
Automated Selection and Configuration
of Multi-Label Classification Algorithms

with Grammar-Based Genetic
Programming
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Abstract. This paper proposes Auto-MEKAGGP, an Automated
Machine Learning (Auto-ML) method for Multi-Label Classification
(MLC) based on the MEKA tool, which offers a number of MLC algo-
rithms. In MLC, each example can be associated with one or more class
labels, making MLC problems harder than conventional (single-label)
classification problems. Hence, it is essential to select an MLC algo-
rithm and its configuration tailored (optimized) for the input dataset.
Auto-MEKAGGP addresses this problem with two key ideas. First, a
large number of choices of MLC algorithms and configurations from
MEKA are represented into a grammar. Second, our proposed Grammar-
based Genetic Programming (GGP) method uses that grammar to search
for the best MLC algorithm and configuration for the input dataset.
Auto-MEKAGGP was tested in 10 datasets and compared to two well-
known MLC methods, namely Binary Relevance and Classifier Chain,
and also compared to GA-Auto-MLC, a genetic algorithm we recently
proposed for the same task. Two versions of Auto-MEKAGGP were
tested: a full version with the proposed grammar, and a simplified ver-
sion where the grammar includes only the algorithmic components used
by GA-Auto-MLC. Overall, the full version of Auto-MEKAGGP achieved
the best predictive accuracy among all five evaluated methods, being the
winner in six out of the 10 datasets.

Keywords: Automated machine learning (Auto-ML)
Multi-label classification · Grammar-based genetic programming

1 Introduction

The outgrowing popularity of machine learning algorithms and its indiscriminate
use by practitioners who do not necessarily know the peculiarities of these meth-
ods have made the area of automated machine learning (Auto-ML) [3,5,6,8,14]
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more relevant than ever. The area of Auto-ML emerged to deal with the problem
of how to select learning algorithms and their hyper-parameters to successfully
solve a given ML problem. This problem is a hard one even for experts, which
usually follow ad-hoc approaches to choose learning algorithms. In the major-
ity of cases, such decisions are based on trial and error when testing different
methods from the literature or on the recommendation of other experienced
data scientists. Additionally, the algorithm’s hyper-parameters are rarely deeply
explored to achieve the best algorithm’s performance for the given problem.

This scenario makes many ML solutions biased, incomplete and inefficient.
Auto-ML proposes to deal with these problems by customizing solutions (in
terms of algorithms and configurations) to ML problems. Most Auto-ML systems
proposed to date focus on generating sequences of steps to solve single label
classification (SLC) problems [3,5,6,8,14]. The objective of classification is to
learn models from data capable of expressing the relationships between a set of
predictive attributes and a predefined set of class labels. In the case of SLC, each
instance is associated to a single class label.

However, there is an increasing number of applications that require asso-
ciating an example to more than one class label, including image and video
annotation, gene function prediction, medical diagnosis and tag suggestion for
text mining. For example, in the context of medical diagnosis, a patient can be
associated to one or more diseases (e.g., diabetes, pancreatic cancer and high
blood pressure) at the same time. This classification scenario is better known
as multi-label classification (MLC) [15]. MLC is considered a more challenging
problem than SLC. First, the algorithm needs to consider the label correlations
(i.e., detecting if they exist or not) in order to learn a model that produces accu-
rate classification results. Second, the limited number of examples for each class
label in the dataset makes generalization harder, as the algorithm needs more
examples to create a good model from such complex data.

In the same way that MLC is harder than SLC, we consider the Auto-ML
task for MLC data more challenging than the Auto-ML task for SLC data. This
is because of the higher difficulty to learn from multi-label data, the strain to
evaluate the produced MLC models [15], and the computational cost involved.
Despite these problems, we have recently proposed the first Auto-ML method
to tackle MLC [2], here referred to as GA-Auto-MLC. The method is a sim-
ple real-coded genetic algorithm (GA) that performs a search in a very large
(hierarchical) search space of many different types of MLC algorithms from the
MEKA framework [12]. Although GA-Auto-MLC was effective in the experi-
ments reported in [2] (with only three datasets), its solution encoding approach
has two major drawbacks: it is cumbersome and it allows individuals repre-
senting impractical MLC algorithm configurations (in the sense that the MLC
algorithms could have invalid configurations or take too long to run).

