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Abstract. Based on a geometric theory of evolutionary algorithms, it
was shown that all evolutionary algorithms equipped with a geometric
crossover and no mutation operator do the same kind of convex search
across representations, and that they are well-matched with generalised
forms of concave fitness landscapes for which they provably find the opti-
mum in polynomial time [13]. Analysing the landscape structure is essen-
tial to understand the relationship between problems and evolutionary
algorithms. This paper continues such investigations by considering the
following challenge: develop an analytical method to recognise that the
fitness landscape for a given problem provably belongs to a class of con-
cave fitness landscapes. Elementary landscapes theory provides analytic
algebraic means to study the landscape structure [15]. This work begins
linking both theories to better understand how such method could be
devised using elementary landscapes. Examples on the well known One
Max, Leading Ones, Not-All-Equal Satisfiability and Weight Partition
problems illustrate the fundamental concepts supporting this approach.
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1 Introduction

Context and Challenge. Since its early days, evolutionary computing (EC)
grew rapidly and diversely, but lacking a fundamental and coherent theory [9].
Despite recent progress, still much work needs to be done regarding unification
[2,14]. Fitness landscapes have been helpful in that task since they define the
search space structure by the fitness function of the problem and the search
operators (i.e. the neighbourhood structure), thus linking three key elements
of evolutionary algorithms (EAs): problems, algorithms and performance [14].
Particularly, EAs with geometric crossover but no mutation were proved to do an
abstract form of convex search [11]. Moreover, this class of EAs is well-matched
with globally concave (or convex, if minimising) landscapes, for which runtime
exponentially better than pure random search can provably be guaranteed [13].
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This paper focuses on fitness landscapes, and extends [13], aiming at devel-
oping an analytical method to recognise if a given fitness landscape of some com-
binatorial problem provably matches a concave (or convex) class of landscapes
in general metric spaces. This method would provide insight to determine for
which classes of problems and EAs good performance can be guaranteed. We
propose elementary landscapes theory [15] as a fruitful choice to develop such
method, because the following reasons suggest that certain classes of elementary
landscapes relate to classes of (globally) concave landscapes and that elementary
landscapes theory is at our disposal to analyse recombination spaces:

– Certain elementary landscapes have all local optima clustered in a single
region of the search space. For instance, the landscape of the Linear Assign-
ment problem. Moreover, for Boolean spaces with Hamming distance, it was
shown that these elementary landscapes have a unique local optimum, thus
coinciding with unimodal landscapes [7,15,18].

– Many combinatorial problems (such as Graph Coloring, Symmetric Travel-
ling Salesman and Graph Bipartitioning) have elementary landscapes with
local optima grouped only in a few clusters in the search space, suggesting
an approximately globally concave (or convex) structure [8,18].

– Certain recombination spaces (e.g. induced by uniform recombination) are
homomorphic to mutation spaces, meaning that their associated landscapes
can be compared with each other and that elementary landscapes theory
extends to recombination spaces [5,18].

Scope and Contributions. This paper begins linking elementary landscapes
and the geometric framework to establish firm grounds to tackle the previous
challenge. The major contributions of this work are:

1. Show that from both theories it is possible to restate recombination in terms
of the other, that is enabling dual geometric and algebraic views, to justify
that is not futile to propose elementary landscapes as an analytic tool.

2. Examples on four well-known combinatorial problems to clarify the connec-
tion between the structure of elementary landscapes and the globally concave
classes of the geometric framework.

Although these contributions may appear only loosely connected, they com-
plement each other as we will see in the following sections, and their connection
will be further developed in future work.

