in the previous section) has a significant impact on optimization
performance, and which mechanisms fail to pay off.

To this end, we run different series of experiments on established benchmarks
from the optimization literature and from the RL domain. We have published
code for reproducing all experiments online.1 For ease of comparison, we use
1 https://github.com/NiMlr/High-Dim-ES-RL.

https://github.com/NiMlr/High-Dim-ES-RL
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the recently proposed MA-ES algorithm [5] adapting the full covariance matrix,
which was shown empirically to perform very similar to CMA-ES. This choice is
motivated by its closeness to the LM-MA-ES method [11], which learns a low-
rank approximation of the covariance matrix. When disabling metric learning
entirely in these methods, we obtain a rather simple ES with CSA, which we
include in the comparison.

Figure 1 shows the time evolution of the fitness Fπ(θ) (Eq. (2)) on three
prototypical benchmark problems from the OpenAI Gym environment [10], a
collection of RL benchmarks: acrobot, bipedal walker, and robopong. All three
controllers πθ (Eq. (2)) are fully connected deep networks with hidden layer sizes
30-30-10 (acrobot) and 30-30-15-10 (bipedal walker and robopong), giving rise
to moderate numbers of weights around 2,000, depending on the task-specific
numbers of inputs and controls. It is apparent that in all three cases fitness
noise plays a key role.

Figure 2 investigates the scaling of LM-MA-ES and MA-ES with problem
dimension on the bipedal walker task. For the small network considered above,
MA-ES performs considerably worse than LM-MA-ES, not only in wall clock
time (not shown) but also in terms of sample complexity. A similar effect was
observed in [11] for the Rosenbrock problem. This indicates that LM-MA-ES
can profit from its fast adaptation to the most prominent subspace. However,
this effect does not necessarily generalize to other tasks. More importantly, we
see (unsurprisingly) that the performance of both algorithms is severely affected
as d grows.

In order to gain a better understanding of the effect of fitness noise on high-
dimensional controller design, we consider optimization benchmarks. These prob-
lems have the advantage that the optimum is known and that the noise strength
is under our control. Since we are particularly interested in scalable metric learn-
ing, we employ the noisy ellipsoid problem f(x) = f̄(x)+N(x), f̄(x) =

√
xT Hx,

with eigenvalues λi = k
i−1
d−1 of H, and N(x) is the noise. For the multiplicative

case, the range of N(x) is proportional to f̄(x), while for the additive case it is
not.

Among the problem parameters we vary

– problem dimension d ∈ {20, 200, 2000, 20000},
– problem conditioning (k ∈ {100, 102, 106} (sphere, benign ellipsoid, standard

ellipsoid), and
– noise strength (none, multiplicative with various constants of proportionality,

additive).

Figure 3 shows the time evolution of fitness and step size of the different algo-
rithms in these conditions.

The experiments on the noise-free sphere problem show that the speed of
optimization decays with increasing dimension, as predicted by theory [25]: halv-
ing the distance to the optimum requires Θ(d) samples. For this reason, within
the fixed budget of 106 function evaluations, there is less progress in higher
dimensions. For d = 20, 000, the solution quality is still improved by a factor of
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about 103, which requires the step size to change by the same amount. However,
extrapolating our results we see that in extremely high dimensions the algorithm
is simply not provided enough generations to make sufficient progress in order
to justify step size adaptation. This is in accordance with [6]. A similar effect is
observed for metric learning, which takes Θ(d2) samples for the full covariance
matrix. Even for the still moderate dimension of d = 2, 000, the adaptation pro-
cess is not completed within the given budget. Yet, also during the transitional
phase where the matrix is not yet fully adapted, MA-ES already has an edge
over the simple ES. LM-MA-ES is sometimes better and sometimes worse than
MA-ES. It may profit from the significantly smaller number of parameters in
the low-rank covariance matrix, which allows for faster adaptation, in particular
in high dimensions, where MA-ES does not have enough samples to complete
its learning phase. In any case, its much lower internal complexity allows us to
scale up LM-MA-ES to much higher dimensions.

Fig. 1. Evolution of population average fitness for three reinforcement learning tasks
with LM-MA-ES, averaged over five runs.

Fig. 2. Evolution of fitness or neural networks with different numbers of weights (dif-
ferent hidden layer sizes), for LM-MA-ES (left) and MA-ES (right) on the bipedal
walker task.

In summary, metric adaptation is still useful for problems with a “realistic”
dimension of even very detailed controller design problems in engineering, while
it is too slow for training neural networks with millions of weights, unless the
budget grows at least linear with the number of weights. This in turn requires
extremely fast simulations as well as a large amount of computational hardware
resources.