GA-Auto-MLC encodes solutions using a real-valued array to code a com-
plex hierarchical structure representing the MLC algorithms and their hyper-
parameters. Although the genotype is represented by a vector of a fixed prede-
fined size, each position of the array can map to distinct components (essential
functional parts) of MLC algorithms. In other words, the genes do not have any
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semantic meaning regarding the mapping to the phenotype. Because of that,
when performing genetic operations (such as crossover and mutation), some
operations are highly conservative (e.g., no changes occur in the phenotype after
a mutation operation) while others highly destructive (e.g., abrupt changes occur
in the phenotype after a mutation operation).

Aiming to address the aforementioned problems, this paper proposes a new
evolutionary Auto-ML for MLC (based on the MEKA tool), namely Automated
MEKA (Auto-MEKAGGP). Auto-MEKAGGP is a grammar-based genetic pro-
gramming method [7] capable of handling the complex hierarchical nature of the
MLC search space while avoiding the generation of invalid solutions. The method
was conceived to explore a larger set of MLC algorithms and components when
compared to GA-Auto-MLC. Auto-MEKAGGP optimizes the choice of an MLC
algorithm and hyper-parameter settings to the target problem.

In order to evaluate its effectiveness, Auto-MEKAGGP was tested in 10
datasets and compared to two well-known MLC algorithms: Binary Relevance
(BR) [15] and Classifier Chain (CC) [11]. Auto-MEKAGGP was also compared
to GA-Auto-MLC, and all comparisons were based on a combination of sev-
eral multi-label predictive accuracy measures [2,15]. We run two versions of
Auto-MEKAGGP: a full version with our proposed grammar, and a simplified
grammar version including only the components of GA-Auto-MLC. The results
showed that Auto-MEKAGGP was the best method in terms of average rank,
followed by its simplified version, and then GA-Auto-ML, BR and CC.

The remainder of this paper is organized as follows. Section 2 reviews related
work on Auto-ML and MLC. Section 3 details the proposed method, while Sect. 4
presents and discusses the results obtained. Finally, Sect. 5 draws some conclu-
sions and discusses directions of future work.

2 Related Work

Currently, Auto-ML methods [3,5,6,8,14] have been dealing with the optimiza-
tion of complete ML pipelines. This means that, instead of just focusing on ML
algorithms and their hyper-parameters, these methods are also concerned with
other aspects of ML, such as data preprocessing (e.g., feature normalization
or feature selection) and post-processing (e.g., classification probability calibra-
tion). Most methods proposed so far in the literature use as their search method
either Bayesian optimization or evolutionary approaches.

Auto-WEKA [14] automates the process of selecting the best ML pipeline in
WEKA [16], whereas Auto-SKLearn [5] optimizes the pipelines in Scikit-Learn
[10]. Both methods implemented a random forest based version of a Bayesian
optimization approach (i.e., Sequential Model-based Algorithm Configuration).

Evolutionary methods are also commonly used to perform this task. The
Tree-Based Pipeline Optimization Tool (TPOT) [8], for instance, applies a
canonical genetic programming (GP) algorithm to search for the most appropri-
ate ML pipeline in the Scikit-Learn library. Considering a different evolutionary
approach, the Genetic Programming for Machine Learning method (GP-ML) [6]
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uses a strongly typed genetic programming (STGP) method to restrict the Scikit-
Learn pipelines in such a way that they are always meaningful from the machine
learning point of view. Finally, the REsilient ClassifIcation Pipeline Evolution
method (RECIPE) [3] adopts a grammar-based genetic programming (GGP)
method to search for Scikit-Learn pipelines. It uses a grammar to organizes the
knowledge acquired from the literature on how successful ML pipelines look like.
The grammar avoids the generation of invalid pipelines, and can also speed up
the search.