Organisation. Section 2 introduces basic concepts about fitness landscapes.
Sections 3 and 4 present key ideas of the geometric framework and elementary
landscapes theory, respectively. Section 5 presents the main result of this study.
Section 6 illustrates with examples the utility of elementary landscapes to analyse
concave landscapes. Section 7 summarises this work and suggests future research.
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2 Fitness Landscapes

In combinatorial problems, it is natural to formalise the search space with con-
figuration set X in terms of a move operator m : Xn → Xk mapping a vector of
n parents into a vector of k offspring [16]. Mutation, acting on a single parent,
is naturally connected with a neighbourhood relation that can be described as
a connected graph, which can be undirected or directed depending on whether
the neighbourhood is symmetric or not. Recombination, acting on pairs of indi-
viduals, is non-trivial with different possible formalisations (e.g. using hyper-
graphs [5]). Besides neighbourhoods, graphs can also be described naturally using
graphic distances (e.g. length of shortest paths), which directly relate to metric
spaces and more generally fitness landscapes [16].

Definition 1. A metric space M is defined as the pair (X, d), where X is a set
of configurations and d : X ×X → R is a metric; such that ∀x, y, z ∈ X: (I) non-
negativity: d(x, y) ≥ 0; (II) identity: d(x, y) = 0 ⇐⇒ x = y; (III) symmetry:
d(x, y) = d(y, x) and (IV) triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

Definition 2. A fitness landscape F can be defined as the pair (M , f), where
M is a metric space, and f : X → R is a real-valued fitness function that
indicates the fitness of each configuration in X, the set of configurations in M .

3 Geometric Framework

Moraglio proposed a general theory of EAs, independent of the problem and rep-
resentation of solutions, solely based on an axiomatic definition of distance across
metric spaces [10]. This allows to formalise mutation and crossover operators in
terms of metric balls and geodesic intervals, respectively [20].

Definition 3. Let (X, d) be a metric space with configuration set X and metric
d. Then, a closed ball centred at point x ∈ X with radius r ∈ R≥0 is defined
as Bd[x; r] := {y ∈ X | d(x, y) ≤ r} and a geodesic interval or metric segment
as [x; y]d := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}, where x, y ∈ X are called the
extremes of the segment and d(x, y) its length.

Normally, implementations of heuristic search methods define probabilistic
search operators, thus a probability distribution over the configuration set. In
other words, move operators that return a subset of the possible neighbours. The
geometric framework takes this into account when defining geometric operators
[10].

Definition 4. Let (X, d) be a metric space and Im[�(·)] denote the set of off-
spring produced with non-zero probability by an operator �. Then, a unary oper-
ator με : X → X is a geometric ε-mutation if ∀x ∈ X

(
Im[με(x)] ⊆ Bd[x; ε]

)
,

where ε ∈ R≥0 is the smallest non-negative real number for which this condi-
tion holds. When ε is not specified, ε = 1 is assumed. And, a binary operator
χ : X × X → X is a geometric crossover if ∀x, y ∈ X

(
Im[χ(x, y)] ⊆ [x; y]d

)
.



Bridging Elementary Landscapes and a Geometric Theory 197

Apart from its benefits regarding unification and formal design of EAs across
representations, a geometric definition provides insight on the landscape prop-
erties that cause EAs to perform possibly much better than pure random search
[10]. Abstract convexity in general metric spaces is one such property [20], which
describes the structure induced by geometric crossovers and admits well-behaved
generalisations from traditional (Euclidean) concave functions [10,11].

Definition 5. Let a metric space M := (X, d), with configuration set X and
metric d, and a fitness function f define a fitness landscape F := (M , f). Then,
∀x, y, z ∈ X, F is quasi-concave if z ∈ [x; y]d and f(z) >= min

(
f(x), f(y)

)
; and

average-concave if z ∼ U(
[x; y]d

)
and E [f(z)] >=

(
f(x) + f(y)/2

)
. Where U

denotes the uniform probability distribution and E the expectation.

4 Elementary Landscapes Theory

Based on Grover's work [6], Stadler developed an algebraic theory of fitness
landscapes known as elementary landscapes (ELs) [15]. Here, regular undirected1

graphs induced by mutation neighbourhoods are formalised using the graph or
mutation Laplacian matrix Lμ defined by the graph's diagonal D and adjacency
A matrices (Fig. 1):

−Lμ := D − A. (1)

Fig. 1. Star graph S4 (left) and its graph Laplacian matrix (right).