Noise has a significant impact on the optimization behavior and on the solu-
tion quality. Additive noise implies extremely slow convergence, and indeed we
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Fig. 3. Evolution of fitness and step size over function evaluations, averaged over
five independent runs, for three different algorithms and problems (see the legend for
details). Note the logarithmic scale of both axes.

find that all methods stall in this case. Too strong multiplicative noise even
results in divergence. A particularly adversarial effect is that the noise strength
that can be tolerated is at best inversely proportional to the dimension. This
effect nicely shows up in the noisy sphere results. Here, uncertainty handling can
help in principle, since it improves the signal-to-noise adaptively to the needs
of the algorithm, but at the cost of more function evaluations per generation,
which amplifies the effects discussed above.

In the presence of noise, CSA does not seem to work well in low dimensions. In
case of high noise, log(σ) performs a random walk. However, this walk is subject
to a selection bias away from high values, since they improve the signal-to-noise
ratio. Therefore we find extended periods of stalled progress, in particular for
d = 20, accompanied by a random walk of the (far too small) step size. The
effect is unseen in higher dimensions, probably due to the smaller update rate.

We are particularly interested in the interplay between metric adaptation and
noise. It turns out that in all cases where CMA helps (non-spherical problems of
moderate dimension), i.e., where LM-MA-ES and MA-ES outperform the simple
ES, the same holds true for the corresponding noisy problems. We conclude that
metric learning still works well, even when faced with noise in high dimensions.

The influence of noise can be controlled and mitigated with uncertainty han-
dling techniques [3,14,36]. This essentially results in curves similar to the left-
most column of Fig. 3, but with slower convergence, depending on the noise
strength. In controller design, noise handling can be key to success, in particular
if the optimal controller is nearly deterministic, while strong noise is encountered
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Fig. 4. Fitness and number of re-evaluations (left) step size and standard deviation
of fitness (right), averaged over six runs of LM-MA-ES with and without uncertainty
handling on the bipedal walker task.

during learning. This is a plausible assumption for the bipedal walker task: at an
intermediate stage, the walker falls over randomly depending on minor details
of the environment, resulting in high noise variance, while a controller that has
learned a stable and robust walking pattern achieves good performance with
low variance. Then it is key to handle the early phase by means of uncertainty
handling, which enables the ES to enter the late convergence phase eventually.
Figure 4 displays such a situation for the benign ellipse with d = 100, 000 with
additive noise applied only for function values above a threshold. LM-MA-ES
without uncertainty handling fails, but with uncertainty handling the algorithm
finally reaches the noise-free region and then converges quickly.

Fig. 5. (UH-) LM-MA-ES on the
benign ellipse in d = 100, 000 with
additive noise restricted to f̄(x) >
3.5. LM-MA-ES without uncertainty
handling (blue curve) diverges while
LM-MA-ES with uncertainty handling
approaches the optimum (red curve).
(Color figure online)

Figure 5 shows the effect of uncer-
tainty handling. It yields significantly
more stable optimization behavior in two
ways: 1. it keeps the step size high, avoid-
ing an undesirable decay and hence the
danger of premature convergence or of a
less-robust population, and 2. it keeps the
fitness variance small, which allows the
algorithm to reach better fitness in the
late fine tuning phase. Interestingly, the
ES without uncertainty handling is ini-
tially faster. This can be mitigated by
tuning the initial step size, which anyway
becomes an increasingly important task in
high dimensions, for two reasons: adapta-
tion takes long in high dimensions, and
even worse, a too small initial step size
makes uncertainty handling kick in with-
out need, so that the adaptation takes even longer. The latter might especially
be called for on expensive problems commonly found in RL.
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5 Conclusion

We have investigated the utility of different algorithmic mechanisms of evolu-
tion strategies for problems with a specific combination of challenges, namely
high-dimensional search spaces and fitness noise. The study is motivated by a
broad class of problems, namely the design of flexible controllers. Reinforcement
learning with neural networks yields some extremely high-dimensional problem
instances of this type.

We have argued theoretically and also found empirically that many of the
well-established components of state-of-the-art methods like CMA-ES and scal-
able variants thereof gradually lose their value in high dimensions, unless the
number of function evaluations can be scaled up accordingly. This affects the
adaptation of the covariance matrix, and in extremely high-dimensional cases
also the step size. This somewhat justifies the application of very simple algo-
rithms for training neural networks with millions of weights, see [6].

Additive noise imposes a principled limitation on the solution quality. How-
ever, it turns out that adaptation of the search distribution still helps, because
it allows for a larger step size and hence a better signal-to-noise ratio. Unsur-
prisingly, uncertainty handling can be a key technique for robust convergence.

Overall, we find that adaptation of the mutation distribution becomes less
valuable in high dimensions because it kicks in only rather late. However, it
never harms, and it can help even when dealing with noise in high dimensions.
Our results indicate that a scalable modern evolution strategy with step size
and efficient metric learning equipped with uncertainty handling is the most
promising general-purpose technique for high-dimensional controller design.
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