All Auto-ML methods previously discussed were designed to solve the conven-
tional single-label classification task. By contrast, we propose Auto-MEKAGGP,
a grammar-based genetic programming method to solve the Auto-ML task for
multi-label data. Auto-MEKAGGP overcomes the major drawbacks of our pre-
viously proposed GA-Auto-MLC method [2], being able to properly handle the
complex hierarchical nature of the MLC search space. It is important to point
out that in this paper we focus only on algorithms and hyper-parameters (not
pipelines), as the MLC search space is much bigger than the SLC search space.

Most works in the MLC literature fall into one of two approaches [15]: prob-
lem transformation (PT) and algorithm adaptation (AA). While PT creates algo-
rithms that transform the multi-label dataset (task) into one or more single-label
classification tasks (making it possible to use any SLC algorithm), AA adapts
traditional single-label classification algorithms to handle multi-label data.

Among the many MLC algorithms in the literature, it is worth mentioning:
Binary Relevance (BR), which learns Q = |L| independent binary classifiers,
one for each label in the label set L; Label Powerset (LP), which creates a single
class for each unique set of labels that exists in a multi-label training set; and
Classifier Chain (CC), which extends the BR method by chaining the Q binary
classifiers (also one for each label), where the attribute space of each link in the
chain is increased with the classification outputs of all previous links. For more
details about MLC algorithms, see [1,15].

Given the very large variety of MLC algorithms in the literature—each one
having its own assumptions or biases—it is clear that selecting the best MLC
algorithm for a dataset is a hard task, and the use of Auto-ML is fully jus-
tified. This is because different algorithms’ assumptions can lead to different
predictive performances, depending on the characteristics of the dataset and the
algorithms. For instance, when the BR method is selected, the label correlations
are disregarded, which is beneficial for some types of datasets. However, consid-
ering the label correlations is essential for some other datasets, which makes LP
and CC methods better choices. Hence, it is important to identify these patterns
and map specific algorithms (with hyper-parameters) to specific datasets.

3 Automatically Selecting Algorithms and
Hyper-Parameters for Multi-Label Classification

This section presents Automated MEKA (Auto-MEKAGGP), a method con-
ceived to automatically select and configure MLC algorithms in the MEKA
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Fig. 1. The proposed method to select and configure MLC algorithms.

tool [12]. Auto-MEKAGGP relies on a grammar-based genetic programming
(GGP) search to select the best MLC algorithm and its associated hyper-
parameters to a given dataset. The GGP search naturally explores the hier-
archical nature of the problem, a missing feature of our previous method [2].

As shown in Fig. 1, Auto-MEKAGGP receives as input an MLC dataset (with
the attribute space XF with F features and the Q class labels, L1 to LQ) and a
grammar describing the (hierarchical) search space of MLC algorithms and their
hyper-parameters. The grammar directly influences the search, as each individual
created by the GGP is based on its production rules, which guarantees that all
individuals are valid. In other words, the MLC grammar defines the search space
and how the individuals are created and modified (see Sect. 3.1).

Auto-MEKAGGP works as follows. First, it creates an initial population of
individuals (trees representing MLC algorithms) by choosing at random valid
rules from the grammar (see Sect. 3.1), generating a derivation tree. Next, an
iterative process starts. First, a mapping of each derivation tree to a specific MLC
algorithm is performed. The individuals are evaluated by running the algorithm
they represent within the MEKA tool on the input (see Sect. 3.2). Different MLC
measures are taken into account to assess the individuals’ quality, i.e., the fitness
function. Next, Auto-MEKAGGP checks if a search stopping criterion is satis-
fied (e.g., a fixed number of iterations or a quality criterion). If this criterion
is not satisfied, Auto-MEKAGGP selects individuals by using tournament selec-
tion. Next, the GGP operators (i.e., Whigham’s crossover and mutation [7]) are
applied on the selected individuals to create a new population. These operators
also respect the grammar constraints, ensuring that the produced individuals
represent valid solutions. This process goes on until the stopping criterion is sat-
isfied. At the end of the evolution, the best individual (an MLC algorithm with
its hyper-parameters) is returned, and its model is built from the full training
set and evaluated in the test set (which was not accessed during the evolution),
in order to measure the predictive performance of the returned individual.
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It is worth noting that Auto-MEKAGGP was implemented using EpochX [9],
an open source genetic programming framework, and is available for download1.