To formalise recombination neighbourhoods in terms of hypergraphs [5], a
new concept called ‘P-structure’ given by (X,R) was introduced [18], where X
is a finite set with power set P(X) and R : X×X → P(X) maps a pair of parents
into the set of possible offspring. By a hypergraph we mean a graph with ver-
tex set X and hyperedge set E := {R(x, y) ∈ P(X) | R(x, y) �= ∅ ∧ x, y ∈ X}.
Furthermore, the following subclass of P-structures is defined to capture some
desirable properties of recombination operators.

1 Extensions for non-regular and non-symmetric neighbourhoods are possible, but
regular and symmetric ones will be assumed here.
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Definition 6. A P-structure (X,R) is a recombination structure if ∀x, y, z ∈
X: (I) fix-point: R(x, x) = {x}; (II) symmetry: R(x, y) = R(y, x); (III) null-
recombination: {x, y} ⊆ R(x, y); and (IV) size-monotonicity: if z ∈ R(x, y),
then |R(x, z)| <= |R(x, y)|.

Laplacians LR for recombination P-structures can also be defined based on
the identity matrix I and a generalised adjacency matrix S for hypergraphs [18]:

−LR := 2 |X| I − S , (2)

where the square matrix S has entries Szx := 2
∑

y∈X Hz,(x,y) |R(x, y)|−1, and
the non-square binary incidence matrix H with entries Hz,(x,y) tells whether z
is offspring of x and y under R.

To better grasp the generalised adjacency matrix S in (2), one may consider
its associated stochastic matrix Tzx describing the transition probabilities of a
recombination-based random walk on a graph, where a father x is mated with a
randomly chosen mother y to produce an offspring z that will be the father in
the next recombination [18]. It is defined as Tzx :=

∑
y∈X tzxy py, where py is the

probability of choosing y from X, and tzxy is the probability of z given x and y.

Tzx, S and LR relate as: Tzx =
∑

y∈X tzxy py =
∑

y∈X Hz,(x,y) |R(x, y)|−1∗ 1
|X| =

1
2|X|Szx = 1

2|X|LR + I. Although this assumes a uniform population and that all
offspring occur with equal probability, it is possible to define weights for S to
formalise more realistic population recombination-based search algorithms [17].

In the light of Grover’s work and the characterisations above, Stadler defines
a non-flat fitness landscape as elementary if its zero-averaged fitness function
(as a column vector) f̃ := f − f̄ =

[
f(x1) − f̄ , f(x2) − f̄ , . . . , f(xn) − f̄

]T, with
finite discrete domain X = {x1, x2, . . . , xn} representing the vertex set of an
underlying connected graph, is an eigenfunction of a (generalised) Laplacian
matrix L of the graph: Lf̃ = λf̃ ; where λ > 0 is the eigenvalue and the constant
f̄ := 1

|X|
∑

x∈X f(x) is the average fitness of a configuration in X [8,15]. If
a landscape f is not elementary, it can always be decomposed into a linear
combination of ELs fk called its Fourier expansion: f = a0 +

∑|X|−1
k>0 akfk,

where scalars ak are the Fourier coefficients, a0 is the average fitness and the
eigenfunctions fk have corresponding eigenvalues λk (in increasing order and
counting multiplicities, 0 = λ0 < λ1

<= λ2
<= · · · <= λ|X|−1) such that Lfk = λkfk.

ELs have interesting geometric properties. One of them, proved by Grover [6],
is that all local maxima (minima) have fitness higher (lower) than or equal to the
average fitness: f(xmin) <= f̄ <= f(xmax). This property is closely related to the
idea of monotonic sequences of local optima (i.e. sequences of ever non-decreasing
or non-increasing fitness) used, for instance, in the local optima networks model
[19] to formalise the funnel structure of landscapes.

Another important aspect of ELs is their global structure. There are two
major classes depending on the index p (ignoring multiplicities) of the eigenvalue:
Fujiyama or single-peaked [7], and non-Fujiyama. Fujiyama are those ELs with
the smallest non-zero eigenvalue (λ1), that is Lf̃ = λp=1f̃ ; characterised for
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having all local optima clustered in a single region of the space [18]. In particular,
for Boolean spaces with Hamming distance they have a unique global optimum
[15]. Non-Fujiyama are those ELs for p > 1 with local optima clustered in more
than one region; indeed, many combinatorial problems fall here with p = 2
(e.g. Max Cut) [8]. More formally, by clusters we mean discrete nodal domains
[1] (Fig. 2). These are the maximally connected subgraphs induced by the vertex
subsets V+ := {x ∈ V | f(x) >= 0} and V− := {x ∈ V | f(x) <= 0}, denoting the
weak positive and negative nodal sets respectively, for a given graph with vertex
set V and eigenfunction f (i.e. the fitness function) on V . Similarly, strong
nodal sets are defined using a strict inequality instead. Note that, for a zero-
averaged function, V+ and V− induce subgraphs separating precisely above and
below average configurations. Interestingly, the number of discrete nodal domains
can be upper-bounded a priori, provided that we know p, using Proposition 1,
generally, and the more sharp Proposition 2 specifically for Boolean spaces; which
were proved in [1,4].

Fig. 2. An eigenfunction defined on the star graph S4 (right), with eigenvalue λ1 = 1 of
the graph Laplacian, and its induced discrete nodal domains (left): two weak and four
strong. Positive nodes in ‘black’, negative nodes in ‘white’ and zero nodes in ‘grey’.

Proposition 1. Given a generalised Laplacian of a connected graph, any eigen-
function fk corresponding to the k-th eigenvalue λk with multiplicity r has at
most k weak and k + r − 1 strong nodal domains.

Proposition 2. For an eigenfunction f with eigenvalue 2p, where p is its index
ignoring multiplicities and N the number of vertices of the Boolean hypercube,
the number W (f) of weak nodal domains is upper-bounded as:

W (f) <= wN,p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p + 1 if p = 0 or p = 1,

2

⎛

⎝1 +
p/2−1∑

k=0

(
N

2k

)
⎞

⎠ if p is even,

2

⎛

⎝1 +
�p/2�−1∑

k=0

(
N

2k + 1

)
⎞

⎠ if p is odd.

(3)



200 M. D. Garćıa and A. Moraglio

5 Main Results

To analyse the landscapes induced by geometric crossovers (Definition 4) using
ELs theory, it is necessary to prove that geometric crossovers belong to the class
of recombination P-structures (Definition 6). Connecting both theories (Sects. 3
and 4) can help to develop dual geometric and algebraic views with which tackle
the challenge of identifying generalised concave landscape classes using ELs the-
ory, and give insight on explaining the good performance behind convex search
(Sect. 1). Next, we prove that all geometric crossovers, regardless of the metric,
are recombination P-structures.

Lemma 1. Let (X, d) be any metric space. Then, ∀x, y ∈ X and any metric d,
(X, [x, y]d) is a recombination P-structure.

Proof. We need to prove that metric segments fulfil the axioms of recombination
P-structures.

(I) Fix-point. The only possible z in [x;x]d = {z ∈ X | d(x, z) + d(z, x) =
d(x, x)} is exactly x. Therefore, [x;x]d = {x}.

(II) Symmetry. [x; y]d = [y;x]d follows immediately from the symmetry axiom
of metric segments.

(III) Null-recombination. {x, y} ⊆ [x; y]d holds by definition, since the extremes
x and y of the segment are always included in the segment.

(IV) Size-monotonicity. To prove that if z ∈ [x; y]d, then
∣
∣ [x; z]d

∣
∣ <=

∣
∣ [x; y]d

∣
∣, we

can recall that all metric segments fulfil monotonicity [20]: ∀x, y, z ∈ X if
z ∈ [x; y]d then [x; z]d ⊆ [x; y]d. Therefore, it follows

∣
∣ [x; z]d

∣
∣ <=

∣
∣ [x; y]d

∣
∣. ��

Unfortunately, to prove equivalence in the other direction it is necessary
to restrict recombination P-structures to those that precisely produce offspring
z ∈ R(x, y) lying in the geodesic interval between parents x and y, since in
general not all recombination P-structures fulfil this property [3].