3.1 Grammar: A Formal Description of the MLC Search Space

This section describes the grammar used to specify the search space of our pro-
posed Auto-MEKAGGP method. The Auto-MEKAGGP’s grammar was created
based on MEKA, which is a multi-label extension to WEKA [16], and hence
includes most of its algorithms. MEKA has a large variety of algorithms, focus-
ing mainly on problem transformation methods.

We first performed a deep study of the MLC search space in MEKA: the
algorithms and their hyper-parameters, the constraints associated with different
hyper-parameter settings, the hierarchical nature of operations performed by
problem transformation algorithms and meta-algorithms, and other issues. The
grammar includes 30 MLC algorithms, exploring most algorithms in MEKA. We
let some algorithms aside because of their poor performance to solve the MLC
task or because of errors when testing the algorithm for different types of data.
The MLC algorithms were divided into three types: problem transformation
(PT), algorithm adaptation (AA) and meta-algorithms (Meta).

PT algorithms usually call the SLC algorithms to solve an MLC prob-
lem, transforming the given problem into one or various SLC problems. For
these algorithms, we choose 30 SLC algorithms based on a robust method
to select and configure algorithms in WEKA, i.e., Auto-WEKA [14]. On the
other hand, AA methods do not need to transform the data in a preprocess-
ing step, applying their learning process in a direct way. Finally, meta algo-
rithms have the aforementioned MLC algorithms (PT or AA) as base algorithms,
using the base classifiers’ outputs in different ways to try to improve MLC
performance. Considering these learning algorithms, their hyper-parameters,
their dependencies and constraints, the search space of MLC algorithms has
(8.420 × 10128) + [(5.642 × 10124) × Q] + [(1.755 × 10113) × Q2] possible MLC
algorithm configurations, where Q is the number of labels of the input dataset.
For more details about these possible algorithm configurations, see [1].

After studying this search space, we defined a grammar that encompasses
the knowledge about MLC in MEKA, i.e., all algorithms, hyper-parameters and
constraints. Formally, a grammar G is represented by a four-tuple <N, T, P,
S>, where N represents a set of non-terminals, T a set of terminals, P a set of
production rules and S (a member of N ) the start symbol.

Figure 2 presents a sample of our proposed grammar. The complete version
of the MLC grammar is specified in [1] and the implemented grammar (i.e., for
EpochX) is also available online2. The proposed grammar has 138 production
rules, in a total of 137 non-terminals and 230 terminals. It uses the Backus Naur
Form (BNF), where each production rule has, for instance, the form <Start>

1 Code and documentation are available at: https://github.com/laic-ufmg/automlc/.
2 The implementation of the grammar(s) for EpochX is available at: https://github.

com/laic-ufmg/automlc/tree/master/PPSN.

https://github.com/laic-ufmg/automlc/
https://github.com/laic-ufmg/automlc/tree/master/PPSN
https://github.com/laic-ufmg/automlc/tree/master/PPSN
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Fig. 2. An excerpt of the proposed grammar for multi-label classification.

::=<Meta−Algorithm><AlgorithmA> |<AlgorithmB> ParamA. Symbols
wrapped in “<>” represent non-terminals, whereas terminals (such as ParamA)
are not bounded by “< >”. The special symbols “|”, “[]” and “()” represent,
respectively, a choice, an optional element and a set of grouped elements that
should be used together. Additionally, the symbol “#” represents a comment in
the grammar, i.e., it is ignored by the grammar’s parser. The choice of one among
all elements connected by “|” is made using a uniform probability distribution
(i.e., all elements are equally likely to occur in an individual).

3.2 From Individual Representation to Individual Evaluation

Each individual is represented by a tree, derivated from the expansion of the
production rules of the MLC grammar. The mapping process takes the terminals
from the tree and constructs a valid MLC algorithm from them. Given the
mapped MLC algorithm in MEKA (and WEKA), the fitness function measures
how effective each algorithm is for the input dataset To do this, the training set
is split into two parts: a learning set (80%) and a validation set (20%). We use
a stratified sampling method [13] to split the training set. Each MLC algorithm
creates an MLC model from the learning set and evaluates its predictive accuracy
on the validation set, using the fitness function.