Example 1. Consider R� returning offspring lying on longest paths between
parents. This can generate offspring beyond the geodesic interval between parents
(i.e. in the extension ray [20]), e.g. [000; 011]dH �� 111 ∈ R�(000, 011) where dH
is the Hamming distance. Indeed, extended line recombination, which generates
offspring in the extension ray, is not a geometric crossover for any metric [12].

Definition 7. A recombination P-structure (X,R), for a connected graph G
with vertex set X, that ∀x, y ∈ X fulfils the axiom R(x, y) ⊆ I(x, y), where
I(x, y) is the set of all shortest paths between x and y in G, is a geometric
recombination P-structure denoted by Rg.

Theorem 1. Let (X, d) be any graphic metric space. Then, all geometric recom-
bination P-structures Rg are equivalent to all geometric crossovers χ defined on
(X, d). That is, ∀x, y ∈ X

(Rg(x, y) = χ(x, y)
)
.
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Proof. The proof follows immediately from Lemma1, and Definitions 4 and 7 of
geometric crossovers and geometric recombination P-structures respectively. ��

Interestingly, all recombination P-structures fulfil the inbreeding properties
(Theorem 2), that is breeding between close relatives, common to all geometric
crossovers and independent of the metric used, which were proposed as a test
for non-geometricity of crossovers: if any of them fails, then a crossover is not
geometric [12].

Theorem 2. Let (X,R) be any recombination P-structure. Then, R satisfies all
inbreeding properties of geometric operators: purity, convergence and partition.

Proof. Purity: The recombination of one parent with itself can only produce the
parent itself. Follows immediately from the fix-point axiom of recombination
P-structures: ∀x ∈ X, R(x, x) = {x}.

Convergence: The recombination of one parent with one offspring cannot produce
the other parent of that offspring, unless the offspring and the second parent
coincide. We want to prove that ∀x, y, z, s ∈ X if z ∈ R(x, y) and s ∈ R(x, z),
then s = y =⇒ z = y. Let z ∈ R(x, y) such that z �= y, and s ∈ R(x, z). We
want to show that actually s �= y too. From the size-monotonicity axiom of
recombination structures we know:

|R(x, z)| < |R(x, y)| , (4)

since y �= z ∈ R(x, z). Besides, either s = z or s �= z. If s = z, then we know
automatically that s �= y, since s = z �= y. If on the other hand s �= z, then:

|R(x, s)| < |R(x, z)| . (5)

If s was allowed to be y, then |R(x, s)| = |R(x, y)|, however by (5):

|R(x, s)| = |R(x, y)| < |R(x, z)| (6)

thus contradicting (4). Therefore, s �= y for the s �= z case. Consequently, the
only possibility left for s = y is that z = y.

Partition: If z is a child of x and y, then the recombination of x and z, and
the recombination of y and z, cannot produce a common grandchild s other
than z. Another way to phrase it is that both recombinations must produce
two different grandchildren when they are not z. That is, we want to prove
that ∀x, y, z, s1, s2 ∈ X if z ∈ R(x, y), s1 ∈ R(x, z) and s2 ∈ R(z, y), then
s1 �= s2. Without loss of generality, let z ∈ R(x, y) such that z �= y, and
assume the opposite: s1 = s2. Then, we know by the convergence property
that s1 �= y. Analogously, exchanging the roles of the parents x and y using
the symmetry axiom of recombination structures, we know s2 �= x. Observe,
however, that there are no restrictions in having s1 = x and s2 = y. But, since
we assumed s1 = s2, we find the following contradictions: x = s1 = s2 �= x,
and y = s2 = s1 �= y. Therefore, s1 �= s2. ��
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Since all recombination P-structures fulfil the inbreeding properties but only
geometric recombination P-structures are equivalent to geometric crossovers
(Theorem 1), from Theorem 2 we conclude the following.

Corollary 1. The inbreeding properties of geometric crossovers are necessary
but not sufficient conditions to determine if a crossover is geometric.

This resolves the question of whether the inbreeding properties are sufficient
or not for geometricity, which was left open in [12]. In the light of this result, it
would be worth identifying additional inbreeding properties that when consid-
ered jointly would be sufficient to guarantee that a crossover is geometric.

6 Discrete Nodal Domains for Uniform Recombination
in Boolean Spaces with Hamming Distance: Examples

Section 5 justified that proposing ELs theory to analyse the abstract concave
classes of the geometric framework is not futile by showing that geometric
crossovers are a specific case of recombination P-structures, and that certain
recombination P-structures coincide with geometric crossovers; thus motivating
a dual interpretation on landscapes induced by recombination. This section clari-
fies, with illustrative examples, how discrete nodal domains (Sect. 4) help analyse
the structure of landscapes induced by uniform recombination in Boolean spaces
with Hamming distance in particular, and how they link to global concavity. The
examples considered are on two artificial problems, One Max and Leading Ones,
and two NP-complete problems [6]:

Not-All-Equal Satisfiability (NAES). An instance is a set of clauses and its fitness
is the number of satisfied clauses. A clause consists of three literals (i.e. a
binary variable or its complement) not containing simultaneously a binary
variable and its complement, and it is satisfied if there are at least two distinct
literals such that one is 0 and the other is 1.

Weight Partition (WP). An instance is a vector of n weights wi corresponding
to objects oi, for 1 <= i <= n. The problem consists in finding an assignment
si ∈ {−1, 1} of weights such that f(w1, . . . , wn) = (

∑n
i=1 wisi)

2 is minimised.

Figure 3, obtained using Mathematica2, summarises key aspects of the prob-
lems' landscape structure. Although the examples considered are for the three-
dimensional Boolean hypercube embedded in the hypergraph induced by uniform
recombination [18], we have observed equivalent results in higher dimensions.

Next, we see how the global landscape structure could be inferred analyti-
cally. For ELs this is possible by knowing the corresponding eigenvalues, since
from their indexes we can tell whether they are Fujiyama or non-Fujiyama and
also upper-bound the number weak nodal domains using Proposition 2 (Sect. 4).
Then, we will explain why Leading Ones poses certain problems for this analyt-
ical approach.
2 The reader is referred to the Mathematica notebook publicly available online at:

https://github.com/marcosdg/ppsn-2018, for the examples details.

https://github.com/marcosdg/ppsn-2018
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Fig. 3. Strongly positive (‘black dots’) and negative (‘white dots’) discrete nodal
domains for the (a) Not-All-Equal satisfiability (NAES), (b) Weight Partitioning (WP),
(c) One Max and (d) Leading Ones problems on the three-dimensional hypercube.
W+, S+, W− and S− denote the number of weakly positive, strongly positive, weakly
negative and strongly negative domains respectively; and p denotes the order of the
eigenvalue (λp) for each of the eigenfunctions fNAES, fWP, fOneMax and fLeadingOnes.

Eigenvalues of Elementary Landscapes. To find them we need to know the
uniform recombination Laplacian LR for the three-dimensional hypercube (see
Lemma C7 [18]): (LR)xy = 2(23)Ixy −

(
2 (3/2)3 3−dH(x,y)

)
. We observe that this

Laplacian has eigenvalues {0, 8, 8, 8, 12, 12, 12, 14} (in increasing order and
starting at index 0); and that One Max is elementary for λ1 = 8, and NAES
and WP for λ2 = 12: LRf̃OneMax = 8 ∗ f̃OneMax, LRf̃NAES = 12 ∗ f̃NAES and
LRf̃WP = 12 ∗ f̃WP.