MLC algorithms are usually evaluated considering several measures [15].
Hence, we set the fitness function as the average of four of these MLC mea-
sures [2,15]: Exact Match (EM), Hamming Loss (HL), F1 Macro averaged by
label (FM) and Ranking Loss (RL), as indicated in Eq. 1:

Fitness =
EM + (1 −HL) + FM + (1 −RL)

4
(1)

EM is a very strict evaluation metric, as it only takes the value one when the
predicted label set is an exact match to the true label set for an example, and
takes the value zero otherwise. HL counts how many times a label not belonging
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to the example is predicted, or a label belonging to the example is not predicted.
FM is the harmonic mean between precision and recall, and its average is first
calculated per label and, after that, across all the labels in the dataset. This
metric is interesting because it accounts for different levels of class imbalance
of the data. Finally, RL measures the number of times that irrelevant labels
are ranked higher than relevant labels, i.e., it penalizes the label pairs that are
reversely ordered in the ranking for a given example. All four metrics are within
the [0, 1] interval. However, the EM and FM measures should be maximized,
whereas HL and RL should be minimized. Hence, HL and RL are subtracted
from one in Eq. 1 to make the search maximize the fitness function.

4 Experimental Results

This section presents the experimental results of the proposed method in 10
datasets from the KDIS (Knowledge and Discovery Systems) repository3. The
datasets are presented in the first two columns of Table 1, where name of the
dataset is followed by a three-tuple (M,F,Q), where M is the number of exam-
ples, F is the number of features, and Q is the number of labels.

Tests are performed with two different grammar versions: a simplified ver-
sion4 that matches the search space of GA-Auto-MLC [2] and a full version5

corresponding to the complete set of MLC components defined in this paper.
The simplified version (i.e., Auto-MEKAGGP(S)) allows us to directly compare
our results to those obtained by GA-Auto-MLC.

The two versions of Auto-MEKAGGP and GA-Auto-MLC were executed with
the following parameters: 100 individuals evolved for at most 100 generations,
tournament selection of size two, elitism of five individuals, and crossover and
mutation probabilities of 0.9 and 0.1, respectively. If the best individual remains
the same for over five generations and the algorithm has run for at least 20
generations, we stop the evolutionary process and return that best individual.
The learning and validation sets are resampled from the training set every five
generations in order to avoid overfitting. Additionally, we use time and memory
budgets for each MLC algorithm (generated by the evolutionary Auto-MLC
methods) of 450 s (7.5 min) and 2 GB of RAM, respectively.

The algorithms produced are also compared to Binary Relevance (BR)
and Classifier Chain (CC) methods. These two methods do not have hyper-
parameters at the MLC level, but can use different SLC algorithms. We test
them with 11 candidate algorithms [16]: Näıve Bayes (NB), Tree Augmented
Näıve Bayes (TAN), Bayesian Network Classifier algorithm with a K2 search
method (BNC-K2), Logistic Model Trees (LMT), Random Forest (RF), C4.5
(J48), Sequential Minimal Optimization (SMO), Multi-Layer Perceptron (MLP),

3 The datasets are available at: http://www.uco.es/kdis/mllresources/.
4 Available at: https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoME

KAS.bnf.
5 Available at: https://github.com/laic-ufmg/automlc/tree/master/PPSN/Auto

MEKA.bnf.

http://www.uco.es/kdis/mllresources/
https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKAS.bnf
https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKAS.bnf
https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKA.bnf
https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKA.bnf
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Table 1. The characteristics of the datasets, and the comparison for the versions of
Auto-MEKAGGP and the baseline methods in the test set as to the fitness function.

Dataset (M, F, Q) Auto-MEKA Auto-MEKA GA-Auto-MLC BR CC

GGP GGP (S)

Flags (194, 18, 7) 0.606 (0.02) 0.598 (0.02) 0.603 (0.03) 0.582 (0.02) 0.590 (0.04)

Scene (2407, 294, 6) 0.837 (0.01) 0.830 (0.01) 0.826 (0.01) 0.824 (0.01) 0.787 (0.02)

Birds (645, 260, 19) 0.724 (0.02) 0.718 (0.02) 0.722 (0.01) 0.715 (0.03) 0.657 (0.02)

Yeast (2417, 103, 14) 0.567 (0.01) 0.568 (0.01) 0.565 (0.01) 0.566 (0.00) 0.552 (0.01)

GPosPse (519, 440, 4) 0.734 (0.04) 0.729 (0.04) 0.721 (0.03) 0.700 (0.04) 0.697 (0.04)

CHD 49 (555, 49, 6) 0.554 (0.02) 0.549 (0.02) 0.550 (0.02) 0.540 (0.02) 0.524 (0.02)

WTQlty (1060, 16, 14) 0.521 (0.01) 0.522 (0.01) 0.524 (0.01) 0.523 (0.02) 0.483 (0.01)

Emotions (593, 72, 6) 0.668 (0.02) 0.676 (0.02) 0.674 (0.01) 0.666 (0.02) 0.627 (0.02)

Reuters (294, 1000, 6) 0.473 (0.04) 0.475 (0.04) 0.476 (0.05) 0.469 (0.04) 0.457 (0.04)

Genbase (662, 1186, 27) 0.941 (0.01) 0.938 (0.01) 0.938 (0.01) 0.887 (0.10) 0.934 (0.01)

Average values 0.663 0.660 0.660 0.647 0.631

Average ranks 1.800 2.250 2.250 3.900 4.800

K-Nearest Neighbors (KNN), PART and Logistic Regression (LR). All SLC algo-
rithms use the default hyper-parameters, except for SMO which uses a Gaussian
Kernel (with default hyper-parameters), and for KNN which searches for the
best K value in the interval [1, 20] by performing a leave-one-out procedure
based on the learning and validation sets. Note that identical time and memory
budgets were applied in this local search to provide a fair comparison.

We perform the experiments using a stratified five-fold cross-validation [13]
with six repetitions varying Auto-MEKAGGP’s random seed, resulting in 30 runs
per dataset for each method. Table 1 presents the (average) results of fitness
function (see Eq. 1) in the test set followed by their standard deviations. For
each dataset, the best average result is displayed in bold.

We use the well-known statistical approach proposed by Demšar [4] to com-
pare different methods, using an adapted Friedman test followed by a Nemenyi
post hoc test with significance level of 0.05. The last two rows of Table 1 show
the average value and the average rank for each method.

As shown in Table 1, Auto-MEKAGGP has achieved the best (lowest) aver-
age rank (based on the fitness measure), followed by Auto-MEKAGGP(S) and
GA-Auto-MLC, which had the same rank. BR and CC presented the worst
performances. There was no statistically significant difference between the per-
formances of the two versions of Auto-MEKAGGP and GA-Auto-MLC. However,
Auto-MEKAGGP was the best method in six out of the 10 datasets in Table 1,
whilst Auto-MEKAGGP(S) and GA-Auto-MLC were each the best in only two
datasets. Finally, both versions of Auto-MEKAGGP (and, also, GA-Auto-MLC)
performed statistically better than BR and CC, well-known MLC methods.
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(a) Auto-MEKAGGP’s behavior.
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(b) GA-Auto-MLC’s behavior.

Fig. 3. Evolution of fitness values for the dataset GPosPse.

4.1 Evolutionary Behavior

This section compares the evolutionary behaviors of Auto-MEKAGGP and GA-
Auto-MLC. We did not include Auto-MEKAGGP(S) in this analysis because its
results were not significantly better than those achieved by GA-Auto-MLC.

Figures 3(a) and (b) illustrate the fitness evolution of the best individuals
of the population and the average fitness of the population of individuals of
Auto-MEKAGGP and GA-Auto-MLC for the dataset GPosPse. All curves con-
sider the mean of the only 10 runs (out of 30) with the same final number of
generations (25). This dataset was chosen because it shows a situation where
Auto-MEKAGGP is clearly better than GA-Auto-MLC, but the evolution curves
are similar for other datasets. Note that the fitness values of the individuals
can decrease or increase from one generation to another due to training data
resampling.

Observe that Auto-MEKAGGP’s population converges faster than GA-Auto-
MLC’s one. This may be due to the lack of semantic meaning of the genes in
GA-Auto-ML’s individuals, so a GA-Auto-MLC’s individual can change severely
from one generation to another by performing crossover and mutation. This is
less likely to happen in Auto-MEKAGGP as the grammar restricts the GGP
operations, which explains why the produced individuals converge quickly.