One Max, NAES and WP. From the eigenvalues we know that One Max is
a Fujiyama EL (p = 1), that is with a unique global optimum and single-peaked.
This agrees with the fact that fOneMax(x1, . . . , xn) :=

∑n
i=1 xi is a linear pseudo-

Boolean function whose Fourier expansion using Walsh functions has only non-
zero terms in the 0-th and 1-st orders thus elementary for p = 1. Whereas NAES
and WP are non-Fujiyama ELs of order p = 2. These results are a consequence of
Corollaries 2 and 3 in [18], proving that eigenfunctions of the mutation Laplacian
(1) are also eigenfunctions of the uniform recombination Laplacian (2). Besides,
one notes that the eigenvalue (λ2 = 12) for NAES and WP does not coincide
with the eigenvalue (λ2 = 4) obtained for the mutation Laplacian [8]. Neverthe-
less, that is expected: two spaces may have identical eigenfunctions but different
eigenvalues, possibly affecting the correlation between fitness values (i.e. rugged-
ness) of the landscape [18]. Thus, two landscapes may have identical number of
nodal domains (i.e. same global structure) and different ruggedness.
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Number of Weak Nodal Domains. Proposition 2 provides upper-bounds
for the number of weak nodal domains; for One Max, NAES and WP we have:
W+(f̃OneMax) + W−(f̃OneMax) = 1 + 1 <= w23,1 = 2, W+(f̃NAES) + W−(f̃NAES) =
2 + 2 <= w23,2 = 4 and W+(f̃WP) + W−(f̃WP) = 2 + 2 <= w23,2 = 4. This means
that One Max has two weak nodal domains corresponding to two major clusters
of local optima, separated by the hyperplane described by the average fitness.
NAES and WP have at most four weak nodal domains and thus we cannot expect
more than four clusters. Particularly, for p = 1 and p = 2, the upper-bounds
remain constant regardless of the dimension (Table 4.1 in [1]).

Leading Ones. We observed in Mathematica that Leading Ones has the same
number of discrete nodal domains as One Max by computing them. From
Fig. (3d) one may think that Leading Ones is an EL for p = 1; however, it
is not elementary neither for recombination nor mutation neighbourhoods, but
a sum of n elementary landscapes. The reason is that fLeadingOnes(x1, . . . , xn) :=
∑n

i=1

∏i
j=1 xj is a k-bounded pseudo-Boolean function that is a sum of Walsh

functions where the bitwise non-linearity is at most k bits. For Leading Ones
k = n, thus the highest order is p = n (i.e. the bit string length). This means
that we cannot use Propositions 1 and 2 to know a priori the number of discrete
nodal domains, since in general they do not hold when the landscape is a sum
of ELs. Finding those cases where they hold is an open problem [1].

Concluding, discrete nodal domains are a promising analytic tool with which
tackle the challenge of identifying landscape classes, because they capture key
information of the landscape structure and can be related to ELs via eigenvalues
and eigenfunctions. Then, what the abstract concave classes would correspond
to? Previous observations suggest Fujiyama ELs (p = 1), since they overlap with
single-peaked landscapes. For instance, One Max can be shown to be average-
concave [13] and we now know that One Max is Fujiyama. Further research will
confirm whether this intuition is correct.

7 Conclusions

The geometric framework has been successful in finding proper subclasses of
EAs and fitness landscapes with provably polynomial runtime guarantees, how-
ever missing analytical means for landscape structure analysis. Besides, ELs
theory provides a fine-grained analysis of the landscape structure in terms of
its spectrum (i.e. eigenvalues and eigenfunctions) and discrete nodal domains,
but lacking EAs dynamics modelling and runtime results. The ultimate goal of
this research is precisely unifying these two frameworks, aiming at developing
complementary geometric and algebraic views on fitness landscape analysis, to
better understand when and why EAs perform well.

This paper took the first steps towards such goal by putting together for the
first time both frameworks and highlighting their key ideas. First, proving that
all geometric crossovers can be conceived as recombination P-structures, and
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that there exists a specific subclass of these that match geometric crossovers
(Sect. 5). Then, illustrating and clarifying with examples how discrete nodal
domains could help to identify concave landscape classes for problems that are
elementary, by analysing their spectrum (Sect. 6). The next important steps
would be to formalise the concave classes in terms of discrete nodal domains
and convex search in ELs theory. Also, it would be worth researching whether
landscape funnels can be formalised in terms of discrete nodal domains.
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