4.2 The Diversity of the Selected MLC Algorithms

This section analyzes the diversity of the MLC algorithms selected by two evo-
lutionary Auto-ML methods: Auto-MEKAGGP and GA-Auto-ML. We focus only
on the selected MLC algorithms (the “macro-components” of the Auto-ML meth-
ods), and not on their selected parameter settings (the “micro-components”), to
simplify the analysis. We do not report results for Auto-MEKAGGP(S) because
again the full version of this method, Auto-MEKAGGP, obtained better results,
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(a) Auto-MEKAGGP.
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(b) GA-Auto-MLC.

Fig. 4. Barplots for the MLC algorithms’ selection over all the 300 runs.

as discussed earlier. Analyzing the MLC algorithms selected by Auto-MEKAGGP

and GA-Auto-ML can help us to better understand the results of Table 1, giving
an idea of how the choice of an MLC algorithm influences the performance of these
two Auto-ML methods.

Figures 4(a) and (b) present the bar plots to analyze the percentage of selec-
tion of MLC algorithms for the Auto-ML methods. For the full details about
each MLC algorithm, see [1]. In these figures, we have for each MLC algorithm
a (gray/white) bar, representing the average percentage of selection over all the
300 runs: 10 datasets times 30 independent runs per dataset (5 cross-validation
folds times 6 single runs with different random seeds). These percentages rely on
two cases: (i) when the traditional MLC algorithm is solely selected; (ii) when
the traditional MLC algorithm is selected together with a MLC meta-algorithm.
To emphasize these two cases, the bar for each traditional MLC algorithm is
divided into two parts, with sizes proportional to the percentage of selection as
a standalone algorithm (in gray color) and the percentage of selection as part of
a meta-algorithm (in white color).

BR was the traditional MLC algorithm most frequently selected (in about
30% of all runs) by both Auto-ML methods. Besides, Classifier Chain (CC), Four-
Class Pairwise Classification (FW), and Pruned Sets with and without threshold
(PS and PSt) were selected in total in 34.3% of all runs by Auto-MEKAGGP;
whilst CC, Conditional Dependency Networks (CDN), LP and PSt were selected
in total in 36.6% of all runs by GA-Auto-MLC. Note that the MLC algorithms
most frequently selected by Auto-MEKAGGP and GA-Auto-ML are broadly sim-
ilar, which suggests that Auto-MEKAGGP’s superior performance is partly due
to a better exploration of the space of hyper-parameter settings of those most
successful MLC algorithms. Finally, we observed that Auto-MEKAGGP selected
meta MLC algorithms in 53.3% of all runs, whilst GA-Auto-MLC selected meta
MLC algorithms in only 27.4% of all runs.
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5 Conclusions and Future Work

This paper introduced Auto-MEKAGGP, a new grammar-based genetic pro-
gramming method for automatically selecting the best Multi-Label Classifica-
tion (MLC) algorithm and its hyper-parameter settings for an input dataset.
Auto-MEKAGGP uses a grammar representing prior knowledge about MLC algo-
rithms, restricting its search space to valid solutions.

Auto-MEKAGGP was compared to two well-known MLC algorithms – Binary
Relevance (BR) and Classifier Chain (CC) – and to GA-Auto-ML, a GA we
recently proposed to solve this task [2]. We tested Auto-MEKAGGP with the
full version of the proposed grammar and with a simplified grammar ver-
sion which has the same search space (candidate MLC algorithms and their
hyper-parameters) as GA-Auto-ML. Overall, the full version of Auto-MEKAGGP

obtained the highest predictive accuracy among all five tested methods, being
the winner in six out of the 10 datasets. Also, both versions of Auto-MEKAGGP,
as well as GA-Auto-ML, obtained statistically significantly higher accuracies
than BR and CC.

In future work we plan to extend Auto-MEKAGGP to search for MLC
pipelines too. This means to search for the best combination of MLC algo-
rithms, data preprocessing and post-processing methods, and their respective
hyper-parameters.
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